
 

 

 
 

 

Eco-evolutionary dynamics in predator-prey systems 
 
 
 

 
 
 

 
 

Masato Yamamichi 
 
 

DOCTOR OF PHILOSOPHY 
 
 
 

 
 
 

 

 
Department of Evolutionary Studies of Biosystems 

School of Advanced Sciences 
The Graduate University for Advanced Studies 

 
 

2011 



 2 

Contents 
 

Acknowledgements      3 

Summary       4 

List of Publications      6 

Chapter 1. Introduction      8 

1.1 Eco-evolutionary dynamics     8 

1.2 Predator-prey systems     10 

1.3 Chapter contents      14 

Chapter 2. Eco-evolutionary dynamics of phenotypic plasticity  15 

 2.1 Abstract       15 

 2.2 Introduction      15 

 2.3 Models       20 

 2.4 Results       26 

 2.5 Discussion      37 

 2.6 Appendix      43 

 2.7 Acknowledgements     65 

Chapter 3. Ecological speciation via functional pleiotropy  66 

 3.1 Abstract       66 

 3.2 Introduction      66 

 3.3 Models       70 

 3.4 Results       73 

 3.5 Discussion      82 

 3.6 Appendix      85 

 3.7 Acknowledgements     111 

Chapter 4. Concluding Remarks and Perspectives   112 

4.1 Concluding remarks     112 

4.2 Perspectives      114 

References       117 

 



 3 

Acknowledgements 
 

Firstly, I would like to show my gratitude to my supervisors, Prof. Akira Sasaki, Prof. 

Hideki Innan, and Prof. Mariko Hiraiwa-Hasegawa. Without their kind help, this thesis 

would not have been possible. I would also like to thank my collaborators, Prof. 

Takehito Yoshida and Dr. Masaki Hoso, a committee member, Prof. Masakazu Shimada, 

and members of Sasaki-Ohtsuki lab, Innan lab, and Department of Evolutionary Studies 

of Biosystems. They have continuously encouraged my research and their comments 

have improved my studies and presentations. Prof. Nelson G. Hairston Jr., Prof. Stephen 

P. Ellner, and members of the chemostat meeting, the Hairston lab, the Ellner lab, and 

Department of Ecology and Evolutionary Biology gave a great opportunity to do 

research at Cornell University. Lecturers and members of summer schools in 

Switzerland (eawag) and Okinawa (OIST), the community ecology seminar, CTS 

seminar, and the Darwin seminar gave me a great opportunity to broaden my knowledge 

about ecology and evolution. Finally, I would like to thank my parents and family for 

their support for all the years. This work was supported by Japan Society for the 

Promotion of Science (JSPS) research fellowship for young scientists (DC1: 21-7611), 

Japan Student Services Organization (JASSO), and the Graduate University for 

Advanced Studies (Sokendai).  

 



 4 

Summary 
 

Recent studies have revealed that ecological and evolutionary dynamics have close 

interactions. Not only ecological dynamics affect adaptive evolution, evolution can 

occur as rapidly as ecological dynamics (i.e., rapid evolution) and can also affect 

ecology including population dynamics, community structures, and even ecosystem 

functions. Ecological settings cause adaptive evolution, and then trait evolution 

modifies its surrounding environments and thereby changes selection pressure: such 

feedbacks between ecology and evolution are called as eco-evolutionary dynamics. 

Recently it was cautioned that predicting future biological dynamics would be difficult 

ignoring eco-evolutionary feedbacks. Understanding eco-evolutionary dynamics is 

crucial not only for the consilience of basic ecology and evolutionary biology but also 

for applied ecology: conservation and management of the wildlife. Here I theoretically 

investigated eco-evolutionary dynamics in one of the most common interspecific 

interactions, predator-prey systems. Because predation is tightly related to organisms’ 

fitness, eco-evolutionary dynamics is widespread in predator-prey systems and 

important to predict future dynamics. 

 In chapter 2, I focused on eco-evolutionary dynamics of phenotypic plasticity 

and population dynamics. Understanding causes and consequences of population cycles 

has been an important research focus as cycles can cause extinction of populations and 

one third of population dynamics in the wild shows periodic dynamics (cycles). 

Plankton predator-prey systems in chemostats (continuously flowing microcosms) are 

ideal experimental systems to investigate the effects of rapid evolution and phenotypic 

plasticity (induced defense) of prey species on population dynamics in detail. Based on 

the chemostat models, I confirmed that phenotypic plasticity is better at stabilizing 

population dynamics whereas a plastic genotype has higher fitness in fluctuating 

environments than in stable environments. Combining these two characteristics that 

have been studied separately in population and evolutionary ecology, I found a dilemma 

of plasticity: the plastic genotype is better in fluctuating environments, but it stabilizes 

the fluctuation and thereby decreases its fitness by itself. By decreasing the plastic 

genotype, the system again begins to oscillate. The dilemma results in a novel 

phenomenon in which phenotypic plasticity evolve rapidly causing intermittent cycles. I 

proposed to call this as ‘eco-evolutionary bursting.’ 
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 In chapter 3, I focused on ecological speciation via functional pleiotropy, in 

which evolution of the speciation gene contributes not only to reproductive isolation, 

but also to anti-predatory adaptation. Classically it was believed that single-gene 

speciation is almost impossible, because the first mutant is strongly selected against. 

However, there are some empirical evidences of single-gene speciation in snails. Recent 

studies proposed a ‘right-handed’ predator hypothesis, in which specialized predation of 

snakes on dextral (clockwise coiling) snails can elevate relative survival rate of sinistral 

(counter-clockwise coiling) snails and thereby promote fixation of a sinistral mutant 

allele. I theoretically revealed that functional pleiotropy and the maternal effect (i.e., 

delayed inheritance, in which an individual’s phenotype is determined by its mother’s 

genotype) of the speciation gene can promote single-gene speciation. In small 

populations, indeed, I found that a recessive mutant has higher fixation probabilities 

without pleiotropy, whereas a dominant mutant has higher one with pleiotropy. In large 

populations, the dominant and recessive mutant alleles have the same fixation 

probability without pleiotropy. This theoretical prediction would be testable by 

examining allele dominance of the speciation gene in snails living within or outside the 

snake range. 

 As future perspectives of studies on eco-evolutionary dynamics, I propose 

four important topics: (1) space and time, (2) combining theoretical and empirical 

approaches, (3) genomics and eco-evolutionary studies, and (4) eco-evolutionary 

conservation and management. This thesis did not consider macroscale dynamics of 

space (e.g., metacommunity) or time (e.g., macro evolution), but it would be interesting 

to consider eco-evolutionary dynamics in these scales. Second, here I focused on 

theoretical modeling to understand dynamics, but combining theoretical and empirical 

approaches with a sophisticated statistical framework is crucial to understand real 

biological systems. Especially, in this post-genomic era, it will be possible to 

understand eco-evolutionary dynamics from the genomic scale to the ecological scale. 

Therefore, future researches are needed to directly connect evolution in the genomic 

level to ecological dynamics. Finally, conservation and management studies should 

incorporate perspectives from eco-evolutionary dynamics, as evolution can drastically 

alter ecological dynamics of nearly extinct populations (e.g., evolutionary rescue) or 

heavily exploited populations (e.g., fisheries-induced evolution). With eco-evolutionary 

dynamics, it will be possible to conserve and manage wild populations better. 
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Chapter 1. Introduction 
 
But it is difficult to tell, and immaterial for us, whether habits generally change first 
and structure afterwards; or whether slight modifications of structure lead to changed 

habits; both probably often change simultaneously. (Darwin 1859) 

 
1.1 Eco-evolutionary dynamics 
Ecology is defined as “the scientific study of the interactions between organisms and 

their environment” (Begon et al. 2006). Evolution is “the unifying theory of the 

biological sciences” and “it aims to discover the history of life and the causes of the 

diversity and characteristics of organisms” (Futuyma 2005). Although there has been a 

traditional connection between ecology and evolution, it is rather recent that researchers 

get to understand the close relationship between ecological and evolutionary dynamics 

(Johnson and Stinchcombe 2007, Schoener 2011). For example, Lawrence B. Slobodkin 

drew a distinction between ‘ecological time’ (~ 10 generations) and ‘evolutionary time’ 

(on the order of half a million years) in his influential book (Slobodkin 1961). 

According to his definition, ecological time is a period over which populations could 

maintain approximate steady state, and evolutionary time is sufficient for evolutionary 

change to disrupt ecological steady states. In the same way, G. Evelyn Hutchinson titled 

his famous book “The Ecological Theater and The Evolutionary Play” (Hutchinson 

1965), describing ecological systems as analogous to theaters, in which species or 

individuals (i.e., the actors) have roles determined by their evolutionary history, and the 

acts are played out in an unscripted fashion that is contingent on the environmental 

setting (i.e., the local theater). 

Recent studies have indicated that (1) evolution can occur on the same 

timescale as ecology (i.e., rapid/ongoing/contemporary evolution) (Thompson 1998, 

Hendry and Kinnison 1999, Hairston et al. 2005). Here I define evolution as an allele 

frequency change over generations and it is adaptive when alleles have different fitness. 

In the Wright-Fisher model of haploid organisms assuming discrete generation and 

constant population size (Fisher 1930, Wright 1931), the speed of allele frequency 

change due to natural selection is given by 

!p = sp 1" p( )
w

,       (1.1) 
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Figure 1.1: Relation between rate of phenotypic evolution and number of generations 

over which measurements were made. Original figure (small dots) is from Hendry and 

Kinnison (1999) with new calculations added for Darwin’s finch (Geospiza fortis) and 

the freshwater copepod (Onychodiaptomus sanguineus), showing the slowest, the most 

rapid, and the average rates of evolution (per generation) over the 30- and 10-year, 

respectively, periods of study (Hairston et al. 2005). 

 

where p is a favored allele frequency, s is a positive selection coefficient, and w  is a 

mean fitness. In the trait level, adaptive evolution process is generally described by the 

Price equation: 

 !z =
Cov w, z( )

w
+
E w!z( )

w
,      (1.2) 

where the first term, a covariance of trait (z) and fitness (w), is a change in mean 

phenotype due to selection and the second term is due to transmission bias (e.g., 

mutation and genetic drift) (Price 1970). Therefore, if the selection coefficient and 

genetic variance were sufficiently large, adaptive evolution can occur rapidly.  

(2) Rapid evolution is pervasive in the wild. Hendry and Kinnison (1999) 

compared rates of evolution (measured by haldane, which is the per generation change 

relative to character variance: Gingerich 1993) and generations over which 

measurements were made by a meta-analysis. They proposed that studies covering only 
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a few generations typically show faster evolution than those covering more generations 

(small dots in fig. 1). This may be because selection coefficients are fluctuating around 

zero. The clear negative correlation may be partly due to a publication bias (Hairston et 

al. 2005), but still the graph shows that evolution can be rapid before averaging over 

longer periods (Hoekstra et al. 2001). This speed is partly because of rapid 

environmental changes by humans such as habitat destruction, introduction of exotic 

species, and climate change (Palumbi 2002). Classic examples include industrial 

melanism of peppered moth in Great Britain (Kettlewell 1958).  

(3) Rapid evolution can affect population dynamics (Yoshida et al. 2003), 

community structures (Johnson et al. 2009), and even ecosystem functions (Bassar et al. 

2010, Loreau 2010), and in tern, changed environments impose different selection 

pressure on organisms (so-called ‘eco-evolutionary dynamics’: Pelletier et al. 2009). 

This modern ideas about eco-evolutionary dynamics call for a more nuanced analogy 

than Hutchinson’s ‘ecological theater and the evolutionary play.’ For instance, we can 

consider that the roles of actors (i.e., species’ or individuals’ phenotypes) in local 

theaters (i.e., ecosystems) change over generations in response to direct pressures from 

actors’ peers and audiences (i.e., the agents of selection). Actors’ roles can evolve 

because of reciprocal interactions (i.e., eco-evolutionary feedbacks) between actors and 

their peers (i.e., the community) or between actors and the structural components of the 

theater (e.g., the abiotic environment of ecosystems). In addition, actors can influence 

the development and renovation of the theater (i.e., ecosystem modification and 

engineering) and this, in turn, can increase the number of actors in the play (i.e., via 

niche construction) and affect the outcome of future plays (Matthews et al. 2011).  

In addition to fundamental importance of the consilience of ecology and 

evolution, understanding eco-evolutionary dynamics is crucial for predicting ecological 

dynamics (Ellner et al. 2011) and therefore conserving and managing rapidly adapting 

wild populations (Kinnison and Hairston 2007).  

 

1.2 Predator-prey systems 
Predation is defined as “a biological interaction where a predator feeds on its prey” 

(Begon et al. 2006). Predator-prey interaction is one of the most common interspecific 

interactions and resultant ecological dynamics are studied intensively (Barbosa and 

Castellanos 2005). Classical topics of ecology on predation include the HSS hypothesis 
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(Hairston et al. 1960), keystone predation (Paine 1966), trophic cascades (Terborgh and 

Estes 2010), and paradox of enrichment (Rosenzweig 1971).  

Recent studies have found many examples of eco-evolutionary dynamics in 

predator-prey systems (Abrams 2000, Hairston et al. 2005). This is because fitness of 

prey would be zero if it were eaten, thus anti-predator adaptation is crucial for prey. For 

predator, eating prey efficiency is also significant for its fitness. In this Ph.D. thesis, I 

try to understand eco-evolutionary dynamics in predator-prey systems theoretically. 

Specifically, I focus on phenotypic plasticity and population dynamics in chapter 2 and 

on ecological speciation due to predation in chapter 3.  

 

1.2.1 Population dynamics 
In ecology, one of the most popular questions is ‘to oscillate or not to oscillate?’ Causes 

and consequences of predator-prey cycles have been the focus of many ecological 

studies. Population cycles are important because it is tightly related to persistence of 

populations: increasing amplitude of oscillation with smaller minimum abundance can 

result in deterministic or stochastic extinction of populations. In addition, population 

cycles are pervasive: by a meta-analysis of the Global Population Dynamics Database  

(http://www3.imperial.ac.uk/cpb/research/patternsandprocesses/gpdd), it was shown 

that one-third of population dynamics showed periodic dynamics (cycles) and part of 

this is due to predator-prey interaction (Kendall et al. 1998).  

Theoretical modeling has been used to investigate predator-prey population 

dynamics. The classic Lotka-Volterra model (Lotka 1925, Volterra 1926) is 

 

dx
dt

= x a ! by( ),
dy
dt

= y cx ! d( ),
      (1.3) 

where x and y are prey and predator, a is a growth rate of prey, b is a predation rate of 

prey, c is a growth rate of predator, and d is a mortality rate of predator. Equilibria of 

this system are (x, y) = (0, 0) and (d/c, a/b). Because the trace of the Jacobian matrix is 

0 in the second equilibrium, this system is neutrally stable. Therefore amplitude of 

cycles depends on initial conditions. The Rosenzweig-MacArthur model is more 

complex by adding biological details (Rosenzweig and MacArthur 1963): 
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Figure 1.2: Experimental results of chemostats with predator (rotifer: Brachionus 

calyciflorus) and prey (green algae: Chlorella vulgaris) (Yoshida et al. 2003). A. 

Single-clone of Chlorella causes ordinary predator-prey cycles (1/4 phase lag). B. 

Multiple-clone of Chlorella causes evolutionary cycles (anti-phase cycles) with longer 

period length. 
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where K is a carrying capacity of prey, h is a handling time of predator to eat prey, s is a 

searching efficiency of predator to eat prey, and c is a conversion rate of predator. The 

system shows stable limit cycles with predator and prey as shown in figure 2A.  

 Microcosm experiments have been performed to understand such oscillations 

(e.g., Gause 1934, Utida 1957, Huffaker 1958, Fussmann et al. 2000). By using 
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chemostat (continuously flowing microcosm) experiments as well as theoretical 

modeling, it was shown that eco-evolutionary dynamics in predator-prey systems cause 

strange cycles: evolutionary or cryptic cycles (Abrams and Matsuda 1997, Yoshida et al. 

2003, Yoshida et al. 2007). In evolutionary cycles, temporally varying predation 

pressure cause balancing selection: when predator is abundant, more defended genotype 

is selected for whereas less defended genotype is favored when predator is scarce due to 

trade-off between the defensive trait and growth rate (Yoshida et al. 2004, Meyer et al. 

2006, Becks et al. 2010). Because algae reproduce asexually in chemostats, adaptation 

occurs by frequency change of genotypes. This adaptation process affects population 

cycles: ordinary predator-prey cycles show 1/4 phase-lag between them (fig. 2A) 

whereas evolutionary cycles show 1/2 phase-lag (anti-phase cycles) with longer period 

length (fig. 2B). This is a typical example of eco-evolutionary dynamics. 

Rapid adaptation can be observed in the wild, but it is difficult to tell whether 

it is adaptation due to evolution (genetic change) or phenotypic plasticity (without 

genetic change). To predict population dynamics with rapid adaptation, therefore, it is 

important to know the effects of evolution and plasticity on predator-prey dynamics 

precisely. We investigate this problem in chapter 2. 

 

1.2.2 Ecological speciation 

Speciation is a source of biodiversity and has been a major research topic of 

evolutionary biology (Coyne and Orr 2004). Eco-evolutionary feedbacks between 

predator and prey can sometimes result in speciation of predator or prey. Resource 

competition has been thought as a primary factor driving phenotypic divergence, but 

predation can cause adaptive divergence of prey (Abrams et al. 1993). For example, 

Nosil and Crespi (2006) showed experimentally that divergent selection from visual 

predators could promote speciation in stick insects (Nosil and Crespi 2006). This kind 

of speciation is called as ‘ecological speciation’. More precisely, ecological speciation 

is defined as “the process by which barriers to gene flow evolve between populations as 

a result of ecologically-based divergent selection” (Rundle and Nosil 2005). Also, 

sequential ecological speciation is called as ‘adaptive radiation’ (Schluter 2000). 

Another study also showed that the speed of ecological speciation can be on ecological 

timescale (Hendry et al. 2007). Therefore, predator-prey interactions can result in rapid 

evolution of reproductive isolation as a byproduct of feeding or anti-predatory 
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adaptation. 

Theoretical studies on ecological speciation have been concentrating on 

Adaptive Dynamics (Doebeli 2011) or Monte Carlo simulations to show the specific 

condition for speciation to occur (Gavrilets 2003). Numerical simulations can include 

complicated genetic basis of the trait contributing reproductive isolation whereas it is 

difficult to obtain general conclusions. Adaptive Dynamics is an analytical and general 

approach, but it neglects genetic detail (but see Sasaki and Dieckmann 2011). Therefore 

we analytically as well as numerically consider the special case of speciation with 

genetic detail in chapter 3. 

 

1.3 Chapter contents 
In chapter 2, I focused on plankton predator-prey systems in microcosms to understand 

the effects of rapid evolution and phenotypic plasticity of prey species on population 

dynamics. I theoretically confirmed that plasticity is better at stabilizing population 

dynamics (as Vos et al. 2004a) whereas a plastic genotype has higher fitness in 

fluctuating environments than stable environments (as Svanbäck et al. 2009). The first 

topic has been studied in population ecology (ecological effect of plasticity) and the 

second one has been in evolutionary ecology (condition for evolution of plasticity). 

Combining these two characteristics, I found a dilemma of plasticity: the plastic 

genotype is better at fluctuating environments, but it stabilizes the fluctuation and 

thereby decreases its fitness by itself. The dilemma results in rapid evolution of 

phenotypic plasticity in intermittent cycles. We proposed to call this phenomenon as 

“eco-evolutionary bursting” because the intermittent cycles are similar to bursting in 

neurobiology. 

In chapter 3, I focused on single-gene speciation of snails promoted by 

right-handed snakes. Bateson (1909), Dobzhansky (1937), and Muller (1942) proposed 

that single-gene speciation is almost impossible, but there are some evidences of such 

speciation in snails (Ueshima and Asami 2003). Hoso et al. (2010) proposed a 

‘right-handed’ predator hypothesis, in which specialized predation of snakes on dextral 

snails can promote fixation of sinistral mutant alleles. I theoretically revealed that 

right-handed predation can promote speciation of snails. In small populations, indeed, I 

found that a recessive mutant has higher fixation probabilities without predation, 

whereas a dominant mutant has higher one with predation.  
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Chapter 2. Eco-evolutionary dynamics of 
phenotypic plasticity 

Masato Yamamichi, Takehito Yoshida, Akira Sasaki 

 

2.1 Abstract 
Ecologists have increasingly focused on how rapid adaptive trait changes can affect 

population dynamics. Rapid adaptation can result from either rapid evolution or 

phenotypic plasticity, but their effects on population dynamics are seldom compared 

directly. Here we examine theoretically the effects of rapid evolution and phenotypic 

plasticity of antipredatory defense on predator-prey dynamics. Our analyses reveal that 

phenotypic plasticity tends to stabilize population dynamics more strongly than rapid 

evolution. It is therefore important to know the mechanism by which phenotypic 

variation is generated for predicting the dynamics of rapidly adapting populations. We 

next examine an advantage of a phenotypically plastic prey genotype over the 

polymorphism of specialist prey genotypes. Numerical analyses reveal that the plastic 

genotype, if there is a small cost for maintaining it, cannot coexist with the pairs of 

specialist counterparts unless the system has a limit cycle. Furthermore, for the plastic 

genotype to replace specialist genotypes, a forced environmental fluctuation is critical 

in a broad parameter range. When these results are combined, the plastic genotype 

enjoys an advantage with population oscillations, but plasticity tends to lose its 

advantage by stabilizing the oscillations. This dilemma leads to an interesting 

intermittent limit cycle with the changing frequency of phenotypic plasticity. 

 

2.2 Introduction 
Adaptive trait change is a central topic of evolutionary biology. A vast number of 

studies have shown how individual organisms change traits in response to ecological 

factors. In contrast, little is known about how adaptive trait changes result in changes of 

population and community dynamics. Most classical studies in population and 

community ecology assume an organism’s traits to be fixed. However, the significance 

of the effect of “rapid” adaptive trait change on population dynamics has increasingly 

been recognized (Lima 1998, Thompson 1998, Bolker et al. 2003, Werner and Peacor 

2003, Agrawal et al. 2007, Peckarsky et al. 2008). 

Both rapid contemporary evolution and phenotypic plasticity, the two 
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mechanisms that cause rapid and adaptive phenotypic change (Shimada et al. 2010), 

have the potential to affect population dynamics. However, their effects on population 

and community dynamics are seldom compared directly. Here we briefly summarize the 

characteristics and ecological effects of mechanisms that can cause rapid adaptation and 

then introduce our study design. 

Despite the longstanding and unwarranted belief that evolution occurs so 

slowly that it does not affect ecological phenomena, rapid evolution (also referred to as 

contemporary or ongoing evolution) is rather common in the wild (Thompson 1998, 

Kinnison and Hendry 2001, Carroll et al. 2007, Pelletier et al. 2009). Here we define 

rapid evolution as “a genetic change occurring rapidly enough to have a measurable 

impact on simultaneous ecological change” (Hairston et al. 2005). An increasing 

number of ecological studies have demonstrated the effects of rapid evolution on the 

population dynamics of a single species (Sinervo et al. 2000), predator-prey dynamics 

(Abrams 2000, Yoshida et al. 2003, Yoshida et al. 2007), host-parasite dynamics (Duffy 

and Sivars-Becker 2007), community structures (Johnson and Stinchcombe 2007), and 

even ecosystems (Fussmann et al. 2007, Post and Palkovacs 2009, Matthews et al. 

2011). Feedbacks between ecological and evolutionary dynamics are referred to as 

eco-evolutionary dynamics (Pelletier et al. 2009). 

We here view evolution as the change in the frequency of several genotypes 

that result from standing genetic variation (Barrett and Schluter 2008). Thus, 

intraspecific genetic diversity is a prerequisite for rapid evolution. The effect of 

standing genetic diversity on ecological dynamics is also a topic of active research 

(Whitham et al. 2006, Kokko and López-Sepulcre 2007, Hughes et al. 2008). 

Phenotypic plasticity, by which a single genotype produces different 

phenotypes in response to environmental cues, also affects population dynamics 

(Verschoor et al. 2004b, Vos et al. 2004a, Kishida et al. 2010), trophic cascades 

(Werner and Peacor 2003, Vos et al. 2004b, Ohgushi 2005, van der Stap et al. 2007), 

and ecosystem functioning (Schmitz et al. 2008; for review, see Tollrian and Harvell 

1999; Agrawal 2001; Miner et al. 2005). 

A frequently asked and important question about the effects of rapid 

adaptation on ecological dynamics is whether rapid phenotypic changes stabilize 

population dynamics. Many studies have tried to determine whether rapid adaptations 

cause population oscillations or result in a stable equilibrium. It has been shown that for 
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theoretical predator-prey systems, rapid adaptation of prey species (Ives and Dobson 

1987, Ramos-Jiliberto 2003, Vos et al. 2004a, Kopp and Gabriel 2006, Kondoh 2007), 

predator species (Kondoh 2003, K!ivan 2003), or both predator and prey species 

(Yamauchi and Yamamura 2005, K!ivan 2007, Mougi and Nishimura 2008, Mougi and 

Kishida 2009) stabilizes population dynamics (see review in Abrams 2000, Kishida et al. 

2010). Still, few studies have compared effects from the different mechanisms that drive 

rapid adaptation. Thus, we seek to compare the effects of rapid evolution and 

phenotypic plasticity on population and community dynamics. 

Both rapid evolution and plasticity are adaptive changes that increase an 

individual’s fitness, and the changes are rapid enough to affect ecological dynamics 

(Hairston et al. 2005, Miner et al. 2005). The three main different characteristics 

between them are operating timescale, recovery speed of minor traits, and phenotypic 

range. First, as for operating timescale, plastic response is essentially fast but not 

inherited (although it can be transgenerational; Agrawal et al. 1999). Evolution is 

transgenerational by definition, so its resultant effects will persist longer. Thus, 

evolution may generate a longer “time lag” in adapting to new environmental conditions. 

Second, because evolution is affected by former states, it needs more time for the traits 

that are rare in the population (minor traits) to recover. When a genotype abundance 

becomes temporally low, then adaptation must wait for the minor genotype to recover. 

Especially, once the minor genotype becomes extinct, evolution has to wait for a new 

mutation. Plasticity, on the other hand, can change the phenotype to fit the current 

environments regardless of the former state. Thus, slower recovery speed of minor traits 

can also cause time lag in evolution. Finally, as for phenotypic range, the plasticity 

range is restricted by reaction norm characteristics. Rapid evolution relies on the genetic 

diversity of a population exposed to selection pressures. Thus, extant genetic variation 

in a population determines phenotypic range (Barrett and Schluter 2008). It might seem 

intuitive that genetic diversity offers a broader phenotypic range than reaction norms 

within an individual organism. However, by examining 18 species of plants, 

invertebrates, and vertebrates, Bolnick et al. (2003) observed that intraindividual 

phenotypic range was broader than interindividual phenotypic range (Bolnick et al. 

2003). Thus, it remains unclear as to whether the phenotypic range of rapid evolution is 

broader than that of plasticity. 

Here we focus on the differences of operating timescale and minor traits 
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recovery speed for phenotypic changes caused by rapid evolution and phenotypic 

plasticity and assess effects on population and community dynamics. To compare these 

effects, we use mathematical models of predator-prey systems and examine the 

consequences of phenotypic changes in prey (inducible defense) rather than in predators, 

because predator-prey interactions are asymmetrical and are often characterized by 

greater responses of prey to predators than vice versa (Abrams 2000). Specifically, we 

focus on two aspects of stability: ecological and evolutionary stability. 

We examine ecological stability (demographic stability) in a population given 

either mechanism of rapid adaptation (rapid evolution or phenotypic plasticity). Here 

we define ecologically stable states as the predator-prey coexistence in stable equilibria. 

When the system shows limit cycle oscillations or deterministic extinction of predator, 

we call them ecologically unstable states. Although we do not treat extreme population 

oscillations as extinction here, when the amplitude of limit cycle increases, the 

minimum abundances may become very close to zero to cause extinction by 

demographic stochasticity in the real world. Note that we concentrate on the 

sustainability of trophic levels in the food chain, regardless of prey species identity. 

Coexistence of competitors is not the focus of ecological stability here (K!ivan 2003). 

Either phenotypic plasticity (e.g., Verschoor et al. 2004b; Vos et al. 2004a) or rapid 

evolution owing to standing genetic variation (e.g., Doebeli and de Jong 1999, Johnson 

and Agrawal 2003, Agashe 2009) can stabilize population. However, making such a 

generalization based on previous studies is difficult, because plasticity and evolution 

have also been shown to destabilize population dynamics (Edelstein-Keshet and 

Rausher 1989, Abrams and Matsuda 1997, Underwood 1999, Kopp and Gabriel 2006). 

Is there any difference between the stabilizing effect of genetic diversity and that of 

plasticity? If so, which mechanism is better at stabilizing population dynamics? Our 

models use identical pairs of palatable and defended phenotypes, but the plastic 

genotype can produce two phenotypes, depending on environmental cues, whereas the 

nonplastic genotypes cannot (fig. 1B, 1C). 

In terms of evolutionary stability, we ask which state is evolutionarily stable 

(or not) over a longer period of time (Mougi and Kishida 2009) if either a plastic or 

nonplastic genotype is better at stabilizing population dynamics (ecological stability). 

That is, when plastic genotypes compete with nonplastic genotypes (fig. 1D), which one 

outcompetes the other in stable or fluctuating environments? It has been hypothesized  
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Figure 2.1: Model description. A, 1 predator –1 prey chemostat model. B, 1 predator–2 

prey chemostat model. Prey have fixed (nonplastic) phenotypes. Solid arrows indicate 

large searching efficiency, and dashed arrows indicate small searching efficiency 

(parameters s1i and s2i in eqq. [3]). C, 1 predator–1 plastic prey chemostat model. The 

plastic prey changes its phenotype according to predator density. D, 1 predator–3 prey 

chemostat model. Palatable and defended phenotypes are identical between nonplastic 

and plastic genotypes. 

 

that genetic variation for a fixed phenotype is favored in stable environments, whereas 

phenotypic plasticity is favored in unstable environments (Scheiner 1993, de Jong 1995, 

Stomp et al. 2008, Svanbäck et al. 2009). Thus, we compare the outcome of a 

competition model (fig. 1D) in stable and fluctuating environments. 

Although rapid evolution and phenotypic plasticity occur often in the wild 

(Tollrian and Harvell 1999, Agrawal 2001, Post and Palkovacs 2009 and references 

therein), it is in general difficult to compare their effects on population dynamics 

directly. A rotifer–green algae chemostat system provides an excellent experimental 

venue for studying these effects. Scenedesmus green algae form colonies plastically 

when exposed to chemical cues (kairomones) released by predators (Hessen and van 

Donk 1993). Because these colonies are too big to be eaten by gape-limited predators 

(e.g., rotifers), the prey species avoid predation. However, this defense has potentially 

serious costs. If the colony grows too large, it can sink to a depth where sunlight cannot 

penetrate and thus stop growing (Lürling and van Donk 2000). When predators are 

B
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abundant, induced prey defense reduces the per capita growth rate of predators. When 

predators are scarce, prey species relax their defenses, resulting in an increase in the per 

capita growth rate of predators. This plasticity-based feedback can stabilize population 

oscillations (Verschoor et al. 2004b; Vos et al. 2004a). Although Scenedesmus is plastic, 

its congener Desmodesmus is not, being always either unicellular (palatable) or colonial 

(defended). This type of polymorphism may cause the rapid evolution observed in 

Chlorella and Chlamydomonas chemostat systems (Yoshida et al. 2003, Jones et al. 

2009, Becks et al. 2010). To compare potential differences in the effects of rapid 

evolution and plasticity on Scenedesmus and Desmodesmus, with which the 

model-based hypotheses are experimentally testable, we construct mathematical models 

based on a rotifer–green algae chemostat system. 

 

2.3 Models 
We consider four variations of models to examine the effects of genetic diversity and 

plasticity on predator-prey population dynamics. These models describe the dynamics 

of nutrient, prey, and predator. The first model assumes no adaptation, the second model 

assumes evolution of prey, the third assumes plasticity of prey, and the fourth is a 

mixture of the second and the third models (fig. 1). Local stability of equilibria and 

limit cycles is analyzed both analytically and numerically to produce bifurcation and 

phase diagrams in parameter space. We focus specifically on the two parameters in the 

phase diagrams: chemostat dilution rate (!) and prey nutrient searching efficiency (s1), 
which relates to predator searching efficiency in acquiring prey (s2). We use the ratio of 

stable equilibrium to oscillatory and deterministic extinction dynamics calculated from 

their relative area in the two-dimensional (2-D) phase diagram as an indicator of 

ecological stability. 

 

2.3.1 Model I: Basic Model 

Our basic chemostat model (fig. 1A; after Fussmann et al. 2000) is composed of limiting 

nutrient N, phytoplankton prey C (e.g., green algae Chlorella vulgaris), and 

zooplankton predator B (e.g., rotifer Brachionus calyciflorus) and assumes a Holling 

type II functional response for nutrient/prey uptake (Kot 2001). We do not include 

predator age structure, unlike Fussmann et al. (2000). Nutrient, prey, and predator 

concentration changes with time, respectively, are calculated as 
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where ! is dilution rate, NI is inflow nutrient concentration, s1 is prey searching 
efficiency for nutrient, h1 is prey handling time for nutrient, s2 is predator searching 

efficiency for prey, h2 is predator handling time for prey, m is predator death rate, "1 is 

prey assimilation efficiency, and "2 is predator assimilation efficiency. In our model, 
organism state variables (C and B) are expressed in units of total limiting nutrient rather 

than number of individuals. Certain parameters are fixed using measured values from 

previous studies (Halbach and Halbach-Keup 1974, Tischner and Lorenzen 1979, Aoki 

and Hino 1996, Fussmann et al. 2000; see table 1). 

Although measuring the trade-off function and cost of defensive trait is still 

challenging, there are several experiments that show the defense cost of green algae is 

associated with algal searching efficiency in acquiring nutrient (Yoshida et al. 2004), 

growth rate (Meyer et al. 2006), and sinking rate (Lürling and van Donk 2000). Here we 

assume that both searching efficiency parameters, s1 and s2, are positively correlated 

(i.e., there is a trade-off between defense and growth in prey) as representative of 

previous studies on green algae (Jones and Ellner 2004, 2007). Considering the 

empirical data (table 1) of Fussmann et al. (2000), we assume the trade-off relationship 

as  
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where s10 and s20 are empirical constants and # is a positive constant. This function is 

formulated so that it always crosses the observed point (s10, s20) and the origin. We can 

make the function convex or concave by changing #. If # < 1, investment in defense 
(lower s2) is increasingly more costly in terms of resource uptake rate (accelerating 

cost). If # > 1, the initial investment in defense is very costly, but further investments 

become increasingly less costly. If # = 1, the trade-off is linear. The effect of # on



 22 

Table 2.1: Parameter sets estimated from a rotifer–green algal system 

Parameter Description Value Reference 

NI Limiting nutrient conc. 80 µmol N/l Set 

   (supplied medium)   

! Chemostat dilution rate variable /day Set 

h1 Algal handling time 0.303 day Fussmann et al. (2000) 

h2 Rotifer handling time 0.444 day Fussmann et al. (2000) 

m Rotifer mortality 0.055 /day Fussmann et al. (2000) 

s10 Algal searching efficiency 0.767 day Tischner & Lorenzen (1979), 

     Fussmann et al. (2000) 

s20 Rotifer searching efficiency 0.15 day Halbach & Halbach-Keup (1974), 

     Fussmann et al. (2000) 

"1 Algal assimilation efficiency 1.0 Fussmann et al. (2000) 

"2 Rotifer assimilation efficiency 0.25 Aoki & Hino (1996) 

b Shape of defense functions 2.0 Vos et al. (2004a, b) 

Note: Set = adjust parameters set by an experimenter. 

 

population stability is discussed in “Results.” A local stability analysis of model I is 

presented in appendix A. 

 

2.3.2 Model II: Genetic Diversity Model 

Several mathematical modeling methods describe eco-evolutionary dynamics, including 

biclonal models (Abrams and Matsuda 1997, Jones and Ellner 2007), multiclonal 

models (Jones et al. 2009), adaptive dynamics models (Geritz et al. 1998), and 

one-locus and quantitative genetics models (Abrams 2001; Fussmann et al. 2007). We 

here adopt a biclonal model (fig. 1B), the simplest among the “genetic diversity” models, 

the closest to describing the Desmodesmus-rotifer system, and the easiest to compare 

with phenotypic plasticity model (phenotypic plasticity models usually involve two 

phenotypes, and organisms change their states according to environmental cues; e.g., 

Vos et al. 2004a). Our model is the same as that of Jones and Ellner (2007), except for 

the assumptions on trade-offs between prey palatability and resource uptake rates. 

Similar models have been used by Abrams and Matsuda (1997), Jones and Ellner 

(2004), and Yoshida et al. (2007). In our model II, there are two prey genotypes: 
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palatable, easily eaten, but rapidly growing; and defended but slow growing (Yoshida et 

al. 2004; Meyer et al. 2006). Concentration changes for nutrient N, palatable and 

unpalatable preys C1 and C2, and predator B are given by 
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where s1i is palatable/defended prey searching efficiency for nutrient and s2i is predator 

efficiency in searching for palatable/defended prey. Because mounting a defense to a 

predator involves a cost, increasing the defense level (decreasing s2i) leads to a reduced 

ability to compete for scarce nutrients (decreasing s1i), following the trade-off function 

of equation (2). A local stability analysis of model II is presented in appendix 2.6.2. 

 

2.3.3 Model III: Plasticity Model 

We develop a model with plastic prey S (e.g., inducible defense in Scenedesmus 

obliquus) following previous studies (Vos et al. 2004a, Vos et al. 2004b, Serizawa et al. 

2008, Mougi and Kishida 2009) but with a slightly changed plastic function (fig. 1C). 

The model of Vos et al. (2004a) had a carrying capacity K but no nutrient dynamics to 

describe microcosm systems. Because we want to compare phenotypic plasticity with 

rapid genetic changes, we adopt the chemostat model to allow for direct comparisons 

with model II (as in van der Stap et al. 2009). We also propose a new plastic response 

function for our model (hereafter model IIIA) as opposed to the model of Vos et al. 

(2004a; hereafter model IIIB). This is because plasticity of Scenedesmus is 

intergenerational phenomenon, whereas former models are for intragenerational 

plasticity. In model IIIA the concentrations change as 
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Note that the only difference between model II and model IIIA is the prey 

reproduction term. The plastic genotype can have two phenotypes that are exactly the 

same as those of the two nonplastic genotypes. The phenotype of newly produced 

plastic prey is determined according to the factor Qi(B). The plastic response function 

Qi(B) is defined as 

 Q1 B( ) = 1
1+ B g( )b

,      (2.5a) 

 Q2 B( ) = B g( )b
1+ B g( )b

,      (2.5b) 

where g is a predator threshold density where defense induction reaches half its maxima 

and b is a plasticity sensitivity parameter (Verschoor et al. 2004a, Vos et al. 2004a). 

Terms Q1(B) and Q2(B) are decreasing/increasing functions of predator density. If 

predator density is large relative to the threshold parameter (g), Q1(B) becomes smaller 

and Q2(B) becomes larger. A large proportion of newly produced prey then is 

unpalatable (S2) or vice versa. We at first set the value of b on the basis of previous 

studies (Vos et al. 2004a, 2004b; table 1), but later we relax this assumption and vary 

the values of b and g to examine their effects on the results. The effects of these 

parameter values are discussed in “Results.” In reality, the difference between palatable 

and defended types of Scenedesmus depends on the number of cells in a colony. 

Palatable type are unicellular or bicellular per colony, whereas defended types are 4, 8, 

or even 16 cells per colony (Hessen and van Donk 1993). Because we describe 

organism state variables (S and B) in units of total limiting nutrient rather than cell 

count, conversion efficiency between palatable and defended phenotypes of plastic prey 

can be set to 1. 

As discussed previously, we examine another plasticity model (model IIIB) 

described in previous studies (Vos et al. 2004a, 2004b; Serizawa et al. 2008; Mougi and 
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Kishida 2009): 
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The primary difference between model IIIA (eqq. [4]) and model IIIB (eqq. [6]) is in the 

timing of when a prey species decides whether or not to form a colony. Our model 

(model IIIA) assumes that all members of a population make decisions regarding 

reproduction (e.g., cell segmentations in Scenedesmus) based on the current predator 

abundance. We propose that this more suitably describes the Scenedesmus colony 

formation process. Alternatively, model IIIB assumes that a portion of individuals in a 

population change their phenotype plastically according to predator abundance, reacting 

with no direct relationship to reproduction (intragenerational plasticity). This 

assumption is appropriate for describing morphological defense that is not linked to 

reproduction (e.g., tadpoles; Kishida et al. 2010) or behavioral plasticity (e.g., escaping 

behavior). In model IIIB, the ratio of a population that exhibits a plastic response within 

a certain time period is defined as f. Thus, model IIIB has one more degree of freedom 

than model IIIA. This situation is still suitable to test the effect of plasticity response 

speed on population dynamics. For both models IIIA and IIIB, local stability analysis is 

too complex, and only simulation analyses are performed. 

 

2.3.4 Model IV: Combined Effect Model 

Situations in which plastic genotypes (reproduction-associated inducible defense: model 

IIIA) and specialist (nonplastic) genotypes (i.e., those either palatable or defended) 

compete for nutrients are considered (fig. 1D). We add plasticity maintenance costs 

(after DeWitt et al. 1998) to equations (4), so 
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where the cost of plasticity, $, is the death rate of the plastic genotype ($ = 0.01 is 

assumed thereafter). Because the plastic prey always needs to be sensitive to predator 

density, we assume that there is some sort of the maintenance cost of plasticity (e.g., 

production of a receptor protein; DeWitt et al. 1998). Without the maintenance cost, a 

plastic genotype can coexist with nonplastic genotypes in a stable equilibrium (region 

SC12E in fig. S9A [supplemental figs. S1–S14 are in 2.6.4]). In this situation, predator 

density remains stable, and the plastic genotype does not change the ratio of palatable 

and defended phenotypes through time and reproduces both phenotypes in a fixed ratio 

(fig. S9A). Under this condition, the plastic genotype does not exhibit plasticity, and we 

cannot determine the advantages of plasticity. Thus, we add the maintenance cost, and a 

very small maintenance cost is sufficient to prevent such neutrally stable coexistence at 

stable equilibria. 

 

2.4 Results 
2.4.1 Comparison with Previous Studies 

Using models I, II, and III, we confirmed results observed in previous studies (e.g., Vos 

et al. 2004a; Jones and Ellner 2007). Both model II (genetically polymorphic prey) and 

model III (phenotypically plastic prey) have a broader parameter region than model I 

(monomorphic prey) that leads to stable predator-prey coexistence equilibrium points 

(table 2), supporting the idea that rapid adaptive trait changes stabilize population 

dynamics (Johnson and Agrawal 2003; Vos et al. 2004a). 

For model I, increasing the chemostat dilution rate ! change population 

dynamics from limit cycle to equilibrium, predator extinction, or both predator and prey 

extinction (figs. 2A, 2B, 3A). Increasing the defense investment of prey (decreasing prey 

palatability s2 and, by the trade-off, nutrient intake rate s1) change population dynamics 

in a similar way (fig. 3A). This pattern is consistently observed in the local stability 

analysis (fig. S1A) and the numerical simulation (fig. 3A). 
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Table 2.2: Relative area of deterministic extinction (either predator or both predator and 

prey), stable equilibria, and limit cycles of 2D phase diagrams (as fig. 3).  

 Extinction Equilibrium Oscillation Stability 

I # = 1 0.25  0.28  0.46  0.39  

II # = 1 (right) 0.06  0.39  0.56  0.64  

II # = 1 (left) 0.06  0.38  0.57  0.61  

IIIA # = 1 0.06  0.45  0.49  0.83  

IIIA b = 0.1 0.08  0.35  0.57  0.55  

IIIA b = 10 0.06  0.47  0.47  0.90  

IIIA g = 2 0.06  0.48  0.47  0.92  

IIIA g = 10 0.06  0.34  0.60  0.52  

IIIB f = 0.1 0.06  0.40  0.54  0.67  

IIIB f = 1 0.06  0.42  0.53  0.72  

     

I # = 0.5 0.38  0.26  0.36  0.36  

II # = 0.5 0.02  0.36  0.62  0.57  

IIIA # = 0.5 0.02  0.59  0.39  1.41  

     

I # = 2 0.18  0.24  0.58  0.31  

II # = 2 (right) 0.07  0.25  0.68  0.34  

II # = 2 (left) 0.07  0.19  0.74  0.23  

IIIA # = 2 0.07  0.31  0.62  0.46  

Note: Here we use the ratio of stable equilibria/(extinction + limit cycles) as 

an index of ecological stability. Because of bi-stability, model II has two bifurcations. 

Left/right: the simulation started from the left/right end of the phase diagram (s12 = 

0.01/0.99) and used the last density of predator and prey as the first density of 

subsequent simulation runs. When # = 0.5, there seems virtually no bi-stability. 
 

For model II, many attractors are found in the parameter space of dilution rate 

and defended prey palatability (figs. 2C, 3B), including (1) stable equilibria with 

predator and two prey genotypes (region C12 E of figs. 3B, S1B), (2) stable equilibria 

with predator and palatable prey (region C1 E), (3) stable equilibria with predator and 

defended prey (region C2 E), (4) stable equilibria with palatable prey only (region PEx), 
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Figure 2.2: Bifurcation diagrams of models I, II, IIIA, and IV. Here the X-axis is 

dilution rate (!), and the Y-axis is predator maximum and minimum abundance. Black 
lines represent evolutionarily stable regions; gray lines are evolutionarily unstable 

regions. Solid lines represent stable equilibria; dotted lines are maxima and minima of 

limit cycles. Horizontal lines below diagrams are parameter regions where focal prey 

can exist. A, Model I with palatable prey (s1 = 1.0). B, Model I with defended prey (s1 = 

0.1). C, Model II with palatable and defended prey (s11 = 1.0, s12 = 0.1). D, Model IIIA 

with the same parameters as C (b = 2, g = 5). E, Model IV with palatable, defended, and 

plastic prey. 

 

(5) limit cycles with predator and two prey genotypes (region C12 O), (6) limit cycles 

with predator and palatable prey (region C1 O), and (7) limit cycles with predator and 

defended prey (region C2 O). At the boundaries in figure 3B, an equilibrium point 

changed its stability. For example, moving from region C1 E into region C12 E by 
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decreasing the dilution rate, defended prey are able to invade and produce a stable 

community composed of both palatable and defended prey and a predator. The pattern 

is consistent between the local stability analysis (fig. S1B) and the numerical simulation 

(fig. 3B). 

In the region of limit cycles in which both genotypes coexist, evolutionary 

cycles are observed. Figure 4A shows a typical evolutionary cycle time series: defended 

prey numbers increase when predators are abundant, whereas palatable prey numbers 

increase when predators are scarce. When we combine the numbers of the two prey 

genotypes, the oscillation phase-lag change from an ordinary quarter-period of 

monomorphic prey to a half-period (fig. 4A; Jones and Ellner 2007). Note that these 

phase lags are approximate values, though they are exact at bifurcation points. 

In model II, the continuous rapid evolution (evolutionary cycles) or the stable 

coexistence of two prey do not always occur, but the presence of two genotypes 

promote ecological stability: when dilution rate is low, palatable genotypes exhibit a 

limit cycle if present alone (fig. 2A), but when both genotypes are present, defended 

genotypes dominate and stabilize the system (fig. 2C). When dilution rate is high, the 

defended genotype cause predator extinction (fig. 2B), but in the presence of genetic 

diversity, palatable genotypes dominate and prevent predator extinction (fig. 2C). 

Bistabilities of attractors are found around regions C1 E, C1 O, C12 E, and C12 

O (cf. figs. S3, S4). These bistabilities include (1) stable equilibria with three species 

(palatable prey, defended prey, and predator) versus limit cycles with two species 

(palatable prey and predator), (2) limit cycles with three species (evolutionary cycle) 

versus limit cycles with two species, (3) stable equilibria with three species versus limit 

cycles with three species (nonevolutionary cycle), and (4) limit cycles of small 

amplitude with three species (evolutionary cycle) versus limit cycles of large amplitude 

with three species (nonevolutionary cycle). Note that a previous study did not detect the 

existence of region C1 O and the bistabilities (Jones and Ellner 2007). This is probably 

due to differences in the choice of bifurcation parameters and trade-off assumptions. 

Actually, when # < 1, bistable regions disappear, whereas when # > 1, they broaden out 
(figs. S3, S4). 

For model III, there are limit cycle regions, stable equilibrium regions, and 

predator extinction regions, depending on the dilution rate and the defended prey 

palatability (figs. 2D, 3C). Increasing the dilution rate change the dynamics from 
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predator-prey oscillation to stable coexistence, and further increase led to predator 

extinction, as was observed previously (van der Stap et al. 2009). 

We obtain new insights by comparing the results from models I, II, III, and IV. 

One relates to the relative stabilizing effect of rapid evolution to that of phenotypic 

plasticity, and the other relates to the effect of environmental changes on competition 

between plastic and nonplastic genotypes. 

 

2.4.2 Stabilizing Effects of Prey Polymorphisms 

We summarize the relative areas of extinction, stable equilibria, and limit cycles in the 

2-D phase diagram and the index of ecological stability (see “Models”) in table 2. For 

example, we can see that model IIIA has a larger stability index than model I, and this is 

mainly due to a smaller fraction of extinction (see fig. 3A, 3C). 

Comparing results from models II and III, we can answer our earlier question 

of whether rapid evolution or phenotypic plasticity is more efficient to stabilize 

population dynamics. When we compare model II with IIIA (induction of defended prey 

at cell division), it is clear that model IIIA has a broader stable equilibrium range and a 

narrower limit cycle range than model II (table 2), especially when defended prey has a 

phenotype distinct from that of palatable prey (fig. 3B, 3C, in the left region of the 

phase diagrams). The same tendency of phenotypic plasticity to more readily stabilize 

the system than rapid evolution is observed in model IIIB (induced switching between 

defended and palatable prey) if the switching speed (f) is fast enough (eqq. [6]; table 2; 

fig. S8). 

Plasticity can, however, destabilize dynamics, whereas fixed genotypes 

promote stability (fig. 4B, 4C) in some parameter combinations (e.g., ! = 1.2 and s12 = 
0.5). Palatable prey species become extinct and the system reaches a stable equilibrium 

in model II (fig. 4B), whereas plasticity results in a large-amplitude limit cycle (fig. 4C). 

Despite these cases, the equilibrium region of model IIIA is broader in general than that 

of model II, indicating that plasticity promotes ecological stability. 

Parameter sensitivity is also examined by simulations. Trade-off function 

parameter (a) largely affects the bistability area of model II but does not change the 

general tendency of the relative stabilizing effect in the models (table 2; cf. figs. S2–S5). 

Increasing the threshold parameter g of plastic function (eqq. [5]) destabilizes dynamics 

(table 2; fig. S6), whereas decreasing the sensitivity parameter b has the same effect



 31 

 
Figure 2.3: A, Phase diagram of model I. Prey nutrient searching efficiency (s1) is 

shown on the X-axis and chemostat dilution rate (!) on the Y-axis. Region BEx (both 
extinction; black): both predator and prey are extinct. Region PEx (predator extinction; 

dark gray): predator is extinct and prey exists in a stable equilibrium. Region E 

(equilibrium; pale gray): predator and prey coexist in a stable equi- librium. Region O 

(oscillation; white): predator and prey coexist in a limit cycle. The black lines represent 

the parameter regions of the bifurcation diagrams in figure 2A and 2B. B, Phase diagram 

of model II. The searching efficiency for palatable prey (s11) is fixed to 1, and that for 

defended prey (s12) is shown on the X-axis; dilution rate (!) is shown on the Y-axis. 
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Region PEx: predator is extinct, and palatable prey exists in a stable equilibrium. 

Region C1E (C1 equilibrium; blue): palatable prey and predator coexist in a stable 

equilibrium. Region C1 O (C1 oscillation; green): palatable prey and predator coexist in 

a limit cycle. Region C12 O (C1 and C2 oscillation; orange): palatable prey, defended 

prey, and predator coexist in a limit cycle. Region C12 E (C1 and C2 equilibrium; 

magenta): palatable prey, defended prey, and predator coexist in a stable equilibrium. 

Region C2 E (C2 equilibrium; pale gray): defended prey and predator coexist in a stable 

equilibrium. Region C2 O (C2 oscillation; white): defended prey and predator coexist in 

a limit cycle. The black line represents the parameter region of the bifurcation diagram 

in figure 2C. The bistable regions are not shown in this figure for simplicity (see figs. 

S3, S4). The black point represents the parameter setting in figure 4B. C, Phase diagram 

of model IIIA (b = 2, g = 5). The axes are the same as for B. The legend is the same as 

for A. The black line represents the parameter region of the bifurcation diagram (fig. 

2D). The black point represents the parameter setting in figure 4C where plastic prey 

destabilize while nonplastic prey stabilize population dynamics by the extinction of the 

palatable genotype. 

 

 (table 2; fig. S7). Because increasing the threshold parameter and decreasing the 

sensitivity parameter result in ineffective plastic response, we can conclude that 

plasticity is more stable than evolution as long as plasticity is effective. For subsequent 

evolutionary stability analysis, we fundamentally use the parameter set # = 1 (trade-off 
is linear), b = 2, and g = 5 (plasticity is effective), but this assumption is relaxed later. 

 

2.4.3 Competition between Plastic and Nonplastic Genotypes 

We examine competition between two nonplastic genotypes (either a purely palatable or 

defended strategy) and one plastic genotype. The plastic genotype produces phenotypes 

identical to the two pure strategists, but phenotype ratio depends on predator density 

(model IV). When competing in a stable nutrient supply environment, plastic genotypes 

cannot outcompete nonplastic genotypes (figs. 2E, 5A). Plastic genotypes can survive in 

limit cycle regions but cannot eliminate the single-strategy genotypes. This indicates 

that ecological stability produced by plasticity (figs. 2D, 3C) is evolutionarily unstable, 

because a system can be invaded by nonplastic genotypes, resulting in destabilized 

dynamics. The black line in figure 2 represents an evolutionarily stable community. 
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Figure 2.4: A, An example of the evolutionary cycle (s12 = 0.136, ! = 1.0). B, Dynamics 
of stabilization by nonplastic prey. C, Dynamics of destabilization by plastic prey (s12 = 

0.5, ! = 1.2). Solid line = predator, dotted line = defended prey, gray line = palatable 

prey, and dashed-dotted line = sum of prey abundance. 

 

Communities consisting of only plastic genotypes are always evolutionarily unstable 

(fig. 2D). When both nonplastic genotypes invade and coexist with a plastic genotype, 

limit cycle amplitudes are smaller than those of the genetic diversity model (fig. 2C, 2E). 

These results indicate that a plastic genotype fails to eliminate nonplastic genotypes, but 

a plastic genotype can take part in an evolutionarily stable community, and its presence 

can reduce demographic instability. 

In the purple region of figure 5A, the plastic genotype coexists with only the 

palatable genotype; the defended genotype cannot persist. In the limit cycle, the plastic 

genotype increases immediately after reduction of predator density (fig. 6A). This burst 

of plastic genotype is due to its quick response advantage over nonplastic types in a 

predator-free environment. The plastic genotype is then gradually replaced by the 

palatable genotype, because unlike the plastic genotype, the palatable genotype does not 

20 40 60 80 100
t

20

40

60

80
abundance

C

450 460 470 480 490 500
t

10

20

30

40

50

abundance

A

Palatable prey (S1)

Predator

Defended prey (S2)

Predator

Defended prey (C2)
Palatable prey (C1)

Total prey (C1+C2)

0 20 40 60 80 100
t

10

20

30

40

50

60

70

abundance

B

Predator

Defended prey (C2)

Palatable prey (C1)



 34 

need to create defended types and incur maintenance costs (in terms of the increased 

mortality by the amount $). Once the palatable phenotype increases to a certain level, 
predator numbers increase, and defended types produced by the plastic genotype again 

replace the palatable specialists. Clearly it is changing predator density, or an internal 

limit cycle, that enabled a more costly plastic genotype to survive. 

What is interesting is that when three prey genotypes coexist at intermediate 

dilution rate values (yellow region, fig. 5A), there are discontinuities in limit cycle 

amplitude (fig. 2E). For larger amplitudes (arrows, fig. 2E), prey and predator densities 

follow short period cycles, and the relative abundance of nonplastic and the plastic 

genotypes show cycles with a longer period (fig. 6B–6D). These cycles are difficult to 

interpret when looking only at total prey density (fig. 6B). When we look at prey and 

predator densities, the system suddenly starts exhibiting cycles at a certain time point, 

but after a period of big waves it calms down. If we distinguish plastic from nonplastic 

genotypes, we can see that there is a clear relationship between plastic genotype 

abundance and stability (fig. 6C, 6D). Before the initial burst, fixed-genotype organisms 

(both palatable and defended) coexist with predators in a state of quasi-equilibrium but 

then begin to oscillate. Plastic genotypes increase when the amplitude of the limit cycle 

becomes large because they are able to take advantage of the changing environment. 

Once the number of plastic genotypes increases, the system is stabilized. In a stable 

environment, the plastic genotype is no better than the specialists because of its higher 

cost: thus, both of the specialist genotypes increase again, which lead to population 

cycling. These sorts of intermittent cycles are very similar to “bursting cycles” 

described in the physiological literature (discrete neuron firing patterns; Coombes and 

Bressloff 2005), and we refer to it as “eco-evolutionary bursting.” 

 

2.4.4 Competition in a Fluctuating Environment 

Up to this point, nutrient supply rate has been constant. We introduce fluctuations in 

nutrient supply rate to examine the effect of exogenous oscillation on competition 

between plastic and specialist genotypes. Previous studies have suggested that a plastic 

genotype is advantageous when environmental variables fluctuate (Scheiner 1993, 

Stomp et al. 2008, Svanbäck et al. 2009), so we assume a situation in which limiting 

nutrient concentration NI oscillates as a sinusoidal function: 
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Figure 2.5: A, Phase diagram of model IV in a stable environment; plastic prey can 

persist only in yellow and purple regions with specialist prey. Region SC1 O (S and C1 

oscillation; purple): palatable and plastic prey coexist in oscillation. Region SC12 O (S, 

C1, and C2 oscillation; yellow): palatable, defended, and plastic prey coexist in 

oscillation. The other legend is the same as for figure 3B. The black line represents the 

parameter region of the bifurcation diagram in figure 2E. B, Phase diagram of model IV 

with fluctuation of limiting nutrient inflow, NI, as equation (8) (% = 0.99 and T = 100). 
Region S O (S oscillation; red): plastic genotype outcompetes with specialist prey in 

oscillation. Region SC2 O (S and C2 oscillation; ocher): defended and plastic genotypes 

coexist in oscillation. The other legend is the same as in A. 
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When nutrient supply is fluctuating externally (eq. [8]), the plastic genotype 

outcompetes the fixed genotypes when amplitude is large (% = 0.99) and period length 

intermediate (T = 100; fig. 5B). This phenomenon occurs when dilution rate is 

intermediate. When dilution rate is high, a palatable genotype enjoys the most 

advantage, and when dilution rate is low, a defended genotype is most advantageous 

(fig. 5B). Thus, producing both phenotypes (exhibiting plasticity) is advantageous in 

parameter spaces between the two regions. Although the general tendency holds true, 
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Figure 2.6: Dynamics of model IV in a stable environment. A, Limit cycles when the 

plastic genotype coexists with the palatable genotype (s12 = 0.05, ! = 1.2). Black solid 
line = predator, gray solid line = palatable genotype, gray dashed line = palatable 

phenotype of plastic genotype, and black dashed line = defended phenotype of plastic 

genotype. B, Intermittent cycles when the plastic genotype coexists with both palatable 

and defended genotypes (s12 = 0.1, ! = 1.0). Gray line = sum of prey, and black line = 
predator. C, Close look at the intermittent cycle. Black dotted line = defended genotype. 

The other lines are the same as in A. D, Dissection of C. Gray line = sum of nonplastic 

genotypes, and black line = plastic genotype. 

 

when nutrient fluctuation amplitude j is small, advantages of plasticity decrease (i.e., the 

area where the plastic genotype excludes the specialist genotypes becomes smaller; fig. 

S10). Also, when nutrient fluctuation period length T is too short (e.g., T " 1), the area 

where the plastic genotype excludes nonplastic genotypes decreases. This is because the 

plastic genotypes cannot keep up with such a rapidly changing environment (Stomp et 

al. 2008). When period length is too long (e.g., T " 10,000), environmental change have 
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a minimal effect on population dynamics and plasticity is not advantageous (fig. S11). 

 

2.5 Discussion 
It is increasingly accepted that phenotypic change in traits affecting ecological 

dynamics is pervasive in wild populations, so researchers should necessarily include 

adaptive trait dynamics in models used to develop population management plans 

(Stockwell et al. 2003, Kinnison and Hairston 2007). However, it is often difficult to 

distinguish rapid contemporary evolution and phenotypic plasticity in the face of 

phenotypic polymorphism and rapid phenotypic change in wild populations (e.g., 

Mittelbach et al. 1999, Charmantier et al. 2008). 

Some previous studies represent plasticity and evolution in the same equation 

(e.g., Taylor and Day 1997, Fox and Vasseur 2008), assuming that an individual has a 

small probability of changing its phenotype to increase its fitness and that this 

probability is proportional to the “fitness gradient.” The trait change speed is governed 

by rate parameter v, an additive genetic variance in quantitative genetics modeling 

(Abrams et al. 1993). Phenotypic plasticity is assumed to have a higher value of rate 

parameter v, so the trait changes faster than evolution. This may be applicable to the 

behavioral adjustment of plastic traits by learning (trial-and-error plasticity). However, 

phenotypic change by reaction norm may have different speed, and there is a possibility 

that dynamics are not the same as expected under the trait change along fitness gradient. 

Although many kinds of plasticity, especially morphological plasticity, are controlled 

by reaction norm, their mechanism-explicit modeling is still challenging (but see 

Abrams and Matsuda 2004). Here we try to compare the effects of evolution and 

plasticity with explicit mechanisms modeling of reaction norm. 

In this study, we focus on timescale differences and recovery speed of minor 

traits for phenotypic changes caused by rapid evolution and phenotypic plasticity, and 

we assess the effects on population and community dynamics. Our analyses indicate 

that even when identical phenotype pairs are involved, rapid evolution and phenotypic 

plasticity exert different influences on population dynamics. Thus, we as researchers 

need to clearly distinguish between evolution and plasticity when predicting population 

dynamics. 
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2.5.1 Stabilizing Effects of Two Mechanisms Involved in Phenotypic Change 

In model IIIA, although plasticity is intergenerational phenomenon as evolution, 

plasticity stabilizes population dynamics more than evolution. Thus, we can confirm 

that recovery speed of minor traits alone can enhance ecological stability here. On the 

other hand, ecological stability of intragenerational plasticity in model IIIB is due to 

both the operating timescale and recovery speed of minor traits. 

The difference in population dynamics observed between models II and III 

indicates that the speed of adaptation is a crucial factor in stabilizing population 

dynamics. Previous theoretical studies have shown that a faster evolutionary rate of 

foraging or defensive traits has the effect of stabilizing population dynamics (Kondoh 

2003, Yamauchi and Yamamura 2005, Mougi and Nishimura 2008). Our results support 

these earlier studies: phenotypic plasticity gives rise to faster changes than does “rapid” 

evolution, hence there is greater population stability with plasticity than with rapid 

evolution. We further corroborate this by assessing changes to defense induction 

parameter f in another plastic function of model IIIB. When f is small, defense induction 

speed is so slow that the system does not stabilize (fig. S8A), but when f is large the 

system stabilizes (fig. S8C; table 2). 

Plasticity destabilizes population dynamics (leading to limit cycles), whereas 

monomorphic (defended) prey stabilizes dynamics (fig. 4B, 4C) in some regions. This 

occurs when the defense against predator is intermediate (e.g., s12 = 0.5 and ! = 1.2; 
middle regions of the phase diagrams). Because no time lag is assumed in our plasticity 

model (eqq. [4]), this result is not due to the time lag of defense induction (Underwood 

1999), so we speculate that plastic response overshoot could account for this instability 

(Kopp and Gabriel 2006). In the genetic diversity model, palatable genotypes cannot 

increase soon after depletion simply because abundance is too low (fig. 4B). However, 

in the plasticity model, palatable types are quickly recovered by plastically produced 

defended types; this rapid negative feedback would cause the population to cycle if 

threshold predator density in reaction norm are close to the equilibrium value (fig. 4C). 

Overshooting in model III do not occur when the threshold parameter (g) is small (fig. 

S6), when the sensitivity parameter (b) is large (fig. S7), or when the defense induction 

speed parameter (f) of model IIIB is small (fig. S8). These observations support our 

earlier speculation. 

Placing these arguments together in perspective, we conclude that trait 
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differences between palatable and defended phenotypes do matter. When there is little 

difference between types, population dynamics are much the same. When the defended 

genotype is fairly different from the palatable genotype, the mechanisms affect 

population dynamics in different ways. Consider colony formation in green algae, 

whose cell numbers of the colony determine the defense ability. The palatable types are 

unicellular or bicellular. When the defended types consist of groups of 8–16 cells, the 

defense is effective and this situation corresponds to the left regions of the phase 

diagrams (fig. 3B, 3C). In this region, the regulatory effect of the defended type on 

predators is so strong that plasticity stabilizes the oscillation, but evolution fails to 

stabilize the system because of the temporal low abundance of either genotype and the 

resulting time delay. When defended types consist of four cell groups (the middle 

regions of the phase diagrams), plasticity tends to destabilize the system by 

overshooting, whereas evolution does not destabilize the system (fig. 4B, 4C). This 

prediction is experimentally testable because there are various reaction norms in strains 

of Scenedesmus (Verschoor et al. 2004a). 

 

2.5.2 Competition of Plastic and Nonplastic Genotypes in Stable and Fluctuating 

Environments 

Without evolutionary fine-tuning of the plasticity function, even when the overall 

fitness of a certain phenotype is greater than that of others, such that nonplastic 

populations achieve the compositional state of only best-fit phenotypes, a plastic 

genotype must produce maladaptive phenotypes according to its reaction norm. When 

two nonplastic genotypes stably coexist (i.e., the fitness of the two genotypes is nearly 

equal), the plastic genotype can coexist as well (because having two phenotypes does 

not reduce its fitness; fig. S9A). However, when it incurs a plasticity maintenance cost 

($), the plastic genotype cannot coexist with nonplastic genotypes in a stable 
equilibrium. For a plastic genotype to survive, the population must exhibit a limit cycle 

within which predator density is changing (fig. 5A). 

Although the evolution of reaction norm is not the main scope of this study, it 

is possible to underestimate the competitive ability of the plastic genotype as our model 

did not allow evolution of the reaction norm parameters (DeAngelis et al. 2007). To 

further corroborate the competitive ability of the plastic genotypes, we determined the 

fittest reaction norm (i.e., with the evolutionarily stable threshold parameter g for a 
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given sensitivity parameter b) under different conditions (! and s12) by numerical 

simulations (figs. S12, S13). We varied g from 0.1 to 50 in increments of 0.1. After the 

competition simulation between various genotypes with local mutation, the most 

abundant genotype was chosen for the competition against nonplastic genotypes (for 

detail, see the legend of fig. S13). We confirmed that there is no evolutionary branching 

and that chosen g does not fluctuate through time from the evolutionary simulations and 

pairwise invasibility plot analysis. Then we examined the effects of fine-tuning of the 

reaction norm parameters on the competition against nonplastic genotypes (fig. S14). 

Even without the maintenance cost of plasticity ($), the plastic genotype can outcompete 
the nonplastic genotypes only in a small region (ca. 12%) of the parameter space, 

though it can coexist with the specialist genotype(s) in all other regions (data not 

shown). Furthermore, with a small cost of plasticity ($ = 0.01), the parameter regions 
where the plastic genotype can competitively exclude the nonplastic genotypes were 

about 2% (fig. S14). Thus, the specialist genotypes are almost always better competitors 

in the parameter space (the plastic genotype was competitively excluded in about 89% 

of the parameter space; fig. S14). 

Note that we do not try to determine the evolutionarily stable strategy (ESS) 

here. Evolutionary stability was originally defined under the assumption that a 

population does not undergo population dynamics (e.g., Geritz et al. 1998, Vincent and 

Brown 2005). Recent studies showed that when population dynamics are considered, it 

is possible for mutants to coexist with residents even if the residents use ESS at each 

population density (K!ivan and Cressman 2009, Cressman and K!ivan 2010). In our 

study, however, the plastic genotype cannot coexist with fixed genotypes in most 

parameter regions even when population dynamics are considered (and even when there 

is no cost of plasticity; see fig. S9A). 

We examine the ecological outcomes of competition between plastic and 

fixed genotypes in fluctuating environments (similar to Stomp et al. 2008) and 

demonstrate that plastic genotypes can exclude fixed genotypes. Svanbäck et al. (2009) 

tested the effect of population fluctuation on the evolution of phenotypic plasticity, 

using an individual-based stochastic predator-prey model. The model was formerly used 

to test evolutionary branching due to frequency-dependent selection. They observed that 

the evolution of plasticity is generally more likely to occur than evolutionary branching 

when ecological dynamics exhibit pronounced predator-prey cycles, whereas the 
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opposite is true when conditions are stable. Our results, as well as those of Svanbäck et 

al. (2009), confirm that genetic variation is favored in stable environments, whereas 

phenotypic plasticity is favored in unstable and fluctuating environments, including 

those marked by intrinsic fluctuations and forced oscillations. 

An interesting perspective presented by our models involves the interplay 

between evolution and the ecology of plasticity; from an ecological perspective, 

plasticity of prey (inducible defense) promotes population stability, whereas from an 

evolutionary perspective, environmental or demographic fluctuation promotes the 

evolution of plasticity. Thus, there is a sort of “catch-22” in the evolution of plasticity, 

and the result of this dilemma is demonstrated by eco-evolutionary bursting of plastic 

prey (fig. 6B–6D). For these parameter conditions, nonplastic genotypes at first oscillate 

with the predator, but when the amplitude of oscillation grows too large, plasticity 

increases because of its advantage in a changing environment. However, stabilizing the 

oscillation results in the reduction of the advantages of the plastic genotype. This 

intermittent cycle (eco-evolutionary bursting) is a unique and an intriguing example of 

eco-evolutionary dynamics. Unfortunately, few models have been developed to study 

the interplay between the evolution and ecology of phenotypic plasticity. Most 

evolutionary ecology studies of plasticity have focused on identifying conditions that 

favor the evolution of plasticity (e.g., de Jong 1995, Leimar 2005) but not on its effect 

on population dynamics; recent eco-evolutionary studies, on the other hand, have 

largely neglected the effects of plasticity. Thus, forthcoming studies can take the next 

interesting step of looking at the eco-evolutionary dynamics of phenotypic plasticity. 

Our result provides an interesting insight into evolution in Scenedesmus and 

Desmodesmus. Desmodesmus are green algae and congeners of Scenedesmus, but they 

have fewer inducible defenses than Scenedesmus: they are either always defended 

(colony forming) or always palatable (unicellular; Verschoor et al. 2004a, Verschoor et 

al. 2004b). The difference between plastic Scenedesmus and nonplastic Desmodesmus is 

sometimes explained by alternative defensive traits, such as the presence of a spine. 

Whereas Desmodesmus has a spine, Scenedesmus does not; thus, unicellular 

Desmodesmus do not need to defend themselves by forming a colony (Verschoor et al. 

2004a). But this explanation cannot account for the permanent defensive state of 

Desmodesmus. Our models indicate that nonplastic defense (as Desmodesmus) is 

advantageous in stable environments, whereas inducible defense (as Scenedesmus) is 
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advantageous in fluctuating environments. Thus, it may be interesting to investigate 

whether Scenedesmus is living in a more fluctuating habitat than Desmodesmus in 

future studies. 

 

2.5.3 Conclusion and Future Perspective 

In conclusion, our models show that mechanisms that cause adaptive phenotypic 

changes of prey can greatly influence the population dynamics of a predator-prey 

system. Plastic response can stabilize population dynamics more so than rapid evolution 

by responding to environmental changes faster than nonplastic genotypes. Our results 

suggest that an explicit consideration of phenotypic change may be essential in 

understanding population dynamics in wild populations. Although plasticity promotes 

ecological stability, it is not advantageous in stable environments. When plastic 

genotypes compete with fixed genotypes, a faster response is advantageous only in 

fluctuating environments, thus plastic genotypes can outcompete nonplastic ones under 

externally oscillating predation pressure. Nonplastic genotypes enjoy advantages over 

plastic genotypes when an environment is stable. Thus, we conclude that environmental 

fluctuations are essential for the evolution of plasticity. A particularly interesting 

situation arises from the feedback between the stabilizing effects of plasticity and the 

effects of stable or fluctuating environments on competition between nonplastic and 

plastic genotypes. This eco-evolutionary bursting is an excellent example of the need to 

reconsider eco-evolutionary feedbacks. 

One promising direction for future work is testing our theoretical predictions 

using laboratory experiments. Because our models are constructed based on 

rotifer-algae chemostat system, it will be straightforward to examine our predictions 

experimentally. Theoretically, our study deals only with biclonal models of rapid 

evolution to mimic rotifer-algae chemostat systems. However, multiclonal models 

(Jones et al. 2009), adaptive dynamics models that allow for the study of a continuum of 

traits (Geritz et al. 1998, Cortez and Ellner 2010), and one-locus and quantitative 

genetic models (Abrams 2001, Fussmann et al. 2007) are also possible candidates for 

describing eco-evolutionary dynamics. Thus, it is important to choose an appropriate 

model to describe a focal system (Abrams 2005), and researchers must examine whether 

these evolutionary mechanisms affect population dynamics in different ways. 
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2.6 Appendix 
2.6.1 Local Stability Analysis of Model I 

Because predator mortality m is negligibly small relative to the dilution rate !, we 
eliminate it in the following local stability analysis for the sake of simplicity (Jones and 

Ellner 2007). Rescaling the variables as x = N/NI, y = C/("1NI), z = B/("1"2NI) and T = !t, 
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where A1 = 1/(h1!), A2 = 1/(h2!), a1 = 1/(h1s1NI) and a2 = 1/("1h2s2NI). The sum of scaled 
concentrations x + y + z converges to 1 because d(x + y + z)/dT = 1 – (x + y + z). After 

initial transient the dynamics are described as 

 dy
dT

= y
A1 1! y ! z( )
a1 +1! y ! z

!
A2z
a2 + y

!1
"

#
$
$

%

&
'
'
,     (A2a) 

 
  

dz
dT

= z
A2 y

a2 + y
!1

"

#$
%

&'
.      (A2b) 

There are three equilibria: (1) wipe-out equilibrium E0: y = z = 0; (2) predator wipe-out 
equilibrium E1: y* = 1 – a1/(A1 – 1) and z* = 0; (3) coexistence equilibrium E2: ŷ = 

a2/(A2 – 1) and ẑ = ŵ ! ŷ, where 

 ŵ = 1
2
A1ŷ + a1 +1! (A1ŷ + a1 +1)

2 ! 4A1ŷ"
#

$
%.    (A3) 

The expression in the square root is always positive, because (A1ŷ + a1 +1)
2 ! 4A1ŷ =  

(A1ŷ !1)
2 + a1(2A1ŷ + a1 + 2) ; ŵ = ŷ + ẑ  satisfies f (ŵ) = ŵ2 ! (A1ŷ + a1 +1)ŵ + A1ŷ  = 

0. As f(w) is convex, f(0) = A1 ŷ  > 0, and f(1) = –a1 < 0, there is one root of f(w) = 0 

defined above in the range 0 < w < 1. For the existence of coexistence equilibrium, 

 ẑ = ŵ ! ŷ = 1
2
A1ŷ + a1 +1! (A1ŷ + a1 +1)

2 ! 4A1ŷ"
#

$
% ! ŷ,   (A4) 

must be positive, or 

 
  
A2 >1+

a2

1! a1 / A1 !1( ) ,      (A5) 
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or 1 > a1/(A1 – 1) + a2/(A2 – 1). 

The Jacobian at the wipe-out equilibrium E0 is 

 

   

J0 =
A1

1+ a1

!1 0

0 !1

"

#

$
$
$

%

&

'
'
'

.     (A6) 

According to Routh-Hurwitz criterion, E0 is stable if A1 < 1 + a1 (Kot 2001). 

The Jacobian at the predator wipe-out equilibrium E1 is 

 

   

J1 =

!
A1a1y*

a1 +1! y*( )2 !
A1a1y*

a1 +1! y*( )2 !
A2 y*

a2 + y*

0
A2 y*

a2 + y* !1

"

#

$
$
$
$
$$

%

&

'
'
'
'
''

.   (A7) 

The equilibrium is stable if 

 
  
A2 <

a2 + y*

y* = 1+
a2

1! a1 / A1 !1( )     (A8) 

Comparing this with equation (A5), we see that whenever the predator wipe-out 

equilibrium is stable, there is no coexistence stable equilibrium; or, whenever 

coexistence stable equilibrium exists, the predator wipe-out equilibrium is unstable. 

The Jacobian at the coexistence equilibrium is 

J2 =
ŷ ! A1a1

(a1 +1! ŷ ! ẑ)
2 +

A2 ẑ
(a2 + ŷ)

2

"

#
$

%

&
' ŷ ! A1a1

(a1 +1! ŷ ! ẑ)
2 !

A2
a2 + ŷ

"

#
$

%

&
'

A2a2 ẑ
(a2 + ŷ)

2 0

(

)

*
*
*
*
*

+

,

-
-
-
-
-

.  (A9) 

As the determinant of J2 is always positive, E2 is stable if the trace of J2 is negative, or 

 A2 ẑ
(a2 + ŷ)

2 !
A1a1

(a1 +1! ŷ ! ẑ)
2 < 0.     (A10) 

The Hopf bifurcation occurs when the left term of equation (A10) equals 0, because the 

Hopf bifurcation requires that there is a pair of imaginary eigenvalues and the real parts 

of the eigenvalues pass through 0 (Kot 2001). The result is shown in supplementary 

figure S1A. The small difference between the local stability analysis (fig. S1A) and the 
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numerical simulation (fig. 3A) in low dilution rate is due to the absence of predator 

death rate in the local stability analysis. 

 

2.6.2 Local Stability Analysis of Model II 

Rescaling variables as in model I, we can get 

 
  

dx
dT

= 1! x !
A1xyi

a1i + xi=1

2

" ,      (B1a) 

 
  

dy1

dT
= y1

A1x
a11 + x

!
A2 p1z

"a2 + p1y1 + p2 y2

!1
#

$%
&

'(
,    (B1b) 

 
  

dy2

dT
= y2

A1x
a12 + x

!
A2 p2z

"a2 + p1y1 + p2 y2

!1
#

$%
&

'(
,    (B1c) 

 
  

dz
dT

= z
A2 p1y1 + p2 y2( )
!a2 + p1y1 + p2 y2

"1
#

$
%
%

&

'
(
(
,     (B1d) 

where a11 = 1/(h1s11NI), a12 = 1/(h1s12NI),    !a2  = 1/("1h2NI), p1 = s21, and p2 = s22. Here y1 

is the palatable prey, and y2 is the defended prey. Searching efficiency for predator to 

get the defended genotype (s22) is less than that of the palatable genotype (s21). Because 

of the trade-off assumption (eq. [2]), the half saturation parameter for the defended 

genotype to get nutrient (a12) is larger than that of the palatable genotype (a11). The sum 

of scaled concentrations of nutrient, prey, and predator approaches 1. Substituting x = 1 

– y1 – y2 – z, again, after initial transient dynamics, equations (B1) reduce to 

 
  

dy1

dT
= y1

A1 1!Y ! z( )
a11 +1!Y ! z

!
A2 p1z
"a2 +Q

!1
#

$
%
%

&

'
(
(
,     (B2a) 

 
  

dy2

dT
= y2

A1 1!Y ! z( )
a12 +1!Y ! z

!
A2 p2z
"a2 +Q

!1
#

$
%
%

&

'
(
(
,     (B2b) 

 
  

dz
dT

= z
A2Q
!a2 +Q

"1
#

$%
&

'(
,      (B2c) 

where Y = y1 + y2 and Q = p1y1 + p2y2. There are five equilibria: (1) wipe-out 

equilibrium E0: y1 = y2 = z = 0, (2) predator wipe-out equilibrium E1:    y1
!  = 1 – a11/(A1 

– 1) and    y2
!  = z* = 0, (3) palatable prey-predator coexistence equilibrium E2: ŷ1  =    !a2
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/[p1(A2 – 1)], ŷ2  = 0, and ẑ = ŵ1 ! ŷ1 , (4) defended prey-predator coexistence 

equilibrium E3:   y1  = 0,   y2  =    !a2 /[p2(A2 – 1)] and    z = w2! y2 , and (5) two 

prey-predator coexistence equilibrium E4:     !y1, !y2 ,!z > 0 . Note that due to the larger 

half-saturation parameter for defended prey (a11 < a12), only palatable prey exists in the 

predator wipe-out equilibrium E1.  

For E0, E1, E2, and E3, single genotype dynamics is analyzed in the previous 

section (app. A). For the stability of extinction equilibrium E0, A1 < 1 + a11. The 

predator-free equilibrium E1 exists if A1 > 1 + a11 and is stable against the invasion of 
predator if A2 < A2ci = (   !a2 + p1y1

*)/(p1y1
*), where y1

* = 1 – a11/(A1 – 1). The region for 

the stability of predator-free equilibrium in (A1, A2) parameter space lies below the 
hyperbola: a11/(A1 – 1) +    !a2 /[p1(A2 – 1)] > 1. If the predation rate A2 is greater than the 

threshold, the predator can invade the palatable genotype population. The palatable 
prey-predator coexistence equilibrium E2 with ŷ1  > 0 and ẑ > 0 exist when A2 > A2ci 

and is stable when A2 is below the curve defined as 

 A2 ẑ
( !a2 / p1 + ŷ1)

2 <
A1a11

(a11 +1" ŷ1 " ẑ)
2 ,     (B3) 

where ŷ1  =    !a2 /[p1(A2 – 1)] and ŵ1 = ŷ1 + ẑ  is the smaller root of w1
2 – (A1y1 + a11 + 

1)w1 + A1y1 = 0. Cycles emerge through a Hopf bifurcation when A2 becomes above the 

curve (eq. [B3]). In the same way, the defended prey-predator coexistence equilibrium 
E3 with   y2  > 0 and  z  > 0 exist when A2 > (   !a2 + p2   !y2 )/(p2   !y2 ), where    !y2  = 1 – 

a12/(A1 – 1) and is stable when A2 is below the curve defined as 

 

  

A2z

!a2 p2 + y2( )2 <
A1a12

a12 +1" y2 " z( )2
    (B4) 

where   y2  =    !a2 /[p2(A2 – 1)] and   w2 = y2 + z  is the smaller root of w2
2 – (A1y2 + a12 + 

1)w2 + A1y2 = 0. Cycles emerge through a Hopf bifurcation when A2 becomes above the 

curve (eq. [B4]). 

For the two prey-predator coexistence equilibrium E4, we derive the 

conditions where a prey at a low density can invade the community with the other prey. 

For palatable prey invasion, we calculate the condition where per capita growth rate of 

palatable prey in the defended prey-predator equilibrium E3 equal 0: 

 
  

1
y1

dy1

dT
=

A1 1! y2 ! z( )
a11 +1! y2 ! z

!
A2 p1z
"a2 + p2 y2

!1= 0    (B5) 
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where y1 nearly equal 0. Then we get the invasion condition of palatable prey 
substituting   y2  =    !a2 /[p2(A2 – 1)] 1 and   z = w2 ! y2 : 

 
  

A1 1! w2( )
a11 +1! w2

! p1

A2 !1( )w2

"a2

! 1
p2

#

$
%
%

&

'
(
(
!1= 0    (B6) 

In the same way, we calculate the condition where per capita growth rate of defended 

prey in the palatable prey-predator equilibrium E2 equals 0: 

 1
y2

dy2
dT

=
A1(1! ŷ1 ! ẑ)
a12 +1! ŷ1 ! ẑ

!
A2 p2 ẑ
"a2 + p1ŷ1

!1 = 0.   (B7) 

Again we get the invasion condition of defended prey substituting ŷ1  =    !a2 /[p1(A2 – 
1)] and ẑ = ŵ1 ! ŷ1 ,  

 
A1(1! ŵ1)
a12 +1! ŵ1

! p2
(A2 !1)ŵ1

"a2
! 1
p1

#

$
%

&

'
( !1= 0.   (B8) 

For the Hopf bifurcation, we use Routh-Hurwitz criterion. When the characteristic 

equation is represented as   !
3 + a!2 + b! + c = 0 , the system is stable if a > 0, c > 0, 

and ab > c (Kot 2001). Hopf bifurcation occurs when a > 0, c > 0, and ab = c. The result 

is shown in supplementary figure S1B. The boundaries between regions C1 E and C1 O, 

regions C12 E and C12 O, and regions C2 E and C2 O are for Hopf bifurcations towards 

limit cycles occurred in regions C1 O, C12 O, and C2 O. The dotted line between regions 

C1 O and C12 O is the numerically obtained boundary of the transition between two 

limit-cycle attractors. Because the invasion condition for defended prey (eq. [B8]) 

assumes the stable palatable prey-predator equilibrium E2, our analysis cannot 

distinguish cycling regions C1 O and C12 O. 

 

2.6.3 Evolution of Reaction Norm Function 

Here we consider evolution of the threshold parameter, g, in the reaction norm function 

assuming the demographic equilibrium of predator and prey. Rescaling variables as 

2.6.1 and 2.6.2, dynamics of resource (x), resident palatable prey (Y1), resident defended 

prey (Y2), and predator (z) are described as 
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dx
dt

= 1! x ! F1 Y1 + y1( )! F2 Y2 + y2( ),
dY1
dt

= 1!Q( ) F1Y1 + F2Y2( )! p1HY1 !Y1,
dY2
dt

=Q F1Y1 + F2Y2( )! p2HY2 !Y2,
dz
dt

= H p1 Y1 + y1( ) + p2 Y2 + y2( )"# $% ! 1+m( )z,

   (C1) 

where 

F1 =
A1x
a11 + x

,F2 =
A1x

a12 + x
,

Q =
z G( )b

1+ z G( )b
,q =

z g( )b
1+ z g( )b

,

H = A2z
!a2 + p1 Y1 + y1( ) + p2 Y2 + y2( ) ,H0 =

A2z
!a2 + p1Y1 + p2Y2

,

 

y1 and y2 are palatable and defended prey of mutant, A1 and A2 are feeding rates of prey 
and predator, a11, a12, and !a2  are saturation constants for palatable prey, defended prey 

and predator, p1 and p2 are palatability of palatable and defended prey for predator, G 

and g are the threshold parameters for resident and mutant, b is the sensitivity parameter, 

and m is predator death rate. The mutant dynamics is given by 

dy1
dt

= 1! q( ) F1y1 + F2y2( )! p1Hy1 ! y1,
dy2
dt

= q F1y1 + F2y2( )! p2Hy2 ! y2.
    (C2) 

Because the first mutant is very rare, linearized equation around y1 = y2 = 0  is 

dy1
dt

= 1! q( ) F1y1 + F2y2( )! p1H0y1 ! y1,

dy2
dt

= q F1y1 + F2y2( )! p2H0y2 ! y2.
    (C3) 

The Jacobian matrix of equation (C3) with the demographic equilibrium is 

J =
1! q( )F1 ! p1H0 !1 1! q( )F2

qF1 qF2 ! p2H0 !1

"

#
$
$

%

&
'
'
,    (C4) 

where 
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F1 =
A1x
a11 + x

,F2 =
A1x

a12 + x
,

q =
z g( )b

1+ z g( )b
,H0 =

A2z
!a2 + p1Y1 + p2Y2

,
  

and x , y1 , y2 , and z  are variables in the stable equilibrium. Thus the trace and 

determinant of the Jacobian matrix (C4) are 

tr J( ) = 1! q( )F1 + qF2 ! p1 + p2( )H0 ! 2,

" # det J( ) = 1+ p1H0( ) 1+ p2H0( )! 1+ p2H0( ) 1! q( )F1 ! 1+ p1H0( )qF2.
 (C5) 

The first and second orders of differential equations are 

!"
!q

= 1+ p2H0( )F1 # 1+ p1H0( )F2,
!2"
!q2

= 0.
    (C6) 

Therefore, the evolutionarily singular strategy is realized when !"
!q

= 0.  This condition 

can be rewritten as 1+ p2H0( )F1 = 1+ p1H0( )F2. Because the second order is zero, it is 

not strictly evolutionarily stable, but neutrally stable in the demographic equilibrium of 

predator and prey (see the legend of fig. S13). Then the pairwise invasibility plot (PIP) 

should be like fig. S13D. 
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2.6.4 Supplemental Figures 

 
Figure 2.S1: A, Local stability analysis of model I. The abbreviated letters are the same 

as figure 3A. For details of analysis, see Appendix 2.6.1. B, Local stability analysis of 

model II. The abbreviated letters are the same as figure 3B. For details of analysis, see 

Appendix 2.6.2. The dotted line between regions C1 O and C12 O is obtained assuming 

stable equilibria. However, those two regions are both limit-cycle attractors, thus this 

boundary should be obtained numerically. 
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Figure 2.S2: Effects of the trade-off function parameter # in model I. A, # = 0.5. The 

trade-off function is convex. B, # = 1. The trade-off function is linear. C, # = 2. The 
trade-off function is concave. The abbreviated letters are the same as figure 3A. 
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Figure 2.S3: Effects of the trade-off function parameter # in model II. Because model 

II has bistability regions, the simulation results are affected by the initial conditions. 

Here we extended the equilibrium points from right side (s12 = 0.99). A, # = 0.5. The 

trade-off function is convex. B, # = 1. The trade-off function is linear. C, # = 2. The 

trade-off function is concave. The abbreviated letters are the same as figure 3B. 
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Figure 2.S4: Effects of the trade-off function parameter # in model II. Because model 

II has bistability regions, the simulation results are affected by the initial conditions. 

Here we extended the equilibrium points from left side (s12 = 0.01). A, # = 0.5. The 

trade-off function is convex. B, # = 1. The trade-off function is linear. C, # = 2. The 

trade-off function is concave. The abbreviated letters are the same as figure 3B. 
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Figure 2.S5: Effects of the trade-off function parameter # in model IIIA. Here reaction 

norm parameters were set as b = 2 and g = 5. A, # = 0.5. The trade-off function is 

convex. B, # = 1. The trade-off function is linear. C, # = 2. The trade-off function is 
concave. The legend is the same as figure 3C. 
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Figure 2.S6: Effects of the threshold parameter of reaction norm g in model IIIA. Here 

trade-off is linear (# = 1) and b = 2. A, g = 2. B, g = 5. C, g = 10. The abbreviated letters 
are the same as figure 3C. 
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Figure 2.S7: Effects of the sensitivity parameter of reaction norm b in model IIIA. Here 

trade-off is linear (# = 1) and g = 5. A, b = 0.1. B, b = 2. C, b = 10. The abbreviated 
letters are the same as figure 3C. 
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Figure 2.S8: Effects of the response parameter of phenotypic plasticity f in model IIIB. 

Here trade-off is linear (# = 1), b = 2, and g = 5. A, f = 0.1. B, f = 1. C, f = 10. The 
abbreviated letters are the same as figure 3C. 
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Figure 2.S9: Effects of the maintenance cost of phenotypic plasticity $ in model IV. 

Here trade-off is linear (# = 1), b = 2, and g = 5. A, $ = 0 and the nutrient inflow NI is 

constant. B, $ = 0 and the nutrient inflow NI is fluctuating (% = 0.99 and T = 100). 

Region SC12 E (S, C1, and C2 Equilibrium; moss green): palatable, defended and plastic 

prey coexist in a stable equilibrium. The other abbreviated letters are the same as figure 

5. 
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Figure 2.S10: Effects of the nutrient fluctuation amplitude parameter % in model IV. 

Here trade-off is linear (# = 1), b = 2, g = 5, and T = 100. A, % = 0.1. B, % = 0.5. C, % = 
0.99 (same as fig. 5B). The abbreviated letters are the same as figure 5. 
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Figure 2.S11: Effects of the nutrient fluctuation period length parameter T in model IV. 

Here trade-off is linear (# = 1), b = 2, g = 5, and % = 0.99. A, T = 1. B, T = 100 (same as 
fig. 5B). C, T = 1,000. The abbreviated letters are the same as figure 5. 

 

S11. Effects of T in model IV (! = 0.99)

A. T = 1 B. T = 100 C. T = 1000 

Searching efficiency for defended type (s12) 

D
ilu

tio
n 

ra
te

 ("
) 

0 0 1 0 1 1 

0 

2 

C2 O

C2 O C2 O

C1 O

C1 O

PEx
PEx PEx

C12 O

S O S O

SC1 O

SC12 O

SC1 O

SC2 O SC2 O

SC1 O

C1 O

NI t( ) = NI 1+! sin
2" t
T

#
$%

&
'(

)
*+

,
-.



 61 

 

Figure 2.S12: The fittest threshold parameter of reaction norm g in model IIIA. Here 

trade-off is linear (# = 1). A, b = 2. B, b = 10. C, b = 100. The contour plots show the 

fittest values of g (from 0.1 to 50) for each condition (each combination of s12 and !). 

For the detail of simulation to find out the fittest g, see the legend of figure S13. 
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Figure 2.S13: Examples of the fittest threshold parameter g. Here trade-off is linear (# 
= 1). A, An example of the evolutionary simulation (density plot) and the final 

phenotypic distribution (at t = 8,000) in limit cycles (s12 = 0.1, ! = 1.5). B, An example 
of the evolutionary simulation (density plot) and the final phenotypic distribution (at t = 

8,000) in stable equilibria (s12 = 0.1, ! = 1.0). C, An example of pairwise invasibility 

plots (PIP) in limit cycles (s12 = 0.1, ! = 1.5). D, An example of PIP in stable equilibria 

(s12 = 0.1, ! = 1.0). The resident g is x-axis and the mutant g is y-axis. Purple regions 
(－): the mutant cannot invade when it is rare. Off-white regions (+): the mutant can 

invade when it is rare. Note that the evolutionary stable g values are the same as the 

most abundant g in the final distributions.  

To determine the fittest reaction norm parameters, we at first set 500 

genotypes (S1 ~ S500) with g varying from 0.1 to 50 (the difference between the 

neighboring genotypes is 0.1) with the same abundance. The 500 plastic genotypes 

competed until t = 8,000 in numerical simulations. Through this process, local mutation 

can occur to neighboring genotypes (i.e., from i to i – 1 and i + 1). The mutation rate 

was set as 10–3. After the competition, the most abundant genotype was chosen for the 
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competition against non-plastic genotypes. 

There are two cases for the final genotype distribution of plastic prey. (i) In 

the case where the evolution of g value ended up with prey-predator cycles, the 

genotype distribution had a steep peak at an intermediate g value, g = g*. This g value is 

chosen as the fittest reaction norm parameter, and used in the competition between 

plastic and non-plastic prey. PIP drawn in figure S13C for such case clearly shows that 

g = g* is both convergence and evolutionarily stable. To draw PIP, we detected the sign 

of the mean initial growth rate of mutant reaction norm genotype in the population 

when it is rare, where the resident reaction norm genotype already converges to a stable 

limit cycle, for each combination of mutant and resident reaction norm parameters. (ii) 

In the case where the evolution ended up with the stable demographic equilibrium of 

prey and predator, the final genotype distribution for g had a broad humped curve 

around an intermediate value g**. If PIP is plotted for such case, we have a vertical line 

at g = g** as the invasibility boundary (fig. S13D). This implies that, although g = g** is 

convergence stable and hence g value evolves towards g** when the resident population 

is nearly monomorphic, g** itself is not strictly evolutionarily stable (it is neutrally 

evolutionarily stable), and hence the genotypes other than g** can constitute the 

evolutionary stable population. Exactly the same situation arises when PIP is drawn for 

analyzing Fisherian sex ratio. PIP has a vertical line at sex ratio R = 1/2, implying that, 

as long as the population mean sex ratio is kept 1:1, many genotypes with different sex 

ratios can constitute an evolutionary stable population. Nonetheless, 1:1 sex ratio is 

called the evolutionary stable sex ratio. In the same vein we call g = g** evolutionarily 

stable, and used as the fittest genotype in our simulation for the competition of plastic 

and non-plastic prey. 

There are two ways to obtain g = g** in the case (ii). First is to draw PIP as we 

did in figure S13D. To do this for every combination of parameters is time consuming, 

though. Alternative way we used to draw the evolutionarily stable g in figure S12 and 

S14 was the following. Though g** in demographic equilibrium is only neutrally 

evolutionary stable, it is still convergence stable. This implies that, as long as the wild 

type population is monomorphic, g value should always evolve towards g**. This 

obvious fact is used to obtain g**. We picked up the most abundant genotype at regular 

time intervals (t = 2,000, 4,000, and 6,000) where an evolutionary equilibrium is 

reached. The prey population is set monomorphic each time, and started evolving 
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towards g** again by selection and mutation. By repeating this procedure, the prey 

genotype distribution evolves to have a steep peak at g = g** as shown in figure S13B. 

The values obtained by these two ways were compared and, not surprisingly, showed 

very good agreement. 

There is a clear reason why we have a neutral evolutionarily stability for 

reaction norm parameter when population is in demographic equilibrium. There is an 

optimum ratio of defended and palatable prey at the equilibrium, and various 

combination of plastic genotypes can attain the desired defended/palatable ratio for a 

given predator density. 

We here obtained the evolutionary stable threshold parameter g* in model III 

(through competition between the plastic genotypes) and then we let the plastic 

genotype with g* compete with non-plastic genotypes in model IV. We should note, 

however, that the evolutionarily stable g* values may be slightly different if we let the 

plastic genotypes to evolve in model IV (through competition between the plastic and 

non-plastic genotypes). This possible complication is beyond the scope of the present 

study and we leave it for future studies. 
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Figure 2.S14: Effects of the threshold parameter of reaction norm g in model IV. Here 

trade-off is linear (# = 1). A, b = 2. B, b = 10. C, b = 100. The dynamics of competition 
between the plastic prey with the fittest threshold g (fig. S12) and non-plastic genotypes 

are shown. The abbreviated letters are the same as figure 5. 
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Chapter 3. Ecological speciation via functional pleiotropy 
Masato Yamamichi, Akira Sasaki 

 

3.1 Abstract 
A conventional theory proposes that single-gene speciation would be difficult, because 

selection acts against a mutation that causes reproductive isolation. An excellent 

example of single-gene speciation is, however, found in snails, in which a gene for 

left-right reversal of polarity could have given rise to new species multiple times, and 

this might be facilitated by a small population size and a maternal effect (‘delayed 

inheritance’ (DI), in which an individual’s phenotype is determined by its mother’s 

genotype). Recently, evidence suggests that a pleiotropic effect of the speciation gene 

on anti-predator survival due to right-handed predators (functional pleiotropy) may also 

promote speciation. Here we examine the effects of the three factors and allele 

dominance to understand single-gene speciation process. It appears that the recessive 

mutant allele with DI has higher fixation probability when reproductive isolation is 

strong and functional pleiotropy is weak, but in large populations, both alleles have the 

same fixation probability. On the other hand, the dominant mutant allele without DI has 

higher one when reproductive isolation is weak and pleiotropy is strong. Our results 

underline the conflicting effects of viability selection and positive frequency-dependent 

selection due to reproductive isolation on the mutant phenotype, providing insight into 

single-gene speciation. 

 

3.2 Introduction 
Darwin tried to explain the origin of species by natural selection (Darwin 1859), but he 

did not know the detail of genetic basis. Since then, understanding speciation from the 

genic level to the ecological level is an ongoing challenge in evolutionary biology 

(Coyne and Orr 2004). One of the longstanding debates in speciation studies concerns 

how many genes causing reproductive isolation (speciation genes) are required for 

speciation to occur. A classic theory, the Bateson-Dobzhansky-Muller (BDM) model, 

predicts that two or more genes must be involved in speciation, because a new allele 

with strong effects on viability of heterozygotes or mating compatibility without 

epistasis to other genes should decrease the fitness of variants, and therefore has 

difficulty in fixing in the populations. On the other hand, negative epistatic interactions 
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between independently derived alleles (A and B) at two loci can establish reproductive 

isolation between descendant genotypes (AAbb and aaBB) without reproductive 

isolation between ancestral genotype (aabb) and daughter lineages (Bateson 1909, 

Dobzhansky 1936, Muller 1942). 

Although the classical BDM incompatibility model has been influential in 

explaining the speciation process (Orr 1996, Gavrilets 2004), the BDM model cannot 

explain the evolution of reproductive isolation by a single gene without incompatible 

gene interaction. The speciation as a result of genetic substitution at a single locus is 

sometimes called as ‘single-gene speciation’ (Orr 1991). There are some empirical 

supports such as single-locus determination of mating behavior in animals (Tauber et al. 

2003, Ueshima and Asami 2003) or flowering traits in plants (Bradshaw and Schemske 

2003, see Gavrilets 2004, Servedio et al. 2011 for review). In addition, because 

“one-locus models are a natural starting point for theoretical approaches to many 

evolutionary phenomena” (Gavrilets 2004), several studies have theoretically 

investigated speciation models by a single locus (Moore 1979, 1981, Slatkin 1982, Orr 

1991, Gregorius 1992, van Batenburg and Gittenberger 1996, Stone and Björklund 2002, 

Davison et al. 2005). On the other hand, a single gene that pleiotropically contributes to 

both reproductive isolation and divergent adaptation is of special interest as it can 

potentially promote ecological speciation (evolution of reproductive isolation as a result 

of ecologically divergent selection) with gene flow (Rundle and Nosil 2005). This is 

because recombination cannot break down the association of the two functions 

(Felsenstein 1981). We call this type of pleiotropy ‘functional pleiotropy’ as the 

speciation gene needs not to affect two or more traits: when the speciation gene 

determines a single trait that influences both reproductive isolation and ecologically 

divergent adaptation, it is also functional pleiotropy (Jordan and Otto 2012). In spite of 

these intensive interests, the process of single-gene speciation is not consistently 

understood, partly because previous studies relied heavily on numerical simulations 

(Kirkpatrick and Ravigné 2002, Gavrilets 2004). Here we use new analytical results to 

investigate the effects of functional pleiotropy, allele dominance, population size, and 

maternal effect on the fixation process of the speciation gene in single-gene speciation.  

An excellent example of single-gene speciation is found in snails (see 

Schilthuizen and Davison 2005, Okumura et al. 2008 for review): handedness of snails 

is shown to be controlled by two alleles at a single locus (Boycott et al. 1930, Degner 
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1952, Murray and Clarke 1966, Freeman and Lundelius 1982) and mating between 

opposite coiling individuals rarely occurs (Johnson 1982, Gittenberger 1988, Asami et 

al. 1998). Thus the handedness gene is responsible for premating isolation. Despite the 

positive frequency-dependent selection against rare mutants predicted by the BDM 

model (Johnson 1982, Asami et al. 1998), it was revealed that evolutionary transitions 

from original and abundant dextral (clockwise coiling) species to mutant sinistral 

(counter-clockwise coiling) species have occurred multiple times (Ueshima and Asami 

2003, Davison et al. 2005, Hoso et al. 2010, Gittenberger et al. 2012). 

Why is single-gene speciation possible in snails? Orr (1991) proposed that, 

after Gittenberger (1988), a small population size and a maternal effect (delayed 

inheritance: Fig. 1) in snail populations could promote single-gene speciation. Because 

of the low mobility of snails, local populations tend to be isolated from each other, 

causing repeated extinction and colonization. This results in small effective population 

size and strong genetic drift (e.g., Arnaud and Laval 2004, Hoso 2012). Delayed 

inheritance of snail handedness is a sort of maternal effect, in which an individual’s 

phenotype is determined by its mother’s genotype (Fig. 1: Boycott et al. 1930, Freeman 

and Lundelius 1982, Utsuno and Asami 2010). Subsequent theoretical studies about 

snail coiling evolution fundamentally attributed the cause of single-gene speciation to 

these two factors (van Batenburg and Gittenberger 1996, Stone and Björklund 2002, 

Davison et al. 2005). 

A recent study proposed a novel explanation concerning the effects of 

functional pleiotropy in single-gene speciation of snails, so-called the ‘right-handed 

predator’ hypothesis (Hoso et al. 2010). The research showed that a gene controlling 

coiling direction of snails could pleiotropically affect not only reproductive isolation but 

also anti-predator adaptation due to predator’s ‘handedness’. Because most snails are 

dextral (Vermeij 1975), predators tend to be ‘right-handed’ (specializing in the 

abundant dextral type of prey). Such predators include box crabs (Shoup 1968, Ng and 

Tan 1985, Dietl and Hendricks 2006), larvae of water-scavenger beetle (Inoda et al. 

2003), and snail-eating snakes (Hoso et al. 2007, Hoso et al. 2010). Behavioral 

experiments revealed that those predators tend to fail in attempts to eat sinistral snails, 

due to left-right asymmetry of their feeding apparatuses and behaviors (Inoda et al. 

2003, Dietl and Hendricks 2006, Hoso et al. 2007). Although a mating disadvantage 

still exists, sinistral individuals will have a survival advantage under such right-handed  



 69 

 

Figure 3.1: Chirality inheritance determined by maternal effects of dominant dextral 

(D) and recessive sinistral (s) alleles at a single nuclear locus (delayed inheritance). 

Black and gray spirals indicate dextral and sinistral phenotypes. In the second 

generation, individuals of the same genotype (Ds) develop into the opposite 

enantiomorph depending on the maternal genotype (DD or ss). Note that snails are 

androgynous. 

 

predation. This can potentially promote the fixation of a sinistral allele, and indeed 

Hoso et al. (2010) found a positive correlation between right-handed predator (snake) 

distribution and the proportion of sinistral lineages. Although Hoso et al. (2010) found 

the correlating pattern, the underlying fixation process of the mutant allele in the 

speciation gene with functional pleiotropy has not been fully investigated.  

Here we theoretically investigate the fixation process of the mutant allele in 

the speciation gene in single-gene speciation with or without functional pleiotropy. Our 

specific questions are: (1) how do allele dominance, population size, and delayed 

inheritance affect single-gene speciation? What kind of allele dominance has the highest 

fixation probability? How do population size and delayed inheritance affect this 

DD ss

DsDs
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tendency? (2) How does functional pleiotropy affect the process of single-gene 

speciation? When the mutant frequency is low, it would be better for heterozygotes to 

have the resident phenotype to mate with common resident genotypes (positive 

frequency-dependent selection). On the other hand, the mutant phenotype is 

advantageous under strong viability selection. Because of the conflicting factors, the 

effects of allele dominance and delayed inheritance can be changed by functional 

pleiotropy.  

 

 
3.3 Models 
To examine the questions, we consider a general allopatric speciation model. When a 

panmictic population split into two geographically divided subpopulations, it is 

sufficient to compare fixation probabilities of a mutant allele in a single subpopulation 

to understand the likelihood of speciation (Orr 1991). We construct Wright-Fisher 

models of haploid or diploid individuals without delayed inheritance and diploid 

individuals with delayed inheritance, to study the mutant allele frequency change 

through generations with reproductive isolation and viability selection. 

We first consider the deterministic invasion condition of a mutant allele in 

infinite populations. Then we calculate the mutant fixation probability in finite 

populations by diffusion approximation analysis for large populations (Kimura 1962). 

Because diffusion approximation analysis assumes large populations, we also perform 

numerical calculations of the exact fixation probability for small populations by using a 

first step analysis (Pinsky and Karlin 2010), as well as Monte Carlo simulations (as Fig. 

2). The first step analysis is also applicable to large populations, but the calculation is 

time-consuming when N is large. Therefore we show only the results for N = 3. 

 

3.3.1 Model 1. Haploid model 

Assume the case where mating occurs randomly, but mating between different 

phenotypes fails with probability r (Table 1). A common phenotype is advantageous 

because mating is more likely to be successful. In contrast, a rare phenotype tends to 

have a reduced probability of mating success (positive frequency-dependent selection). 

We denote the frequency of the mutant allele (A) by p, and that of the wild-type allele 
(a) by 1 – p. The frequency after mating,   !p , is 
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!p = p2 + (1! r) p(1! p)

p2 + 2(1! r) p(1! p)+ (1! p)2 ,     (3.1) 

where r is an intensity of reproductive isolation (0 # r # 1, Table 1). Reproductive 

isolation is complete if r = 1, the mating is random if r = 0, and reproductive isolation is 
partial if 0 < r <1 . The mutant frequency after one generation,  !p , is given by 

   
!p = (1+ s) !p

(1+ s) !p +1"(1# !p)
,      (3.2) 

where s is a positive viability selection coefficient. For example, if a mutant snail is 

sinistral then s represents the relative survival advantage of sinistral snails due to 

right-handed predation by snakes (Hoso et al. 2010).  

 

3.3.2 Model 2. Diploid model without delayed inheritance 
We consider the situation in which a single heterozygous mutant (Aa) appears by a 

mutation in the resident population (aa). We denote the degree of dominance of allele as 

h. h = 0 and h = 1 correspond to completely recessive and dominant mutant alleles, 

respectively. Under partial dominance (0 < h < 1), we consider two models: the first one 

is a three-phenotype model in which heterozygotes have an intermediate phenotype of 

the homozygous phenotypes, and intensities of reproductive isolation and viability 

selection are determined by the phenotype (h), although this does not apply to snails 

(Table 1). The second one is a model with only two phenotypes (A and a) and the 

heterozygous phenotype is A with probability h and a with probability 1 – h (Appendix 

S8). We introduce the first model here. The frequencies of genotypes AA (= x) and Aa 
(= y) after mating,  !x  and  !y , are given by 

 

   

T!x = x2 + 1! (1! h)r"# $% xy + y2

4
,

T!y = 1! (1! h)r"# $% xy + 2(1! r)xz + y2

2
+ (1! hr)yz,

  (3.3) 

where   T = 1! 2r (1! h)xy + xz + hyz"# $%  and z (= 1 – x – y) is the frequency of the 

resident allele homozygote, aa (Table 1). The frequencies in the next generation, !x  
and !y , are 
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Table 3.1: The diploid model without delayed inheritance (h = 0: a is a dominant allele, 

h = 1: A is a dominant allele). 
Mating comb. Mating prob. AA Aa aa 

AA $ AA x2 1 0 0 

AA $ Aa 2[1 – (1 – h)r]xy 1/2 1/2 0 

AA $ aa 2(1 – r)xz 0 1 0 

Aa $ Aa y2 1/4 1/2 1/4 

Aa $ aa 2(1 – hr)yz 0 1/2 1/2 

aa $ aa z2 0 0 1 

 

 

 

!x = (1+ s) !x
(1+ s) !x + (1+ hs) !y +1" !z

,

!y = (1+ hs) !y
(1+ s) !x + (1+ hs) !y +1" !z

,
     (3.4) 

where  !z = 1! !x ! !y . 

 

3.3.3 Model 3. Diploid model with delayed inheritance 

There are three genotypes (AA, Aa, and aa) and two phenotypes (A and a), thus six 

combinations are possible (i.e., AAA, AAa, AaA, Aaa, aaA, and aaa). Here AAA 

represents a genotype AA with phenotype A. However, as we assume complete 

dominance here, only five combinations arise: for example, AAa is not realizable when 

A is dominant (Table S1). We assume that the mutation in the speciation gene occurs in 

an embryo, therefore the first mutant’s phenotype is the same as its wild-type mother. 

We denote the frequencies of each combination of genotypes and phenotypes as 

follows: AAA: xA, AaA: yA, Aaa: ya, aaA: zA, aaa: za (= 1 – xA – ya – zA – za). Let p (= xA + 

(yA + ya)/2) and q (= 1 – p = (yA + ya)/2 + zA + za) be the frequencies of dominant (A) 

and recessive (a) alleles. Frequencies after mating are 
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T!xA = p2 ! rya xA +
yA
2

"
#$

%
&' ,

T!yA = p(1! xA )! r za xA +
yA
2

"
#$

%
&' + ya xA + yA +

zA
2

"
#$

%
&'

(
)*

+
,-
,

T!ya = p(1+ xA ! 2p)! r za xA +
yA
2

"
#$

%
&' +

yazA
2

(
)*

+
,-
,

T!zA = (p ! xA )(1! p)!
r
2
yA(ya + za )+ yazA[ ],

  (3.5) 

where T = 1! 2r(xA + yA + zA )(ya + za ) . Frequencies in the next generation are 

determined after viability selection and these depend on allelic dominance of the mutant. 

When the mutant allele is dominant,  

 
   
xA
! =

(1+ s) !xA

W
, yA

! =
(1+ s) !yA

W
, ya
! =
!ya

W
, zA
! =

(1+ s) !zA

W
, za
! =
!za

W
,  (3.6) 

where    W = 1+ s( !xA + !yA + !zA )  is the mean fitness of the population. See Appendix S2 

for the recessive mutant allele. 

 

3.4 Results 
At first, we consider the case where there is no viability selection (s = 0). In snails, this 

corresponds to single-gene speciation without right-handed predation. Then, we show 

the results for the case with functional pleiotropy (s > 0). 

 

3.4.1 Single-gene speciation without functional pleiotropy 

Through deterministic analysis of infinite populations, we confirm that the system is 

bistable by positive frequency-dependent selection due to reproductive isolation (Fig. 3). 

Therefore a rare mutant allele cannot invade in infinite populations as predicted by the 

classic theory (Bateson 1909, Dobzhansky 1936, Muller 1942). Thus, genetic drift in 

finite populations is a prerequisite for single-gene speciation without functional 

pleiotropy (Gavrilets 2004). For example, the frequency change in one generation, 
!p = "p # p , in the haploid model is 

 
 
!p = p(1" p) r(2p "1)+ s " sr(1" p)[ ]

(1+ s!p) 1" 2rp(1" p)[ ] ,    (3.7) 

from equations (1) and (2). Assuming large population size and small r and s, we can 

consider a continuous time model of allele frequency change for the whole range of p. 

Neglecting the higher order terms of r and s, we have the deterministic dynamics,  
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Figure 3.2: An example of fixation process of the mutant allele starting from a single 

heterozygote in the diploid model without delayed inheritance. X-axis: frequency of the 

resident allele homozygotes, aa (z). Y-axis: frequency of the mutant allele homozygotes, 

AA (x). Note that x + z # 1 (the dashed line). The initial condition is at (z, x) = (1 – 1/N, 

0) (the black point). The gray curve ( x = 1+ z ! 2 z ) indicates the HW equilibrium. 
Parameter values are N = 30, r = 0.1, s = 0.1, and h = 1. 

 
  !p = p(1! p) r(2p !1)+ s[ ].     (3.8) 

The dynamics have two stable equilibria at p = 0 and p = 1, and an internal unstable 
equilibrium at  p= (1! s r) 2  when r > s. When s = 0, the unstable equilibrium is at p 

= 1/2 and the derivative of allele frequency dynamics is negative when p is smaller than 

1/2 and is positive when p is larger than 1/2 (the solid gray line in Fig. 3A). 
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Figure 3.3: Allele frequency dynamics affected by positive frequency-dependent 

selection due to reproductive isolation (indicated by white arrows). X-axis: the mutant 
allele frequency (p). Y-axis: scaled derivatives of the mutant allele ( !p r ). A: The 

haploid model (the solid gray line, eq. 8 when s = 0). An unstable equilibrium at p = 1/2 

(the white point) divides two basins of attraction. Stable equilibria are at p = 0 and 1 

(black points). B: The diploid models with the dominant mutant allele without delayed 

inheritance (the dotted red line, eq. 10 when s = 0 and h = 1) and with delayed 

inheritance (the solid red line, eq. 17 when s = 0). An unstable equilibrium is at p = 

1!1 2 . C: The diploid models with the recessive mutant allele without delayed 

inheritance (the dotted blue line, eq. 10 when s = 0 and h = 0) and with delayed 

inheritance (the solid blue line, eq. 18 when s = 0). An unstable equilibrium is at p = 

1 2 . D: Comparison of the diploid models with the dominant (red) and recessive 

(blue) alleles. Intersection points are at p = 1 2 ! 3 6  and 1 2 + 3 6  (gray lines). 

 

The dynamics of the dominant and recessive alleles in the diploid models also 

show positive frequency-dependent selection, but their patterns are contrasting, 

providing insights into the fixation processes: the dominant allele is more favored in 

intermediate frequencies whereas the recessive allele has higher derivatives in low and 
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high frequencies (Fig. 3D). To show this, we approximate two-dimensional genotype 

frequency dynamics of the diploid model to one-dimensional allele frequency dynamics. 

The frequency dynamics of the genotypes is not strictly on the Hardy-Weinberg (HW) 

equilibrium, and the deviation is caused by reproductive isolation and viability selection 

(Fig. 2). We show that, if both r and s are small, the frequency dynamics first 

approaches the HW equilibrium, and then slowly converges to one of the stable 

equilibria, p = 0 or 1 (Crow and Kimura 1970). Assuming that both s and r are of the 

order of ! , a small positive constant, we expand the dynamics (3) and (4) in Taylor 

series with respect to ! . The leading order dynamics for the zygote frequencies are 

then 

 
!x = p2 +O(" ),
!y = 2p(1# p)+O(" ).

     (3.9) 

Thus, in the leading order, genotype frequencies are in the HW equilibrium. From this it 
also follows that the allele frequencies do not change with time,  !p = p , up to the 

leading order. By assuming large population size, small values of r and s, and the HW 

equilibrium, we have the approximated deterministic allele frequency dynamics, 

 
 
!p = p(1! p) r p(2p2 !1)! h(6p2 ! 6p +1)"# $% + s p + h(1! 2p)[ ]{ }.  (3.10) 

The scaled derivatives of the frequency dynamics when h = 0, 1/2, and 1 without 

viability selection (s = 0) are shown by dotted lines (Figs. 3, S1).  

In spite of the different dynamics of the dominant and recessive alleles, 

surprisingly, they cancel out and both alleles have the same fixation probability in large 

populations (Figs. 4H, 4I). Fixation probabilities are calculated by diffusion 

approximation as follows: with random genetic drift, the diffusion process for the 

change in allele frequency is characterized by infinitesimal mean and variance of the 

frequency change: 

M (p) = E !p p"# $% = p(1& p) r(2p &1)+ s[ ],

V (p) = E (!p)2 p"# $% =
p(1& p)
N

,
   (3.11) 

in Model 1. The fixation probability of the allele A with the initial frequency p, denoted 

by u(p), then satisfies the backward equation, 

M (p) !u (p)+ 1
2
V (p) !!u (p) = 0,     (3.12) 
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Figure 3.4: Relative fixation probabilities of a single mutant with reproductive isolation 

to that of a neutral mutant. Here is no viability selection (s = 0). A-F: X-axis is the 

reproductive isolation parameter (r). G-I: X-axis is four times the product of the 

reproductive isolation parameter and the effective population size (4Nr). Y-axis is the 

product of fixation probability and effective population size (N& in the haploid model 

and 2N& in the diploid models). A-C: N = 3 (first step analyses and Monte Carlo 
simulations), D-F: N = 10 (Monte Carlo simulations), G-I: N →  ∞  (diffusion 

approximations) and N = 1000 (Monte Carlo simulations). A, D, G: Solid gray lines: the 

haploid model. Others: Blue lines: the recessive mutant allele, red lines: the dominant 

mutant allele, green lines: the partial dominance model with two phenotypes (h = 1/2), 

solid lines: with delayed inheritance, dotted lines: without delayed inheritance. The 

solid gray line in Fig. 4G and the dotted green line in Fig. 4H are the same. The dotted 

blue and red lines (the diploid model without delayed inheritance) are overlapping in 

Fig. 4H. The solid blue and red lines (the diploid model with delayed inheritance) are 

also overlapping in Fig. 4I. 

 

with the boundary condition, u(0) = 0 and u(1) = 1 (Kimura 1962). This yields 
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u(p) =
exp ! 2M (z)

V (z)
dz

0

y

"#
$%

&
'(
dy

0

p

"
exp ! 2M (z)

V (z)
dz

0

y

"#
$%

&
'(
dy

0

1

"
    (3.13) 

as the solution. From equations (11) and (13), the fixation probability of a single mutant, 

& = u(1/N), is 

! = 1 N

exp y
2
R(1" y)" S[ ]{ }dy0

1

#
,     (3.14) 

where R = 4Nr and S = 4Ns. The relative fixation rate of a single mutant to that of a 
neutral mutant is given by ! = N"  (Figs. 4G-4I). In the same way, the fixation 

probability of a single recessive (h = 0) mutant allele, &0 = u(1/2N), is 

 !0 =
1 (2N )

exp Ry2

2
(1" y2 )#

$
%

&
'
(dy0

1

)
,      (3.15) 

whereas that of the dominant mutant allele (h = 1), &1 = u(1/2N), is  

 !1 =
1 (2N )

exp Ry
2
(2 " y)(1" y)2#

$%
&
'(
dy

0

1

)
.     (3.16) 

It is easy to show that the equations (15) and (16) are equivalent (Appendix S3).  

 When population size is small, on the other hand, the recessive mutant allele 

has higher fixation probabilities than the dominant allele. We show this result by Monte 

Carlo simulations (Figs. 4E, 4F) as well as numerical calculations of exact fixation 

probabilities by the first step analysis (Figs. 4B, 4C, Appendix S5, S6, S7). This 

difference could be due to the different contribution of absolute individual numbers to 

frequency dynamics. Although we assume that the first mutant is always a single 

heterozygous individual in the diploid model, initial frequency of the mutant is higher in 

small populations. Thus, the first heterozygous individual with the dominant mutant 

allele is more strongly selected against in small populations (Fig. 3D). 

Delayed inheritance halves the strength of positive frequency-dependent 

selection (Fig. 3), thereby doubles fixation probability in large populations (Figs. 4H, 

4I). Assuming the HW equilibrium when r and s are small (Appendix S4), the 

approximated frequency dynamics of the dominant mutant allele in Model 3 is given by 
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!p = 1

2
p(1! p)2 !r(2p2 ! 4 p +1)+ s"# $%.     (3.17) 

In the same way, the frequency dynamics of the recessive mutant allele in Model 3 is 

 
 
!q = 1

2
q2 (1! q) r(2q2 !1)+ s"# $%.     (3.18) 

In comparing with equation (10), strength of selection in equation (17) is a half of that 

in equation (10) when h = 1 and the right-hand side of equation (18) scales by 1/2 

compared with equation (10) when h = 0 as shown by solid lines (Fig. 3). For this 

reason, the fixation probabilities of mutants in Model 3 are twice as high as those in 

Model 2 (Figs. 4H, 4I, Appendix S4). This indicates that delayed inheritance effectively 

halves the effective population size. This is probably due to the fact that a phenotype is 

determined only by the mother’s genotype with no contribution from the father. The 

tendency that the model with delayed inheritance has higher fixation probabilities is the 

same in small populations (Figs. 4B, 4C, 4E, 4F). 

We consider two cases of the partial dominance (h = 0.5) in Model 2. By 

comparing the allele frequency dynamics, the strength of positive frequency-dependent 

selection in the first model with three phenotypes is always smaller than that in the 

second model with two phenotypes, in which selection coefficient values are a half of 

the haploid model (Fig. S1). Therefore the model with three phenotypes has higher 

fixation probabilities. Interestingly, the fixation probability of the model with three 

phenotypes is between those of the completely dominant and recessive alleles in small 

populations (Figs. S2A, S2B), whereas it is higher than those of the dominant and 

recessive alleles in large populations (Figs. S2C, S3). For the model with two 

phenotypes, on the other hand, the fixation probability of an allele with partial 

dominance is almost always smaller than those of the completely dominant and 

recessive alleles (Figs. 4B, 4E, 4H, S2, S3). Specifically, the partial dominance model 

with h = 1/2 in large populations have the same fixation probability as the haploid 

model (Fig. 4H). 

 

3.4.2 Single-gene speciation with functional pleiotropy 

We theoretically show that functional pleiotropy can promote single-gene speciation as 

proposed by Hoso et al. (2010). Although functional pleiotropy can keep linkage 

between adaptation and reproductive isolation, it can also cause positive 
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frequency-dependent selection. Therefore, pleiotropy needs a sufficient level of 

selective force to promote ecological speciation (Fig. 5). The required selection 
coefficient for the mutant allele to invade is   s > r (1! r)  in the haploid and diploid 

models with complete dominance and   s > r (1! hr)  for the diploid models with partial 

dominance (Appendix S1, S2, S8). In the haploid model, equations (1) and (2) are 
approximated as   !p " (1+ s)(1# r) p  if the mutant frequency is small (p " 0). When (1 

+ s)(1 – r) < 1, the system is bistable and the positive frequency-dependent selection 

excludes rare alleles. There are two locally stable equilibria at p = 0 and p = 1, and a 
locally unstable equilibrium, pc = r(1+ s)! s[ ] / r(2 + s)[ ] , that divides the two basins 

of attraction. As the mutant allele is selected for more (s > 0), the unstable equilibrium 

moves toward 0 and vanishes when s is as large as to satisfy (1 + s)(1 – r) = 1. When (1 

+ s)(1 – r) > 1, or s > r/(1 – r), there is a globally stable equilibrium at p = 1 and the 

mutant allele increases and eventually fixes irrespective of the initial frequency (Fig. 5). 

Note that invasion is impossible when reproductive isolation is complete (r = 1), and 

this again suggests the importance of genetic drift in small populations. 

For the diploid model, partial dominance makes ecological speciation easier 

as heterozygotes can obtain mating chance and survival advantage simultaneously. We 

derive the condition for the mutant allele to be able to invade the wild-type population 

as (1 + hs)(1 – hr) > 1 when h % 0 by analyzing recursion equations (3) and (4) 

(Appendix S1). Interestingly, the invasion condition of the complete recessive allele (h 

= 0) differs from s > r, that is the limit of h → 0 for the invasion condition of the 

partially dominant mutant (Appendix S1). The heterozygotes with the completely 

recessive mutant allele are neutral for viability selection, but the invasion condition is 

equivalent to that for the completely dominant (h = 1) allele (Fig. 5). Also, we found 

that a locally stable equilibrium in which the mutant allele coexist with the resident 

allele appears when r is large and h is small (Fig. S4). In this case, the invasion 

condition (Fig. 5) does not equal a fixation condition with a single globally stable 

equilibrium. For the diploid model with delayed inheritance, the invasion condition in 

infinite populations is (1 + s)(1 – r) > 1 (Appendix S2), so this is the same as Models 1 

and 2 (Fig. 5). However, the eigenvalue of the Jacobian matrix in the linearized system 

is smaller than that of the dominant allele in Model 2, which corresponds to the fact that 

the delayed inheritance makes the invasion of a mutant easier in a finite population 

(Appendix S2).  
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Figure 3.5: Deterministic invasion conditions of a mutant allele. X-axis: the 

reproductive isolation parameter (r). Y-axis: the viability selection coefficient (s). The 

completely dominant and recessive (h = 0 and 1) mutant alleles require a large selection 

coefficient for invasion whereas the alleles with partial dominance (e.g., h = 0.5) require 

a smaller selection coefficient. Note that the invasion condition of the completely 

recessive mutant allele differs from the limit of h → 0 (the dotted line). 

 

In finite populations, the balance between viability selection and positive 

frequency-dependent selection due to reproductive isolation determines fixation 

probability: when r is small, positive frequency-dependent selection is so weak that the 

dominant allele without delayed inheritance has the highest fixation probabilities. When 

r is large, on the other hand, the recessive allele with delayed inheritance is better due to 

strong positive frequency-dependent selection. In intermediate conditions, the dominant 

allele with delayed inheritance is better (Fig. 6). This is due to conflicting effects of 

reproductive isolation and viability selection. Positive frequency-dependent selection 

and viability selection work on the mutant phenotype, thus individuals with the mutant 

phenotype get conflicting effects from the two selection pressures: when reproductive 

isolation is weak, the survival advantage of the mutant phenotype exceeds its mating  
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Figure 3.6: The alleles with the highest fixation probabilities given certain strength of 

reproductive isolation and viability selection. A: N = 3 (first step analyses), B: N → ∞ 

(diffusion approximations). When 4Ns = 0, both dominant and recessive mutant alleles 

with delayed inheritance have the same fixation probability. DI: delayed inheritance. 

 

disadvantage. When reproductive isolation is strong, positive frequency-dependent 

selection is so strong that the survival advantage of the mutant phenotype cannot 

overcome the mating disadvantage when the mutant is rare. 

With functional pleiotropy, fixation probabilities in the partial dominance 

model with three phenotypes are larger than those of the completely dominant and 

recessive mutant alleles when intensity of reproductive isolation and viability selection 

is intermediate (Fig. S5). In this case, heterozygotes that get intermediate mating and 

survival advantages simultaneously may work as a bridge between the mutant and 

wild-type homozygotes. This is consistent with the above interpretation on conflicting 

effects of viability selection and positive frequency-dependent selection on the mutant 

phenotype. In the second model with two phenotypes, the fixation probabilities are 

almost the same as those of the haploid model (data not shown). 

 

3.5 Discussion 
Single-gene speciation remains a controversial topic for evolutionary biology: Bateson, 

Dobzhansky, and Muller theoretically predicted that single-gene speciation is almost 

impossible (Bateson 1909; Dobzhansky 1936; Muller 1942), but there is some 

convincing evidence of single-gene speciation (e.g., Ueshima and Asami 2003). In the 

context of ecological speciation with gene flow, a single gene that pleiotropically 
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contributes to both reproductive isolation and divergent adaptation is believed to 

promote speciation (Rundle and Nosil 2005). If one locus is responsible for ecological 

adaptation and the other one is for reproductive isolation, speciation becomes less 

probable, because recombination breaks down the association between those two loci 

(Felsenstein 1981). As a trait that pleiotropically causes reproductive isolation and 

ecological adaptation provides a simple solution for this problem, it is called an 

‘automatic magic trait’ (Gavrilets 2004, Servedio et al. 2011). An increasing number of 

studies suggest the involvement of adaptation in speciation (Barton 2010), but 

evolutionary process of single-gene speciation with adaptation is not fully investigated. 

In this study we theoretically analyze the poorly understood fixation process of the 

speciation gene, thereby supporting the idea that viability selection for the speciation 

gene may resolve the seeming conflict between theory and data on single-gene 

speciation (Hoso et al. 2010): handedness of snails pleiotropically works as an 

‘automatic magic trait’ for both reproductive isolation and anti-predator adaptation 

(Gavrilets 2004, Servedio et al. 2011), and thereby right-handed predation promotes 

single-gene speciation. 

In finite populations without pleiotropy, the dominant and recessive alleles 

have the same fixation probability in large populations whereas the recessive allele has 

a higher probability in small populations. The effects of population size are contrasting, 

but most left-right reversals are likely to have occurred in small and isolated populations 

(Orr 1991, Hoso 2012). Thus we predict that the frequently fixed allele in snails should 

be recessive in the absence of right-handed predation.  

There are conflicting arguments about allele dominance; Orr (1991) wrote 

“the probability of fixation of a maternal mutation is roughly independent of its 

dominance” in dioecious populations, but hermaphroditic populations with selfing 

“decrease the chance that a dominant mutation will be fixed.” On the other hand, van 

Batenburg and Gittenberger (1996) showed that the dominant mutant allele has a higher 

fixation probability, and Ueshima and Asami (2003) speculated allele dominance based 

on their results. We point out that this discrepancy is mainly due to different 

assumptions about the initial numbers of the mutant allele. Both Orr (1991) and we 

computed the fixation probability of a single mutant, whereas van Batenburg and 

Gittenberger (1996) changed initial numbers of mutants from 2 to 32. These 

assumptions are responsible for the different results, because the recessive mutant allele 
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has a higher fitness when it is rare, whereas the dominant mutant allele has a higher 

derivative when the frequency is intermediate (Fig. 3D). We changed initial numbers of 

mutants in Monte Carlo simulations and obtained the supporting results (data not 

shown). van Batenburg and Gittenberger (1996) assumed mass invasion from 

neighboring sinistral populations, but the fixation probability is usually calculated for a 

single de novo mutation. When the initial mutant is a single heterozygote, we both 

analytically and numerically showed that the recessive mutant allele has a higher 

fixation probability in small populations, but both alleles have the same probability in 

large populations (Fig. 4). 

With functional pleiotropy, the balance between viability selection and 

positive frequency-dependent selection due to reproductive isolation determines the 

fixation probability of the mutant allele. The frequently fixed allele can be dominant 

when population size is small and viability selection is strong (fig. 6A), in contrast with 

speciation without functional pleiotropy. In single-gene speciation in snails, intensity of 

reproductive isolation, r, should be an important parameter: interchiral mating is almost 

impossible in flat-shelled snails which perform two-way face-to-face copulation (high r), 

whereas tall-shelled snails can copulate by shell mounting (small r) (Asami et al. 1998). 

Therefore, even with the same population size and right-handed predation pressure, the 

frequently fixed allele dominance in snails can be changed (Fig. 6A): when 

right-handed predation is weak or absent and reproductive isolation is strong, frequently 

fixed allele should be recessive. On the other hand, frequently fixed allele can be 

dominant when right-handed predation is strong and reproductive isolation is weak.  

We have calculated fixation probabilities for various N, r, s and dominance of 

the mutant allele. Phylogenic information (Ueshima and Asami 2003, Hoso et al. 2010) 

can be used to infer those parameters because the number of left-right reversals in the 

phylogeny is influenced by fixation probabilities. Let PS be the duration that the snail 

phenotype stay sinistral, and PD be that for dextrality. The expected sojourn time in 

sinistral phenotype is PS = 1/(Nµ&D) where µ is the mutation rate of the speciation gene 

changing to the dextral allele and &D is the fixation probability of the mutant dextral 
allele. Assuming that the mutation is symmetrical and population size is constant, the 
ratio of those values is given by PS PD = Nµ!D( ) Nµ!S( ) = !D !S . If left-right 

reversals have occurred frequently, the ratio estimated from phylogeny data should 

approach the theoretical prediction. The extent of assortative mating, r, (Asami et al. 
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1998) and biased predation pressure by right-handed predators, s, (Hoso et al. 2007, 

Hoso et al. 2010) are known from experiments. Thus it would be possible to estimate 

the population size and allele dominance by statistical inference. However, in addition 

to somewhat arbitrary assumptions about constant population size, symmetrical 

mutation, and equilibrium states, reconstruction of ancestral states is generally 

challenging, especially when the trait evolves adaptively (Schluter et al. 1997, 

Cunningham 1999). Further, we did not consider gene flow between snails of opposite 

chirality (Davison et al. 2005) or internal selection against left-right reversal (Utsuno et 

al. 2011). Thus, we propose these estimations as a future research subject. 

In conclusion, delayed inheritance and functional pleiotropy of the speciation 

gene (e.g., right-handed predation on snails) can promote single-gene speciation, which 

supports the hypothesis about frequent left-right reversal of snails in habitats of 

specialist snakes (Hoso et al. 2010). Interestingly, population size and functional 

pleiotropy can change the effects of allele dominance and delayed inheritance on 

speciation. For example, Ueshima & Asami (2003) constructed a molecular phylogeny 

and speculated that the dextral allele seems to be dominant for Euhadra snails based on 

the result of van Batenburg and Gittenberger (1996), but caution is needed because 

reversal could occur by a de novo mutation and viability selection might be involved in 

speciation. Recent technological developments in molecular biology make it possible to 

investigate the dominance of alleles in ecologically important traits, and their ecological 

and evolutionary effects (e.g., Rosenblum et al. 2010). Although the challenge to search 

for a coiling gene (the speciation gene) of snail is still underway (e.g., Grande and Patel 

2009, Kuroda et al. 2009), our prediction that the recessive allele has a higher fixation 

probability in the absence of specialist predators and in the flat-shelled snails whereas 

the dominant allele can have a higher one in the presence of specialist predators and in 

the tall-shelled snails will be a testable hypothesis. This would be possible, for example, 

by analyzing the correlations between the presence of right-handed predators and 

sinistral allele dominance. 

 

3.6 Appendix 
3.6.1 Appendix S1: Invasion condition in the diploid model without delayed 

inheritance 
We denote the frequencies of the genotypes, AA, Aa, and aa by x, y, and z (= 1 – x – y). 
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The frequencies after mating are 

 

   

T!x = x2 + 1! (1! h)r"# $% xy + y2

4
,

T!y = 1! (1! h)r"# $% xy + 2(1! r)xz + y2

2
+ (1! hr)yz,

T!z = y2

4
+ (1! hr)yz + z2 ,

  (A1) 

where   T = 1! 2r (1! h)xy + xz + hyz"# $%  is the sum of the frequencies of three genotypes 
after mating (see Table 1 for the derivation). The frequencies in the next generation 
after viability selection favoring a mutant phenotype is 

 

   

!x = (1+ s) !x
(1+ s) !x + (1+ hs) !y + !z

,

!y = (1+ hs) !y
(1+ s) !x + (1+ hs) !y + !z

,

!z =
!z

(1+ s) !x + (1+ hs) !y + !z
.

     (A2) 

Here we assume that A is the mutant allele and a is the wild-type allele. When h = 1, the 

mutant allele is dominant; whereas, it is recessive when h = 0. We first consider the 

condition for the invasion of the completely or partially dominant mutant (  0 < h !1). 

We then examine the invasibility condition for the completely recessive mutant (  h = 0 ), 

in which we need to consult the center manifold theorem (Guckenheimer and Holmes 

1983). 

 

3.6.1.1 Invasibility of the completely and partially dominant mutant (  0 < h !1) 
We linearize the dynamics (A2) for small  x  and  y : 

 
  

!x
!y

"

#$
%

&'
= 0 0

2(1( r)(1+ hs) (1+ hs)(1( hr)
"

#$
%

&'
x
y

"

#$
%

&'
 (A3) 

The largest eigenvalue of the linearized system is   (1+ hs)(1! hr) . Thus the mutant can 

invade if and only if   (1+ hs)(1! hr) >1 . This condition can be rewritten as 

  s > r / (1! hr) . 

 

3.6.1.2 Invasibility of the completely recessive mutant (  h = 0 ) 
If the mutant allele is completely recessive (  h = 0 ), the linearized system is also given 
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by with   h = 0 : 

 !x
!y

"

#
$

%

&
' = A

x
y

"

#
$

%

&
' =

0 0
2(1( r) 1

"

#
$

%
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'

x
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"

#
$

%

&
' .  (A4) 

As the largest eigenvalue is 1, we need to have higher order terms of  x  and  y  to 
examine the local stability of   x = y = 0 . The Taylor expansion of (A2) up to the 
quadratic terms of  x  and  y  yields 

 
  

!x
!y

"

#
$

%

&
' =

0 0
2(1( r) 1

"

#
$

%

&
'

x
y

"

#
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%

&
' +

f (x, y)
g(x, y)

"

#
$$

%

&
''

,  (A5) 

with 

 

  

f (x, y) = (1+ s) x2 + (1! r)xy + y2

4
"

#
$

%

&
' ,

g(x, y) = !2(1! r)(1! 2r)x2 ! (2! 3r)xy ! y2

2
.

 (A6) 

The linear part of (A5) can be diagonalized by the transformation 

 
  

x
y

!
"#

$
%& = P u

v( ),  with 

  

P =
0 ! 1

2(1! r)
1 1

"

#

$
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%

&

'
''

, (A7) 

where the column vectors of  P  are the eigenvectors corresponding to the eigenvalues 

1 and 0 of matrix  A . This yields 

 

  

!u
!v

"
#$

%
&'
= 1 0

0 0
"
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%
&'

u
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%
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&
' ,

 (A8) 

with 

 

  

F(u,v) = ! 1
2

(r ! s+ rs)u2 ! r
2(1! r)

uv + (2! r)r(1+ s)
2(1! r)

v2 ,

G(u,v) = ! 1
2

(1! r)(1+ s)u2 ! (2! r)r(1+ s)
2(1! r)

v2.
 (A9) 

Define the center manifold   W
c = (u,v) | v = k(u), !k (0) = !!k (0) = 0{ }  on which the 

trajectory near   u = v = 0  stays throughout the process. The simplest form would be 
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  k(u) = au2 . In order that the point   ( !u , !v )  is also on the center manifold, we should 
have   !v = k( !u ) . Substituting   u ' = u + F(u,k(u))  and   !v = G(u,k(u))  into this yields 

   G(u,au2 )! a u + F(u,au2 )"# $%
2
= 0.  (A10) 

Equating the coefficient of the leading term to zero,  a  is determined as 

 
  
a = ! 1

2
(1! r)(1+ s) . (A11) 

The slow dynamic of  u  restricted on the center manifold is then 

 
  
!u = u + F(u,k(u)) = u " 1

2
(r " s+ rs)u2 , (A12) 

and hence  u  converges to zero if   r ! s+ rs > 0 , or the mutant can invade if 

  r ! s+ rs < 0  (or   (1! r)(1+ s) >1 ). This invasibility condition for the completely 

recessive mutant is equivalent to that for the completely dominant mutant, but, 

interestingly, differs from the condition  s > r  in the limit of   h! 0  for the 

invasibility condition of the partially dominant mutant. 

 

3.6.2 Appendix S2: Invasion condition in the diploid model with delayed 
inheritance 
In the presence of delayed inheritance, a phenotype of an individual is determined by a 

maternal genotype. We therefore need to keep track the frequencies of  2! 3 

combination of phenotype !  genotype to describe the genetic dynamics. Here we 

denote the two alleles as A (dominant allele) and a (recessive allele). An individual has 

either phenotype A or a (right-handed or left-handed, depending on which is dominant) 

that is determined by the genotype of its mother. We denote for example an individual 

with the genotype AA and the phenotype A by AAA.  

 As we assume that A is a dominant allele and a is a recessive allele in the 

diploid model with delayed inheritance, the genotype-phenotype combination AAa will 

never be produced (indeed, for an individual to have phenotype a, its mother should be 

homozygote of the recessive allele, aa). We denote the frequencies of AAA, AaA, Aaa, 
aaA, and aaa as   xA ,   yA ,   ya ,   zA , and   za .   xa ! 0  as noted above. The frequency of 

phenotype A is   xA + yA + zA  and that of phenotype a is   ya + za . Let  pi  (  = xi + yi / 2 ) 

be the frequency of allele A with phenotype  i  (= A or a), and  qi  (  zi + yi / 2 ) be the 

frequency of allele a with phenotype  i  (= A or a). The frequencies after mating are 
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calculated from Table S1 as 

 

   

T!xA = ( pA + pa )2 ! 2rpA pa ,

T!yA = ( pA + pa )(qA + qa )+ ( pA + pa )
yA + ya

2
! r( pAqa + paqA )! r

2
( pa yA + pA ya ),

T!ya = ( pA + pa )(zA + za )! r( pa zA + pAza ),

T!zA = (qA + qa )
yA + ya

2
! r

2
(qa yA + qA ya ),

T!za = (qA + qa )(zA + za )! r(qa zA + qAza ),

(B1) 

where   T = 1! 2r(xA + yA + zA )( ya + za ) . When there is no reproductive isolation (r = 0) 

or viability selection (s = 0), the ratio of two phenotypes for the heterozygous genotype, 

AaA : Aaa, is (1 + p) : (1 – p) and that for the homozygous genotype, aaA : aaa, is p : (1 – 

p) under delayed inheritance assuming the HW equilibrium. 

 

3.6.2.1 Invasibility of a dominant mutant 
The frequencies in the next generation are then given by those after the viability 

selection favoring a dominant handedness mutant (A) with the selection coefficient  s : 

 
   
xA
! =

(1+ s) !xA

W
, yA

! =
(1+ s) !yA

W
, ya
! =
!ya

W
, zA
! =

(1+ s) !zA

W
, za
! =
!za

W
,  (B2) 

where    W = 1+ s( !xA + !yA + !zA )  is the mean fitness of the population.  

 We now examine the invasibility of the dominant allele A in the resident 
population consisting only of the recessive allele a (i.e.,   za = 1  and 

  xA = yA = ya = z A = 0 ).  The system (B1)-(B2) is linearized with respect to   zA ,   yA , 

  ya , and   xA  as 

 

  

zA
!

ya
!

yA
!

xA
!

"

#

$
$
$
$
$
$

%

&

'
'
'
'
'
'

=

0 (1+ s) / 2 (1( r)(1+ s) / 2 0
0 1/ 2 (1( r) / 2 1( r

0 (1+ s) / 2 (1( r)(1+ s) / 2 (1( r)(1+ s)
0 0 0 0

"

#

$
$
$
$

%

&

'
'
'
'

zA

y a

yA

xA

"

#

$
$
$
$
$

%

&

'
'
'
'
'

,  (B3) 

where   za  is eliminated by using   za = 1! xA ! yA ! ya ! zA . The Jacobian matrix in the 

right hand side of (B3) has three zero eigenvalues and a non-trivial eigenvalue, 

 
  
! = 1

2
(2+ s" r " rs) . (B4) 
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The population allows the invasion of the dominant mutant if  ! >1 , which gives 
exactly the same condition   (1! r)(1+ s) >1  as that for the invasibility of dominant 

mutant if there was no delayed inheritance. Though the condition for the invasibility is 

the same, the value (B4) itself is smaller than the dominant eigenvalue, 

  !" = (1# r)(1+ s) , when there was no delayed inheritance, which corresponds to the fact 

that the delayed inheritance makes the invasion of a handedness mutant easier in a finite 

population. 

 

3.6.2.2 Invasibility of a recessive mutant 
Let us now consider the invasibility of a recessive handedness mutant that enjoys an 

ecological advantage in viability with the selection coefficient  s . The frequencies after 

reproduction are given by (B1), and the frequencies in the next generation are 

 
   
xA
! =
!xA

W
, yA

! =
!yA

W
, ya
! =

(1+ s) !ya

W
, zA
! =
!zA

W
, za
! =

(1+ s) !za

W
,  (B5) 

where    W = 1+ s( !ya + !za )  is the mean fitness. As before    !xa = 0 . The resident 

population consists only of dominant allele A (i.e.,   xA = 1  and   yA = ya = zA = za = 0 ). 

The system (B1), (B5) is linearized with respect to   za ,   zA ,   ya , and   yA  as 

 

  

za
!

zA
!

ya
!

yA
!

"

#

$
$
$
$
$
$

%

&

'
'
'
'
'
'

= A

za

zA

ya

yA

"

#

$
$
$
$
$

%

&

'
'
'
'
'

+

f1(za , zA , ya , yA )

f2(za , zA , ya , yA )

f3(za , zA , ya , yA )

f4(za , zA , ya , yA )

"

#

$
$
$
$
$

%

&

'
'
'
'
'

=

0 0 0 0
0 0 0 0

(1( r)(1+ s) 1+ s 0 0
1( r 1 1( r 1

"

#
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&
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+

f1(za , zA , ya , yA )
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f3(za , zA , ya , yA )

f4(za , zA , ya , yA )
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#
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&

'
'
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,

(B6) 

where  fi ’s are quadratic or higher order terms of   za ,   zA ,   ya , and   yA . The matrix 

 A  has eigenvalues  ! = 1  and  ! = 0  (with multiplicity 3). Because the dominant 

eigenvalue is 1, we need to construct a center manifold to examine the local stability of 

the equilibrium   (za , zA , ya , yA )T = (0,0,0,0)T , where superscript  T  denotes the vector 

transform. 
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 The eigenvector corresponding to the eigenvalue 1 is found, by solving 

   ( A!1I )b = 0 , to be    b1 = (1,0,0,0)T , where  I  is a  4! 4  identity matrix. There are 

two eigenvectors satisfying    ( A! 0I )b = Ab = 0  corresponding to the eigenvalue 0: 

 

   

b2 =

1
!(1! r)

0
0

"

#

$
$
$
$

%

&

'
'
'
'

, and 

   

b3 =

0
0
1

!(1! r)

"

#

$
$
$
$

%

&

'
'
'
'

. (B7) 

We now find a nonzero vector   b4 that, together with   b2  and   b3 , spans the 

3-dimensional generalized eigenspace corresponding to the eigenvalue 0. Such vector 

  b4  must satisfy    ( A! 0I )2b4 = A2b4 = 0  and be linearly independent of   b2  or   b3 , 

which is obtained as 

 

   

b4 =

1
0
0

!(1! r)(2+ s! r ! rs)

"

#

$
$
$
$

%

&

'
'
'
'

. (B8) 

Now we define the transformation matrix  P  whose columns consist of   b1 ,   b2 ,   b3 , 

and   b4 : 

 

  

P =

0 1 0 1
0 !(1! r) 0 0
0 0 1 0
1 0 !(1! r) !(1! r)(2+ s! r ! rs)

"

#

$
$
$
$

%

&

'
'
'
'

. (B9) 

We then transform the variables as 

 

  

za

zA

ya

yA

!

"

#
#
#
#
#

$

%

&
&
&
&
&

= P

u1

u2

u3

u4

!

"

#
#
#
#
#

$

%

&
&
&
&
&

. (B10) 

The dynamics for the transformed variables become 
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u1
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!

"
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1 0 0 0
0 0 0 0
0 0 0 (1( r)(1+ s)
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+

F1(u1,u2 ,u3,u4 )

F2(u1,u2 ,u3,u4 )

F3(u1,u2 ,u3,u4 )

F4(u1,u2 ,u3,u4 )

"

#

$
$
$
$
$

%

&

'
'
'
'
'

.

 (B11) 

Here,   Fi(u1,u2 ,u3,u4 )  is the  i th row of    P
!1f (x) = P!1f (Pu)  where 

   f = ( f1, f2 , f3, f4 )T ,    x = (za , zA , ya , yA )T , and    u = (u1,u2 ,u3,u4 )T .  We now define the 

center manifold 

   W
c = (u1,u2 ,u3,u4 ) | u2 = f (u1),u3 = g(u1),u4 = h(u1){ } , (B12) 

where  f ,  g , and  h  are functions with the following properties:   f (0)   = g(0)   = h(0)

 = 0  and   !f (0) = !g (0) = !h (0) = 0 . The simplest forms for such functions are 

  f (u) = au2 ,   g(u) = bu2 , and   h(u) = cu2  where  a ,  b , and  c  are constants.  

Substituting these into (B11), and requiring that the variables   u2
! ,   u3

! , and   u4
!  in the 

next generation must lie on the center manifold (   u2
! = f (u1

! ) ,   u3
! = g(u1

! ) , and 

  u4
! = h(u1

! ) ), we now have 

 

  

u1
! = u1 + F1(u1,au1

2 ,bu1
2 ,cu1

2 ),

a u1 + F1(u1,au1
2 ,bu1

2 ,cu1
2 )"# $%

2
= F2(u1,au1

2 ,bu1
2 ,cu1

2 ),

b u1 + F1(u1,au1
2 ,bu1

2 ,cu1
2 )"# $%

2
= (1& r)(1+ s)cu1

2 + F3(u1,au1
2 ,bu1

2 ,cu1
2 ),

c u1 + F1(u1,au1
2 ,bu1

2 ,cu1
2 )"# $%

2
= F4(u1,au1

2 ,bu1
2 ,cu1

2 ).

 (B13) 

The coefficients  a ,  b , and  c  are determined from the leading order terms of the 

second to the forth equations of (B13) as 
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a = ! 1

4(1! r)
, b = 1+ s

4
, c = 1

4(1! r)
. (B14) 

Substituting this into the first equation of (B13), we have a slow dynamics on the center 

manifold: 

 
  
u1
! = u1 +

1
4

(s" r " rs)u1
2 +O u1

3( ) . (B15) 

Thus,   u1  converges to zero if and only if   s(1! r)! r < 0  or   s < r / (1! r) . Conversely, 
the recessive mutant can invade the population if   s > r / (1! r) . This condition is the 

same as the condition   (2+ s! r ! rs) / 2 >1  or   (1! r)(1+ s) >1  for the invasibility of 

the dominant mutant.  

 The center manifold   u2 = !u1
2 / 4(1! r)[ ] ,   u3 = (1+ s)u1

2 / 4 , and 

  u4 = u1
2 / 4(1! r)[ ]  in the original coordinate is defined in a parametric form with a 

parameter   ! = u1  as 

 

  

za = O ! 3( ),
zA = 1

4
! 2 +O ! 3( ),

ya =
1+ s

4
! 2 +O ! 3( ),

yA = ! " 3+ 2s" 2r " 2rs
4

! 2 +O ! 3( ).

 (B16) 

 

3.6.3 Appendix S3: Diffusion approximation analysis of the diploid model without 
delayed inheritance 
We here derive the approximate one-dimensional diffusion process describing the allele 

frequency dynamics in a finite population of effective population size N without 

delayed inheritance. The discrete-generation genotype dynamics in infinite population 

are derived as (A1)-(A2) of Appendix S1. As is usual in diffusion approximation, we 

take the limit of weak fecundity and viability selections, r! 0 , s! 0 , and large 

population N!"  with the products Nr and Ns being kept finite. 

 Assuming that both s and r are of the order of ", a small positive constant, we 

expand the dynamics (A1)-(A2) in Taylor series with respect to ". The leading order 
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dynamics for the zygote frequencies x, y, and z of genotypes AA, Aa, and aa are then 

 
!x = p2 +O "( ),
!y = 2pq +O "( ),
!z = q2 +O "( ),

      (C1) 

where   p = x + y / 2  and   q = z + y / 2  respectively is the frequency of allele A and a. 

Thus, in the leading order, genotype frequencies are in the Hardy-Weinberg equilibrium. 
From this it also follows that the allele frequencies do not change with time,  !p = p  

and  !q = q , up to the leading order. 

 Now we derive the slow allele frequency dynamics as the first order 

expansion of the equations (A1) and (A2). The change in the allele frequency p of the 

mutant allele A is then 

 !p = p(1" p) r p(2p2 "1)" h(6p2 " 6p +1)#$ %& + s p + h(1" 2p)[ ]{ }+O(' 2 ). (C2) 

Note that s in (C2) is the selection coefficient favoring the phenotype A. From (C2) we 

have the frequency dynamics: 

 
 
!p = p(1! p) r p(2p2 !1)! h(6p2 ! 6p +1)"# $% + s p + h(1! 2p)[ ]{ }.  (C3) 

The dynamics has two stable equilibria at p = 0 and p = 1, and an internal unstable 

equilibrium when r > s.  

With random genetic drift, the diffusion process for the change in the allele 

frequency is characterized by infinitesimal mean and variance of the frequency change: 

 
M (p) = E !p p"# $% = p(1& p) r p(2p2 &1)& h(6p2 & 6p +1)"# $% + s p + h(1& 2p)[ ]{ },
V (p) = E !p( )2 p"# $% =

p(1& p)
2N

.
(C4) 

The fixation probability of the allele A with the initial frequency p then 

satisfies the backward equation (12) with the boundary condition u(0) = 0 and u(1) = 1. 
This yields equation (13). The fixation probability of a single mutant   != u(1 / 2N )  is 

then 

 ! = 1 (2N )

exp 4Nry(1" y) y
2
(1+ y)" h(2y "1)#

$%
&
'(
" 4Nsy y

2
+ h(1" y)#

$%
&
'(

)
*
+

,
-
.
dy

0

1

/
,  (C5) 

The relative fixation rate of a single mutant relative to that of a neutral mutant is given 
by ! = 2N" : 
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 ! = 1

exp Ry(1" y) y
2
(1+ y)" h(2y "1)#

$%
&
'(
" Sy y

2
+ h(1" y)#

$%
&
'(

)
*
+

,
-
.
dy

0

1

/
,  (C6) 

where   R = 4Nr  and   S = 4Ns . Here we consider three cases: (i) h = 0 (the recessive 

mutant), (ii) h = 1 (the dominant mutant), (iii) h = 0.5 (the partially dominant mutant). 

 

3.6.3.1 h = 0 (the recessive mutant) 
After factorization, the deterministic dynamics is 

  !p = p2 (1! p) r(2p2 !1)+ s"# $%,  (C7) 

when h = 0. This can be written as 

 
 
!p = 2rp2 (1! p) p ! r ! s

2r
"

#$
%

&'
p + r ! s

2r
"

#$
%

&'
,   

when r > 0 and r > s. Thus the dynamics has an internal unstable equilibrium at 
pc = (r ! s) 2r  when r > s. When s = 0, therefore, the dynamics has two stable 

equilibria at p = 0 and p = 1, and an internal unstable equilibrium at pc = 1 2  (the 

dotted blue line in Fig. 3). 

The relative fixation rate is 

 !0 =
1

exp y2

2
R(1" y2 )" S#$ %&

'
(
)

*
+
,
dy

0

1

-
.  (C8) 

When s = 0, for the relative fixation rate, !0 = 1/ exp Ry2

2
(1" y2 )#

$
%

&

'
(dy0

1

) ,  we can show 

the following properties. Firstly, at the limit of  R! 0  the fixation probability is equal 

to that of a neutral allele: 

 !0 R=0 = 1.  (C9) 

Secondly we see that 1 !0  is convex with respect to R because 

 !2

!R2
1
"0

#
$%

&
'(
= 1
4

y2 ) y4( )2 exp R
2
y2 ) y4( )*

+,
-
./
dy

0

1

0 > 0.  (C10) 

Thirdly we see that the sign of the initial slope of  1/!0  from  

 !
!R

1
"0

#
$%

&
'(
R=0

= 1
15
.  (C11) 
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Because the right-hand side of equation (C11) is positive, !0  is smaller than 1 for any 

R > 0. The fixation probability of a dominant mutant allele is always smaller than that, 

1/(2N), of a neutral allele (i.e. the native recessive allele is the finite population size 

ESS, ESSN, in the sense of Nowak et al. (2004) (Nowak et al. 2004)). In addition, this 

value is smaller than the haploid model (1/12), implying that the reduction rate of 

fixation probability is more moderate in the diploid model. 

 

3.6.3.2 h = 1 (the dominant mutant) 
The frequency dynamics of dominant mutant is obtained from equation (C3): 

 
 
!p = p 1! p( )2 !r 2p2 ! 4 p +1( ) + s"# $%.  (C12) 

This can be written as 

 
 
!p = 2rp 1! p( )2 p ! 1! r + s

2r
"

#$
%

&'
(

)
*
*

+

,
-
-
1+ r + s

2r
"

#$
%

&'
! p

(

)
*
*

+

,
-
-
.  

If r > s, this has an internal unstable equilibrium at pc = 1! r + s( ) / 2r . When s = 0, 

the dynamics has an internal unstable equilibrium at pc = 1!1 2  (the dotted red line 
in Fig. 3). 

Therefore the relative fixation rate of a recessive mutant to that of a neutral 
allele !1 = 2N"1  then satisfies 

 !1 =
1

exp y
2
2 " y( ) R 1" y( )2 " S#$ %&{ }dy0

1

'
.  (C13) 

If   s = 0 , we can show that the function  (1/!1)  is convex with respect to R, !1 R=0 = 1,  

and !(1 /"1) / !R( )
R=0

 = 1/15.  Actually, !1  and !0  are equivalent (!0 = !1 ) when s = 

0, though it is different when s > 0. This is obvious from equations (C8) and (C13); if 

we represent the frequency of the recessive allele as p and that of the dominant allele as 

q, then  

 
p2 1! p2( ) = 1! q( )2 1! 1! q( )2"# $%

= q 2 ! q( ) 1! q( )2 .
    (C14) 
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3.6.3.3 h = 0.5 (the partially dominant mutant) 

The frequency dynamics of mutant with partial dominance is obtained from equation 

(C3): 

 
 
!p = 1

2
p 1! p( ) r 2p !1( ) 2p2 ! 2p +1( ) + s"# $%.  (C15) 

This has an internal unstable equilibrium at 
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1
2
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when r > s. Equation (C15) has an internal unstable equilibrium at pc = 1/2 when s = 0 

(the dotted lime-green line in Fig. S1). The relative fixation rate is 

 !2 =
1

exp y
2
R(1" 2y + 2y2 " y3)" S#$ %&{ }dy0

1

'
. (C16) 

If   s = 0 , we can show that the function (1 !2 ) is convex with respect to R, !2 R=0 = 1 , 

and !(1 /"2 ) / !R( )
R=0

= 1/15. 

These analytical expressions for the relative fixation rates !0 , !1  and !2  

obtained from one-dimensional diffusion approximation showed good agreements with 
the simulation results when N = 1,000 (Fig. 4H). When s = 0, we found that !0  and !1  

are equivalent as shown in equation (C14) (Fig. 4H) and that !2  is higher than !0  and 

!1  when R is not small, implying that partial dominance can promote fixation of the 

mutant allele in the diploid model with three phenotypes (Figs. 4H, S2C).  

 

3.6.4 Appendix S4: Diffusion approximation analysis of the diploid model with 
delayed inheritance 

We here derive the approximate one-dimensional diffusion process describing the allele 

frequency dynamics of snail handedness alleles in a finite population of effective 

population size  N  with delayed inheritance. The discrete-generation 

genotype-phenotype dynamics in infinite population are derived as (B1) and (B2) or 

(B1) and (B5) of Appendix S2. As is usual in diffusion approximation, we take the limit 

of weak fecundity and viability selections,   r ! 0 ,   s! 0 , and large population 

 N !"  with the products  Nr  and  Ns  being kept finite.  
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 Assuming that both  s  and  r  are of the order of ! , a small positive 

constant, we expand the dynamics (B1) and (B2)/(B5) in Taylor series with respect to 
! . The leading order dynamics for the zygote frequencies   x = xA + xa ,   y = yA + ya , 

  z = zA + za  of genotypes AA, Aa, and aa are then 

 

  

!x = p2 +O(" ),
!y = 2 pq +O(" ),
!z = q2 +O(" ),

 (D1) 

where   p = x + y / 2  and   q = z + y / 2  respectively is the frequency of allele A and a. 

Thus, in the leading order, genotype frequencies are in the Hardy-Weinberg equilibrium. 
From this it also follows that the allele frequencies do not change with time,  !p = p  

and  !q = q , up to the leading order. The frequencies of phenotype-genotype 

combinations are thus kept constant for a given allele frequency  p  (or  q ) up to the 

leading order: 

 

  

xA = p2 +O(! ),
xa = 0,
yA = pq(1+ p)+O(! ),

ya = pq2 +O(! ),

zA = pq2 +O(! ),

za = q3 +O(! ).

 (D2) 

 Now we derive the slow allele frequency dynamics as the first order 
expansion of the equations (B1) and (B2)/(B5). The change in the allele frequency  p  

of the dominant allele A is then 

 
  
!p = 1

2
p(1" p)2 "r(2 p2 " 4 p +1)" s#$ %& +O(' 2 ) . (D3) 

For the frequency  q  of the recessive allele, we have 

 
  
!q = 1

2
q2(1" q) r(2q2 "1)+ s#$ %& +O(' 2 ) . (D4) 

Note that  s  in (D3) and (D4) is the selection coefficient favoring phenotype a. If 

phenotype A is selected for, the sign must be changed before  s  in the right hand side 

of (D3) and (D4).  
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3.6.4.1 The dominant mutant alleles 

If the dominant mutant is selected for in the viability selection, we change the sign 

before  s  in the right hand side of (D3) to have the deterministic dynamics, 

 
 
!p = 1

2
p(1! p)2 !r(2p2 ! 4 p +1)+ s"# $%.  (D5) 

This rate of change in the allele frequency of dominant allele is exactly a half of that for 

the diploid model without delayed inheritance with h = 1 (eq. C12). In other words, the 

delayed inheritance does not change allele frequency dynamics at all except for its 

halved rate. Therefore, the position of internal unstable equilibrium, pc = 1!1/ 2 , is 
the same as in the model without delayed inheritance (the solid red line in Fig. 3). 

The relative fixation rate of a dominant mutant to that of a neutral allele 
!A = 2N"A  then satisfies 

 !A =
1

exp y
4
(2 " y) R(1" y)2 " S#$ %&{ }dy0

1

'
. (D6) 

 

3.6.4.2 The recessive mutant allele 

If the recessive allele is selected for in the viability selection, we have from (D4) the 

deterministic dynamics, 

 
 
!q = 1

2
q2 (1! q) r(2q2 !1)+ s"# $%.  (D7) 

Again, the right hand side is exactly a half of that for the diploid model without delayed 

inheritance with h = 0 (eq. C7). Thus, two stable equilibria at q = 0 and q = 1, and an 

internal unstable equilibrium at   qc = 1/ 2  are exactly the same as in the model 

without delayed inheritance (the solid blue line in Fig. 3). The relative fixation rate of a 
recessive mutant to that of a neutral allele !a = 2N"a  then satisfies 

 !a =
1

exp z2

4
R(1" z2 )" S#$ %&

'
(
)

*
+
,
dz

0

1

-
.  (D8) 

Note that !A  and !a  are equivalent when s = 0, which can be shown by changing the 

variables in the integral in (D8) from  z  to   y = 1! z . When s = 0, the initial slope of 
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1/!A  and 1/!a  is !(1 /"A ) / !R( )
R=0

 = 1/ 30.  This value is smaller than the haploid 

model (1/12) and the diploid model without delayed inheritance (1/15), implying that 

the reduction rate of fixation probability is more moderate in the diploid model with 

delayed inheritance. 

The analytical formula for the relative fixation probabilities, (D6) and (D8), 

by one dimensional diffusion approximation showed good agreements with the Monte 

Carlo simulation results for the original 4 dimensional genotype-phenotype dynamics 

for sufficiently large  N  (N = 1,000, Fig. 4I). 

 

3.6.5 Appendix S5: Exact fixation probabilities in the haploid model 
We calculated exact fixation probabilities in the Markov process without any 

approximation by the first step analysis. Consider a finite population with N haploid 

individuals. Recursion equations of fixation probabilities can be written as 

 u(i) = Pi, ju( j)
j=0

N

! ,  (E1) 

where u(i) is the probability that a mutant allele starting with i individuals in the initial 

population eventually goes to fixation, and Pi,j is the transition probability that the 

number of mutant allele change from i to j in one generation (0 # i, j # N). Note that u 

here is a function of number of individuals, but u in Appendix S3 and S4 is a function 

of frequencies. With the boundary conditions u(0) = 0 and u(N) = 1, the fixation 

probability can be obtained by solving linear equations with N – 1 unknown variables. 

This can be written in a matrix form: 

 Au = b,  (E2) 

where 

 

 

A =

P1,1 !1 P1,2 ! P1, N!1( )

P2,1 P2,2 !1 ! P2, N!1( )

" " # "
PN!1( ),1 PN!1( ),2 ! PN!1( ), N!1( ) !1

"

#

$
$
$
$
$

%

&

'
'
'
'
'

,  
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u =

u(1)
u(2)
!

u(N !1)

"

#

$
$
$
$

%

&

'
'
'
'

,

b =

!P1,N
!P2,N
!

!P(N!1),N

"

#

$
$
$
$
$

%

&

'
'
'
'
'

.

 

The solution can be obtained by multiplying the inverse of matrix  A  in the both sides 

of (E1): u = A!1b . The transition probability Pi,j is given by the binomial distribution 

when there is no selection (r = s = 0): 

 Pi, j =
N
j

!

"
#

$

%
& p

j (1' p)N' j ,  (E3) 

where p = i/N. When there is positive frequency-dependent selection due to 

reproductive isolation (r > 0 and s = 0), the expected frequency in the next generation in 

equation (E3), p, is replaced by equation (1): 

 Pi, j =
N
j

!

"
#

$

%
&

p 1' r(1' p)[ ]
1' 2rp(1' p)

!
"#

$
%&

j

1' p 1' r(1' p)[ ]
1' 2rp(1' p)

!
"#

$
%&

N' j

. (E4) 

When there is viability selection for the mutant (r > 0 and s > 0), equation (E3) is 

replaced by 

 
 
Pi, j =

N
j

!

"
#

$

%
&
(1+ s) !p
1+ s!p

!
"#

$
%&

j

1' (1+ s)
!p

1+ s!p
!
"#

$
%&

N' j

,  (E5) 

where  !p  is from equation (1). The graphs of u(1) are in good agreement with the 

simulation results when N = 3 (Fig. 4A). 

One drawback of this method is that calculating the inverse matrix of the 

transition probability matrix,  A , is time-consuming or almost impossible when N is 

large. In the diploid models, the dimension is two without delayed inheritance and four 

with delayed inheritance. Due to the ‘curse of dimensionality,’ therefore, calculation is 

especially difficult in the diploid models. For sufficiently small population size, 

however, this method is practical and gives accurate results for very small  N  when 

diffusion approximation fails. 
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3.6.6 Appendix S6: Exact fixation probabilities in the diploid model without 

delayed inheritance 
Consider a finite population with diploid N individuals. The fixation probability can be 

calculated as 

 u(i, j) = Pij ,klu(k,l)
l=0

N

!
k=0

N

! ,  (F1) 

where u(i, j) is the fixation probability when there are i individuals of AA homozygote 

and j individuals of aa homozygote (we call this as state (i, j) hereafter) and Pij,kl is the 

transition probability from state (i, j) to state (k, l) in one generation (0 # i, j, k, l # N). 

Note that the number of heterozygous individuals Aa is (N – i – j) or (N – k – l). With 

the boundary conditions u(0, N) = 0 and u(N, 0) = 1 where the mutant allele is A and the 

wild-type allele is a, the fixation probability of a mutant allele, u(0, N – 1), can be 
obtained by solving linear equations for   (N +1)(N + 2) / 2! 2  unknowns   u(i, j)  for 

   i = 0,1,!, N !1,     j = 0,1,!, N !1 , with  i + j ! N . This can be rewritten in a matrix 

form Au = b : 

 

 

P00,00 !1 P00,01 ! P00, N!1( )1

P01,00 P01,01 !1 ! P01, N!1( )1

" " # "
PN!1( )1,00 PN!1( )1,01 ! PN!1( )1, N!1( )1 !1

"

#

$
$
$
$
$

%

&

'
'
'
'
'

u(0,0)
u(0,1)
"

u(N !1,1)

"

#

$
$
$
$

%

&

'
'
'
'

=

!P00,N 0
!P01,N 0
"

!PN!1( )1,N 0

"

#

$
$
$
$
$

%

&

'
'
'
'
'

.  

The solution is obtained by multiplying the inverse of matrix  A  in the both sides: 

u = A!1b . The transition probability is given by the multinomial distribution, 

 Pij ,kl =
N!

k!(N ! k ! l)!l!
x + y

2
"
#$

%
&'
2(

)
*

+

,
-

k

2 x + y
2

"
#$

%
&'

y
2
+ z"

#$
%
&'

(
)*

+
,-

N!k!l y
2
+ z"

#$
%
&'
2(

)
*

+

,
-

l

,  (F2) 

where x = i/N, y = 1 – (i + j)/N, and z = j/N. When there is positive frequency-dependent 

selection due to reproductive isolation or viability selection for the mutant in addition to 

reproductive isolation, the expected frequencies of genotypes in the next generation in 

equation (F2) is replaced by equation (A1) or (A2). 

 

3.6.7 Appendix S7: Exact fixation probabilities in the diploid model with delayed 
inheritance 
Consider a finite population with diploid N individuals. The fixation probability can be 
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calculated as 

 u(a,b,c,d) = Pabcd ,ijklu(i, j,k,l)
l=0

N

!
k=0

N

!
j=0

N

!
i=0

N

! ,  (G1) 

where u(a, b, c, d) is the fixation probability when there are a individuals of AAA, b 

individuals of AaA, c individuals of Aaa, and d individuals of aaA (we call this as state (a, 

b, c, d) hereafter) and Pabcd,ijkl is the transition probability from state (a, b, c, d) to state 

(i, j, k, l) in one generation (0 # a, b, c, d, i, j, k, l # N). Note that the number of aaa 

individuals is (N – a – b – c – d) or (N – i – j – k – l). The frequencies of AAA, AaA, Aaa, 

and aaA are xA (= a/N), yA (= b/N), ya (= c/N), zA (= d/N). With the boundary conditions 

u(0, 0, 0, 0) = u(0, 0, 0, 1) = … = u(0, 0, 0, N) = 0 and u(N, 0, 0, 0) = 1 where the 

dominant mutant allele is A and the recessive wild-type allele is a, the fixation 

probability of a mutant allele, u(0, 0, 1, 0), can be obtained by solving linear equations 
for   u(i, j,k,l)  with    i, j,k,l = 0,1,!, N  and  i + j + k + l ! N . This can be rewritten in 

a matrix form Au = b : 

 

 

P1000,1000 !1 P1000,2000 ! P1000,00N 0
P2000,1000 P2000,2000 !1 ! P2000,00N 0
" " # "

P00N 0,1000 P00N 0,2000 ! P00N 0,00N 0 !1

"

#

$
$
$
$
$

%

&

'
'
'
'
'

u(1,0,0,0)
u(2,0,0,0)
"

u(0,0,N ,0)

"

#

$
$
$
$

%

&

'
'
'
'

=

!P1000,N 000
!P2000,N 000
"

!P00N 0,N 000

"

#

$
$
$
$
$

%

&

'
'
'
'
'

.  

The solution is obtained as: u = A!1b . The transition probability is given by the 

multinomial distribution, 

 Pabcd ,ijkl =
N!

i! j!k!l! N ! i ! j ! k ! l( )!xA
i yA

j ya
k zA

l 1! xA ! yA ! ya ! zA( )N!i! j!k!l , (G2) 

where 

 
xA =

a
N

+ b + c
2N

!
"#

$
%&
2

, yA =
a
N

+ b + c
2N

!
"#

$
%& 1' a

N
!
"#

$
%& , ya =

a
N

+ b + c
2N

!
"#

$
%&
d + e
N

,

zA =
b + c
2N

b + c
2N

+ d + e
N

!
"#

$
%& .

 

The expected frequencies in the next generation in equation (G2) are replaced by 

equations (B1)-(B2) when there is positive frequency-dependent selection due to 

reproductive isolation and viability selection for the mutant. 

 When the recessive mutant allele is a and the wild-type allele is A, we solved 

the equation, 
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P1000,1000 !1 P1000,2000 ! P1000,00N 0
P2000,1000 P2000,2000 !1 ! P2000,00N 0
" " # "

P00N 0,1000 P00N 0,2000 ! P00N 0,00N 0 !1

"

#

$
$
$
$
$

%

&

'
'
'
'
'

u(1,0,0,0)
u(2,0,0,0)
"

u(0,0,N ,0)

"

#

$
$
$
$

%

&

'
'
'
'

=

!P1000,0000
!P2000,0000
"

!P00N 0,0000

"

#

$
$
$
$
$

%

&

'
'
'
'
'

,  

to obtain the fixation probability of a single mutant, u(N – 1, 1, 0, 0), with the boundary 

conditions: u(N, 0, 0, 0) = 0 and u(0, 0, 0, 0) = u(0, 0, 0, 1) = … = u(0, 0, 0, N) = 1. The 

expected frequencies in the next generation in equation (G2) are replaced by equations 

(B1) and (B5) when there is positive frequency-dependent selection due to reproductive 

isolation and viability selection for the mutant. 

 

3.6.8 Appendix S8: The partial dominance model with two phenotypes 

Thus far we considered the model in which h is a parameter that determines the 

intermediate phenotype of heterozygote (Appendix S1, S3). Here we consider the case 

where there are only two phenotypes (A and a) and the heterozygous phenotype is A 

with probability h and a with probability 1 – h. In this case, the mating probability 

between heterozygote (Aa $ Aa) is 

 h2 + (1! h)2 + 2h(1! h)(1! r)"# $% y
2 = 1! 2h(1! h)r[ ]y2.   (H1) 

Therefore the frequencies after mating are 

 

 

T!x = x2 + 1! (1! h)r[ ]xy + 1
4
1! 2h(1! h)r[ ]y2,

T!y = 1! (1! h)r[ ]xy + 2(1! r)xz + 1
2
1! 2h(1! h)r[ ]y2 + (1! hr)yz,

T!z = 1
4
1! 2h(1! h)r[ ]y2 + (1! hr)yz + z2,

 (H2) 

where T = 1! 2r(x + hy) (1! h)y + z[ ] . This is the same as (A1) when h = 0 or 1. By 

linearizing the dynamics (H2) after viability selection (A2) for small x and y, we have 

the same result as equation (3) in Appendix S1. The largest eigenvalue of the linearized 

system is (1 + hs)(1 – hr), and the mutant can invade if and only if (1 + hs)(1 – hr) > 1. 

This condition (s > r/(1 – hr)) is the same as the original diploid model (Appendix S1).  

 For diffusion approximation analysis, we take the limit of weak fecundity and 

viability selections, r! 0 , s! 0 , and large population N!"  with the products 

Nr and Ns being kept finite (Appendix S3). Assuming that both s and r are the order of 

e, a small positive constant, the change in the allele frequency p of the mutant allele A is 
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 !p = p(1" p) " p + h(2p "1)[ ] r 1" 2p2 " 4hp(1" p)#$ %& " s{ }+O(' 2 ).  (H3) 

Note that s in (H3) is the selection coefficient favoring the phenotype A. From (H3) we 

have the frequency dynamics: 

 
 
!p = p(1! p) ! p + h(2p !1)[ ] r 1! 2p2 ! 4hp(1! p)"# $% ! s{ }.   (H4) 

When h = 1/2, this is a half of the haploid model (equation 8). The dynamics has two 

stable equilibria at p = 0 and p = 1, and an internal unstable equilibrium at 

pc =
h

2h !1
! (2h2 ! 2h +1)r + (2h !1)s

2r (2h !1)
 when r > s. The relative fixation rate of a 

single mutant relative to that of a neutral mutant is given by ! = 2N" : 

 ! = 1

exp y
2
y + 2h(1" y)[ ] R(1" y)(1" 2hy + y)" S[ ]{ }dy0

1

#
.  (H5) 

where R = 4Nr and S = 4Ns. As shown in Figure S3, the lowest fixation probability is 

obtained when h = 1/2. When h = 1/2, the fixation probability is exactly the same as the 

haploid model (Figs. 4G, 4H).  

 Exact fixation probabilities without approximation in small populations are 

also calculated as Appendix S6. Results are shown in Fig. 4B (the dotted dark-green 

line). 



 106 

Table 3.S1: The diploid model with delayed inheritance (when A is a dominant allele) 

Mating comb. Mating probability AAA AaA Aaa aaA aaa 

AAA$AAA xA
2 1 0 0 0 0 

AAA$AaA 2xAyA 1/2 1/2 0 0 0 

AAA$Aaa 2(1 – r)xAya 1/2 1/2 0 0 0 

AAA$aaA 2xAzA 0 1/2 1/2 0 0 

AAA$aaa 2(1 – r)xAza 0 1/2 1/2 0 0 

AaA$AaA yA
2 1/4 1/2 0 1/4 0 

AaA$Aaa 2(1 – r)yAya 1/4 1/2 0 1/4 0 

AaA$aaA 2yAzA 0 1/4 1/4 1/4 1/4 

AaA$aaa 2(1 – r)yAza 0 1/4 1/4 1/4 1/4 

Aaa$Aaa ya
2 1/4 1/2 0 1/4 0 

Aaa$aaA 2(1 – r)yazA 0 1/4 1/4 1/4 1/4 

Aaa$aaa 2yaza 0 1/4 1/4 1/4 1/4 

aaA$aaA zA
2 0 0 0 0 1 

aaA$aaa 2(1 – r)zAza 0 0 0 0 1 

aaa$aaa za
2 0 0 0 0 1 
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3.6.9 Supplemental Figures 

 
Figure 3.S1: Allele frequency dynamics affected by positive frequency-dependent 

selection due to reproductive isolation (indicated by white arrows). X-axis: the mutant 
allele frequency (p). Y-axis: scaled derivatives of the mutant allele ( !p /r). The haploid 

model (the solid gray line, eq. 8 when s = 0), the partial dominance model with two 

phenotypes (the dotted dark-green line, eq. H5 when s = 0 and h = 1/2), and the partial 

dominance model with three phenotypes (the dotted lime-green line, eq. 10 when s = 0 

and h = 1/2). An unstable equilibrium at p = 1/2 (the white point) divides two basins of 

attraction. Stable equilibria are at p = 0 and 1 (the black points).  
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Figure 3.S2: Relative fixation probabilities of a single mutant with reproductive 

isolation (and without viability selection: s = 0) to that of a neutral mutant. A, B: X-axis 

is the reproductive isolation parameter (r). C: X-axis is four times the product of the 

reproductive isolation parameter and the effective population size (4Nr). Y-axis is the 

product of fixation probability and effective population size (2N!). A: N = 3 (the first 

step analysis and Monte Carlo simulations), C: N = 10 (Monte Carlo simulations), C: N 

→ ∞ (diffusion approximation) and N = 1000 (Monte Carlo simulations). Dotted 

dark-green lines: the partial dominance model with two phenotypes. Dotted lime-green 

lines: the partial dominance model with three phenotypes. 
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Figure 3.S3: Effects of partial dominance in the diploid model without delayed 

inheritance in large populations. Blue points: the recessive mutant (h = 0). Red points: 

the dominant mutant (h = 1). Dotted dark-green lines: the partial dominance model with 

two phenotypes. Dotted lime-green lines: the partial dominance model with three 

phenotypes. When R (= 4Nr) = 0, the fixation probability is 1 regardless of h values.  
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Figure 3.S4: A: The bifurcation plot along the degree of dominance parameter (h). 

Y-axis is the frequency of the mutant homozygote (x). Red points: stable equilibria. 

Blue points: unstable equilibria. The equilibrium with the mutant allele (x = 1) is always 

stable. B: Simulation results of deterministic recursion equations (3)-(4). Red points: 

basin of attraction toward a stable equilibrium of the mutant allele. Blue points: basin of 

attraction toward a stable equilibrium of the resident allele. Green points: basin of 

attraction toward a stable equilibrium of both the mutant and resident alleles. The 

coexistence equilibria are shown as black points. The parameter condition is r = 0.7 and 

s = 1.5.  
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Figure 3.S5: The alleles with the highest fixation probabilities in the diploid model 

without delayed inheritance given certain strength of reproductive isolation and viability 

selection. A: N = 3 (the first step analysis), B: N → ∞ (diffusion approximation).  
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Chapter 4. Concluding Remarks and Perspectives 
 

Essentially, all models are wrong, but some are useful. (Box and Draper 1987) 

 

4.1 Concluding remarks 
Contrary to traditional ecology, recent studies are newly introducing evolutionary 

dynamics as an additional variable to explain ecological dynamics. Experimental and 

theoretical studies have shown that evolution affect ecological dynamics, so predictive 

power would increase in future ecological studies. What we need next is to evaluate 

statistically the effect size of evolution on ecological dynamics (Hairston et al. 2005). 

Before that, we need to be cautious because sometimes evolution and 

plasticity are confounding. In addition, plasticity itself (i.e., reaction norm) can evolve 

rapidly. Recent papers have indicated the importance of phenotypic plasticity in 

eco-evolutionary studies (Cortez 2011, Ellner et al. 2011, Yamamichi et al. 2011). I 

theoretically found that: (1) plasticity can stabilize population dynamics. (2) A plastic 

genotype has higher fitness in fluctuating environments than stable environments. 

Combining these aspects of plasticity, eco-evolutionary dynamics of phenotypic 

plasticity cause intermittent cycles. I proposed to call this as ‘eco-evolutionary bursting’ 

from neurobiology. 

Single-gene speciation has been an enigma in evolutionary biology, but this 

can be resolved by adding a perspective from eco-evolutionary feedbacks (Hoso et al. 

2010). I revealed that pleiotropy of the speciation gene for anti-predatory defense can 

promote single-gene speciation. Further studies will be needed to investigate number of 

genes and conditions required for ecological and non-ecological speciation. 

Through several studies on eco-evolutionary dynamics in predator-prey 

systems, I can contribute to new understanding of the interplay between ecology and 

evolution. Combining the two studies, I describe unifying picture of this thesis in figure 

1. At first, environments are temporally or spatially varying and organisms evolve to 

adapt the changing environments (e.g., predation pressure). This selection pressure can 

promote specialization or generalization. The outcome depends on selection pressure 

and trade-off: When environmental change is intense, one form of generalization, 

phenotypic plasticity, can evolve (chapter 2). When predation pressure varies spatially 

and adaptation occurs pleiotropically with evolution of reproductive isolation, it results 
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Figure 4.1: Unifying picture of this thesis. Temporally or spatially varying 

environments (e.g., predation pressure) cause adaptive evolution of specialization (e.g., 

speciation) or generalization (e.g., phenotypic plasticity), depending on environmental 

conditions and trade-off (white arrows). Adaptive evolution then gives feedback to 

environments (gray arrows). 

 

in speciation (chapter 3). Generally, specialization is more probable when environments 

are stable whereas generalization is pervasive in unstable environments. Adaptive 

evolution in turn affects environments and selection pressure (gray arrows in fig. 1). In 

case of plasticity, evolution of plasticity can stabilize temporal oscillations (negative 

feedback). Then this causes specialization of prey, destabilization of predator-prey 

cycles, and again, generalization of prey (eco-evolutionary bursting). In case of 

ecological speciation via pleiotropy, consequence of speciation is not fully investigated: 

it may cause evolution of ‘left-handed’ predator, inter-patch movement of predators, or 

even local extinction of predators. These phenomena will change selection pressure and 

eco-evolutionary feedbacks will be realized. 

Although I concentrated on actual organisms (plankton and snails) to examine 

my theory empirically in future, further studies are still needed to fully understand the 

eco-evolutionary feedbacks shown in figure 1. With a general theory to specify the 

condition of specialization and generalization, more sophisticated statistical methods 

will be essential to connect current theoretical modeling and empirical data. 

Temporally or spatially
varying environments

Adaptation to 
changing environments

Specialization Generalization
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4.2 Perspectives 
4.2.1 Space and time 
Here I did not consider spatial scale of community. Metacommunity are increasingly 

recognized as an important topic in community ecology (Holyoak et al. 2005) as 

migration between local communities can change community dynamics significantly. 

Eco-evolutionary dynamics can potentially alter metacommunity dynamics. Highly 

complex studies about evolving metacommunity are still rare, but the topic will attract 

research focus near future (Urban et al. 2008). This kind of study will be possible by 

connecting two chemostats, for example (Suzuki and Yoshida 2012). By changing 

migration rate of different trophic levels, it is possible to see how synchrony and 

evolutionary cycles are affected by the spatial structure. 

For longer timescale, there must be balancing selection to maintain genetic 

polymorphisms in local populations for eco-evolutionary dynamics. For example, 

studies called as ‘community genetics’ (Whitham et al. 2006) usually show that when 

there are more genetic polymorphisms in plant community, arthropod’s community is 

also more diverse. However, as the chemostat study, feedback from arthropod’s 

community to select for more diverse plant community should be considered to 

understand the mechanisms of genotypic diversity maintenance. In the same way, it will 

be interesting to investigate the existence of balancing selection in the wild for the 

defensive trait of Chlorella that was observed in chemostats by population genomics 

(see 4.2.3). 

 

4.2.2 Combining theoretical and empirical approaches 
Comparing to population genetics, the divide between theoretical and empirical studies 

in ecology are still deeper. The most popular model in ecology is deterministic ordinary 

differential equations, so it is not straightforward to compare empirical data and models 

statistically. Although stochastic neutral models have been getting popular in ecology 

(Hubbell 2001), it is still rare to test theoretical prediction in likelihood scheme. 

 In that sense, one of my favorite studies is Shertzer et al. (2002), in which 

authors constructed several theoretical models based on hypotheses to explain the 

strange phenomenon (i.e., anti-phase predator-prey cycles), and estimated parameters by 

the genetic algorithm (Shertzer et al. 2002). Then the most probable model (rapid 

evolution of prey species) can actually explained the data well, and this hypothesis was 
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later examined experimentally (Yoshida et al. 2003). With recent development of 

hierarchical Bayesian modeling, state-space modeling, efficient sampling methods (e.g., 

Markov chain Monte Carlo or particle filter) and increasing computational power, it is 

now becoming possible to analyze data with mechanistic models. Such theoretical – 

empirical feedback would be ideal, and should be the standard approach in ecology.  

 

4.2.3 Genomics and eco-evolutionary dynamics studies 

In this post-genomic era, it will be possible to understand eco-evolutionary dynamics 

from genomic scale to ecological scale. Genomic studies focusing on non-model species 

are sometimes called as ‘Evolutionary and Ecological Function Genomics’ (EEFG) 

(Feder and Mitchell-Olds 2003). While those studies revealed past demography and 

adaptation processes in non-model wild organisms (e.g., Colosimo et al. 2005, Hoekstra 

et al. 2006), direct connections between genomic studies and eco-evolutionary studies 

are still rare.  

For example, by sequencing whole genome of Chlorella vulgaris, it would be 

possible to detect genetic basis of the defensive trait and track its allele frequency 

dynamics through predator-prey cycles (as Meyer et al. 2006, although they used 

neutral markers). If the defensive trait were universal one, it would be easy to exam ‘the 

defensiveness’ of wild Chlorella populations by metagenomics approaches. Although 

some researchers tried to examine gene expression changes in predator-prey cycles of 

Chlamydomonas by using microarray (Becks et al. 2012), such challenge is still rare. In 

the same way, if we can obtain genome sequences of snails with dextral and sinistral 

handedness that have been putatively maintained by balancing selection for long time 

(as Amphidromus) (Schilthuizen et al. 2007, Sutcharit et al. 2007), it would be possible 

to know the genetic basis of polarity. Then my theoretical prediction about allele 

dominance with or without right-handed snakes will be examined empirically. 

Therefore, future researches are needed to connect evolution in the genomic 

level and ecological dynamics such as population dynamics, community structures, and 

ecosystem functions. In this regard, it will be very important to analyze data with 

coalescent theory of population genetics (Kingman 1982, Hudson 1983, Tajima 1983) 

to infer past demography (e.g., Yamamichi et al. 2012) or adaptive process (e.g., Linnen 

et al. 2009). By doing so, it will be possible to understand the ecological meaning of the 

four letters (ATGC) in genome sequences.  



 116 

4.2.4 Eco-evolutionary conservation and management 

As evolution affect ecological dynamics significantly, it is important to incorporate a 

perspective of eco-evolutionary feedbacks for conservation and management (Ashley et 

al. 2003, Stockwell et al. 2003, Kinnison and Hairston 2007, Kinnison et al. 2007). One 

example is ‘evolutionary rescue’, in which adaptive evolution to new environments can 

prevent extinction of populations (Gomulkiewicz and Holt 1995). Bell and Gonzalez 

(2009) experimentally showed that adaptive evolution of yeast to a new environment (in 

this case, normally lethal concentrations of salt) can prevent extinction, but the success 

of rescue depends on initial population size (Bell and Gonzalez 2009). Another example 

is ‘fisheries-induced evolution’ (Kuparinen and Merilä 2007). Because of intense 

selection pressure of fisheries by humans, fish tend to evolve smaller size and early 

maturation age. Indeed, Olsen et al. (2004) found rapid evolutionary change of the life 

history traits in northern cod populations before the collapse (Olsen et al. 2004).  

 Although increasing number of studies have shown the importance of 

evolution on conservation and management theoretically and experimentally, field 

survey and statistical method to detect warning signals of evolutionary changes and 

evolutionary effects on ecological dynamics are still lacking. Future studies need to 

figure out how to detect, manage, and conserve rapidly evolving wild populations 

combining above methods.  
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