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Abstract

In this thesis, we discussed the application and development using human interactive
technology and visual saliency map analysis for the networked video streaming. As
we know, for current video streaming systems, there are more and more devices to
record videos, more and more powerful servers to process encoding, larger and larger
databases to store them, and also faster and faster network speed to transmit video
packages to viewers. However, viewers still feel discontented on passively transmitted
videos, for preferring a real time interactive system. In this thesis, we developed
a Human Interactive System to make network video streaming more e�cient, not
only to bene�t the network tra�c, but also to adapt video content based on viewers'
interests and real-time requirement.

For interactive media applications, eye gaze is now used as a content adaptation
trigger, such as customized advertisement in video, and bit allocation in streaming
video based on region-of-interest (ROI). The reaction time of a gaze-based networked
system, however, is lower-bounded by the network round trip time (RTT). Further-
more, only low-sampling-rate gaze data is available when commonly available webcam
is employed for gaze tracking. To realize responsive adaptation of media content even
under non-negligible RTT and using common low-cost webcams, we propose a Hidden
Markov Model (HMM) based gaze-prediction system that utilizes the visual saliency
of the content being viewed. Due to the strong prior of likely gaze locations o�ered
by saliency information, accurate runtime gaze prediction is possible even under large
RTT and using common webcam. And region-of-interest (ROI) bit allocation is real-
time performed based on predicted future gaze location to adapt the video content
for reducing bit size and perceived visual quality.

By the latter half of the thesis, a novel method using saliency map for detecting
video busyness, which is called visual attention deviation (VAD) is improved, to
develop the gaze prediction system. We all know that analyzing human perception is
time-consuming, for subjective evaluation is necessary. The experiment always cost
much time and need a lot of subjectors. However, saliency map analysis is able to �nd
out the most salient region by low-level �gures using given picture or frames. Based on
the existed analysis methods, we proposed our metric VAD to detect video busyness
by analyzing the saliency regions along the whole timeline with the presented HMM
in �rst half work. Through experiments, we show that VAD was able to detect the
video busyness by analyzing the saliency objects transition probability, using trained
HMM. And our comparison results show that it's much sensitive than other metrics,
and the most important is that VAD result is matching subjective evaluation, which
means it's re�ecting human perception while the video is play-backed.
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Chapter 1

Background

1.1 Introduction

With the development of technology, people are able to access millions of videos over

network. The conventional networked video streaming system is only able to transmit

the required video packages to viewers, which is discontented due to unable responding

to viewers' requirement or visual interest in real-time. Fortunately, in the last decade,

eye gaze tracking�the inference of a viewer's point of visual focus based on camera-

captured images of the eye(s)�has been intensively studied by the computer vision

community [43, 47], to the level of maturity that it is now a commercially available

technology [33, 51]. To unlock the potential of this new tool, many applications

now employ eye gaze as a content adaptation trigger for media interaction. One

example is large display customization [46], where the visual content rendered is

adaptively composed (e.g., insert customized advertisements) according to tracked
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past and current gaze locations. Another example is immersive gaming [44], where

di�erent animated non-player characters (NPC) react di�erently depending on which

NPC the viewer is currently looking at and showing facial expressions.

For networked media systems, gaze data are collected at a client in real-time

and sent to a server to e�ect changes in media content. The reaction time of the

gazed-based trigger, however, is lower-bounded by the round trip time (RTT) of the

transmission networks. For today's Internet, RTT can be as large as 200ms, which

signi�cantly exceeds the 60ms threshold [36] for tolerable lag between a change in

viewer's visual focus and the corresponding content update in gaze-contingent displays

(GCD) [15]. This large RTT delay severely limits the e�cacy of gaze-based networked

media systems. Hence, predictive strategies are necessary for e�ective application of

eye gaze to networked interactive media systems.

In �rst part of this thesis, we propose a low-cost gaze prediction system using

proposed Hidden Markov Model (HMM) to model viewer's gaze behavior and Kalman

Filter (KF) to predict viewer's gaze location in the future (RTT seconds from the

present), so that the server can adapt media content using the predicted gaze locations

instead of the most recently tracked gaze locations, reducing end-to-end reaction

delay. The key idea is to establish correlation between tracked eye-gaze movements

and the current video content being watched, so that future gaze locations can be

predicted with the help of content analysis of video that is about to be displayed.

Such analysis can be performed o�ine computation-e�ciently. Speci�cally, we �rst

design an HMM with two latent states that correspond to two of human's intrinsic

gaze behavioral movements: tracking and saccade [14]. Tracking means a viewer is

following the movement of an identi�able object in video. Saccade means a viewer



1.1. INTRODUCTION 19

is shifting his visual attention from one object of interest to another. Thus, if a

viewer following an object in tracking state, then his future gaze location will likely

be correlated with the future position of the object.

HMM parameters (most importantly, state transition probabilities) are derived

o�ine at server on a per-video basis via analysis of the video's visual saliency maps [24,

26, 39]. In bottom-up visual saliency models, by computing weighted combinations of

detected low-level features in a video frame such as lighting / color contrast, �icker,

motion, etc., a saliency map reveals, as a �rst order approximation, the amount of

visual attention (saliency) each spatial region in the frame will draw from the viewer.

By analyzing how spatial saliency in video frames changes over time, we can estimate

the regions-of-interest (ROI) a viewer may choose to observe and how he may switch

ROIs over time, resulting in HMM state transition probabilities.

During actual streaming, a window of noisy gaze observations are collected in

real-time for a forward algorithm (FA) to compute the most likely current latent

state. Given the deduced HMM state, gaze prediction using Kalman �ltering [17]

is performed to predict gaze location RTT into the future to reactively e�ect media

content adaptation at server.

We demonstrate the applicability of our gaze prediction strategy through a net-

worked video streaming application that performs bit allocation based on ROI. In

face of limited network transmission bandwidth, the conventional end-to-end stream-

ing approach [20, 21] is to throttle sending rate, so that limited network bandwidth

can be properly shared among competing users. Reduction of sending rate, how-

ever, causes a proportional degradation in video quality due to more aggressive signal

quantization, often resulting in unacceptable visual experience.
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One can alleviate this bandwidth-constrained problem by exploiting unique char-

acteristics of the human perceptual system [15, 29, 36]. In particular, it has been

shown [23, 29] that viewer's ability to perceive details away from the current gaze

focal point falls precipitously as the angle away from the focal point increases. Thus,

a smart bit allocation scheme [10, 35] can allocate more bits to ROI to minimize

noticeable quantization noise, and fewer bits elsewhere. In this way, the perceived

video quality remains the same while encoded bit-rate can be decreased. The tech-

nical challenge, however, is to overcome the unavoidable delay from the time a ROI

is estimated, to the time the corresponding e�ected change in video bit allocation is

executed, transmitted and rendered on the viewer's terminal.

To overcome RTT delay, we use our proposed gaze prediction system to predict fu-

ture gaze locations, so that optimal bit allocation can be performed for future frames.

Experiments using our developed real-time video coding and streaming system, in-

tegrated with an o�-the-shelf web camera and a software gaze tracker [2], show that

transmission rate can be reduced by up to 29% without loss of perceived video quality

for RTT as high as 200ms.

In the second half of this thesis, we are improving the proposed system by using

saliency map analysis. Like the variable of presented HMM to correctly model a

viewer's eye-gaze movements during playback of a video clip, HMM model parame-

ters appropriate for the observed video clip must be derived. It's obviously that the

di�erent video contents contain di�erent visual excitation through stimuli properties,

inducing di�erent amount of eye-gaze movements from viewers. For example, a video

capturing a head-and-shoulder sequence of the president addressing the nation may

induce very few gaze movements, while a dance music video with lots of new objects
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entering and leaving the scene may induce a lot. Thus, �nding suitable HMM pa-

rameters given the visual activities of the video is important for eye-gaze movement

modelling. Or even during one video sequence, it will contain di�erent scenarios.

Through the saliency map analysis, we can also partition the video into temporal

segments of roughly stationary gaze statistics�each a set of consecutive frames that

induce observer's gaze movements well described statistically by the same set of HMM

parameters.

One brute-force method to derive appropriate HMM parameters for a given video

content is to conduct extensive eye-gaze experiments [18], using a real-time gaze

tracking system [2], with a sizeable group of test subjects. This, however, is clearly

too time-consuming and cost-ine�ective for a large number of video clips. Instead,

we propose an alternative method to derive them by analysing the visual saliency

maps [26] of individual video frames across time. Using saliency map analysis, we

can compute the salient region of detected low-level features in a video frame such as

lighting / color contrast, �icker, motion, etc. Then the relationship between salient

objects within each two frames could be built by motion estimation. The probabil-

ity of transition between salient objects and non-salient regions are treated as how

often viewers may switch their regions-of-interest (ROI), which we call Visual At-

tention Deviation (VAD). By proposed VAD, we are able to measure and segment

the video sequences, and to classify the video busyness avoiding extensive subjective

experiment.
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1.2 Motivation

With the development of video processing technologies, the conventional networked

video streaming system is still transmitting pre-encoded video packages to viewers

regarding on their requests. Facing more and more larger resolution and dimension

videos, a human interactive system, which could adapt video content based on view-

ers' interest in real-time, will improve both streaming system e�ciency and viewers'

perceived visual quality.

We �rst proposed one video content adaptation system based on human gaze

behavior, for the viewer's interest will be directly re�ected by his visual attention

during video playback. By tracking the gaze movement, we are able to predict his

future gaze location by combining the current gaze information and video content. If

the viewer keeps focusing on the same object of the frames over time, only the regions

around this object will be labelled to encoded at a high quality, and other regions

far away from it will be encoded at a low quality to reduce the frame size. At the

same time, our human visual characters prove that the degradation outside the focal

points is hard to notice. Then, a high percentage of bit saving will be gained without

noticeable degraded visual quality as long as the future gaze location is predicted

correctly.

As we know, there are millions of thousand videos created every minute, and

di�erent video content will cause di�erent gaze movements, as di�erent people have

their own visual attention. If the viewer move his gaze location from one video object

to another, then we say that he shifts his visual attention. A video that causes a

viewer to shift his attention often is a �busy� video. Determination of which video
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content is busy is an important practical problem; a busy video is di�cult for encoder

to deploy region of interest (ROI)-based bit allocation, and hard for content provider

to insert additional overlays like advertisements, making the video even busier. One

way to determine the busyness of video content is to conduct eye gaze experiments

with a sizeable group of test subjects, but this is time-consuming and cost-ine�ective.

We proposed one novel method using saliency map analysis to achieve it, which is

also important and e�cient for video adaptation based on gaze behavior.

1.3 Related work

1.3.1 Gaze tracking technology

While eye-gaze tracking has been studied extensively in the literature [43, 47]�

including newer systems that do not require active calibration [9, 48] �there are

relatively few prior work on eye-gaze prediction. Assuming a viewer's eye-gaze move-

ments are either �xation or saccade, [30] �rst proposed a Kalman-�lter-based eye-gaze

movement prediction scheme to predict viewer's gaze location in the future. The same

authors later improved their model by integrating it with a linear horizontal oculo-

motor plant mechanical model, a detailed motion model to predict eye movements

based on the mechanics of the human eye using a large number of parameters [31, 32].

Our gaze-prediction strategy di�ers from [31, 32] in two major respects. First,

rather than modelling the mechanics of the human eye, we approach the gaze predic-

tion problem from a pure statistical learning perspective, where our two-state HMM is

simple and maps intuitively to two of human's intrinsic gaze behavioral movements.
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Second, unlike [31, 32] which predicted gaze movements in a content-independent

manner, the major insight in our approach is to establish correlation between eye-

gaze movements and the video content being watched. We do so because it has been

shown in numerous subjective experiments in a variety of viewing scenarios [26, 42]

that human visual attention is very often driven by innate visual stimulus in the

observed content. Hence it is quite reasonable to assume that the aforementioned

correlation exists and can be exploited for gaze prediction. This content-dependent

approach has two implications: i) we only need to estimate very few parameters in a

simple HMM model, and ii) only coarsely sampled gaze data are required to estimate

the HMM state (tracking or saccade) an observer's gaze is currently in, so that a

low-cost web camera capturing video at low frame rate (30 fps was used in our sys-

tem) can be used in place of more expensive standalone gaze trackers used in [31, 32],

lowering the barrier to mass deployment1.

1.3.2 Smart bit allocation

The idea of preferentially allocating more resources to a region of interest during

video encoding is not new [10, 35, 40]. While our primary interest is to use ROI-

based bit allocation as a demonstration of the applicability of eye gaze prediction,

the availability of real-time eye-gaze information does provide a �rm basis for deter-

mination of ROI. In contrast, prior research without eye gaze information has to rely

solely on video analysis such as high frequency content [40] and motion content [35],

1We note that because our low-cost gaze prediction system only makes predictions when the
estimated state is tracking (saccade is deemed too complex to predict given the low sampling rate),
the intended interactive media applications are limited to non-mission-critical ones, such as ROI bit
allocation as detailed in this paper, and others as described in the �rst paragraph in the Introduction.
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with the aforementioned saliency map also a suitable candidate. Nevertheless, it has

been shown [6, 13] that prior knowledge and context play important roles in a�ecting

viewer's attention. Thus, video analysis can at best provide a rough estimate of where

viewers may look, in the absence of real-time information.

In contrast, we use saliency maps of video content to train HMM parameters

during o�ine analysis, but combine real-time eye tracking information during stream

time to determine ROI. The key challenge, which is the focus of this paper, is to

reduce the e�ect of time lag due to server-client RTT delay in a networked video

streaming scenario. We will show in conducted subjective testing in Section 2.6.5

and Section 3.5.2.2 that ROI-based video encoding, where ROI is determined solely

by saliency analysis with no real-time gaze tracking, is noticeably poorer in quality

compared to video encoded in high quality for all spatial regions. On the other hand,

our proposed ROI-based scheme with real-time gaze tracking performs much better

in comparison.

1.3.3 Saliency Map Analysis

Visual attention (VA) modelling has focused many research e�orts in the last decade

following up e�orts from the community of vision science and perception to better

understand the fundamentals of visual attention. Several computational models to

emulate VA have been consequently proposed, detecting the locations that attract the

eye gaze. Most of the models compute a saliency map that values each pixel according

to its visual saliency. While top-down visual saliency modelling is also possible [16],

we focus our discussion in bottom-up visual attention process.
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Several approaches, more or less biological, have been proposed. All the ap-

proaches share the same main principle: saliency is closely related to singularity or

rareness. They can be classi�ed into three di�erent categories:

1. Hierarchical models [8, 26, 38, 39] based on computational architecture charac-

terized by a hierarchical decomposition followed by ad hoc processing on each

sub-band (e.g. DOG to mimic receptor �eld properties to seek for singularities)

to estimate the salience. Di�erent techniques are then used to aggregate this

information across levels in order to build a unique saliency map.

2. Statistical models [7, 22, 41] based on probabilistic analysis of the content.

Following the plausible link between saliency and singularity, the saliency at a

given location is de�ned as a measure of the deviation between features at this

location with respect to its neighborhood.

3. Bayesian models [25, 55] are useful to introduce prior-knowledge (e.g. contex-

tual information like statistic of natural scene) and another alternative to cope

with the saliency/singularity link. For instance, Itti and Baldi [25] introduced

a Bayesian de�nition of surprise in order to measure the distance between pos-

terior and prior beliefs of the observers. They proved that this measure, the

surprise, is related to visual attention.

The quantitative assessment of the performances of these di�erent models is still

an open issue, but it appears that all these models reach similar results, whatever

the assessment technique [37]. Our goal here is not to propose new visual saliency

maps, but to use saliency maps, computed using previously established techniques, to
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derive HMM parameters o�ine in a computationally e�cient way. This motivation

is not unlike previous proposals that use saliency maps to resolve uncertainty in gaze

estimates [9, 48, 52], except that our derived HMM parameters re�ect the temporal

aspect of expected gaze behavior, rather than the spatial aspect. In this paper, we

selected methodology in [26] to compute saliency maps, based on a plausible model

of bottom-up visual attention. Considering previous comments on performance, this

model o�ers good performance with reasonable computational cost. An existing im-

plementation of the model is available at [4]. We note, however, that our proposed

gaze prediction strategy is agnostic to the particular type of saliency model, and thus

can be made interoperable to other saliency models such as [16].

1.4 Contribution

In the �rst half of this thesis, we propose a novel dynamic gaze prediction strategy

to estimate future gaze location to lower end-to-end reaction delay in gaze-based

networked media systems. We �rst design a Hidden Markov Model (HMM) with two

latent states that correspond to human's major types of intrinsic eye movements:

Tracking: (�xation, pursuit) and Saccade [14]. HMM parameters are obtained o�ine

by content analysing using saliency map analysis. During video playback, a window

of noisy gaze observations are collected in real-time for a forward algorithm (FA)

to compute the most likely current latent state. Given the deduced HMM state,

dynamic Kalman Filter (KF) prediction is performed to predict gaze location RTT

seconds into the future to reactively e�ect media content adaptation at server.

We demonstrate the applicability of our gaze prediction strategy through a net-
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worked video streaming application that performs bit allocation based on Region-of-

Interest (ROI). Our experiments, using proposed real-time video coding and streaming

system integrated with a web camera and a software gaze tracker [2], show that using

our gaze-prediction strategy, transmission rate can be reduced by up to 29% without

loss of perceived video quality for RTT as high as 200ms.

And by the latter half, we continue to strength the proposed human interactive

system, like video stationarity detection, video content classi�cation and so on. Those

video characters would highly e�ect system performance for causing di�erent human

visual reaction. To obtain these necessary parameters, we developed a novel method

by using saliency map analysis, which is called Video Attention Deviation (VAD).

The VAD implies saliency map calculation on each frame of wanted video to

gain their saliency map. According to the salient probability distribution, we claim

the salient objects for each frame, whose relationships between each two frames will

be estimated by motion estimation. Then the transition probabilities between each

existed salient objects or other non-salient regions would be obtained. And VAD value

is proposed to measure how often people will switch their interested point between

salient object and non-salient regions to achieve the scene change detection and video

busyness classi�cation. Our experiments show that VAD is able to detect the scene

change and video busyness by computing saliency regions with given videos only, and

the more important is that our VAD is matching subjective evaluation during our

proposed logo-insertion application, which means it's re�ecting human perception,

besides it's much sensitive than other metrics.
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1.5 Organization

The outline of the thesis is as follows: we �rst present the background and related

work in Chapter 1. For gaze prediction strategy, we discuss how we model the gaze

performance and predict gaze location in future one round trip time in Chapter 2.

With the trained hidden markov model, we improved our prediction system using

saliency map analysis in Chapter 3. And �nally, the conclusion, discussion and future

work are presented in Chapter 4.
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Chapter 2

Gaze prediction based bit allocation scheme

2.1 Introduction

With the advent of eye gaze tracking technology, eye gaze is increasingly being used as

a media interaction trigger in a variety of applications, such as eye typing, video con-

tent customization, and network video streaming based on region-of-interest (ROI).

The reaction time of a gaze-based networked system, however, is in practice lower-

bounded by the round trip time (RTT) of today's networks, which can be large. To

improve the e�cacy of gaze-based networked systems, in this section, we propose a

Hidden Markov Model (HMM)-based gaze prediction strategy to predict future gaze

locations to lower end-to-end reaction delay. We �rst design an HMM with two states

corresponding to human's major types of intrinsic eye movements. HMM parameters

are obtained o�ine using saliency map analysis during training phase. During testing

phase, a window of noisy gaze observations are collected in real-time as input to a
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forward algorithm, which computes the most likely HMM state. Given the deduced

HMM state, Kalman �lter prediction is used to predict gaze location RTT seconds

into the future.

To validate our gaze prediction strategy, we focus on ROI-based bit allocation

for network video streaming. To reduce transmission rate of a video stream with-

out degrading viewer's perceived visual quality, we allocate more bits to encode the

viewer's current spatial ROI, while devoting fewer bits in other spatial regions. The

challenge lies in overcoming the delay between the time a viewer's ROI is detected by

gaze tracking, to the time the e�ected video is encoded, delivered and displayed at

the viewer's terminal. To this end, we use our proposed gaze-prediction strategy to

predict future eye gaze locations, so that optimized bit allocation can be performed

for future frames.

2.2 Motivation

We demonstrate the applicability of our gaze prediction strategy through a networked

video streaming application that performs bit allocation based on ROI. In face of

limited network transmission bandwidth, the conventional end-to-end streaming ap-

proach [20, 21] is to throttle sending rate, so that limited network bandwidth can be

properly shared among competing users. Reduction of sending rate, however, causes a

proportional degradation in video quality due to more aggressive signal quantization,

often resulting in unacceptable visual experience.

One can alleviate this bandwidth-constrained problem by exploiting unique char-

acteristics of the human perceptual system [15, 29, 36]. In particular, it has been
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shown [23, 29] that viewer's ability to perceive details away from the current gaze

focal point falls precipitously as the angle away from the focal point increases. Thus,

a smart bit allocation scheme [10, 35] can allocate more bits to ROI to minimize

noticeable quantization noise, and fewer bits elsewhere. In this way, the perceived

video quality remains the same while encoded bit-rate can be decreased. The tech-

nical challenge, however, is to overcome the unavoidable delay from the time a ROI

is estimated, to the time the corresponding e�ected change in video bit allocation is

executed, transmitted and rendered on the viewer's terminal.

To overcome RTT delay, we use our proposed gaze prediction system to predict fu-

ture gaze locations, so that optimal bit allocation can be performed for future frames.

Experiments using our developed real-time video coding and streaming system, in-

tegrated with an o�-the-shelf web camera and a software gaze tracker [2], show that

transmission rate can be reduced by up to 29% without loss of perceived video quality

for RTT as high as 200ms.

2.3 System Overview

First, a two-state Hidden Markov Model (HMM) is discussed to model eye gaze of

a human observer watching video in section 2.4. An HMM describes transitions of

sequential state Xn's, in discrete time, n ∈ Z+, where Xn is the state variable at

time n, and Z+ denotes the set of positive integers. Each Xn can take on one of

two possible latent states. State T (tracking) models the case when the gaze of the

human observer is following the motion of an identi�able object in the video. In the

gaze literature [14], it is common to further categorize gaze movements into �xation,
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which models the case when eye gaze is �xated at a stationary object, and smooth

pursuit, which models the case where gaze follows a slowly moving object. However,

for our intended purpose of gaze prediction, we only need to estimate the likelihood

that the human observer has identi�ed an object of interest and is currently tracking

it�doing so would mean his/her gaze location will likely coincide with the locations

of the moving object in future frames as well. Thus, for simplicity we use a combined

state T to model observer's tracking of object in video.

State S (saccade) models the rapid transition of observer's gaze from one object

of interest to another. More precisely, for the purpose of gaze prediction, we interpret

state S simply to mean gaze statistics that do not conform to that of tracking state

T. No gaze prediction is made when state is estimated to be S due to saccade's

more unpredictable nature compared to state T1. Note that this de�nition of saccade

deviates slightly from others in the literature [14], e.g., pursuit of a fast moving

object (called catch-up saccade) will also be included in our de�nition of saccade.

Nevertheless, this classi�cation is more practical for our purpose of gaze prediction.

Further, note that while other classi�cations of eye movements for the human eye are

also possible [34], broadly speaking, �xation, pursuit and saccade are the three most

frequently cited and major eye movement types in the literature [14].

We construct our HMM to be �rst-order Markovian in that the determination of

state variable Xn+1 at time n+ 1 depends solely on the value of Xn of previous time

n. In particular, given Xn = i, the probability of Xn+1 = j is represented by state

transition probability αi,j of switching from state i to j. The model is hidden since the

1Since these two states cannot be observed directly, they are commonly called latent states in
the literature.
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state variables Xn's are not directly observable; only observations Yn's are observed,

where each Yn is generated by a random process dependent on current latent state

Xn = i. The most likely state Xn given observations Y1, . . . ,Yn can be calculated

using a simpli�ed version of the forward algorithm (FA) (section 13.2.2, pp.618, [5],

to be discussed). In our gaze tracking scenario, observations Yn's can be either x- or

y-coordinates of tracked eye-gaze locations on the display terminal; while the HMM

transition probability is trained by saliency map analysis, which is introduced in

Section 2.4.1. for simplicity, we construct the same HMM (but possibly with di�erent

parameters) to model gaze movements in x- and y-coordinates separately, while it is

possible to construct a single HMM to jointly consider both x- and y-coordinates, we

choose to construct separate HMMs for x- and y-coordinates for two reasons: i) a

simpler model requires fewer data samples for the few model parameters to converge,

and ii) a simpler model has lower complexity (our gaze prediction algorithm must be

executed in real-time). And How we reconcile two latent states during gaze prediction

is discussed in Section 2.4.3. Also we will show in Section 2.6 that we can achieve

good gaze prediction results nonetheless.

With predicted future gaze location, we discuss a bit-allocation strategy in sec-

tion 2.5. Conceptually, human ability to appreciate pixel �delity decreases continu-

ously away from the center of focus. Hence we adopt a simpler approach in which

a rectangular region-of-interest (ROI) is determined, and one QP is assigned to the

ROI, while a coarser (higher) QP is assigned to spatial regions outside the ROI. This is

due to its lower complexity, and the lower sensitivity to errors in focus determination.

Thus a large percentage of bit saving could be achieved while the perceived visual

quality won't be degraded, both objective and subjective experiments are designed
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to verify the performance of our proposed system.

2.4 Gaze Prediction

2.4.1 Hidden Markov Model

A hidden Markov model (HMM) is a statistical Markov model in which the system

being modeled is assumed to be a Markov process with unobserved (hidden) states.

An HMM can be considered as the simplest dynamic Bayesian network.

In a regular Markov model, the state is directly visible to the observer, and there-

fore the state transition probabilities are the only parameters. In a hidden Markov

model, the state is not directly visible, but output, dependent on the state, is visible.

Each state has a probability distribution over the possible output tokens. There-

fore the sequence of tokens generated by an HMM gives some information about

the sequence of states. Note that the adjective 'hidden' refers to the state sequence

through which the model passes, not to the parameters of the model; even if the

model parameters are known exactly, the model is still 'hidden'.

Hidden Markov models are especially known for their application in temporal

pattern recognition such as speech, handwriting, gesture recognition, part-of-speech

tagging, musical score following, partial discharges and bioinformatics. A hidden

Markov model can be considered a generalization of a mixture model where the hidden

variables (or latent variables), which control the mixture component to be selected

for each observation, are related through a Markov process rather than independent

of each other.
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Figure 2-1: Proposed HMM for eye gaze during video observation.Circles denote latent
states T (tracking), which includes �xation and smooth pursuit gaze movements, and
S (saccade). α's denote state transition probabilities. Y's denote the observations. v
is the pixel velocity vector. g is the gaze velocity vector. W's are the additive noise
terms. Boxes denote observations.
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Figure 2-2: An unreliable eye gaze tracker often produces noisy observations.

In our proposed system, the HMM is trained to describe transitions of sequential

state: T and S in discrete time. State T (tracking) models the case when the gaze

of the human observer is following the motion of an identi�able object in the video.

State S (saccade) models the rapid transition of observer's gaze from one object of

interest to another. More precisely, for the purpose of gaze prediction, we interpret

state S simply to mean gaze statistics that do not conform to that of tracking state

T. No gaze prediction is made when state is estimated to be S due to saccade's more

unpredictable nature compared to state T.
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2.4.1.1 Tracking: following the motion of an identi�able object

If the value of state variable Xn+1 is T (tracking) at time n+1, we model the emitted

observation Yn+1 as the sum of previous observation Yn plus a pixel velocity vector2

vn(Yn), plus random noise WT :

Yn+1 = Yn + vn(Yn) +WT (2.1)

vn(Yn) is the velocity vector of the viewed pixel, as indicated by gaze point Yn,

from frame Fn of time n to frame Fn+1 of time n+1, andWT is a zero-mean Gaussian

random variable with variance σ2T . If the gaze point of the observer in frame Fn is

known precisely, vn(Yn) can be estimated straightforwardly via video content analysis.

For example, one can use optical �ow algorithms [49], or more computation-e�cient

block search commonly used in video coding standards like H.263 [28], H.264 [54]:

�rst identify the macroblock that contains the viewed pixel at time n, then �nd the

best matched macroblock in frame Fn+1 in terms of RGB pixel values, and calcu-

late the corresponding motion vector. The probability of observing Yn+1 (emission

probability) given current state is T is hence:

PT (Yn+1‖Yn) = fσ2T (Yn+1 − Yn − vn(Yn)) (2.2)

Unfortunately, the problem with (2.2) is that the true gaze point in frame Fn is

not known precisely due to noise in the observation. That means that if a viewer is

2While pixel velocity vn can also be considered as an observation, it is essentially a derivative
of observation Yn�movement of observed pixel located at Yn from frame Fn to Fn+1. Thus we will
only write Yn as the sole independent observation value for each instant n.
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Figure 2-3: Calculation of forward motion vector candidates in next frame Fn+1 given
eye gaze data Yn at location (i, j) in frame Fn.

actually following a moving object but gaze point is not on the object due to noise

(as shown in Fig. 2-2, In this example, a viewer has focused on the red ball in this

frame 220 of MPEG test sequence kids, but an eye tracker reports gaze location

marked by the 5× 5 white square.), then the calculated motion vector vn(Yn) will be

erroneous.

To circumvent this problem, we perform multi-block search as shown in Fig. 2-

3. For given observed gaze location Yn, we �rst identify a neighborhood of mac-

roblocks around Yn. For each macroblock in the neighborhood, we search for a best

matched block in the next frame Fn+1 and calculate the corresponding motion vector

vn. Among all the calculated vectors vn's, we identify the one that gives the largest

conditional probability for state T:
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PT (Yn+1‖Yn) = max
vn∈Vn(Yn)

fσ2T (Yn+1 − Yn − vn)

v∗n = arg max
vn∈Vn(Yn)

fσ2T (Yn+1 − Yn − vn) (2.3)

where Vn(Yn) is the set of calculated motion vectors for a neighborhood of mac-

roblocks around detected gaze point Yn, and v∗n is the motion vector in Vn(Yn) that

maximizes the tracking emission probability PT (Yn+1‖Yn) as expected.

2.4.1.2 Saccade: switching �xation points

If the viewer is in state Xn+1 = S (saccade) at time n+1, the gaze of the viewer is not

following an identi�able object in the video, and thus is very likely switching from one

object of interest to another. The transition process usually lasts a short duration (20

to 200ms), and the movement is fast [14]�saccade is said to be the fastest movement

by the human body [14]. Fortunately, very often movement of the eye during one

saccade is along a straight line [14]. Thus, if we are able to establish a gaze vector

gn−h+1:n during saccade using previous observations Yn's, then new observation Yn+1

is previous observation Yn plus gn−h+1:n, plus a noise term WS,h.

There are many possible ways to model the complex saccade movement; we choose

the simplest linear motion model for complexity reason. Mathematically, we write

observation Yn+1 given viewer resides in state Xn+1 = S as follows:

Yn+1 = Yn + gn−h+1:n +WS,h (2.4)
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where gn−h+1:n is the mean eye gaze vector computed using most recent h > 2

observations Yn−h+1, . . . ,Yn. WS,h is a zero-mean Gaussian variable, whose variance

σ2S,h depends on the number of observations, h, used to compute gn−h+1:n. The

idea is to capture the notion that, in general, the more recent observations Yn's we

use to estimate gaze vector gn−h+1:n, the smaller the corresponding variance σ2S,h

of Gaussian noise WS,h should be. gn−h+1:n can be computed using samples (n −

h + 1, Yn−h+1), . . . , (n, Yn) via linear regression (section 3.1, pp.138, [5]). On the

other hand, if gaze movement does not follow a straight line but a curvature instead

(again, in rare cases), then more samples do not lead to better estimate of gaze vector

gn−h+1:n. In practice, we cap the maximum number of samples used to be no larger

than a parameter H (H = 15 is used in our experiments).

We can now write the emission probability PS(Yn+1‖Yn, . . . , Yn−h+1) of observing

Yn+1 given previous h observations Yn, . . . , Yn−h+1 and current state is S as follows:

PS(Yn+1‖Yn, . . . , Yn−h+1) = fσ2S,h(Yn+1 − Yn − gn−h+1:n) (2.5)

We notice that PT (Yn+1‖Yn) in (2.3) and PS(Yn+1‖Yn, . . . ,Yn−h+1) have similar

forms and would evaluate to have similar values if v∗n and gn−h+1:n are similar (if

the corresponding variance σ2T and σ2s,h are also similar). This is the case when

the observer is tracking an object in the video with slow linear motion, so that the

motion vector and gaze vector coincide. Clearly, we should label this case as tracking

state T, indicating that we can predict future gaze location with high probability. To

disambiguate state S from T in this case, we do the following: we add a weighting

parameter 1− eγ‖v
∗
n−gn−h+1:n‖ to probability fσ2S,h , so that if motion vector v∗n is close
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Figure 2-4: Trellis corresponding to a 2-state HMM. A Forward Algorithm can �nd
the most likely state Xn given observations Y1, . . . , Yn's.

to gaze vector gn−h+1:n, then emission probability PS(Yn+1‖Yn, . . . , Yn−h+1) is small.

To summarize, we can replace the earlier (2.5) with the following:

PS(Yn+1‖Yn, . . . , Yn−h+1) = (1− eγ‖v
∗
n−gn−h+1:n‖) fσ2S,h(Yn+1 − Yn − gn−h+1:n) (2.6)

where γ is a parameter to control the weight factor (γ is set to −0.25 in our scheme).

2.4.1.3 Finding most likely latent states

To �nd latent state probability P(Xn = j) given a window of observations Y1, . . . , Yn,

we derive a simpli�ed version of the forward algorithm (FA), which is the �rst half

of the well known forward-backward algorithm (section 13.2.2, pp.618, [5]). It is a

simpli�ed version because, unlike the general case posed in [5], we do not have fu-

ture observations Yn+1, . . . when estimating Xn given real-time collected observations
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Y1, . . . , Yn.

Mathematically, we seek to �nd latent variable X∗n that maximizes the posterior

probability P(Xn‖Y1, . . . ,Yn) given observations Y1, . . . ,Yn. Using Bayes' theorem, we

can write:

X∗n = argmax
Xn

P(Xn‖Y1, . . . , Yn)

= argmax
Xn

P(Y1, . . . , Yn‖Xn)P(Xn)
P(Y1, . . . , Yn)

= argmax
Xn

P(Y1, . . . , Yn,Xn) (2.7)

This last line follows since the choice of Xn does not a�ect P(Y1, . . . ,Yn). As

done in [5], let a(Xn) = P(Y1, . . . , Yn,Xn). a(Xn) can be written recursively (equation

(13.36), pp. 620, [5]):

a(Xn) = P(Yn‖Xn)
∑
Xn−1

a(Xn−1)P(Xn‖Xn−1) (2.8)

Note that (2.8) is computed in a recursive manner, meaning that as a new obser-

vation Yn+1 arrives, previously computed a(Xn)'s can be used for the computation of

a(Xn+1)'s, instead of computing the entire observation sequence Y1, . . . , Yn+1 again.

This is equivalent to constructing a new stage of a trellis of two states representing

a(T) and a(S) at instant n + 1, reusing computed states of the previous stage at

instant n, as shown in Fig. 2-4.

To solve (2.8) we still need to complete two additional practical details. First is

initial conditions, which can be calculated easily as follows:
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a(X1) = P(Y1,X1) = πXP(Y1‖X1) (2.9)

where πX is the steady state probability of the Markov chain for latent state X.

The second is scaling factor. Because for each recursive call in (2.8) we need to

multiply emission probability P(Yn‖Xn) which can be much smaller than 1, a(Xn) can

become very small very quickly, leading to numerical instability. As done in section

13.2.4, pp.627, [5], we add in a coe�cient cn so that the sum of all �a(Xn)'s is 1. (2.8)

thus becomes:

cn�a(Xn) = P(Yn‖Xn)
∑
Xn−1

�a(Xn−1)P(Xn‖Xn−1) (2.10)

where cn is chosen so that
∑
Xn

�a(Xn) = 1.

2.4.2 HMM Parameters Estimation

For the previously presented HMM to correctly model a viewer's eye-gaze movements

during playback of a video clip, model parameters (most importantly, HMM state

transition probabilities) appropriate for the observed video clip must be derived. Dif-

ferent video contents contain di�erent visual excitation through stimuli properties,

inducing di�erent amount of eye-gaze movements from viewers. For example, a video

capturing a head-and-shoulder sequence of the president addressing the nation may

induce very few gaze movements, while a dance music video with lots of new objects

entering and leaving the scene may induce a lot. Thus, �nding suitable HMM pa-

rameters given the visual activities of the video is important for eye-gaze movement
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modeling.

One brute-force method to derive appropriate HMM parameters for a given video

content is to conduct extensive eye-gaze experiments [18], using a real-time gaze

tracking system [2], with a sizable group of test subjects. This, however, is clearly

too time-consuming and cost-ine�ective for a large number of video clips. Instead, we

propose an alternative method to derive HMM parameters per video clip by analyzing

the visual saliency maps [26] of individual video frames across time.

The saliency map was designed as input to the control mechanism for covert se-

lective attention. Koch and Ullman (1985) posited that the most salient location

(in the sense de�ned above) in a visual scene would be a good candidate for atten-

tional selection. Once a topographic map of saliency is established, this location

is obtained by computing the position of the maximum in this map by a Winner-

Take-All mechanism. After the selection is made, suppression of activity at the

selected location (which may correspond to the psychophysically observed "inhibi-

tion of return" mechanism) leads to selection of the next location at the location of

the second-highest value in the saliency map and a succession of these events gen-

erates a sequential scan of the visual scene. This role of the saliency map in the

control of which locations in the visual scene are attended is close to that of the

"master map" postulated in the "Feature Integration Theory" proposed by Treisman

and Gelade in 1980. The Koch and Ullman study was purely conceptual. The �rst

actual implementation of a saliency map was described by Niebur and Koch in 1996.

They applied their saliency map model which made use of color, intensity, orientation

and motion cues both to simpli�ed visual input (as is typically used in psychophys-

ical experiments) and to complex natural scenes and they demonstrated sequential
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scanning of the visual scene in order of decreasing salience (see below). Later work

re�ned the model [26]. The source code to compute saliency maps is freely available

at http://ilab.usc.edu/toolkit/downloads.shtml.

Computed saliency maps for individual video frames describe visual attention

variation spatially. For our purpose, we seek to describe visual attention variation of

a video temporally, i.e., how a viewer will shift visual attention from one object of

interest to another over time, which requires additional steps.

Our methodology is as follows. First, we de�ne saliency objects within each video

frame given calculated saliency maps; as a �rst-order approximation, saliency objects

are the only regions a viewer may observe at that particular frame. Then, we derive

HMM transition probabilities of a Markov model by solving consistency equations

written for di�erent saliency objects across consecutive frames. We describe these

steps in order next.

2.4.2.1 Finding Saliency Objects

We �rst compute visual saliency maps for all video frames using methodology in [26].

3. As an example, in Fig. 2-5 we see an original video frame, frame 157 of MPEG

test sequence table, and its corresponding computed saliency map. We see that

saliency values are highest around the ping-pong ball and the hand, agreeing with

our expectation of visual attention for this frame.

Having computed visual saliency maps, we �rst normalize each individual map, so

the sum of all saliency values in a map equals to one. We then �nd a set of saliency

3We note again that our method of deriving HMM parameters is agnostic to the particular model
used for saliency calculation, and thus our method can be easily adapted to other saliency models
such as [16].
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(a) original video frame (b) corresponding saliency map

Figure 2-5: Original video frame 157 of MPEG test sequence table, and the corre-
sponding visual saliency map, calculated using method in Itti's model.

(a) saliency map w/ threshold (b) saliency objects

Figure 2-6: Normalized saliency map after applying threshold, and resulting salient
objects in video frame 157 of sequence table.

objects in each map. We de�ne a saliency object as a spatially connected region

with per-pixel saliency value larger than a pre-de�ned threshold τs. As a �rst order

of approximation, we assume these are the only video objects a viewer will observe

in the given frame. A viewer may of course have gaze locations outside of these
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saliency objects; we assume that such occurrence means the viewer is in the process

of switching from one saliency object to another; i.e., he is in saccade state at this

frame time. Returning to our earlier example, we see in Fig. 2-6(a) the normalized

saliency map with normalized saliency values below threshold τs set to zero, leaving

only two saliency objects in the map. Correspondingly, we see the saliency objects in

Fig. 2-6(b).

2.4.2.2 Merging of Saliency Objects

Because the computed saliency maps can be noisy, it turns out that �nding a single

appropriate threshold τS a priori that can identify reasonable saliency objects in all

saliency maps of a video in time is di�cult. To ease the burden of the threshold

selection, we perform the following two procedural steps after initial saliency objects

are found in a frame. First, if only a single saliency object is found in a frame, we

incrementally lower threshold τS until a second saliency object is discovered. We do so

because, by de�nition, the probability of a viewer being in saccade state in any frame

is non-zero (i.e., there is a non-zero chance of a viewer switching objects of interest

in any frame), and having a single saliency object means there are no other objects

to switch to. Performing such procedure usually means the size of the original single

saliency object increases as threshold τS is lowered. This agrees with intuition: the

original object remains the main object with the strongest visual attention despite

the decrease in threshold.

Second, for each discovered saliency object, we search within a radius rs of the

object's center to check if another object is in the vicinity. Note that an object center

(cx, cy) is the Cartesian center of the object, where cx and cy are the arithmetic
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Figure 2-7: Example of how two small saliency objects (obj. 1 and obj. 2) are merged
using search radius rs.
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Figure 2-8: Example of how correspondence of saliency objects located in pairs of
consecutive saliency maps are found using motion estimation (ME).

means of the x- and y-coordinates of every pixels in the object. If so, we merge the

two objects via convex combination. In Fig. 2-7, we see saliency object 1 is within

radius rs of object 2's center, so we merge the two objects into one. The motivation

of saliency object merging is the following. A viewer necessarily looks at a group of

pixels at a time. So if a very small object ot,i (smaller than a circle of radius rs) is in

the vicinity of another object ot,j, then the viewer is also looking at object ot,j when

observing ot,i. Thus it is sensible to merge the two objects.

2.4.2.3 Correspondence of Saliency Objects

We can establish correspondence among saliency objects in consecutive frames using

motion estimation (ME), commonly used in video compression algorithms [28, 54].

In details, for each block k (we use 8 × 8 in our experiments) in a saliency object

ot,i in saliency map of instant t, we �nd the most similar block in saliency map of



52 CHAPTER 2. GAZE PREDICTION BASED BIT ALLOCATION SCHEME

instant t−1, i.e. the block with corresponding RGB pixel values in the original video

frame t − 1 that most matches RGB pixel values corresponding to block k in frame

t. If the most similar block in saliency map t− 1 belongs to a saliency object ot−1,j,

then object ot−1,j in map t−1 and object ot,i in map t could potentially be the same

object. If a su�ciently large fraction of blocks k's in ot,i map to the same object in

ot−1,j, then we declare they are the same object. If no such object exists in previous

map t− 1, then we declare object ot,i to be a new object appearing for the �rst time

in map t. As an example, in Fig. 2-8, we see that a block in object 2 in frame t has

found a matching block in object 2 in frame t− 1.

2.4.2.4 Deriving Transition Probabilities

Having identi�ed saliency objects across frames, we now derive state transition prob-

abilities for our eye-gaze HMM. As an illustrative example, we examine the simple

case where there are the minimum two salient objects in consecutive frames t and

t + 1. Denote by pt,1 and pt,2 the probability that a viewer will �x his gaze in each

of the two objects, respectively, in frame i. Similarly, denote by pt+1,1 and pt+1,2 the

corresponding probabilities for frame t+ 1. Let st and st+1 be the probabilities that

a viewer is in saccade state in frame t and t + 1. Because we know the volume of

visual saliency for each saliency object (sum of computed saliency pixel values within

each object) and saccade spatial region (area not covered by saliency objects), we can

calculate the relative probability size of objects by comparing their volumes in each

frame:
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st = pt,1/βt,1 = pt,2/βt,2

st+1 = pt+1,1/βt+1,1 = pt+1,2/βt+1,2 (2.11)

where β's are the scaling factors among objects in each frame.

Further, we know that the sum of probabilities in each frame must equal 1:

pt,1 + pt,2 + st = 1

pt+1,1 + pt+1,2 + st+1 = 1 (2.12)

Together with (3.1), we can determine the gaze probability of each object in each

frame. This is true no matter how many saliency objects are in each frame.

To calculate the state transition probabilities α's, we apply the de�nition of state

transition to the objects of these two frames. We can write the probability pt+1,1 of

object 1 in frame t+ 1 as the sum of probabilities of objects in previous frame scaled

by view transition probabilities α's:

pt+1,1 = pt,1 αTT + st αST

(
βt+1,1∑2
i=1 βt+1,i

)
(2.13)

Note that the probability st αST from state S to T must be split between the two

objects, according to their relative volumes.

We can write a similar equation for probabilities pt+1,2 of moving objects 2 in

frame t+ 1. Further, we can similarly write state transition equation for the saccade
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state as well:

st+1 = αTS

2∑
i=1

pt,i + st αSS (2.14)

Note that we have now three state transition equations for the four unknown α's.

In general, one can obtain k + 1 state transition equations for k saliency objects. In

addition, we know the sum of probabilities leaving a state in a HMM must also be

one:

αTT + αTS = 1

αSS + αST = 1 (2.15)

These two linear equations, together with the earlier derived three linear state

transition equations, means that we have more equations than unknowns. We hence

compute α's as follows. We rewrite each linear equation i with an additional noise

term ni at the end. The set of linear equations becomes:

Ca = b+ n (2.16)

where a = [αTT ,αTS,αSS,αST ]T is the vector of α's we are seeking, C is the coe�cient

matrix, b and n are the constant and noise vectors, respectively. It is well known that

the a∗ that minimizes the noises n in a mean square sense is computed as follows:

a∗ = C+b (2.17)

where C+ = (CTC)−1CT is the Moore-Penrose pseudo-inverse of matrix C.
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Having computed sets of transition probabilities α's each using di�erent pairs

of neighboring saliency maps in time, the transition probabilities for the video is

simply the average of the computed sets of transition probabilities. We can then also

compute the steady state probabilities π's of the HMM by performing eigen-analysis

as typically done in the literature.

2.4.3 Prediction Schemes

We have discussed how to determine the most probable latent state Xn in HMM

given observations Y1, . . . ,Yn in Section 2.4.1. In this section, we discuss how a future

gaze location 	Yn+RTT can be estimated RTT gaze samples into the future. Smart bit

allocation can then be performed to assign �ner quantization parameter (QP) for ROI

centered on predicted location 	Yn+RTT , and coarser QP for other spatial regions in a

coded frame (to be discussed in Section 2.5).

We stress here that we perform gaze prediction only if the most likely state is T.

This may seem counter-intuitive, since it is commonly accepted that the human eyes

cannot perceive any visual details when in saccade state S [34], and so it appears

that, for the ROI bit allocation application, the greatest bit-saving can be achieved

when the viewer is in state S. However, the duration in which a viewer stays in

state S is typically very short [14], and gaze will soon stop at an unpredictable new

object of interest. Thus, reducing bit-rate through coarser quantization of the video

frames when viewer is in state S poses a signi�cant risk of not reacting fast enough

to improve video quality back up when viewer suddenly switches from state S to T.

This is particularly the case when a low-cost web camera capturing video at a low
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frame rate is used for gaze tracking. Hence, we take the conservative approach and

perform no gaze prediction in state S.

Further, even if the most likely state is T, we perform prediction only if probability

P(Xn = T‖Y1, . . . , Yn)(αTT )RTT exceeding a threshold τC for both x- and y-coordinate

state estimation. In other words, we employ prediction of gaze location to perform

optimized bit-allocation only if:

1. We have con�dence in our state estimation P(Xn = T‖Y1, . . . , Yn); and,

2. The likelihood of the observer staying in state T RTT gaze samples into the

future remains high.

For example, a long RTT between server and client, or a video content that contains

many salient objects and induces much gaze movement (small αTT ), will limit the

fraction of time we actually make gaze prediction.

2.4.3.1 Linear Prediction

At �rst beginning, we employ the Least Squares Linear prediction for the future gaze

location. To estimate Yn+RTT , we use a window of ω observations Yn−ω+1, . . . , Yn for

linear regression [5]. Speci�cally, using observations (n−ω+ 1, Yn−ω+1), . . . , (n, Yn),

we seek a linear function Y(t) = �φ + �mt, so that the sum of squared errors between

sample points and the linear function is minimized. This is illustrated in Fig. 2-9 for

a window of �ve observations. The slope �m and y-intercept �φ of the straight line that

realize least squared error can be readily obtained for a set of observations y's taken

at instant x's as: where the bar above 	x signi�es the mean.
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Figure 2-9: Least squares linear regression can be employed over a sample window to
form a predictor for future gaze locations.
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Given linear regression parameters, �m and �φ, predicted gaze point RTT into the

future, 	Yn+RTT , is extrapolated to be �φ + �m(n + RTT). For state T, �m is simply the

constant velocity of the motion in the window of ω sample points.

2.4.3.2 Kalman Filter Prediction

Considering the accuracy of linear prediction, we developed our prediction model with

Kalman Filter. The Kalman �lter, also known as linear quadratic estimation (LQE), is

an algorithm that uses a series of measurements observed over time, containing noise

(random variations) and other inaccuracies, and produces estimateds of unknown

variables that tend to be more precise than those based on a single measurement

alone.

Given P(Xn = T‖Y1, . . . , Yn)(αTT )RTT > τC, we �rst denoise D latest samples of

noise-corrupted observations Yn−D+1, . . . , Yn into estimated gaze points �Yn−D+1, . . . , �Yn

using Kalman �ltering (KF) [17]. D is the size of a small window of previous gaze

samples (for complexity reason) that have been estimated to be state T during HMM

state estimation.

To conform to the standard KF formulation, we modify previous notation to the

following. Let �Yn and 
�Yn be the true gaze location and velocity at time n. Denote by

�Yn = [�Yn

�Yn]T the 2 × 1 vector that contains the true gaze location and velocity at

time n. We write the evolution of �Yn recursively as a linear dynamic system (LDS):

�Yn =

 1 (1− β)

0 (1− β)


︸ ︷︷ ︸

Fn

�Yn−1 +

 β
β


︸ ︷︷ ︸

Bn

v∗n−1 +

 WP

0

 (2.18)
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where Fn and Bn are respectively the state transition and control-input models, v∗n−1

is the control vector (also the emission probability maximizing block motion vector

in (2.1)), and WP is a zero-mean Gaussian process noise with variance σ2P . In words,

(2.18) states that the next true gaze location �Yn is the previous gaze location �Yn−1,

plus (1 − β) times the gaze vector 
�Yn−1, plus β times the maximizing block motion

vector v∗n−1, plus a noise termWP. β is a parameter to control the convex combination

of previous gaze velocity vector and motion vector of the scene. In our experiments,

β is set close to 1. Note that having �rst derived v∗n−1 using (2.1) during HMM state

estimation in Section 2.4.2, it is then possible to write (2.18) as a LDS in each given

instant n.

The observation Yn = [Yn 
Yn]T is simply �Yn plus an observation noise term:

Yn =

 1 0

0 1

 �Yn +

 WO

0

 (2.19)

where WO is a zero-mean Gaussian observation noise with variance σ2O.

Having written the evolution and observation equation (2.18) and (2.19), we can

compute the estimated gaze location �Yn−D+1, . . . , �Yn using standard KF predict and

update equations. See [17] for details.

Given estimated gaze point �Yn, we predict gaze RTT samples into the future using

a similar LDS setup. However, because there are no future observations available

beyond Yn, Kalman �ltering reduces to a simpler LDS setup with no data denoising.



60 CHAPTER 2. GAZE PREDICTION BASED BIT ALLOCATION SCHEME

We write a similar evolution equation for Yn into the future as follows:

Yn =

 1 (1− β)

0 (1− β)


︸ ︷︷ ︸

Fn

Yn−1 +

 βc1 . . . βcZ

βc1 . . . βcZ


︸ ︷︷ ︸

Bn


v1n−1

...

vZn−1


︸ ︷︷ ︸

un

(2.20)

where v1n−1, . . . , v
Z
n−1 are the Z block MVs around gaze point Yn−1.

In words, (2.20) states that gaze location Yn is the previous location Yn−1 plus

(1− β) times previous velocity 
Yn−1, plus β times a weighted combination of MVs of

the surrounding blocks v1n−1, . . . , v
Z
n−1, where weights ci's sum to 1,

∑Z
i=1 ci = 1. The

weights c1, . . . , cZ are used to compensate for the fact that observation Yn−1 is not

available to select the MV that maximizes the emission probability, as done in (2.3).

To predict gaze location RTT samples into the future, we repeatedly compute (2.20),

starting from the last estimated gaze location �Yn. After RTT iterations, we have an

estimated gaze location �Yn+RTT into the future.

2.5 ROI based Bit Allocation

In this section, we discuss a bit-rate allocation strategy as an application of our

proposed HMM based eye-gaze prediction method. And we already described how

to predict the location of future eye gaze �Yn+RTT in the previous sections, One ap-

proach to exploit this knowledge of user's visual focus is to continuously adapt each

macroblock's quantization parameter (QP) according to a visual model [10]. Con-
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ceptually, human ability to appreciate pixel �delity decreases continuously away from

the center of focus. Hence it is wasteful to encode visual information away from fo-

cus with high �delity. Nevertheless, in this paper, we adopt a simpler approach in

which a rectangular ROI is determined, and one QP is assigned to the ROI, while

a coarser (higher) QP is assigned to spatial regions outside the ROI. This is due

to its lower complexity, and the lower sensitivity to errors in focus determination.

Speci�cally, regions far away from focus is no longer subjected to extreme quantiza-

tion, which yields little additional rate reduction, but may attract unwanted attention

due to large quantization artifacts, changing the visual saliency of the original video

frames [53].

2.5.1 Determining ROI

Given a video frame with width w and height h, we choose a ROI of size w/2× h/2

centered at the estimated gaze location. This allows at least 75% of the frame to be

coded at a lower QP, while allowing a substantial region near the focus point to be

at high quality. For experiments in Section 2.6 with a �eld of view of 55 degrees,

this corresponds to a ROI with �eld of view of 30 degrees, which is quite large to

comfortably capture regions of high visual sensitivity.

When the estimated state is state S, which means the views are switching between

di�erent tracking points, therefore, we withdraw the optimization, and ROI should be

the whole display, all the details in the screen will be encoded as high quality without

optimization.
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2.5.2 ROI based Encoding Scheme

As discussed in [23], the fall-o� in human ability to appreciate pixel �delity can

be approximately modeled by the contrast sensitivity (CS) of humans, which is the

reciprocal of the contrast threshold (CT) given by:

CT(f, e) = CT0 exp
(
αf
e+ e2
e2

)
CS(f, e) = 1/CT(f, e)

where f is spatial frequency, e is the retinal eccentricity or the angle relative to the

point of focus, and CT0, e2 and α are constants empirically determined to be 1/64,

2.3, and 0.106, respectively.

As done in [10], we determine the cuto� frequency, fc, by setting CT to one:

fc =
e2 log

1
CT0

α(emax + e2)
(2.21)

where emax is the maximum eccentricity in the video frame, which is the largest

angle the screen portends relative to the focus point. The average contrast threshold

evaluated at spatial frequency fc inside and outside an ROI are then computed, and

the corresponding QP are chosen so that:

QPROI

CTROI
=
QPROI
CTROI

(2.22)

For ease of computation, we are primarily interested in having only two regions,
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namely inside and outside the ROI, and having rectangular ROI. Nevertheless, the

scheme can be trivially extended to multiple regions, and to non-rectangular ROI.

In addition, the saliency map will change corresponding to the QP change. To

avoid the e�ect, QP also should be selected carefully according to:

DKL(QPROI +QPROI‖‖QPFull) < ρ (2.23)

Given a video frame with width w and height h, we choose a ROI of size w/2×h/2

centered at the estimated gaze location. This allows at least 75% of the frame to be

coded at a lower QP, while allowing a substantial region near the focus point to be

at high quality. For experiments in Section 2.6 with a �eld of view of 55 degrees,

this corresponds to a ROI with �eld of view of 30 degrees, which is quite large to

comfortably capture regions of high visual sensitivity.

To ensure that the predicted observer's gaze movement does synchronize with an

identi�ed moving object in the video from frame Fn to Fn+RTT , we perform one �nal

check to see if the predicted gaze location �Yn+RTT lands inside the same saliency object

in frame Fn+RTT as it did in frame Fn. If it does not, then we declare uncertainty in

the prediction, and the entire frame is encoded in high quality.

2.6 Performance Evaluation

We demonstrate the bene�t of our proposed HMM-based gaze prediction strategy

through both objective and subjective experiments. We �rst describe the setup of

our experiments in Section 2.6.1. In part one of the experiment in Section 2.6.1, we
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show that our proposed saliency map analysis can be used to derive accurate HMM

parameters. In part two, described in Section 2.6.2, we examine the accuracy of

our HMM state estimation, and the tradeo� between false positive (predicting HMM

state to be T when ground truth is S) and false negative (predicting HMM state to

be S when ground truth is T). In part three, described in Section 2.6.3, we examine

the accuracy of our HMM-based gaze prediction using Kalman �ltering. In part four,

described in Section 2.6.4, we examine the achievable bit-rate saving for our proposed

bit allocation scheme. Finally, through an extensive subjective study, we show that

our bit allocation scheme su�ers no statistically meaningful loss in perceived visual

quality, using our in-house developed real-time system, in Section 2.6.5.

2.6.1 Experiment Setup

Our gaze-based networked streaming system employs the free real-time gaze-tracking

software opengazer 4 [2], which is calibrated for sampling gaze location at 30

samples per second using an o�-the-shelf web camera.

In our experiment, we used two kinds of sequences: i) 300-frame standard MPEG

video test sequences at CIF resolution (352× 288), and ii) 150-frame video sequence

at SD resolution (720 × 576) that can be downloaded from [1]. To mitigate viewer

frustration from repetitive viewing, we used �ve CIF videos: silent, table, mother,

foreman, kids, and �ve SD videos: captain, group, racing, rowboat, concert.

The monitor used for gaze tracking and video experiments measured 24 inches

4Though opengazer requires a viewer to hold his/her head still for accurate gaze tracking, we
note that newer gaze trackers allow a viewer to move his head naturally (within an acceptable range)
without a�ecting gaze tracking performance. Thus it is conceivable that a gaze tracking / prediction
system utilizing advanced gaze tracking technologies can be practically deployed.
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diagonally (522.3mm × 329.6mm), with resolution of 1920 × 1200. Brightness and

contrast are set to 30% and 50%, respectively. The distance between a user's head

and the center of monitor screen is about 500mm, resulting in a viewing angle of

about 55 degrees to the side-edge of the screen.

For video compression, we use a fast implementation of H.263 [28] for real-time

encoding. For subjective testing, videos were displayed in full-screen mode at 30 fps

(for CIF) and 15 fps (for SD), either the same or half the sampling rate of opengazer

for one-to-one or two-to-one correspondence between gaze samples and video frames.

2.6.2 Results for HMM State Estimation

We now validate our proposed saliency map analysis discussed in Section 2.4.2, i.e.,

whether HMM state transition probabilities derived from saliency map analysis are

roughly the same as �ground truth data�. The ground truth model parameters are

derived as follows. First, a trained user performed multiple viewings of each test

sequence, each time recorded his intention of tracking state T or saccade state S by

pressing keys on a keyboard during state transitions. This data set serves as initial

guess Θ of the ground truth HMM model parameters.

Then, we use the forward-backward algorithm (section 13.2.2, pp.618, [5]) to re�ne

model parameters Θ as follows. In Section 2.4.1.3, we de�ned forward probability

a(Xn) in (2.8). We now de�ne its counterpart�backward probability�as follows

(equation (13.38), pp.622, [5]):
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b(Xn) = P(Yn+1, . . . , YN‖Xn)

=
∑
Xn+1

b(Xn+1)P(Yn+1‖Xn+1)P(Xn+1‖Xn) (2.24)

where Xn is the latent state at instant n, and Yn is the observed gaze location at

instant n, n ∈ {1, . . . ,N}. Like (2.8), (2.24) can also be computed recursively.

Using forward probability a(Xn) and backward probability b(Xn), we can calculate

the following quantity (equation (13.43), pp.623, [5]):

ξ(Xn−1,Xn) =
a(Xn−1)P(Yn‖Xn)P(Xn‖Xn−1)b(Xn)

P(Y)
(2.25)

Finally, we can estimate transition probability αj,k from state j to k using ξ(Xn−1,Xn)

(equation (13.19), pp.617, [5]):

αj,k =

∑N
n=2 ξ(Xn−1 = j,Xn = k)∑K

l=1

∑N
n=2 ξ(Xn−1 = j,Xn = l)

(2.26)

where l takes on all possible latent state values, which in our case is simply state T

and S.

HMM parameters can be calculated by repeating the above equations until the

di�erences of the HMM parameters between iterations are all lower than a pre-set

threshold σ = 1e-05. We use the resulting HMM model parameters as �ground truth

data�.

State transition and steady state probabilities for silent and table are shown



2.6. PERFORMANCE EVALUATION 67

Table 2.1: State transition and steady state probabilities for silent
(a) Forward-Backward algorithm (b) saliency map analysis

T S π

T 0.891 0.109 0.841

S 0.577 0.423 0.159

T S π

T 0.885 0.115 0.836

S 0.588 0.412 0.164

Table 2.2: State transition and steady state probabilities for table
(a) Forward-Backward algorithm (b) saliency map analysis

T S π

T 0.893 0.107 0.598

S 0.159 0.841 0.402

T S π

T 0.865 0.135 0.546

S 0.162 0.838 0.454

in Table 2.1(a) and 2.2(a), respectively. Notice that silent is a relatively �quiet�

video [19]�one with little visual attention shifts, with the saccade steady state proba-

bility πS much smaller than table. For comparison, the state transition probabilities

derived via our proposed visual saliency map analysis for silent and table are

shown in Table 2.1(b) and 2.2(b), respectively. We see that the derived HMM pa-

rameters using saliency maps analysis are fairly close to the ground truth gaze data

trace. In particular, we see that the analytical saccade steady state probability πS

for both silent and table are very close to the ground truth trace numbers, even

though πS's for silent and table are very di�erent. This shows accuracy of our

proposed saliency map analysis.

We performed the same experiment for the two SD test sequences, captain and

group as well. captain is a �quiet� video, while group is a �busy� video. The
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Table 2.3: State transition and steady state probabilities for captain
(a) Forward-Backward algorithm (b) saliency map analysis

T S π

T 0.882 0.118 0.699

S 0.274 0.726 0.301

T S π

T 0.924 0.076 0.643

S 0.137 0.863 0.357

Table 2.4: State transition and steady state probabilities for group
(a) Forward-Backward algorithm (b) saliency map analysis

T S π

T 0.823 0.177 0.356

S 0.122 0.878 0.644

T S π

T 0.879 0.121 0.367

S 0.067 0.933 0.633

resulting HMM state transition and steady state probabilities are shown in Table 2.3

and 2.4. We again see very similar numbers between HMM parameters derived using

saliency map analysis and ones obtained using eye-gaze data trace. Having validated

our approach, we will henceforth use HMM parameters derived from saliency map

analysis.

We now evaluate the accuracy of HMM state estimation using forward algorithm

(FA), as discussed in Section 2.4.1.3. We denote an occurrence as false positive when

FA estimates HMM state to be T but the ground truth state is S (S to T). In other

words, false positive is when we wrongly deduced an opportunity to save coding bits

by assigning coarser quantization parameter outside ROI, but the algorithm calls for

high quality encoding for the entire frame. In contrast, we denote an occurrence as

false negative when FA estimates HMM state to be S but ground truth state is T (T
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(a) Error tradeo� for CIF videos

(b) Error tradeo� for SD videos

Figure 2-10: Tradeo� in false positive and false negative probabilities by adjusting
threshold τC, for CIF and SD videos, respectively.
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to S). This is the case where we miss a bit-saving opportunity.

As discussed in Section 2.4.3, a threshold τC can be adjusted according to our

con�dence in the estimated T state, resulting in a tradeo� between false positive

and false negative probabilities. In Fig. 2-10, we see the said tradeo� in the two

probabilities in our HMM state estimation for the two CIF (silent and table)

and SD (captain and group) sequences, respectively. We see that though in general

it is di�cult to achieve very small false positive and false negative probabilities at the

same time, it is possible to have reasonably small (6 0.15 for false positive and 6 0.2

for false negative) values for both. This shows that FA can provide reasonable state

estimates for our proposed HMM. As we will discuss later, this level of estimation

accuracy is su�cient for our intended application of ROI-based bit allocation for

streaming video.

2.6.3 Results for Kalman Filter Prediction

Given estimated HMM states, we next examine the accuracy of our HMM-based

gaze prediction using Kalman �lter (HMM-KF), as discussed in Section 2.4.3. We

compare �rst HMM-KF to a naïve linear prediction scheme (nlp), where the last two

gaze data points are used to construct a straight line, which is then extrapolated to

RTT seconds later to yield a gaze location estimate. We also compare HMM-KF to our

previous HMM-based linear prediction scheme (HMM-LP) [18], where linear regression

is used to construct a straight line using a window of previous gaze samples, then

extrapolated into the future for gaze estimate as done for nlp. In Fig. 2-11, we see

the performance of all schemes, in terms of visual degree between the estimated gaze
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(a) Prediction error vs. RTT for table

(b) Prediction error vs. RTT for captain

Figure 2-11: Prediction Error in degree as function of RTT for di�erent prediction
schemes, for table and captain, respectively.
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locations and true gaze locations, as function of RTT for CIF sequence table and

SD sequence captain. We see that as RTT increased, the estimation error increased

for all schemes. However, HMM-LP and HMM-KF achieved much smaller errors than

nlp. This is because, to contain errors, HMM-LP and HMM-KF construct a prediction

only when they are su�ciently con�dent that the viewer's gaze is in tracking state T,

while nlp makes an estimate for all data points.

Second, we observe that HMM-KF performed better than HMM-LP. This is because

the linear dynamic system employed in HMM-KF is able to deduce the true motion of

an identi�able object in future video, while HMM-LP simply assumes linear motion.

We also plotted the resulting prediction error in Fig. 2-12 against frame number

for RTT = 200ms for HMM-KF and nlp. At frame numbers where HMM-KF made

prediction, we observe that the magnitude of resulting error was in general smaller

than nlp.

2.6.4 Results for HMM-based Bit Allocation

We next show the achievable bit saving for our gaze-based bit allocation for networked

video streaming. We use QP = 10 for a desired reference quality. For our gaze-based

scheme (hmm) described in Section 2.5, the average QP outside the ROI is 15, as given

by equation (2.22) and (2.23), where ρ = 5e-09. An original scheme (orig) assigns

QP = 10 for all blocks in a frame. The compressed frame size for the two schemes

are given in Fig. 2-13 for CIF sequence table (orig bit-rate is 300kbps) and SD

sequence captain (orig bit-rate is 800kbps). We see that in frames where the

estimated state was tracking state T, fewer bits were allocated to non-ROI regions,
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(a) Prediction error vs. frame number for table

(b) Prediction error vs. frame number for captain

Figure 2-12: Prediction Error in degree as function of frame number for di�erent
prediction schemes, for table and captain, respectively, when RTT=200ms.
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(a) Frame size vs. frame number for table

(b) Frame size vs. frame number for captain

Figure 2-13: Frame size as function of frame number for di�erent bit allocation
schemes, for table and captain, respectively, when RTT=200ms.



2.6. PERFORMANCE EVALUATION 75

Table 2.5: Comparing the saliency-based method with the HQ without real-time gaze
tracking.

FQ : HQ

Quiet-video Busy-video sum

votes 7:16 10:13 17:29

p-value 0.0461 0.5372 0.0698

resulting in bit-rate saving. In particular, we found that hmm achieved 20% and 29%

bit saving compared to orig for sequence table and captain, respectively.

2.6.5 Results for subjective testing

Of course, the bit saving must be achieved without signi�cant loss of perceptual

quality. To quantify this, we developed a real-time video coding / streaming system

for subjective testing, with delay introduced between encoder and decoder to emu-

late RTT = 50ms, 100ms, 150ms, 200ms, 250ms. A Two Alternative Forced Choice

(2AFC) method [50] was used to compare subjective video quality.

We �rst establish through subjective testing that using ROI-based video encoding

without real-time gaze tracking / prediction will often not lead to su�cient perceptual

quality. We performed the testing as follows. FQ encodes saliency objects in a video

frame in high quality and other regions in low-quality, saving bit-rate. No gaze

tracking / prediction is employed. HQ encodes entire video frames as the same high

quality, resulting in a higher bit-rate. The subjective result could be seen in Table 2.5.

We see in Table 2.5 that a substantially larger proportion of test subjects preferred

HQ over FQ. That means test subjects were able to construe a di�erence in perceived



76 CHAPTER 2. GAZE PREDICTION BASED BIT ALLOCATION SCHEME

visual quality between HQ and FQ. Looking more closely, this perceived di�erence in

visual quality is most pronounced when the video content itself is quiet�steady state

probability πT is large.

We can explain the results as follows. It is clear that a pre-encoded ROI video

coding scheme can handle gaze behavior of the mean user at best; idiosyncratic gaze

behavior by individual users that deviate from the mean user�which happens more

often for quiet videos�cannot be handled by o�ine encoded scheme. In contrast, our

real-time gaze-based scheme can fully account for such personal idiosyncrasies, which

explains our better subjective experimental results.

Next, to validate our gaze prediction strategy, two videos are randomly selected

among the following three: the original HQ scheme hq, our proposed gaze-based

ROI bit allocation scheme hmm, and the naïve linear prediction nlp. In each trial,

participants looked at two videos back-to-back (with 3 seconds break in-between).

Each video lasted for 10 seconds as recommended by ITU-R BT.500 [27]. After

these presentations, each participant was asked to indicate which of the two videos

looks better (First or Second), regardless of how certain they were of their response.

Participants did not know which video was obtained by which kind of method. Full

random combinations of two from hq, hmm, nlp, using 5 di�erent RTT, gave a

total of 2× 3× 5 = 30 pairs.

The experiment was run in a quiet room with 23 participants (17 males and 6

females, and of age between 21 and 40). All participants had normal or corrected to

normal vision. The illumination in the room was in the 300-320 Lux range. Each

participant was familiarized with the task before the start of the experiment via a

short instruction. During video playback, the viewer's gaze points were tracked and
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Table 2.6: Comparing the proposed method with the HQ and NLP method based on
the subjective results at 5 di�erent RTTs.

RTT/ms HMM : HQ HMM : NLP HQ : NLP

50 23:23 37:9 40:6

p-value 1 2.65E-07 1.82E-13

100 24:22 37:9 42:4

p-value 0.7703 2.65E-07 8.08E-23

150 20:26 39:7 43:3

p-value 0.3774 8.25E-11 3.36E-32

200 18:28 41:5 42:4

p-value 0.1352 3.35E-17 8.08E-23

250 13:33 41:5 44:2

p-value 0.0012 3.35E-17 5.68E-51

sent to the streaming server.

The subjective testing results are shown in Table 2.6, where we indicate the num-

ber of responses showing preference for hq, hmm, nlp at di�erent RTT values.

We used the two-sided chi-square χ2 test [45] to examine the statistical signi�cance

of the results. The null hypothesis is that there is no preference for either two of

HQ, HMM, NLP. Under this hypothesis, the expected number of votes is 23 for each

method. The p-value [45] is also indicated in the table. In experimental sciences, as

a rule of thumb, the null hypothesis is rejected when p < 0.05. When this happens

in Table 2.6, it means that the two methods cannot be considered to have the same

subjective quality, since one of them has obtained a statistically signi�cantly higher

number of votes, and therefore seems to have better quality.

As seen in Table 2.6, in all of the pairs of HMM-NLP and HQ-NLP, the p-value is
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much smaller than 0.05, which indicates that subjects showed a statistically signi�cant

preference for our proposed method HMM and HQ. Further, looking across all pairs of

HMM-HQ, the results show that participants only noticed signi�cant di�erence when

RTT is larger than 200ms.

Our results clearly shows that our proposed method is always superior to nlp.

Furthermore, it can achieve about 29% bit savings compared to HQ with only minor

loss of subjective quality.

2.7 Complexity Analysis

2.7.1 Computing Complexity

As noted, the completed system is running in real-time while the video playbacks at

30fps, although the detailed computing overhead is not provided. we believe that it's

much smaller than one RTT delay. And from subjective result table 2.6, we can tell

that people can even not notice the e�ect by the delay from RTT.

But it's true that the real-time encoding is quite heavy for any server part. We

success to build the system to imply ROI-based encoding method to encode cif-format

video at 30fps and SD-format video at 15fps in real-time, and it will be much harder

for larger resolution videos. We improved one streaming switch system to avoid the

real-time encoding scheme with real-time gaze tracking and prediction strategy, which

will be discussed in Section 4.1.1.
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Table 2.7: Bit saving on di�erent video types

format CIF SD 720P

resolution 352*288 720*576 1280*720

Bit saving 21% 29% 52%

2.7.2 Video Complexity

In this section, we will discuss how would video content types e�ect the system

performance. First, the di�erent video formats will gain di�erent bit saving. From

table 2.7, it's obviously that our system will gain better performance on videos those

have larger resolutions.

Also as we know, for di�erent videos has their own motions, and objects, to

achieve the best prediction in our system, each type of video must has their own

HMM parameters, and even for one video, its di�erent scenes also be able to have

di�erent corresponding gaze behaviors. We next illustrate through examples how

video can be partitioned into segments of roughly stationary gaze statistics using

computed Kullback-Leibler (KL) divergence of motion-compensated saliency maps.

For our illustration, we constructed two composite video clips. The �rst CIF

video clip consists of 100-frame of silent, plus 100-frame of table, plus 100-frame

of silent. Since we know the visual activities in silent and table are very

di�erent, we know a priori that there is a change in gaze statistics at frame 101

and 201. Similarly, we constructed a second composite SD video clip consisting of

100-frame of captain, plus 100-frame of group, plus 50-frame of captain.

We �rst compute motion-compensated saliency maps: after identifying saliency
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objects in saliency map t and t + 1, for each corresponding saliency object pair in

map t and t + 1, we relocate the object in map t + 1 to match the location of the

corresponding object in map t. Such relocation process allows easier comparison of

saliency characteristics frame-to-frame in terms of gaze statistics, particularly when

a salient object is in motion.

The comparison is achieved treating saliency map φt at t and motion-compensated

saliency map φt+1 at t+1 as probability distribution functions, and compute the KL

divergence as follows:

dKL(φt‖‖φt+1) =
∑
i

φt(i) log

(
φt(i)

φt+1(i)

)
(2.27)

If the computed KL divergence exceeds a certain threshold τKL, then we declare there

is an abrupt change in statistics, and we can partition the video clip into two segments

of roughly stationary gaze statistics.

The computed KL divergence for each frame could be seen in Fig. 2-14(a) and

(b), respectively, for the two composite sequences. We can clearly see spikes around

composition frames 101 and 201, indicating a signi�cant change in gaze statistics.

This suggests that KL divergence using motion-compensated saliency maps can be

an e�ective method to partition video into segments of di�erent gaze statistics (even

though other methods may also be appropriate).

Further, one proposed method to mearsure the video busyness using saliency map

analysis will run at �rst step to classify the video will be discussed in Section 3.
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(a) KL for silent-table-silent

(b) KL for captain-group-captain

Figure 2-14: KL Divergence as function of frame numbers
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2.8 Summary

To improve the e�cacy of gaze-based networked systems, in this Chapter, we proposed

a hidden Markov model (HMM)-based gaze prediction strategy to predict future gaze

locations one round-trip-time (RTT) into the future. The two HMM states correspond

to two of human's intrinsic gaze behavioral movements. HMM parameters are derived

o�ine by analyzing the video's visual saliency maps of per-pixel visual attention

weights. The most likely HMM state is estimated via the forward algorithm (FA)

using real-time collected gaze data. Given an estimated state, a prediction strategy

using Kalman �ltering is used to predict future gaze location. To validate our gaze

prediction strategy, we apply our model to the bit allocation problem for network

video streaming based on region of interest (ROI). Experiments show that bit rate

can be reduced by up to 29% without noticeable visual quality degradation for RTT

as high as 200ms.



Chapter 3

Video Attention Deviation Analysis

3.1 Introduction

As presented in previous section, a viewer's visual attention during video playback

is the matching of his eye gaze movement to the changing video content over time.

If the gaze movement matches the video content (e.g., follow a rolling soccer ball),

then the viewer keeps his visual attention. If the gaze location moves from one video

object to another, then the viewer shifts his visual attention. A video that causes a

viewer to shift his attention often is a �busy� video. Determination of which video

content is busy is an important practical problem; a busy video is di�cult for en-

coder to deploy region of interest (ROI)-based bit allocation, and hard for content

provider to insert additional overlays like advertisements, making the video even bus-

ier. One way to determine the busyness of video content is to conduct eye gaze

experiments with a sizable group of test subjects, but this is time-consuming and
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cost-ine�ective. In this section, we propose an alternative method to determine the

busyness of video�formally called video attention deviation (VAD)�by analyzing

the spatial visual saliency maps of the video frames across time. We �rst derive tran-

sition probabilities of a Markov model for eye gaze using saliency maps of a number

of consecutive frames. We then compute steady state probability of the saccade state

in the model�our estimate of VAD. We demonstrate that the computed steady state

probability for saccade using saliency map analysis matches that computed using ac-

tual gaze traces. Further, our analysis can also be used to strengthen the performance

of gaze prediction system presented in Section 2.4.

3.2 Motivation

During playback of a video clip displayed on a reasonably large screen, a viewer sitting

at a comfortably close distance from the screen cannot observe all spatial regions

simultaneously and clearly in a given video frame. In fact, it has been shown [15]

that the ability of a viewer to discern details away from his focal point of visual

attention drops o� precipitously as a function of the viewing angle. So driven by

top-down motivation (e.g., a task in mind) and/or bottom-up stimulus (e.g., low-

level features of the visual scene), a viewer typically shifts his visual focal attention

from time to time, to study new local spatial regions of interest. This movement is

known as saccade in eye gaze literature [14]. Saccade contrasts with another eye gaze

movement tracking, where a viewer's gaze point simply follows a identi�ed moving

video object, like a rolling soccer ball across the screen. In the latter case, the viewer

does not shift his visual attention, but rather, maintains his attention on the same
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video object.

Thus, one can determine the extent in which a viewer shifts his visual attention

by comparing his eye gaze trajectory with the video content being observed [18]. It is

apparent that di�erent video contents contain di�erent degrees of bottom-up stimulus,

inducing di�erent amount of visual attention shifts from viewers. A video content that

induces very few shifts of visual attention from the viewer, like a stationary camera,

head-and-shoulders presidential address, is called a �quiet� video. On the contrary,

a video content that induces frequent shifts of visual attention, like a dance music

video, is called a �busy� video.

Determination of which video contents are busy is an important practical problem.

For example, in a region of interest (ROI)-based bit allocation scheme [10, 18, 35],

more bits are allocated to the spatial region containing the viewer's current focal

attention point, and fewer bits elsewhere, so that the overall bitrate can be reduced

without degrading perceptual visual quality. If a video is busy, frequent saccade

movements�which are known to be very fast and unpredictable in speed and dura-

tion [3]�will limit the e�ectiveness of such ROI-based allocation scheme [18]. Identi-

�ed busy videos can then be encoded in more traditional methods to reduce bitrate,

e.g., using uniform quantization across the entire frame.

In another example, given an identi�ed busy video, a content provider is limited

by the extent in which visual overlays [11] like advertisements can be painted on top.

Doing so will make the video even busier, as too many objects compete for viewer's

visual attention. For an identi�ed busy video content, advertisements can instead be

inserted as full frames temporally, extending the running time of the video.

One straightforward way to determine the busyness of a video content is to conduct
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eye gaze experiments, using a real-time gaze tracking system [2], with a sizable group

of test subjects. This, however, is clearly too time-consuming and cost-ine�ective

for a large number of video contents. In this chapter, we propose an alternative

method to determine the busyness of video�formally called video attention deviation

(VAD)�by analyzing the visual saliency maps [26] of individual video frames across

time. Saliency maps, gray-scale images that re�ect per-pixel visual attention weight

in original video frames, are constructed using combinations of low-level neuronal

feature maps�e.g., color and intensity contrasts�that have been found to attract

attention in humans and monkeys. Saliency maps that are computed for individual

video frames describe visual attention deviation spatially. In contrast, we seek to

describe visual attention deviation of a video temporally, i.e., how often a viewer will

likely shift attention over time.

Our methodology is as follows. First, we derive transition probabilities of a Markov

model using saliency maps of a number of consecutive frames. Then, we compute

steady state probability of the saccade state in the model, which becomes our estimate

of VAD. We demonstrate that the computed steady saccade state using saliency map

analysis matches that computed from actual gaze traces for a range of videos with

di�erent degrees of busyness. Further, our inter-frame saliency map analysis can also

be used to measure the video busyness, which would be much helpful for foreseeing

the bit saving gain and related implements with video encoding and compression.
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3.3 Saliency Map Analysis

3.3.1 Introduction

A brief introduction has been presented in Section 1.3.3. Visual attention modeling

has been focused many research e�orts in the last decade. Several computational

models to emulate visual attention have been consequently proposed, detecting the

locations that attract the eye gaze. Most of the models compute a saliency map that

values each pixel according to its visual saliency. While top-down visual saliency

modeling is also possible [16], we focus our discussion in bottom-up visual attention

process.

Our goal here is not to propose new visual saliency maps, but to use saliency maps,

computed using previously established techniques, to derive HMM parameters o�ine

in a computationally e�cient way. This motivation is not unlike previous proposals

that use saliency maps to resolve uncertainty in gaze estimates [9, 48, 52], except that

our derived HMM parameters re�ect the temporal aspect of expected gaze behavior,

rather than the spatial aspect. In this chapter, we selected methodology in [26] to

compute saliency maps, based on a plausible model of bottom-up visual attention.

Considering previous comments on performance, this model o�ers good performance

with reasonable computational cost. An existing implementation of the model is

available at [4]. We note, however, that our proposed gaze prediction strategy is

agnostic to the particular type of saliency model, and thus can be made interoperable

to other saliency models such as [16].
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3.3.2 Saliency Map Models

The Saliency Map is a topographically arranged map that represents visual saliency

of a corresponding visual scene. One of the most severe problems of perception

is information overload. Peripheral sensors generate a�erent signals more or less

continuously and it would be computationally costly to process all this incoming

information all the time. Thus, it is important for the nervous system to make

decisions on which part of the available information is to be selected for further, more

detailed processing, and which parts are to be discarded. Furthermore, the selected

stimuli need to be prioritized, with the most relevant being processed �rst and the less

important ones later, thus leading to a sequential treatment of di�erent parts of the

visual scene. This selection and ordering process is called selective attention. Among

many other functions, attention to a stimulus has been considered necessary for it

to be perceived consciously (see Attention and Consciousness and Visual Awareness;

but see Koch and Tsuchiya (2007) for a di�erent viewpoint).

What determines which stimuli are selected by the attentional process and which

will be discarded. Many interacting factors contribute to this decision. It has proven

useful to distinguish between bottom-up and top-down factors. The former are all

those that depend only on the instantaneous sensory input, without taking into ac-

count the internal state of the organism. Top-down control, on the other hand, does

take into account the internal state, such as goals the organisms has at this time, per-

sonal history and experiences, etc. A dramatic example of a stimulus that attracts

attention using bottom-up mechanisms is a �re-cracker going o� suddenly while an

example of top-down attention is the focusing onto di�cult-to-�nd food items by an
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animal that is hungry, ignoring more "salient" stimuli.

Given the di�culty of accurately measuring or even quantifying the internal states

of an organism, those aspects of attentional control that are independent of these,

i.e., bottom-up attention, are easier to understand than those that are in�uenced by

internal states. Possibly the most in�uential attempt at understanding bottom-up

attention and the underlying neural mechanisms was made by Christof Koch and

Shimon Ullman (Koch and Ullman, 1985). They proposed that the di�erent visual

features that contribute to attentive selection of a stimulus (color, orientation, move-

ment etc) are combined into one single topographically oriented map, the Saliency

map which integrates the normalized information from the individual feature maps

into one global measure of conspicuity. In analogy to the center-surround repre-

sentations of elementary visual features, bottom-up saliency is thus determined by

how di�erent a stimulus is from its surround, in many submodalities and at many

scales. To quote from Koch and Ullman, 1985 (p. 221), Saliency at a given location

is determined primarily by how di�erent this location is from its surround in color,

orientation, motion, depth etc.

The saliency map was designed as input to the control mechanism for covert se-

lective attention. Koch and Ullman in 1985 posited that the most salient location (in

the sense de�ned above) in a visual scene would be a good candidate for attentional

selection. Once a topographic map of saliency is established, this location is obtained

by computing the position of the maximum in this map by a Winner-Take-All mech-

anism. After the selection is made, suppression of activity at the selected location

(which may correspond to the psychophysically observed "inhibition of return" mech-

anism) leads to selection of the next location at the location of the second-highest
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value in the saliency map and a succession of these events generates a sequential scan

of the visual scene. This role of the saliency map in the control of which locations in

the visual scene are attended is close to that of the "master map" postulated in the

"Feature Integration Theory" proposed by Treisman and Gelade in 1980.

The Koch and Ullman study was purely conceptual. The �rst actual implementa-

tion of a saliency map was described by Niebur and Koch in 1996. They applied their

saliency map model which made use of color, intensity, orientation and motion cues

both to simpli�ed visual input (as is typically used in psychophysical experiments)

and to complex natural scenes and they demonstrated sequential scanning of the vi-

sual scene in order of decreasing salience (see below). Later work re�ned the model

(Itti et al, 1998; Itti and Koch 2001). The source code to compute saliency maps is

freely available at http://ilab.usc.edu/toolkit/downloads.shtml.

3.4 Video Attention Deviation Method

3.4.1 Identi�cation of Salient Objects

We �rst compute visual saliency maps for all video frames using methodology in

[26], which is the same as presented at Section 2.4.2.1 As shown in Fig. 2-5 we see

an original video frame, and its corresponding computed saliency map. And each

individual computed visual saliency map is normalized, so the sum of all saliency

values in a map equals to one. Then we �nd a set of saliency objects in each map. A

viewer may also have gaze locations outside of these saliency objects; we assume that

such occurrence means the viewer is in the process of switching from one saliency
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object to another; i.e., he is in saccade state at this frame time. Returning to our

earlier example, we see in Fig. 2-6(a) the normalized saliency map with normalized

saliency values below threshold τs set to zero, leaving only two saliency objects in the

map. Correspondingly, we see the saliency objects in Fig. 2-6(b).

Because the computed saliency maps can be noisy, it turns out that �nding a

single appropriate threshold τS a priori that can identify reasonable saliency objects

in all saliency maps of a video in time is di�cult. To ease the burden of the threshold

selection, we perform the following two procedural steps after initial saliency objects

are found in a frame. First, if only a single saliency object is found in a frame, we

incrementally lower threshold τS until a second saliency object is discovered. We do so

because, by de�nition, the probability of a viewer being in saccade state in any frame

is non-zero (i.e., there is a non-zero chance of a viewer switching objects of interest

in any frame), and having a single saliency object means there are no other objects

to switch to. Performing such procedure usually means the size of the original single

saliency object increases as threshold τS is lowered. This agrees with intuition: the

original object remains the main object with the strongest visual attention despite

the decrease in threshold.

Second, for each discovered saliency object, we search within a radius rs of the

object's center1 to check if another object is in the vicinity. If so, we merge the two

objects via convex combination. In Fig. 2-7, we see saliency object 1 is within radius

rs of object 2's center, so we merge the two objects into one. The motivation of

saliency object merging is the following. A viewer necessarily looks at a group of

1An object center (cx, cy) is the Cartesian center of the object, where cx and cy are the arithmetic
means of the x- and y-coordinates of every pixels in the object.
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pixels at a time. So if a very small object ot,i (smaller than a circle of radius rs) is in

the vicinity of another object ot,j, then the viewer is also looking at object ot,j when

observing ot,i. Thus it is sensible to merge the two objects.

We can establish correspondence among saliency objects in consecutive frames

using motion estimation (ME), commonly used in video compression algorithms [28,

54]. In details, for each block k (we use 8× 8 in our experiments) in a saliency object

ot,i in saliency map of instant t, we �nd the most similar block in saliency map of

instant t−1, i.e. the block with corresponding RGB pixel values in the original video

frame t − 1 that most matches RGB pixel values corresponding to block k in frame

t. If the most similar block in saliency map t− 1 belongs to a saliency object ot−1,j,

then object ot−1,j in map t−1 and object ot,i in map t could potentially be the same

object. If a su�ciently large fraction of blocks k's in ot,i map to the same object in

ot−1,j, then we declare they are the same object. If no such object exists in previous

map t− 1, then we declare object ot,i to be a new object appearing for the �rst time

in map t.

3.4.2 Deriving Transition Probabilities

Having identi�ed saliency objects across frames, we now derive state transition prob-

abilities for our eye-gaze HMM. As an illustrative example, we examine the simple

case where there are the minimum two salient objects in consecutive frames t and

t + 1. Denote by pt,1 and pt,2 the probability that a viewer will �x his gaze in each

of the two objects, respectively, in frame i. Similarly, denote by pt+1,1 and pt+1,2 the

corresponding probabilities for frame t+ 1. Let st and st+1 be the probabilities that
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a viewer is in saccade state in frame t and t + 1. Because we know the volume of

visual saliency for each saliency object (sum of computed saliency pixel values within

each object) and saccade spatial region (area not covered by saliency objects), we can

calculate the relative probability size of objects by comparing their volumes in each

frame:

st = pt,1/βt,1 = pt,2/βt,2

st+1 = pt+1,1/βt+1,1 = pt+1,2/βt+1,2 (3.1)

where β's are the scaling factors among objects in each frame.

Further, we know that the sum of probabilities in each frame must equal 1:

pt,1 + pt,2 + st = 1

pt+1,1 + pt+1,2 + st+1 = 1 (3.2)

Together with (3.1), we can determine the gaze probability of each object in each

frame. This is true no matter how many saliency objects are in each frame.

To calculate the state transition probabilities α's, we apply the de�nition of state

transition to the objects of these two frames. We can write the probability pt+1,1 of

object 1 in frame t+ 1 as the sum of probabilities of objects in previous frame scaled

by view transition probabilities α's:

pt+1,1 = pt,1 αTT + st αST

(
βt+1,1∑2
i=1 βt+1,i

)
(3.3)
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Note that the probability st αST from state S to T must be split between the two

objects, according to their relative volumes.

We can write a similar equation for probabilities pt+1,2 of moving objects 2 in

frame t+ 1. Further, we can similarly write state transition equation for the saccade

state as well:

st+1 = αTS

2∑
i=1

pt,i + st αSS (3.4)

Note that we have now three state transition equations for the four unknown α's.

In general, one can obtain k + 1 state transition equations for k saliency objects. In

addition, we know the sum of probabilities leaving a state in a HMM must also be

one:

αTT + αTS = 1

αSS + αST = 1 (3.5)

These two linear equations, together with the earlier derived three linear state

transition equations, means that we have more equations than unknowns. We hence

compute α's as follows. We rewrite each linear equation i with an additional noise

term ni at the end. The set of linear equations becomes:

Ca = b+ n (3.6)

where a = [αTT ,αTS,αSS,αST ]T is the vector of α's we are seeking, C is the coe�cient

matrix, b and n are the constant and noise vectors, respectively. It is well known that
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the a∗ that minimizes the noises n in a mean square sense is computed as follows:

a∗ = C+b (3.7)

where C+ = (CTC)−1CT is the Moore-Penrose pseudo-inverse of matrix C.

3.4.3 Generating VAD values

Having computed sets of transition probabilities α's each using di�erent pairs of

neighboring saliency maps in time, the transition probabilities for the video is simply

the average of the computed sets of transition probabilities. We can then also compute

the steady state probabilities π's of the HMM by performing eigen-analysis as typically

done in the literature.

3.5 Performance Evaluation

3.5.1 Validation of VAD

To show the potential of our proposed VAD estimation using inter-frame visual

saliency map analysis, we used four test sequences as input to USC's visual saliency

map calculation software [4]: i) two 300-frame standard MPEG video test sequences,

silent and table, at CIF resolution (352 × 288) and ii) two 250-frame higher

resolution video sequences, captain and group, at SD resolution (720× 576) and

downloadable from IRCCyN Lab website [1]. All videos have 30 frames per second

(fps) playback speed. silent and captain are �quiet� videos with few visual activ-
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(a) frame 15 of SD test sequence captain (b) frame 199 of SD test sequence group

Figure 3-1: Sample frame of SD resolution sequence

ities, while table and group are �busy� videos with lots of visual activities. Single

frames of captain and group are shown in Fig. 3-1.

We �rst validate our proposed saliency map analysis discussed in Section 3.3, i.e.,

whether saccade steady state probability (VAD) derived from saliency map analysis

are roughly the same as ones obtained using actual eye-gaze data traces. To obtain

ground truth gaze data, a trained user performed multiple viewings of each test

sequence, each time continuously recorded his intention of �xation, pursuit or saccade

by pressing keys on a keyboard. Using this �ground truth� data, we calculated one

set of state transition probabilities in the HMM and then the saccade steady state

probability πs. The saccade steady state probabilities for all test sequences are shown

in Table 3.1. Notice that silent and captain are indeed a quieter video: the

saccade steady state probability πS is much smaller than table and group.

For comparison, we see that the derived HMM parameters using saliency maps

analysis are quite close to the ground truth gaze data trace. In particular, we see
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Table 3.1: Comparison of computed VAD values

πS

gaze data for Silent (300 frames) 0.063

saliency map analysis for Silent (300 frames) 0.089

gaze data for Table (300 frames) 0.432

saliency map analysis for Table (300 frames) 0.442

gaze data for Captain (250 frames) 0.152

saliency map analysis for Captain (250 frames) 0.181

gaze data for Group (250 frames) 0.439

saliency map analysis for Group (250 frames) 0.457

that the analytical saccade steady state probability πS for both silent and table

are very close to the ground truth trace numbers, even though πS's for silent and

table are very di�erent. This shows accuracy of our proposed saliency map analysis.

We also performed the same experiment for the two SD test sequences. We again see

very similar numbers between saccade steady state probabilities derived using saliency

map analysis and ones obtained using eye-gaze data trace.

Besides, we note that the VAD value is related with the bit saving gained by our

gaze prediction system presented at section 2.6.4, while its performance is matching

the ground truth. As presented VAD is re�ecting the video busyness, the bit saving is

smaller while VAD value is larger, which is because large-VAD videos always contain

much busy motions, noise informations to attract people switching their interested

points between each other, thus the credibility of our gaze prediction strategy will

be lower down to ensure perceived visual quality, leading to a smaller bit saving

gain. Oppositely, small-VAD videos always have a clear object in its own contents,
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so people is easily following with the single or less salient objects, thus a large bit

saving is achieved.

3.5.2 Logo-insertion application

To show the potential of our proposed VAD estimation using inter-frame visual

saliency map analysis, we used four test sequences as input: Golf and Dance In

the Woods, Captain and Group Disorder at HD resolution (1920×1080). All

videos have 30 frames per second (fps) playback speed. Golf and Captain are

�quiet� videos with few visual activities, while Dance In the Woods and Group

Disorder are �busy� videos with lots of visual activities. We performed two ex-

periments to validate the e�ectiveness of our proposed VAD for logo insertion. The

�rst experiment consists in determining whether our proposed VAD is an appropriate

metric for detecting changes in gaze behavior when inserting a logo, compared to

other metrics. The second experiment consists in checking whether there actually is

a gaze behavior change when inserting a logo.

3.5.2.1 Logo-insertion Experiment 1

This experiment aims at determining whether our proposed VAD is an appropri-

ate metric for detecting changes in gaze behavior when inserting a logo, compared

to other ROC and to the correlation-based measure. To generate a gaze behavior

change, we inserted a logo with varying opacity values. We expect that the higher

the opacity of the logo, the more noticeable and the most likely the gaze behavior

change. To achieve this goal, we consider �ve di�erent opacity values per test se-
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quence (Golf, Dance In the Woods, Captain and Group Disorder): 20%,

40%, 60%, 80% and 100%. The logo is inserted in every frame of the test sequence.

This leads to twenty new sequences. Visual attention maps are then generated from

the new sequences. The gaze behavior change should be detected by using an appro-

priate metric comparing the visual attention map of the original sequence and that

of the logo-inserted video sequence. We used ROC, correlation coe�cient and VAD

to achieve this comparison. Figures. 3-2 and 3-3 give the results of this comparison

when using ROC and correlation-based measure respectively.

3.5.2.2 Logo-insertion Experiment 2

To quantify the metrics and obtain the ground truth of how many percentage would

the inserted logo be perceived, we developed experiment system for subjective testing,

with introduced four test sequences and logo inserted ones, they all have the same

bit-rate.

Our experiment system employs the high accurate gaze-tracking equipment Tobii

X60, which is calibrated for sampling gaze location at 60 samples per-second. In our

experiment, we used three groups of sequences: i) quiet video, ii) busy video and iii)

video with median motions, which were grouped by their vad value.

The monitor used for gaze tracking and video experiments measured 46 inches di-

agonally (1018mm×573mm), with resolution of 1920×1080. Brightness and contrast

are set to 30% and 50%, respectively. The distance between a user's head and the

center of monitor screen is about 1100mm, resulting in a viewing angle of about 53

degrees to the side-edge of the screen, while the traceable degree of X60 is 70 degree.

To measure how many percentage would the inserted logo be perceived, the orig-
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Figure 3-2: Comparison of ROC, CC and VAD depending on the opaqueness of the
inserted logo of busy video.

Figure 3-3: Comparison of ROC, CC and VAD depending on the opaqueness of the
inserted logo of quiet video.
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inal and comparison videos should be prepared carefully. During our subjective ex-

periment, each 8 videos were prepared for each group, as total 24 videos. For logo

insertion, we have 3 di�erent logos, and each logo has two candidate locations for dif-

ferent video, while all of them have the similar resolution, to ensure the ratio between

logo-area and frame-area should be the same.

And the organization of each test should follow these rules: i) each sequence

should, and could only be watched once for each viewer, ii) all 24 sequences should be

shown to viewer, with randomly chosen logo insertion, but for all viewers, all options

of logo insertions should be watched. and iii) for each two consecutive videos, the

same logo with the same location should be avoid.

For each test, the viewer will start with a short introduction and the calibration.

He/She will be asked to answer few questions for a reasonable visual acuity examina-

tion. During the whole test, there are no leading instructions on video contents, all

viewers are required to sit naturally and keep their head stable. Besides a 5-second

break is inserted into each two sequences with gray picture showing on the display.

And for this subjective evaluation, there were totally 36 people invited.

Figures 3-4 gives the result of this subjective test when showing quiet-busy videos

with inserted logo respectively. We notice that the higher VAD value is, the lower

inserted logo is perceived. And comparing with Figures 3-5, we notice that our pro-

posed method would be more sensitive on measuring video busyness than traditional

metrics.
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Figure 3-4: Percentage of inserted logo being perceived via video's VAD value.

Figure 3-5: Percentage of inserted logo being perceived via video's KLD value.
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3.6 Summary

In this chapter, we continued to improve our gaze prediction system by using saliency

map analysis to detect scene change, classify the video content for bit saving, also we

were able to measure video busyness without time consuming subjective experiment.

And our comparison results show that it's much sensitive than other metrics, also the

VAD result is matching subjective evaluation by collecting ground truth gaze data.

And the most important is that VAD result is matching subjective evaluation, which

means it's re�ecting human perception while the video is playbacked.
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Chapter 4

Conclusion

4.1 Discussion

As presented, the experiments prove that our straight-forward algorithms were able

to achieve the better performance than previous work, but there are more problems

to be resolved:

1. Our gaze prediction is using single gaze tracker, but there always will be multiple

people before the display. Is that possible to improve it for multi-users?

2. The proposed gaze prediction is highly based on hidden markov model, which

is very simple and might be not able for variable videos and viewers. Is there

any other more suitable prediction strategy?

3. The VAD metric is able to recognize quiet or busy video, but the performance

is based on the right saliency map analysis and our proposed HMM. Is there
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other ways to produce the more stable metric?

4.1.1 Dual-stream switching frame structure

In section 2.7.1, we talked about the system complexity of ROI bit allocation, and

to avoid the real-time encoding, we propose one store-and-playback video streaming

system to employs two pre-encoded video streams with the same content in di�erent

qualities: HQ stream has all spatial regions encoded in HQ, while MQ stream only has

visually salient regions encoded in HQ. DSC frames are inserted periodically every T

frames to facilitate stream-switching depending on real-time tracked gaze locations.

The system essentially switches to HQ stream when a viewer's gaze travels outside

visually salient regions, and switches back to MQ stream when the server is con�dent

that the viewer's gaze will remain in visually salient regions in the foreseeable future.

In theory, it is possible to set T small enough so that zero visual degradation

is observed. This is because when human gaze shifts from one object of interest

to another�a movement called saccade�the observer cannot perceive visual details

until his vision has settled on the new object [36]. Hence if T is small enough that the

server can switch from MQ stream to HQ stream before saccade has completed, the

observer will always perceive HQ. Doing so would require a very small T , however,

which is not practical given the non-negligible overhead of encoding stream-switching

DSC frames. Hence, we take the alternative approach of limiting the probability of

observing LQ regions to be below an application-speci�c ε instead.

We now describe the frame structure used to facilitate periodic switching between

two pre-encoded bitstreams, shown in Fig. 4-1. HQ stream is encoded in HQ for entire
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Figure 4-1: Proposed frame structure in gaze-driven video streaming system. I-, P-, and

DSC frames are denoted as circles, squares, and diamonds, respectively. DSC frames are

inserted every T frames.

video frames. MQ stream is encoded in two quality: spatial regions with per-pixel

visual saliency values above a saliency threshold τ (ROI) are encoded in HQ, while

the other regions are encoded in LQ. Frames in each stream are encoded in IPPP

structure, with DSC frames [12] periodically inserted with period T frames to enable

stream-switching at DSC frame boundary. More speci�cally, each DSC frame Wq
nT

of instant nT , n ∈ Z+ and q ∈ {HQ,MQ}, is encoded with two predictor P-frames of

previous instant nT − 1 from the two streams, PHQnT−1 and P
MQ
nT−1. The reconstruction

property of DSC frame guarantees that Wq
nT can be correctly decoded if any one of

the predictor frames is available at decoder bu�er as side information. Thus, a client

can switch from PHQnT−1 in HQ stream or PMQ
nT−1 in MQ stream to Wq

nT in q stream at

DSC boundary nT .
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4.1.2 Applications of Gaze/Video-based video content adaptation

It's obviously that the proposed video content adaptation using gaze behavior or

video content analysis can be implied widely not only in video streaming society.

Now the google glass make it possible to track your gaze point and share your life

with your friends in real-time. With those more and more popular wearable devices,

video content adaptation could be more and more intelligent for daily life.

For example, there's one patient need a operation immediately while the doctor

at the scene does not have related experience on it, then he might choose accepting

remote instructions during the surgery while transmitting the live operation to other

doctors. In this case, the high quality video content is necessary for other doctors to

clearly see what's happening during the surgery and to provide correct instructions,

besides the delay by video transmission will be quite dangerous for it may lead to

inadequate treatment or even death. Our proposed system could solve it by video

content adaptation using gaze tracking, gaze prediction and saliency map analysis.

Using saliency map analysis and related medical informations, we could lock the lesion

parts and make sure them encoded at high quality. Then the gaze prediction strategy

will make sure other doctors are able to see exactly how the operation is going on,

and ROI based bit allocation could reduce the video size and transmission time.

Furthermore, 4K videos and displays are more and more popular and 4K TV has

already shown on Japan's market, so more and more high de�nition video contents will

be needed. Take the live ball-game as an example, like the current World Cup 2014,

everyone want to see the live broadcast clearly while they have their own favorite team

and players. To detect viewers' interest, and to adapt video content automatically,
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and to insert di�erent advertisements or logos according to viewers' interest are also

capable of our proposed system.

4.2 Conclusion

In this thesis, we �rst proposed a Hidden Markov Model (HMM)-based gaze prediction

strategy to predict future gaze locations one round-trip-time (RTT) into the future

for improving the e�cacy of gaze-based networked system. The two HMM states

correspond to two of human's intrinsic gaze behavioral movements. HMM parameters

are derived o�ine by analyzing the video's visual saliency maps of per-pixel visual

attention weights. The most likely HMM state if estimated via the forward algorithm

using real-time collected gaze data. Given an estimated state, a prediction strategy

using Kalman �ltering is used to predict future gaze location. To validate our gaze

prediction strategy, we apply our model to the bit allocation problem for network

video streaming based on region of interest (ROI). Experiments show that bit rate

can be reduced by up to 29% without noticeable visual quality degradation for RTT

as high as 200ms.

By the second half of this thesis, we presented our metric VAD using saliency map

analysis to detecting scene change and video busyness of given videos. without time

consuming subjective experiment. And our comparison results show that it's much

sensitive than other metrics, also the VAD result is matching subjective evaluation

by collecting ground truth gaze data. And the most important is that VAD result is

matching subjective evaluation, which means it's re�ecting human perception while

the video is playbacked.
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4.3 Future Work

Human interactive system would be more and more popular for future life, considering

the more and more convenient devices, and more and more powerful services. In this

thesis, we are starting with simple method to resolve the transition problems for

networked video streaming, using hidden markov model and saliency map analysis.

For the future work, we would improve our low-cost gaze prediction system for

multiple users, and consider more accurate model for gaze prediction. Besides, the

real-time bit allocation with known ROIs is also di�cult, especially for high through-

out servers. We also developed some optimized ways to avoid real time encoding

while using the real time gaze tracking. Furthermore, we are more interested at VAD

application for future video analysis or encoding methods. Because VAD is not only

representing the change on pixel/color level, but also re�ecting the human reaction

when the video was perceived by people. It's matching the bottom-up analysis model

with human top-down cognition model together. By implying VAD, we would be able

to foresaw or even guide the human vision and perception while producing, encoding

or recovering videos.
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