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In organic chemistry, predicting the products from the reactants is called reaction
prediction, while the design of synthetic routes in the opposite direction from the final
products, which are the target molecule, is called chemical synthesis planning.
Reaction prediction and chemical synthesis planning have been studied for more than
50 years. In recent years, advances in machine learning have significantly improved
the accuracy of reaction prediction and chemical synthesis planning. However, most
researches studied the chemical synthesis planning as a separate problem from
reaction prediction. Machine-learning models were trained to predict the reactants
from a given product directly. As in most reactions, the products consist of target
compound and other side products, it is an ill-posed problem that predict the reactants
from the target compound backwardly without the information of side products. This
ill-posed nature of the backward prediction induced a limited predictive power of
backward prediction models. Compared to the prediction accuracy of over 90% for
forward prediction models that predict the products from the reactants, previous
reported accuracy for the backward prediction models ranged from 37% to 52%. In
addition, the majority of candidate reactants simulated from such backward prediction
models are rarely contained within a given set of purchasable compounds that span the
feasible solution space. For example, if a synthetic target is decomposed into A and B
by a backward reaction prediction model, both the reactants will typically be non-
purchasable. In such a case, further identification of synthesis routes to both A and B

will be necessary.

In this thesis, we redefine the problem of chemical synthesis planning as a
combinatorial optimization task with the solution space subject to the combinatorial
complexity of all possible pairs of purchasable reactants. We propose a two-stage
approach consisting of forward and backward predictions to solve the chemical
synthesis planning. A trained forward model with high predictability defines the
mapping Y = f(S) from a set of reactants S to their product Y. By solving the inverse
mapping S = f1(Y") with a synthetic target Y* with respect to possible combinations §
of commercially available reactants, we could obtain an algorithm for chemical
synthesis planning that has a high synthetic accessibility. As machine learning models
are not perfect prediction models, it is possible that all candidate reactants will never

reach the target compound with the given forward model. Furthermore, if the model is



incorrect, true reactants are expected to be close to the optimal solution. Considering
that the ultimate goal of chemical synthesis planning is to enumerate all possible

reaction routes and to facilitate the creativity of the chemists, we addressed the

p(S|Y =y*) ocp(Y = 4", S) =p(Y = y*|S)p(S)

problem of reaction mining within the framework of Bayesian inference:

the posterior is a discrete probability distribution that define the probability of
reactants S that can synthesis a give target compound y*. The posterior probability is
proportional to the joint distribution, which is formed by the forward prediction model.
The support of the posterior consists of all possible combinations of reactants involved
in a synthetic route. As exact computation across all candidates is infeasible, the
primary objective in the Bayesian computation is to identify a reduced set of reactant
combinations with large joint probability, while those with ignorable probability are
effectively eliminated. A diverse candidate set can help chemists to find appropriate

reaction route to synthesis the target compound.

To enhance the search efficiency and exhaustively enumerate alternative pathways, a
sequential Monte Carlo algorithm to sample in the discrete chemical space were
developed. A cluster-level resampling was introduced to prevent the particle
impoverishment in the resampling step. In addition, a surrogate model was used to
save the cost of repeatedly evaluating the computationally expensive forward
prediction model. Using a forward model prediction accuracy of approximately 87%, the
Bayesian retrosynthesis algorithm successfully rediscovered 81.8 and 33.3% of known
synthetic routes of one-step and two-step reactions, respectively, with top-10 accuracy.
Remarkably, as the Monte Carlo algorithm is specifically designed to exhaustively
explored highly probably reaction sequence ending with a given synthetic target, over
500 synthetic routes on average for each target were identified by the Bayesian
retrosynthesis algorithm. In addition, we investigated the potential applicability of
such diverse candidates based on expert knowledge of organic chemistry and revealed

the influence of the publication bias in reaction datasets.
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