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ABSTRACT

We have studied the phase-space-structure via the structure that appears in the Poincaré
section. In the rectilinear three-body problem, the motion of Newtonian three particles is
studied, where the three particles are located on a line. The degree of freedom is two. In
this study, we introduce a Poincaré section and study the structure of the Poincaré section
made by the orbits starting from this surface. First, we study the change of the Poincaré
section with varying mass ratio of the particles, and second, we study the relation between
the structures of the periodic points and the surface of section.

The position on the Poincaré section used here is given by the scale of the system R,
and the velocity ratio 6 of both side particles relative to the central one. According to
researches carried out by Mikkola & Hietarinta, the Poincaré section are divided into (i)
the Schubart region — the collisions between the centre and both sides repeat alternately,
(ii) the fast escaping region - the system is separated into binary and single particle
after small number of collision, and (iii) the chaotic scattering region — the destiny of
orbits is sensitive to their initial conditions. The Schubart region is the stable region
around the periodic orbit called the Schubart orbit. Each subregion of the fast escaping
region is arch-shaped, hence called scallops, and their bottom edges are segments on
the f-axis. The Schubart region is located on slightly above the centre of the Poincaré
section. The chaotic scattering region fills intermediate region among them. If mass ratio
1s changed, the number of scallops change. Introducing the symbolic dynamics, Tanikawa,
& Mikkola(2000a,2000b) studied the equal mass case. Their result and results we obtained
for other mass ratios using this method give us finer structure of the chaotic scattering
region. A united region of (ii) the fast escaping region and (iii) the chaotic scattering
region is divided into (v) sectors by curves running from the vertices of the Schubart
region. Even thought the orbits whose initial points are on these curve have the same
symbol sequence as that of the Schubart orbit, these orbits go away from the Schubart
orbit at every intersection, and so the curves are distinguished from the Schubart region.
A sector is composed of a scallop and block(s) of the triple collision curves: the block(s)
contains only (vi) an arch-shaped one and may contain (vii) germ-shaped ones (hereafter
germs). Whether a block contains germs or not depends on mass ratio. The border curve
of sectors together with triple collision curves converge at the points on the #-axis. We
call the points footpoints.

Using McGehee’s variable (1974), the equations of motion are extended to include the
f-axis as the initial conditions. The orbits from these extended initial points run on a two
dimensional surface, i.e. the so-called triple collision manifold. These orbits are called
fictitious. In particular, there are fictitious orbits that enter the fix point passing the foot
points with winding around the triple collision manifold. Therefore, we can obtain the
number of the footpoints, if we count the number of the winding. Recently, Sekiguchi
et al.(2001,2003) in the symmetric collinear four-body problem and Sano (2003) in the
collinear electron-ion-electron three body problem introduced McGehee’s variables into




and showed the correspondence between the foot points and the fictitious orbits. In our
problem, the winding number increases at mass ratios of the totally degenerate case as the
central mass is decreased. Moreover, Simo(1989) obtained these mass ratios via numerical
calculation. If we combine these results and the observation that the number of scallops
increases as the central mass is decreased (HM1993), we expect that the number of sectors
increases at the totally degenerate case. In order to confirm this, we attemp to follow the
process that a new arch-shaped block appears. To visualise the structure of the Poincaré
section, we divide it according to symbol sequences of the points on the section.

Near the mass ratio for totally degenerate case, triple collision curves are well stratified
and each divided region is located according to a rule which will be explained in text.
With decreasing the central mass until the next total degenerate case, we can see the
following process: a germ bifurcates from the leftmost arch-shaped block. The germ
grows to the roof and then extends to the lower right. This block finally reaches the
f-axis and becomes the lowest layer of the new arch-shaped block. Other germs bifurcate
from all arch-shaped block. These blocks grow to recompose arch-shaped blocks. This
recomposition changes the regime for locating the regions. If the mass ratio of the left and
right particles becomes asymmetric, the above structure and process change a little bit.
Among the divided regions, the regions, where the heavier particle is temporally ejected,
shrinks or disappears depending on the mass ratio as asymmetry is increased. Moreover,
different from the symmetric case, the formation process of the new sector is not clear-cut.
The germ already exist at totally degenerate case. :

The Schubart orbit appears as the fixed point on the Poincaré section. We consider a
Poincaré map, which is a map from a point on the Poincaré section to another point. In
the Schubart region, points move around the fixed point under the map. The behaviour
of the rotation is described by the averaged number of rotation per iteration, namely
the rotation number. Generally, when the rotation number at the fixed point is rational,
periodic points bifurcate from the fixed point and go outward with the mass ratio being
changed. We have detected such periodic points, and then studied their influence upon
the structure of the Poincaré section. First we have found that the periodic points with
the rotation number (rn —2)/n, where n is the natural number grater than 2, dominate the
structure. The periodic points with the rotation number (n—2)/n are composed of n stable
ones and n unstable ones. Second, after the periodic points leave the Schubart region,
the unstable ones stay around the vertices of the Schubart region and their separatrices
approximate the border of the Schubart region. On the other hand, the stable ones
approach toward the #-axis with collecting the germ-shaped blocks. These germs become
the arch-shaped blocks.



Contents

I The Change of the Poincaré Section for the Change of Mass

Configuration 7
1 Imtroduction . . . . . . . L 9
2 The formulation, and method of Analysis . . . . . . ... .. ........ 11 :
2.1 Equations of motion and the Poincaré section . . ... ... .. .. 11 ¥
2.2  Numerical Procedure . . . . ... ... .. .............. 14
3  Partition of the Poincarésection . . . . . . .. ... .. .. ... ... 16
3.1 Structures of the Poincaré section and terminologies . . . . . .. .. 16
3.2 Cylinder of symbol sequences . .. .. ... ... ... ....... 17 l
4 The distribution of the number of root on mass-triangle . . . . ... .. .. 19 x
4.1 McGehee’s variables and triple collision manifold . . ... ... .. 20
4.2 The relation between roots and the fictitious orbit . . . . . . .. .. 21
4.3 The number distribution of roots . . . . . . ... ... ... .. .. 22
5  How the Poincaré section changes as (a,b) are changed . . . . ... .. .. 24
5.1 Symmetric case 1: Moot >4 -« o o o o o e e e e 27 ;
5.2 Symmetric case 2: TFop =3 . . . . . v e e e e e 28
5.3  Asymmetric case 1: (npop,npop) = (3,4) . . . . . oL 33
5.4 Asymmetric case 2: npop, Rpop =4 - -« v v oo e e e 39
5.5 Asymmetric case 3: npop =Mpop =3 - -« ¢ - . o v v c oL 45
6 Interpretationof Results . . . .. . ... ... ... .. .. o000, 45
6.1 How reg(c) with ¢ > npop appear . . . . . . .. ... ... ..... 45
6.2 Interpretation for the organisation of arch-shaped CSBs . . . .. .. 47
T Summary . . . . . i e e e e e e e e e e e e e e e e e e 49
A.l1 Procedure to obtain the number distribution of FOPs . . . . . .. ... .. 50

II Periodic Points and the Structure of the Poincaré Section 53

1 Introduction . . . . . . .. . .. .. . 55
2  Method . . .. . . . . .. e 56
21 The definition of the Poincaré map and the motion around the fixed

point . . . . . . e e e e 56
2.2 Exact and Effective Rotation Number. . . . . . . . .. ... .. .. 58




CONTENTS

2.3 The periodic points and their accompanied structure . . . ... .. 59
24 How to detect the periodicpoints . . . . .. ... ... .. ... .. 62
2.5 Symbol Sequences and Partition of the Poincaré Section . ... .. 63
Results . . . . . . . . . e e e 63
3.1 Radial Movementsof PPs . . . . . ... .. ... ... . ... .. 63
3.2 The rotation numbers of dominant PPs . . . . .. .. ... .. .. .. 68
3.3 Influence of the PPs on the Structure of the Poincaré Section . . . . 75
Discussion . . . . . .. . . . . e e e e e 81

SUMMATY . . . o o v e e e e e e e e e e e e e e e e e e e e e 81



S5R— )

% 4.1 McGehee's variables and triple collision manifold + + * + * * -
1L 4.1 McGehee's variables and triple collision manifold + + * = + « -
#* 5 How the Poincaré section changes as (a,b) are changed *

iIE 5 How the Poincaré section changes as (a,b) are changed *

7% 53 Asymmetric case 10 ( sror, n¥rop )=(3,4) + + ¢ ¢+ 0 e
IE 53 Asymmetric case 1: ( ziror , n¥ror ) =(3,4) = = ¢+« 0 o+ s
A% 5.5 Asymmetric case 3: mrop =m¥rop =3 ¢ ¢ ¢ ¢ ¢+ v+ e e s e - .
1IE 5.5 Asymmetric case 3: nrop =n¥pop =3+ ¢ ¢+ e e v v e e e
# 7 Summary+ * v ¢ o+ v e e e e e Ce .
IE 7 Summary .......................

e me R
(R (%) [ NN

18 &

+ 48




Part I

The Change of the Poincaré Section
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Configuration
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1 Introduction

The three-body problem is the discipline which asks how the motion of Newtoninan three
particles is. This question has a great extent according to the purpose and interest of
scientists. First, the three-body problem is utilised to study the motion of small bodies in
the solar system, of stars in multiple stellar systems, and of spacecrafts. In this aspect, a
highly accurate numerical integration of orbits is required, sometimes extending to a long
future. We frequently have to deal with binary close approach appropriately for an accu-
rate integration. The regularisation such as the Levi-Chivita transformation (Levi-Civita,
1904; Wintner, 1941) and the Kustaanheimo-Stiefel transformation (Kustaanheimo, 1964;
Kustaanheimo and Stiefel, 1965; Stiefel and Scheifele, 1970) allows us to overcome this
problem. These are basically a transformation from a Keplerian two-body system to a
harmonic oscillator through the coordinate and time transformations.

The motion of a triple system in a binary close approach is considered to be a super-
position of two binary motions: one is the inner binary making a close approach, and the
other is the outer binary composed of the inner binary and the third body. The three
body problem is called a hierarchical three-body problem in such cases. There are a number
of researches on the structure which appears in the initial value space, when the points is
associated with fate of orbits for the initial values.

Even if hierarchical three-body system appears in many astronomical scenes, it rep-
resents a special and stable case. The three-body system is generally more unstable and
chaotic. The chaotic property is considerd to come from triple collision. Here, we use the
term chaotic to be identical with the sensitivity on the initial conditions. Let us consider
two orbits which start from initial points close to each other. These orbits may be similar
until they experience triple approach. Generally, the phase space distance of two orbits is
expected to become larger after triple approach. This chaotic structure in the phase space
is studied for a general (not necessarily hierarchical) configuration. Indeed, researchers
study the systems with special symmetry. h The isosceles three-body system and the
rectilinear three-body system are examples of such systems. In the isosceles three-body
system, one of the objects (we call m;) runs on the z-axis, the others (also m; and ms)
run with keeping the relation 7iy7; = mms. In the rectilinear three-body system, which
is studied in the present thesis, three objects run on a line. Due to the toy nature of these
configurations, triple collision is almost automatically expected to take place, and hence
the chaotic property of the three-body system can be studied.

The degree of freedom of the both systems is two. There is a powerful technique to
explore the phase space in two degrees of freedom: the Poincaré section. A phase trajec-
tory runs in the 3D energy hypersurface H(qy,qz,p1,p2) = E inside the 4D phase space
(91, 92,p1, p2), where H is the Hamiltonian and E is the total energy. If an appropriate
2D surface is set up, the orbits for inital points on the surface cover the whole energy
hypersurface. The successive intersections of orbits with the surface make pattern on it.
We can acquire information about the phase space through this pattern. The pattern on
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the surface is formed by successive images of the points under the Poincaré map. This
surface is called the Poincaré section or the Poincaré surface. The quantitative structures
of the Poincaré section are also studied with associating features such as the interplay
time (a time until disintegration into a binary and a single objects) and the ejection length
have been the target of researches (Mikkola and Hietarinta, 1989). In our research, we
associate to each point of the surface the fate of orbits described by a symbol sequence.
This approach seems to give us a new horizon.

" We summarise to which extent the understanding of the structure of the Poincaré
section in the rectilinear three-body system proceeds. The Poincaré section is divided
into three basic regions, according to the distribution of the interplay time in the sur-
face (Mikkola and Hietarinta, 1989, 1990, 1991; hereafter MH1989, MH1990, MH1991)
and to the behaviour of points under Poincaré map (Hietarinta and Mikkola; hereafter
HM1993).  First, there exist the Schubart region, which is stable region of the periodic
orbit, the so-called Schubart orbit (Schubart, 1956). Outside the region, there exists the
chaotic scattering region, where the interplay time is so sensitive to the initial values that
no discernible structure can be seen. Further outside, there exists the fast escaping region,
where the system disintegrates into a binary and a single particle after several collisions.
This region consists of scallop-like sub-regions, so they called them scallops. We adopt
this terminology. The number of scallops increases with the decrease of the mass of central
particle (HM1993). Tanikawa and Mikkola[10] studied the structure of the Poincaré sec-
tion for the equal mass case using symbol sequences which record the collisional itineray
of orbits. According their work, the chaotic scattering region is filled with triple collision
initial points and these points form well stratified curves. The following structures will be
important in the present research which can be understood from the result of TM2000a.

1. An arch-shaped stratum of triple collision curves make a sector together with the
sub-region of the chaotic scattering region under the stratum.

2. There are four sectors and these surround the Schubart region.

3. The two (different) terminals of an arch are the points on the #-axis (R = 0 line).
The number of such points is also four, because an arch shares the terminals with
the neighbouring arches. '

We can expect that there are sectors at other mass ratios and their number increases with
the central mass together with the number of scallops. The number of sectors, if they exist,
can be also known from the number of the terminal points of arch-shaped strata. These
points are limit initial points with zero initial distances for triple collision orbits, which can
be dealt with McGehee’s variables. In McGehee’s coordinates, these orbits become spiral
orbits on the triple collision manifold. McGehee’s variables blow up the triple collision
singularity into two dimensional surface with four holes (McGehee, 1974). McGehee(1974)
proved the number of spirals increases with decreasing mass of the central object. We can
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find that the number of terminals of arch-shaped strata also increases in proportion to
the number of spirals through the examination of correspondence between the terminals
and the spriral orbits. Indeed, such a correspondence is pointed out in similar dynamical
systemns to our system, i.e., the symmetric rectilinear four-body problem (Sekiguchi, 2001;
Sekiguchi and Tanikawa, 2004) and the Coulomb rectilinear three-body problem (Sano,
2003). |

The first purpose of the present study is to follow the structural change of the Poincaré
section which results from mass variation. We have to confirm the conjecture that there
are sectores and their number increases as decreasing the central mass. Even if it is true
(actually true as is confirmed in the text), it is still unknown what process a new sector
appears through. The second purpose is to understand the reason why the Poincaré
section changes through the process. We will show that the certain periodic orbits which
bifurcate from the Schubart orbit make this process, by actually detecting the periodic
orbits via the numerical integration.

The followings are the contents of this paper. In section 2, the framework used in this
paper is shown. The equations of motions, the Poincaré section and the symbol sequences
are introduced in section 2.1 and the numerical setup is done in section 2.2. In section
3, the method to divide the Poincaré section according to the types of symbol sequences
is introduced, and the result for a few mass cases is shown. We obtain the distribution
of totally degenerate cases in the mass space in section 4. We show the partition of the
Poincaré section for mass configurations selected according to the distribution of totally
degenerate cases. In section 6, we interpret the structure observed in section 5. Finally,
in section 7, we summarise the result of the present work.

2 The formulation, and method of Analysis

2.1 Equations of motion and the Poincaré section

In this section, we introduce equations of motion and the Poincaré section (Mikkola &
Hietarinta, 1989, 1990, 1991, Hietarinta & Mikkola, 1993). We call the three particles on
the line my, mqo and m; from the left. Let the distance between m; and mg be ¢, and
mo and my be g;. Then the Hamiltonian, H, of the system is

H=K-U | )

with

1/1 1 1/1 1 D1P2
2\my +mo p.1+2., mg —.l__mz P2 mp
__mimg moimg mims

U= —,
7} 7)) g1+ q2
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where p; and p; are the canonical momenta conjugate to ¢, and go, K is the kinetic energy,
and U is the force function. Hereafter, we restrict ourselves to the system of H = E = —1.

This Hamiltonian is singular at collisions. We remove the singularity at binary collision
by the canonical transformation,

S=pQ7 + p. Q3 (2)
Qi = \/‘zs Rr. = 2Qipi1 (3)

and time transformation,
dt = Q1Q2dt’, (4—)

where S is the generating function, and P; and Q; are new variables. After this transfor-
mation, equations of motion are reduced to the canonical equations whose independent
variable is ¢'. The new Hamiltonian, I', and equations of motions are

['=qq(H - E)

_ir 1 1\ 5292 1 lipanyy 2
= 5l * ) PR+ (o + 2P0 - ARG
m1m2Q2Q2
— momaQF — mom, Q3 — —Qf—;—é—%—z - QiQ3E (5)
d@Q; or c_lfi__c?l’ (6)
dt 0P’ dt' 9Q;
There exists a solution, which satisfies the relation,
q(t) = Ags(2) (7)

for all time, ¢. This solution is called the homothetic solution (Irigoyen and Nahon, 1972).
Putting the condition (7) into equations of motion, the value of A is determined. Specially,
if my = m, (hereafter, we call this mass configuration simply symmetric ), A is unity.

The points (g, p) that satisfy the energy integral, H(q,p) = F and ¢, = Aq; , form the
two-dimensional surface. We employ this surface for the Poincaré section, and introduce
the coordinate (6, R) on it. The variable, R, is defined by

R=10.5(q + ‘I2)|q1=Aq2> ’ (8)

If R is given, U, and also K are determined. The variable, 6, is determined as follows.
The kinetic energy K is written as the formula in ¢; and gj :

K = A¢* + B4y + Cqiqo, (9)

where

_ ) _ my(my + ma) _ my(mg + my) _ mamy
whereM—-zi:m,,A— Sr ,B—————2—M——-—~,and0- S
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This can be diagonalised by the linear transformation (¢i,¢2) = (e, 8),

21 2
eI T (10)
4AB — C?
5= b-¢ (11)

4(AT'12 + B’l"22 + C'I"l'l'g)

a=/(A—kr®)g — /(B - kr?)ds (12)
ﬁ = sz/Edl - 7’1\/;@2, (13)

as
K =a’+ 5% (14)

The variable 6 is introduced as the parameter that represents these new ‘velocity (a, g) :
sinf = B8/VK, cosb = a/VK. (15)

For a given value of K, § divides the velocity among ¢, and ¢.
Let us consider ranges of (R, §). Because E < 0 in our system, the upper limit R,
of R, is determined by K = U — E 2 0. Putting the relation (7) into it, Rpax 18

Rmax = '—ff—'{

A+1
A

The range of 6 is 0° < 6 < 360°. However, if we have orbits starting from {(4, R)|0° <
6 < 180°} to the past and the future, we can obtain orbits for {(8, R)|180° < § < 360°}
by exchanging the past and the future. Suppose that the value of # changes from 6 to
¢’ as ¢; is changed, and we obtain the relation between  and ¢’ in order to confirm this
property. The formulae (12) and (13) with (15) being substituted become

VK cosf = —y/A — krig — /B — krig, = —VK cosf = K cos(6 + 180°)(17)

VK sin 0 = —r2y/kg; — riv/kg = —VK sin 6 = VK sin(6 + 180°). (18)

momy + (A -+ l)moﬂ“tg + mlmg] . (16)

Therefore, it is found that §' = § + 180°.

The variable 6 represents the direction of the velocity vector (d2,91) as shown in
Fig.1. The line ¢; = Ag, on the (g3, q;)-plane corresponds to the Poincaré section on the
(g2, q1)-plane, that is, the orbit intersects the surface of section when the trajectory in the
(g2, ¢1)-plane crosses this line. The homothetic orbit corresponds to the trajectory on the
line. Its velocity vector with 6 = 0° or 180°, is parallel to the line. Velocity vectors of
other orbits are like a dashed arrow. ¢; 2 Ay corresponds to 0° < 8 < 180°(above the
line), and ¢; £ Ag, corresponds to 180° < 6 < 360°.
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Since our system is scale invariant, we normalise masses of the system to make the
total mass be 3, and introduce parameters a and b to represent the masses:

m=1—a—b my=1+2a me=1—a+b, (19)

where
~05La<15, and b2 0.

This range of (a,b) becomes a triangle in (b, a)-plane, and we call it the ‘mass-triangle’.
For simplicity, we call the mass parameters (a,b) the mass of the system.

gl ql=rq2
(homographic solution)

- .y

. -
""""""

180°< 9 <360°

q2

Figure 1: The relation between 6 and the velocities

2.2 Numerical Procedure

TM2000a encoded the collisional history of orbits as sequences of symbols. The symbol ‘1’
represents the collision between m; and my, the symbol ‘2’ between mg and mq, and the
symbol ‘0’ among all particles. Symbols are arranged from the left according to the time
of collision. Ifit is necessary to distinguish the past sequence and the future sequence, the
decimal point ‘.’ are inserted. For instance, the trajectories drawn in Fig.2 correspond to
the symbol sequence, ‘- --.2(1)321(2)%121- ..

The initial points of triple collision orbits can be obtained from symbol sequences with
some precision. Suppose that two orbits that start from close initial points, z = (6, R)
and z + dz = (0 + d6, R + dR), have symbol sequences whose first n—digits are common
and symbols of the (n + 1)-th digit are different. After common n collisions, the left and
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H 0 ..\4 Il L :,’ — : ,.' -
s I 1 A 1 20 255 LI
» ¥oa : {
-2 T
-3
~_

Figure 2: Correspondence of orbit and symbol sequence(§ = 90°, R = 1.2, for equal
masses)

Grid of Poincaré section | 6 = 180i/Ny(: =0,---,Ng — 1), R = jRmax/Nr, (j =1,-++,Ng)
Ny x NR = 540 x 300
End of integration Until 64-th collision

Table 1: The setting of the integration

center particle collide in one orbit, whereas the right and center particles collide in the
other orbit. Then, there should exist a triple collision orbit which starts from between z
and z + dz, for both orbits have to change smoothly when the starting point is changed
from 2 to z + dz continuously.

We introduce grid into the Poincaré section and integrate the orbit from grid points
to the future. These orbits are recorded as symbol sequences. Hence, the grid points
on the Poincaré section can be associated with symbol sequences. The size of grids and
condition for terminating the integration are shown in Table 1.

In Fig.1, the grid points are taken from {(R, 8)|0° < 8 < 180°} (hereafter, front side
of the Poincaré section) and not taken from {(R, 6)[180° < 6 < 360°} (hereafter, rear side
of the Poincaré section). Even if an orbit starts from the rear side, this orbit shall go
back to the front side except the immediate escaping orbit. Therefore, we consider that
the structure of the rear side of the Poincaré section is reflected into the structure of the
front side, and we omit orbits starting from the rear side.
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3 Partition of the Poincaré section

3.1 Structures of the Poincaré section and terminologies

TM2000a succeeded in obtaining the fine structure of the Poincaré section for equal mass
case by obtaining the triple collision curves using symbol sequences. We have obtained
the fine structure for other mass cases. In this section, we show the structure for three
mass cases and introduce names for components of the structure. The initial points of
orbits ending in triple collision form curves called triple collision curves on the Poincaré
section. In this subsection, we look at the distribution of these curves, and give names
to the structures of the Poincaré section. We show the Poincaré section for three mass
configurations. Here and below we take, for the axes of the Poincaré section, 0 < # < 180°
and

Figure 3 is the distribution of the triple collision curve on the Poincaré section. The
range of axes is 0 = ¢ < 180° (for horizontal) and 0 < R < Ryay (for vertical). This
range is taken in the following figures of the Poincaré section. Figure 3(a) is of equal
mass case (TM2000a). The Poincaré section is filled with triple collision curves except
for the regions marked with (i),(ii),(iii), (iv), and (v). As for an orbit starting from the
regions marked with (i)---(iv), m; or m, run away to infinity. We call this particle an
escaping particle and call the orbit an escape orbit. Mikkola and Hietarinta(1989) called
these regions fast escaping regions or scallops from the shape. Now, if the particle running
away shall go back to the binary, we call this particle an ejected particle, distinguishing
it from escaping particle. Starting from (v), an orbit is stable with symbol sequences
(21)®. There is an initial point of a periodic orbit called the Schubart orbit in this region
(Schubart, 1956). Therefore, Mikkola and Hietarinta call the region the Schubart region.
When Hietarinta & Mikkola(1989) found the extent of the escaping and Schubart regions
on the (0, R)-plane, they used the distribution of the time until the system breaks into a
binary and a single (dwell time). The dwell time is very short for the fast escaping region,
while infinite for the Schubart region. In the remaining region, filled with triple collision
curves in our scheme, they found that the dwell time was sensitive to the initial points and
any structure seemed not to exist. Therefore, they called the region the chaotic scattering
region.

The Poincaré section from which the Schubart region is removed is separated into
sector by ‘arms’ running from the vertices of the Schubart region. There are four in (a),
six in (b), and three in (c) sectors. A sector contains a scallop and a block/blocks of strata
of triple collision curves. We call this block the chaotic scattering block (CSB). There is
one arch-shaped CSB in all cases, and in (c), there are also germ-shaped CSB. A triple
collision curve has terminal points on the f-axis. We call them foot points (FOPs). The
numbers of FOPs and arch-shaped CSB (hereafter, npop and nacs) are the same. The
triple collision curves in a CSB convergent into the same FOPs, so CSBs become thin
where R is small. We call the thiner part a leg.
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When mass parameters (a,b) are changed, the structure of the Poincaré Section
changes complicatedly. However, the change of n acs(= nrop) is the most remarkable.
The FOPs is the initial points }zin})(R,B) for triple collision. In Sect.4, we calculate the

e

number of the FOPs using McGehee’s variables, which enable us to integrate the orbits
starting from 11%_13) (R, 6).

3.2 Cylinder of symbol sequences

Although the change of the Poincaré section caused by the change of mass of the sys-
tem appears on the strata of triple collision, this structure is too fine-grained to un-
derstand this change macroscopically. TM2000b found that the Poincaré section is di-
vided into 13 regions, Iy, --,I;; and S, which are defined by sets of symbol sequences:
{1.(21)%22- .|k > 0} for I, {1.(21)*+12... |k > 0} for I, etc.(see Fig.3 and Table 5
in TM2000b). In dynamics terminology, a set of symbol sequences that satisfy the re-
quirements for symbols is called a cylinder. The structure obtained from the partition
has suitable grain to study the dependency on mass. However, since these cylinders are
adapted to equal mass case, we have to generalize them for general mass of the system.
The definition of the generalised cylinders, S ;(c,j € N), is

g = [ ALY 120,721} fore=2+1 (20)
o {(Zl)i(l)j i 21,721} fore=2:
Se = UjcooSe,j- (21)

Since we consider only the front side of the Poincaré section, all symbol sequences have
the form “.2-..”. The suffix ¢ has information about the number of alternate collisions
and ejected particle', which is m, for odd ¢, and m;, for even ¢. A cylinder Sooi (Se,ile=co)
correspond to the Schubart region and S o (.9;,;]j=c0) to escaping orbits. The structure
obtained from S, ; is still finer than that of TM2000b. We then only distinguish S, ; with
J < oo from S, . In order to do so, we sum S,,; for 3 < 0o and create cylinders S..

In order to divide the Poincaré section, we associate S, and S, ., with regions reg(c) and
reg((c,00)). In addition, we abbreviate multiple regions reg(c; ), reg(c;), - - - as reg(ci, cz, ).
We show reg(c) and reg((c, o)) concretely. First, the correspondence between these re-
gions and three regions in HM1993 is

Fast escaping regions reg((c, o0)) 1< ¢ < npop
Chaotic scattering region reg(c) Ureg((c,0)) 1£e¢< o0
Schubart region reg(c) , c= 00

Second, we reproduce the partition into 13 regions for equal mass case in Fig 4. A rule for
the region number ¢ of regions contained in a arch-shaped CSB is found from the reproduc-
tion. From the left, each CSB contains reg(1,5,9,--), reg(2,6,10, - --), reg(3,7,11,- - )

'Note that a repeating symbol is opposite to the ejected particle: for example, the ejected particle
corresponding to (2)7 is my.

’




il
i
o

31,0=0

Figure 3: Triple collision

curve on the Poincaré section
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and reg(4,6,12,-- ), respectively. It is summarised as the rule that each CSB contains
reg(c) whose ¢ are congruent (modulo 4). The modulus, here being 4, depends on masses
and is considered to be a number that represents the basic structure of the Poincaré
section. We then give it npeq.

Figure 4: The division by cylinder in equal mass case. The number on the region is the
value of ¢. If necessary, the value of j is shown.

4 The distribution of the number of root on mass-
triangle

The purpose of this section is to obtain the distribution of numbers of roots on the
mass-triangle. (The reason of not ‘number’ but ‘numbers’ shall be mentioned in the
section.) This is the preparation for the study of the structural variation of Poincaré
section depending on mass of the system, demonstrated in the next section.

Recall that roots are convergent point on the @ of triple collision curves, namely are
initial points of orbits ending in triple collision as B — 0. If McGehee’s variables are
introduced, equations of the motion are extended and include such orbits, called fictitious
orbits, as ordinary solutions (McGehee, 1974).

4.1 McGehee’s variables and triple collision manifold

We explain the meaning of McGehee’s variables in the following. McGehee’s variables con-
sist of (r,w, s,v). The variable r is the square root of the inertial moment(r = 3 m;z?),
which represents the size of the system. The variable s € [—1, 1] indicates the configura-
tion of the system, and s = —1 and s = 1 correspond to the left collision (symbol ‘1’) and
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the right collision (symbol ‘2’), respectively. The velocity of particles is related to w and
v. The equations of motion described by McGehee’s variables are

dr _Ml-s%)
dr = /W) Jr 22)
dv M| 1—8% , p . 2w’ =
dr 2 [ W (s) W )(1 1 32)} I (2%)
—j—:_ =w = f,, (24)
dw 2w? LW'(s) w? M1 —s%)
'JT‘:S(“T:;E) Wi T ) T ey S e )
where
W(s) = S22, (5) + Wi(s) + Wa(s)] (26)
B mymo(l — 3) sincg = sinz
Wa(s) = (bo — by)sinc(A(1 + s))’
moma(1l + s)

Wi(s) = (ag — ag)sinc(A(1 — s))

Amyma (1 — s%)

W- -
3(s) = (bo — b1) sin(A(1 + s)) + (az — ao)sin(A(1 — s))
) = arccos(a;m1by + agmobo + azmabs) (27)
G = o = — ((y) m1+m0 (28)
! ° (mq + mg)(my + mo + mz) ma(my + mo + ma)
Mo + My
 bp=by = . (29
my(my + mo + my) e \/(mo + mz)(m1 + mo + my) (29)

Since the substitution » = 0 into (22) gives dr/dr = 0, equations (22)-(25) have solu-
tions (r(7) = 0,w(r), s(r), s(7)). These are just solutions starting from f-axis including
roots. When r(7) = 0, orbits of (w,s,v) run on the two-dimensional surface, which is
called the triple collision manifold (TCM). In Fig.5, the schematic diagram of TCM is
shown in blue. The Poincaré section is embedded as the plane s = 0 in the (w, s, v)-space,
which is also shown in the figure. If total energy E < 0, (real) orbits run inside the TCM,
and if £ > 0, outside the TCM. Since we consider £ < 0, the Poincaré section is inside
the TCM, in Fig.5. The #-axis is the intersection of s = 0 and the TCM. To show the
correspondence, the value of 6, 0°, 90°, 180°, and 270° are written in Fig.5. Equation
(22)—(25) have two equilibrium points ¢ and d,

(ryw,s,v) =c:(0,0,s,,+v.), d:(0,0,s.,—v:), where V'(sc) =0, v. = 4/2V (s.). (30)
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Figure 5: Triple Collision Manifold

The equilibrium points are initial points of the triple collision to the future for ¢ and to
the past for d. Moreover, at d and ¢, 6 = 0° and 180, respectively. On the TCM, stable
and unstable manifold of d and c are one-dimensional, and we denote them W2, W, W3,
and Wy. On the whole (r,w, s, v)-space, the stable and unstable manifold of d are one-
and two-dimensional, and, of ¢, vice versa. Figure 6(a) shows the relation between these
manifolds and their relation to triple collision orbits. The stable manifold of ¢ is a surface
shown with shade. The straight path from d to c is the homothetic orbit. This path W3
and W are edges of the stable manifold. A triple collision orbit runs along with W3 and
passes near d then runs along with the homothetic orbit. As R — 0, (as starting point
is close to the TCM), the triple collision orbit approaches W3 and the homothetic orbit.
Therefore, when R = 0, triple collision orbits are on W} , and intersections of W3 and
the Poincaré section are starting points of triple collision when R = 0 namely roots.

4.2 The relation between roots and the fictitious orbit

In this subsection, using the schematic diagram of the TCM, Fig.6(b) and (c), we explain
how to find the root .The TCM is homeomorphic to a sphere with four holes. Figures
6(b) and (c) are the top view of the northern and southern hemispheres. In this sphere,
arms and legs of the TCM are transformed to four holes, L+, R+, L—, and R—. The
vertical line represents the f-axis. The lines s = —1 and s = 41 are projected onto the
horizontal lines which terminate at L + (L—) and R + (R—) on the both hemisphere.
The v-axis is projected onto d and c. The stable manifold W3 has two branches which go
opposite direction from d. We distinguish their direction by the sign of the w component,
and write them Wt and W7,

From d, we trace one of the branches backward to the direction of the arrow. In the
case of the figure, both branches spiral 3/2-times around the v-axis. The number of the
spiraling depends on mass of the system. Then the branch falls into L~ or R~. Therefore,
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the branch intersects once with the Poincaré section every one passage between s = —1
and s = +1. The intersections on the front side are labeled p; and on the rear side [
where 1 £ 7 < 3 in the case of the figure. It is roots of the front and rear sides that are
pi, d and pf, d. If intersections of W3t or W3~ is counted from p* or p;, the roots on the
front side are what W;* intersects at even order and W3~ at odd order. For the rear side,
the parity is reversed. With consideration of this relation, the distribution of the number
of passage between s = *1 on the mass-triangle, which is studied first by Simé (1980),
can be translated into the distribution of the number of roots.

If the central particle is made light, the number of spirals around v-axis increases.
After increase of 1/2 spirals, the target of the fall changes from L~ to R™, and vice versa.
For the critical masses, the branch enters ¢ instead of falling into L= nor R~. At this
point, one of the branch of W} coincides with one of the branches of W* . The flow for
this situation is called totally degenerate.

Even if one of W;* and W~ enters c, the other branch does not always enter c.
Therefore, the number of roots is not always the same on the both sides of the Poincaré
section. Hence, we redefine variables for the number of roots. We use npop for the front
side as before, and introduce njop for the rear side. Since s = —1 and s = +1 correspond
to symbols ‘1’ and ‘2’, both branches can be associated with symbol sequences. The
symbol sequences of Wit and W3~ are (2)*°1210 and (1)*2120. For the orbits that do
not pass roots, it is sufficient to consider orbits that pass the point p, and Py, Which are
points above and below p;. The orbit passing p, moves a path similar to W, before the
passage of p,. After the passage, the orbit passes near d, and falls into R*. Conversely,
the orbit that passes p, falls into R~. Therefore, the symbol sequence of orbits starting
from the #-axis is the following:

Range (dp1) | p1 | (pryp2) | po (P2, ps3) P3 (ps, )
Symbol Sequence | 1.(2)* | 1.20 [ 1.2(1)® [ 1.210 | 1.21(2)® | 1.2120 1.212(1)

4.3 The number distribution of roots

We have obtained the distribution of (npop,ngop), based it on the previous subsection.
As for the detail of the calculation, we write in appendix A. The distribution is shown
in Fig.7(a),(b), and (c). The figure shows (a) whole mass-triangle, (b) area around (a =
0,5 =0) and (c) (¢ = 0.41,b = 1.0). All borders has a label in the form, (n) = (n+ 1)+,
which shows that the number of the travels of Wji increases from n to n+ 1, if the border
is crossed downwards.

For example, if we cross ‘2 — 3+’ downward, a new intersection of W3t appears,
and since its numeric order is 3 namely odd, nfyp increases. A similar discussion for
other borders and known (nrop, nrpop) for one point on the mass-triangle gives concrete
values of (npop,npop) for whole mass-triangle.  The relation that three particle are
marshaled in the order of their masses (m1 < my < my) is written as ~b/3 < a < +b/3.
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(a) Flow inside the TCM

(b) Flow on the TCM (c) Flow on the TCM
(the Northern Hemisphere) (the Southern Hemisphere)

Figure 6: Stable and unstable manifold of equilibrium points
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(a) global mass triangle

1

0 0.1 0.2 0.3 . 04
b
Figure 7: The distribution of the number of passage between s = —1 and s = 1 and the

distribution of (nrop, nfop). The winding number and the number of roots in both side



4. THE DISTRIBUTION OF THE NUMBER OF ROOT ON MASS-TRIANGLE 25

(c) neighbourhood of (—0.41, —1.0)

(d) regions near overlapping with (3, 4)
a

0 0.5 1.0 b

Figure 7: continue
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The corresponding area on a mass-triangle nearly coincide with the area being (3,4). The
correspondence is shown in 7(d). The Schubart orbit being the fixed point of the Poincaré
map on (4, R)-plane, MH1991 and HM1993 studied the distribution of the linear stability
of the fixed point on the mass-triangle. Plotting the distribution on 7(d), we find that
area (3,4) nearly coincides with also unstable area. In this plot, we regard the fixed point
as unstable, when the eigenvalue of the matrix representing the linearisation is grater
than 1.0005.

5 How the Poincaré section changes as (a,b) are changed
In this section, we describe the structure change of the Poincaré section as the mass con- |
figuration is changed. As we already pointed out in the Introduction, the structure change
of the Poincaré section has been described in HM1993. They concentrated their attention
to the change, with mass configuration, of the stability of the Schubart region and the
related stability of the chaotic scattering regions, the latter stability being measured by
the time until escape. Their result also shows that the number of n ACs increases when a
is decreased. Our analysis in the preceding section has explained this increase by way of
the increase of the winding number of W;* for the (a,b) which is studied by Simo(1980).
Therefore, the remaining major problem is how new arch-shaped CSBs appears when
mass parameters are changed continuously. We show a scenario for the problem before
show the details of results.

The triple collision curves for mass parameters near total degenerate case form well
stratified strata. There is rule for the region number of the regions that compose a arch-
shaped CSB: the lowest strata of arch-shaped CSB are reg(l), reg(2), - - -, reg(npop) from
the left, and a block are composed by reg(4, £+ npop, £+ 2npop, - - -). Let us be decreasing
the mass parameter a until the next total degenerate case. The reg(nrop + 1), which will
be the lowest strata of the new arch-shaped CSB, are the second strata of the leftmost
arch-shpaed CSB. Second and upper strata (reg(npop + 1,2npop + 1, - - -)) of this block
bifurcate and compose a germ-shaped CSB between the leftmost and the rightmost CSB.
This germ-shaped CSB push up the rightmost CSB, then push down toward the #-axis and
touch at total degenerate case. At the moment of the touch, the rightmost CSB become
the second rightmost one and the germ CSB the rightmost one. The above scenario
explain the process that the new CSB appears for symmetric and npop > 4 (equivalent
to @ < 0). But for npop > 4 the scenario does not explain the process, which is too
complex to summarise here. The scenario explains also asymmetric case, and however
the additional features appear. The regions with even numbers shrink as the asymmetry
parameter b being increased. Particularly, when npop # Nrop, these regions disappear at
high b. We will explain about the disappearance associating with the flow on the TCM
in Sect.6. Moreover, for large npop and high b, bifurcations for another new CSB, before
the composition of the new CSB is completed.
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5.1 Symmetric case 1: n,, > 4

We divide the symmetric case into two sub-cases where nrop = 3 and ngop > 4 according
to the difference of the process for the appearance of the new CSB. We here describe
the latter case. In the symmetric case (b = 0), npop > 4 corresponds to a < 0 (more
accurately, a < az4 = 0.019823). Figure 8 shows several Poincaré sections for the pa-
rameter values ranging from a = —0.15 to a = —0.31. In this mass range, the 5th and
6th arch-shaped CSBs appear. Each colour corresponds to each reg(c) fore=1,---,14.
For ¢ =15, -,31, the regions are painted in gray. If ¢ > 32, regions are regarded as the
part of the Schubart region and painted in light-green, so that the Schubart region looks
larger. The regions in balck represent the sub-regions, reg((1,00)),reg((2,00)), - -, and
reg(nrop, 00), of the fast escape region disposed from the left in the ascending order. The
correspondence between colours and regions will be the same in the figures in Section 5.

As we have shown in the opening of section 5, near the total degenerate case, the ¢-th
arch-shaped CSB from the left is composed by reg(¢, £ + npop, £ + 2npop, - - -) from the
bottom or formally by the regions

Ue reg(c = £(mod nmedq)), (31)
where nmod = nrop and 1 < £ < ngep.

This simple ‘ny,q = npop organisation’ is seen in the cases ¢ = —0.22 and -0.31.

The process of a new arch-shaped CSB appears for npop = 4 — 5 can be seen from the
cases (a) a = —0.15, (b) —0.20, and (c) —0.22. The germ-shaped CSB (marked with 5’ in
the figure) bifurcates from the leftmost arch-shaped CSB reg(5) (a = —0.15), elongates
with pushing reg(4) (¢ = ~0.20), and touches the f-axis. Then, reg(5) becomes the lowest
stratum of the new 5th CSB. In a similar process, reg(6) becomes the lowest stratum of
the 6th CSB in a sequence of the cases (d) a = —0.25, () —0.28, (f) —0.30, and (g) —0.31.

The organisation (31) says that when the new CSB appears, the second and upper re-
gions of all CSB have to be replaced by new regions moved from other places: for example,
the leftmost CSB reg(1, 5,9,13, - - -) changes into reg(1, 6,11, 16, --), when ngop = 4 - 5.
There take place two kinds of process at the same time. Regions reg(5), reg(9), ... move
off, whereas regions reg(6), reg(11), ... move in. The germ-shaped CSBs are the form of
these regions when they travel between one sector to another sector. A bifurcated CSB is
composed of the second and upper regions of the original one and appears at the left-next
sector to the sector the original being in (**[FALSE] if the original is in the leftmost sec-
tor, the bifurcated go back to the rightmost sector). Each region moves to the appropriate
sector according to this rule. We make the schematic diagram for the re-organisation of
C5B based on the rule on Fig.5.1. This diagram shows the case nrop = 4 — 5. Let us
pick up the bifurcations for the re-organisation of the leftmost CSB (in the first sector).
reg(6) is imported by the bifurcation reg(2, 6,10, 14) — reg(6, 10, 14). reg(11) is imported
to the 2nd sector by reg(3,7,11, 15) — reg(7,11, 15) once, then imported to the first sec-
tor by reg(7,11,15) — reg(11,15). Similarly, reg(16) is transported to the 1st via the 3rd
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and 2rd sectors. With decreasing a, the second and upper regions of each CSB shrink
and finally vanish. Then the first strata of CSBs in a block becomes a new arch-shaped
CSB. As we can see from each case in Fig.8, only one or two of series of branches and one
or two regions of the branches are visible at one mass parameter. Therefore, we cannot
confirm the correctness of the rule for the bifurcation, and however, we show the Poincaré
section for ¢ = —0.17 in Fig.5.1, which is selected to see as many series of bifurcations as
possible.

9.2 Symmetric case 2: npop = 3

We deal with the remaining symmetric case, npop = 3. We show, with increasing @ in
Fig.10, the change of the Poincaré section for this case. The process that the Poincaré
section changes is different from that for npop > 4. At a = 0.4, the Schubart region
vanishes and changes its orientation when it re-appears, that is, the Schubart region takes
triangular shape at around a = 0.4 looking upward (a < 0.4) and downward (a 2 0.4).
The process of change is divided into @ < 0.4 and a > 0.4 cases. For the former case, if a
is decreased until a = azs = 0.019823, then nacg changes from 3 to 4 in a similar way as
nacs changes from n ton + 1 for n > 4. .

However the triple system is far from total degeneracy at around ¢ = —0.4, even
though arch-shaped CSBs are well stratified, nacs = 3, and organised in nyeq = 3. This
is the reason why we separated this case from the scenario shown in the opening of Sect.5.
In order to confirm the process, we give Fig.10 (a) a = 0.1, (b) 0.3, (c) 0.4, (d) 0.5.
In (c) @ = —0.4, the almost vanishing Schubart region is seen. The cases (b) a = 0.3
and (c) @ = 0.4 show the change of orientation of the Schubart region at ¢ = 0.4 and
the well stratified CSBs at around @ = 0.4. Finally, at (a) @ = 0.1, the bifurcations for
nacs = 3 — 4 are seen: reg(7,10,---), reg(10,13,- - -), and others are bifurcated.

Now, we consider the latter case, @ > 0.4. As we have seen in the case (d) ¢ = 0.5,
the extent of the structure like a = 0.4, so the feature of this case appears at a = 0.7.
The process of the bifurcations for a = 0.7 is very complicated. In order to follow the
process, We take values of a at small intervals and show the Poincaré section for them
in (e) a = 0.70, (f) 0.75, (g) 0.78, (h) 0.80, (i) 0.82, (j) 0.85, (k) 0.88, (£) 0.90, (m) 0.92,
(n) 0.99, and (o) 0.9999 of Fig.10. However, if we look at only terminals cases, the CSBs
composed according to nmeq = 3 at (c) @ = 0.40 becomes to be composed according to
NMmod = 2 at a = 1, and required transportation of the regions are also accomplished
by the bifurcations of the regions. The difference to nrop = 4 case is that it is the
change from npcg = 3 to 2 with increasing a. (This difference does not mean simply that
nacs decreases because of the reversed process for the reversed change in a to that for
npop 2 4. If the fact were so, the process might proceed so that the regions inside a
arch-shaped CSB disintegrated and were taken in different germ-shaped CSBs. Instead,
the Poincaré section (e)-(o) shows that germ-shaped blocks bifurcate.) For example, let
us follow the transportation of reg(6). This region is inside the 3rd arch-shaped CSB
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- ) = (4.0

(a) b

) = (—0.15,0) NFOP, NFop

Figure 8: The partition of the Poincaré section(Symmetric, nyo0; > 4)
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Figure 8: (continue)

(5,5)
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(6) (a,) = (-0.31,0) I (6,6)

(a,b NFOP, Miop) =

/

Figure 8: (continue)

from the left, reg(3,6,9,---), at @ = 0.40. This block is distorted at a place above the
1st CSB ((e),(f) @ = 0.70,0.75), a ‘branch’ that bifurcates from the point piles up on
the 1st CSB((g-i) @ = 0.78 — 0.82). This ‘branch’ is still connected to the original CSB.
Among the cases shown here, the branch separates from the original CSB at (k) a = 0.88.
The reg(3) appears under the lowest strata reg(6) of the branch, its composition becomes
the same as that of the original CSB. For this point, we can consider that reg(3) was
already included in the branch at the bifurcation, but was invisible, then grows so as to
be visible at a = 0.85. From the point of view, we can explain the bifurcation and the
transportation of reg(6) and other regions with the simple rule that a block bifurcating
from a CSB contains the second and upper strata of the original block and appears in
the left-neighbouring sector to that of the original block (For the rightmost block, the
branch contains all regions and appears in the leftmost sector). The reg(6) stays for some
interval of a, then piles up on the 2nd arch-shaped CSB at (n) a = 0.99. As going to
a = 1, the 3rd arch-shaped CSB becomes invisible, and the compositions of the rest of
CSBs becomes reg(1,3,5,7,--) and reg(2,4,6,8, - --). However, these two blocks are not
completed until @ = 1 (while m; /mq being finite). We can confirm at (o) a = 0.999 that
reg(4), reg(6), and reg(8) are still germ-shaped independent block.

5.3 Asymmetric case 1: (nrop, nfop) = (3,4)

Looking at area being npop # njop on the mass-triangle shown in Fig.7, one find that
nrop = 2¢ — 1 and nrop = 2 with £ > 2. The area being (nrop, nfop) = (3,4), which we
take up in this section, is the main area of these. The Poincaré section for these area is

—
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(a) schematic diagram
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Figure 9: The Bifurcation and Composition Change of Arch-shaped CSB
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(

= (0.10,0) )= (3.3)

a) (a,b FOPa NFop

Figure 10: The partition of the Poincaré section(Symmetric, npop = 3)
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Figure 10: (continue)
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Figure 10: (continue)
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Figure 10: (continue)
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shown in Fig.11.

Now, we begin to look at (ngop, nkop) = (3,4) with increasing the asymmetry b. From
the cases (a,b) = (0,0.1) and (-0.1,0.4), it is found that reg(c) with even ¢ shrink with
increasing b. In a more asymmetric case (—0.1,0.4), the region ¢ = 10 disappears. If
the system becomes more asymmetric, regions with even number, except ¢ = 2, finally
disappear. In these two cases, arch-shaped CSBs are organised according to nmeq = 4,
but npop = 3 for the rightmost CSB rising up. If considering that these mass cases are
just above the border for ngop, we can find that the shape taken by the Poincaré section
just above the border is the same as one at symmetric case (e.g. (a,b) = (-0.20,0) in
Fig.8). However, the behaviour of reg(4,8,--), rising up from the f-axis, is different
from the symmetric case. In the symmetric case, such regions are together as one germ.
However, these regions are disrupted in (a,b) = (0,0.1) (reg(8) is too small to be seen
in (—0.1,0.4)). Similar disruptions are seen in the second CSB from the left: reg(6) and
reg(10) are independent germs.

Here, we describe the structure around these germs. This structure is fine but im-
portant in case asymmetric and npop # npop. We show the Poincaré section of (0,0.1)
magnified around reg(6) next to the original one. reg(2,6,10) are enclosed by regions
including reg(5,9,13). For the time being, we call reg(2,6,10) enclosee and reg(5,9,13) en-
closer. Because of the enclosure, the enclosee are isolated from the global structure of the
arch-shaped CSB. Note that the enclosee have even region number, and the encloser have
an odd region number. The regions reg(5,9,13) bifurcate into two or more branches. One
branch is a part of the leftmost CSB. The other branches are encloser. The correspon-
dence between the enclosee and encloser is summarised on Table 2. This is generalised

enclosee encloser

reg(2)  reg(59,13, )
reg(6)  reg(9,13,---)
reg(10)  reg(13, )

Table 2: The relation between enclosees and enclosers

into the relation that reg(4i+2) with i > 1is enclosed by reg({47+2+3|j > 7}). A similar
relation is seen also between reg(4, 8,12, --) and reg(7,11,---). In this case, reg(4:) with
¢ > 1 is enclosed by reg({45 + 3|7 > ¢}). This relation shall be discussed in the next
section. . i

We come back to the Poincaré section changing with increasing b. The regions with
even number except reg(2) do not exist at (0,0.2), and for each of reg(5,9,13) or reg(7,11),
its branches are united. In this mass case, curve of strata is wavy, however it is relaxed
as increasing. Then, the Poincaré section reaches the shape seen in (0.0.5). Even if &
increases more, there is nothing more than reg(c) and reg((c,o0)) with even ¢ become
small and with odd ¢ become large. Which is known from show (a,b) = (0,0.6) and
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(—0.2,0.8). In order to know the limit case (0,1), where m; is mass-less particle, we
show the case (0,0.99). The Poincare section is almost occupied by the escape regions
reg((1,00)) and reg((3,00)). In these mass parameters, the arch-shaped CSBs are well
stratified in spite of being distant from the border for (npop,npop). As mentioned in the
above, these mass parameters are located in rather inside of mass area that the Schubart
region is linearly unstable. It implies that the well stratification is related to the instability
of the Schubart region also in these case.

5.4 Asymmetric case 2: npop,njop = 4

In 5.1 and 5.2, we have seen the change of the Poincaré section dependent on the parameter
a, when symmetric. In this subsection, we watch how the change is modified when the
asymmetric b is high. In Fig.12, we show Poincaré sections for mass parameters from
a=-0.390 to 0.432 with fixed b=1.0 (only for a=-0.39, b=0.9), which correspond to mass
areas from (npop,nrop *) = (4,4) to (7,8).

At the mass case (a,b) = (—0.39,0.9), where (nrop, nfop) is (4,4), there are no special
difference except the shrinkage of regions with even number. At (—0.40,1.0), where
(nyop, nhop) is (5,6), regions with even ¢ does not exist. At (—0.41,1.0), where is little
above the border to (npop,nop) = (6,6), regions with even number recover. In this case,
even if the sixth arch-shaped CSBs is not completed, the bifurcation of reg(7,13) for the
seventh CSBs appears. At (-0.4227,1.0), which is on the border between (nrop, nfop) =
(6,6) and (7,7), the CSBs with reg(9),reg(11), or reg(13) curl and trail to their left
CSB, and regions reg(8), reg(10), and reg(12) look as if they were piled up on by reg(9),
reg(11), or reg(13), respectively. The regions reg(8,10,12) are very thin, but they do not
disappear while (npop, nhop) = (7,7). At (—0.432,1.0), where (npop,njop) = (7,8), the
tip of curling regions reach the root and pairs of CSBs with reg(1,2), reg(3,4), or reg(5,6)
are united, respectively. The regions reg(8,10,12) disappear and reg(1,9), reg(3,11), and
reg(5,13) are directly connected, respectively.

From the above observation, it seems that (1) cycles for creation of a arch-shaped
CSB becomes ambiguous if the asymmetry b becomes high, and (2) the regions with even
number disappears only when npop # nhop-

5.5 Asymmetric case 3: ngop = Nyop = 3

Finally, the asymmetric case being nrop = nhop = 3 is show in Fig.13. In this case, there
are no more difference to symmetric case than the Schubart region distorting and the
regions with even number shrinking. For any values of b, the Schubart region disappears
near a = 0.4. The Poincaré section is well stratified in and around the mass parameter:
for example, the Poincaré section of (a,b) = (0.3,0.6), (0.4,0.2), and (0.6, 0.3) are shown
in the figure. When a becomes large, the bifurcation of the regions appears ((a = 0.8,b =



Figure 11: The partition of the Poincaré section(Asymmetric, the number of roots is

different in both side of the Poincaré section)
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(d) ( ) =(3,4)

a,b) = (0,0.5) (nFoP, Nfop

Figure 11: (continue)
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(a) (a,b) = (—0.3000,0.9) (an, niop

= (4a4)

(c) (a,b) = (~0.4100,1.0) . __ (nrop, niop) = (5,6)

i

p—

y 4

Figure 12: The partition of the Poincaré section (Asymmetric, the dependency on the

parameter a)
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Figure 12: (continue)
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(a‘) (a’ b) A_A“., e _— (nOP’n;‘OP) = (3’3)

Figure 13: The partition of the Poincaré section(Asymmetric, npop = njop = 3)
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(d) (a,b) = (0.8,0.1)

e o=

(nrop, nfop) = (3,3)

Figure 13: (continue)

0.1)). The number nacs seems to be 2 at the limit value of a, a = 1 — b,‘at which m; is
0.

6 Interpretation of Results

In the previous section, we have observed the structure of the Poincaré section obtained
by means of its partition according to symbol sequences. The observation shows the
relation between the location of a region reg(c) in the Poincaré section and the number c.
In this section, we try to explain these relations using the flow on the TCM and symbol
sequences.

6.1 How reg(c) with ¢ > npop appear

If the (0, R)-plane is considered in the McGehee’s variables, the f-axis is connected con-
tinuous to (6, R > 0). Therefore, we can expect that a fictitious orbit can metamorphose
into real orbits without changing its topology. Actually, the foot-points and segments
between foot-points on the #-axis have symbol sequences

Sr = {(21),(21)'20, (21)"(1), (21)"(2)|i £ int(nror/2),i € Z},

and they appear also above the segments and the foot-points. These are just scallops and
some triple collision curves. The escaping orbits can metamorphose into ejection orbits
continuously, which is analogous to the continuity between hyperbolic and elliptic orbits.

=
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This is the reason why the regions corresponding to
Sr = {(21)', (21)"20, (21)(1)?, (21)'(2)’[¢ < int(nror/2),4,J € Z}

exist and touch the fast escaping regions. Now, we have considered the reason for the
existence of regions reg((¢c, 00)) and reg(¢) with ¢ £ npop. The ¢ > npop case is considered
in the rest of this section.

An arch-shaped block, for example, the leftmost one in the equal mass case, are com-
posed of reg(1), reg(5), reg(9), - - - from the bottom, as is observed in Sect.5. This relation
is going to be explained through the consideration of orbits in McGehee’s coordinates.
Generally, the regions, such as reg(1) and reg(5), are separated by a triple collision curve.
In Fig.14, reg(1l) and reg(5) are separated by the triple collision curve with the symbol
sequence 20. The first N-digit of symbol sequence is (21)%(2)VN~* and 2(21)%(1)N~° at
‘black bands’ over and under the curve, where N = 64 according to the specification for
symbol sequences written in Sect.2. If N were increased, the corresponding black bands
might be narrow. Then, do the bands corresponding to (21)%(2)* and 2(21)%(1)* appear,
when N — co? We can confirm that the answer is yes, through the consideration of the
orbits in McGehee’s coordinates shown in Fig.15 for points on a triple collision curve (the
orbit TCO in the figure) and on the both black bands (0O180F). The TCO exists on the
the stable manifold of the fixed point ¢ and experience triple collision at ¢, while O180F,
after the passage near ¢, approach W¥+. Hence the symbol sequences of O180F are

s(0180F) = s(TCO)-s(W7 =), (32)
where s(TCO)-0 and s(W*+) are the symbol sequences of TCO and W}*+. Generally,

o= (-5

(see Sect.4.2), where {-} denotes that one item is selected from . Therefore, the symbol
sequences of O180F are that of escaping orbits:

s(0180%) = s(TCO)- {g;g} ; {gg:} . (34)

We have found that the initial points for triple collision orbits are surrounded by those
of escaping orbits in our system. It is contrastive to the case of isosceles three-body
system (Tanikawa, Umehara and Abe, 1995). There are two configurations where the
orbits experience triple approache but not exact triple collision. In one configuration,
the third particle passes through between approaching binary. The acceleration (before
passage) to the third particle is smaller than the deceleration (after passage). In the
other configuration, the third particle passes through receding binary. The acceleration
is larger than the deceleration. Because of this asymmetry, the initial points for triple




6. INTERPRETATION OF RESULTS 47

collision touch those for both escaping and non-escaping orbits in isosceles three-body
system. Now, if we let s(TCO)-0=20, s(W'+) = (21)*(1)>, and s(W*—) = (12)%(2)>,
we find

s(0180—) = 2(21)*(1)*®° € Ss,0) and . s(0180+) = (21)%(2)* € S;.

Moreover, since reg(c, ), with arbitrary ¢, touches reg(c) because of the continuity be-
tween escaping and ejection orbits, we find that reg(1) adjoins reg(5) via reg((5,o0)).
If we set s(TCO) — 0 general symbol sequences being able to be the border of reg(c)
and reg(c) (via reg((c/,00))) and evaluate Eq.(32) or Eq.(34), we can obtain the relation
between ¢ and ¢!. We will do that in the next subsection.

Stable Manifold — TCO

— 0180-
\}

6=270°

< 6 =90°

Triple Collision Manifold

Figure 14: Symbol sequences of the

triple collision curve and its neigh-
bourhood

Figure 15: A triple collision orbit and orbits of its
neighbourhood

6.2 Interpretation for the organisation of arch-shaped CSBs

Since reg(c) are defined by the repeating number of the word ‘21’ , only triple collisions
curve with a symbol sequence whose form is (21)¥0 or (21)¥20 can be the border of
regions ? reg(c). For such triple collisions, Table 6.2 shows possible concatenation of
symbol sequences and their region number. This table is separated into cases of (a)
npop = Npop and (b) nrop # nfop. First, we explain elements of the table for case (a).
The column ‘Triple Collision’ shows a symbol sequence of a triple collision curve. The
column, ‘0 = 180F° ’ shows symbol sequences of W**. For each item of ‘Triple Collision

*For example, removing ‘0’ from ‘2220’ and concatenating any symbols after that, we obtain only
symbol sequences belong to Sy U S) . Therefore, ‘2220’ cannot be a border of regions reg(c).

°

SRR 5 TS N S
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Orbits’ the symbol sequence of Wt is shown in the upper row, and W2~ in the lower
row. Since symbol sequences of the branches have different expression selected by the
parity of npop, Table 6.2 is separated into two cases npop = 2m and nrop = 2m + 1.
The column ‘Concatenation’, shows the symbol sequences made from the concatenation
of “Triple Collision’ and ‘¢ = 180F°’, and corresponding region numbers are shown in the
column, ‘¢’. For example, if we look at the pair of rows, 11— and 11+, it is found that
the region ¢ = 2/ and the region ¢ = 2¢ 4+ 2m touch with each other. The others pairs of
rows give similar relations, we express these relations as the following:

npop =2m : (i) 20 <20+2m, (i) 20+1 <2041+ 2m
npop =2m+1 : (i) 20 < 2/ 4+ 2m + 1, (iv) 20 +1 < 20+ 2m + 2.

These relations are more simplified,
¢ < ¢+ npop.

This relation shows that each CSB consists of regions whose region numbers are congruent
(mod npop). Second, we consider the case of (b) nrop # nop. In this case npop = 2m—1,
and npop = 2m for m > 2, so there are only the case of npop = 2m + 1 in Table 6.2(b).
From this table, relations of touching regions is

(v) 2 <26 +2m +1, (vi) 20 +1 < 20+ 2m 4+ 3.

For reg(1,- - ,npop), the base strata of arch-shaped CSBs, reg(c) with odd ¢ are accu-
mulated, which comes from applying both of the above relations. For second and upper
strata also, reg(c) with odd ¢ are accumulated, which comes from applying only the rela-
tion (vi). This relation about regions touching to each other explains the disappearance
of reg(c) with even ¢ in high asymmetric cases such as (a,b) = (0,0.5) in Fig.11. These
relations do not forbid reg(c) with even ¢ > npop. The left hand side of the relation (v)
is even. Hence, reg(c) with even ¢ can appear as first term in a series of touching regions.
However, this series is independent from series of arch-shaped CSBs, whose first terms are
reg(1,---,nrop). Therefore, reg(c) with even ¢ > ngop are not at least in CSBs. These
‘independent even regions’ appear in low asymmefric cases such as (a,b) = (0.1, 0.1), as
germs infruding to the arch-shaped CSB. In Sect.5.3, we have obtained the observation
that these germs consist of a reg(c) with even ¢, enclosee, and reg(c) with odd ¢ enclosing
it, enclosers. We have shown the relation about enclosee and enclosers in Table 2. This
relation can be derived from the relations (v) and (vi).

7  Summary

We have followed the structural change of the Poincaré section caused by the variation
of masses of the particles through the classification of the points on the section according
to symbol sequence type. The following is the summary of the Part I.
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Table 3: Symbol sequences made with the concatenation of symbol sequences of a triple
collision orbit and W2+

(a)npop = Npop

| Label | Triple Collision | § = 180F° |  Concatenation | Region ¢
NFop = 2m
11— (21)¢0 D™(1)= | (21)Fm(1)*= 20+ 2m
11+ (12)m(2)= | (21)41 — (21)™1(2) | 2¢
12— (21)20 @en™1)> | 2N2-0D™1)* |26+1
12+ (12)m(2)= | (21)¢m(2) 20+ 1+ 2m
Npop = 2m + 1
21— (21)¢0 (21)™(2)= | (21)™(2) 20+ 2m+1
21+ (12)™(1)° | (21)f1 — (21)™(1)> | 2¢
22— (21)220 (21)™(2)= | 21)2- (21)™(2)> [20+1
22+ (12)m(1)* | (21)H+m+1(1)e° 20+ 2m + 2

(b)'n'FOP % NEop

| Label | Triple Collision | § = 180F° |  Concatenation | Regionc |
NFop = 2M
2= @a1yto RL™2)= | (1) (2)= 20+ 2m + 1
21+ (12)m+1(1) (21)£1 _ (21)m+1(1)oo o0
22= 1 21)t20 RO™2)®  [@D2-D)"@)*® |[20+1
22+ (12)™H(1)= | (1) (1)= 20+ 2m + 3

o The Poincaré section is composed of the Schubart region and sectors surrounding
it. If mass ratio is near that of totally degenerate case, a sector is composed of
a subregion of fast escaping regions (scallop) and an arch-shaped block of strata
(arch-shaped CSB). The regions numbers of regions included in an arch are mutually
. congruent modulo the number of sectors. The terminal points of the arches are the
points on the f-axis and their number is the same as the number of sectors.

o The number of sectors increases as the central particle becomes light. This fact
harmonise with the McGehee’s result that the winding number of fictitious orbits
on the triple collision manifold increases.

e The structure of the Poincaré section changes from a totally degenerate case to
another totally degenerate case through the common way. If the central mass is
decreased, the germ-shaped block, which bifurcate from the leftmost scallop; grows
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toward the roof and 180° side and becomes the lowest layer of the leftmost arch-
shaped block. Even if this germ includes multiple regions, only the region with
least region number survives. Similarly, germs bifurcate from other arches to be the
second and the upper layers of arches, including the new arch. This event make the
modulus increase by one, which determines the regions included in an arch.

e As asymmetry of mass ration becomes high, the regions with even region number
shrink. Moreover, if the number of foot-points is different in the both sides of the
Poincaré section, these regions disappear. Excluding this case, there exist regions
for all region numbers.

A.1 Procedure to obtain the number distribution of
FOPs

As we have mentioned in Sect.4.2, the distribution of (npop,nfiop) can be obtained from
the number of passage of W;i between s = —1 and s = +1, so we show the procedure to
obtain the number of passage.

Procedure to obtain the passage of W;* between s = —1 and s = 1

1. Calculate equilibrium points

The value of s, is obtained by the numerical solution of the equation V'(s,) = 0 and
the relative error of the value is about 107° among mass parameters. If obtained
equilibrium points referring s. are put into (f,, fu, fs, fo), the norm of this vector is
10710,

2. Calculate the coefficient matrix of the linearised equation of (22)—(25) around d

The equations are linearised around d as 4= (8w, 63, 6v)T = [a; ;](dw, 8s, 0v)T, where
ai; = 0f;/0j and i,j € {w,s,v}. Since the constraint that variations dw, és, and
dv are taken on the energy manifold reduces into dv = 0, only 2 x 2 part of a;; is
effective. The value of a;; is calculated numerically with the displacement A¢ of w
or s. The calculation is iterated with replacing A by A¢/2. The eigenvectors of a; ;
are calculated via their eigenvalues directly. For one of the eigenvectors, the angle
between the value of n-th and (n —1)-th step gives error of a;;. This angle decreases
with decreasing AZ, tends to increase because of error of equilibrium points and we
stop the iteration for a;; at this moment. At the end of the iteration, AZ = 10~7
and ¢ = 1076,

3. Integrate from the point slightly apart from d along the stable eigenvector and count
the passage between s = —1 to s = +1.
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4. Tterate the above steps 1 — 3, and determine mass parameter where the number of
travels changes

First, we obtain the distribution of the number of passage between s = —1 and
s = 1 on the mass-triangle with the grid size of Aa = Ab = 0.1. Second, scanning
all vertical lines b = 0.1A, we find ranges of a including the border of the number

and improve the ranges.
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Part 11

Periodic Points and the Structure of
the Poincaré Section
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1 Introduction

We start from the summary of the the structure of this Poincaré section according to
the research of Mikkola and Hietarinta. There is a periodic orbit of period one in our
system. This is the so-called Schubart orbit. This orbit intersects the Poincaré section
with 0 € < 7 at only one point, that is, this is a fixed point of the Poincaré map. This
point is inside a polygonal region (the Schubart region), where general orbits are stable
in the sense that these never escape to infinity, and have similar behavior as the Schubart
orbit does. Each side of the Schubart region faces an arch-shaped block (arch-shaped
CSB) where the orbits are chaotic (Mikkola & Hietarinta, 1989; hereafter MH1989).

We have seen in Part I that near the totally degenerate case, each CSB is stratified
only by arch-shaped regions, whereas in the intermediate mass ratio, germs (germ-shaped
blocks) intrude between the Schubart region and the arch-shaped blocks. If we decrease
the central mass, we can see the process that germs bifurcating from the leftmost scallop
grow to be the main part of the new arch-shaped block at the next totally degenerate
case. This process is repeated when the system passes between two consectutive totally
degenerate cases, and accordingly the number of sectors containing arch-shaped blocks
increases as the central mass is decreased.

We can expect the influence of the distribution of the periodic points bifurcated from
the fixed point on the structure of the Poincaré section, with taking the following results
of preceding researches into account. Generally, in twisted maps on the two dimensional
surface, if the parameters specifying the system, such as mass ratio, is varied, periodic
points bifurcate and go outward radially from the central fixd point (see, e.g., Tanikawa
& Yamaguchi 1989). By taking the Poincaré map, we can confirm the existence of stable
periodic points observing the islands appearing around the fixed point. The Poincaré map
of Hietarinta & Mikkola (1993, hereafter HM1993) suggests that the periodic points which
have the same number of islands as the number of the sides of the Schubart region seem to
have a dominant role. Moreover, for the equal mass case, the periodic points are actually
detected by MH1989. In this case, the Schubart region has quadrangular shape and two
sets of unstable periodic points with period 2 are located at the vertices. Tanikawa &
Mikkola (2000b) found curves running from the four unstable points via symbol sequences
as sets of points whose orbits repeat the alternate collision. The points on the curves
are distinguished from the Schubart region, because these points are mapped into more
distant points from the fixed point. The curves seem to be the separatrices of the four
unstable periodic points. The study for a similar dynamical system, the collinear Coulomb
three-body problem with electron-ion-electron configuration, carried out by Sano(2003)
is helpful to understand our system. In his system, there exists the Schubart region and
on its vertices are unstable periodic points. He confirmed the existence of the separatrix
numerically following the mapped points starting near the vertices.

In Part II, we will systematically detect the periodic points, follow their motion with
varying mass ratio, and see the relation to the structure observed in Part I. We explain
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the growing process of the germs associated with the motion of the periodic points. The
result of HM1993 suggests that certain series of periodic points regulate the shape of the
Poincaré section. As for this suggestion, we confirm that such periodic points have a
rotation number with a special form and determine the border of the Poincaré section for
one case of the series. The chaotic scattering blocks are filled with triple collision curves
(TM2000a), periodic points can not traverse these curves. We observe that the periodic
points intruding with detouring these curves affect on the structure inside the chaotic
scattering blocks.

Section 2 is devoted to the formulation of the problem and the preparation of tools.
The equations of motion and the definition of the Poincaré section (6, R) and the symbol
sequence are common to Part I. In addition, we introduce the rotation number o which is
a index describing the behaviour of the periodic points (PPs). The detection of the PPs
using the rotation number is shown. In Sect.3, we first summarise property of the series of
the PPs bifurcated from the fixed point(FXP) with changing the mass of central particle,
then look at the process in detail that a set of the PPs with certain o, as a sample case,
move outward from the FXP on the Poincaré section with changing the central mass. In
order to look at the influence on the structure of Poincaré, we show the divided Poincaré
section or triple collision curves. We also construct a scenario about the PPs and the
change of the Poincaré section based on this observation. Section 4 summarises the result
of Part II

2 Method

‘We have studied the structure on the Poincaré section in Part I. We return to the Poincaré
map technique used by HM1993 in Part II. This Poincaré map has the fixed point and the
periodic points bifurcated from it. The purpose of this part is to follow how these periodic
points relate to the structure observed in Part I. In this section, we define the Poincaré
section and introduce a quantity rotation number in a fixed-point-centric coordinates
introduced here. The motion on the Poincaré section around the fixed point is the fixed-
point-centric rotation. The rotation number is the averaged rotation angle under the
Poincaré map.

2.1 The definition of the Poincaré map and the motion around
the fixed point ' .

We defined the Poincaré map on the Poincaré section (6, R). See Sect.2.1 about the
definition of the Poincaré section, and Sect.3.1 about the structures seen on it.

We divide the Poincaré section into two sides, and denote the part with 0° < 6 < 180°
by II and the part with 180° < @ < 360° by II*. An orbit starting from the Poincaré
section repeats the intersection with II and IT* alternately. When an orbit intersects with
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IT (resp. II*) at (R, ) and II (resp. II*) again at (R",8"), we define a map T from (¢, R)
to (6", R").

T:(0,R) — (R",0"), where (6,R),(#",R") el or (6,R), (6", R") eI*  (35)

The map 7" has a fixed point (6o, Ro), which satisfy (0o, Ro) = T(fo, Ro). The
fixed point (FXP) is an orbital point of the periodic orbit, the so-called Schubart or-
bit (Schubart, 1956), whose symbol sequence is (21)*. If this orbit is stable, the motion
around the FXP is the FXP-centric rotation. Let us confirm the rotation by taking the
Poincaré map. Figure 16(a) results from mapping the points many times on the line par-
allel to the f-axis and starting from the FXP. The rotational motion is reflected on the
ellipse-like curves (the so-called KAM curves). Moreover, we find that the rotation angle
depends on the distance from the FXP, because the line parallel is mapped to a sprial
as shown in Fig.16(b). As one can understand from an ellipse-like curve drawn under
the numbers of mapping of a point, most of points do not return to their original points.
However, there are few points which return to their original points under the n iterations
of the mapping. These points are called the periodic points or n-periodic points and n the
period. If periodic points (PPs) are stable, the points rotate around the PPs to the some
extent from the PPs. Therefore, n individual KAM curves appear there instead of the
KAM curves centered on the FXP. These individual KAM curves are often called ‘islands’.
Six islands appear in Fig.16(a). Conversely, when we obtain these islands through the
numerical calculation of the Poincaré map, we can find the periodic points on the centre
of the islands by solving the equation (8, R)T = T™(#, R) using Newton Raphson method
with the initial points inside the islands.

In order to describe the rotation, we introduce a quantity rotation number. The
rotation number is the averaged number of rotations over the infinite iteration of the
mapping. We introduce coordinates (é , R) with origin at the FXP to measure the rotation
angle _ _

0= (9 - 90)) R= g(R - RO)/Rmax with g = 100, (36)

and corresponding the polar coordinates (D, A)

D =V02+ R?, A= arctan(R/0)
§ = DcosA, R= DsinA. (37)

Obviously, the distance in this coordinates, 1/(R — R’)? + ¢2(f — '), depends on the co-
efficient g. We set g = O(#) = 100 to balance the contributions from both components.
There is a freedom that the Azimuth A is measured clockwise or anticlockwise, since the
variaton of A is discrete. In order to measure the accumulated difference of the azimuth,
we always measure anticlockwise (positive angle). Therefore, the azimuth difference AA
is

A—A [ A—A>0)

A — A+ 2r (else) : (38)

AA(AA) = {
when (D, A) is mapped to (D', A').
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(b) one iteration, (a,b) = (—0.22,0)

~

e

(a) many iterations, (a,b) = (—0.25,0)

!

A\ 4

F': fixed point

Figure 16: The mapping of a line under the Poincaré map

2.2 Exact and Effective Rotation Number

Let (D%, A®) denote the mapped point of (D, A) under the 4 iteration of the mapping.
The averaged number of rotations a(D, A; n) over the n iterations is

a(D, A;n) = 5—71r_n ZAA(A(i“l),A(i)). (39)
i=1

The rotation number aeo(D, A) is defined by
eo(D, A) = lim a(D, A;n). (40)

We can only calculate a(D, A;n) for some n instead of exact rotation number though
the numerical caluculation. We first iterate the mapping N times, and then take i that
minimise §A(A’, A), for 1 < i < N as n. We write a(D, A;n) for this n a(D, A) and
regard as the rotation number in this book. If the point (D, A) is a p-perodic points,
Qoo(D, A) = (D, A; p) = q/p with integers p, . Moreover, since p is selected as n which
determines oD, A), a(D, A) = a(D, A;p). Thus, our effective rotation number (D, A)
gives exact rotation number for the periodic points. Note that o = ¢/p corresponds to
the periodic p but also kp, where integer £ = 2. The rotation number of the kp-periodic
points is ¢/p, which rotate g-times around the fixed point under the kp iterations. In this
book, if necessary, we write the rotation numbers p/q and 2kp/2kq to discriminate the
periods.
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The Poincaré map (¢, R') = T'(6, R) is approximated by the linear map

7 0 o, . . -
( I > = G( I ), where [G);; = 57 i,j € {#, R}, and T(0,R) = (T;,Ts).  (41)

in the neighbourhood of the fixed point. The rotation number is calculate there via G.
The matrix G is diagonalised with its eigenvalues A; and )y and eigenvectors i; and y:

A 0

_ -1 —
G=V BV,WhereB—( 0 A

) and V = [if; 2)7. (42)
The area is magnified anywhere by | det(G)|* under the n iterations of mapping by G.
Hence, if det(G) were not 1, the area increases or decreases monotonically. It is inconsis-
tent with the volume preserving property of the Hamiltonian system. Therefore, det(G) =
Mg = 1. The stability and the rotation number in the neighbourhood of the fixed point
is considered in the coordinates (&,n) with (¢ n)T = V(6 R)T. When \; = exp(¢/—1) and
A = exp(—gy/—T), then (£ g™)T = Br(e® n©) = (exp(név/~1) exp(—ngy/~T))".
It shows the rotational motion and that the fixed point is stable for small displacement.
When \; = r and Ay = 1/7 with 7 > 1, then (¢ p™)T = Bn(£© nOT = (rm 1/rm)7.
It shows the hyperbolic motion and that the fixed point is unstable. The dependence of
this linear stability on the mass parameters is studied by MH1991. The symmetric case,
considered here, is linear stable for all values of a. In most of linear stable cases, there
is a stable region (the Schubart region) around the FXP. However, HM1993 found that
the Schubart region vanishes in ¢ = 0.4 line on the mass-triangle in spite of the linear
stability. We will consider this case later. The argument ¢ in stable case is the rotation
angle (in coordinates (€,7)). Therefore, limp_,0 Ceo(D) = ¢/27.

2.3 The periodic points and their accompanied structure

The rotational motion under the mapping 7" has the rotation angle depending on the
radius B. This motion is analogous to that under the (perturbed) twist map 73, (Licht-
enberg and Liberman, 1992):

Jn+1 = J‘n + Ef(Jn+1)¢ﬂ)
Tiw : 43
¢ { Pry1 = ¢n+l + 27ra(']n+1) + EQ(JTH-I; ¢n): ( )

where perturbation parameter ¢, the rotation number c(J,41) in unperturbed case € =0
(regard (J,6) as the radius and the angle), periodic functions f and g for . When ¢ = 0,
there is the circle whose points are p-periodic points with the rotation number a(J) = q/p.
According to the Poincaré -Birkoff theorem, this circle is broken into 2kp periodic points
with integer k = 2, when € # 0. The following is the outline of the proof. The closed curve
O, exist also in € # 0 case, where the angle ¢ is unchanged after p iteration of mapping but
the radius changed. Let Cy denote the closed curve mapped from C; under the p iteration.

r s 1.3t
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circulation

separatrices

libration

Figure 17: the periodic points and their accompanied structures

Since C; and C; have to enclose an equal area due to the area-preserving property, C
must intersect with Cp an even number of times. The intersecting points are p-periodic
points. The periodic points are divided into two types according to the motion of their
neighbourhood. One motion is rotationl motion. The periodic points are called elliptic for
this type. Due to this rotation, the points near the periodic points take only the values of
¢ around that of the periodic points. This motion is called libration. The other motion is
hyperbolic motion and corresponding periodic points are called hyperbolic. The number
of elliptic and hyperbolic periodic points is the same and aligined alternately. When the
initial point is changed from the elliptic point to hyperbolic point, its motion under the
iterations changes from the libration to the circulation. The hyperbolic motion in the
neighbourhood of unstable points are described by the matrix linearising the composition
mapping of p iterations. The motions for the infinitesimal displacement in the direction
of the eigenvectors of the matrix are marginal of elliptic and hyperboilc motion. Their
trajectories are called separatories. The schematic illustration about the elliptic and
hyperbolic points and accompanied libration and separatrices are shown in Fig.??.

- The elliptic point E; exist between two hyperbolic points H; and H, in the figure.
The separatrices of Hy are four curves marked with W and W, which are called unstable
and stable manifolds of H;. The separatrices are mapped into themselves and the points
on W7 and W} are mapped to H; under the infinite number of mapping and inverse
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Figure 18: the periodic points and their accompanied structures in the rectilinear three-
body system, {(a,b) = (—0.15,0), a0 = 3/5.

mapping, respectively:

Tou(W) = T (W3) and oy (W) = Thos (W) (44)
_1_1)21 T (Zs) = Hy for ¥, € W (45)
lim TpP(3.,) =Hy  for 4, € Wy

If the composition map 77, of p iterations are linearised at the periodic points by the
matrix G, the eigenvalues of Gy, are Ay = r and Ay = 1/r (rjl) for the hypernbolic
points H; and \; = exp(—¢+v/—1) and A = exp(¢p/—1) for the elliptic points E;, where
due to the area preserving property, A1A2 = 1. At the hyperbolic points, the eigenvector
for \; elongates, while the eigenvector for Ay shrinks, under the mapping by G,. We
have mentioned the accompanied structure of the periodic points generally seen in twist
maps. We show in Fig.?? that similar structure appears under the mapping by T'.

The periodic points move radially in twist map, when the parameters of system is
varied. For example, in the standard map

{ Jni1 = Jn + K sin én

¢'n+1 = ¢n + Jn+1 (46)

TR e e



62

Figure 19: The azimuth unchanged curve as the candidate for the periodic points, (a,b) =
(—0.25,0), a0 = 4/6

which is obtained from the setting €f(Jny1,9) = K sing, a(Jnt1) = Jnt1, and g = 0 in
the twist map(43), K is the parameter of system. The behaviour of the periodic points
when K is varied is studied by Chrikov(1979) and Tanikawa and Mikkola(1988). In our
map T, the parameter is the mass parameter a. The periodic points may move inward and
finally coincide with the fixed point, when these parameters are varied to some direction.
If the rotation number of the periodic points is g/p, then imp_,o aeo(D, A) must g/p at
the value of the parameter for the coincidence. Conversely, for arbitrary rational q/p,
limp_,0 @eo(D, A) = q/p shows any points are periodic points with period p under the
linearised map of the original map. Therefore, the periodic points bifurcate from the
fixed point, when limp_,o @D, A) is rational.

2.4 How to detect the periodic points

We mention the detection of the periodic points. First, we have to calculate limp_,g oo (D, A)
as a function for a. For given aw, = ¢/p, we can determine the massparameter a where
corresponding periodic points appear. Second, we find the candidate at a mass parameter
little distant from the exact bifurcation. There are two way to find candidate. One way is
to take the Poincaré map such as Fig.16(a). The candidates for elliptic points can be taken
at the centre of the libration and for hyperbolic points at the saddle between two libra-
tions. The other way is to obtain the «(D, A) distribution. The points whose a(D, A) is
near q/p are taken as the candidate in the order of the nearness. These points exist on the
curve where the azimuth is unchanged after the p iteration of the mapping (corresponding
to the curve Cy in Sect.2.3). We show this curve in Fig.19, where (a,b) = (—0.25,0) and
oo = 4/6, as the boundary of regions with a(D, A) > 4/6 and a(D, A) < 4/6. Finally, we
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make the candidate converge using the Newton-Raphson method. This method is used
in MH1991 to find the fixed point (6o, Ro) = T'(6o, Ro). Replacing T' with 7%, we can
use this method for the p-periodic points. First, we show the general multi-dimensional
Newton Raphson method. The problem is to slove G(X) = 0, where X € RY and
G: RN = R". Let (X, X,) denote the initial value (candldate point) and approximated
solution at the n-th step Linearising G(X ) around X, and supposing that Xn+1 is the
solution of G’(X )= 0 under the approximation, we get

G(Xoa) = G(E) + [-—.—~

It is reduced to the recurrence formula

. S OGX)1 " 5, o
Xn-H:Xn—[ affn )] G(X,) =o0. (48)

If we set X = (0, R) and G(X) = T?(X) — X, we get the recurrence formula to calculate
the periodic points

R =Ko = |22 ] @) - %) o0 (49)

2.5 Symbol Sequences and Partition of the Poincaré Section

About the definition of the symbol sequence, see §2.3, Part I, and about the partition
of the Poincaré section according to the symbol sequences see §3.2, Part I. As has been
shown there, the Poincaré section is divided into a lot of regions including the Schubart
region according to the symbol sequence with 64 columns. We then regard a connected
region with (21)", n > 32 containing the FXP as the ‘Schubart region’.

'3 Results

3.1 Radial Movements of PPs

We examine which direction the PPs move when mass parameters are changed, by means
of the rotation number distribution on the Poincaré section. In the present paper, we only
consider the symmetric mass configuration. Therefore, we fix b = 0 and change a. We
calculate numerical rotation number a(D, A), defined in (39), for certain selected values
of a; we write a(D, A) as a(D, A, a) to show its dependence on a.

We first calculate the a(D, A) distribution on the Poincaré section. Using this data,
we draw the equi-rotation-number curves for rational values. Then we find that these are

X1~ X,) =0. (47)
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polygonal closed curves around the FXP. The PPs with these rotation numbers exist on
the curves. Hence, we utilise the curves for selecting the candidates for the PPs. We then
improve the position of the candidates via the Newton-Raphson method. We find that
all PPs for a value of a go out from or come into the FXP radially. Therefore, we can
assume it is independent to azimuth A that the equi-rotation-number curve goes out or
comes in. We fix A =0 and examine which direction this curve moves.

Suppose that a equi-rotation number for a(D, A, a) intersects with a line A =0 at D
when the mass parameter is a; then the intersecting point moves to D + dD when the
mass parameter is a + da. The relation da and dD is written as

Oax Oa
do (8a>da—|— (aD) D=0 (50)
The sign of dD gives us the direction of motion of the curves and the PPs for a given
sign of da. Particularly, the sign of dD at D — 0 (the FXP) shows that the PPs are
bifurcated or annihilated. We determine the signs of (0a/0a) and (8a/0D) at D — 0
using dependence of Il)in%l a(D, a), and dependence of a(D,a) on D for several values of a.
—

These dependence are shown in Figs. 20 and 21.
The dependence of lim a(D,a) is calculated from the linearisation matrix G around

the FXP for the Poincaré map 7. We are not successful in calculating G for a > 0.75,
because we cannot not find the FXP. We consider the dependence on a continues after
a = 0.75. Base on this consideration, we assume that

0
(3‘;‘-) lDzo <0 for all a. (51)
In addition, if I,l)i_r{lo a(D,a) becomes 0 at a = 1, we can assume that the range of

lim o(D,a) in the domain —1/2 <a < 1is
D—0
inf B_%Q(D’ a) = 0 and supll)lgh a(D,a)=1: (52)

lljin%) a(D, a) moves all the range of the rotation number.
-

Referring to the dependence of a(D, a) on a for several values of a, we assume that

0
(3_%) >0 (for a > ai/3 and inside the Schubart region),
53)
0 (

| (%) <0 (for a < ay/3 and inside the Schubart region),

where Il)i_l‘ﬁ) a(D,a1/3)=1/3. However, in order to reach this assumption, we have to add

several interpretations to the original data shown in Fig.17. In Fig.17(b), The graph of
a(D,a) is jaggy for a = 0.35, 0.38, and 0.45 in D > 3. The jaggy part of the curve results
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from meaningless o values calculated in the chaotic scattering region. In the chaotic
scattering region, the variation of azimuth A is sensitive to the initial point. Therefore,
if the point (D, A) goes out of the Schubart region, the graph of a(D,a) changes from
a smooth curve to a jaggy curve. Since the Schubart region is large in the a < 0 case,
the jaggy curves do not appear in Fig.21(a). We can only understand (8c/0D) < 0 for
a < 0.35 (Fig.17(a) and upper two curves in (b)) and (0c/8D) > 0 for a 2, 0.45 (Fig.17(b)
the lower two curves) from Fig.17 itself. Since our rotation number is not so accurate,
the change of a(D,a) cannot be resolved when (0a/0D) = 0. Instead of testing the sign
of (0a/8D), we detect the PPs with o = 1/3 at @ = 0.35 and at @ = 0.45 individually,
and followed the their motions during 0.35 < a < 0.45. In Fig.22, we show the D —a
graph for one of the PPs. Increasing a from a = 0.35 to a = 0.45, the PP with c (labelled
with ‘@ = 1/3L’) approaches and reaches the FXP at a = 0.406. Decreasing a from
a = 0.45 to a = 0.35, the PP with @ = 1/3 (labelled with ‘a = 1/3U’) also approaches
and reaches the FXP at a = 0.406. Moreover, according to the data plotted in Fig.16
as the })i_n)lo a(D,a) graph, ]lDi_n% a(D,a) =1/3 at a = ay/3 = 0.40 (the value of a;3 is less
accurate than crossing point of both lines ‘@ = 1/3L" and ‘a = 1/3U’). From the above
results, we assume that dD < 0 for 0.35 < a < 0.406 and dD > 0 for 0.406 < a < 0.45,
if da > 0. This assumption is equivalent to that (9a/8D) < 0 for 0.35 < a < 0.406 and
(0a/OD) > 0 for 0.406 < a < 0.45, if (51) is satisfied.
From the assumption (51) and (53) and the relation (50), the sign of da so that dD > 0
(PPs bifurcate) is
{ da >0 (for a > ay/3) (54)
da <0 (for a <ays)

We prove the following proposition under the above assumption.

PROPOSITION 1 Ezcept for PPs which do not bifurcate from the PP and which
bifurcate at the PP in asymmetric mass configuration, there are no PPs at a = ayy3.

[Assumption]

o (52) ll)irr%) a(D, a) takes the all range of rotation number
—3

e (54) the sign of da for the bifurcation

[Proof] Suppose that there exist PPs with ap at a = ay/3. We examine whether the PPs
is bifurcated ones at a # ay/3 and b = 0.

If ap <1 / 3,
PPs with a bifurcate at only a = ag > ay/3 and go outward if da > 0.
Therefore, the PPs with o cannot exist at a = ay3.
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If ag > 1/3,
PPs with o bifurcate at only a = ap < a3 and go outward if da < 0.
Therefore, the PPs with ag cannot exist at a = a; /3-

If ap =1/3,
PPs with « bifurcate at only a = a; /3 and coincide with the FXP itself
at a = ayy3. Therefore, the PPs with g cannot exist at a = a; /3

QE.D.

If the Schubart region has the finite extent on the Poincaré section and (da/dD) is 0
in the not all region, there exist PPs in the region. Therefore, the Schubart region is the
FXP itself at a = a1/3. HM1993 found that the Schubart region vanishes at a = 0.4 using
Poincaré map. We confirm that the Schubart region takes triangular shape at ¢ = 0.35
and reversed triangular shape at a = 0.45, and the PPs with o = 1 /3 stay at its vertices.
From the motion of one of PPs shown in Fig.22, as a is increased from a < ai/z toa > ayys,
the Schubart region may shrink with triangular shape, vanish, and expand with reversed
triangular shape.
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Figure 20: Dependence of a(D = 0,a) on a
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(a) a < 0 case
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Figure 21: Dependence of a(D,a) on D
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Figure 22: The radial motion of the PPs with o =1/3

3.2 The rotation numbers of dominant PPs

The PPs with special rotation numbers are important for the structure of the Poincaré
section. Such rotation numbers have a form o = (n — 2)/n with integer n > 2.

The periodic orbits with @ = (n — 2)/n have a rule about the number of the orbits
and period. For odd n, there is a pair of stable and unstable orbits with period n. The
case ¢ = 1/3 is an exception: there is only an unstable orbit. For even n, there are
two pairs of stable and unstable orbits with period n/2. Therefore, in this case, if the
information. for period is required, we have to write « = (k — 1)/k, where k = n/2. We
show the location of the PPs on the Poincaré section with (a) @ = 3/5 and (b) & = 4/6 in
Fig.23. In this figure, we connect the PPs which belong to the same orbit. We examine
the above property for the number of periodic orbits up to n = 19 (a = 17/19), which
is shown in Fig.?? together with Poincaré map. We marked up the PPs with circle for
the first stable orbit, with multiply-symbol for the first unstable orbit, with filled-circle
for the second stable orbit, and with plus-symbol for the second unstable orbit. The
background plots result from the mapping of the points on the line through the fixed
point: (D, A)|A=0,D = D + kAD,AD =1°k =1, -+, kpmas, where Dy and Kpax
are selected appropriately according to the size of the Schubart region. We can confirm
that stable orbital points stay at the centre of the circulation, while the unstable ones at
the saddle between two circulations. That there are two orbits for stable and unstable
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(a) @ =3/5

(b) o =4/6
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Figure 23: Sample of the periodic points
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respectively in even n is found through the appearance of whole four marks. This fact
appears in the lack of the circulation around second stable orbits. The above initial points
include the points near a stable point. These points take the circulation around the all
stable points of the orbit to which this stable point belongs. For odd n, these stable points

- are all stable points for @ = {n — 2)/n, while for even n only a half of all stable points

a=(n-—2)/n.

(a) & = 13/15, (a,b) = (—0.452335,0)

l’f

." j’l }, 12, .";
//5'}:/ ‘r",:

Figure 24: Periodic points with o = (n — 2)/n

~ The following is a list for the mass parameters a where ]ljimo a(D, A) is rational and
—
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(—0.457276, 0)

(b) a = 14/16, (a,b)
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Figure 24: Periodic points with e = (n — 2)/n (continue)
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(c) @ = 15/17, (a,b) = (—0.461844, 0)

Figure 24: Periodic points with e = (n — 2) /n (continue)
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'.
(d) @ = 16/18, (a,b) = (—0.466010, 0)
;( AN
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Figure 24: Periodic points with a = (n — 2)/n (continue)
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(e) & = 17/19, (a,b) = (—0.468687,0)
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Figure 24: Periodic points with a = (n — 2)/n (continue)
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corresponds to small period:

a2 ays:ays= 04,014 = 0.61,- -
a< ay/3 013 = 0.4, a2/4 = —0.019, az/s = —0.15,&,;/6 = —0.25,(1,3/7 =-0.31,..-.

The PPs appearing after the PPs with o = 1/3 include the series of PPs with o = (n—2)/n
in a < ay/3 case, while in @ > ay/3 case do not. This difference is reflected on the change of
the Poincaré section. In a < ay/3 case, the Poincaré section is governed by the PPs with
a rotation number written in the form (n — 2)/n. The unstable PPs stay at the vertices
of the Schubart region with polygonal shape. The germs grow and follow the stable PPs.
We checked these relation between the PPs with o = (n— 2)/n and the Poincaré section,
forn =5, 6, 7, and 8. We treat the n = 5 (a = 3/5) case in the next section. In a > ay3
case, the PPs with @ = 1/3 stay at the vertices of the triangular Schubart region similarly
to the a < ay3 case. However, many PPs with « = 1/4, 1/5, 1/6, -+, appear on the
Poincaré section; the influence of the PPs for each « is small, but these PPs as a whole
make the behaviour of germs complex. Thus, we cannot give a simple explanation to the
relation between the PPs and the structure of the Poincaré section in @ > a,/3 case.

3.3 Influence of the PPs on the Structure of the Poincaré Sec-
tion

We study the influence of the PPs on the structure of the Poincaré section for o = 3/5 case.
We show the location of the PPs on the Poincaré section from ¢ = —0.15 to a = ~0.2662
in Fig.25 and 26. We also show the triple collision curves and the regions reg(c) in the
background of these figures. Refer to Sect.5.1 in Part I for the correspondence between
colour and reg(c). In addition, we plot mapped points for the points near the PPs to see
the separatrix of unstable PPs and the libration around stable PPs.

In Fig.25, the process about the motion of PPs and the change of the Poincaré section
is shown after the PPs with « = 3/5 bifurcate until with o = 2/3 do. For a = 3/5, there
are a pair of stable and unstable orbits. We call their orbital points s;-s5 and u;-us on the
Poincaré section. The correspondence between the name and the location is shown in the
Fig.25 (a). The separatrices of ui-us seem as if connected the PPs. The connecting lines
draw a pentagon and a pentagram. The motion is the libration around the stable PPs,
inside the small triangles surrounded by the edges of the pentagram and the pentagon: the
size of these triangles shows the stability of the stable PPs. Even if the stable PPs are still
far from the border of the Schubart region at (a)a = —0.15, the shape of the stable regions
are reflected on the Schubart region elongating to left and right. As the PPs approach the
border, the Schubart region becomes of pentagram shape. At (b) a = —0.16, there are the
germ-shaped blocks, which are bifurcated from the arch-shaped ones. Each germ includes
reg(5,9,- ), reg(9,13,--), reg(7,11, --), and so on, respectively. Since these germs
grow along with the pentagram and surround the Schubart region, the Schubart region
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takes pentagram shape. At (c)a = —0.166, the points selected to show the separatrices
are scattered into the chaotic scattering region in several iteration of mapping. This
behaviour of the points implies that the PPs have already been outside of the Schubart
region. The germs intrude into between the pentagram and the stable regions of PPs:
the germs separate the Schubart region and the stable regions of PPs. After that, the
germs grow along the Schubart region with pentagonal shape, and come together around
the stable PPs. The stable PPs sink toward the FPs, and head of germs follow the PPs.
Therewith, the stable regions, and the gap between the germs, become small. Thereupon,
a germ grows in the process of bifurcating from the right FP of an arch-shaped block,
growing along this block, and sinking toward the left FP. Inside a germ, the ratio of the
region with the lowest region number becomes large. Therefore, a germ finally change
round to an arch-shaped region. Actually, let us confirm the above process by comparing
the structure at (d)a = 0.170 and (e)a = —0.186 found in the second sector from the left,
to give an example. In this sector, there are the arch-shaped block reg(2,6,---) and the
germ-shaped one reg(7,11,--:) piling up on it. The germ shaped block is germ-shaped,
to the letter, and its second stratum is visible as reg(1l) at @ = —0.170. In addition,
there is a stable PP in the forward of head of the germ. While at a = —0.186, the germ
seem to be arch-shaped and only reg(7) is visible inside it. Moreover, the germ seems to
compose of an arch-shaped block with reg(2) and other regions. The stable PP is nearer
the f-axis at @ = —0.186 than at a = —0.170. After a = —0.186, it is very difficult to find
the location of the stable PPs for o = 3/5. Hereafter, we show the unstable PPs only in
the figure. :

We follow the process until o = 2/3 PPs bifurcate shown in Fig.25. The unstable PPs
go slightly outward: uz approaches R = Rpa-line. Note that the point (g, go,P1,P2) =
(2A R /(1 + A), 2R/ (1 + A),0,0) is mapped to the Ryauc-line on (6, R)-plane. The
Schubart region is more expanded outward by the approximate edges uzuz and Uzt at
Fig.25 (f)a = —0.20 than at Fig.25(e)a = —0.186. The reason seem to be the elongating
effect at R = Rumax. At a = —0.20, & = 7/11 PPs appear. When these PPs reach the
border of the Schubart region, they expand the border outward further (Fig.25 (h)a =
—0.23). However, the size of the eleven small triangles for oo = 7/11 shows the extent of
stable regions is smaller than that for & = 3/5 and a = 2/3. From Fig.25 (i)a = —0.24, we
can see that small germ-shaped regions come together around also the PPs with oo = 7/11.
The unstable PPs stay the vertices of the Schubart region at least, after the PPs with
o = 2/3 bifurcate, until @ = —0.25 (Fig.26 (a)a = —0.25). Figure 26 (b)a = —0.2662 is
a stage where the PPs with a = 2/3 go out of the Schubart region: as is the a = 3/5
case, the unstable PPs are located at the vertices of the Schubart region and germ-shaped
CSBs come together around the stable PPs. ,

The above observation enable us to construct the following scenario for the role of the
PPs on the structure of the Poincaré section.

e The PPs with a = (n — 2)/n bifurcate from the FXP. The numbers of stable and
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Figure 25:

The PPs and the separatrix on the Poincaré section for a = 3/5
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Figure 25: (continue)
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() (a,) = (_0'400)

Figure 25: (continue)
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Figure 26: The PPs and the separatrix on the Poincaré section for o = 2/3




4. DISCUSSION 81

unstable ones are n, respectively. Period is n for odd n and n/2 for even n. The
distance from the FXP of stable PPs is farther than that of unstable PPs. At the
moment of the bifurcation, nacg is n— 1. The separatrices of the unstable PPs draw
a polygram outside and a polygon inside.

e While the PPs are inside the Schubart region, the germ-shaped CSBs, which bifur-
cate from arch-shaped ones grow along the polygram. The Schubart region takes
also polygram shape.

o After the PPs go out of the Schubart region, the polygram breaks, and the germ-
shaped CSBs grow along the polygon. Therefore, the Schubart region becomes
‘polygonal shape. The germ-shaped CSBs come together around the stable PPs.

o The unstable PPs stay at the vertices of the Schubart region though after the PPs
with @ = (n — 1)/n bifurcate. The polygon drawn by the separatrices approximate
the border of the Schubart region. While, the stable PPs sink toward the #-axis with
collecting the germ-shaped PPs and making their stable region shrink. As a result,
the germ-shaped CBSs make the strata and recompose the arch-shaped CSBs. The
germ-shaped CSB that grows along the roof of the Poincaré section becomes the
n-th arch-shaped CSB.

4 Discussion

Here, we give a few interpretation for the result found in Sect.3.3. The Schubart region
and arch-shaped blocks, which surround it, are of the structure associated to the FXP or
the Schubart orbit. The outer region has lower similarity to the FXP than inner region
about their orbits. Analogously, there must be the structure associated to the stable PPs
around them. The stable regions around the PPs and the germ-shaped blocks coming
together around them are of the just structure. The curves which separate the arch-
shaped blocks are considered to be the separatrices, because we confirmed that there are
the unstable PPs around the vertices and the stable ones on (the neighbouring of) the
curves. While, the germ-shaped blocks also are separated by curves connected with the
stable region of the PPs. From the analogy to the FXP and arch-shaped blocks, we expect
that the ‘child’ PPs bifurcate from a PP and its separatrices appear as the curves.

5 Summary
We have studied the periodic points bifurcated from the fixed point (the Schubart orbit)

and their influence on the structure of the Poincaré section for symmetric mass configu-
ration. The following is the summary of the Part IL



82

e There is a value a = ay/3 where the rotation number « at the fixed point is 1/3.

The periodic points bifurcate, with o grater than 1/3 as a being decreased from
a1/3, and with o less than 1 /3 as increased. There are no periodic points bifurcated
from the fixed points at a = ay3.

The periodic orbits with @ = (n — 2)/n, n being integer, are influential in the
structure of the Poincaré section. There is a rule about the number of orbits for
these type orbits. A pair of stable and unstable orbits with period n bifurcate for
odd n, while two pairs bifurcate for even n. We have confirmed this rule up to
n = 20.

The stable periodic points leave the fixed point quickly. They collect germ-shaped
blocks with sinking toward the #-axis. This collection results in recomposition of
arch-shaped block from these germ-shaped blocks. While the unstable periodic
points stay at the vertices of the Schubart region. Their separatrices approximate
the border of the Schubart region.
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Conclusion

The present research is the work that captures the continuous change of the Poincaré
section caused by the mass variation by means of symbol dynamics. Before our research,
the structural change of the Poincaré section is outlined by HM1993, while the structure
of the chaotic scattering region is revealed only for the equal mass case by TM2000a and
TM2000b using symbol sequences. We revealed this structure for general mass cases with
applying the method of TM2000a and TM2000b. Particularly, the classification based on
symbol sequences introduced in TM2000b was refined into regular expressions applicable
to arbitrary symbol sequences. This classification enable us to follow the structural change
of the Poincaré section caused by continuous variation of mass ratio. This change notified
us to the intervention of the periodic orbits bifurcated from the Schubart orbit. We
actually detected such periodic orbits to found the influence of them on the structural
change of the Poincaré section.

We found the several rules through the present work, about which you can see in
summaries in Part I and II. Here, we attempt to show the description of the structure
and its change on the Poincaré section. There is a periodic orbit so-called the Schubart
orbit for any mass ration in rectilinear three-body system. This orbit is unstable on the
‘wedge’ area including the a = O-line and on the a = 1/3-line and stable the other area.
If stable, this orbit is surrounded by stable orbits similar to this orbit and their outside
surrounded by chaotic scattering orbits which are similar to the Schubart orbit during
some collisions and however one of the particles is ejected through triple approach. These
orbits are mapped to the Schubart region, the chaotic scattering region, and the fast
escaping regions. The region number ¢ can be considered as the similarity of orbits to
the Schubart region. The divided Poincaré section into reg(c) and reg((c, co)) shows this
similarity decreases as going away from the Schubart orbit. A subregion of first escaping
region makes a sector together with a arch-shaped block in the chaotic scattering region.
The number of sectors is determined by the flow on the triple collision manifold (TCM).
More concretely, the winding number of the stable manifolds on the TCM determines.
Therefore, we can consider that the outline structure of the Poincaré section is governed
by the limit orbits for zero initial distances.

The mass ration of our system is represented by a (central mass increase) and b
(asymmetry of both sides). The structural change is mainly caused by the variation of
a. If a is decreased, the periodic points bifurcate from the Schubart orbit. They appear
as the stable and unstable periodic points on the Poincaré section. The periodic points
with the rotation number with the form (n — 2)/n are influential. A stable periodic point
is surrounded by a stable region and its outside is surrounded by parts of the chaotic
scattering region, as same as the Schubart region is. These parts of the chaotic scattering
region are just germ-shaped blocks. The germ-shaped blocks recompose arch-shaped
blocks or compose of the n-th arch-shaped block. While unstable periodic points stay at
the vertices of the Schubart region. Their separatrices become the border of the Schubart
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region or separate the neighbouring sectors. If a is continued to be decresed, the periodic
points: with the rotation numbers 3/5, 4/6, 5/7, - - -, one after another bifurcate. These
bifurcations result in the increase of the number of sectors to 5, 6, 7, - --. These numbers
of sectors have to be consistent to the number of sectors determined from the flow on
the triple collision manifold. It requires that the bifurcation of periodic points with the
rotation number (n — 2)/n harmonise with the winding number of fictitious orbits. As far
as our observation, this harmonisation occurs.
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