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ABSTRACT 
 

Mirror-symmetrical bimanual movement is more stable than parallel 

bimanual movement. This is well established at the kinematic level. I used functional 

MRI (fMRI) to evaluate the neural substrates of the stability of mirror-symmetrical 

bimanual movement. Right-handed participants (n = 17) rotated disks with their 

index fingers bimanually, both in mirror-symmetrical and asymmetrical parallel 

modes. I applied the Akaike causality model to both kinematic and fMRI time-series 

data. I hypothesized that kinematic stability is represented by the extent of neural 

“cross-talk”: as the fraction of signals that are common to controlling both hands 

increases, the stability also increases. The standard deviation of the phase difference 

for the mirror mode was significantly smaller than that for the parallel mode, 

confirming that the former was more stable. I used the noise-contribution ratio 

(NCR), which was computed using a multivariate autoregressive model with latent 

variables, as a direct measure of the cross-talk between both the two hands and the 

bilateral primary motor cortices (M1s). The mode-by-direction interaction of the 

NCR was significant in both the kinematic and fMRI data. Furthermore, in both sets 

of data, the NCR from the right hand to the left was more prominent than vice versa 

during the mirror-symmetrical mode, whereas no difference was observed during 

parallel movement or rest. The asymmetric interhemispheric interaction from the left 

M1 to the right M1 during symmetric bimanual movement might represent 

cortical-level cross-talk, which contributes to the stability of symmetric bimanual 

movements. 
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INTRODUCTION 

Bimanual coordination in the mirror-symmetrical mode, in which 

homologous muscles are active simultaneously, is more stable than in the parallel 

mode, in which homologous muscles are engaged in an alternating fashion (Swinnen 

et al., 1997). When a subject performs a cyclical movement in the parallel mode, 

increasing the movement frequency ultimately results in a phase transition towards 

the mirror-symmetrical mode, but the opposite transition does not occur (Kelso, 

1984). This phenomenon was first formalized theoretically by dynamic-systems 

theory at the behavioral level (Haken et al., 1985; Schöner and Kelso, 1988). 

Furthermore, the reversal in direction at the phase transition was mainly associated 

with the non-dominant hand (Walter and Swinnen, 1992; Byblow et al., 1994, 1998, 

2000; Sherwood, 1994; Semjen et al., 1995; Treffner and Turvey, 1995; Rogers et al., 

1998; Garry and Franks, 2000). These kinematic data suggest that the left 

hemisphere is dominant for bimanual movement. 

To associate the process of bimanual coordination with the neural structures 

that control hand movements (de Oliveira, 2002), the concepts of inter-manual and 

neural cross-talk (Marteniuk and MacKenzie, 1980) have been introduced. 

Interactions between the movements of the two hands (inter-manual cross-talk) are 

assumed to result from neural cross-talk at multiple levels between the signals 

controlling the two limbs. The lowest level of cross-talk supposedly occurs 

downstream from the specification of movement parameters, possibly through the 

ipsilateral corticospinal tract (Cattaert et al., 1999), as each effector receives signals 

from both contralateral and ipsilateral descending pathways. The mirror-symmetrical 
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condition requires the activation of homologous muscles, and so the signals of both 

pathways are always congruent. By contrast, the parallel condition requires 

non-homologous muscles to be activated, and so conflict between crossed and 

uncrossed cortical pathways might arise (cross-talk). This is supported by the 

findings of Kagerer et al. (2003), who reported that participants in whom transcranial 

magnetic stimulation (TMS) elicited distal ipsilateral motor-evoked potentials 

exhibited higher variability during a bimanual parallel circling task than participants 

whose ipsilateral pathways could not be activated transcranially. This suggests that 

the common signal sent to both effectors through the contralateral and ipsilateral 

pathways enhanced the stability of mirror-symmetrical movement as compared to 

parallel movement, resulting in the increased variability during parallel movement 

(Cattaert et al., 1999). 

Cross-talk might also occur at a higher level through interhemispheric 

interaction (Kennerley et al., 2002). Kennerley et al. (2002) reported that 

callosotomy patients exhibited a lack of temporal coupling during continuous circle 

drawing, with the two hands oscillating at non-identical frequencies. They concluded 

that synchronization between the hands depends on interhemispheric transmission 

across the corpus callosum. 

Several neuroimaging studies support the concept that interhemispheric 

interaction exists during the phase transition. Meyer-Lindenberg et al. (2002) 

demonstrated neuronal dynamics conforming to the predictions made by the 

non-linear system theory. Using positron-emission tomography (PET), they depicted 

the cortical regions related to the extent of behavioral instability, assuming that 



 
 

 6

neuronal activity in these “unstable” areas increases as the frequency of the 

movement increases. Within these areas, they found that minor disruption by 

double-pulse TMS to the right dorsal premotor cortex (PMd) evoked large-scale 

phase transitions in participants’ performance. Meyer-Lindenberg et al. (2002) 

concluded that an increase in behavioral instability corresponds to increasing neural 

instability represented in the right PMd. 

Using event-related functional MRI (fMRI), Aramaki et al. (2006a) depicted 

the transition-related activity in multiple right-lateralized parieto-premotor regions. 

These areas were different from the regions activated by bimanual movement 

execution. Aramaki et al. (2006a) concluded that at the phase transition, the cortical 

neural cross-talk occurs in distributed networks upstream of the primary motor 

cortex through asymmetric interhemispheric interaction. 

These studies imply that there is some “default” setting by which the two 

hands are linked together to produce identical motor output, and that an additional 

mechanism is required to uncouple the hands in order to generate different 

movements (Evans and Baker, 2003). However, the neural substrates of the default 

linking that makes bimanual mirror-symmetrical movement so stable have remained 

unknown, particularly at the cortical level. 

The purpose of the present study was to delineate the cortical cross-talk that 

stabilizes mirror-symmetrical movement. Using fMRI, I compared the kinematic 

relationship between both hands and the neural relationship between the primary motor 

cortices of both hemispheres during mirror-symmetrical and parallel bimanual cyclical 

movements. I focused on cross-talk at the level of the bilateral primary motor cortices 
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(M1s), where movement parameters are specified and transmitted to the effectors. 

I used a continuous circle-drawing task instead of a discrete movement task, 

such as tapping, for mainly technical reasons: continuous kinematic data are more 

easily handled by the multivariate autoregressive (MAR) model of time-series analysis. 

Previously, it was supposed that the neural substrates for continuous bimanual 

coordination might differ from those for discrete movements (Kennerley et al., 2002; 

Spencer et al., 2003). In split-brain patients, bimanual coordination during discrete 

tasks was well preserved (Preilowski, 1972; Franz et al., 1996; Ivry and Hazeltine, 

1999), whereas coordination was impaired during a continuous bimanual task 

(Kennerley et al., 2002). However, this does not necessarily restrict the transcallosal 

neural cross-talk to the continuous cyclical movements (Bonzano, et al., 2008).  

Previous kinematic studies (Stucchi and Viviani, 1993; Semjen et al., 1995; 

Treffner and Turvey, 1995, 1996; Swinnen et al., 1996; Byblow et al., 2000; 

Kennerley et al., 2002) have indicated right hand dominance. Previous clinical and 

imaging studies have shown that the left hemisphere is dominant for the 

representation of motor skills (Sirigu et al., 1996; Haaland et al., 2000), including 

bimanual coordination (Serrien et al., 2003). Accordingly, I predicted that 

asymmetric cross-talk from the left M1 to the right M1 is more prominent than vice 

versa. 

I further hypothesized that this asymmetric cortical cross-talk is more 

prominent during mirror-symmetrical movement than during asymmetric parallel 

movement. During the mirror-symmetrical mode, the movement command from the 

dominant left hemisphere would facilitate, or at least not negatively influence, 
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symmetric movements. In this sense, the cross-talk at the cortical level during mirror 

movement can be understood as a gating of the signal from one hemisphere to its 

homonymous counterpart, in order to ensure shared neural control of the movements 

of both limbs in which homologous muscles are to be activated. During the 

asymmetric parallel mode, by contrast, there would be ongoing interference due to 

conflicting information. Parallel asymmetric movement usually requires a greater 

workload than mirror-symmetrical movement, which is represented as more 

prominent activation in the supplementary motor area (SMA) and the right PMd 

(Sadato et al., 1997). Double-pulse TMS of the right PMd caused a phase shift from 

the parallel mode to the mirror mode (Meyer-Lindenberg et al., 2002). Thus, this 

additional workload was interpreted as the conversion of the motor program or the 

suppression of conflicting information issued in the left hemisphere to its right 

counterpart, and hence no gating occurred during the parallel mode.  

As signal gating might not be depicted by the increment of the neural 

activity, I adopted statistical time-series modeling. The MAR model represents a 

general statistical time-series model that propagates information from the past to the 

future. The Akaike noise-contribution ratio (NCR; Akaike, 1968) quantifies the 

portion of the power-spectral density of an observed variable from the independent 

noise of the MAR, which becomes a measure of causality among variables. It allows 

interpretation of the causality from one hand to the other, or from the motor cortex of 

one hemisphere to the other. Thus, the extent of cross-talk can be quantified by the 

causality that is represented by the NCR. Unlike the mathematical formulation of the 

dynamic-systems model that is usually employed to deal with the relative phase via a 



 
 

 9

differential equation in order to evaluate the stability of the system (Haken et al., 

1985; Schöner and Kelso, 1988; Meyer-Lindenberg et al., 2002; Kennerley et al., 

2002), which cannot be directly applied to neuroimaging datasets, the MAR can be 

applied to both kinematic data and neural activities. According to our a-priori 

hypothesis, the gating might be represented as the asymmetric NCR from the left M1 

to the right M1, which, in turn, brings the asymmetric NCR from the right hand to 

the left hand during mirror-symmetrical movement more prominently than during 

parallel movement. 
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MATERIALS AND METHODS 

Participants 

In total, 19 subjects participated in the fMRI study. None of the subjects had 

a history of psychiatric or neurological illness. The protocol was approved by the 

Ethical Committee of the National Institute of Physiological Sciences, Japan. All 

subjects gave their written informed consent for participation in the study. During the 

experiment, I stopped the testing of one subject due to stomach pain, and one subject 

fell asleep; the data from these two subjects were excluded from the analysis. The 17 

participants included in the analysis comprised eight men and nine women, aged 

between 20 and 32 years, all of whom were strongly right-handed according to the 

Edinburgh Handedness Inventory (mean score ± standard deviation [SD] = 0.956 ± 

0.072; Oldfield, 1971). 

 

Subject setup 

The subjects lay supine in a 3.0 Tesla MR scanner (Allegra; Siemens, 

Erlangen, Germany). Their elbows and wrists were slightly flexed and relaxed so 

that each hand could be placed on the non-ferromagnetic frames set over the 

participant’s body. On the frame, two discs were placed on both sides of the subject 

(Figure 1). Each disc was attached to the MRI-compatible rotary encoder 

(HEDS5701, Hewlett-Packard, Palo Alto, CA; spatial resolution = 1°) to register 

finger movements at a sampling rate of 1,000 Hz. The encoders were connected to a 

personal computer (Dimension 8200; Dell Computer, Round Rock, TX) to record the 

rotation-related time-series data. As the axial length of the magnet was 130 cm, both 

hands were outside of the magnet. In this position, the subjects could not see their 
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finger movements. To minimize head motion, I used tight but comfortable foam 

padding placed around each subject’s head. For visual and auditory stimulus 

presentation, I used Presentation 0.92 (Neurobehavioral Systems, Albany, CA) 

software implemented on a personal computer (Dimension 8200; Dell Computer, 

Round Rock, TX). A liquid-crystal display projector (DLA-M200L; Victor, 

Yokohama, Japan) located outside and behind the scanner projected instruction cues 

and a cross-hair onto a translucent screen. Subjects viewed the screen via a mirror 

attached to the head coil of the MRI scanner. The subjects wore MRI-compatible 

headphones (Hitachi, Yokohama, Japan). I did not measure electromyographic 

activity during the fMRI, mainly because of movement-related artifacts due to the 

movement of electrical leads caused by bimanual coordination. 

 

Tasks 

The subjects performed an auditory-paced bimanual disk-rotation task. They 

were asked to rotate the discs with their index fingers. To ensure constant timing and 

an equal number of cycles across conditions, the bimanual movements were paced 

by auditory cues at 0.6 Hz. The auditory cues (260 Hz, 50 ms) were administered 

continuously through the headphones during the scanning session (both task and rest 

periods). The volume of the sound was adjusted for each subject to an appropriate 

level for task execution, taking into account the MR scanner noise. Subjects 

performed both mirror-symmetrical and parallel movements. In the 

mirror-symmetrical mode, the directions of rotation were symmetrical with regard to 

the midline of the body in the outward direction (the right hand moved the disk in a 

clockwise direction whereas the left hand moved the disk in a counterclockwise 
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direction). During the parallel mode, both hands rotated in the same clockwise 

direction. A task session consisted of a 180-sec task period with rest periods before 

(15 sec) and after (20 sec) the task period. Each subject performed nine sessions: 

three sessions in the parallel mode, three sessions in the mirror-symmetrical mode, 

and three rest sessions. The baseline periods were added for the functional definition 

of the M1s by contrasting them with the 180-sec task condition. As I aimed to 

evaluate the causality during the parallel mode and the mirror mode, I obtained the 

longer-term data separately for each condition. 

 

MRI data acquisition 

A time-course series of 215 volumes was acquired in each session using 

T2*-weighted gradient echo-planar imaging (EPI) sequences. To maximize the 

sampling time points within an appropriate session duration that did not cause 

fatigue among the subjects (< 4 min), the interval between two successive 

acquisitions of the same image (the repetition time [TR]) was set to 1,000 ms. Each 

volume consisted of 17 axial slices (the maximum number of slices at a TR of 1,000 

ms). The slice thickness was 3 mm with a 0.45-mm gap. The slices covered a region 

extending from the top of the head to the anterior commisure–posterior commisure 

line (AC–PC line), including both M1s for all of the subjects. The echo time (TE) 

was 30 ms. The flip angle (FA) was 65°. The transaxial field of view (FOV) was 192 

mm, and the in-plane matrix size was 64 × 64 pixels with a pixel dimension of 3 × 3 

× 3 mm. The images were scanned in a descending manner. 

For anatomical imaging, T1-weighted magnetization-prepared 

rapid-acquisition gradient-echo (MP-RAGE) images were obtained (TR = 2,500 ms; 
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TE = 4.38 ms; FA = 8°; FOV = 230 mm (one slab); distant factor = 50%; number of 

slices per slab = 192; voxel dimensions = 0.9 × 0.9 × 1.0 mm) to cover the entire 

cerebral and cerebellar cortices. 

 

Time-series analysis of kinematic data 

1. Preprocessing of time-series data 

Time-series data were extracted for 170 sec following the initiation of the 

task. As the spatial resolution of the encoder was 1°, a time resolution higher than 10 

Hz would not give useful information, so the data were down-sampled to a sampling 

rate of 10 Hz. The linear trend of the increase or decrease of the data was subtracted 

using first-order differences; as the recording device accumulated the rotated angles, 

the data included monotonic increases or decreases in a gradient of roughly 216°/sec, 

which was caused by the rotation rate of 0.6 Hz (movement in an anticlockwise 

direction was recorded as increasing, and movement in a clockwise direction was 

recorded as decreasing). In this way, the preprocessed data indicated any deviation 

from the expected movement (°/sec). 

 

2. Stability 

The phase difference between hands was computed by subtracting the phase 

angle of both hands every 100 ms. During the mirror-symmetrical mode, both hands 

moved in opposite directions, and so the absolute values of the phase angle were 

used to calculate the phase difference. To obtain the signed relative phase, the phase 

of the left hand was subtracted from that of the right hand, and so negative values 

indicated a phase delay of the right hand. The signed phase difference at the 
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initiation of the movement, the average, and the SD throughout the session were 

calculated. The SD of the phase difference was used as an estimate of the stability of 

the mode of movement (Swinnen et al., 1996).  

 

3. Modeling and quantifying directional connectivity 

The causal relationship between the index fingers in the different movement 

modes (parallel, mirror-symmetrical, and rest) were studied. A statistical time-series 

model was fitted to the data in order to explain the spatiotemporal dynamics of the 

data and the causal relationships between the movements of both hands. An AR 

model can be used to elucidate the propagation of information from the past to the 

future; however, it is difficult to describe causal relationships when the driving noise 

variances are highly correlated (Yamashita et al., 2005; Wong and Ozaki, 2007). One 

solution is to obtain data at a finer temporal resolution; another is to include a hidden 

variable to absorb the common dynamic among the variables (Wong and Ozaki, 

2007). Besides the two oscillations that explained the individual dynamics of each 

hand, I introduced a hidden variable to measure the dynamics that were common to 

both the left hand and the right hand. The two time-series were reconstructed to these 

three oscillations, which were mutually orthogonal. The following state-space model 

was applied: 

State equation  xt = Fxt-1 + Gωt 

Observation equation yt = Hxt+ εt 

Here, yt denotes the preprocessed data. These data were projected from the 

state vector xt through a projection matrix H. xt was assumed to follow from 

first-order multivariate AR dynamics through the transition matrix F, and was driven 
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by multivariate Gaussian noise Gωt. xt usually has a higher dimension than yt. εt 

represents the bivariate Gaussian noise. In this paper, F, G, and H were designed in a 

particular parameterization structure, which is included in Appendix A. 

Directional causality was quantified using the NCR, which is the proportion 

of spectral power corresponding to the causal variable (Akaike, 1968). The NCR 

gives a proportion of directional causality over the frequency interval from 0 Hz to 

the Nyquist frequency, which was 5 Hz in this study. The calculation of the NCR is 

straightforward (Wong and Ozaki, 2007). The spectral power over the frequency 

band of each component was computed using Simpson’s numerical integration rule. 

The contribution of the three components was obtained by normalizing the 

corresponding integrated spectral power. Hereafter, I refer to the NCR in this 

integrated form. 

For example, the left-hand oscillation can be explained by the linear 

summation of the contribution of the left-hand component, the contribution of the 

right-hand component, and that of the common component, all of which are 

normalized so that the sum of the three components is 1. In the same way, the 

right-hand oscillation can be explained by the linear summation of the NCR of the 

left-hand component, the NCR of the right-hand component, and that of the common 

component.  

The NCR values of different subjects were collected and included in the 

two-way analysis of variance (ANOVA), which incorporated the effects of the 

direction of contribution (right hand to left hand vs. vice versa) and the mode 

(parallel vs. mirror-symmetrical).  

 



 
 

 16

fMRI data 

1. Preprocessing 

The first five volumes of each fMRI session were discarded because of 

unsteady magnetization. The data were analyzed using statistical parametric 

mapping (SPM5; Wellcome Department of Imaging Neuroscience, London, UK; 

Friston et al., 1995a; Friston et al., 1995b; Friston et al., 2007) implemented in 

Matlab (Mathworks, Sherborn, MA). Following slice-timing correction, the fMRI 

data were realigned to the first image for head-motion correction. The realigned data 

were then coregistered to the anatomical MRI. Finally, the fMRI data were spatially 

smoothed using a Gaussian kernel of 4 mm full width at half maximum in the x, y, 

and z axes. Anatomical normalization was not performed to avoid possible artifacts. 

 

2. Region of interest (ROI) definition 

The ROI of the M1s was defined on an anatomical and functional basis 

without spatial normalization. This was intended to avoid any artifacts 

accompanying the spatial normalization processes. For the first step, the ROIs were 

identified by means of the data from the task sessions analyzed with SPM software. 

A general linear model was used to identify voxels with task-related signal changes 

(Friston et al., 1995b). The signal time-course of each subject was modeled with two 

boxcar functions (that is, parallel and mirror-symmetrical movement), convolved 

with a hemodynamic-response function, high-pass filtering (128 sec), and session 

effects. To test hypotheses about regionally-specific condition effects, the estimates 

for each condition were compared by means of the linear contrasts. The resulting set 

of voxel values for each comparison constituted a statistical parametric map of the 



 
 

 17

t-statistic (SPM{t}). The threshold for the SPM{t} was set at a highly conservative 

family-wise error rate (FWE) of p < 0.001. M1 was defined by the activation peaks 

that were located on the hand-knob segment of the precentral gyrus by visual 

inspection; the hand knob is a reliable landmark for identifying the hand motor area 

(Yousry et al., 1997; Figure 2). When the activation peaks were not found on the 

hand knob, the activation peaks closest to the hand knob were selected. In fact, a 

lack of hand representation at the hand knob was observed in three subjects (two 

unilateral left and one unilateral right). However, all of them showed hand 

representation at the bilateral central sulci adjacent to the hand knob. Table 1 shows 

the individually defined M1s in which the coordinates were normalized into space 

registered by the Montreal Neurological Institute (MNI) coordinates, in order to 

confirm that the ROI definition was appropriate.  

 

3. Time-series data extraction 

The non-smoothed time-series data of each coordinate were extracted using 

MarsBaR software (http://marsbar.sourceforge.net/) in a spherical ROI (radius = 3 

mm). The time-series data of the two ROIs were extracted from nine sessions for 

each subject (three each of the parallel, mirror-symmetrical, and rest sessions). The 

10 points (10 sec) from the beginning of the movement were discarded to exclude 

the influence of any instability due to movement initiation. 

 

4. Modeling and quantifying directional connectivity 

The state-space modeling was applied to the preprocessed fMRI time-series 

data. The idea of a hidden variable was applied again with a modification of the 
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parameterization (for a detailed explanation, see Appendix B). For each set of 

time-series data, the AR order p was chosen using the Akaike Information Criterion 

(AIC), such that the model with the smallest AIC was selected. Similar to kinematic 

data, the NCR was calculated from the estimated state-space models. The NCR 

values for different subjects were collected to use in the two-way ANOVA 

incorporating the effects of the direction of contribution (right M1 to left M1 vs. vice 

versa) and mode (parallel vs. mirror-symmetrical). 
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RESULTS 

Phase difference 

At the initiation of the parallel movement, there was a significant right-hand 

lead (mean ± SD = 4.71 ± 7.87°, t(16) = 2.465, p = 0.025, one-sample t-test), but this 

was not significant for mirror movement (–0.77 ± 4.78°, t(16) = –0.659, p = 0.519, 

one-sample t-test). The mode effect was significant (t(16) = 2.447, p < 0.026, paired 

t-test). This was consistent with previous studies (Stucchi and Viviani, 1993; Semjen 

et al., 1995; Treffner and Turvey, 1995, 1996; Swinnen et al., 1996; Kennerley et al., 

2002; Debaere et al., 2004). By contrast, the signed phase difference averaged 

throughout the session showed the reverse pattern: there was a significant left-hand 

lead (–16.19 ± 18.03°, t(16) = –3.702, p = 0.002, one-sample t-test), but this was not 

the case for the mirror movement (–7.959 ± 16.988°, t(16) = –1.932, p = 0.071, 

one-sample t-test). The mode effect was not significant (t(16) = –1.600, p =0.129, 

paired t-test). The SD around the phase difference (coordination stability) for the 

mirror-symmetrical mode was 21.01 ± 12.76°, which was significantly smaller than 

that for the parallel mode (36.30 ± 21.59°; t(16) = 4.811, p(16) < 0.001; paired t-test). 

This indicated that the mirror-symmetrical movement was more stable than the 

parallel mode. 

 

Angular velocity 

During the symmetric-mirror mode, the angular velocity (mean ± SD) of the 

right hand was 231.63 ± 51.63°/sec and that of the left hand was 222.85 ± 52.32°/sec. 

During the parallel mode, the angular velocity of the right hand was 232.46 ± 
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51.81°/sec and that of the left hand was 229.03 ± 38.45°/sec. The two-way ANOVA 

(mode × hand) showed no significant difference in either main effects or interaction 

effect (mode, F(1,16) = 0.601, p = 0.449; hand, F(1,16) = 0.405, p = 0.534; 

interaction, F(1,16) = 1.575, p = 0.228). This finding indicated that the angular 

velocity was constant across the hands and modes.  

During the symmetric-mirror mode, the variability of the angular velocity 

(mean ± SD) of the right hand was 95.26 ± 24.57°/sec and that of the left hand was 

102.88 ± 25.93°/sec. During the parallel mode, the variability of the right hand was 

90.90 ± 20.58°/sec and that of the left hand was 96.11 ± 25.19°/sec. The two-way 

repeated measures ANOVA (mode × hand) showed a significant hand effect (F(1,16) 

= 5.396; p = 0.034), but not a main effect of mode (F(1,16) = 3.330; p = 0.087) or an 

interaction effect (F(1,16) = 0.536; p = 0.475). This finding indicated that the right 

hand was more stable than the left hand, irrespective of the mode.  

 

Interaction between the hands 

The two-way ANOVA (contribution direction × mode) indicated a 

significant interaction effect (F(1,16) = 5.021; p = 0.040; Figure 3, top). Post hoc 

analysis with the Bonferroni correction indicated that the contribution from the right 

hand to the left hand was significantly larger than vice versa during the 

mirror-symmetrical mode (t(16) = 2.791; p = 0.013), but not during the parallel 

mode (t(16) = 0.035; p = 0.972). There was no significant main effect of contribution 

direction (F(1,16) = 1.468; p = 0.243) or mode (F(1,16) = 3.757; p = 0.070). 

 

fMRI ROI analysis 
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The two-way ANOVA (contribution direction × mode) of the fMRI data 

indicated a significant interaction effect (F(1,16) = 5.493; p = 0.032; Figure 3, 

bottom). Post hoc analysis with the Bonferroni correction indicated that the 

contribution from the left M1 to the right M1 was significantly larger than vice versa 

during the mirror-symmetrical mode (t(16) = 2.555; p = 0.021), but not during the 

parallel mode (t(16) = 0.299; p = 0.769). There was no significant main effect of 

contribution direction (F(1,16) = 1.998; p = 0.177) or mode (F(1,16) = 2.457; p = 

0.137). During the rest session, the difference between the contribution from the left 

M1 to the right M1 and vice versa was not significant (t(16) = 0.264; p = 0.795). 

There was no significant correlation between the NCR of the hands and that 

of the M1 activity, probably reflecting the fact that the interaction between the hands 

might represent the effect of both cortical cross-talk through the corpus callosum, 

and subcortical neural cross-talk through the ipsilateral corticospinal tract. 
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DISCUSSION 

Kinematic analysis 

Phase stability during bimanual movement 

Regarding the initiation phase difference, the right hand leads the left hand, 

particularly during parallel movement. This is consistent with previous studies 

(Stucchi and Viviani, 1993; Semjen et al., 1995; Treffner and Turvey, 1995, 1996; 

Swinnen et al., 1996; Kennerley et al., 2002; Debaere et al., 2004). By contrast, on 

average during movement, the left hand leads the right hand. This tendency was 

particularly prominent during parallel movement. I utilized the clockwise rotation for 

the parallel mode in which the left (subdominant) hand led the right hand. Byblow et al. 

(2000) reported that the direction of the rotation had an effect on the hand that “led” in 

asymmetric patterns, which varied between the anti-clockwise (dominant hand) and 

clockwise (subdominant hand) directions. Byblow et al. (2000) suggested that neither 

handedness nor time-keeping localization was likely to be the cause of this 

phenomenon. The signed phase difference explains a relative phase between left and 

right, representing instantaneous causality, whereas the MAR model for two 

time-series provides causality from some past points to future points, and thus a better 

evaluation of cross-talk is expected. Actually the likelihood function using the 

kinematic data showed the superiority of our MAR model over the signed phase 

difference model (data not shown).  

The SD of the phase difference between the hands was significantly smaller 

during mirror-symmetrical movement than during parallel movement. This finding 

confirms the previous studies showing that mirror-symmetrical movement is more 

stable than parallel movement. 
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Right hand dominance during mirror-symmetrical movement 

The time-series analysis of the kinematic data using Akaike causality 

showed that the asymmetric causality from the right hand to the left hand was 

specific to mirror-symmetrical movement. This right-hand dominance suggests two 

points. First, it is consistent with the idea of cross-talk, such that the control signals 

directed to one hand are also sent to the other hand during mirror-symmetrical 

movement, which in turn stabilizes the movement. Second, the left hemisphere is 

dominant for this inter-manual cross-talk, because the movement of the left hand is 

more strongly influenced by the right-hand movement than vice versa.  

 

Neuronal activities 

Left M1 dominance during mirror-symmetrical movement 

Corresponding to the kinematic results, the fMRI data revealed that the 

asymmetric causality from the left M1 to the right M1 was specific to 

mirror-symmetrical movement. This left hemisphere dominance in the 

cortico-cortical relationship between the bilateral M1s implies that the cross-talk or 

signal gating occurs at the transcallosal level during mirror-symmetrical movement. 

Paired TMS studies have provided evidence that the motor cortex has clear 

interhemispheric facilitatory effects (Ugawa et al., 1993) and inhibitory effects 

(Ferbert et al., 1992), probably working via the corpus callosum (Di Lazzaro et al., 

1998). Whereas trans-callosal inhibition seems to play a crucial role in suppressing 

the mirror-symmetrical activation of the ipsilateral motor cortex during intended 

unilateral hand motor tasks (Nass, 1985), the functional significance of this 

facilitatory effect is unknown, particularly during bimanual movement. However, the 
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present findings and the unstable bimanual coordination in callosotomy patients raise 

the possibility that high-level cortico-cortical interference from the dominant 

hemisphere occurs in the non-dominant M1 during bimanual mirror-symmetrical 

movement. 

 

Possible pathways for interhemispheric interaction 

The TMS literature suggests a physiologically relevant connection among 

both of the M1s as documented in the intact human brain (Ferbert et al., 1992; Meyer 

et al., 1995; Di Lazzaro et al., 1998) and the lesioned human brain (Boroojerdi et al., 

1996; Murase et al., 2004; Duque et al., 2005). Using interhemispheric inhibition by 

means of TMS, Murase et al. (2004) showed an abnormally high interhemispheric 

inhibitory drive from the M1 in the intact hemisphere to the M1 in the lesioned 

hemisphere during the process of generation of a voluntary movement by the paretic 

hand. This finding suggests that motor output from the lesioned hemisphere might be 

additionally influenced by pathologically enhanced inhibitory influences from the 

intact hemisphere. This physiological evidence of a relevant connection among both 

M1s prompted us to examine the effective connectivity between them. 

Anatomically, the direct connection between the bilateral M1s is known to be 

sparse in non-human primates (Rouiller et al., 1994; Liu et al., 2002). Instead, a dense 

indirect connection between the left and right M1s exists via the SMAs (Morecraft and 

Van Hoesen, 1992; Luppino et al., 1993; Rouiller et al., 1994; Wiesendanger et al., 

1996; Liu et al., 2002) or the PMd (Marconi et al., 2003).  

Recently, Wahl et al. (2007) examined the callosal motor fibers that connect 
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the primary motor cortices of the two hemispheres of the human brain. They examined 

the topography and somatotopy of the callosal motor fibers (CMFs) using a combined 

fMRI and diffusion-tensor imaging (DTI) fiber-tracking procedure. The functional 

connectivity between the M1s was measured by interhemispheric inhibition using 

paired-pulse TMS. The CMFs of the hand areas were represented in the posterior part 

of the body of the corpus callosum. This posterior location was interpreted to be 

caused by the prefrontal interhemispheric connection, which occupies the anterior half 

of the human corpus callosum. They also found a significant and 

topographically-specific positive correlation between the fractional anisotropy (FA) 

and interhemispheric inhibition; they interpreted this as evidence of a direct link 

between the microstructure and functional connectivity. Another study with DTI and 

paired-pulse TMS explored the fact that the FA of the projection from the PMd to the 

contralateral M1 was correlated with the TMS-indexed functional connectivity during 

action selection (Boorman et al., 2007). Thus, the pathways for interhemispheric 

interaction might be task-dependent.  

During bimanual coordination, higher activation in the SMA and the right 

PMd during the parallel mode compared to the mirror-symmetrical mode is a 

well-replicated finding (Sadato et al., 1997; Toyokura et al., 1999; Immisch et al., 

2001; Meyer-Lindenberg et al., 2002; Ullen et al., 2003; Debaere et al., 2004, 

Wenderoth et al., 2005, Aramaki et al., 2006a, b), which highlights the important role 

of the SMA and PMd in bimanual coordination. A TMS study in humans revealed 

that inter-hemispheric PMd-to-M1 interactions added to the M1-to-M1 interaction 

(Baumer et al., 2006). Bonzano et al. (2008) measured the absolute value of the 

timing difference between the simultaneous bimanual finger–thumb opposition 
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movements (inter-hand interval) made by multiple sclerosis patients with 

demyelinated lesions in the corpus callosum. The extent of the damage in the 

anterior callosal portions was positively correlated with the inter-hand interval, 

particularly the movement phase preceding the finger touch. This finding indicates 

that the anterior portion of the corpus callosum is essential for performing 

temporally-interdependent bimanual finger movements (Bonzano, et al., 2008). Thus, 

the interhemispheric interaction between the right and left M1 regions during 

mirror-symmetrical movement might be mediated indirectly by areas involved in 

higher motor functions, such as the SMA and the PMd, in addition to the possible 

direct interaction between the M1s.  

 

Left-hemisphere dominance for bimanual coordination 

Ziemann and Hallett (2001) proposed two different, although not mutually 

exclusive, models to explain the functional differences of the human cerebral 

hemispheres. One model assumes that asymmetrical motor performance is a 

consequence of intrinsic hemispheric specialization. The other proposes that both 

motor cortices have identical motor capabilities in controlling the contralateral hand, 

but that hemispheric differences occur due to asymmetric interactions between the 

two motor cortices. 

Previous functional neuroimaging studies have shown left-lateralized 

activation during mirror-symmetrical movement (Jancke et al., 1998; Viviani et al., 

1998), implying that the left hemisphere is specialized for controlling 

mirror-symmetrical bimanual movement. Aramaki et al. (2006b) found that 

activation in the right M1 was significantly weaker during the mirror-symmetrical 
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mode than during the parallel mode, a difference that was not observed in the left 

M1. They speculated that the non-dominant M1 entrusted a part of hand control to 

the dominant M1, implying a cortico-cortical interaction. 

The present study showed that the cross-talk during mirror-symmetrical 

movement occurs at the level of the M1, possibly through the corpus callosum from 

the left hemisphere to the right. This cross-talk appears to stabilize 

mirror-symmetrical movement compared with non-symmetrical movement. This 

provides additional evidence of left-dominant asymmetric interhemispheric 

interaction during bimanual movement. 

 

Methodological considerations for the evaluation of effective connectivity  

Akaike causality (Akaike, 1968) has been applied previously to fMRI data by 

Yamashita et al. (2005) and by Wong and Ozaki (2007). Granger (1963, 1969) 

causality is another representative causality analysis based on the MAR model that has 

been applied in neuroscience research (for example, Bernasconi and Konig, 1999; 

Goebel et al., 2003). Granger causality analysis compares the residual variance of the 

full model to that of sub-models, and obtains a causality conclusion through the 

significance of the difference in variance. Akaike causality and Granger causality have 

two major similarities: first, they should both be applied with the assumption that they 

are based on an optimal model; and second, they both use information about a 

second-order moment (that is, variance, autocovariance, or spectrum) of the model, 

and therefore the second-order moment of the time-series model should be defined 

(using, for example, the MAR model). However, Akaike causality and Granger 
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causality use the variance information differently: the former is concerned with the 

partition of the variance in terms of noise variance within one model, while the latter is 

concerned with the additional partition of the variance of the data when additional 

regressors are introduced. An important merit of Akaike causality is that the 

computational load is less than that for Granger causality. Also, in the latter, it is 

ambiguous as to which feedback system should be chosen, leading to problems with 

pair-wise marginal causality or conditional causality. Akaike causality does not have 

this problem because it only looks at one feedback system. Therefore, to evaluate the 

causality across many regions in functional neuroimaging, Akaike causality has 

significant advantages over Granger causality in terms of the computational load and 

the unambiguous feedback system. One disadvantage of Akaike causality is that the 

noise-covariance matrix of the model must be diagonal; thus, it is not suitable for 

multiple time-series data with strong instantaneous causality, except when a latent 

variable can remove the common dynamics by means of a linear state-space model 

(Wong and Ozaki, 2007). With this, instantaneous causality can be included and the 

diagonal noise-covariance assumption is not violated.  

The dynamic causal modeling (DCM) is a hypothesis-driven approach, which 

was specifically designed to evaluate the intrinsic and task-dependent influences that a 

particular brain area exerts over the activity of another area (Friston, 2003; Stephan et 

al., 2004; Grefkes et al., 2008). The DCM treats the brain as a deterministic system, in 

which external input causes changes in neural activity that, in turn, lead to changes in 

the fMRI signal. This is in contrast with the MAR model, which treats the brain as a 

dynamic network, the activities of which are driven by a stochastic effect termed 
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“innovation”. The DCM needs high anatomical–functional precision, and thus cannot 

be used as an exploratory tool. Due to the dramatic increase of the number of free 

parameters to be estimated, the number of ROIs is usually limited to eight or less. The 

DCM and MAR models are not mutually exclusive. In the future, MAR models 

including Akaike causality might be applied to neural parameters with the biophysical 

modeling adopted in the DCM (Stephan et al., 2004). The evaluation of effective 

connectivity by means of these sophisticated methodologies will contribute to the 

understanding of the mechanisms of bimanual coordination, such as hemispheric 

dominance under frequency stress (Kelso, 1984), in both normal and pathological 

conditions. 
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CONCLUSION 

The asymmetric interhemispheric interaction from the left M1 to the right 

M1 during bimanual mirror-symmetrical movement might represent cortical-level 

cross-talk, which contributes to the stabilization of bimanual mirror-symmetrical 

movement. 
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TABLE 

Table 1  

Normalized coordinates of the M1s of subjects 

 
MNI coordinates (x, y, z) and T value of the M1s of participants. The functionally 

and anatomically defined M1s of each subject were normalized into space registered 

by MNI coordinates.  
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FIGURES and FIGURE LEGENDS 

Figure 1. 

 

 

 Experimental setup. Subjects lay supine in the scanner with their elbows and wrist 

junctions placed on the nonferromagnetic frame in a slightly flexed and pronated 

position. During scanning, each participant’s head was located at the center of the 

magnet, while both their hands and the discs were outside of the magnet. In this 

position, the subjects could not see their hand movements (left). The discs were 

rotated with the index fingers (right). Hand movements were registered 

automatically with the input devices connected to a personal computer. 
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Figure 2. 

 

 

 ROIs of the M1s. The ROIs were defined as the local maxima of the activated 

areas by the bimanual rotation of the discs (a), within or closest to the hand knob 

structure of the inverted-omega shape (b) that was a landmark of the hand area (c, 

blue blobs). (a) SPMs of the enhanced neural activity during bimanual movement. 

Activated foci are superimposed on the transaxial plane of the T1-weighted 

high-resolution MRIs of the subjects. The T score is as indicated by the color bar; the 

statistical significance increases as red changes to white. The threshold for the 

SPM{t} was set at a family-wise error rate (FWE) of p < 0.001. The cross-hair 

indicates the ROIs.  

 



 
 

 47

Figure 3. 

 

 

(a) NCR between hands during the parallel mode and the mirror mode. The 

contribution from the left hand to the right hand is shown by open bars, and the 

contribution from the right hand to the left hand is shown by closed bars. (b) NCR 

between M1s during parallel, mirror, and rest modes. The contribution from the left 

M1 to the right M1 is shown by open bars, and the contribution from the right M1 to 

the left M1 is shown by closed bars during the mirror and parallel modes. During the 

rest mode, the NCRs of both directions are shown by closed gray bars. *p < 0.05 

(two-way ANOVA). 
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Figure 4. 

a                 b 

         

Statistical parametric map of the average neural activity within the group during 

parallel (a) and mirror (b) movement. The activities while performing the task were 

superimposed on surface rendered high-resolution MRIs unrelated to the subjects of 

the present study. The threshold for the SPM{t} was set at a family-wise error rate 

(FWE) of p < 0.001. The prominent foci were bilateral M1s, bilateral dorsal 

premotor areas and supplementary motor areas in both modes. As to the intensity of 

the activation, contrary to the effective connectivity, there was no significant 

difference between the two modes. 
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Appendix A  

State space modeling of kinematic data 

A linear state space model was used to analyze the kinematic data. A hidden 

variable was introduced in order to take away common dynamics from the 

bi-channel time series. By taking away the common dynamics, the remaining 

information in the time series was modeled by a first order autoregressive (AR) 

model. The following model was applied. 

State equation   xt = Fxt-1 + Gωt 

Observation equation  yt = Hxt+ εt 

Here, yt denoted our preprocessed data. This was projected from the state vector xt 

through a projection matrix H. xt was assumed to follow from a first-order 

multivariate AR dynamics through the transition matrix F, and was driven by 

multivariate Gaussian noise Gωt. xt usually has a higher dimension than yt. εt was a 

bivariate Gaussian noise of measurement error. In this paper F, G, and H were 

designed in a particular structure of parameterization as follows: 

 
n1 1        

n2  1       

n3   1      

n4    1     

⋮     ⋱    

np-1      1   

np 0 …    0   

0 …     0 f1 f2

F = 

╭ 
│ 
│ 
│ 
│ 
│ 
│ 
│ 
│ 
│ 
│ 
│ 
│ 
│ 
│ 
│ 
╰ 0  …    0 f3 f4

╮
│
│
│
│
│
│
│
│
│
│
│
│
│
│
│
╯

(p: AR order) 
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1 0 0 

0 … 0 

⋮  ⋮ 
0 … 0 

0 1 0 

G = 

╭ 
│ 
│ 
│ 
│ 
│ 
│ 
│ 
│ 
│ 
╰ 0 0 1 

╮ 
│ 
│ 
│ 
│ 
│ 
│ 
│ 
│ 
│ 
╯ 

 
h(j) 0 … 0 1 0

Hj = 
╭ 
│ 
│ 
╰

0 1 0 0 0 … 0 0 1

╮
│
│
╯

 
(1 0 0 0) if j=1 

(0 1 0 0) if j=2 

(0 0 1 0) if j=3 
h(j) = 

╭ 
│ 
│ 
{ 
│ 
│ 
╰ (0 0 0 1) if j=4 

 
σ(1)2 0 0 

0 σ(2)2 0 Q  = 

╭ 
│ 
│ 
│ 
╰ 0 0 σ(3)2 

╮
│
│
│
╯

 
R=0 
 

Here, F was a (p+2) × (p+2) square matrix, a transitional matrix of state xt from 

state xt-1. It can be considered as a block diagonal matrix of a p × p matrix and a 2 × 

2 matrix. The p × p block matrix was intended to explain the common dynamics, and 

the 2 × 2 block was intended to explain a coupling of the remaining information. p 

therefore denoted the AR order of the process of the common dynamics. ωt was a 

three-dimensional system noise vector. With this given G, the three elements of ωt 

were distributed to the first, the second to last, and the last element of xt.  

H was a 2 × (p+2) observation matrix. When we fitted this model, we allowed at 

each time step H choosing from H1, H2, H3, or H4, whichever maximized the 

likelihood function at that time step. The four different H values gave a degree of 
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freedom to the jittering motion of the rotating fingers. In the case of (1 0 0 0), the 

right hand phase preceded the left hand phase by one time point (10 msec). In the 

case of (0 1 0 0), the precedence of the phases of both hands was the same. In the 

case of (0 0 1 0), the left hand preceded the right hand by one time point (10 msec). 

In the case of (0 0 0 1), the precedence of the left hand was two time points (20 

msec). We adapted this procedure such that the fitted model explained the data by 

absorbing the fluctuation of the unsteady hand movement. 

Q was the variance of ωt and R was the variance of observation error εt. Q was 

assumed to be the diagonal of three elements: σ(1)2 , σ(2)2, and σ(3)2. For simplicity, R 

was set to zero, as the measurement error was less than 1°.  

The set of free parameters comprised p+4 parameters in F and three parameters in 

Q. For each value of p, a set of model parameters was estimated from the given data 

by the maximum likelihood method. Given a set of model parameters, the 

computation of the likelihood from the errors of the data predictions, as obtained by 

the application of the Kalman filter, was straightforward (see Åström and Kallstrom, 

1973, for a detailed treatment). Comprehensive introductions to state space models 

and Kalman filtering have been provided by Kalman (1960) and by Kitagawa and 

Gersch (1996). 

As p increased, the likelihood function also increased; however, an optimal order 

p was chosen using the Akaike Information Criterion (AIC), such that the model 

with the smallest AIC was selected (Akaike, 1977). 
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Appendix B  

State space modeling of preprocessed fMRI data 

State space modeling was used to analyze the preprocessed fMRI time series. The 

idea of a hidden variable was applied again with a modification of the 

parameterization. For the fMRI data, we restricted the common dynamics to the first 

order, and let the coupling part have a higher order; by contrast, for the kinematic 

data, we allowed the common dynamics to have a higher order but allowed the 

coupling part only the first order, because the fMRI data did not show any prominent 

common periodicity as the kinematic data did. The state space model described in 

Appendix A was applied, with the following parameterization: 

 

f111 f112 1 0      1 

f121 f122 0 1      c 

f211 f212   1 0    0 

f221 f222   0 1     

⋮      ⋱   ⋮ 

          

fp11 fp12 …     0 0  

fp21 fp22      0 0 0 

F = 

╭ 
│ 
│ 
│ 
│ 
│ 
│ 
│ 
│ 
│ 
│ 
│ 
│ 
│ 
│ 
│ 
╰ 0 0     …  0 0.05

╮
│
│
│
│
│
│
│
│
│
│
│
│
│
│
│
╯

(p: AR order) 
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1 0 0 

0 1 0 

0 … 0 

⋮  ⋮ 
0 … 0 

G = 

╭ 
│ 
│ 
│ 
│ 
│ 
│ 
│ 
│ 
│ 
╰ 0 0 1 

╮ 
│ 
│ 
│ 
│ 
│ 
│ 
│ 
│ 
│ 
╯ 

 
1 0 0 0 0 … 0

Hj = 
╭ 
│ 
│ 
╰

0 1 0 0 0 … 0

╮
│
│
╯

 
 

σ(1)2 0 0 

0 σ(2)2 0 Q = 

╭ 
│ 
│ 
│ 
╰ 0 0 σ(3)2 

╮ 
│
│
│
╯ 

 
0.042 0 

R = 
╭ 
│ 
│ 
╰

0 0.042 

╮ 
│ 
│ 
╯

 

Here, F was a (2p+1) × (2p+1) square matrix. The upper left 2p × 2p element was 

a canonical form of a bivariate AR(p) process (Aoki, 1990), capturing the main 

characteristics of the time series. p was chosen using the AIC, such that the bivariate 

MAR model with the smallest AIC was selected (Akaike, 1977). The common 

dynamics process, aimed at capturing the instantaneous dynamics, was adopted by 

introducing the last element of F. This near-white AR process was coupled to the 

observed states by the coefficients 1 and c (Wong and Ozaki, 2007). 

The three elements of the system noise ωt were distributed to the first, the second, 

and the last element of xt through the designed G. As the coupling of the hidden 

variable and the observed states happened in F, the observation matrix H helped in 

taking only the first two elements of xt. 
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Again, Q was the variance of ωt and R was the variance of the observation error εt. 

Q was assumed to be the diagonal of three elements: σ(1)2, σ(2)2, and σ(3)2. As the 

measurement error of the fMRI data was about ±0.25, we set the observation noise 

variance at 0.042.  

The set of free parameters included 4p+1 parameters in F and three parameters in 

Q. These were again estimated by the maximum likelihood method.  

 


