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Chapter 1

Introduction

Nuclear magnetic resonance (NMR) spectroscopy! measures the transitions between en-
ergy levels of the nuclear magnetic moment split by the external magnetic field. This
spectroscopy principally has three features as follows. First, the nuclear magnetic mo-
ment is a very sensitive and site-specific probe of microscopic environment in which the
nucleus is situated. Second, perturbation due to the NMR measurement is very small
relative to other spectroscopies. While the resonance frequency of NMR. spectroscopy is
approximately 107 erg in energy,‘ for example, the energy of the X-ray is about 10-?
erg. The system in question, thus, is not affected much by NMR observation. Finally,
unlike other experimental methods(UV, Raman, IR, and neutron scattering), NMR di-
rectly probes the electron density at a nucleus. In other words, NMR can measure how
a nucleus is shielded by electrons in its vicinity. Owing to these features, NMR spec-
troscopy in solutions occupies a unique position for studying the structure and dynamics

of materials in areas of chemistry, biology and medicine.?

I Principles of Nuclear Magnetic Resonance

In this section, the principle of NMR is reviewed briefly. Any nucleus with a non-zero spin

quantum munber, I, has a magnetic moment, m, associated with it, which can interact




with an applied external magnetic field, B. This interaction can be represented as follows

H = —yhI-B

= —m-B, (1.1)

where v is the magnetogyric ratio. i is equal to 21;;, where h is the Planck’s constant. The

interaction encrgy, F, associated with the above Hamiltonian is,
E = —yhBmy, (1.2)

where B is the strength of the magnetic field applied along the z-axis and m; is the

magnetic spin quantum number which can have any of the following values
my=1,1-1,1-2 ... —T+2~-I+1,-1. (1.3)

In the case of proton which has I = %, my can either be +% or 4%. The energy difference,

AFE, called as the Zceman energy, is
AE = | hwy |, (1.4)
where wy is the resonance frequency called as the Larmor frequency:
we =vB. (1.5)

A transition between these two energy levels can be induced by applying a second field, B’,
perpendicular to B and oscillating at the resonance frequency wy. Since each nucleus has
its own characteristic magnetogyric ratio, distinctive frequencies for each type of nuclei
at a given static ficld B, can be detected. This leads to the nuclear-specificity of NMR
spectroscopy. Nuclei normally find themselves among electrons which are continuously in
motion in an atom or a molecule. The applied magnetic field causes currents of electrons
which, in turn, induce a secondary local magnetic field at any given nuclear site. Thus a
nucleus in a molecule sees a local field that may be less(shielded) or greater(deshielded) in

magnitude as compared with the applied field, depending on the behavior and distribution



of the electrons in its immediate vicinity. The local or actual magnetic field, B

experienced by the nuclcus can be expressed as
B! = (1 — ¢)B, (1.6)

where o is the nuclear magnetic shielding tensor reflecting the molecular electronic prop-
erties specific to a given nuclear site. In liquid, gas-phase, or solution NMR, only one
value of the shielding property is observed owing to the free tumbling motion of molecules
which results in averaging of the shielding tensor over all orientations of the molecule
with respect to the applied magnetic field. In most cases, molecules do not prefer a single
orientation so the averaging which takes place is isotropic. The observed value referred
to as the isotropic shielding value is the .average of the principle components

g1 + 09 +
Oy = 11 322 033, (1_7)

and from now on, only the isotropic shielding value is considered in this thesis. As can
be readily seen from eq. (1.6), o is the index of shielding referenced to the bare nucleus.
Usually, certain compounds are chosen as convenient references or standards. For example,
in the case of proton NMR, tetramethylsilane (TMS) is chosen as the reference. The
normally reported quantity is defined as

v — pref

6:

Uref
O.ref -
- 1 — O—ref’

(18)
where ¥ = £¢ is the resonance frequency in Hertz, directly measured in the NMR spec-

troscopy. Since ¢ < 1, & can be rewritten as
§=0""—¢. (1.9)

d is called as the chemical shift, and this is a significant part of the NMR spectral in-
formation. It is noted that the chemical shift is in an opposite direction compared with
shielding. Positive chemical shift indicates more deshielded environment than in the case

of reference.



II Experimental Motivations

Chemical shifts have long been used as tools for covalent structural analysis, and it has
recently played an especially important role in structural understanding of proteins and
nucleic acids. An application of the method to protein structure by utilizing the high
'resolution-high pressure NMR spectroscopy?® is a good example of those studies. In that
study, proton chemical shifts of a protein in solution are measured with varying pressure.
From a set of the chemical shifts resolved for each amino acid residue, it has been concluded
that pressure induces important substates of protein ranging from native to completely
denatured, which can be regarded as conformational fluctuations of the molecule in am-
bient pressure. In other words, the free energy landscape of a protein could have been
realized by applying pressure as an order parameter, and the site-specific information of
the NMR chemical shift has made the realization possible. The NMR. chemical shift can
also provide detailed information about intermolecular interaction in solution. Hydrogen
bonds, for example, are one of the most important interactions in solution, and the proton

chemical shift is most widely used for investigating the interaction.

Study of the hydrophobic hydration® % is of particular importance due to its relation
with stability of biomolecules in aqueous solution. The major emphasis of the studies has
been put on determining the structuring or destructuring effect on water around an apolar
solute, i.e., on determining whether hydrogen bonds between water molecules around the
solute are enhanced or not. The proton chemical shift, which is a direct measure of the
hydrogen bond, has been utilized in this problem in company with some thermodynamic
measurements. In general, low-field chemical shifts of water in solution have been inter-
preted as structuring of water, i.e., increased strength or number of water-water hydrogen
bonds, by apolar solutes. Decrease in structure would reduce hydrogen bonds, cause more
shielding of a hydrogen nucleus, and thus give rise to a high-field shift. Although both
chemical shifts and thermodynamic measurements have provided profitable information,

current understanding of the hydrophobic hydration is far from complete. This originates




from the two difficulties. First, the difficulty in connecting two properties: the chemical
shift as microscopic properties in one hand and macroscopic thermodynamic properties
on the other hand. Second, the difficulty in understanding the chemical shift in solution.
The chemical shift in solution is determined by two contributions: contribution from the
change in the molecular structure due to solvation, and contribution from solvation struc-
ture around the molecule. If there would be a theory which can give thermodynamic
properties, solvation structures, and chemical shifts consistently and nonempirically, it
could provide valuable insight into a mechanism of the hydrophobic hydration. Obvi-
ously, the two difficulties mentioned above are generally true for all studies in solution
utilizing the NMR chemical shift. Such consideration has motivated the present study to

build up a theory of the NMR chemical shift in solution.

III Theories of Chemical Shift in Solution

Theories of the chemical shift in solution have not been well developed due to a number
of reasons: the most important has been the lack of a theory to describe the electronic
structure of a molecule in solution. As can be readily understood, the electronic structure
is of primary significance in determining the magnetic shielding of a nucleus. However,
the electronic structure is modified largely by solvent when the molecule is in solution.
Such effects manifested in the effective charge of atoms amount to 10 - 40 % sometimes,
and it can never be neglected. In addition, the NMR chemical shift is a very sensitive and
site-specific probe of environment as mentioned above. Therefore, a successful theory to
describe the NMR chemical shift should be able to treat the microscopic solvent effect on

the electronic structure.

Approaches based on the continuum model have been used for various problems in
solutions, and have given reasonable agreements with experimental data despite of its

model for over simplified solvent. Recently, the continuum model was extended for calcu-

6,7, 8

lating the chemical shift, and qualitatively correct results were obtained. However,




the chemical shift is a microscopic probe which is highly sensitive not only to the struc-
ture of the molecule in question but to the microscopic intermolecular interactions such
as hydrogen bonds. The description due to the oversimplified solvent model may mislead
to wrong conclusions with respect to the microscopic process occurring in solution.

The approaches based on the molecular simulations® ! seem to be promising for study-
ing the NMR chemical shifts in solutions, since it is capable of taking the molecular details
of solvent into account. However, the approach in the current stage requires some empiri-
cal processes to obtain the NMR chemical shift, which casts a shadow on its predictability.
Owing to the development of computer, the NMR chemical shift has been obtained by
carrying out the ab initio calculation for molecular clusters selected from the configuration
space sampled by the molecular simulation.'' 2 The cluster approach is indeed attractive
because the intermolecular interactions can be treated entirely with quantum chemistry.
A problem inherent to this approach is the convergence: it will be extremely difficult to
find out how many samples (configurations) of a cluster and how many molecules for a
cluster are needed for convergence of the physical properties in question. If the conver-
gence is very slow, the computational load will become a serious problem.

Very recently, the QM/MM method was extended for calculating the chemical shifts,!3
and the effect of solvation on the chemical shift was studied using solvent configurations
obtained by the molecular dynamics simulation. The QM/MM approach is superior to
the cluster approach in the sense that the former includes the effect from bulk solvent.
However, this method has the same problem as the cluster approach: how many samples
of a cluster and how many molecules for a cluster are needed for convergence of the

physical properties in question.

IV  Purpose

In this thesis, in order to understand the relation between the NMR chemical shift and the

solvation structure, a new theory for treating the nuclear magnetic shieldings in solutions



is proposed, based on the ab initio electronic structure theory combined with the reference
interaction site model'* '° in statistical mechanics for molecular liquids(RISM-SCF®: 17),
The RISM-SCF method treats both solute and solvent molecules in atomic level, and
determines the solute clectronic structure and the statistical solvent distribution in a
self-consistent manner. Thus, the method provides a microscopic picture for the solvent
effect on the electronic structure of a solute molecule within reasonable computation cost.
Furthermore, this approach is suitable for studying the relationship between the chemical
shifts and solute-solvent interactions, because the RISM-SCF method treats a solute-

solvent system, in which a solute molecule is at infinite dilution in solvents.

In chapter 2, the theoretical background to treat the magnetic shielding in solution
are reviewed briefly. In chapter 3, the theory for the magnetic shielding in solution is
presented. In chapter 4, preliminary results for the chemical shifts of a water molecule
solvated in water are shown, and the results for the proton chemical shifts of a water
molecule solvated in various solvents are discussed. Furthermore, the effect of the overlap
of electron clouds between solute and solvent on the chemical shift, which is disregarded
in the present framework, is discussed briefly using molecular cluster. The conclusions

are presented in chapter 5.
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Chapter 2

Background Theory

In this chapter, 1 describe our theory of the NMR chemical shift in solutions, which are
founded on three theoretical elements: the quantum chemistry of NMR chemical shift,!
the statistical mechanics of molecular liquids,? and the electronic structure theory of a
molecule in solution.? In the next chapter, I combine those elements to describe solvent

effect on the chemical shift in solution.

I Theory of NMR Shielding Constant in Gas Phase

The electronic Hamiltonian describing a closed shell molecule in the magnetic field com-
posed of an uniform external magnetic field B and the dipole fields arising fromn nuclear

magnetic moments m situated at fixed nuclear positions has the formn (in atomic units)
ZInZ N
HBm) = T A - DT 2Tl 5 Ay

N<N' Ryw:
Here, c is the velocity of light, E is a sum over all electrons and E is a sum over all

i N
nuclei. The last three terms represent the electron-nucleus, electron-electron and nucleus-

T‘JN

nucleus contribution to the potential energy, respectively. The vector potential describing

the interaction between the total magnetic field and jth electron, A(r;), is given by

Alr;) = B er+Zm—w, (2.2)
JN

where r; is the position of an electron with respect to an arbitrarily chosen gauge origin,

and r;y is the position of an electron relative to the position Ry at which the nucleus with

11




charge Zy is located. r;; and Ryys are the vectors r; —r; and Ry —R, respectively. The
energy (B, m) associated with this Hamiltonian can be found by sclving the Schrédinger

equation
H(B, m)¥(B,m) = E(B,m}¥(B,m), (2.3)

where U(B, m) is the wavefunction describing the molecular electronic state in the pres-

ence of B and m. £(B,m) can be expanded in a Taylor series of the magnetic fields B

and m about their zero-field values:

EBm) = +ZE(10) B, +ZZ 01)
+3 Z Z Ba(E®),3Bg + Z SN B (ECD)ml
o B
QZZZZm EON my 4, (24)

N N' «a

where E( indicates the energy without external fields, and (E(9)),5 are for example,

JFE(B,m
(BO0), — éB_) , (2.5)
a |B=0
0°FE(B, m)
(B = 55 i , (2.6)
@ B B,m=0

where a and J are the subscripts referring to x, y, z-components, respectively. N indicates

the nucleus.

In the framework of the perturbation theory, the nuclear magnetic shielding tensor
of nucleus X is defined as the mixed second derivative of the energy with respect to the

external magnetic field and the nuclear magnetic moment :
ols = (BWV)X,, (2.7)

Note that Z B, (E®X g in eq. (2.4) corresponds to the secondary magnetic field at the

nucleus X due to the electronic currents. Thus the total magnetic field experienced by

12



the nucleus X which is measured by the NMR machine as resonance frequency is given
by B(1 — &*).

In the SCF perturbation theory one seeks a solution ¥(B, m) to eq. (2.3) as a single
determinant of molecular orbitals(MOs), ¢;(B, m). In the absence of magnetic field, it is
usual to represent each MO as a linear combination of atomic orbitals(AQOs), where the
AQs are taken in the real form. On the other hand, in the presence of magnetic field, AOs
should be taken in the complex form to obtain the magnetic shielding constants which

are independent of the gauge of the vector potential. Therefore, each MO is expressed as:

$i(B,m) = > ¢, (B, m)x.(B), (2.8)

where

x.(B) = exp (—%AU . r) Dy

= fupu. (2.9)

X»(B) is called as the gauge-invariant AO(GIAQ), and the method calculating the mag-
netic shielding constant using the GIAO is referred as the GIAO method. In eq. (2.9),
A, = %B x R, is the value of the vector potential at the nucleus position R, of the real
atomic orbital ¢,. r is the position vector of an electron. The Hartree-Fock-Roothaan
equation in the presence of magnetic field is lead from the usual variational procedure:

> " [Foa(B,m) — (B, m)S,A(B)] ¢;»(B, m) =0, (2.10)

where the Fock matrix elements F,,(B, m) are given by
F..(B,m} = H,,(B,m) + G,,(B,m). (2.11)

The one and two electron terms are given by

Ho(B,m) = (x, | 5{~i7 + %A(r)}z =S -f% ), (2.12)

N

Ga(B,m) = Pee(B,m){(xuxalxcxe) - %(XuXﬁlXCXA)}: (2.13)
144

13



respectively. S,,(B) is the overlap integral and P,,(B,m) is the density matrix element.

¢;(B,m) is the MO energy. The total energy E(B, m) is written by

m) = Z P, (B,m) {Hw\ (B,m) + %Gu). (B,m)} : (2.14)
vA

Note that ¢;3(B,m) and P, (B,m) can be expanded as

¢ir(B,m) = ¢} +Z () ZEOMN (o) iy e (2.15)
PUA(B,m):P,Eg)+Zi(PS\'O) B. +ZZ (Pjﬂl)a +oo (216)

Differentiating eq. (2.14) with respect to mﬂ leads to

AF (B, m) 1
aTg. . Z a X { ,,/\ B m) (Hu,\ (B, m) + §Gy)\ (B,m))} .
0P, (B,
PEaBoxm)| gy (Bm) + Gon (B, 1)) e
vA a"'n.6 m={
0H,, (B,m
+Y P (B,m),_ -—5—?51y——) , (2.17)
VA 8 m=0
where the relation
1
Gux (B,m) = > P (B,m) {0 xalxcxe) — 5 Oeoxelxexa)} (2.18)
GE

and the fact that the GIAOs do not depend on the nuclear magnetic moment were used.
This expression can be simplified by using the fact that the solutions of eq. (2.10) are

constrained to be normalized for all values of B and m
> ¢, (B,m) S, (B) ¢ (B,m) = 1. (2.19)

Summing up over j, differentiating with respect to mff , and using eq. (2.15), we obtain

the following equation from eq. (2.19)

Oc;, (B, m) . 9c;x (B, m)
Z Z { __J‘_'a';ng(—sll)\ (B) Cj/\ (B, m) + ij (B, m) SU/\ (B) 'IBT%(
i vA m=0 "
0P, (B,
_ { %ﬂﬂ) Sua (B)}
v mﬁ m=0
=0 220

14




Since this relation holds for any S,,

8P,,,\ (B, m)

— 0, (2.21)
Bmg

m=0)

and therefore,

JF (B, m)
omg

BH,,,\ (B, m)
8m§

> Pa(B,m)|,_, (2.22)

m={ m=0
Differentiating eq. (2.22) with respect to B, gives the expression for the nuclear magnetic
shielding tensor of nucleus X as
X _ © [ gruny* (1,0) ) ¥
oaﬁ - Z PUA HII’\ 3 + ‘Pw\ Hw\ 8 . (223)
VA (s o

In the above equation, for example,

1,0\ _ 9P

(PVA ) - aBa B.m=0 ) (224)

a\X _ 9°H,,
(e )aﬂ By (2.25)

A B,m=0
Working in the Coulomb gauge, V - A = 0, and using the commutator
. 1 ) 1 1 '

[—iV + EA(r),exp(—-c-A;. )] = —EAA exp(—EA,\ - T), (2.26)

we can obtain the one electron term H, as follows:
Ho = (f500] 3{~V + T AE)P - T
DN v APy 2 1 - I

= (ff,\%|—{ ~-V2 4+ (me 22 (m™ ”’”2

m XI'N

-E(me v——Z(

22er,\ m® er} Z o), (2.27)

where 7, and 7y indicate the position of an electron relative to the position Ry and Ry,

respectively. Differentiating eq. (2.27) with respect to B, and mg and with respect to



mf{ gives

X i L
(Hﬁ?\‘”)ﬂ = v TTﬁ L o), (2.28)
X
X 1 r: rx5a;3 — Txa¥xp
HYY) = o
( vA of 22 (SO | 7‘3( | (P/\>
1 Lf{
+ @((Rw\ X T)ay | pry L oads (2.29)

X

where ij‘ is the orbital angular momentum operator. R, is the separation between R,
and R,. P,Ei), (H L(,;’l)); and (Hii’l)): can be estimated from the conventional ab initio
calculation, while (P&’O) )a are determined by solving the first-order coupled-perturbed
HF(CPHF) equation:

ST(FD - esD) (57) + {(FL?) P (s5) }e) =0 230
A

Expanding egs. (2.10) and (2.19) as Taylor series, separating orders, and equating with
respect to B, we can obtain the above CPHF equation. Note that ( (, 0))(}{’ where j
means the occupied orbitals, are required for (PS\ ))a. Suppose that (cg’o))a can be
transformed to the unperturbed orbital c;{;) as follows:

ocC vir

(57) = 2 U+ 20zl (2.31)

where UJ; is the transform matrix element. Substituting eq. (2.31) into eq. (2.30), and

using the fact that unperturbed HF equation is already solved lead to

occ vir

S U3 S+ S Ug TS0 - T8 {z o3+ gl |
A
+ Z { (F,Ef\ ) - (s},}\"’))a} & =0, (2.32)

Multiplying the above equation on the left by c,SS?,, where m indicates the virtual orbitals,
and summing up the equation with respect to v, we can get

0 10 0 1,0 0
Eoac {(F37), 4" (S37) } &

RG] m: virtual orbitals. (2.33)
€

— €&m

o
Ugs, =

16




The first-order orthonormal conditions for the occupied orbitals, ¢ and 7, are written as
0) (1,0} {0) 1,0 0 0) «(0) { (1,0
Z{ {)SVA }CEA (CE,\ )) Sx(;,\) 127 +C( Sx(/)\ ( i ))a} =0. (2.34)
7.1

Substituting eq. {2.31) into the above equation, we can obtain

Us = —% Z O}S(;O)cﬁ) i occupied orbitals. (2.35)
A

From eqs. (2.33) and (2.35), we can eventually reduce the expression for (c(-l‘o)) as

A
follows:
1,0 — Y (1,0 0
(CE'A )) =2 { ch S )CJE] i
k
i Ececzc {( F D}) — ¢ (S&’O)) e
+2. o .0 o (2:36)
1 G — &
where
(FS"a = (H3 ) + (G.‘,&"”)m (2:37)
3
(H3)a = oo ((Rua X ¥)aps | = —Z Y| ) = ol | L2 1o,
(2.38)
1
(G5Ma = D (PMallpupaliocye) = S (pupelicen))
c
1
+ 2 P (enlxaxd™), = 5 (exelon) ™)}, (239)
G
; .
(Coxalxexe) ), = —({(Rur + Ree) x rhaupaloce), (2.40)
2
1
(S3)a = 20 Bux X T)apy | 0r). (2.41)

Using the above relations, the NMR shielding constants at the HF level can be evaluated.
The GIAO method has been widely applied to the various problems and has given good
results. The effect of the electron correlation in the NMR shieldihg constants have been
investigated by many workers® and a development to the correlated method is straight-

forward. However, in this thesis, I am interested primarily in the relation between the

17



intermolecular(solute-solvent) interaction and the NMR shielding constants. Therefore
the refinements in the intramolecular electronic structure for the NMR, shielding constants
remain as one of my future subjects. Additionally, the results in gas phase® suggest that
the effect is less important at least for a water molecule which is treated as the solute

molecule in this thesis.

II Theory of Molecular Liquids: RISM Theory

The characterization of liquid states, roughly speaking, is a more difficult problem than
the characterization of the other states(gases and solids) of matter. In the gas phase,
particles are moving randomly, and theory can treat the gas in ideal state analytically
owing to this random motion. In the solid phase, on the other hand, particles(atoms
or molecules) arc placed periodically, and theory also can treat the solid in ideal state
analytically owing to this periodic structure. However, in the liquid phase, particles are
not moving randomly as in the gas phase, and particles are not placed periodically as in
the solid phase. Due to this complexity, the characterization of liquid states is difficult.
The positions of particles in the liquid phase vary from moment to moment, therefore,
the statistical description, for example, the distribution of the position of the particle or
the momentum of the particle, is essential to characterize the liquid state.

In section II.1, the distribution functions and the correlation functions, which charac-
terize the liquid structure, are summarized briefly.* In section I1.2, Ornstein-Zernike(OZ)
equation for obtaining the structure of simple liquid is introduced.? Section I1.3 is devoted
to an introduction of the reference interaction site model(RISM) equation as the extension

of the OZ equation for molecular liquids. *

II.1 Distribution Function and Correlation Function

The distribution function(especially, the radial distribution function) plays a central role

in the theory of liquid structure. There are two reasons for this. First, the distribution

18



function is directly measurable by radiation-scattering experiments. Second, thermody-
namic properties of liquid can be expressed in simple formulas using the distribution
function.

Consider a system of IV particles in a volume V' and at a temperature T'(the canonical

ensemble), the partition function Qp is defined as follows:

h—3N
Qn = i /,_.fexp —BHN(T1, .., TN, P,y -, Pa )Y ...drydp,...dp . (2.42)

In the above equation, i is the Planck’s constant. 3 is kBLT, where kg is the Boltzmann
constant. r; and p; are the position and the momentum of the particle 7 which has the
mass of m, respectively. Hy is the Hamiltonian of the system, which is written in the

sum of the kinetic and the potential energy

2

N
H.N(rl-: -"7rN1p1; meey pN) = Z 21?;1 + UN(rl'n '“7rN)- (243)
i=1

The integrations over momenta in equation (2.42) can be carried out explicitly, and the

partition function is then rewritten as

1

On = Frpew

Zn. (2.44)

A is the de Broglie thermal wavelength defined as follows:

h
A= ——, 2.45
V2rmkgT ( )

and Zp is the configuration integral

Zn —f.../exp[—BUN(rl,...,rN)]drl...drN. (2.46)

exp [—BUn(r1, ...,rn)] is proportional to the probability of finding a certain configuration
of particles, {r;,...,ry}, and Zy is the normalization factor of the probability. The
probability density of finding arbitrary n particles of the system with coordinates in

the clements dr,...dr, of coordinate space, irrespective of the positions of the remaining
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particles and irrespective of all momenta, is defined as follows:

(n) NI p=3n f...fexp (—BHn|drt1...dendp,...dpy
Py (X1, o ty) =
(N—n)! NI O
_ Nt [ [exp[-BUn(r1,....rn)|drpsr...dry (2.47)
(N —n)! Zn ' '

NY/(N —n)! is the number of the ways of choosing n particles from N. The n-particle

distribution function pg\?) is normalized such that

n N!
/"'/pgv)(rla---yrn)drl---drn = (T_' (2.48)

—n)!

In particular, 1-particle distribution function is normalized such that

[ R wydes =, (2.49)

and for a homogeneous system,

pY(r) = N/V
= p. (2.50)

The n-particle distribution function pf{f) (r1,...,Ty,) is rewritten in terms of the correspond-

ing n-particle correlation function g(") (ry,...,r,) by

[ 1) 1
P (r1, ey 1n) = g (r1, o) [ 0 (22), (2.51)
t=1

or, for a homogeneous system, by

pi(’\r,:)(rlv ey I'-n_) = QE\?) (rla sy rn)pn- (252)

In the grand canonical ensemble(with volume V', temperature 7', and chemical poten-

tial p fixed), the n-particle distribution function is defined as

oo

Py, ) = ZP(N)pS(;)(rl,...,rn), (2.53)
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WhCI‘C'P(N ) is the probability that the system contains precisely N particles, irrespective

of their coordinates and momenta, and is defined as

3N exp|N G| exp[—-H
PIN) = = /f il ’3’]51’[ RN e, .drndpy...dpy
12N

= is the grand partition function

_ N
= = Z i exp[N[J’,u]/.../exp[—ﬁ’HN]drl...drNdpl...de (2.55)
N=0

and z is the activity
z = A3 expBu]. (2.56)

From the above equations, the n-particle distribution function is rewritten by

if...fexp[—ﬁUN(rl,...,I‘N)]drnﬂ...drN (2.57)

NZn

(]| =

p(")(rl,...,ru) ==

The relation between the grand canonical n-particle distribution function and the corre-

sponding distribution function is the same as in the canocnical ensemble,

p(n) (1‘1, s ) rn) = g(n)(rla s rn) H p(l)(ri)a (258)
i=1

In the case that n = 2,

PP(r,r) = ¢P(r1,ra)pM (r1)pM (r2). (2.59)

In the study of the liquid structure, in particular, ¢'¥(r1,r;) is important since it can
be determined experimentally and thermodynamic properties of liquid can be written
in simple formulas using the distribution function. If the system is isotropic as well as
homogeneous, ¢ (r}, r,) is a function only of the separation r = |ty —ryl; it is then usually
called the radial distribution function and written simply as g{r). How can we estimate
theoretically the radial distribution function, which characterizes the liquid structure? In
the next section, the theoretical method for caleulating the radial distribution function of

simple liquids, which is called Ornstein-Zernike(OZ) equation, is introduced.
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I11.2 OZ Equation for Simple Liquids

Many years ago, Ornstein and Zernike proposed a division of the total correlation function
h{ry, re) = g(r;,ra)—1, which is a measure of the total influence of molecule 1 on molecule
2 at distance |r; —ry|, into two parts, a direct part and an indirect part. The direct part is
given by a function c(ry, ry) called the direct correlation function. The indirect part is the
influence propagated directly from molecule 1 to a third molecule, 3, which in turn exerts
its influence on 2, directly or indirectly through other particles. This effect is weighted
by the density and averaged over all positions of molecules 3. With this decomposition of

h{r),ry), we can write

h(ry,ra) = ¢(ry,re} + /c(rl,rg)p(rg)h(rg,rg)drg (2.60)

Expanding the Eq. (2.60) as follows, one can see that the h(r;,r;) includes the effect

from the all particles in the liquid system:

h(ri,e2) = ofry, r)
+ / (r1, ra)p(rs)e(rs, v ) drs
T f / (v, 3)p(rs)c{r, 1a)p(ra) (s, ¥4)drsdes
= c(r1,17)
+ / (v1, T5)p(rs)c(rs, ra)drs
/ f ¢(r1, 73)p(3)c(rs, 1) p(ra)e(rs, Ta)drsdrs
] f / o(r1,75)p(r3) (T, 1) p(ra)clrs, 13)p(xs ) ra, 15 )drsdradrs

= ... (2.61)

This relation for the 2-particle correlation function is called the Ornstein-Zernike(OZ)
equation. In this section, we derive the OZ equation for simple liquids from the analysis

of the 2-particle distribution function in the grand canonical ensemble. Hereafter, we

consider the homogeneous systems.
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From eq. (2.57), 2-particle distribution function is written as an expansion in z:

—Bu = N- ,
P2 (11, 12) = ME'—ﬁ“ml{l""Z (Nz—__;)!/.../exp[—ﬁUN]drg...drN}, (2.62)

N=3

has been omitted. Using the relation
(2.63)
eq. (2.62) is expanded as follows:
o2 (ry, 1) = 2% exp[—fua) [1 + z{/ e BUsdr, — 7,}
+ z—;{ / f e WVadrydry + 227 — Zy — 27, ] e—ﬁuédrg} 4+ ] (2.64)

If we assume pair-wise additivity, we can write exp[—3U,] as exp|— O3] expl—Buza)

(exp[—Buia) is omitted from exp[—3U;]) . Now, we introduce the function,
fij = exp[—Puy] - 1, (2.65)
which is called as the Mayer f-function, and then we obtain
oxp[—BU;] = (1+ fis)(1 + fos)- (2.66)
Using the above relations,
fe_ﬁU;dra -4 = f{l + fiz + faz + fiafas}drs — Z4
= /{f13 + fas + fr3fas}drs. (2.67)

One can eventually get the relation for the 2-particle distribution function:

pI(r,ry) = 2% exp|—Buyy) [1 + Zf{fls + fo3 + fi3fas}drs

2

+ 5 [ [0+ 280+ 2fuafaat Fishia+ Fusf

+ fisfiafsa + fasfoafsa + 4f13 faafaa + 2 13 frafoz + 2 f13 faa foa

+ 2f13fasfoaf3a + 2frafrafoafaa + Frafrafosfoa + frafiafoa foafaa bdradry

1. } (2.68)



In the next step, we expand the activity z in terms of the density p = (N)/V. In order
to obtain the relation between z and p, we consider the relation between the pressure p,

the volume V, and the grand partition function =:

— exp [%”T] . (2.69)

n

We now assume that the pressure can be expanded in powers of z according to
p=FksT > b7, (2.70)
i=1

Substituting eq. (2.70) into eq. (2.69), expanding the exponential, collecting the same

powers of z, and equating the coefficient to those of eq. (2.63), we can obtain b; in terms
of Z N
1
—Z
v
1 2
W(Zl ~Zi)
1

by = glv(;33—32221+22~E)

(2.71)

The density p is written as

_z {Op
P=%T (6z) vr’ (272)

Substituting eq. (2.70) into eq. (2.72), we can obtain the relation between z and p

p= b (2.73)
J=1

Since we wish to obtain the expression of z in terms of p, we assume that z is a power

series in p
z=ag+ a1 p+ayp’+---. (2.74)

Substituting this into eq. (2.73) and equating coefficients of the same powers of p, we can

get the expression:

z=p— 2byp® + (83 — 3b3)p® + - - -, (2.75)
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From egs. (2.68) and (2.75), we can get the 2-particle distribution function as an expansion

in p:

PO r) = Py

+ ez (/{fla + fos + fr3fas}dry — 452) P’
4 g~ Puz (202)% —6b; — 6 /{f13 + fa3 + fiafasbdrsbs

+ % / /{2f13f24 + 2f13f30 + 2foafaa + frafia + foafoa + fiafrafaa
+ faafaafaa + 4 13foafaa + 2 frsfrafos + 2f1afasfaa + 2 f13 fos foa faa
+ 2f13f1afoafaa + fizfrafozfos + f13f14f23f24f34}d1‘3d1‘4) p

4o (2.76)
b; can be also written in terms of f;;,

by = -z}

v

- [ [ e ([ )}
- o )
= gy { [ a0 [ puea)

= '"/fl?dI'lZ: (2.77)

by = 3|V(Z3—~3Zz.21+22)

= 5 { f / f e PYsdr drodry — 3V / / e PV2dr, dr, +2V3}

= % {f/[(l + f12)(1 + f13)(1 + fog)dridradrs

- 3V/f(1 + flz)drldrz + 2V3}

N GLV / / f[fmfl?’f??’ + fiafi3 + frafas + fr3fas]dridraydrs
1
= -é? fdl'l / /[f12f13f23 + f12f13 —+ f12f23 + f13f23]dr12dr13



= %//.[fmfmfm + fiofis + fiafas + fizfos)driadrs, (2.78)

Substituting the above relations into eq. (2.76), we can eventually get the expression for

the radial distribution function as an expansion in p:

9(2)(1‘1 3 1‘2) = Pm(rl, 1'2)/,02

= ¢ A2 [1 + p/fmfzsd-l‘z + E; f]{2f13f24f34 + 4 f13f23f2af34

+ fiafiafosfos + f13f14f23f24f34}d1‘3d1‘4 + - ]

= e Pue]l 4 i p" Z Ci{n + 2)], (2.79)

n=1

where the coeflicient C;(n 4+ 2) in the density expansion of the radial distribution function
is called “1-2 irreducible cluster”. The sum on 4 runs over all kinds of the clusters which
consist of n+2 particles. In the case of n = 2, for example, C,(4) corresponds to the cluster
[ [ fi3f2af34dradry. Note that [ fi3fosdrs has the dimension of VN2, [ [ fi3 fos fradrsdry
has the dimension of V2N~2, and so on. Therefore g{® has no dimension. Note that
g2 (ry,ry) = e P2 a5 p = 0.

The 1-2 irreducible cluster consists of two kinds of clusters, simple clusters and com-

posite clusters. For example,

Ci(3) = /f13f23dr3 (2.80)

is the simple cluster, which cannot be decomposed into any simpler clusters. On the other

hand,

Cs(4) = %f/fl3fldf23f24dr3dr4 (2.81)

is the composite cluster, since C3(4) can be decomposed into the product of the simple

2
f/f13f14f23f24d1‘3d1‘4 = (ff13f23dr3)

- (@) (2.82)

clusters as follows:
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All of the composite clusters are included in the powers of the sum of all simple clusters.

Using this relation, the radial distribution function(eq. (2.79)) can be rewritten as

9(2}(1-171-2) — 6_‘6"”[1 + anzc‘i(n + 2)]

n=1 i

. 2
= e Pu2]] 4 (Z Py Ciln+ 2)) + él—, ( PP Ciln + 2))
n=1 i : n=1 i

_,_%( 1an'Ci(n+2)) +--1. (2.83)

n=

oo

In the above expression, Z indicates that the composite clusters are omitted. Intro-

3

ducing the function S,

512 = Z p" Z IC,;(TL + 2), (284)

n=1 i

g'? can be rewritten by simple form as

g¥(r1,re) = exp[—furs + Sual. (2.85)

Note that 19 — %512 is called the potential of mean force.
The simple cluster also consists of two kinds of cluster, series diagram and bridge
diagram. The series diagram has the nodal points, through which all paths between the

two particles at ry and r; pass, and the bridge diagram has no nodal points. For example,

]/f13f24f34dl‘3d1‘4 = I_I: (2.86)

is the series diagram and the points at r; and ry arve the nodal points. On the other hand,

fff13f14f23f24f34dradr4 = N: (2.87)

is the bridge diagram and there is no nodal points. In the above expression, the two fixed
particles, 1 and 2, are called “root points”; the other particles, which are integrated over,

are called “field points.” Sy5 is re-expressed as

Sy =S85, + SE (2.88)
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and

g(z)(rl,rg) = exp[—Pu + 8152 + Sg]. (2.89)

57, and SE are the sum of the series diagrams and the sum of the bridge diagrams,
respectively.
Consider the series diagrams which consist of an arbitrary number of nodal points,

such as

_//flsf23f24f34dr3dl‘4 = N (2.90)-

When the field point 3 is assumed to be the closest nodal point to the root point 1 among
all field points, the path between the field point 3 and the root point 2 always exists. In
other words, onc of the diagrams which are included in ¢® (rs, ro)— 1 always exists between
the field point 3 and the root point 2. Here, we define the two correlation functions. One is
that the direct correlation function, ¢(r;, rs), which gathers the contributions between the
root point 1 and first nodal point 3 in all of the series diagrams. The other is that the total
correlation function, h(rs,ry) = g'¥(rs,ry) — 1, which gathers the contributions between
the point 3 and root point 2 in all of the series diagrams. Using these correlation functions,
the contribution between the root points 1 and 2 in the series diagram is expressed as

follows:
S5 = fc(rl,rg)p(rg)h(rg,rg)drg. (2.91)
Since ¢(r1,T2) does not include the contribution from the series diagram 53,
efry, rg) = h(ry,ra) — S5y (2.92)
Substituting eq. (2.92} into eq. (2.91), we can obtain the OZ equation:
h(ry, o) = ¢(ry,ro) + _/c(rl,rg)p(r3)lr,(r3,rg)drg. (2.93)

The OZ equation can be considered to be a definition of the direct correlation function

or, alternatively, it can be considered as a relation between h and c.
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The relations obtained from the analysis of the 2-particle distribution function can be

summarized as follows:
g®(r1,r) = exp{—fBui + Sy + Sfl, (2.94)
C(rhr?) - 9(2)(1‘171‘2) —-1- Sf?? (295)

gm(rl,rg) ~1 = ¢(ry,ra) + /c(rl,r3)p(r3){g(2)(r3,r2) — 1}dry. (2.96)

These three equations constitute exact equations within the pair-wise additive approxi-
mation for the potential Uy. If S5, or & were given, these three equations would give
g®(ry,13). The equations, however, are intractable because the f-function expansion for
¢'?) introduces an infinite series of many-dimensional integrals of products of f-functions.

If we make the approximation of setting S = 0 in eq. (2.94),
gP(rr,rs) = exp[—Puyr + S5 (2.97)

we obtain an approximate integral equation for ¢(¥ called the OZ/hypernetted-chain

(HNC) equation:

9(2)(1'1,1'2) = exp [—Buiz) exp [f{g(g)(rlarS) —-1- 1ogg(2)(r1,r3)

— Buys}p(rs){g? (rs,ro) — 1}] drs (2.98)

If we make the approximation of setting S5, = 0, and including only lst-order in the

expansion of exp[S3] in eq. (2.94),

g(z)(rl,rg) = exp[—PBup)(1+ 55) (2.99)

we obtain instead an approximate integral equation for g™ called the OZ/Percus-Yevick

(PY) equation:

g(z)(rl,rz)eﬁ"‘12 =14+ fg(z)(rl, r3){1 — eﬁ“”}p(r;;){gm(rg,rg) — 1}dr;. (2.100)

In the above expressions, although the single-particle density is written as p(ra) explicitly,

it is equal to p in the homogeneous system which we consider hereafter.
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If the pair potential u)(hard-sphere, Lennard-Jones, and so on) is given, using egs.
(2.98) or (2.100), we can obtain the radial distribution function g'*(r;,r;) and the ther-
modynamic properties of the simple liquids, and study liquid states theoretically. In the

next section, we extend the OZ/HNC or OZ/PY equation for the molecular liquids.

I1.3 RISM Equation for Molecular Liquids

In this section we introduce reference interaction site model(RISM) equation to obtain
site-site pair correlation functions for molecular liquids. RISM equation can be derived
from the statistical-mechanical partition function shown to be an exact equation. Here,
however, we will give only outline of RISM equation in an intuitive manner.

One of the most important feature in molecular liquids is that the intermolecular
interaction is a function not only of the separation of the molecules but also of their
mutual orientation. Model potentials to treat molecular liquids are divided roughly into

two types. The first type is described as follows:
u(1,2) = u(R, 2;,,), ' (2.101)

where 1 and 2 in the left hand side, respectively, are the coordinates of molecules 1 and 2
including their orientation. R is the coordinate vector between the centers of mass of the
molecules, and £2; and €2, represent their orientation. This model includes, for example,

the Stock-Mayer type potential,
u(1,2) = ug(R) — pty - T(R) - s, (2.102)

where uo(R) is the spherically symmetric term, g, is the dipole moment vector of molecule
i, and T(R) is the dipole-dipole interaction tensor. This model can be generalized by
including the interactions of higher order, for example, dipole-quadrupole, quadrupole-
quadrupole terms. The second type is a model in which each molecule is represented by a
set of discrete interaction sites located usually at the sites of atomic nuclei. This model is

called the interaction site model(ISM). The total potential energy of two interaction-site
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molecules is obtained as the sum of spherically-symmetric interaction-site-potentials. Let
o1 be the coordinates of site « in molecule 1 and let rg, be the coordinates of site 3 in
molecule 2, where 1 and 2 are different molecules. Then the total intermolecular potential

energy is given by
u(1,2) = 3 tayn((Far — 1a,)) (2.103)
a g

In the above expression, uq,3, is a site-site potential and the sums on a and 8 run over

all interaction sites in the respective molecules. The coordinates r,; can be rewritten as
a1 = Ri + 1oy (1), (2.104)

where R; denotes the position of the center of molecule 1, and 1,,(£2;) is the displacement

of the site o from that center. A diatomic ISM molecule is depicted schematically in Fig.

2.1

--- Lmﬁl B

Tai R,
Figure 2.1: The shape of ISM molecule.

By using ISM, the dependence of u(1, 2) on the polar coordinates is replaced by the de-
pendence on the intermolecular site-site separation. The two model potentials mentioned
above are equivalent to each other in the sense that, given appropriate parameters, both

of them can reproduce a potential determined by some other method such as the quantum
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chemical calculation. The ISM has been used commonly in the molecular simulations of
condensed phase properties for a large variety of chemical substances; electrostatic inter-
actions are easily accounted by inclusion of Coulombic terms in the site-site potentials.
Here, we utilize the ISM for constructing the integral equation theory of molecular liquids.

Before explaining the RISM equation, we reconsider the OZ equation in expanded

form as shown in eq. (2.61)

h(ry,ry) = c(ry, r)
—}-pfc(rl,rg)c(rg,rg)drg
-|—pﬁ/fc(rl,rg)c(rg,r4)c(r4,r2)dr3dr4
+p3ff/c(r1,r3)c(r3,r4)c(r4,rs)c(r5,r2)dr3dr4dr5

4 (2.105)

In the diagrammatical representation, the above equation can be rewritten as:

c
h(rl,l‘g) = (15—?

+po—e—o
1 2

TR (2.106)

where a full line is called a c-bond. The black circles, connected by c-bond, are the
white circles which have been integrated over space, and have the number density of
p. The above equation has the following physical interpretation. The total correlation
between particles 1 and 2, represented by h(r;,rs), is a sum of the direct correlation
between 1 and 2 and the indirect correlation propagated via large numbers of intermediate
black particles. The first term in the right hand side indicates the direct contribution

from the two particles, and the second term from the three particles, and so on. The
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key ingredient of the RISM equation is an OZ like relation between the site-site total
correlation functions h,sz and the site-site direct correlation functions c,3. The above
physical interpretation can be applied to site-site correlations with the allowance made
for the fact that correlations also propagate via the intermolecular sites with geometrical
constraints of the molecule. In the ISM framework, the constraint is represented by the
intramolecular site-site pair distribution function s,,s, for distinct site in the molecule 1,

defined using the Dirac delta function as:

(1 - 50.6)

'sﬂlﬁl(r?r’) = 4m2L,, 5
a1 31

6(11' - I"| - L0131)1 (2107)

where L, 3, is the bond length between the sites o and 3. 54,3, represents the probability
of finding site 3 of the molecule 1 at a position r’ given that site a of the same molecule
is at a position r. Only the case that |r — r'| is equal to L,,3,, 84,5, has a certain
value. By an analogy with the OZ equation for the simple liquids, the site-site total
correlation functions h.g consist of the c-bonds and the s-bonds which originate from the

intramolecular site-site pair distribution function s,,3,,

C s C C s 5 C s
]?,(1'1,1‘2)2 0—=o + G+te—0 + o—et++0 + GH+e—e o
ap f o Bz o B2 o B2

c < s ¢ c e ¢ s,
+p(e~—o—e+ GHte—e——0 + o— oo+t + )
a1 Bz B2 m B2

P C C C ] C C [ c [ C 5
+p(9—0—0—€)+G-H—H—C———O—-€)+G—O—O—O++HD+"')
ai B B2 m G2

< C C C s C C C C
(01 R B2 )

. - (2.108)
where a full line denotes a c-bond and e+ri+e denotes an s-bond. It is noted that the black

circles connected by c-bond or s-bond represent the intermediate ones to be integrated over

space and summed over all sites in the molecule. For example, in the above expression,

on 1

04-?-,;.;5; = E/sam(r,r”)cw@(r",r')dr”, (2.109)
251 2
.
on 3
C C
oo = > f Cayys (T, T ) oy (2 1) (2.110)
y
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Here, eq. (2.109) represents the indirect contribution between the site & on molecule 1 and
the site 8 on molecule 2 through all the other sites on the molecule 1. While eq. (2.110)
is the indirect contribution between the site ¢ on molecule 1 and the site 8 on molecule 2
through all the sites on the molecule 3. If we define the total intramolecular site-site pair

distribution function wy, g, (note that wy, 5, in denoted as w5, in some papers)
Wa g (T, ') = 8a30(r — 1) + 84,5,(r, 1), (2.111)

we can rewrite, for instance, the terms of the zero-th order with the density in eq. (2.108)

nlon?2
3 [ [ ot ot )
o] [}

= Z Z Wayyy * Cyiéy * wazﬁz(r) rf)' (2-112)
¥ 1)

“x” denotes the spatial convolution integral over intermediate coordinates. Using the

function w, we can finally obtain the RISM equation for the molecular liquid system:

onlon?2 onlon3

Ry (T, 1) ZZwam * Cuty * Waagn (1,1) + ZZwam ¥ Cngy * Pahgagn (T, T).
(2.113)

As is in the simple liquid theory, the site-site radial distribution function g, 3, is equal
to N, 3, +1. In order to obtain the site-site pair correlation functions, the RISM equation
must be combined with a certain closure equation such as eq. (2.97) or eq. (2.99) for the
0OZ equation. Although several generalizations of these closure equations for molecular

liquids have been proposed, the direct analogue of eq. (2.97)

g2, (x,1') = exp[~Pua,p, (r,r') + S5 4, (r,1)] (2.114)

or eq. (2.99)

g2, (r,v') = exp|—Btiaypy (1, (L + S5 5 (r, 7)) - (2.115)
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has been demonstrated by many examples to be very productive for describing structure of
molecular liquids. The combination of egs. {2.113) and (2.114) is called as the RISM/HNC
equation, and the combination of egs. (2.113) and (2.115} is called as the RISM/PY

equation.
The RISM equation for a neat liquid can be readily generalized to a multi-component

system using the matrix notations:
h=wx*c*w +w=xcx*ph. (2.116)

For a solute-solvent system, eq. (2.116) can be conveniently rewritten using the subma-

trices labeled with solutes{u) and solvents(v) as follows:
h,. hy, w, O Cuu Cuv w, 0
(hw hw) - ( 0 wu) * (cvu cw) * (0 wv>
G R ) B (- B (S IS
where the subscripts indicate the class of species included in the submatrix labels. Note

that w is the block diagonal matrix and p is the diagonal matrix. With this notation, we

have as an immediate consequence the set of equations, equivalent to eq. (2.113),

h'vv =Wy k Cyy ¥ Wy, + Wy * Cyq * puhvu + Wy ¥ Cyy * thm” (2118)
huv = Wy k Cop * Wy Wy, Kk Cyyy * Puhvu + W, * Cyy ¥ thw, (2119)
By, = Wy * Cuy % Wy + Wy * Cuy * Py + Wy * Cuy * Py, (2.120)

We now consider the case in which all solute (u) species are at infinite dilution in the
solvent mixture, i.e., p, — 0. Then, in each of egs. (2.118) - (2.120} the second term is

vanishingly small compared to the others and we have

hy, = Wy * €y * Wy, + Wy, * Cypy * p gy, (2.121)
hm; = Wy F Coy ¥ Wy + Wy K Cyyy K p-vhvv: (2122)
By = Wy % Cuy * Wy + Wy, * oy * P . (2.123)
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Now, we define the pure solvent site density pair correlation functions x,,,

Xy = Wy + Ppllo, (2.124)

then we can rewrite eq. (2.122) as

h,, = w, * Cu * X, (2.125)

or

hﬂ’uﬂu = Z Z wﬁu‘Tu * cTu'T;, * XTL,Bu‘ (2-126)
T

This equation is the solute-solvent RISM equation in which the solute is at infinite dilution
in solvents. This framework is suitable for the investigation of solute-solvent interactions
in the systems. For an application of the theory to polar liquids in which the Coulombic
interaction is essential, the equations (RISM/HNC or RISM/PY) should be renormalized
to avoid divergence regarding the spatial integral .8

In the next section, we introduce the electronic structure theory coupled with RISM
theory(RISM-SCF theory) through the electrostatic interaction between solute and sol-
vents. Since it has been found that the RISM/HNC equation is appropriate for a highly

polar system, the RISM/HNC equation is adopted for the description of molecular liquids
in the RISM-SCF framework.

IIT Theory of Electronic Structure in Solution:
RISM-SCF Theory

The development of theoretical methods to calculate the electronic structure in solution
is one of the important issue in quantum chemistry in the last two decades. Since the
quantum chemical calculation of the whole solute-solvent systems are intractable, hybrid
approaches between the classical solvent and quantum solute have been developed. RISM
self-consistent-field(RISM-SCF) method, which is introduced in this section, is one of such

hybrid approaches. This method describes the solute-solvent interactions as the sum of
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site-site interactions between the constituent atoms in solute and solvent molecules, and
thus this method has an advantage in providing a microscopic picture of solute-solvent
- interaction. It is noted that the solute electronic structure and the statistical solvent
distributions around the solute are treated in a self consistent manner.

Defining the energy of a molecule, E, by the sum of the electronic encrgy, (¥ | H | ¥),

and the nuclear repulsion energy, En..,
=(VIH[T) + Epe, (2.127)

where the total wave function | ¥) is represented by a Slater determinant of molecular
orbitals, ¢;, we can derive the Fock operator for an isolated molecule in gas phase from

the variational principle,
6(E — orthonormality condition for {¢;}) = 0. (2.128)

Similarly, the Fock operator for a solute molecule in solvent can be derived from the
variational principle as follows. We define the solvation free energy as a sum of the
electronic energy of a solute molecule En. and the excess chemical potential due to

solute-solvent interactions Au:

A = Euonge + Ap. (2.129)

E,otute can be estimated by ab initio electronic structure methods such as the Hartree-Fock

method:

sotute - 2 Z ¢t | h | ¢1 + Z ¢t¢’1. l ¢J¢J) (¢l¢3 l ¢J¢t>) ’nuc: (2130)

where h is the one electron operator. On the other hand, for the chemical potential
term we adopted the free energy’ derived from RISM/HNC equation(eq. (2.113) and eq.
(2.114)),

Z f{eXp[ ﬁuas + tns] -1- tos - has as T 2hc2xs}dr

- = /{ anshas + = Z CasWory * Cyst * X5t JAT. (2.131)

a,'ys 5
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In the above expression, 3 is equal to — ToT T, where kg and T are the Boltzmann constant
and temperature, respectively. Note that p is the density of solvent. The Greek and
Roman subscripts refer to the interaction sites of the solute and of the solvent molecules,
respectively. ¢y, and h., are the direct correlation functions and the total correlation
functions, respectively. tas is equal to h., — cas. Xss 18 the pure solvent site density pair
correlation functions{eq. (2.124)) and w,. is the total intramolecular correlation functions
of the solute(eq. (2.111}). The solute-solvent interaction potentials u., are given as the

sum of Coulombic and Lennard-Jones terrs,

a'is 005 12 JQ‘S 6

v, = Tl [( ) - ( ) } . (2.132)
T r T

In this framework, the effective charges q, assigned to the solute sites depend on the

solute electronic wave function as

G =™ =D "2 | ba | ¢3), (2.133)

i

where b, is the population operator generating the effective charge on the site a due to

the electrons. q&N) is the effective nuclear charge on the ¢ site. In the case that the site

is located at nucleus, qc(,N) is equal to Z,, where Z, is the nuclear charge of the nucleus «
In the present case, g, is determined by fitting to the electrostatic potential due to the

solute electron distribution in the least square fashion.

The quantity A in eq. (2.129) can be regarded as a functional of the functions K.,
Casy tas, and ¢;. We define the following quantity I with the inclusion of the constraints

to the orthonormality of molecular orbitals:

h c,t, ¢ thm ¢1 ] d)m - 1m)- : (2134)
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Taking the first variation with the basic quantities,
T+61=2 (i +b¢ | h| §i + )
+ ({0 + 00 + 80} | {85 + 06,19, + 66;)
- (I{Jebf + 8¢ H s + 065} [ {d; + 0 H{di +66:})) + B
_ % { > expl—Bas + tas]

2.2 96, "' " 09y
Jexp|—Luws + tars]
Py P ey,

1= 3 b 8t0) = 3+ G (Fs 9+ 5 s + 8

a,s a,s @,

- % { B Z(CQS + 8Cas)(Mas + Olgs)

«,8

1
T3 Y (Cas + 6cas)(Crsr + eye) * war + Xs’s}dr

a,’y,s,s’

- Z Eim(<¢i + 6¢z I ¢’m + 5¢m> - (5im):

1,m

We obtain the variational principle as

81 =27 {06x | | ¢) + 23 (601 | D (275~ KG) | )

— 2{% ZZ(&@ | ba | :) /ﬁ% exp|—Pugs + tas|dr

i s

_ %Z /(exp[—ﬁuw + tas] = has — 1)6tasdr
B %Z f(—tm + Ras = Cas)Oltgsdr

1
- {_j Z /.(h'us + Zwr)'y * c’}s’ * X.‘i’s)(scﬂsdr
.5 ¥,8
- Z eim<(5¢i | ¢IH.>

i,m

+ complex conjugate

=0.
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In the above equation, J; and K; are the Coulomb and exchange operator, respectively.
The fourth, fifth, and sixth terms give the RISM/HNC equation. From the above relations,

we can obtain the solvated Fock operator

I:] =h+ Z(?Jj pZ b, ]— exp|—Ftigs + tasidr
J
=h+ ) (2J; - K;) - ZbaVa, (2.137)
i 3

where

= piqsgfﬁdr (2.138)

V, is the microscopic mean field, which includes molecular level information as well as
bulk properties of solvent. The RISM-SCF method can be much more informative com-
pared to the usual self-consistent reaction field model based on the macroscopic dielectric
continuum.

The rest of this section is devoted to the technique for the determination of effective
charges assigned to the solute site, through which the RISM/HNC equation and the
molecular orbital calculation are coupled. Although there can be several possibilities to
define the effective charges, the least squares fitting technique is adopted in this work,
so as to reproduce the electrostatic potential on the grids, defined arbitrary outside the
solute molecule. The potential, U(Ry), which is generated by the solute molecule at the
position R, can be divided into two contributions: are from the nuclei, Iy, and the other

from the electronic clouds, U,:

URy) = Un(Ry) + Ue(Ry), (2.139)
where
N Z,
Un(Re) = Z TRe—Ra| (2.140)
ZPV,\ oy | o | ox) (2.141)
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where Z4 is the nuclear charge of the nucleus A. P, is the density matrix, and ¢, is the
atomic orbital. While, the electrostatic potentials at the position Ry due to the cffective
charges on the interaction sites, which are identical to nucleus in the present case, are

also written as

U(Ry) = Un(Ry) + Ua(Ry), (2.142)
where
N N ¢
Uv(Re) =Y —4 2.143
- N qgf)
U(R) = —_— 2.144
R0 =3 7 2Ry (2149

Therefore, in this case, the effective charges of nuclear part are given by qf,fv) = Z,. For
the effective charge of electronic part, we carry out the usual procedure of minimizing
the target functions with the constraints of preserving the total number of electrons as

follows:

I N '
= (Z[U(Rk) ORI + 2630 - Ne]) ~0 fralg,  (2145)
q; k=1 A

1

where k is the index of grid, and [ is the total number of grid points. ¢, is Lagrange
multipliers. N, is the total number of electrons, N, = ——Zy«\ PS5, and S, is the

) are solved to be

QEE) =~ Z ai_jl Z PVADUA,j — €e Z a,‘_jl, (2146)
i

overlap integral between the atomic orbitals. qu

VA F
where t
@ = TR (2.147)
k
i 1 1
Dy = }; e Ty 1) (2.148)

Ti is the distance between the grid point k& and the solute interaction site 7. Using the

relation,

N
S =3 RS, (2.149)
i vA
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we can obtain the Lagrange multiplier

— Z ai_jl Z P;//\-Dv)x.j + Z PuASuA
e — i A i ) (2.150)

§ ’ -1
li')j

Finally, ¢ are given by

(IF) = ZP:/A(QOU | bi | )
7.3
= — Z(L;jl Z P;,)\D,,)\'j
7 A

2%
+ ”Z'a_l S0t S PaDist - S PaSial - (2.151)
ij 1,7 A v,A

i,J

Irom eqs. (2.137) and (2.151), the solvated Fock matrix element is written as follows:

Fw\ —_ H:/A + GUA - Z((Pu | ba | @A)Va

= Hu)\ + Gw\
>
_Z Za;TlDW\,‘r_ b — [Z{a;—;DuAn’}_Sﬂ] V. (2.152)
@ ¥ ZQT‘T' g

'

Ty
As can be readily seen from the above equation, the microscopic mean field due to solvents
interacts with the electronic structure of solute through the grid points. Note that the
RISM/HNC equation is solved using ¢, = Z, — () as the effective charge of site « of the
solute molecule.

Up to this point, the theoretical background of my work is reviewed briefly. In the
next chapter, a new theory for the nuclear magnetic shielding in solution, based on the

theories mentioned above, is explained.
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Chapter 3

Theory of NMR Shielding Constant
in Solution

Related articles:

T. Yamazaki, H. Sato, and F. Hirata

“NMR chemical shifts in solution: a RISM-SCF approach”

Chemical Physics Letters, 325, 668-674 (2000) ,

T. Yamazaki, H. Sato, and F. Hirata

“Solvent effect on the nuclear magnetic shielding: ab initio study by the combined reference
interaction site model and electronic structure theories”

Journal of Chemical Physics, 115, 8949-8957 (2001) .

Due to the site-specific sensitivity, the NMR spectroscopy is widely used for studying the
structure and dynamics of chemical and biological systems ranging from small molecules
to proteins and nucleic acids. Although many measurable paraneters are of interest,
such as spin-spin coupling constants, the nuclear Overhauser effect(NOE), and the spin
relaxation time, chemical shift is the most comnmonly determined physical quantity and
assigned in an essential step of NMR study. Since the most NMR measurements are
carried out in solution, chemical shifts should probe not only the molecular structure but
also the microscopic solvent effects, which are not separated in experiments. Therefore,

it is of great importance to build a theory of the NMR chemical shift in solution, which

45



inevitably requires methods to treat the electronic structure of solute and the solvent
distribution around the solute.

In the RISM-SCF framework, the nuclear magnetic shielding tensor o of a nucleus
X can be expressed as the mixed second derivative of the free energy A with respect to

the external magnetic field B and the nuclear magnetic moment m*~ :

9 A(B, m)

X —_— l =

ol = 3B.0 g (a, z,Y,2), (3.1)
B,m=0

where B, and mg are the Cartesian components of B and of m*, respectively, and A
is defined as a sum of the electronic energy of a solute molecule F,pnze and the excess

chemical potential due to solute-solvent interactions Ay

A= Esolnte + A‘U (32)

In this thesis, Fsouue is estimated in the Hartree-Fock (HF) level, and the gauge-invariant
atomic orbitals (GIAO) method(see Section I in Chapter 2) is adopted to solve the gauge
problem in the calculation of nuclear magnetic shielding. Each molecular orbital ¢; is

expressed as a linear combination of GIAO x, (B):

¢i = Z C{,,(B, m)Xv(B): (33)

where
XU(B) = €Xp (_'ZC'AU : I‘) Pu. (34)
In the above expression, A, = %B x R, is the vector potential at the nucleus position R,,

of atomic orbital ¢,. r is the position vector of an electron.

Eoute 18 given by

Esoite = Y P (B,m) {H,,,\ (B,m) + %GM (B,m)} . (3.5)

vA

The one electron term

2
HaBom) = (| 1 {9+ 2w} - 5201, 39)

T
N N
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depends on the magnetic vector potential

NXI'N

A() =B xro+ Y BN (3.7)

2 TS
where rg is the position of an electron with respect to an arbitrarily chosen gauge origin
O, and ry is the position of an electron relative to the nucleus with charge Zy. Using

the commutator
) 1 ) 1 g
[—TV + EA(r), exp(—EA,\ r)] = _EA)‘ exp(—-EAA - 1), (3.8}

one can see that the H,, is independent of O.

The density matrix F,»(B, m} and the two electron term G, (B, m) are given by

oce

Ps(B,m) = 2 ¢, (B,m)c;(B,m), (3.9)
GA(B,m) = ZPCE(va){(XVXA|XCXE)_%(XVXElXCXA)}
¢
= ) Py(B,m)G,r(B), (3.10)
ce
where
(XuXA|XcX£)://dTldeX;(1)XA(1)T_12XE(2)XE(2)- (3.11)

For the chemical potential term Ay, the equation derived by Singer and Chandler(eq.
(2.131)) is employed:

A= =phaT 3, [ diertr) = 32,0 + el (3.12)

where p, kp and T are the density of solvent, the Boltzmann constant and temperature,
respectively. The subscripts v and s refer to the interaction sites of the solute and of
the solvent molecules, respectively. The direct correlation functions c¢,, and the total
correlation functions h., are obtained by the RISM theory with the hypernetted-chain

(HNQC) type of closure(eq. (2.113) and eq. (2.114)):

has(r) = Zw‘r‘r’ * Cyrgt % Xors(T), (3.13)
.Tfsf
1
gys(r} = exp _ﬁunS(T) + hys(r) — eslr) | (3.14)
B
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where g,, = I, + 1 is the radial distribution function of the s-th site of solvent molecules
around the --th site of the solute molecule. w,, is the intramolecular correlation function
containing the geometrical information of the solute. x, is the pure solvent site density
pair correlation function. Here “*” denotes the spatial convolution. The solute-solvent

interaction potential ., is assumed to be the sum of Coulombic and Lennard-Jones terms:

b= ae | (22)" - (2], (3.15)

T

1/

The standard mixing rules €, = (¢,¢,)"/* and 0., = (o, + 7,) /2 are employed for calcu-

lating the Lennard-Jones potential parameters. Note that the effective charges g, assigned

to the solute sites depend on the solute electronic wave function as follows:

¢y =D Pa(B,m)(x.(B) | by | xa(B)), (3.16)

where b, is the population operator for the solute site y. The Fock operator with solvent

effect derives naturally from the variational procedure:

Gvs
FuA=HV)\+Gu)\_Z<XU 16’)‘ | XA)pZQS/dr% (317)
¥ 3
First, differentiating eq. (3.2) with respect to mj leads to
aA _ 6E:sol.'ute 6A,U:
omy — omi  omf
dpP, O0H, dy Gys
R O I
U/\ '6 IB i 18 5
8Hu)\
= Po—. (3.18)
2"

Secondly, differentiating the eq. (3.18) with respect to B, leads to the final expression

for the nuclear magnetic shielding tensor

=P ()" + (27) ()"} (.19

1

Note that this equation is the same forin as in the gas phase derived in section 1. In the

above equation, for example,

(P57), =55

p OB, ; (3.20)

B,m=0
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(H(]‘.Xl)) _ azHr//\

9B, Bmﬂ (3.21)

?m_

' X
P{A can be calculated from the field-independent RISM-SCF method. (HS‘I)) 5 and

0,1 . . o .
(HIE,[ )) are the same expressions as those from the conventional ab initio electronic
B

structure theory in gas phase, while (P&’O)) are determined by solving the first-order
(e d

coupled-perturbed HF equation in the RISM-SCF framework:

Sl(e-4152) (), + (), - ()} )0 o
b

The derivative of the interaction term between solute and solvents with respect to the

external magnetic field is required for calculating (Flfi’o)) :
(1,0) (1 0) (1,0) (1,0) (0}
(F"" )a = ( VA ) +Z{ ( vAca) + (Pc:s )aGuAcs}
Gvs
_ Z ({x. | by | x,\)(l.o))aqus/dr—;—. (3.23)
v s

The effective charges of solute are determined by the least square fitting procedure in the

present work. The derivative of the elements for the population operator is, then, given

by

CAIEAL - —Za (p52)

vt [ S (22,3 - (50), | o2

Yy Y
""":{”
where
@, = Z r;.rlr;:,, (3.25)
k
(D82) =3 (R - R x sl | | 00) (3.26)
A a = Thy 2 o Ry—r ’

R, is the position vector of grid, and ry is the distance between the grid point & and the

solute interaction site . In eq. (3.23), the contribution from the derivative of the radial
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distribution function with respect to the external magnetic field does not appear. The
radial distribution function, in the present framework, depends on the external magnetic
field only through the effective charges of solute, and therefore, the derivative of the radial
distribution function depends only on the derivative of the effective charge of solute with
respect to the external magnetic field. Differentiating the effective charge of solute with
respect to the external magnetic field leads to the trace of phe products of Hermitian and
anti-Hermitian matrices(see eq. (3.16)). Since the trace of these products is equal to zero,
the derivative of the effective charge also vanishes. For this reason, the contribution does
not appear.

The present method has two outstanding features. One can obtain the nuclear mag-
netic shielding constant in solution nonempirically in the sense that the theory is free
from macroscopic empirical parameters such as dielectric constant, and study the nuclear
magnetic shielding by the relationship with the solvation structure. Another advantage of

the present method is that electron correlation can be taken into account by the standard

procedures.
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Chapter 4

Results and Discussion

T. Yamazaki, H. Sato, and F. Hirata

“NMR chemical shifts in solution: a RISM-SCF approach”

Chemical Physics Letters, 325, 668-674 (2000) ,

T. Yamazaki, H. Sato, and F. Hirata

“Solvent effect on the nuclear magnetic shielding: ab initio study by the combined refer-
ence interaction site model and electronic structure theories”

Journal of Chemical Physics, 115, 8949-8957 (2001) .

I Chemical Shifts of a Water Molecule Solvated in
Water

In this section, the numerical results of chemical shifts obtained using the RISM-SCF
procedure are presented. Here, the chemical shift of a water molecule in water is calculated
to demonstrate the validity of the present method. An isolated water molecule in gas phase
is adopted as the reference material for the chemical shift. The results in the following
tables and figures are obtained by using the TIP3P!-like model for solvent molecules. The
geometry of both solute water molecule in liquid phase and isolated water molecule in gas
phase are fixed at that of the TIP3P model except for the case that the effect of geometry

change to the chemical shift is examined. The values 0=1.0 A and ¢=0.056 kcal/mol




are assigned to the van der Waals parameters of the hydrogen site.? The electronic wave
functions of the solute water molecule and of the isolated water molecule were calculated
in the Hartree-Fock level with 6-311G** basis set using the GAUSSIAN 942 incorporated
in the RISM-SCF method. In case of the nuclear magnetic shieldings in gas phase, it is
reported that the results obtained using the basis set of this level are reasonably close to

the estimated Hartree-Fock limit.4

Table |
Nuclear magnetic shieldings and chemical shifts of water molecule (ppm)

Nuclear magnetic shielding

Chemical shift
Gas phase Liquid phase

Hydrogen

Mikkelsen et al. 3091 29.96 0.95
present work 31.49 25.68 1.81

exp. 30.05 25.79 4.26
Oxygen

Mikkelsen et al. 336.6 346.0 94
present work 3435 366.5 -23.0

€xp. 3440 307.9 36.1

I.1 Chemical shifts of hydrogen

The results for the nuclear magnetic shielding of the atoms in a water molecule in gas
phase and in aqueous solutions (25 T, 1.0g/cm®), obtained by the present method, are
shown in Table 1 along with the experimental data® and the theoretical results based on
the continuum model.® Also presented in the table are the results for the chemical shift
associated with transferring the water molecule from gas to aqueous environment. The

result obtained by the present method for the chemical shift of hydrogen is in qualitative
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accord with the experiment. The theoretical result based on the continuum model also
shows a reasonable account for the chemical shift of hydrogen. However, it is worthwhile to
remark at this point that our result was obtained entirely in a non-empirical manner unlike
the other approach. I believe this is the essential requirement for theoretical treatments

to be predictive.

2.0 , L . 0.73
1.8 10.72
g
o
=16l {071
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1.0 | ‘ 1 0.68
0 100 200 300 400 500

Temperature (°C)

Figure 4.1: Temperature dependence of the chemical shift{left hand side) and of the charge
density (right hand side) of hydrogen atom at the normal{1.0g/cm?) and the low(0.6g/cm?)
density.

In Fig. 4.1, the chemical shift and the charge density of hydrogen are plotted as a func-
tion of temperature for the normal (1.0g/cm?®} and low density (0.6g/cm?®). First, let us
analyze temperature dependence of the chemical shift. It is found that the charge density
increases with rising temperature, while the chemical shift decreases. The temperature

dependence of the chemical shift is in accordance with the experimentally observed trend



. Considering the increase in charge density and the decrease in the height of the first
peak of the pair correlation functions (PCF) around 1.8A shown in Fig. 4.2, it is clear
that the decrease the chemical shift with increasing temperature is caused by weakening
of hydrogen-bonds. Such an interpretation regarding the temperature dependence of the
hiydrogen chemical shift has been given rather intuitively in the field of solution NMR.
However, this is the first ab inifio theory to relate the two observables, the chemical shift

and the PCFs, which probe the degree of hydrogen-bonding in water.

5.0 1 | [ |
4.0
3.0
=
S 20l |
5
= 0.6 g cm™
1.0 - A7 _
00 4) 725 DC ......... 300 OC B
- —--100°Cc - - 400 °C
“““ 200 °C
-1.0 : , ‘ !
0.0 2.0 4.0 6.0 8.0 10.0

Distance (f\)

Figure 4.2: Temperature dependence of O-H PCF in liquid water at the normal(1.0g/cm?)
and the low(0.6g/cm?) density.

Next, let us discuss the density dependence. It is seen from the results of the chemical
shift and of the charge density that the strength of hydrogen-bond in the low density is
weaker than that in the normal density. On the other hand, the results for PCFs and
their difference between the two density cases, which are shown in Fig. 4.2 and Fig. 4.3,

respectively, also suggest that the correlation between oxygen and hydrogen in the low
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density is stronger than that in the normal density.
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Figure 4.3: Response of O-H PCF to temperature change at the normal{1.0g/cm?®) and
the low(0.6g/cm?) density.

These observations are apparently contradictory. Why is the O-H correlation at the
low density stronger? The problem was already discussed by Sato and Hirata.® According
to their discussion, the density increase will give rise to two effects on the correlation
between oxygen and hydrogen. One of those is the increase in the molecular polarization,
which promotes the correlation. The other is the enhancement of the packing effect, which
disturbs the correlation. The correlation between oxygen and hydrogen is determined by
an interplay between their two effects with increasing density: the packing effect dominates
and weakens the correlation in the normal density, while the electronic polarization effect
dominates over the packing effect to make the correlation stronger in the low density.
The strength of hydrogen-bond would be related not only to the height of the peak of the

PCFs but to the number of hydrogen-bond. The number of hydrogen-bond is given by
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N = py ng go;;tlvrr?dr, where py is the number density of hydrogen atoms, goy is the
O-H PCF, and R is the first minimum of O-H PCF which is most commonly employed,
respectively. Sato and Hirata. also reported that the number of hydrogen-bond increases
with increasing density. We can say from these discussions that the total electrostatic
potential on the solute molecule induced by the hydrogen-bond is stronger in the normal
density, though the correlation is less. Therefore, the results of the chemical shift suggest

that the hydrogen-bond is stronger in the normal density.

Table 2

Temperature and density dependence of hydrogen chemical shifts in water(ppm)

Calc. Exp.
Temp. / Dens.
Sheilding constant Chemical shift Chemical shift
30/1.00 29.69 1.80 4.27
200/ 0.86 26.99 1.50 2.84
300/0.71 30.21 1.28 2,12+ 0.02
400/ 0.60 30.38 1.11 .64+ 0.05

The shielding constant and the chemical shift of water hydrogen are presented in
Table 2 for a wide range of temperature and density in comparison with the experimen-
tal results.” It is seen that the present method reproduces the order of magnitude and
tendency of the experimental chemical shifts reasonably well. It can be concluded that
the method is valid not only for the temperature dependence, but also for the density
dependence of chemical shift of hydrogen.

Quantitatively speaking, however, the agreement with experiments is not always sat-
isfactory. The conceivable sources of the disagreement can be classified roughly into the
following three: electronic structure of solute, solvent distribution, and intermolecular

interaction. In the present framework, the electron correlation is disregarded. Although
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the results in gas phase®  suggest that the effect is less important for hydrogen, it is
not necessarily clear whether the same statement applies to liquid phase. The solvent
distribution, which affects the electronic structure through the electrostatic reaction field,
depends on the closure relation employed in the integral equation. Making use of the other
closure relations may improve the results. Contributions from the electronic overlap!® in
the solute-solvent repulsive interaction are not taken into account in the present method.
Despite that the effect is reported to be small for hydrogen,'® % 12 the present calculation
indicates that such effect may not be entirely negligible. If such effect is negligibly small,
the disagreement between the theory and experiments will not depend on temperature
and density of solvent. However, our results indicate that the disagreement enlarges with
increasing density and/or decreasing temperature, in which the electronic overlap becomes

more significant.

1.2 Chemical shifts of oxygen

It can be seen from Table 1 that the present results of the chemical shift of oxygen dis-
agrees with the experiment'® not only for the absolute value but also for their direction
(sign). The same trend is seen in the continuum model.* % 1415 Although the present
theory describes the hydrogen-bond in molecular level, the classical description may not
be sufficient for the chemical shift of oxygen in water. One may also be concerned with
the molecular geometry. Several geometries of the “solute” water molecule, including the
one optimized in liquid phase, were examined. However, the result was not improved ap-
preciably. Since the RISM theory is known to give reasonable account for the statistical
distribution of solvent around solute, and thereby for the reaction field, the qualitative
error observed in the calculation of the oxygen chemical shift may not be due merely to
the approximations involved in the classical nature of the theory. It can be due rather to
some quantum effects which are disregarded in the present treatment. It is worthwhile in
this respect to note that the ab initio calculation gives good account for the chemical shift

of oxygen of water in a molecular cluster.’®' 1" This suggests that the chemical shift of
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oxygen is extremely sensitive to subtle details of the intermolecular interaction. The most
conspicuous element, which is included in the cluster treatment but not in the present
theory, is the exchange or overlap of electrons between solute and solvent. Generally
speaking, thermodynamic quantities will not distinguish such a subtle effect in the inter-
molecular interaction or the electronic structure: the NMR chemical shift, on the other
hand, could be sensitive enough to probe such subtlety. In this regard, the NMR chemical
shift can be a good candidate as an experimental criterion for further improvement of the

theories. Concerning the intermolecular effect for the nuclear magnetic shielding, a more

detailed discussion is given in section III.



II Chemical Shifts of a Water Molecule Solvated in
Various Solvents

Recently, the proton chemical shifts of a water molecule in dilute organic solvents have

been obtained by Nakahara et all8 19

over a wide temperature range using a modern
NMR machine. On the basis of the experiment, the proton chemical shifts of a solute
water molecule in a variety of solvents, over the temperature range studied, are in the
sequence, in water > in acetone > in chloroform > in carbon tetrachloride. The proton
chemical shifts decrease with increasing temperature. In this section, I study solvent and
temperature dependence of the proton chemical shifts of a water molecule in a variety of
solvent; water, acetone, chloroform, and carbon tetrachloride, used in the above experi-
ment. An isolated water molecule in gas phase is adopted as the reference material for
the chemical shifts. The TIP3P-like! model (including core repulsion for the hydrogen
site) is used to describe solute and solvent water. The OPLS parameters are used for
acetone (methyl group is treated as a united atom centered on the carbon atom)?® and
carbon tetrachloride solvents.?! For chloroform, the parameters proposed by Dietz et al??
are employed. The geometric and potential parameters for the solute and solvent are
summarized in Table 3. The geometric parameters for acetone are taken from experi-
mental results in gas phase.?® The solvent densities for water, acetone, chloroform, and
carbon tetrachloride are, respectively, fixed at 0.03336, 0.008187, 0.007480, and 0.006238
molecules/ A3, which are measured at 1 atm and 20 T,2* and the temperature is changed
from 10 to 50 C for every 10 C. The electronic wave functions of a water molecule in
solvent and in gas phase were calculated in the Hartree-Fock level with 6-311G** basis set
using the GAUSSIAN 94° incorporated in the RISM-SCF method. The effective charges
are parametrized so as to reproduce the electrostatic potential around the solute molecule
by using 26 angular grids ((100),(110),(111) and so on), which originates from the center
of mass of the solute molecule. In each direction, four radial grids are equally spaced from

2 to 30 Bohr. The excess grids inside the van der Waals radius are discarded. As in the
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pervious section, total number of the grids is 78.

TABLE 3. Gceometric and Lennerd-Jones parameters

Molecule Geometric parameter(A and degree) Site qle) a(A) g(kcal/mol)
H.0 r(O-H) 0.9572 H 0.400 3.216 0.1188
Z H-O-H 104.52 a) -0.800 1.000 0.0560
CH;CH;3CO r (CH3-C) 1.507 CH; 0.062 3.910 0.1600
r(C=0) 1.222 C 0.300 31750 0.1050
Z CH3-C-CH; 117.20 0 -0.424 2.960 0.2100
CHCl r(C-H) 1.100 C 0.179 3.400 0.1017
r(C-CI) 1.758 H 0.082 2.200 0.0199
¢ Cl-C-Cl 111.30 Cl -0.087 3.440 0.2993
CCly T (C-Cl) 1.769 C 0.248 3.800 0.0500
¢z C-C-Q 109.47 Cl -0.062 3.470 0.2660

The proton chemical shifts in each solvent, obtained by the present procedure, are
plotted as a function of temperature in Fig. 4.4. The nuclear magnetic shielding constants
and the chemical shifts of the hydrogen atom of the solute water molecule in the four
solvents at 20 T are shown in Table 4. The radial distribution functions(RDF)} and the

response of RDF's to temperature change for each solvent are shown in Figs. 4.5 - 4.8.
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Figure 4.4: Temperature dependence of the chemical shift of a water molecule in water,
acetone, chloroform, and carbon tetrachloride. The chermical shifts are given relative to
the isolated water molecule in gas phase.
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TABLE 4. Nuclear magnetic shieldings and chemical shifts(ppm) for the hydrogen

atom of the solule water molecule.

Solvent Nuclear magnetic shieldings Chemical shifts
H,0 29.6710 1.821
CH3CH;3CO 304219 1.070
CHCl5 31.3145 0.178
CCly 31.4851 0.007

As is shown in Fig. 4.4, the present method qualitatively reproduces the two observa-
tions in the experiment.'® '° First, the proton chemical shifts of the solute water molecule

are in the sequence over the temperature range studied,

In water > in acetone > in chloroform > in carbon tetrachloride.

Secondly, the proton chemical shifts decrease with increasing temperature. These results
demonstrate capability of the theory to predict experimental results at least qualitatively.
Fig. 4.4 is the principal result of this thesis. In the following paragraphs, I discuss the
relationship between the solvation structures and the proton chemical shifts.

The solvation structure is governed by two factors, the electrostatic interaction(EI) be-
tween solute and solvents and the packing effect{PE). The electrostatic potential induced
by solvent affects the electronic structure of solute molecule, and changes the nuclear mag-
netic shieldings. Therefore, on discussing the relation between the solvation structures
and the proton chemical shifts, the following decomposition of the RDF into two terms
is useful: RDF “gPE” concerns about the packing effect and is defined by neglecting the

electrostatic interactions between solute and solvents, RDFs “g"!” associated with the
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electrostatic interactions, which can be defined by
g™ (r) = g(r; E1 £ 0) — ¢"F(r; EI = 0), (4.1)

where g{r; El # 0} is the RDF with full solute-solvent interactions.
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Figure 4.5: RDF's and response of RDF's to the temperature change for the water(solute)-
water(solvent) system. (a) Decomposition of g into g*F and ¢™ with their origin at
the oxygen atom of the water molecule at 20 T. (b) Response of ¢"F and ¢®! to the
temperature change. The RDF's obtained at 10 and 50 C are shown. The arrow indicates
the direction of change in the peak height of g™ (r) due to temperature increase.
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Figure 4.6: RDFs and response of RDFs to the temperature change for the water(solute)-
acetone(solvent) system. (a) RDFs with their origin at the oxygen atom of the water
molecule. The arrow indicates the peak positions which are characteristic of the two
solvation structures “A” and “B”. (b) Decomposition of g into ¢"® and g™ with their
origin at the hydrogen atom of the water molecule at 20 C. (c¢) Response of g and ¢*!
to the temperature change. The RDFs obtained at 10 and 50 C are shown. The arrow
indicates the direction of change in the peak height of g®'(r) due to temperature increase.
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Figure 4.7: RDF's and response of RDFs to the temperature change for the water(solute)-
chloroform(solvent) system. (a) RDFs with their origin at the oxygen atom of the water
molecule. The arrow indicates the peak positions which are characteristic of the two
solvation structures “A” and “B”. (b) Decomposition of g into g*¥ and ¢®' with their
origin at the oxygen atom of the water molecule at 20 C. {c) Response of gF® and g™
to the temperature change. The RDFs obtained at 10 and 50 T are shown. The arrow
indicates the direction of change in the peak height of g™'(r) due to temperature increase.
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Figure 4.8: RDF's and response of RDF's to the temperature change for the water(solute)-
carbon tetrachloride(solvent) system. (a) Decomposition of g into g*F and ¢™ with their
origin at the oxygen atom of the water molecule at 20 TC. (b) Response of g*'F and ¢!
to the temperature change. The RDFs obtained at 10 and 50 T are shown. The arrow
indicates the direction of change in the peak height of ¢"'(r) due to temperature increase.

First, I discuss the relationship between the solvation structures and the proton chem-
ical shifts at 20 C. For the case of water as solvent shown in Fig. 4.5(a), the first peak of
go.u appearing at about 1.8 A represents hydrogen bonds with nearest neighbors. As can
be readily seen from g3, the electrostatic interaction is dominant for this peak. Peculiar
to water is the peak in g&l, located at around 4.5 A, indicative of a significant popula-
tion of second neighbors in the tetrahedral ice-like structure. These solvation structures
affect the chemical shift of solute water. Since both hydrogen and oxygen atoms of the
solute water form hydrogen bonds with solvent water, the solute water molecule polarizes
strongly, and the proton chemical shift shows the largest value. For the case of acetone

shown in Fig. 4.6(a), go.o has two peaks around at 3.2 A and 5.4 A, which are desig-
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nated by the arrows A and B. Their two peaks, respectively, correspond to the solvation
structures in the first solvation shell in which the electronic structure of solute would
be perturbed largely by the solvent molecules around. The first peak of go.c is located
at the radial distance in between the positions of the two peaks in go.o stated above.
The structure that the oxygen of acetone faces the water molecule, forming hydrogen
bond, is named “A-structure”, and the other is called “B-structure” in which the methyl
groups of acetone direct toward the water molecule. These two solvation structures are
schematically shown in the figure. Dimers are schematically drawn such that distances
between the sites of water and acetone are almost coincident with the peak positions
of the RDFs. Considering the RDFs originated in the hydrogen atom of water solute
shown in Fig. 4.6(b), one can clearly understand how these solvation structures affect
the chemical shift. The two peaks in gy.c present at positions within 5 A correspond
to the A- and B-structures, respectively, and can be decomposed into the peaks in gfi-
and in gh% distinctly. Besides, the first sharp peak in gy.o located at 2 A represents
the hydrogen bond in the A-structure. This suggests that the A-structure dominates the

proton chermical shift of water molecule in acetone.

For the case of chloroform in Fig. 4.7(a), the shoulder and the peak located at about
3.5 A and 4.5 A, respectively, in go.c fall in between the positions of the two peaks,
designated by the arrows A and B, in go.z. The peaks are assigned to the two solvation
structures “A” and “B”, respectively, shown in the figsure. The structure in which the
hydrogen of chloroform forms hydrogen bond with the oxygen of water is the A-structure,
the peak of which appears in g5l at around 2.4 A in Fig. 4.7(b), and that in which the
chlorines of chloroform face a water molecule is the B-structure. Similar to the case of
acetone, the A-structure seems to dominate the proton chemical shift of water molecule

in chloroferm solvent.

Although both acetone and chloroform solvents form hydrogen bonds with water

molecules, the charges on the atoms of both solvents, forming hydrogen bonds, are less
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than those in solvent water molecules, and the electrostatic interaction affects only one(H
or O) site of the solute water molecule. Therefore, the solute water is not polarized in
those solvents as much as in water solvent, and the proton chemical shifts are less in those
solvents than those in water. The difference between the proton chemical shifts in acetone

and in chloroform depends on the differcnce between their dipole moments.

In the case of carbon tetrachloride shown in Fig. 4.8(a}, the distinct solvation struc-
ture reflecting the electrostatic interaction does not appear, since each site of carbon
tetrachloride has little charge, and the packing effect dominates its solvation structure.
The electronic structure of water in carbon tetrachloride almost retains that in isolated

molecule and therefore the proton chemical shift is nearly 0 ppm.

Next, I discuss the relationship between the temperature dependence of the proton
chemical shifts and of the solvation structures. In Figs. 4.5(b}, 4.6(c), 4.7(c), and 4.8(b),
the RDFs at 10 C and at 50 T are shown. The arrows indicate the direction of
change in the peak height of g™ (r} at the radial distance due to temperature increase.
For water solvent in Fig. 4.5(b), the decrease in the height of the first peaks of g, and
g&l,; with increasing temperature is caused by weakening of the hydrogen bonds with the
nearest neighbors. In addition, the height of the peak of g&' around 4.5 A decreases as
temperature increases. This change indicates “melting” of the ice-like structure. As a
result of these changes in the solvation structure, the proton chemical shift decreases with
increasing temperature. For acetone and chloroform solvents in Figs. 4.6(¢) and 4.7(c),
the height of the peaks of g™, which correspond to the A-structure forming hydrogen
bond with solute water, decreases as temperature increases. This change in the solvation
structure with increasing temperature causes decrease in the proton chemical shifts. On
the other hand, the height of the peaks in g"F which correspond to the B-structure is
almost retained constant with rising temperature. For carbon tetrachloride in Fig. 4.8(b),

the solvation structure of g™ disappears with increasing temperature.

The previous and present sections for the proton chemical shift for solvent effects
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have demonstrated capability of predicting experimental results, and of discussing its
temperature and density dependence in molecular level. From the quantitative viewpoint,
on the other hand, the agreement of the temperature and solvent dependence of the
chemical shifts with experiments are not always satisfactory. The chemical shift in each
solvent is underestimated compared to that of experiments. In other words, the magnetic
shielding is overestimated. Furthermore, the experimental results'® ¥ indicate that the
gradients of the chemical shifts plotted as a function of temperature are proportional to
their magnitudes. Concerning the relationship between the gradients of water and acetone
solvents, the present method failed to reproduce the experiment. In the previous section,
I have calculated the nuclear magnetic shielding constant for an oxygen atom of a water
molecule solvated in water. The theory overestimated the magunetic shielding compared
to the experimental value. The conclusion was not altered when the molecular geometry
of water was changed. As a resuit, the direction of the chemical shift for oxygen atom
relative to the gas phase was opposite to the empirical result. Why does the present
theory overestimate the magnetic shieldings? From the analysis of the intermolecular
interaction on the nuclear magnetic shielding using a molecular cluster, which is described
in the following section, I conclude that the defect of our theory stated above is due to
neglecting the overlap of electron clouds, e.g. the Pauli repulsion, between solute and
solvent molecules. As shown in eq. (3.15), this overlap is disregarded in the present
theory. This intermolecular effect on the chemical shifts is called the overlap effect,!®: 25, 26
and its importance on calculating the chemical shifts has been discussed in the recent
studies.!> 2" 2 In the next section, I examine how the overlap of electron clouds affects

the nuclear magnetic shieldings.
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IIT Intermolecular Effect on NMR Shielding Con-
stant

In this section, I discuss the intermolecular effect including the Pauli repulsion on the
nuclear magnetic shielding to verify the theory. I utilize a molecular cluster consisting of
five water molecules that are arranged in a tetrahedral fashion shown in Fig. 4.9. The
distance between oxygen atom of central molecule and those of surrounding molecules is

2.8 A. The geometry of a water molecule is taken from that of the SPC model.?

Figure 4.9: Geometrical arrangement of the water pentamer.

Two types of calculations are carried out for the nuclear magnetic shieldings of the
pentamer. In one of them, the central molecule of the pentamer is treated by quantum
chemistry and the surrounding molecules are treated as point charges centered at each
nucleus. Hereafter, this model is called as “PC model”. The other model treats all water
molecules by quantum chemistry. This model is called as “QC model”. For the point
charges, the Mulliken charges estimated in the QC model are employed. Although the
point charges determined by the least square fitting procedure in the RISM-SCF theory
are also examined, the trend of the results, discussed as follows, is similar to that of
the Mulliken charges. The PC model disregards the overlap of electrons between the
central molecule and surrounding molecules, and the QC model includes the overlap. The

interaction between the central molecule and the surrounding molecules in the PC model
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is expected to be similar to that in the RISM-SCF theory, although the former model
neglects both of the thermal averaging of solvent configurations and bulk solvent effect.
Comparing these two results, one can examine how the overlap of electron clouds affects
the nuclear magnetic shielding of the central molecule, and can inspect the accuracy
of the RISM-SCF theory. For the basis set super position error in the nuclear magnetic
shieldings of the QC model, the counterpoise correction®” is made.?” 3% 32 The calculations
were carried out in the Hartree-Fock level with 6-311G** basis set. The nuclear magnetic

shielding constants obtained for the two models are shown in Table 3.

TABLE 5. Nuclear magnetic shielding constants (ppm) obtained from the

two different models.

Site a (PC) ¢ (QC) Ac®

H(1) © 28.2234 25.3773 2.846
H(2) 28.0615 25.2611 2.800
0 336.1045 315.3761 20.728

D Ao =6 (PC) - 6 (QC)

From this result, it is found that the nuclear magnetic shieldings of both hydrogen
and oxygen atoms in the PC model are larger than those in the QC model. This is caused
by the insufficient description of the electronic structure due to the neglect of overlap of

electron clouds.
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One can decompose the equation (3.19) as follows:

0 L\ (1,0 0,0\
ok = AP () + (PAY), (18]

v

0 IR 1,0 0,1
= () (), (s

X
pAECM )5

+Z { (Hﬁl 1 )a,g+ (P&,o))a (Hug,l)):}
= n,}3(polr:n*lzatlon) + affﬁ(softness) + 0 5{mix), (4.2}

where CM indicates the central molecule which has nucleus X. 5’ represents the rest of

the summation, which is not included in the first and second terms. I have defined the

following three terms:

. X
Uiﬁ(polarization) = Z PW\( uil)) , (4.3}
PAECM of
be
os(softness) = Z (P&’U)) (Hﬁi’l)) , {(4.4)
vAECM “ 8

o) = S {E (H3O)] + (A7) (m80)7) @

vA
o (polarization) corresponds essentially to the contribution from the spatial polarization
of tlﬁe electron cloud in the central molecule to the magnetic shielding, while o (softness)
signifies that from the response of the electron cloud to the magnetic field. In other
words, o (softness) gages how easily the electron cloud to change its shape for shielding
responding to the magnetic field. o*(mix) is the remaining contribution which is not

contained in the PC model. The difference between the nuclear magnetic shieldings for

the PC and QC models can be decomposed into the three terms:

Acly = 0.5(PC model) — 025(QC model)
= Aols(polarization) + Ao s(softness) + Ao (mix). (4.6)
From the first and second terms, one can understand the changes in the polarization of

the electron cloud and in the softness of the electron cloud for the magnetic shieldings due
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to neglecting of the electron overlap, respectively. Note that Ao;(mix) = 0 — o5 (mix).

The values of these three terms are shown in the Fig. 4.10.
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Figure 4.10: Changes in the components of the nuclear magnetic shielding for the central
molecule in the pentamer due to missing of the clectron overlap. Ae¥ (polarization) and
Ao (softness) correspond to the changes in the polarization of electron cloud and in the
softness of the electron cloud for the nuclear magnetic shieldings, respectively. Ao {mix)
is the remaining contribution to the nuclear magnetic shielding in the QC model, which
is not contained in the PC model.

For both oxygen and hydrogen atomns, it is found that the lack of the overlap increases
o X (softness). It suggests that the electron cloud of the PC model can change easily its
shape for shielding in comparison with that of the QC model. Particularly, the change in
o (softness) is remarkable for the oxygen atom, and therefore, it is necessary for the the-
ory to take the overlap effect into account. Although the theory takes reasonable account
for solvent cffect to the magnetic shielding as long as hydrogen atoins are concerned, the
overlap effect should be included in the theory for discussion in quantitative level.

The softness of the electron cloud in the PC model can lead to the overestimation
of the nuclear magnetic shiclding obtained by the theories(the continuum, the QM/MM,

and the RISM-SCF theory) in which the overlap of electron clouds between solute and
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solvent molecules is disregarded. A new theory which includes the oﬁerlap effect is highly

desired for the NMR chemical shifts in solution.
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Chapter 5

Conclusions

In this thesis, I have proposed a new method for the theoretical treatment of the nuclear
magnetic shielding in solution. In this chapter, I summarize my work, and present the
prospects of my future study.

In order to investigate the relation between the NMR shielding constants and solvation
structure, a new theory of the nuclear magnetic shielding in solution was proposed, based
on the ab initio electronic structure theory combined with the reference interaction site
model in statistical mechanics for molecular liquids(RISM-SCF). The RISM-SCF method
treats both solute and solvent molecules in atomic level, and determines the solute elec-
tronic structure and the statistical solvent distribution in a self-consistent manner. Thus,
the method provides a microscopic picture for the solvent effect on the electronic structure
of a solute molecule within reasonable computation cost. Furthermore, this approach is
suitable for studying the relationship between the chemical shifts and solute-solvent inter-
actions, because the RISM-SCF method treats a solute-solvent system, in which a solute

molecule is at infinite dilution in solvent.

In the RISM-SCF framework, the nuclear magnetic shielding tensor ¥ of a nucleus
X can be expressed as the mixed second derivative of the free energy. The final expression

of the nuclear magnetic shielding tensor based on the RISM-SCF is as follows:

X X
wia= AR () + (P (H97) ) 5

vA A
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e
P:Eg) can be calculated from the field-independent RISM-SCF method. (Hg’l)) 5 and
e

X

0,1 . . . . .

(Hﬁ )\ )) are the same expressions with those from the conventional ab initio calculation
3

in gas phase, while (Pi/l\‘n}) are determined by solving the first-order coupled-perturbed
a
Hartree-Fock equation in the RISM-SCF framework.

First, I implemented this method to a water molecule solvated in water, and con-
firmed that the method is valid not only for the temperature dependence, but also for
the density dependence of the proton chemical shift of a water molecule in water. Next,
I implemented this method to a water molecule solvated in water, acetone, chloroform,
and carbon tetrachloride. As a result, the present method qualitatively reproduces the

two observations in experiment. First, solvent effects on the proton chemical shifts of a

solute water molecule are in the following sequence over the temperature range studied,
in water > in acetone > in chloroform > in carbon tetrachloride.

Secondly, the proton chemical shifts decrease with increasing temperature. These results
demonstrate capability of the theory to predict experimental results at least qualitatively.
In order to discuss the relation between the solvation structures and the proton chemical
shifts, the solvation structure was decomposed into two terms described as follows. The
first is the radial distribution function(RDF) “g*® concerned with the packing effect
defined by neglecting the electrostatic interactions between solute and solvents. The
second is the RDFs “g®!"” associated with the electrostatic interactions and is defined by

the following equation,
g™ (r) = g(r; E1 £ 0) — ¢™"(r; E1 = 0). (5.2)

where g(r; EI # 0) is the RDF with full solute-solvent interactions. From the decomposi-
tion analysis, I clarified the relation between solvation structures and the proton chemical
shifts. Furthermore, from a separate calculation using a molecular cluster, I confirmed
that inclusion of the overlap effect in the intermolecular interaction is necessary for quan-

titative prediction. It is found that the electron cloud becomes soft in terms of response
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to the magnetic field due to the missing of the electronic overlap, which in turn causes
the overestimation of the nuclear magnetic shiclding.

As can be understood from the analysis using the molecular cluster, it is difficult for the
present method to handle the solute-solvent system in which the overlap is not negligible,
such as the nuclear magnetic shielding for the oxygen atom of a water molecule in aqueous
environment. Nevertheless, the present method is promising in some application in which
the overlap is not significant. Such applications can include the proton chemical shift,
which is studied in extremely wide range of fields in science. For example, in biochemistry,
it would be of great interest to investigate a relation between the chemical shift and
the conformational change of a biomolecule in solution. Considering the importance of
pressure effect on protein conformation as mentioned in Introduction, the study on the
pressure dependence of the chemical shifts of amino acids in solution would also be an
intriguing problem. It is expected that the theory would be applied successfully to a wide
variety of problems in solution.

One of my next subjects is building up a new electronic structure theory in solution
including the quantum mechanical solute-solvent interaction corresponding to the overlap
effect for the NMR shielding constants. The theory will open up a new horizon in the
investigation of solute-solvent interactions in solution. Such investigations include the
chemical shifts of noble gases in solutions, which are recently utilized for investigating
protein structures, and the spectra of a solvated electron in solution. The study is now

in progress.
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Appendix

Elucidating the mechanism of solvation effect on molecules is of great importance, because
most chemical processes of interest occur in solution. It is essential for this purpose to
develop theoretical methods for evaluating the electronic structure in solution. In order
to elucidate chemical properties of solute molecules, which originate from electrons in
molecules, quantum chemical treatments are required. On the other hand, in order to
understand properties of solution, which consists of huge number of molecules, statistical
treatments are needed. Constructing an electronic structure theory in solution requires to
unite the two different theoretical frameworks stated above. The difficulty is concentrated
in a problem how we describe the solute-solvent interaction. The majority of theories
developed in the last two decades adopts a combination of the electrostatic and classical
short-range interactions as the solute-solvent interaction. Obviously, these theories lack

short-range quantum effects such as the exchange repulsion between solutes and solvents.

In the recent development of the theoretical method for solution, theories for the NMR
chemical shift in solution have been proposed by some workers.!' % 2 In their papers, they
have confirmed that the short-range quantum mechanical effects, which is referred to as the
overlap effect on the nuclear magnetic shielding,* > ¢ is indispensable for estimating the
NMR chemical shift in solution not only quantitatively but also qualitatively sometimes.
Therefore, a new theory which accounts the overlap effect is highly desired for the NMR
chemical shift in solution. Such theory will not only provide valuable insight into the
chemical shifts but also open up a new horizon in the investigation of various chemical

processes in solutions.
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In this appendix, we propose an electronic structure theory in solution including
the quantum solute-solvent interaction for an atomic molecule solvated in atomic sol-
vent molecules as the first step. This theory consists of two theoretical frameworks:
the Ornstein-Zernike(OZ) equation for simple liquids and the ab initio electronic struc-
ture theory. In this framework, the solute-solvent interaction is described by using the
“environmental potential” method proposed by Katsuki et al.,” which accounts for the
short-range quantum effect exerted on a solute from solvent molecules along with usual
long-range interactions.

The organization of this chapter is as follows. In Sec. A.l, we review the effective
hamiltonian method for the environmental effect. The effective hamiltonian method is
originally developed by Huzinaga et al.,® and the environmental potential method is a re-
vised form of the effective hamiltonian method.” In Sec. A.II, we propose a new electronic
structure theory in solution including the quantum chemical solute-solvent interaction.
We follow the strategy® developed in the RISM-SCF theory for deriving the equations.
In Sec. A.IIl, we show preliminary results concerning the electronic structure of a neon

molecule solvated in neon liquid, which is obtained by using the new method.

A.1 Effective Hamiltonian Method for Environmen-
tal Effect

The Fock operator for the molecular cluster consisting of many atomic molecules, is

expressed as follows:

1 zN
P = —2A - ; T g(zjm — K.Y e, (A1)

where Z¥ is the nuclear charge of nucleus N. r is the distance between an electron and
nucleus. J.; and K, are the Coulomb and exchange integrals, respectively. ¢; is the
molecular orbital coefficient. » and s indicate the atomic orbitals, and j means the molec-

ular orbital. We divide the system into one central molecule(Cent) and environmental
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molecules(Env). Then, the Fock operator in eq. (A1) can be written as

N 1 ZCent on Cent
I T SL T2 s

J
on Env ZD Rest of sum
+

T

_ZD:__.

On the basis of eq. (A2), the Fock operator of the central molecule including the effects

(200 — K} Y 1605 (A2)
)

tu

from the environmental molecules can be written as:

1 ZCent on Cent Env
N D
Feosn- Ty Z (2,4 —Km);crjcsj +§V : (A3)
where
VP — 2 o 2, — K DD Ad
_——T'-+ - ( rs ?'s)gcrjcsj' ( )

Note that c,’?j is the molecular orbital coefficient of the environmental molecule D. The
coefficient is determined variationally using isolated molecule D. This approximation can
be called as a “frozen environment approximation.” The element of the above Fock

operator is written as follows:

Env
Fpg = Hpg + Gpg + Z(XP“?DIX‘J)i (A5)
D
where
. —ZD on D s 1
0ol 72) = D6l + 3 P2 |Gons) = 3 Goxdoa)| - (46)

Note that p and ¢ correspond to the atomic orbitals of the central molecule. On the
other hand, r and s indicate the environmental molecule. H,,, and G,, are the one- and
two-electron terms of the central molecule, respectively. In order to compute {Fy,} from
equation (A5), we still need to calculate a majority of molecular integrals in eq. (Al). To

avoid this difficulty, we replace the operator V' by an appropriate spectral representation:

VP 5 QPyPaP, (A7)



where
on D

Z £} (S e fil. (A8)

Then,

Env
Fog ~ Hypg + Gy + Y (x2°V P27 ). (A9)

D
In this framework, since only molecular orbitals of the central molecule are treated explic-
itly, those of the environmental molecules should be prevented from collapsing into the
environmental region. In this work, we solve this problem by simply adding the following

projection operator, so-called the shift operator, to eq. (A9):

occ on Don [}

shlft = Z Z _TI’ED'XT Crs 33( I (Alo)

where e is the j-th molecular orbital energy of the isolated molecule D, and n is an
arbitrary parameter. In the present stage, n is determined so as to reproduce the results

obtained by all-electron calculation. Finally, we obtain the approximated Fock matrix

with the environmental effect:

Env

Fog = Hpg+ G+ Y 06V, (Al1)
D
where

(XP|VD|XQ> = (XPIQD{I_/D hlft}QDIXq>

_ZD on )
= (XP|QD{ + Z(QJJ' - Kj) + Shlft}QD|Xq> (A12)
J

This is the “environmental potential” in the spectral representation.
Explicit form of each matrix element, is summarized as follows for convenience.

Nucleus-electron attraction part:

on D

(IR 107) = - ol st ol 2

ab,ed

| Fe) (5™ eal fulxq)- (A13)
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Two electron part:

on D

(XP|QD{Z (2J; - KJ’)}QD|X9)

J

= {xplfa)(S

where
on D

§ ’ D~ _
Prs Gbcrs -
r,s

Shift operator:

(Xp|QD{ shift 0P |Xq)

on D on D

Jaolfol Y (25 — )| fe)(S™

on D

- )ab( Z Gbcrs

l)cd<fd|Xq)
a,b,c,d
on D

= 3 (Xl fa)(S

ab,cd

Jea(falxq),  (Al4)

on D

S PO l(fbfclxrxs) -3 (fbxslxrfc)] - (A15)

on [
= D Ol XS al ol PRl F) (S Yeal fulxa)
abed
on D on D
= D (olfa) (S > (fulxr) W (Xl ) S eal fulxq),  (ALG)
a,b,c.d rs
where
occon D
wh = Z —nechcg (A17)

J

A.Il New Electronic Structure Theory in Solution

In this section, an electronic structure theory in solution including quantum intermolec-

ular interaction is proposed. The solute-solvent interaction is described by using the

“environmental potential” mentioned in the previous section. Construction of the the-

ory is carried out for the simplest system, an infinite dilute solute(atom)-solvent(atom)

system as the first step.

87



In this framework, the interaction potential between solute and solvent, u,,{R), sep-
arated by the distance R along with an arbitrary axis in the 3-dimensional coordinate, is

described by using the environmental potential as follows:

U( ) = 2 Z(‘Pi I yeelv | :)

on solv on solv

“Z Z P X;ulfa (S~ )ab(fbl{_Z+ z (2J; — K;) + Paniee | fe) (8™ l)cd<fd|Xq)

P abed

(A18)
where ; are the molecular orbitals of solute, which are expressed as a linear combination
of the atomic orbitals x,. r is the separation between an electron and a solvent nucleus
which has the charge Z. J; and K are the Coulomb and exchange operator, respectively.
Fanire 18 the shift operator. f, are the basis sets on which the quantum chemical effects
of solvent are projected, and S is the overlap matrix between the basis sets. Note that
fa have the same origin with the solvent nucleus. Therefore the overlap matrix element
{Xp|fa) is the function of R = (R, 6, ¢). The solvated Fock operator can be derived by the

variation of the solvation free energy A in the same sprit as in the RISM-SCF framework.

A is expressed as

A = E,ope + M. (A19)

Eonie can be estimated by the Hartree Fock(HF) method, and the free energy derived

from the OZ/HNC equation is adopted:

Boorte =23 (i [ h ] 00) + > (2001 | 0505) — (0i05 | 0503)) + Enac, (A20)

Ap=— % / (XD Brta (R) + tuo (R)] = 1 = tus(R) — huo(R)tun(R) + %hm(R)Q}dR

~ 5 [Tl RalR) + Sl Ricws () xuu bR (A21)

In the above expression, 3 is equal to A-B;T’ where kg and T' are the Boltzmann constant
and temperature, respectively. p is the density of solvent. ¢,, and h,, are the direct and

total correlation functions, respectively. ¢, is equal to fy—Cyp- Xop is the pure solvent site
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density pair correlation functions. Note that x.. is evaluated by the OZ/HNC equation
for solvent-solvent system with the Lennard-Jones(LJ) interaction in the present stage.
The quantity A can be regarded as a functional of the functions R, ¢.y, tas, and ¢;. We

define I with the constrains to the orthonormality of the molecular orbitals as

I=Alh,c,t,¢] - Zem (@i | Pm) = Gim), (A22)

Variations with respect to the functions yield
ST=2) (Fp: [ bl i) +2) (i | D (245~ ) | i)
i i J
s f 23" (66 Vo | 90) expl—ftun () + tun( R)IAR
(exp[— Pty (R) + tuw(R)] — Iuw(R) — 1)8tu,dR
f (~tas(B) + hun(R) — Cun ()R
ﬁ (huw(R) + Coun(R) * Xou)dCu,dR
- Ze,;m 8w;i | Om)- (A23)

The fourth, fifth, and sixth terms give the OZ/HNC equation. One can eventually obtain

the expression for the solvated Fock matrix element:

Foa = Hy + Gou 4 0 [ (6 [V | g VIR, (A20)

where H,,; and G}, are the usual one- and two-electron terms, respectively. The last term

in the right hand side of the above equation is rewritten explicitly as

06 1V | x)gu(iar
on solv on solv

=[5l Dl + D (2~ i)+ Pas}) 5™l g R)R,
ab.cd

(A25)

and therefore, Tpy = {Xp | V" | x,) is the function of R. In the present stage, we adopt

the simple manner for evaluating T,,(R, 8, ¢) as follows.
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Figure A-1: Octant with the radius R.

Considering the sphere with the radius R and dividing the sphere into octant, each
point in the spherical surface has the value of T, (R, 8, ¢), as shown in Fig. A-1. Then,
the value at each point can be represented by using the values of the three vertices.
In the case of the first octant, for example, three vertices have the values of T,,(R,0,0),
Tpo(R,7/2,0), and Yoo (R, w/2,7/2), therefore, the values of T, (R, 6, ¢) in the first octant

can be represented by using these three values as follows:

Tp(R,0,0) = sin@cos @Y (R, 7/2,0) + sinfsin Y (R, 7/2,7/2) + cos 0Y,,(R,0,0).
(A26)

Adapting the same treatment for the rest of octants, finally, we can get the relation:

/ o | Vo | x) g (R)AR

= p/// oa( R, 0,6)guw(R)R2 sin 0d RdBd

= p/'fr lqu(R, 0,0) + Tpo(R, m/2,0) + Tpo(R, m/2,7/2) + Tpo( R, 7, 0)
+ Yoo (R, 7w/2,7) + T (R, 7/2,37/2) | R? g, (R)dR. (A27)

In the case of the evaluation of the atomic orbital{AQ) integrals, generally speaking, eq.

(A27) is an approximation. Only the case that the AOs consist of the s-type and p-type
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functions, the relation in eq. (A27) is exact. Preserving the values at each grid point
used for the integration of the correlation functions for each axis, namely, Y,,(R,0,0),
Tpa(R,7/2,0), Tpg(R,m/2,m/2), Tpo(R,7,0), Tpo(R,7/2,7), and T, (R, /2,31 /2), we
can evaluate the solvated Fock matrix elements. We thus obtained a set of equations
for the electronic structure in solution, i.e., the solute-solvent OZ equation, the HNC
equation, and the modified HF equation incorporating the solvation effect, which are

required to determine by a self-consistent procedure.

A.II1 Electronic Structure of a Neon Molecule Sol-
vated in Neon Liquid

In this section, we show preliminary results obtained by using the electronic structure
theory in solution formulated in the previous sections. Here, the electronic structure of a
neon molecule solvated in neon liquid is calculated to demonstrate the validity of the new
method. On the calculation of the density pair correlation function in pure solvent(eq.
(2.124)), the values 0=2.79 A and €=0.07318 kcal/mol are assigned to the LJ parameters
of the neon solvent site!®. The electronic wave functions of the solute neon molecule
were calculated in the HF level with 6-311G basis set. The environmental potential was
generated by projecting the electronic wave functions of the solvent neon molecule, which
were calculated in the HF level with 6-311G basis set, on the deconstructed 6-311G basis
set. In the present work, the parameter for the shift operator is determined so as to
reproduce the interaction energy of the neon dimer obtained by all-electron calculation
with 6-311G basis set qualitatively, considering the fact that the liquid structure, roughly
speaking, is dominated by the behavior in the beginning of the repulsive part of the
intermolecular interaction: n = 4.0. The results for the interaction energy of neon dimer
by using the environmental potential method with the parameter n = 4.0 are shown in
Fig. A-2 along with the results from the all-electron calculation. Note that the electronic

structure of a neon molecule solvated in neon liquid can not be treated by the theories
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which lack the short-range quantum mechanical effects such as the exchange repulsion

between the solutes and solvents.

10.00 --

8.00

6.00 —e— All-electron

—— Environmental potentiul
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Interaction energy {Kcal/mol)

1 1

2.0 2.2 2.4 2.6 2.8 3.0
Distance (A)

Figure A-2: The results for the interaction energy of neon dimer by using the environ-
mental potential method using the parameter n = 4.0 and the all-electron calculation.

The results for the radial distribution functions(RDFs) between the solute and solvent
neons obtained by the new method are shown in Fig. A-3 along with those from the
OZ/HNC equation using the LJ interactions with the same parameters for y,,. The
density dependence of the RDFs at 100 K is shown in Fig. A-3(a) and at 300 K is in
(b). Note that the density is scaled by the LJ parameter 0. As shown in the figures, the
present method reasonably reproduces the density dependence of the RDFs obtained by
using LJ interaction potential: decrease in the solvation structure around the neon solute
with decfeasing the density. These results demonstrate capability of the present theory
to investigate the solvation structure at least in the qualitative level. The environmental
potential in the HF framework, the attractive part of the interaction potential cannot
be described. Therefore, the solvation structure is more readily destructured than that

obtained by using the L] interactions.

92



3.50 ‘ T

3.00 -

2.50 -

2.00

1.50 -

1.00

0.50

Radial distribution function g(r)

0.00

JEVUURPUY U

-0.50 1 1. L N - R
0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0

Distance (A)

2.50

2.00 -

1.50

1.00 -

0.50 -

0.00

Radial distribution function g(r)

-0.50 : : ‘ ' :
0.0 1.0 20 30 40 50 60 7.0

Distance (A)

Figure A-3: The results for the radial distribution functions(RDFs) between the solute
neon and solvent neon obtained by the two methods. LJ indicates the OZ/HNC equation
with the Lennard-Jones(LJ) interaction. EP indicates the present method using the
environmental potential. (a) is the results at 100 K, and (b) is at 300 K.

In Fig. A-4, the density dependence of the electronic spatial extent, which are the
expected values of 7%, of a solute neon molecule is shown along with that of an isolated
neon molecule. Fig. A-4 is the principal result in this Appendix. As can be readily
seen from the figure, the extent decreases with increasing the density. Additionally, the

electronic extent of solute neon molecule at 300 K is more sensitive to the density change
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than that at 100 K. These results are in accord with our intuition, strongly indicating

that our attempt is promising.
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Figure A-4: The density dependence of the electronic spatial extents of solute neon
molecule, along with the electronic spatial extent of isolated neon molecule.

The methodology proposed in this appendix has in principle a great prospect to be
extended to molecular liquids. Following two phases in the extension are conceivable.
In the first phase, we employ the RISM theory to describe the pair density correlation
functions between molecules, giving the molecular geometry. The intermolecular atomic-
interactions can be calculated using the pseudo potential method described in this ap-
pendix with some approximation: in case of water, only electrons in oxygen atoms are
treated quantum chemically. The second phase is much more difficult and challenging.
There, all atoms in the system is treated with quantum chemistry, thereby, the molecular
geometry along with the liquid structure should be produced entirely from the electronic
structure theory combined with the OZ type equation for atomic liquids. We are confident

in achieving such a goal in near future.
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