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Abstract

Graphs have been increasingly important to represent data such as the World Wide
Web, social networks, biological networks. With the explosion of information, big data
leads to big graphs. These big graphs are often stored in a distributed system, leading
to many di�culties in proposing e�cient algorithms for processing big graphs.

While many distributed programming models for graphs have been proposed,
MapReduce and Pregel have been shown to be scalable to deal with big data as well as
big graphs. Nonetheless, to obtain scalability, these models o�er restricted forms in
which users specify their programs. Hence, it is non-trivial for users to write their
complicated programs as well as to obtain e�cient ones.

On the other hand, regular expression has been used as a powerful way to intuitively
query data from graphs. Many useful applications of queries based on regular
expressions have been discovered, such as, �nding relationships in social networks,
or �nding chains of reactions in biological networks. However, evaluating regular-
expression-based queries on distributed graphs is non-trivial. First, regular expressions
imply a highly sequential evaluation. Second, distributed evaluations often produce
intermediate graphs whose size is larger than the input graph, and require a large
amount of communications.

This dissertation’s objective is to bridge the gap between regular-expression-based
queries and scalable distributed programming models. We study systematic approaches
to build a general framework that automatically translates regular-expression-based
queries into e�cient distributed programs.

First, we focus on select-where regular path (SWRP) queries that return a graph
constructed from subgraphs following paths whose labels spell a word in a regular
expression. Queries can be nested and composed. We propose a structural-recursion
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based approach to translating SWRP queries into e�cient programs in Pregel. SWRP
queries are �rst translated into structural recursive functions on graphs. Then structural
recursive functions are compiled into e�cient programs in Pregel. The approach
ensures that the sizes of intermediate graphs generated during the evaluation are
minimized and close to the size of the �nal result. To the best of our knowledge, this is
the �rst time a Pregel algorithm for SWRP queries is proposed.

Second, we propose a functional-based approach to further improve the performance
of SWRP queries. We observe that there is a computation during the evaluation of
SWRP queries takes more time than the other computations. This demands further
re�nement of our framework. We start with a more fundamental query that is a
regular reachability (RR) query. An RR query is to decide whether or not two given
vertices are connected by a directed path the concatenation of whose edge/node
labels spells a word in a given regular expression. We propose a functional-based
approach to a distributed evaluation of RR queries, which uses functions to encode
mappings between sets of states in the automaton of the given regular expression. This
approach exploits parallelism by processing a long path in a distributed manner, and it
also reduces the computation and communication costs during the evaluation by
encoding state transitions. Then we show how to apply this approach to improve the
performance of the evaluation of SWRP queries.

Finally, we extend SWRP queries to support shortest-path conditions. We show
that this extension requires us to solve an additional problem that is a shortest regular
category-path (SRCP) query. An SRCP query is a variant of a constrained shortest path
query whose constraints are expressed by a category-based regular expression. By using
a dynamic programming formulation, we show that SRCP queries can be answered
e�ciently by a series of single source shortest path searches. This is useful because we
can utilize fast single source shortest path algorithms that are optimized for di�erent
graphs (road networks, social networks, biological networks) and environments (shared
or distributed memory).
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1
Introduction

1.1 Motivations and Objectives

Graphs are �exible in modeling many kinds of data from the unstructured to the
structured. To query graph data, a typical way is using regular expression to �nd paths
in the graph [1]. Most of graph querying languages supports regular-expression-based
queries, for example, Strudel [2], UnQL, [3], SPARQL [4, 5], GXPath [6]. There are
many potential applications in various domains using regular-expression-based queries
as a key component.

• Social networks: Checking whether there exists a common friend who lives
in Tokyo among two American friends [7]. Finding an in�uence network of a
person based on friendship, or location [8].

• Biological networks: Finding every gene whose expression is directly or indirectly
a�ected by a given compound. Finding the shortest path between two substances
that includes a third substance [9].
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Figure 1.1: A rooted, directed edge-labeled graph of paper citation network.

• World-Wide-Web: Discovering patterns via path analysis patterns [10, 11].
Exploiting the structure and topology of the document networks [12].

With the explosion of data as well as complicated relationships between data
entities, graphs are too big to be processed in the main memory of a single machine.
This leads to distributed programming models targeting to a scalable processing of big
data in general (MapReduce, [13, 14]) as well as big graphs in particular (Pregel, [15]).

Motivated by useful applications of regular-expression-based queries and the
scalability of distributed graph processing models, the main objective of this dissertation
is to propose automatic mechanisms to translate regular-expression-based queries into
e�cient programs in distributed graph processing models. These mechanism should be
integrated together to form a general framework to query data from big graphs.

1.2 Challenges

Evaluating regular-expression-based queries in a distributed environment is a challeng-
ing problem. Let us consider a big graph representing a citation network as shown
in Figure 1.1, where information is stored on edges. The following regular-expression-
based queries (written in the UnQL+ language [16]),

select $p
where {_*.Paper ∶ $p} in $db,

Year.Int.2010 in $p
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returns all papers published in 2010; it �nds all subgraphs (bound by $p) reachable from
the root (the black vertex in Figure 1.1) by a path whose edge labels form a word in the
regular expression _*.Paper, while these subgraphs must satisfy the condition
that they contain a path whose edge labels form a word in the regular expression
Year.Int.2010.

To this query, the decision whether to include a paper bound by $p in the result or
not needs additional computation to check the conditions over $p, which leads to two
di�culties in evaluating the conditions e�ciently. First, when we go deeper along
directed edges to check the condition of $p, we will have to keep a record of where $p
is bound, so as to trace back after checking. Second, the subgraph $p may refer to the
whole big graph because of possible cycles and the condition may be involved and
time-consuming, so we need to �nd a good way to parallelize the checking process and
make it work e�ciently.

The problem becomes even more di�cult when there are subqueries and additional
conditions. Consider that we would like to compute an in�uence graph of a paper
based on citations.

select
(select $a
where
{Author ∶ $a} in $p,
LivingIn.America in $a)

where
{_*.Paper ∶ $p} in $db,
Year.Int.2010 in $p,
_*.referTo.Paper.Title.“Pregel” in $p

This query �nds all authors living in America who have papers published in 2010
which directly/indirectly refer to the paper entitled “Pregel”. To this query, the
di�culty is not only evaluating conditions over graphs, but also checking whether a
graph $a belongs to a graph $p or not. It is because these two graphs may be stored at
two di�erent machines.

In addition, although distributed processing models are designed to be scalable to
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Figure 1.2: Overview of a querying framework for graphs.

big data, it is non-trivial to describe graph algorithms [17, 18, 14]. This is because,
in order to obtain a good scalability, these models are often limited to a speci�c
form of computation. For example, the MapReduce model requires user describing
computations in functions “Map” and “Reduce”, while the Pregel model requires
writing programs in a common function that applies on every vertex of a graph. Some
regular-expression-based queries have been proposed on top of MapReduce or Pregel.
For example, Fan et al. [19] proposed a MapReduce algorithm to answer point-to-point
regular reachability queries, which returns a boolean answer. Nolé et al. [20] proposed
a Pregel algorithm to processing regular path queries (a subset of GXPath [6], not
including backward navigation and branching ), that returns a set of pairs of vertices
connecting by a path satisfying the regular expression. Nonetheless, to the best of our
knowledge, none of them returns a graph as a result, making queries not able to be
nested or composed.

1.3 Problem Statement

A general framework for evaluating select-where regular path queries usually consists
of the following components (as shown in Figure 1.2).

• Desugaring: This converts input queries into a calculational form which
represents computations over graphs.

• Optimization: This component consists of high-level optimizations. Rules
are applied to transform a naive program into an e�cient one. Rules can be
classi�ed into two levels: general rules to minimizes operations of a program;
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and model-targeted rules to make a program �t well with underlying distributed
processing models (e.g., MapReduce, Pregel).

• Code Generation: This component accepts optimized programs and generates
codes in the underlying distributed processing models.

With the above framework, the following research questions are raised.

• What are suitable calculational forms that not only allow expressing regular-
expression-based queries on graphs and enjoy powerful optimization rules, but
also potentially enable parallelism.

• Once we have found a suitable calculational form, how to transform a program
written in that calculational form into one that consists of basic algorithms in the
underlying distributed processing models. Once this can be done, we can utilize
e�cient algorithms that are well developed.

• How can the framework be extended to aggregation operators, e.g. shortest
paths based on regular expressions.

1.4 Contributions

By answering those research questions, this dissertation makes the following four
contributions.

First, we propose a structural-recursion-based approach to obtain Pregel programs
automatically for a subset of select-where regular path queries. These queries are in
the form of

QP ∶ select QP1($g1) where {RE ∶ $g1} in $g

This approach can help not only utilize many useful optimization rules developed for
structural recursions, but also obtain an e�cient Pregel program. In this approach,
no matter how complex a query is, it is �nally expressed in the form of a structural
recursive function or a composition of structural recursive functions, by applying
optimization rules. We then derive an e�cient algorithm that minimizes intermediate
data generated during its computation. Our idea is a mark-and-generate computation.
In the phase Mark, we �rst mark each vertex with a set of states that are yielded by the
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automaton of a regular expression for paths starting from the root vertex to each
vertex. Then, in the Generate phase, we use a bulk computation to generate the �nal
result by applying a common computation on every edge in parallel.

Second, we propose a novel approach to obtain Pregel programs for another subset
of select-where regular path queries that consist of conditions over graphs. In general,
this class has the form of

QC ∶ select QC1($g1) where
{RE ∶ $g1} in $g,
RE in $g1,

. . .

where the condition “RE in $g1” says whether there exists a path in the graph $g1
whose edge labels form a word in RE. We may have multiple conditions over a graph.
Our idea is a generate-and-test computation: speculatively generating results without
considering the condition, and pruning (by testing) those that do not satisfy the
condition. This idea is based on the observation that a single condition check could
double the computation because of speculative computation compared to sequential
computation, but as will be seen later, it can be fully compensated by a carefully
designed full parallel computation with multiple processors. To this end, we rewrite
these queries into two queries in the �rst class (QP1,QP2) and a speci�c iterative parallel
algorithm. The �rst query QP1 is to speculatively compute both result graphs (each
constructed from the select part) and conditional graphs (each constructed from the
where part) and group them into a single intermediate graph. Our proposed iterative
parallel algorithm is to propagate conditional checking results around the intermediate
graph. The second query QP2 extracts the �nal result from the propagated graph.
Interestingly, the query QP2 is always the same and independent of the input query.

Third, we propose a functional-based approach to obtain a parallelism in answering
a point-to-point regular reachability query. By lifting a deterministic �nite automaton
of a regular expression to a simultaneous �nite automaton whose states are states-
to-states mapping functions, we propose an e�cient distributed algorithm in the
MapReduce model. Practical results show that this approach can signi�cantly speedup
local computations and reduce communication overhead. We show how this functional-



1.5 Dissertation Overview 7

based approach can be extended to apply to the phase Mark that takes much time
during the evaluation of select-where regular path queries.

Fourth, we propose a shortest regular category-path query to return shortest
paths whose vertex labels form a category-based regular expression. We show that
a select-where regular path queries extended with shortest-path conditions can be
solved by using a shortest regular category-path query. For example, a query,

QS ∶ select
select $g2
where {RE2 ∶ $g2} in $g1

$g2 closest to $g
where {RE1 ∶ $g1} in $g

returns all graphs $g2 that are followed by a path—starting from the root of $g—whose
labels form a regular expression “RE1.RE2” and whose length is shortest (assuming that
the length of a path is the number of edges on the path). This query requires to �nd all
vertices (roots of $g2) connected from the root of $g by a path whose vertex labels
form a category-based regular expression “_ ∗ .C1._ ∗ .C2”, where C1 and C2 are sets
(categories) of roots of $g1 and $g2, respectively. By using a dynamic programming
formulation, we show that a shortest regular category-path query can be e�ciently
answered by a sequence of single source shortest path searches. This is useful because
we can utilize fast single source shortest path algorithms that are optimized for
di�erent types of graphs (road networks, social networks, biological networks) and
environments (shared or distributed memory).

1.5 Dissertation Overview

This dissertation is organized as follows.
In chapter 2, we introduce basic notions and models that are used throughout the

dissertation.
In chapter 3, we give a formal de�nition of select-where regular path queries. Our

contributions in translating select-where regular path queries into Pregel programs
are discussed in detail. We design and implement a light-weight framework based
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on our solutions to answer select-where regular path queries. Experimental results
with real-life graph instances show that our framework has a good scalability. The
intermediate graphs generated are small compared with the input graph.

In chapter 4, we introduce a functional-based approach to answer point-to-point
regular reachability queries. This serves as a preliminary experiment to show the
advantage of the functional-based approach in answering regular reachability queries.
Our experiment with the MapReduce model shows that this approach gains a signi�cant
speedup compared with state-of-the-art approaches. We end this chapter by showing
how this approach can be extended to speedup the evaluation of select-where regular
path queries.

In chapter 5, we introduce a shortest regular category-path query and show its role
in integrating shortest-path conditions into select-where regular path queries. We
show how to reduce the query to a series of single source shortest path searches.
Experimental results on road networks show that our solution can utilize existing fast
single source shortest path algorithms.

In chapter 6, we give a summary of the dissertation and discuss future work.
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2
Preliminaries

In this chapter, we introduce basic notions that are used throughout the dissertation.
We give a de�nition of graph data model. Graphs in this model are up to bisimilarity.
Graph constructors are introduced to help build a graph from smaller graphs. Graph
constructors are also used in queries to construct the �nal result. These notions are
borrowed from UnCAL—an unstructured calculus for querying graph data. Then, we
give a de�nition of regular expression we focus on in this dissertation. Finally, we
brie�y explain some well-known distributed processing models for big graphs.

2.1 Graph Data Models

2.1.1 De�nitions

Following UnCAL (a unstructured calculus for querying graph data [3]), a graph is
modeled as a directed edge-labeled graph extended with markers and ϵ-edges. It is
shown that this graph model is powerful enough for representing various datasets
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Figure 2.1: Examples of rooted edge-labeled graphs.

from the unstructured, the semistructured to the structured [21, 22]. In this model,
edges contain data, while vertices are unique identity objects without labels. Markers
(with a pre�x &) are symbols to mark certain vertices as input vertices or output vertices.
Edges labeled with a special symbol ϵ are called ϵ-edges. One could consider markers
as initial/�nal states and ϵ-edges as “empty” transitions in automata.

Let L be a set of labels, Lϵ be L ∪ {ϵ}, andM be a set of markers denoted by &x,
&y, &z, . . . There is a distinguished marker & ∈ M called a default marker.

De�nition 2.1 (Directed Edge-Labeled Graph [3]) A directed edge-labeled graph G
is a quadruple (V,E ,I,O), where V is a set of vertices, E ⊆ V × Lϵ × V is a set of edges,
I ⊆M×V is an one-to-one mapping from a set of input markers to V , and O ⊆ V ×M is
a many-to-many mapping from V to a set of output markers.

For &x,&y ∈ M, let v = I(&x) be the unique vertex such that (&x,v) ∈ I , we call v
an input vertex. If there exists a (v,&y) ∈ O, we call v an output vertex. Note that there
are no edges coming to input vertices or leaving from output vertices. Let DBX

Y
denote

data graphs with sets of input markers X and output markers Y . When X = {&}, DBX
Y

is abbreviated to DBY , and DB∅ is abbreviated to DB. A graph that has only one input
marker X = {&} and has no output marker Y = ∅ is called a rooted graph, in which the
vertex v = I(&) is called the root vertex of the graph. Graphs with multiple markers
are internal data structures that are generated with graph constructors.

Figure 2.1(a) shows an example of a rooted directed edge-labeled graph in which
V = {1, 2, 3, 4, 5}, E = {(1,a, 2), (2,b, 3), (2,c, 4), (4,b, 5), (5,a, 2)}, I = {(&, 1)}, and
O = {}. The vertex with id 1 is the root of the graph, and is marked with &.

De�nition 2.2 (Path) A path ρ in a directed edge-labeled graph is a sequence of edges,
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denoted by

v1
l1Ð→ v2

l2Ð→ v3
l3Ð→ ⋯ lk−1ÐÐ→ vk ,

where (vi , li ,vi+1) ∈ E , 1 ≤ i ≤ k − 1.
We denote (u,ϵ∗,v) A E and (u,ϵ∗.a,v) A E whenever there exists a path from u to

v whose edge labels are ϵ . . . ϵ or ϵ . . . ϵa, respectively.

De�nition 2.3 (Weighted Graph) A graph Gw = (V,E ,I,O,w) is a weighted graph,
if it is a directed edge-labeled graph, and the functionw ∶ Lϵ → R+ is to map each edge
label to a positive, real-valued weight.

De�nition 2.4 (Vertex-Labeled Graph) A vertex-labeled graph is a directed edge-
labeled graphs extended with a labeling function over vertices. We denote a vertex-labeled
graph by Gv = (V,E ,I,O,σ), where σ ∶ V → L is a function mapping each vertex in Gv

to a label.

We adopt the model for distributed vertex-labeled graphs presented in [23]. In a
distributed graph, the vertices are partitioned into N fragments. Each fragment is
maintained at a site, whereas each site may take charge of more than one fragment.

De�nition 2.5 (Distributed Vertex-Labeled Graphs) Adistributed graph for a graph
Gv = (V,E ,I,O,σ) is a set of fragments, each of which is a 6-tuple. For example, the
i-th fragment is DGi = (Vi ,Ei ,Ii ,Oi ,σi ,Ci , ). Vi is a partition of V , i.e., V1 ⊎⋯ ⊎ Vn = V .
Ei = E ∩ (Vi × Lϵ × Vi) denotes the corresponding edges. σi is the labeling function for Vi .
Ci = E ∩ (Vi × Lϵ × (V ∖ Vi)) is the set of cross edges, each of which connects a vertex in
DGi to a vertex in another fragment. Ii = {u ∣ (v,u) ∈ (C1 ∪⋯ ∪Cn),u ∈Vi} denotes the
set of input vertices. Oi = {u ∣ (v,u) ∈Ci} denotes the set of output vertices. It is worth
noting that output and input vertices are duplicated among fragments.

Example 2.1 Figure 2.2 shows an example of a distributed graph that is partitioned into
three fragments, DG1, DG2, and DG3. For example,

DG1 = (V1,E1,I1,O1,σ1,Ci)
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Figure 2.2: An example of a distributed vertex-labeled graph including 3 fragments.
Here, we ignore edge labels (assuming that edges have no labels).

where

V1 = {v1,v2,v3,v4,v5,v6},
E1 = {(v1,v2), (v1,v4), (v2,v5), (v3,v1), (v3,v6), (v5,v3)},
I1 = {(&z1,v6)},
O1 = {(v7,&z2), (v11,&z3), (v12,&z4)}
C1 = {(v4,v7), (v6,v11), (v5,v12)}.

Here, for brevity, we ignore edge labels when labels are empty. For example, (v1,v2)
denotes the edge with an empty label (v1, “ ”,v2).

2.1.2 The Meaning of ϵ-Edges

Theoretically, an ϵ-edge from a vertex v to v′ means that all edges emanating from v′

should be emanating from v [3]. Eliminating an ϵ-edge (v,ϵ,v′) means removing this
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Figure 2.3: Meaning of ϵ-edges. The left graph with ϵ-edges is value equivalent to the
right graph without ϵ-edges.

ϵ-edge and for each edge, (v′,a,w), emanating from v′, adding a new edge (v,a,w).
Figure 2.3 shows an example of two equivalent graphs: one contains ϵ-edges and the
other has no ϵ-edges. In this dissertation, we use dotted arrows to denote ϵ-edges.

2.1.3 Graph Equivalence

Two directed edge-labeled graphs G1 and G2 are value equivalent, in notation G1 ≡G2,
if there exists an extended bisimulation from G1 to G2.

De�nition 2.6 ( [3]) Let G1 = (V1,E1,I1,O1),G2 = (V2,E2,I2,O2) be two graphs, both
with input markers X and output markers Y . An extended simulation from G1 to G2 is a
relation S ⊂ V1 × V2 such that:

• if (u1,u2) ∈ S ∧ (u1,ϵ∗.a,v1) A E1 with a ≠ ϵ , then there exists a node v2 s.t.
(u2,ϵ∗.a,v2) A E2 and (v1,v2) ∈ S ,

• if (u1,u2) ∈ S ∧ (&x,u1) ∈ I1 then (&x,u2) ∈ I2,

• if (u1,u2) ∈ S ∧ (u1,ϵ∗,v1) A E1 ∧ (v1,&y) ∈ O1), then there exists a node v2 s.t.
(u2,ϵ∗,v2) A E2 ∧ (v2,&y) ∈ O2, and

• (I1(&x),I2(&x)) ∈ S , for every &x ∈ X .

An extended bisimulation fromG1 toG2 is an extended simulation S for which S−1 is also
an extended simulation.

For example, the graph in Figure 2.1(a) is value equivalent to the graph in Fig-
ure 2.1(b). The new graph (Figure 2.1(b)) has an additional ϵ edge from the root and an
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edge (7,d, 3) unreachable from the root. It adds a new edge labeled b, (2,b, 6), from
the vertex 2.

2.2 Graph Constructors

Before looking at graph constructors in details, we need to de�ne an additional
operation “⋅” (Skolem function) to generate new markers. The operation ⋅ returns
a di�erent marker for every pair of &x and &y. We assume ⋅ to be associative,
(&x⋅&y)⋅&z = &x⋅ (&y⋅&z), and & to be its identity, &⋅&z = &z⋅& = &z. Given two
sets of markers X ,Y , we denote X ⋅Y the set {&x⋅&y ∣ &x ∈ X ,&y ∈ Y}.

There are nine graph constructors in UnCAL. From these constructors, we can
build arbitrary directed edge-labeled graphs.

G ∶∶= {} {empty graph (one vertex, one input marker)}
∣ {l ∶G} {singleton graph (an edge pointing to the root of a graph)}
∣ G ∪G {graph union}
∣ &x ∶=G {relabel the root vertex with a new input marker}
∣ &y {graph with one output marker}
∣ () {empty data graph (no vertices, edges and markers)}
∣ G ⊕G {disjoint union}
∣ G @G {append of two graphs}
∣ cycle(G) {graph with cycles}

Intuitively, de�nitions of the constructors are given in Figure 2.4. Informally, {}
constructs a graph of only one vertex labeled with default input marker &, {l ∶G}
constructs a new graph G′ from the graph G by adding the edge labeled l pointing to
the root ofG . The source vertex of l becomes the root ofG′. The operator ∪ unions two
graphs of the same input markers with the aid of ϵ-edges. The next two constructors
allow us to add input and output markers: &z ∶=G takes a graph G ∈ DBX

Y
and relabels

input vertices with the input marker &z, thus the result is in DBZ⋅X
Y

; &y returns a
graph of a single vertex labeled with the default input marker & and the output marker
&y. () constructs an empty graph without any markers and vertices. The disjoint
union G1 ⊕G2 requires two graphs G1 and G2 have disjoint sets of input markers.



2.3 Regular Expression 15

The operator G1 @G2 vertically constructs a graph by adding ϵ-edges from output
vertices of G1 to input vertices with the same markers of G2. It requires G1 ∈ DBXY and
G2 ∈ DBYZ , thus G1 @G2 ∈ DBXZ . Finally, the last operator allows us to introduce cycles
by adding ϵ-edges from an output marker to the input marker named after it.

Example 2.2 The graph in Figure 2.1(a) can be constructed as follows (but not uniquely).

&z@ cycle((&z ∶= {a ∶ &z1})
⊕ (&z1 ∶= {b ∶ {}} ∪ {c ∶ {b ∶ &z2}})
⊕ (&z2 ∶= {a ∶ &z1})) ⊓⊔

For brevity, we write {l1 ∶G1, . . . , ln ∶Gn} to denote {l1 ∶G1} ∪ . . . ∪ {ln ∶Gn}, and
(G1, . . . ,Gn) to denote G1 ⊕ . . . ⊕Gn.

2.3 Regular Expression

The syntax of a regular expression is:

R ∶∶= a ∣ _ ∣ R“∣”R ∣ R“∗” ∣ R“.”R ∣ (R)

where a ∈ Lϵ is a label, and _ denotes a wildcard that matches any label. Further, “∣”, “∗”
and “.” denote alternation, Kleene closure, and concatenation, respectively. “.” can be
omitted. We may write R+ as a shorthand for RR∗.

De�nition 2.7 (Path Satisfaction) A path ρ = v1
l1Ð→ v2

l2Ð→ v3
l3Ð→ ⋯ lk−1ÐÐ→ vk is said to

satisfy a regular expression R if the string “l1l2 . . . lk−1” spells out R.

It is well known that any regular expression can be translated into a deterministic
�nite automaton (DFA) [24].
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Figure 2.4: Graph constructors.
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2.4 Distributed Programming Models

2.4.1 MapReduce

MapReduce [13] is a framework to process big data. A widely used open source
implementation is Hadoop [25]. In MapReduce programming model, users only need to
write two functions: Map and Reduce. Figure 2.5 shows the MapReduce programming
model. Map functions accept a list of key-value pairs of (key1, value1) as its input
and produce a list of pairs of (key2, value2). After that, Shu�e and Sorting phase
will collect pairs with the same key and group them into pairs of (key2, listOfValues),
these phases are automatically done by the underlying system. For each di�erent key
and a list of its values, the system will invoke a reduce function to process. Reduce
functions will emit results that are pairs of (key3, value3). Data, which are used during
computation of a MapReduce job, are usually stored in a high performance distributed
�le system.

2.4.2 Pregel

Pregel [15] is a model to process big graphs in a distributed way. It is widely used by
Google and Facebook to analyze big graphs. Figure 2.6 shows the Pregel programming
model. It is inspired by the Bulk-Synchronous Parallel (BSP) model [26] whose
computation consists of a sequence of supersteps. It follows the vertex-centric approach
where a common function, compute(), is applied to every vertex. A vertex can access its
outgoing edges locally. During a superstep, a vertex receives messages from the other
vertices, does its computations (updating its value, mutating outgoing edges, etc.),
and sends messages to the other vertices. One vertex can decide not involving to the
next superstep by voting to halt (to be inactive). A computation terminates when
there is no message in transit or every vertex becomes inactive. Machines used to do
vertex computations are called workers. A master is responsible for coordinating the
activities of workers. A Pregel phase is a sequence of supersteps to do a computation
unit logically.
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Figure 2.5: MapReduce programming model.
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Figure 2.6: Pregel programming model.
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Example 2.3 (Maximum Value Example [15]) Figure 2.7 shows an example that
propagates the maximum value of vertices’ values to every vertex. During a superstep, a
vertex learns the maximum value from coming messages sent by its neighbors. If its value
is updated to a larger value, it sends the new value to its neighbors. Otherwise, it sends
nothing, and becomes inactive (by voting to halt). The algorithm terminates when there
are no messages in transit. Listing 2.1 shows the pseudocode for the algorithm.

3 6 2 1 Superstep 0

6 6 2 6 Superstep 1

6 6 6 6 Superstep 2

6 6 6 6 Superstep 3

Figure 2.7: Maximum value example [15] in the Pregel model. Dotted lines are messages.
Shaded circles are vertices voted to halt.
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void compute(Vertex vertex, Iterable<MsgValue> msgs)
{
if (getSuperstep() == 0) {
// send messages to the neighbors
for (Edge edge : vertex.getEdges()){
VertexId targetId = edge.getTargetVertexId();
sendMessage(targetId, new Message(vertex.getValue()));

}
} else {
// get the maximum value from received messages
Long MaxValue = vertex.getValue();
for (MsgValue msg : msgs){
MaxValue = (msg > MaxValue) ? msg : MaxValue;

}

if (MaxValue > vertex.getValue()){
// update the vertex value
vertex.setValue(MaxValue);
// send messages to the neighbors
for (Edge edge : vertex.getEdges()){
VertexId targetId = edge.getTargetVertexId();
sendMessage(targetId, new Message(MaxValue));

}
} else {
voteToHalt();

}
}
}

Listing 2.1: Pseudocode for the function Vertex .compute() in the Pregel model to
compute the maximum value.
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3
Select-Where Regular Path Queries

In this chapter, we formally de�ne select-where regular path queries. Our contributions
are presented in detail, where we show how to obtain Pregel programs for select-where
regular path queries. Structural recursion is introduced as a calculation form to express
queries. Although it has been shown that structural recursion is a powerful tool to
systematically develop parallel programs on lists, arrays and trees [27, 28, 29, 30], it
is new to use it to derive scalable programs on graphs. In this chapter, we propose
e�cient computations for speci�cations written by structural recursion on graphs.
Based on our solutions, we design and implement a light-weight framework on top
of Pregel. We show experimental results in detail and conclude this chapter with a
discussion.
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3.1 De�nition of Select-Where Regular Path Queries

A select-where regular path (SWRP) query Q($g) on a rooted directed edge-labeled
graph $g is de�ned as follows (the syntax is borrowed from the UnQL language [3]).

Q($g) ∶∶= select E($g)
∣ select E($g1) where {R ∶ $g1} in $g
∣ select E($g1) where {R ∶ $g1} in $g,P($g1)
∣ select E($l, $g1) where {R ∶ {$l ∶ $g1}} in $g,P($g1)

where R represents a regular expression described in Section 2.3. The select part is to
return the �nal result by using an expression E over a graph variable or a pair of a label
variable ($l) and a graph variable ($g). The where part is a generator using regular
expressions, e.g., “{R ∶ $g1} in $g” is to generate graphs following paths—starting from
the root of $g—whose labels form R. Each of these graphs is bound by $g1. Besides,
the generator “{R ∶ {$l ∶ $g1}} in $g” allows binding labels of edges following paths
satis�ed R to a label variable $l and use the label variable to construct the �nal result
in an expression E. Inside the where part, we can de�ne conditions P over a graph
variable ($g1) as well as over label variables.

An expression E on a graph $g is to construct the �nal result. The expression
E($g) may consist of three of graph constructors, sub-queries (Q($g)), conditional
statements, user-de�ned functions (UDF ), and function application (fname).

E($g) ∶∶= {} ∣ {a ∶ E($g)} ∣ E($g) ∪ E($g) ∣ Q($g)
∣ if P($g) then E($g) else E($g)
∣ UDF($g), fname($g)

E($l, $g) ∶∶= E($g) ∣ {$l ∶ E($g)} ∣ E($l, $g) ∪ E($l, $g)

Once there exists a label variable in an expression, we only allow it to be used in graph
constructors.

A condition P over a graph $g is de�ned as follows.

P($g) ∶∶= isempty(Q($g)) ∣ R in $g 1

∣ !P($g) ∣ P($g)&&P($g) ∣ P($g) ||P($g)
R ∶∶= a ∣ _ ∣ R“∣”R ∣ R“∗” ∣ R“.”R ∣ (R)



3.1 De�nition of Select-Where Regular Path Queries 25

where the condition isempty is to check whether the result of a query is an empty
graph or not; the condition “R in $g” is to check whether there exists a path from the
root of $g whose edge labels form R. Conditions can be composed by operators AND
(&&), OR (||), or NOT (!).

One can de�ne user-de�ned functions to do transformations, e.g., changing all edges
labeled “Publication Venue” to “Conference”, �nding all graphs following
paths satis�ed a regular expression and removing them, etc. User-de�ned functions are
de�ned by structural recursive functions as follows.

UDF($g) ∶∶= let sfun fname({lp1 ∶ дp1}) = E(lp1,дp1)
∣ fname({lp2 ∶ дp2}) = E(lp2,дp2)
∣ . . .

∣ fname({lpn ∶ дpn}) = E(lpn,дpn)
in E($g)

∣ letrec sfun fname1({lp11 ∶ дp11}) = E(lp11,дp11)
∣ fname1({lp12 ∶ дp12}) = E(lp12,дp12)
∣ . . .

∣ fname1({lp1n ∶ дp1n}) = E(lp1n,дp1n)
and

. . .

and
sfun fnamem({lpm1 ∶ дpm1}) = E(lpm1,дpm1)

∣ fnamem({lpm2 ∶ дpm2}) = E(lpm2,дpm2)
∣ . . .

∣ fnamem({lpmn ∶ дpmn}) = E(lpmn,дpmn)
in E($g)

where a single structural recursive function is de�ned by using the keywords “let sfun”
and mutually structural recursive functions are de�ned by using “letrec sfun”. Struc-
tural recursive functions are discussed in detail in Sections 3.2.1 and 3.2.2.

Let us look at some examples of SWRP query.

1our extension to UnQL+ queries
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Example 3.1 The simplest query is a regular path query [31]. Assume that we want to
return all papers’ titles from a citation graph. A such query is written as follows.

select $t
where {Paper.Title.String ∶ $t} in $db

where, the variable $t is bound to each graph that follows a path starting from a
root in which the concatenation of its edge labels satis�es the regular expression Pa-
per.Title.String. The result graph is the union of graphs bound by $t.

Example 3.2 We can reorganize data returned by graph variables to construct a new
graph.

select {Article ∶ (
{Year ∶ select $y where {Year.Int ∶ $y} in $p}
∪
select $t where {Title.String ∶ $t} in $p)}

where {Paper ∶ $p} in $db

This query binds variables $t and $y to the title and the year of a paper $p, respectively.
After that, it constructs, for each paper, a graph that has one edge labeled Article
pointing to the union of two graphs: one has one edge labeled Year pointing to the graph
$y, and another is the graph $t.

Example 3.3 This is an example of using conditions in an SWRP query.

select $p
where {Paper ∶ $p} in $db,

Year.Int.2010 in $p

This query returns papers published in 2010. It combines regular path expressions and
conditions over graphs. .

Example 3.4 We can also perform transformations over graphs by using a user-de�ned
function (UDF). For example, for each paper returned by the query in Example 3.3, we
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relabel edges Conference to Venue.

select
letrec sfun

c2v({Conference ∶ $g}) = {Venue ∶ c2v($g)}
c2v({$l ∶ $g}) = {$l ∶ c2v($g)}

in c2v($p)
where {Paper ∶ $p} in $db,

Year.Int.2010 in $p

Here, we use a structural recursive function c2v to relabel edges Conference. The
function c2v is de�ned with matching patterns. This function does not change the structure
of the input graph. It only modi�es the label of edges—from Conference to Venue.

3.2 Speci�cations for SWRP Queries

3.2.1 Structural Recursion

Structural recursion is a powerful mechanism to traverse and restructure data in
functional programming. It is shown that structural recursion is useful to systematically
construct parallel programs on lists, arrays and trees [30]. Structural recursion on
graphs was developed from structural recursion on trees, in order to manipulate
unstructured data [3]. One of the advantages of structural recursion is the ability
of composing multiple structural recursive functions to describe many complex
transformations over graphs. Although compositions usually lead to large intermediate
graphs or multiple graph traversals, we can solve those problems systematically by
rewriting multiple structural recursive functions into one structural recursive function
using tupling/fusion rules or marker-directed optimizations [3, 32, 33]. Therefore,
once we can transform SWRP queries to structural recursive functions and parallelize
structural recursive functions, we can achieve the scalability for SWRP queries on big
graphs and utilizes many useful rewriting rules over structural recursion.

Given a function e ∶∶ Lϵ → DBZ
Z

, where Z = {&z1, . . . ,&zn}. A function,

f ∶∶ DBX
Y
→ DBX ⋅Z

Y ⋅Z
,
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is called a structural recursion if it is de�ned by the following equations

f ({}) = (&z1 ∶= {}, . . . ,&zn ∶= {})
f ({$l ∶ $g}) = e($l, $g)@ f ($g)
f ($g1 ∪ $g2) = f ($g1) ∪ f ($g2)
f (&y) = (&z1 ∶= &y ⋅&z1, . . . ,&zn ∶= &y ⋅&zn)

Intuitively, evaluation proceeds as follows: starts from the root of a graph and
checks one of three cases. If the graph is empty, it applies the �rst line (return {}). If
the graph is a singleton graph then it applies the second line: this leads to a recursive
call of f on a subgraph. Finally, if the graph is not a singleton, then it decomposes the
graph arbitrarily into two graphs $g1 ∪ $g2 , and it applies the function f recursively on
each of them. The fourth line deals with graphs with only one output vertex, e.g, when
computing f ({$l ∶ &y}), we need to compute f (&y). It is obvious that the function
terminates on trees, and interestingly it has been shown that the function terminates
on graphs with cycles as well [3].

In this dissertation, the �rst, the third and the fourth equations are always in those
forms, so we omit them in the sequel and encode f as recZ(λ($l, $g).e). For brevity,
sometimes we just write rec(e).

Example 3.5 The following structural recursion a2d_xc relabels edges a to d and
contracts edges c. Applying this function to the graph in Figure 3.1(a) results in the graph
in Figure 3.1(b).

a2d_xc($db) = rec(λ($l, $g).
if $l = a then {d ∶ &}
else if $l = c then {ϵ ∶ &}

else {$l ∶ &})($db) ⊓⊔

3.2.2 Expressing SWRP Queries by Structural Recursion

The syntax of a speci�cation for an SWRP query is shown in Figure 3.2. Functions
between the keywords main and where are the starting point in a speci�cation. By
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(b) The Output Graph

Figure 3.1: Example a2d_xc: relabels edges a to d and contracts edges c.

proд ∶∶= main f [ ○ f ] where decl⋯decl { speci�cation }
decl ∶∶= f ({l ∶ $g}) = t { structural recursive function }

t ∶∶= {} ∣ {l ∶ t} ∣ t ∪ t { graph constructors }
∣ f ($g) { function application }
∣ if bcond then t else t { if_then_else }

bcond ∶∶= isempty(t) { an expression returns an empty graph not}
∣ bcond && bcond { AND condition }
∣ bcond || bcond { OR condition }
∣ !bcond { NOT condition }

l ∶∶= a ∣ $l { label (a ∈ Strinд) and label variables }

Figure 3.2: The syntax of structural recursion speci�cations for SWRP queries.

default, it applies on the input graph. Function composition is denoted by “ ○ ”, and,
from its de�nition, we have (f1 ○ f2)x = f2 (f1 x). Structural recursive functions are
de�ned in the form of pattern matching. The body of a function is an expression
consisting of graph constructors, recursive function calls and conditional statements.
We do not allow free graph variables inside an expression, instead we use a copy
function, say id($g), to obtain the value of the graph variable $g. By using the id
function, we can do optimizations, i.e. a tupling rule to obtain a structural recursive
function from mutually structural recursive functions.

In this dissertation, speci�cations having no conditional statements are referred to
as speci�cation without conditions, and the ones having conditional statements are
referred to as speci�cation with conditions.

Example 3.6 The following query �nds all graphs following a path satisfying an
expression _*.c, and then transforms all edges labeled b in those graphs into edges
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labeled d,
select

letrec sfun
b2d({b ∶ $g}) = {d ∶ b2d($g)}
b2d({$l ∶ $g}) = {$l ∶ b2d($g)}

in {c ∶ b2d($r)}
where {_ ∗ .c ∶ $r} in $db

is translated to the following speci�cation c_b2d.

main f1 where
f1 ({c ∶ $g}) = {c ∶ b2d($g)} ∪ f1($g)
f1 ({$l ∶ $g}) = f1($g)

b2d ({b ∶ $g}) = {d ∶ b2d($g)}
b2d ({$l ∶ $g}) = {$l ∶ b2d($g)}

Example 3.7 Nested queries, they are translated using a function composition to a query.
As an example,

select $r
where {_ ∗ .c ∶ $r} in (select $p where {_*.d ∶ $p} in $db)

is translated to the following speci�cation.

main f1 ○ f2 where
f1 ({d ∶ $g}) = id($g) ∪ f1($g)
f1 ({$l ∶ $g}) = f1($g)

f2 ({c ∶ $g}) = id($g) ∪ f2($g)
f2 ({$l ∶ $g}) = f2($g)

id ({$l ∶ $д}) = {$l ∶ id($д)}
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Example 3.8 A query to �nd all papers which are published in 2010,

select $p
where {Paper ∶ $p} in $db,

Year.Int.2010 in $p

is translated to the following speci�cation.

main f1 where
f1({Paper ∶ $g}) = if !isempty(f2($g))

then id($g)
else {}

f1({$l ∶ $g}) = {}

f2({Year ∶ $g}) = f21($g)
f2({$l ∶ $g}) = {}

f21({Int ∶ $g}) = f22($g)
f21({$l ∶ $g}) = {}

f22({2010 ∶ $g}) = {2010 ∶ {}}
f22({$l ∶ $g}) = {}

Here, the result of the function f1 depends on the result of the function f2 . If the function f2
returns an empty graph, then the function f1 returns an empty graph, otherwise, it calls
the identity function id to obtain the �nal result.

3.3 OnObtaining E�cient Pregel Programs to Big Gr-

aphs

3.3.1 Speci�cations without Conditions

Parallelizable Structural Recursions

Given a function e ∶∶ Lϵ → DBZ
Z

, where Z = {&z1, . . . ,&zn}. A function h ∶∶ DBX
Y
→

DBX ⋅Z

Y ⋅Z
is called a parallelizable structural recursive function if the following equalities
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for nine graph constructors hold [3, 34]:

h ({}) ≡ (&z1 ∶= {}, . . . ,&zn ∶= {}) (3.1)

h ({$l ∶ $д}) ≡ e($l)@h ($д) (3.2)

h ($д1 ∪ $д2) ≡ h ($д1) ∪h ($д2)
h (&x ∶= $д) ≡ &x ⋅h ($д) (3.3)

h (&y) ≡ (&z1 ∶= &y ⋅&z1, . . . ,&zn ∶= &y ⋅&zn)
h () ≡ ()

h ($д1 ⊕ $д2) ≡ h ($д1) ⊕h ($д2)
h ($д1 @ $д2) ≡ h ($д1)@h ($д2)
h (cycle($д)) ≡ cycle(h ($д))

In Eq. (3.3), &x ⋅ (&z1 ∶= $д1, . . . ,&zn ∶= $дn) denotes (&x ⋅&z1 ∶= $д1, . . . ,&x ⋅&zn ∶=
$дn). For brevity, we denote the functionh by homZ(e), and use Eq.(3.2) as its de�nition.

Structural recursive functions in a speci�cation without conditions are homZ(e)
functions whose function e is obtained by transforming pattern matchings into the
construct if . . . then . . . else and substituting recursive calls by markers.

For example, the speci�cation a2d_xc in Example 3.5 is equivalent to a hom{&}(e),
where

e($l) = if $l = a then {d ∶ &}
else if $l = c then {ε ∶ &} else {$l ∶ &}

The speci�cation c_b2d in Example 3.6 is equivalent to &f1 @hom{&f1,&b2d}(e),
where the function e is obtained by tupling two mutually recursive functions f1 and
b2d as follows.

e($l) = (&f1 ∶= if $l = c then ({c ∶ &b2d} ∪ &f1) else &f1,

&b2d ∶= if $l = b then {d ∶ &b2d} else {$l ∶ &b2d})

Lemma 3.1 (Fusion rule [3]) Given two parallelizable structural recursions homZ1(e1)
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and homZ2(e2), the following equality holds.

homZ2(e2) ○homZ1(e1) = homZ2(homZ2(e2) ○e1)

Theorem 3.2 A speci�cation without conditions can be transformed to an expression
&zi @homZ(e), where zi ∈ Z .

Design of Pregel Programs

There are two ways to evaluate a structural recursion: recursive semantics and bulk
semantics [3].

The idea of recursive semantics is to apply a homZ(e) function on each edge
recursively from the root of an input graph. Memorization is used to avoid in�nite
loops in which results of each recursive call are stored at vertices. Whenever a vertex
is visited, we will check if it is in a list of visited vertices we have seen so far. If it is
not, we will create a new initial graph for it, make recursive calls and re�ects results
back to the graph. Otherwise, we look for a result from the list of visited vertices and
return it. However, the disadvantage is that we have to do a heavy computation at
each recursive iteration (applying homZ(e) on edge, creating new data, memorizing
them and checking the termination condition, etc.), leading to a slow convergence.
Furthermore, each iteration can only exploit parallelism between outgoing edges of a
vertex, or between vertices at the same level of traversing.

On the other hand, bulk semantics is trying to delay computing the recursion by
introducing ε-edges. General idea of bulk semantics is quite simple. First, it creates a
bulk graph as follows. For each vertex v , ∣Z∣ disjoint copies of v are created, then the
function e in the homZ(e) function is applied to every edge to create subgraphs with ∣Z∣
input markers and ∣Z∣ output markers. The bulk graph is created by connecting disjoint
vertices and subgraphs via ε-edges. Finally, ε-edges are eliminated by computing their
transitive closures. It is clear that bulk semantics is a parallel processing. The following
equation captures the above computation.

homZ(e) = eelim ○bulkZ(e)

where the function bulkZ(e) computes a bulk graph and eelim eliminates ε-edges.
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Let us discuss in detail the size of the bulk graph generated during the bulk
semantics. Assume that G is an input graph, and Gm is the bulk graph generated by the
bulk semantics. It is clear that the number of vertices in Gm is ∣Z∣ times the number of
vertices in G because for each vertex v in G , we create ∣Z∣ disjoint copies of v . For each
edge (u, l ,v) in G, the bulk semantics creates a subgraph with ∣Z∣ input vertices and
∣Z∣ output vertices, and ϵ-edges to/from input/output vertices. Therefore, assuming
that the subgraph has no edges (if a user de�nes a function returning an empty graph),
we need to create 2 × ∣Z∣ ϵ-edges in Gm.

Now, we consider the situation where we use the bulk semantics to evaluate our
program, &zi @homZ(e). Recall that the result of homZ(e) is a graph with ∣Z∣ input
markers, and &zi ∈ Z . Therefore, “&zi @ ” is actually a reachability computation that
returns a graph whose edges and vertices are reachable from the vertex v , where
v = I(&zi). Now, we have

&zi @homZ(e) = reach{&zi} ○ eelim ○ bulkZ(e) (3.4)

where the function reach{&zi} denotes the reachability computation for &zi @ .
Figure 3.3 shows an example of using bulk semantics to evaluate the expression

&f1 @hom{&f1,&b2d}(e) for the speci�cation c_b2d, where,

e($l) = (&f1 ∶= if $l = c then ({c ∶ &b2d} ∪ &f1) else &f1,

&b2d ∶= if $l = b then {d ∶ &b2d} else {$l ∶ &b2d})

As for parallelizable structural recursion, since the function e only depends on edge
labels, we can obtain a fully parallel computation. However, the function bulkZ(e)
generates a big intermediate graph whose size is at least ∣Z∣ times larger than the input
graph, which causes a serious problem of memory when processing big graphs.

We now present how to derive an e�cient algorithm in terms of intermediate
data generated during its computation. To minimize the amount of ε-edges as well as
redundant edges produced by bulkZ(e), we propose a hybrid approach of recursive
semantics and bulk semantics. This kind of optimization was informally mentioned
in [3] via a practical example.

Our idea is to promote the function reach{&zi} to prune redundant data generated
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Figure 3.3: Bulk semantics to evaluate the speci�cation c_b2d.

by the function bulkZ(e). A recursive semantics is used to compute a marker graph
whose each vertex u consists of a set of reachable markers Xu ⊆ Z . After that, in a bulk
semantics, for each vertex u, we create exactly ∣Xu ∣ disjoint vertices, and then the
function e , instead of computing a graph of ∣Z∣ disjoint subgraphs, computes a graph
of only ∣Xu ∣ disjoint subgraphs. It is important to note that the intermediate graphs
generated are very close to the �nal result.

In order to express both semantics, we extract two functions e→ and eπ from the
function e of homZ(e)

e→ ∶∶ (Mt × Lϵ) →M
e→(&z, $l) = let (vs,es, is,os) = &z @e($l) in map snd os

eπ ∶∶ (Mt × Lϵ) → DBM
Z

eπ(&z, $l) = &z @e($l)

where,Mt is a type for markers; function e→ is like a transition function in automaton,
where, for each label $l and input marker &z we compute a set of (output) markers
reachable from &z in the graph generated by function e; function eπ is simply a



36 Chapter 3. Select-Where Regular Path Queries

projection function. Note that these two functions are statically derived from a given
function e .

Our program is now evaluated as follows.

&zi @homZ(e) = eelim ○ bulk′Z(eπ) ○mark{&zi}(e→) (3.5)

The function mark{&zi}(e→) computes a marker graph using recursive semantics.
It starts from the root of an input graph with the input marker &zi , and recursively
uses e→ to �nd all markers a vertex can have. The vertices having no markers will be
removed after that. The function bulk ′Z(eπ) is similar to bulkZ(e) but eπ is applied
with respect to markers &z of source vertices. In a Pregel program, we refer to these
three functions as three Pregel phases: Mark, Bulk, and Eelim.
Proof. (sketch) Now we prove the equation 3.5. We will show that, to evaluate
“&zi @homZ(e)”, using Eq. 3.5 will produce the same graph as using Eq. 3.4 (the bulk
semantics).

We �rst rewrite Eq. 3.4 by swapping two functions eelim and reach{&z1}. Eq. 3.4
becomes

&zi @homZ(e) = eelim ○ reach{&zi} ○ bulkZ(e)

This is because the function eelim never makes an unreachable vertex from a root
become a reachable vertex (according to the meaning of ϵ-edges in Section 2.1.2). It is
worth noting that the result of “eelim ○ reach{&zi}” may contain additional vertices
that are unreachable from the root, while the result of “reach{&zi} ○ eelim” does not.
However, the two results are still equivalent up to bisimulation.

Assume that G1 is a result graph of “reach{&zi} ○ bulkZ(e)”, and G2 is a result graph
of “bulk′Z(eπ) ○ mark{&zi}(e→)”. To prove Eq. 3.5, we need to show that G1 ≡ G2.
Actually, G1 and G2 are isomorphic, and graph isomorphism implies value equivalence.
Let us denote disjoint vertices created by bulkZ(e) by S1 vertices, input/output vertices
of subgraphs by S2 vertices. For each vertex in an input graph G, bulkZ(e) creates ∣Z∣
vertices S1 in which each vertex corresponds to one markers in Z . After that, the
function reach{&zi} keeps only disjoint vertices that reachable from input vertices
with the markers &zi . These reachable disjoint vertices are exactly computed by the
function mark&zi (e→). Similar to S2 vertices, the function bulk′

Z
(eπ) produces only

vertices and edges that are reachable from input vertices with markers &zi . Hence, G1



3.3 On Obtaining E�cient Pregel Programs to Big Graphs 37

and G2 are the same graph. ⊓⊔

We consider the example c_b2d to see in detail how to evaluate it with our approach.
From its function e ,

e($l) = (&f1 ∶= if $l = c then ({c ∶ &b2d} ∪ &f1) else &f1,

&b2d ∶= if $l = b then {d ∶ &b2d} else {$l ∶ &b2d})

we have two functions e→ and eπ as follows.

e→(&f , $l) ∶ if &f = &f1 then
if $l = c then {&b2d,&f1} else {&f1}

else if &f = &b2d then
if $l = b then {&b2d} else {&b2d}

else {} 2

eπ(&f , $l) ∶ if &f = &f1 then
if $l = c then &f1 ∶= {c ∶ &b2d} ∪ &f1

else &f1 ∶= &f1
else if &f = &b2d then

if $l = b then &b2d ∶= {d ∶ &b2d}
else &b2d ∶= {$l ∶ &b2d}

else {}

Figure 3.4 shows intermediate graphs generated during the evaluation. In the
phase Mark, a marker graph is created by the function mark{&zi}(e→). The marker
graph is computed as follows. First, the root vertex is initialized with a singleton
set {&f1}, where f1 is the function we want to evaluate. We evaluate the �rst edge
u

aÐ→ v from the root. Its result, e→(&f1,a) = {&f1}, is written to the vertex v . Next, we
concurrently evaluate two edges v bÐ→w1 and v cÐ→w2 emanating from v , and results
are written to respective targets w1,w2. This procedure is iterated and then terminated
when it can not �nd any new markers to add to vertices. In the phase Bulk, a bulk
graph is then computed by the function bulk′Z(eπ) as follows. For each vertex u, and

2Note that {} in the function e→ denotes a set instead of a graph constructor
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Figure 3.4: Graphs generated during the evaluation of the speci�cation c_b2d .

its set of markers Xu , we create ∣Xu ∣ disjoint vertices. Next, we apply the function eπ on
each edge u LÐ→ v and each marker in Xu , producing a subgraph of ∣Xu ∣ input markers.
In Figure 3.4, these subgraphs are surrounded by a shaded rectangle. After that, we use
ϵ-edges to connect disjoint vertices and subgraphs. Finally, in the phase Eelim, the
function eelim eliminates all ϵ-edges in the bulk graph to produce the �nal result.

Pregel Algorithm to Eliminate ϵ-Edges

In the remaining part of this section, we show a Pregel algorithm to eliminate ϵ-edges
in a graph by using transitive closure of ϵ-edges. Theoretically, an ϵ-edge from a
vertex v to v′ means that all edges emanating from v′ should be emanating from
v [3]. Eliminating an ϵ-edge v ϵÐ→ v′ means removing this ϵ-edge and for each edge
emanating from v′, v′ aÐ→w , adding a new edge v aÐ→w .

Our proposal is based on the algorithm of eliminating ϵ-transitions in a �nite
automata proposed by Hopcroft, Motwani and Ullman [24]. The algorithm consists of
the following four steps: (1) compute the transitive closure of the ϵ-arcs only. As a
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result, each state q has an ϵ-closure ECLOSE(q) which is a set of states, where if a state
p ∈ ECLOSE(q) then there exists a path whose arcs are all labeled ϵ from q to p; (2) for
each p ∈ ECLOSE(q), if there is a transition from p to r on input a (not ϵ), then add a
transition from q to r on input a. (3) make state p an accepting state if p can reach
some accepting state q by ϵ-arcs. (4) remove all ϵ-transitions.

However, the above algorithm is not suitable for the Pregel model. It is because
it stores an ϵ-closure ECLOSE(q) at the vertex q, making the step 2 di�cult to be
implemented. In particular, in the step 2, assume that we have two transitions: q ϵÐ→ p,
p

aÐ→ r , we need to add a transition from q to r on input a, say, q aÐ→ r . In the current
algorithm, the state q only knows the state p, but it does not know outgoing transitions
from p, say p

aÐ→ r . Hence, the state q cannot perform the addition operation. The
addition operation must be performed by the state p. Unfortunately, the state p has no
information of incoming states like q.

In order to solve the problem, we need to change the way we store ϵ-closure by
which each state p will have a set of states ECLOSE(p) so that if q ∈ ECLOSE(p), then
there exists a path whose arcs are all labeled ϵ from q to p. Our Pregel algorithm to
eliminate ϵ-edges consists of the following three phases: (1) compute the transitive
closure of the ϵ-arcs only. As a result, each state p has an ϵ-closure ECLOSE(p); (2) for
each q ∈ ECLOSE(p), if there is a transition from p to r on input a (not ϵ), then add a
transition from q to r on input a. (3) remove all ϵ-transitions.

After computing the transitive closure of ϵ-edges, there are many parts unreachable
from the roots of a graph. These unreachable parts are removed by using the following
proposition.

De�nition 3.3 (Safe Vertex) Given a graph G. A vertex vi is called a safe vertex if all
of the incoming edges to vi are ϵ-edges.

Proposition 3.4 Given a graph G whose vertices and edges are reachable from the
root vertex vr . Let G1 be a graph obtained by eliminating all ϵ-edges in G. Let G2 be a
graph obtained by removing all of the safe vertices of G from G1, then a) G2 and G1 are
equivalent; b) G2 contains only vertices and edges which are reachable from the root vr .

Proof. (Proof by contradiction) Assume to the contrary that there exists one edge
(u,l,v) ∈ E(G2), such that u is unreachable from the root vr . Because G2 is obtained
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from G1 by removing all safe vertices, u cannot be a safe vertex. On the other hand,
since G1 is obtained from G by eliminating all ϵ-edges, this elimination makes u
unreachable from the root vr . In other words, all edges coming to u are removed, and
they must be ϵ-edges. Hence, u is a safe vertex (contradicting our conclusion that u
cannot be a safe vertex). ⊓⊔

The proposition says that after eliminating ϵ-edges from a graphG , we can compute
the reachable part of a graph G1 by just removing all of its safe vertices instead of
doing a reachability computation from the root of G1. It takes two Pregel supersteps to
�nd safe vertices. Moreover, it is worth noting that removing safe vertices is simply
done by a single superstep since vertices can mutate their outgoing edges directly.

3.3.2 Speci�cations with Conditions

We now turn to show how to evaluate speci�cations with conditions in (Figure 3.2).
The di�culty in evaluating such speci�cations is relating to the computation for each
edge. Recall that each declaration f ({l ∶ $g}) describes a computation for an edge
labeled l . Once there exists a if/then/else, the function f certainly depends on the
graph $g, which is di�cult to be implemented in Pregel, because each vertex only
knows its outgoing edges instead of the whole graph $g. Our idea is �rstly evaluating
all branches if, then, else at the same time by a speci�cation without conditions, then
using an iterative Pregel algorithm to check conditions in branches if, and �nally
using another speci�cation without conditions to extract �nal results from branches
then or else.

We sketch our idea via an evaluation of the query in Example 3.8.

The �rst speci�cation without conditions is achieved by �attening if/then/else
statements and representing them by graphs whose edge labels are keywords, e.g.
_if, _then, _else, _isempty, etc. These edges are called keyword edges. Here,
we use a special pre�x “_” to distinguish keywords from users’ data in a graph. One
could view these graphs as Abstract Syntax Trees of if/then/else statements. The �rst
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Figure 3.5: The result of the 1st speci�cation without conditions.

speci�cation without conditions for the query in Example 3.8 is the following:

main f1 where
f1({Paper ∶ $g}) = {_match ∶ (

{_if ∶
{_cond_not ∶

{_isempty ∶ f2($g)}}}
∪{_then ∶ f3($g)}
∪{_else ∶ {}})}

f1({$l ∶ $g}) = {}
. . .

It is also worth noting that, for each if/then/else statement, we introduce an edge
_match appending to the root of the if/then/else graph. These _match edges are
important to derive another speci�cation without conditions to extract the �nal result.
Figure 3.5 shows an example of the result of the �rst speci�cation without conditions.

The iterative Pregel algorithm, named evalIf�enElse, evaluates branches if in order
to update edges _match. Basically, it starts from edges _cond_isempty, and
checks the graphs followed by those edges are empty or not, then propagates results
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Figure 3.6: The result of evalIf�enElse algorithm.

back to the _match edges. Afterwards, _match will be updated to _match_true
or _match_false. Figure 3.6 shows an example result when applying this algorithm
to the graph in Figure 3.5.

Finally, we use another speci�cation without conditions to extract the �nal
result (Figure 3.7) from the graph in Figure 3.6. This speci�cation �nds all edges
_match_true and _match_false, then extracts graphs followed by edges
_then (or _else) once it meets edges _match_true (or _match_false).
This speci�cation is independent of input queries/speci�cations, and it is always
written as follows.

main f1 where
f1({_match_true ∶ $g}) = fthen($g)
f1({_match_false ∶ $g}) = felse($g)
f1({$l ∶ $g}) = {$l ∶ f1($g)}

fthen({_then ∶ $g}) = f1($g)
fthen({$l ∶ $g}) = {}

felse({_else ∶ $g}) = f1($g)
felse({$l ∶ $g}) = {}



3.3 On Obtaining E�cient Pregel Programs to Big Graphs 43

Figure 3.7: The result of the 2nd speci�cation without conditions.

v1 v2 v3 v4 v5

v6

v7

. . .

. . .

_match _if _cond_isempty 2010

_else

_then

Figure 3.8: A graph encoding a statement “if isempty(f ($g)) then . . .”.

We now explain the evalIf�enElse algorithm in detail. Let us �rstly consider the case
where there is no nested if/then/else statement inside the branch if, and then generalize
it to arbitrary speci�cations. Assume that a statement “if isempty(f ($g)) then . . .”,
where f is a speci�cation without conditions (not containing any if/then/else state-
ment), is encoded by the graph in Figure 3.8, where the subgraph with the root v4

is the result of the function f . Each vertex maintains a set of boolean values. The
computation starts from vertices like v4. If v4 has some outgoing edges (the result of f
is a non-empty graph), then we initialize the value of v4 to a set {False}; Otherwise,
a set {True}. It takes one superstep to mark vertices like v4, and one superstep to
initialize their values. Next, we do an iterative procedure to propagate these results
back to the _match edge via message sendings. This procedure requires to reverse
the graph. In a superstep, a message is a set of boolean values. On receiving messages,
a vertex v simply takes the union of incoming messages and updates to its value. On
sending a message to u along an edge u L←Ð v , the message is constructed based on L

and the vertex value N of v as follows.
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- If L = _cond_isempty ∣_if ∣_match, the message is N ;

- If L = _cond_and ∣_cond_or, the message is red, where red is the reduction
of elements in N with the logical operator AND or OR;

- If L = _cond_not, the message is N̄ , where N̄ is a set of negative elements of
N ;

- Otherwise, send nothing.

This procedure ends when there is no message in transit. We then reverse the graph
back. Finally, for each edge u _matchÐÐÐÐ→ v , the vertex u has the result of the branch if
which is a singleton set, we change the label _match to either _match_true or
_match_false, depending on whether the element in the set is True or False. One
can do this update during the previous supersteps. However, we use another superstep,
which makes our algorithm easy to generalize.

Now we consider nested if/then/else statements. Assume that we want to evaluate
a statement “if isempty(f ($g)) then . . .”, where f is also de�ned by a if/then/else
statement, say, “if isempty(f1($g1)) then . . .”. In this case, the result of the outer
branch if depends on the result of the whole inner if/then/else statement. In particular,
in order to know the result of f ($g) is an empty graph or not, we need to know
not only the result of isempty(f1($g1)) being True or False, but also the results of the
branches then and else being an empty graph or not. Therefore, for each vertex,
we maintain a triple of sets of boolean values (bIf , b�en, bElse) to store the results
of branches if, then, and else. We make some modi�cations as follows. For initial
supersteps, we initialize a value for the vertices v of edges u LÐ→ v , where L is not only
_cond_isempty, but also _then and _else. We do the same iterative procedure
to the reverse graph as before, but messages are now a triple of sets of boolean values,
and they are sent along edges _then and _else also. On receiving messages, a
vertex v computes a triple (bIf , b�en, bElse) by taking the union of corresponding
elements in messages, e.g. bIf is the union of �rst sets in the incoming messages. The
triple is then set to the value of v . On sending a message to u along an edge u L←Ð v ,
the message is constructed based on L and the vertex value (bIf , b�en, bElse) of v as
follows.

- If L = _cond_isempty, the message is (bIf , b�en, bElse);
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- If L = _if, the message is (bIf ,{},{});

- If L = _then, the message is ({}, b�en,{});

- If L = _else, the message is ({},{}, bElse);

- If L = _match, the message is (bIf , b�en,{}) if the singleton set bIf has an
element True; otherwise, (bIf ,{}, bElse);

- If L = _cond_and ∣_cond_or, the message is (bIfred,{},{}), where bIfred
is the reduction of elements in bIf with the logical operator AND or OR;

- If L = _cond_not, the message is (bIf ,{},{}), where bIf is a set of negative
elements of bIf ;

- Otherwise, send nothing.

This procedure ends when there is no message in transit. We then reverse the graph
back. Finally, for each edge u _matchÐÐÐÐ→ v , the label is updated based on the singleton set
bIf of the vertex u, it becomes _match_true (_match_false) if the element in
the set is True (False). This procedure can deal with nested if/then/else statements
inside not only if but also then, or else.

3.4 Implementation and Experiments

3.4.1 Implementation

Thanks to structural recursion, we can propose a light-weight but powerful framework
to query big graphs. There are many open source implementations of Pregel such as
Giraph [35], GPS [36], Pregel+ [37], GraphX [38], Mizan [39]. However, we choose
GraphX—a library written in Spark—to implement our framework due to two main
reasons. First, GraphX supports a vertex-cut approach to distributed graph partitioning,
which can reduce both communication and storage overheads. It is especially useful
for our model where the root has a high out-degree. Second, in our algorithms, each
Pregel phase may require a di�erent data type for vertex values and messages. Since
GraphX is a functional programming library, it is very convenient to work with types.
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Figure 3.9: Overview of our framework.

In our experiments, we set up GraphX running with its default partitioning strategy
that uses the initial partitioning of the edges. An input graph is stored in the form of a
list of edges, using a single �le. The �le is partitioned by blocks, depending on the
number of processors we run for experiments.

Figure 3.9 shows the major components of our framework. Details are described in
the following.

- The Desugar accepts an input graph query, parses it and generates a speci�cation
in the form of structural recursion (Figure 3.2).

- The Parallelization generates Pregel programs from speci�cations written in
the form of structural recursion. Depending on di�erent speci�cations, it will
generate di�erent running strategies. After that, it compiles such strategies into
a Pregel program that utilizes parameterized Pregel algorithms. Optimization
rules such as Fusion, Tupling are implemented in this component.

- The Parameterized Pregel Algorithms consists of e�ciently-made functions
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that are used to implement strategies generated by the Parallelization. These
functions are Pregel algorithms including mark, bulk, eelim, and evalIf�enElse.

- The Pregel Program is a main program that is generated by the Parallelization
component. Users compile and run this program with an input distributed graph
and the result is a new distributed graph.

The whole framework is about 2000 lines of code and available at http://www.
prg.nii.ac.jp/members/tungld/bigra.html 3

We have implemented some technical optimizations as follows.

Graph Mutations As for the algorithm to eliminate ϵ-edges we have proposed, we
need to add new edges and remove safe vertices. However, GraphX originally does not
support graph topology mutations. Hence, mutations are manually performed by
creating a new graph. In a naive way, we mutate the vertex set of a graph (it is a RDD
record in Spark), mutate the edge set, and create a new graph from these two sets. This
approach is slow because we need to shu�e the whole data to create a distributed
graph. Our solution is to mutate only the edge set, and use a �lter to remove vertices.
In particular, we do as follows. Firstly, we mutate the edge set. Then create a new
graph with the new edge set and the old vertex set. Finally, we �lter out vertices
using an e�cient API, �lter , provided by GraphX. This optimization has signi�cantly
reduced the running time of the phase Eelim. Our approach is about 10 times faster
than the naive way.

Local ϵ-edge elimination Because eliminating ϵ-edges in a distributed graph is
very expensive, it is necessary to eliminate ϵ-edges as much as possible before creating
a distributed graph. Hence, we perform a local ϵ-edge elimination for each subgraphs
during the phase Bulk, leading to a distributed graph with a small amount of ϵ-edges.
This makes the phase Eelim faster.

Tuning data structures In order to reduce the memory consumption in our frame-
work when using Scala collection classes (e.g. HashMap, Set), we used collection
classes from the library fastutil—a fastest implementation for many collection classes

3The current version is written in Spark version 1.4.0 (released Jun 11, 2015)

http://www.prg.nii.ac.jp/members/tungld/bigra.html
http://www.prg.nii.ac.jp/members/tungld/bigra.html
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Table 3.1: Real-life graphs.

Graphs ∣V∣ ∣E ∣
Citation 7.5M 8.8M
Youtube 13.5M 17M

Amazon Product 90M 103.6M
AltaVista Web Page 54M 620.8M

that are compatible with the Java standard library [40]. We tuned data structures used
in the phase Bulk, making the phase two times faster than the one used Scala collective
classes. We also tried to tune data structures for the other phases, but we could not
gain a better performance.

3.4.2 Experiments

Datasets

We used four real-life datasets in our experiments, (1) Citation [41] that contains
papers (Title, Authors, Conference, Year, References) and their citation relationships;
(2) Youtube [42] that contains videos (Uploader, Category, Length, Related IDs, etc.) and
their “related” relationships; (3) Yahoo! AltaVista Web Page Hyperlink Connectivity
Graph provided by Yahoo! Labs Webscope [43] that contains URLs and hyperlinks for
over 1.4 billion public web pages indexed by the Yahoo! AltaVista search engine in
2002; (4) Amazon Product Co-purchasing Network [44] that contains product metadata
and review information of about 548, 552 di�erent products from Amazon website.

These datasets need to be converted to rooted edge-labeled graphs. Table 3.1
summarized the sizes of the biggest graphs for each dataset that we used in our
experiments. We also convert the Amazon Product dataset into tables in a relational
database, which is used for comparing the performance of our framework with Spark
SQL [45]—a relational data processing framework in Spark.

On Comparison with the Pure Bulk Evaluation

The environment of our experiments is the following: Intel Xeon CPU E5620@2.40GHz
16 cores, 48GB memory, GraphX in Spark 1.3.0, Hadoop 2.4.2. We set up GraphX
working in a distributed mode.
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We did experiments with queries whose speci�cations consist of four mutually
recursive functions. First, we see how our framework performs when increasing the
size of input data, while �xing the number of CPUs at 16. Figures 3.10 and 3.12 show
the results for the citation and youtube graphs, respectively. It is clear that, for the
citation graph, our framework outperforms the pure bulk semantics though the pure
bulk semantics seems linear to the size of graph. However, for the youtube graph, the
pure bulk semantics can not deal with a graph with 11 million edges. It can generate a
bulk graph, but can not �nish the ε-edge elimination due to an “out-of-memory” error.
By contrast, our framework works smoothly even for the graph of 17 million edges.

Next, we changed the number of CPUs and �xed the graph size at 5 million edges
for the citation graph (Figure 3.11) and at 17 million edges for the youtube graph
(Figure 3.13). Both the pure bulk semantics and our framework follow the same shape.
When we double the number of CPUs from 1 to 2, or 2 to 4, both achieve a speedup of
2. But, after that, for 8 and 16 CPUs, we do not have the same performance. This is
because when we increase the number of CPUs, we will have more partitions. The
local computation time for each partition is decreased but the communication time is
increased. Also from these experiments, we can see that our framework is about 2-3
times faster than the pure bulk semantics. This is reasonable for the speci�cations with
four mutually recursive functions, because the pure bulk semantics generates a bulk
graph of about 4 times larger than the input, which makes its computation time slower
than our framework where there is no duplication data generated.

Scalability

To see the scalability of our framework, we did experiments on Amazon EC2 machines.
We con�gured 16 instances of type r3.2xlarge [46]. Each instance has 8 processors
(Intel Xeon E5-2670) and 61 GB of RAM. This type of instance is optimized for
memory-intensive applications.

We used two queries to evaluate the scalability of our framework with the graphs
of Yahoo! AltaVista Web Page Hyperlink Connectivity Dataset (see Table 3.2). The �rst
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Figure 3.10: Varying graph size (Citation dataset).
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Figure 3.11: Varying the number of CPUs (Citation dataset).
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Figure 3.12: Varying graph size (Youtube dataset).
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Table 3.2: Experiment graphs extracted from Yahoo! AltaVista Web Page Hyperlink
Connectivity Graph.

Graph Name G50 G100 G150 G200 G300 G400 G500 G600

# of Web Pages 191K 444K 687K 908K 1.5M 2M 2.4M 3M
# of Vertices 4.8M 10.8M 15.7M 19.3M 29M 38M 45M 54M
# of Edges 51.5M 103M 155M 206M 310M 413.8M 517M 620.8M

one is a regular path query that returns domains com and net of a URL:

Q1 ∶ select
((select {com ∶ $c}
where {com ∶ $c} in $d)
∪
(select {net ∶ $n}
where {net ∶ $n} in $d))

where {page.domain ∶ $d} in $db

The second one is a query with conditions, which retrieves all URLs hyperlinked by
a web page whose top-level domain is org:

Q2 ∶ select
(select {webpage ∶ $u}
where {links.page.url ∶ $u} in $p)

where
{page ∶ $p} in $db,
domain.org in $p

For query Q1, we vary the size of input graph from about 100 million edges to
600 million edges by increasing each time about 100 million edges (corresponding to
G100 to G600 in Table 3.2). For each graphs, we ran with 64, 96 and 128 processors,
respectively. Figure 3.14(a) shows the execution times of Q1. It is clear that our
framework has a very good scalability. When the size of the input graph increases, the
execution time increases slightly. On small graphs, say G100, the query Q1 with 64
processors consumes the same execution time as with 96 or 128 processors, it is because
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allocating more processors increases the cost of communication and synchronization
between processors. On bigger graphs, we gain a good speedup when increasing the
number of processors. In particular, when doubling the number of processors from
64 to 128, we gain the speedups of 1.5, 1.2, 1.3, 1.6, 1.8 on G200, G300, G400, G500
and G600, respectively. These speedups are quite good compared to Pregel-based
frameworks where it is non-trivial to gain good speedup [47, 48]. However, results
in Figure 3.14(a) show that our framework does not behave well when the number of
processors is not the power of 2, say 96.

The execution of query Q2 is shown in Figure 3.15(a). This time we only use the
numbers of processors that are the power of 2. Although evaluating Q2 is much more
expensive than evaluating Q1, we still have a good scalability and speedup.

On Comparison with Spark SQL

The third query Q3 is used to compare the performance of our framework with a direct
implementation of it in Spark SQL. This query is for the dataset of Amazon Product
Co-purchasing Network. It returns all information of products that belongs to the
group Book, in which we also return the �eld asin of similar products of similar
products of those products:

Q3 ∶ select {product ∶
((select $a where {asin ∶ $a} in $p) ∪
(select $t where {title ∶ $t} in $p) ∪
(select $sr where {salesrank ∶ $sr} in $p) ∪
(select $c where {category.Category.name ∶ $c} in $p) ∪
(select $r where {review.Review.customer ∶ $r} in $p) ∪
(select $g where {group ∶ $g} in $p) ∪
(select $s
where {similar.Product.similar.Product.asin ∶ $s} in $p)

)}
where

{Product ∶ $p} in $db,
group.Group.name.Book in $p
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(a) Execution time of Q1

(b) Intermediate graphs generated during Q1

Figure 3.14: Query Q1 on Yahoo! AltaVista Web Page Graphs.
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(a) Execution time of Q2

(b) Intermediate graphs generated during Q2

Figure 3.15: Query Q2 on Yahoo! AltaVista Web Page Graphs.
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Table 3.3: Execution time (sec) on Amazon Product Dataset.

# of processors 16 32 64 128

Q3 421 217 199 254
Q3′ 295 283 278 280

We write an SQL query in Spark SQL, named Q3′, which returns the same result as
Q3, using left outer join. We will compare Q3 and Q3’.

Q3′ ∶ select product .asin,product .title,product .salesrank,cateдory.name,

customer .id,prodдroup.name,prod2.asin
from product left outer join prodcat on (product .id = prodcat .productId)
left outer join cateдory on (prodcat .cateдoryId = cateдory.id)
left outer join review on (review .productId = product .id)
left outer join customer on (review .customer = customer .id)
left outer join prodsimilar on (product .id = prodsimilar .productId)
left outer join product as prod1 on (prodsimilar .productAsin = prod1.asin)
left outer join prodsimilar as prodsim1 on (prod1.id = prodsim1.productId)
left outer join product as prod2 on (prodsim1.productAsin = prod2.asin)
left outer join prodдroup on (product .дroupid = prodдroup.id)
where prodдroup.name = ”Book”

Table 3.3 compares the execution times of Q3 and Q3′ by varying the number of
processors. The running time of Q3 is decreased faster than the one of Q3’ when
increasing the number of processors. In the beginning with 16 processors, Q3 is slower,
but when using 32 processors, Q3 outperforms Q3′. Both Q3 and Q3’ have the best
performance with 64 processors. But, after that, their running times are increased.

Performance in Detail

Let us have a closer look at the performance of each phases in Pregel programs.
The algorithm to evaluate Q1 consists of three phases: Mark, Bulk and Eelim.

From Figure 3.14(a), it is clear that the phase Mark takes most of the running time.
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Figure 3.14(b) shows the size of intermediate graphs generated by each phase. We see
that the phase Mark is rather e�ective when it �lters out a huge amount of data from
the input graphs, resulting in small intermediate graphs. This also helps reduce the
running time of the latter phases (Bulk and Eelim). Therefore, it is worth doing further
optimizations to the phase Mark.

The algorithm to evaluate Q2 consists of seven phases, where the �rst three
phases are for the �rst speci�cation without conditions, the last three phases are for
the second speci�cation without conditions, the fourth phase (middle phase) is for
evaluating if/then/else statements. For this query, the �rst speci�cation produces
many ϵ-edges (Figure 3.15(b)). Hence the phase Eelim1 takes much time (Figure 3.15(a)).
The performance of the phase EvalIf�enElse is quite good except the one on the graph
G200. In the future we need more analysis on the graph G200 to see where the issue
comes from.

3.5 Related Work

Developing parallel algorithms that are scalable to big graphs has been studied
intensively in recent years, particularly on development of easy-to-use distributed
graph processing models and on design and implementation of DSL on these models.

Distributed graph processing models: MapReduce [13] is big data processing
model, hence it can be used to process graphs. However, since the Map and Reduce
computations are stateless, it does not naturally express iterative graph algorithms.
GraphLab [49] adopts a vertex-centric model like the Pregel model, but it targets the
asynchronous computation. Gonzalez et al. [50] propose PowerGraph that uses the
gather-apply-scatter model to exploit parallelism in natural graphs. Nonetheless,
to obtain scalability, these models o�er speci�c forms in which users specify their
programs. Hence, it is non-trivial for users to write their complicated programs as well
as obtain e�cient ones. Our framework o�ers a more intuitive way using a declarative
language, to help users easily express large-graph computations.

Translating DSLs to graph processing models: Several researches proposed
rules to translate the well-known languages for graphs into large-graph processing
model. Nole et al. [20] translated regular path queries into the Pregel model, using
Brzozowski’s derivations of regular expressions. The result of the queries is a set of
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vertex pairs. Krause et al. [51] proposed a high-level graph transformation framework
on top of BSP model. In particular, they implemented the framework in Giraph, an
open-source implementation of the Pregel model. The framework is based on graph
grammars. However, these frameworks are not compositional in the sense that they do
not support successive applications of queries/transformations. Another approach is
done by Salihoglu et al. [52], in which they have found a set of high-level primitives that
capture commonly appearing operators in large-graph computations. These primitives
are also implemented in the GraphX library. Hong et al. [53] proposed translation rules
to translate a subset of the Green-Marl language into the Pregel model, but this subset
is not so declarative as ours because it still requires programmers to code explicitly the
operations on each vertices and edges. SPARQL [4] is a popular query language for
RDF data. Recently, there are many works trying to implement SPARQL in MapReduce
or vertex-centric programming models like Pregel [54, 55, 56, 57]. Supporting regular
expressions in SPARQL are intensively researched [58, 59, 60, 61, 62].

3.6 Summary

In this chapter, we have designed a light-weight framework on top of Pregel to answer
select-where regular path queries. Its core is built based on a solid foundation of
structural recursion on graphs and program transformations, making it a reliable
and e�cient framework. By using structural recursion to express queries, we can
automatically derive Pregel programs. We have proposed an e�cient evaluation for
structural recursion, making it scalable to big graphs. To the best of our knowledge,
this is the �rst Pregel-based framework to answer select-where regular path queries.
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4
Regular Reachability Queries

As discussed in Chapter 3, the phase Mark in the evaluation of an SWRP query without
condition is very e�ective to reduce the size of intermediate graphs, but it has a
poor performance. Given a vertex vs and a regular expression R, the phase Mark
computes for each vertex v a set of states that are yielded by the automaton of R for all
paths from vs to v . The poor performance of the phase Mark is because of using a
breadth-�rst-search like algorithm that only exploits the parallelism on branches of a
vertex and is ine�ective when dealing with long paths.

To exploit parallelism when using a regular expression to traverse a long path,
Sin’ya et al. [63] has proposed a simultaneous �nite automaton (SFA) for e�cient
parallel computation of the �nite automaton of the regular expression. The idea of
SFA is using functions to simulate all possible transitions in the �nite automaton.
Evaluating a regular expression over a long path is done by splitting the path into
partitions and applying functions to the partitions in parallel. The �nal result is
computed by doing function compositions (in parallel or sequential way). The good
property of parallelism of an SFA allows easily developing a parallel implementation
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q0start q1 q2
Food

Books

Books

Food Books

Figure 4.1: A DFA for (Books∗)(Food∗)(Books+).

for a regular expression matcher.
In this chapter, we apply SFA to designing a distributed algorithm to answer a

regular reachability query that checks whether there exists a path between two given
vertices satisfying a given regular expression. Experimental results show that our
algorithm outperforms a state-of-the-art algorithm [19] for the regular reachability
query. To the best of our knowledge, this is the �rst work making an attempt at
applying SFA to graphs. We believe that our algorithm has the potential to extend to
speedup the phase Mark which is very close to the regular reachability query but
needs tracking a set of states at each vertex. We discuss the extension at the end of this
chapter.

4.1 De�nition of Regular Reachability Queries

Given a vertex-labeled graph Gv = (V,E ,I,O,σ), a regular reachability query (RRQ),
QR(vs ,vt ,R), checks whether there exists a path that starts from the vertex vs , reaches
the vertex vt , and matches the regular expression R. Assume that edge labels are empty
(ignoring edge labels). A path ρ is a sequence of vertices, denoted by vs = v0 → v1 →
v2 → ⋯→ vk → vw = vt , where (vi , “”,vi+1) ∈ E (1 ≤ i ≤ k − 1). We say that the path ρ

matches R if and only if σ(ρ) = σ(v1)σ(v2)⋯σ(vk) (excluding v0 and vw ) matches R
in the usual sense.

Figure 4.1 shows a DFA that corresponds to the regular expression

(Books∗)(Food∗)(Books+)

Here, q0 is the initial state, and both q0 and q2 are the �nal states marked by concentric
rings. Further, qi

lÐ→ qj denotes the transition from qi to qj according to the label l . We
consider ∅ as a dead state, if transition qi

lÐ→ ∅ does not exist in the transition table.
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4.2 Simultaneous Finite Automaton

Given a DFA D, a simultaneous �nite automaton (SFA, in short) [63], say S , is an
extended automata that involves speculative simulations from all states in D. In
particular, each state of S is a mapping from states to states in the original automata
D. In other words, let L(A) denote the set of all the words accepted by A, we have
L(D) = L(S).

De�nition 4.1 ([63]) Let A = (Q,Σ,δ , I , F) be an automaton. A simultaneous �nite
automaton (SFA) constructed from A is a quintuple (Qs ,Σ,δs , Is , Fs):

• Qs ⊆ Q → P(Q) is a set of mappings from Q to the power set of Q ;

• Σ is the same set of symbols as A;

• δs is the additive extension of δ in A that is de�ned as below, where f ∈ Qs ,σ ∈ Σ,

δs(f ,σ) ∶= ⋃
q∈Q

(q ↦ ⋃
q′∈f (q)

δ(q′,σ));

• Is ⊆ Qs is a singleton of identity mapping {fI} that satis�es fI(q) = {q} for any
q ∈ Q ;

• Fs ⊆ Qs is de�ned as Fs = {f ∈ Qs ∣ ∃q ∈ I , f (q) ∩ F ≠ ∅}.

The SFA was originally invented for parallel regular expression matching. The
following is a key property that enables us to perform a parallel computation [63].
Assume that the SFA yields f1 for a word w1 (fI

w1Ð→ f1) and f2 for a word w2 (fI
w2Ð→ f2);

then, it yields f1 ● f2 for a word w1w2, where ● is the reverse function composition
operator de�ned as follows.

(f1 ● f2)(q1) = ⋃
q2∈f1(q1)

f2(q2)

In other words, if we split the input string and process each of substrings by the SFA in
parallel; then, the above property enables us to merge the resulting states. It is worth
noting that each substring is processed from the initial state fI in the SFA.

An SFA of a regular expression R is constructed via the DFA of R as follows.
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Figure 4.2: An SFA for the DFA shown in Figure 4.1.

Step 1 Construct a DFA D,(Q,Σ,δ , I , F), from R.

Step 2 Initialize a set T which contains only the mapping fI , fI(q) = {q},∀q ∈ Q .

Step 3 If T is empty then go to Step 6, otherwise go to Step 4

Step 4 Choose and remove a mapping f from T . Add f to Qs . For each label a ∈ Σ, do
the following steps

(a) compute a new mapping fnext(q),q ∈ Q , as follows.

fnext(q) = ⋃
q′∈f (q)

δ(q′,a) (4.1)

(b) δs(f ,a) = fnext

(c) If fnext ∉ Qs then add fnext to T

Step 5 Go to Step 3

Step 6 Is = {fI}, Fs = {f ∈ Qs ∣ ∃q ∈ I ∣f (q) ∩ F ≠ ∅}

Example 4.1 Figure 4.2 shows an SFA for the DFA shown in Figure 4.1. Here, f0 is the
initial state. Table 4.1 summarizes states in the SFA.

To distinguish states in SFA and states in DFA, we denote SFA states by f and DFA
states by q.
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Table 4.1: Mappings of states in the SFA shown in Figure 4.2.

f0 f1 f2 f3 f4 f5

q0↦{q0} q0↦{q0} q0↦{q1} q0↦{q1} q0↦{q2} q0↦{q2}
q1↦{q1} q1↦{q2} q1↦{q1} q1↦∅ q1↦{q2} q1↦∅
q2↦{q2} q2↦{q2} q2↦∅ q2↦∅ q2↦∅ q2↦∅

4.3 Functional-based Evaluation of Regular Reacha-

bility Queries

In this section, we focus on how to use SFAs to obtain an e�cient evaluation of RR
queries on distributed graphs.

4.3.1 Evaluation Strategy

We utilize an evaluation strategy for RR queries on distributed graph in [19], and make
it adapt to SFA. We consider a setting of distributed environment where there are
a coordinator site Sc and m worker sites Si . Without loss of generality, we assume
that the number of sites is equal to the number of fragments of a distributed graph.
The strategy is shown in Figure 4.3, and includes four communication steps and two
computation steps.

1. The client sends a query QR(vs, vt,R) to coordinator Sc .

2. Sc broadcasts the received QR to all workers Si(1 ≤ i ≤m).

3. Each worker site Si loads a fragment DGi , and locally computes a partial result.
This step is called partial evaluation.

4. The partial results will be sent back to Sc for further evaluation.

5. After collecting all the partial results, Sc constructs a dependency graph Gd .
Then does a global computation on Gd to get the �nal result. This step is called
global evaluation.

6. Sc sends the �nal result back to the client.
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Figure 4.3: A distributed evaluation strategy for RR queries.

Our objectives are (1) minimizing the computational cost of partial evaluations to
speedup the step 3; (2) minimizing the size of partial results to reduce the communication
cost in the step 4, and to avoid the bottleneck at the coordinator when receiving partial
results.

Our solution which is based on SFA will be introduced in the next sections, where
we propose algorithms for the partial evaluation and global evaluation.

4.3.2 Partial Evaluation

Partial evaluation is performed in parallel by all workers. Each worker Si invokes a
function computePartialResult to compute a partial result by evaluating the received
QR on a local fragment DGi . The partial result is a set of mappings from an input
vertex to a set of tuple of an output vertex and a state.

The pseudo-code of computePartialResult is shown in Algorithm 4.1. First, we
compute an SFA, say S = (Qs ,Σ,δs , Is , Fs), for the regular expression R (line 1), using
the method presented in Section 4.2. A partial result is stored in the variable pSet
that is a set of mappings vin ↦ {(vout , f )}, vin ∈ Ii ,vout ∈Oi , f ∈ Qs , where a mapping
implies that an input vertex vin can reach output vertices vout via paths for which the
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SFA yields states f . Second, we initialize sets of input and output vertices, where vs
and vt are also input and out vertices, respectively. For each vertex, we maintain two
vectors, visited and rset. The vector visited is to mark a vertex whether it is visited
with a given state or not, which avoids producing an in�nite loop of computation. The
second vector rset is to store a result for a given vertex and state once they are visited.
Next, the evaluation starts from input vertices with the initial state in the SFA (line
8–9). Then it does a depth-�rst search (the function visit) to recursively visit other
vertices (line 9). Finally, the results for each input vertex are speculated into the partial
result (variable pSet, line 19).

The function visit accepts a vertex (not only input vertex) and a state, then computes
a set of pairs of an output vertex and a state. It is a depth-�rst search. It terminates
when reaching a visited vertex or an output vertex.

It is worth noting that for each input vertex, our algorithm always starts from
the initial state (line 9, Algorithm 4.1). This is because we can construct the �nal
result by utilizing the properties of SFA (Sec. 4.2). It is di�erent from other approaches
([19],[64]) where one needs to consider all states for each input vertex. As a result, our
approach reduces many computations at each vertex, making our partial evaluation
more e�cient than the one using DFA.

Procedure 4.1 Procedure computePartialResult

Input: Fragment DGi = (Vi ,Ei ,Ii ,Oi ,σi ,Ci) and query QR(vs ,vt ,R).
Output: A set of (vin ↦ {(vout , f )}).

1: Generate an SFA, S(Qs ,Σ,δs , Is , Fs), from R;
2: pSet = ∅; iset = Ii ; oset = Oi ;
3: if vs ∈ Vi then iset = iset ∪ {vs} end if;
4: if vt ∈ Vi then oset = oset ∪ {vt} end if;
5: for each v ∈Vi do
6: for each f ∈ Qs do v .visited[f ] = false end for;
7: end for
8: for each v ∈ iset do
9: v .rset[fI ] = visit(v, fI); // fI ∈ Is is the initial state

10: pSet = pSet ∪ {v ↦ v .rset[fI ]};
11: end for
12: return pSet;
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Procedure 4.2 Procedure visit
Input: A vertex v , a state f .
Output: A set of (u, f ′).

1: if v .visited[f ] then return v .rset[f ] end if;
2: v .visited[f ] = true;
3: if v ∈ oset then
4: if v is vt then
5: v .rset[f ] = v .rset[f ] ∪ {(v, f )};
6: else
7: fnext = δs(f ,σi(v));
8: v .rset[f ] = v .rset[f ] ∪ {(v, fnext)};
9: end if

10: end if
11: for each vertex u ∈ {u∣(v,u) ∈ Ei ∪ Ci} do
12: fnext = δs(f ,σi(u));
13: v .rset[f ] = v .rset[f ] ∪ visit(u, fnext);
14: end for
15: return v .rset[f ];

Example 4.2 Recall the graph in Figure 2.2 and query QR(v1,v17,R), where

R = (Books∗)(Food∗)(Books+)

We use DG1 as an example. Considering the input vertex v1 and the output vertex v11, a
path v1→v2→v5→v3→v6→v11. First, we visit v1 with the initial state f0. The next state
fnext = δs(f0,σ1(v2)) = f1, since σ1(v2) = Books . Next, we visit the vertex v2 with the
state f1. This procedure continues until we reach the output vertex v11 with the state f3.
Therefore, we add a mapping v1 ↦ {(v11, f3)} to the partial result. The whole partial
result of the example are listed in Table 4.2.

4.3.3 Global Evaluation

Partial results computed in the partial evaluation are collected to the coordinator
Sc , and a dependency graph is constructed from the partial results as follows. For
each mapping v ↦ {(u, f )}, create edges (i, f , j), where σ(i) = v,σ(j) = u, i and j are
vertex identi�ers generated arbitrarily. Note that there might have parallel edges of
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Table 4.2: An example of the output of the partial evaluation.

DGi pSet

DG1
{v1 ↦ {(v7, f3), (v11, f3)},
v6 ↦ {(v11, f2)}}

DG2
{v7 ↦ {(v6, f2)},
v11 ↦ {(v13, f2), (v14, f1)}}

DG3 {v13 ↦ {(v6, f2)},v14 ↦ {(v17, f1)}}

di�erent labels between two vertices.
The problem of evaluating a query QR(vs ,vt ,R) is now reduced to the one that

checks if there exists a path ρ = i
f1Ð→j f2Ð→ . . . fmÐ→k satis�es (1) σ(i) = vs ,σ(k) =

vt ; (2) f1 ● f2 ● . . . ● fm yields an accept state fρ in the SFA of R; and (3) ∃q ∈
fρ(q0) ∣ q is an accept state in the DFA of R, where q0 is the initial state in the DFA of
R. This check can be easily done by the algorithm computeFinalResult (Algorithm 4.3).

Procedure 4.3 Procedure computeFinalResult

Input: A dependency graph Gd = (V,E ,I,O,σ ,C) and query QR(vs ,vt ,R)
Output: A boolean value.

1: Generate an SFA, S(Qs ,Σ,δs , Is , Fs), from R;
2: for each v ∈ V do
3: for each f ∈ Qs do v .visited[f ] = false end for;
4: v .value = ∅;
5: end for
6: result = visitFunc(vs , Is)
7: return result;

Example 4.3 Continuing with the previous example, Gd is built from the partial results
as shown in Figure 4.4. The dependency graph holds several valid paths regarding

the example query. We use the path ρ = 1
f3Ð→ 3

f2Ð→ 2
f2Ð→ 4

f1Ð→ 6
f1Ð→ 7 as an example.

The recursive calculation along the path would be fρ = f0●f3●f2●f2●f1●f1 = f5. Since
f5(q0) = q2 which is an accept state, a valid path is detected. Thus, Sc returns True to the
client.



68 Chapter 4. Regular Reachability Queries

Figure 4.4: A dependency graph constructed on Sc . Note that this is not a distributed
graph. We use dotted rectangles to denote that from which fragment vertices come.

Computational Cost In our approach, we visit each worker site only once after
receiving a query from the coordinator site. The computation cost includes the local
and global evaluation costs. Given a regular expression R, let D be the DFA of R, S the
SFA of D. Let ∣S∣ be the number of states in S , ∣D∣ the number of states in D, ∣Vi ∣ the
number of vertices in DGi , and ∣Vc ∣ the number of cross-edges. As for the algorithm
computePartialResult, it takes O(∣S ∣) time to construct an SFA. It visits each vertex at
most ∣S∣, hence it takes at most O(∣S∣∣Vi ∣) to compute all mappings in a partial result.
The global evaluation takes at most O(∣S∣∣Vc ∣2∣D∣2) to compute the �nal result, because
each function composition operator takes at most ∣D∣2 time.

Communication cost Communication cost in our approach consists of broadcasting
QR to allm workers and sending partial results from the worker sites to the coordinator
site (We ignore communications between the system and the client). The broadcasting
cost is O(m∣D∣). The size of a partial result is O(∣S∣∣Ii ∣∣Oi ∣). Hence, it takes O(∣S∣∣Vc ∣2)
to send all partial results to the coordinator.
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Procedure 4.4 Procedure visitFunc
Input: A vertex v , a set of state F .
Output: A boolean value.

1: for each state f ∈ F do
2: if v .visited[f ] then continue end if;
3: v .visited[f ] = true;
4: if L(v) = vt then
5: if f ∈ Fs and f (q0) contains an accept state in the DFA then
6: return True
7: end if
8: else
9: for each edge v

f ′Ð→ u do
10: fnext = f ● f ′;
11: result = computeFinalResult(u,u .value ∪ {fnext});
12: if result = True then return True end if;
13: end for
14: end if
15: end for
16: return False;

4.3.4 Optimizations

Global Evaluation In the global evaluation, recall that for each path from the source
vertex i (σ(i) = vs) to the target vertex j (σ(j) = vt). We compute a mapping (state) fρ
that is composed of mappings on the path, say fρ = f1 ● f2 ● . . . ● fm. Next, we compute
fρ(q0) to get the �nal result. However, mapping composition is an expensive operator.
Looking at its de�nition, ∀q ∈ Q ,

(f1 ● f2)(q) = ⋃
q′∈f1(q)

f2(q′)

it takes at most O(∣D∣2) time to do a mapping composition. We can avoid doing
mapping composition by computing the result of fρ for only q0 [63]. It it done by
sequentially applying the �rst mapping f1 on q0 to produce a set of states, then each of
returned state will be the input of the next mapping in the sequence. This procedure is
done by looking at the mapping table of states of the SFA (e.g. Table 4.1).
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On-demand Function Generation Given that a complex query might result in a
large amount of states in an SFA and that we need to generate an SFA for both partial
and global evaluations, the construction of SFAs becomes slow. Therefore, we adopt a
on-demand construction of SFAs [63].

4.4 Implementation and Experiments

4.4.1 Implementation

We implemented our algorithm on top of the Hadoop framework [25], which is one of
widely used implementations of the MapReduce model [13], allowing applications to
run in a distributed manner on a large cluster.

We assume that fragments of a distributed graph are stored in the hadoop distributed
�le system (HDFS) as �les. An input query is also stored in a �le in HDFS.

We use one MapReduce job to implement our evaluation strategy. First, the job
loads the query and stores it in an environment variable so that it can be accessed by
workers. Second, in the map phase, each mapper will load a fragment as its input, then
access the query. Mappers invoke the function computePartialResult to compute
a partial result pSet locally, and send a message (1,pSet) to the reduce phase. By
sharing the same key, all messages come to one reducer in the reduce phase. That
reducer constructs a dependency graph and invokes the function computeFinalResult

to compute the �nal result, and outputs the result to a �le.

4.4.2 Experiments

Experimental Environment Experiments were carried out on a cluster of �ve
Lenovo servers. Each server has two Intel Xeon E5645 processors (6 cores at 2.4GHz)
and 32GB RAM. We deployed a Hadoop environment (version 2.5.0) on the cluster,
where one machine served as the master node and the other four were the slave nodes.
Each experiment was performed with 10 random RRQs. We ran each query three
times and reported the average running time. The performance of an algorithm is the
overall running time, including the time for generating and distributing an automaton
table, the time for local and global evaluation, and the time for data transfer. The time
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Table 4.3: Real-life datasets.

Dataset ∣V∣ ∣E ∣ ∣L∣
YouTube 730,119 8,048,796 14

DBLP 816,210 1,063,528 2978
MEME 1,073,512 4,653,081 7
Internet 76,521 836,527 256
Random 1,000,000 1.5M∼50M 26

taken to load a graph from HDFS and the time taken to set up map/reduce jobs were
disregarded in all the experiments.

Datasets We used real-life datasets of YouTube [42], DBLP [41], MEME [65], Inter-
net [66], and a dataset of randomly generated graphs, Random. The size of graphs that
generated from these datasets are summarized in Table 4.3, where ∣L∣ is the number of
vertex labels in a graph. The YouTube graph contains metadata of videos and the
relationship between videos according to the recommendation. Each node represents a
video and each edge implies that one video is recommended to another. We chose
video categories as node labels. DBLP is a citation network whose nodes are paper IDs,
and the edges denote citations. The node labels are the publication venues of papers.
MEME is a blog network, where each node is a web page and each edge denotes a
hyperlink in the web page. The Internet graph was extracted from an Internet tra�c
dataset published by CAIDA. We take IP addresses as vertices, and each vertex is
labeled with the �rst eight digits of its IP address. The edges between vertices describe
Internet connection. Random is a synthetic graph generated by a graph-tool [67]. We
generated random graphs with di�erent numbers of edges (from 1.5 million to 50
million). The numbers of vertices of these graphs are constant and set to 1 million. A
vertex label is a single character that was randomly selected from the alphabet of 26
letters.

Graph Partitioning We used a random partitioning strategy to split a graph into
subgraphs. The strategy is vertex-based; it computes a hash value of the vertex id
modulo the number of partitions.
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Random Query Generator Queries in our experiments were randomly generated
in the following steps: (1) collecting all the distinct labels in the input graph to create a
label collection L; (2) randomly selecting labels from L and operators to combine a
valid regular expression; (3) randomly selecting two vertices from the graph to be the
source vertex and target vertex, vs and vt , respectively.

Benchmark To validate the performance of our algorithms, we compared them
with a recent RRQ approach [19] that also used the partial evaluation. We refer this
approach DFA-Alg. Our functional-based evaluation is denoted by Func and our
functional-based evaluation with optimizations is denoted OptFunc.

We now present and analyze our experimental results.

E�ect of Dataset Size In the �rst set of experiments, we evaluated the scalability of
the Func algorithm by using graphs of di�erent sizes. We varied the graph size by
traversing a graph with a constant number of vertices, and gradually doubling ∣V∣. We
�xed the number of partitions to four and the query size to eight states. Figures 4.5
and 4.6 show the overall time consumed by di�erent algorithms over four datasets
(YouTube, DBLP, MEME and Internet). OptFunc is much faster than DFA-Alg for large
graphs. With the largest graph, OptFunc performs four times faster than DFA-Alg on
average. For a smaller graph, say Internet at 13.8K , OptFunc is still around two times
faster than DFA-Alg. The algorithm Func shows close performance to DFA-Alg for
YouTube Figure 4.5(a)) and Internet (Figure 4.6(b)). This is because Func is sensitive to
the characteristics of graph; the number of cycles in YouTube and Internet is much
greater than that in other graphs, and hence Func became slower. We will study more
on this issue at the end of this section.

E�ect of Query Size The second set of experiments reports the performance of
functional-based algorithms over various query sizes. We represented the query size
by the number of DFA states. The query size was increased exponentially from 2 to 32.
The number of partitions was �xed to four. As shown in Figures 4.7 and 4.8, OptFunc
takes less time for the evaluation and is less sensitive to the query size. It is at least
two times improvement compared with DFA-Alg, and its performance improves as
the query size increases (four times faster with 32 states). This is because DFA-Alg
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Figure 4.5: Experiment results with various graph sizes (YouTube and DBLP).
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Figure 4.6: Experiment results with various graph sizes (MEME and Internet).
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computes ∣D∣ times on each vertex, whereas OptFunc performs just one computation
for all the states at the same time and traverses DGi only once.

E�ect of Number of Partitions This set of experiments reports the speedup of
Func and OptFunc over the cluster size. We varied the number of partitions from 2 to
128, and set the number of mappers to be equal to the number of partitions. The query
size was �xed to eight and we used the graphs with their largest size in all settings.
From Figure 4.9(a), we can see a slight increase on 32 partitions for the algorithms Func
and OptFunc. This is because the overhead of the global evaluation exceeds the gain
due to more partitions. From Figures 4.9 and 4.10, it is worth noting that increasing the
number of partitions does not have a signi�cant e�ect on the overall performance of
our approach. However, OptFunc still is around two times faster than DFA-Alg with
more partitions (>64).

Mapper, Reducer and Network Cost The fourth set of experiments shows how
functional-based evaluation exhibits better performance. We investigated the cost
of each part of the algorithms, including Mapper, data transfer (Trans), Reducer
and automaton generation (Autogen). Each experiment used four partitions and
the largest graphs from each dataset. For all the runs, the size of the queries was
set to eight. The results are shown in Figure 4.11(a). It is obvious that, for the
DFA-Alg algorithm, the main cost is due to the map and data transfer stages, which
consumed 90% of the total time (Mapper, 44.3%; Trans, 52.1%), On the other hand,
our functional-based algorithms reduce the Mapper and Trans cost by more than 10
times, but correspondingly increase the Reducer cost. With the optimization of the
sequential global evaluation, the cost of the Reducer of OptFunc is at the same level as
that of DFA-Alg. Furthermore, the time consumed by Autogen is negligible for large
graphs.

Properties of Functional-based Algorithms We also veri�ed the characteristics
of our functional-based algorithms by using synthetic datasets. It is clear that the
functional-based algorithms only traverse a graph once from vin to vout if the graph is
acyclic. When a cycle exists, functional-based algorithms will go through the cycle at
most ∣S∣ times until a visited state is met. Compared with DFA, SFA transition table
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Figure 4.7: Experiment results with various query sizes (YouTube and DBLP datasets).
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Figure 4.8: Experiment results with various query sizes (MEME and Internet datasets).
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Figure 4.9: Experiment results with varying number of partitions (Youtube and DBLP).
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Figure 4.10: Experiment results with varying number of partitions (MEME and Internet).
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Figure 4.11: Experiment results for costs of di�erent components (Youtube and DBLP).
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Figure 4.12: Experiment results for costs of di�erent components (MEME and Internet).
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could be very large. In theory, ∣S∣ = ∣D∣∣D∣. Therefore, they might su�er from severe
performance degradation when the number of cycles increases. In this experiment, we
show the relationship between our approaches and the graph density ∣E ∣/∣V∣2. Graphs
were randomly generated with a �xed number of vertices. The number of edges ranged
from 1.5 million to 50 million. The query size was �xed to eight and the number of
partitions was four. The results are shown in Figure 4.13. Figure 4.13(a) clearly shows
that the functional-based algorithms gradually lose advantage when graph density
increases. Figure 4.13(b) shows the cost ratio of each part of OptFunc. Obviously, as the
graph density increases, a bottleneck occurs in the reduce part, which consumes more
than 50% of the total time.

4.5 Related Work

Many approaches have been developed to evaluate RRQs on distributed graphs. They
can be categorized into two types: message passing and partial evaluation. A regular
path query (RPQ) that returns all the paths matching a regular path expression R can
be used to answer RRQs. Abiteboul et al. [31] used message passing in the evaluation
of RPQs on distributed graphs. Later, Stefanescu et al. [68] extended the algorithm
proposed in [31] to weighted graphs. Shoaran et al. [69] accounted for process failures
during the evaluation of RPQs, where algorithms can be resilient to any number of
process failures. The use of partial evaluation to answer RRQs was proposed by Fan et
al. [19]; they used Boolean formulas to describe reachability relationships between
input and output nodes, and then these Boolean formulas were combined to build
a dependency graph on the coordinator machine. Quyet et al. [70] proposed two
algorithms to improve the algorithms proposed in [19]. They �ltered and removed
redundant nodes during the local evaluation and contracted the partial result to
minimize the size of the data to be transferred. Our approach is also based on partial
evaluation to improve the evaluation performance, but it is di�erent from [70] by
caching and reusing the same computation on each local site.

Our functional-based approach is motivated by the simultaneous �nite automaton
(SFA) proposed in [63] to solve the problem of regular expression matching in parallel.
Holub et al. [71] introduced an algorithm for parallel execution of DFA, but its
pre-computation of initial states makes it ine�cient for general DFA. Memeti et
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(a) Performance with various graph densities

(b) Standardized cost of OptFunc with various graph densities

Figure 4.13: How functional-based algorithms are a�ected by graph characteristics.
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al. [72] improved the e�ciency of the algorithm proposed in [71] by including an
extra step to calculate all the states to estimate the initial states. The common
idea of these approaches is that they split the input string into small chunks. By
simulating automaton transitions, these chunks can be run in parallel. However, all
these approaches are designed for regular expression matching on strings and lists. To
the best of our knowledge, we are the �rst applying SFA to graph queries.

4.6 Discussion

We have shown that SFA is a good approach to deriving an e�cient distributed algorithm
for regular reachability queries on big graphs. We showed that the distributed algorithm
based on SFA outperforms the state-of-the-art algorithm proposed in [19]. Therefore,
now we discuss the potential to extend our algorithm to the phase Mark.

As mentioned at the beginning of this chapter, the phase Mark requires tracking a
set of DFA states during the evaluation of an automaton at every reachable vertex. Our
idea is that we �rst need to keep partial results for every vertex at each site during the
partial computation, then once the global computation �nished, send the global result
back to each site instead of the client, and �nally update partial results.

We sketch data structures for each step now. The partial result for each vertex
should be a mapping from a set of input vertices to a set of SFA states, say Vin ↦ Fv ,
denoting a set of SFA states yielded for paths from input vertices. Keeping a set of input
vertices is necessary because it helps update the set of states. The global computation
need some modi�cations. Instead of returning a boolean value, it returns a set of
mappings v ↦ Qv , where v is an input or output vertex, Qv is a set of DFA state.

Updating partial results at each vertex is convenient thanks to the properties of
SFA. Assume that a vertex v has a partial result Vin ↦ Fv , then we compute for v a set
of DFA states r as follows.

r = ⋃
q∈Q, f ∈Fv

f (q)

where,
Q = ⋃

vin∈Vin , vin↦Qv

Qv
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5
SWRP Queries with Shortest Path

Conditions

It is useful to extend the expressiveness of the select-where regular path queries to
support shortest-path conditions. Let us consider a practical query on biological
networks. Assume that we would like to �nd substances that are the closest to a
substance typed “A” via a path including a third substance typed “B”. With a little
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extension, we can express this query in the form of SWRP queries as follows.

select
select

select $g3
where {_ ∗ .substance ∶ $g3} in $g2

$g3 closest to $g1 via $g2
where {_ ∗ .substance ∶ $g2} in $g1

Type.B in $g2
where {_ ∗ .substance ∶ $g1} in $db

Type.A in $g1

where, the extension condition “$g3 closest to $g1” says, for each graph $g1, let �nd a
graph $g3 whose root connects to the root of $g1 via a shortest path. Combining with
“via $g2”, this shortest path must go through a root of graphs $g2 . Without loss of
generality, we assume that the shortest path is a path with the minimum number of
edges, in other words, each edge has a weight of 1.

The above query requires computing two things. The �rst is to identify the roots
of graphs $g1, $g2, $g3, which can be done by computing a marker graph, using the
phase Mark of the normal SWRP query without the condition closest to. The second
is to �nd the shortest path between the roots, which corresponds to �nd all vertices
(roots of $g3) connected from the root of $g1 by the shortest path whose vertex labels
form a category-based regular expression “C1._ ∗ .C2_ ∗ .C3”, where C1,C2,C3 are sets
(categories) of roots of $g1, $g2, $g3, respectively. Queries using such category-based
regular expressions are called shortest regular category-path queries.

In this chapter, we de�ne shortest regular category-path queries and show that
these queries can be e�ciently answered by a sequence of single source shortest path
searches. Hence, we can utilize di�erent existing single source shortest path algorithms
for di�erent types of graphs to achieve the best performance.
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5.1 De�nition of SWRP Queries with Shortest Path

Conditions

We formally de�ne the extension of shortest path conditions for SWRP queries over
a weighted graph (De�nition 2.3). In particular, we add a new constructor to the
condition part P($g) in an SWRP query (de�ned in Chapter 3) as follows.

P($g) ∶∶= isempty(Q($g)) ∣ R in $g
∣ !P($g) ∣ P($g)&&P($g) ∣ P($g) ||P($g)
∣ $g closest to $g′ [ via C] {extension}

C ∶∶= $g1
∣ C,C {a sequence of graph variables}
∣ C ∣ C {OR condition}

where $g′ refers to a global graph variable in a SWRP query. The condition “$g closest to
$g′” says for each graph $g′, let �nd a graph $g whose root connects to the root of $g′

via a shortest path. The part “via $g1” says the shortest paths that satisfy the condition
“$g closest to $g′” must go though roots of graphs in C . If C is $g1, then the shortest
paths must visit a root of $g1. “C,C” says the shortest paths must visit roots in the �rst
C and then the ones in the second C . Finally, “C ∣ C” says the shortest paths must visit
roots in one of two Cs. Although we may allow multiple shortest path conditions in an
SWRP query, to make our ideas clear, we only consider the case that there is only one
shortest path condition in an SWRP query.

Moreover, we require that the roots of the graph $g and the graph $g′ must be
di�erent. Otherwise, the query fails under the graph equivalence up to bisimulation.
For example, two graphs in Figure 5.1 are equivalent up to bisimulation. The right
graph is obtained by expanding the loop at the vertex 2 in the left graph. For every
edge label l , the weight function w(l) returns a value 1. Assume that the root of the
graph $g′ is the vertex 2, and that candidates for the root of the graph $g include 2
and 3. It is clear that, for the left graph, the vertex 2 must be the root of the graph $g
because the shortest path 2 bÐ→ 2 has the length of 1, shorter than the shortest path
from 3 to 2 (3 eÐ→ 4 dÐ→ 2). While, for the right graph, the vertex 3 must be the root of the
graph $g because the shortest path from 3 to 2, (3 eÐ→ 4 dÐ→ 2), is shorter than the one
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Figure 5.1: Two equivalent graphs.

from 2 to 2, (2 bÐ→ 5 cÐ→ 3 eÐ→ 4 dÐ→ 2). Once the roots of the graph $g and the graph $g′ are
disjoint, the expansion of loops does not a�ect the result of shortest path conditions.

5.2 Practical ShortestRegularCategory-PathQueries

In this section, we formally de�ne shortest regular category-path (SRCP) queries and
its subclass P-SRCP queries, and demonstrate the expressiveness of P-SRCP queries via
several typical examples.

5.2.1 SRCP Queries

SRCP query is a special case of the known shortest path query on weighted graphs
(De�nition 2.3).

De�nition 5.1 ( Shortest Path) Let Gw = (V,E ,I,O,w) be a weighted graph. Let

Ps,t = v1
l1Ð→ v2

l2Ð→ . . .
lq−1ÐÐ→ vq be any path inGw from a vertex s = v1 ∈ V to another vertex

t = vq ∈ V , such that, for 1 ≤ i < q, (vi , li ,vi+1) ∈ E . Let cost(Ps,t) be the cost of Ps,t to
represent ∑1≤i<qw(li) . A path P ′s,t is called a shortest path from s to t if for all Ps,t such
that Ps,t ∈G , we have cost(P ′s,t) ≤ cost(Ps,t). The shortest path cost, cost(P ′s,t), is denoted
by d(s, t).

SRCP query is de�ned over vertex categories.

De�nition 5.2 (Category) Given a weighted graph Gw . A category C is a set of vertices
in G, or C ⊆ V . Two categories Ci and Cj are disjoint if Cj ∩ Cj = ∅.
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De�nition 5.3 (Regular Expression on Category) The syntax for regular expression on
Category is:

R ∶∶= Ĉ ∣ RR ∣ R “∣” R ∣ R“∗”

Here Ĉ is to recognize a category C, i.e., a terminal symbol, RR denotes the concatenation,
R “∣” R denotes the alternation, and R“∗” denotes closure (Kleene star). As usual, we may
write R+ for RR∗.

De�nition 5.4 (Path Satisfaction) A path Ps,t from s to t is said to satisfy a regular
expression R over a set of categories if the concatenation of categories of the vertices in Ps,t
spells out R. Such a path is denoted by Ps,R,t .

De�nition 5.5 (Shortest Regular Category-Path (SRCP) / SRCP Query) Given a weighted
graph Gw , let {Ci ⊆ V ∣ 1 ≤ i ≤ k} be a set of k disjoint categories of vertices in Gw , and R
be a regular expression over Cis. An SRCP query is represented as a triple

⟨s, t ,R⟩

where s and t denote the starting and ending vertices respectively.

A path Pmin
s,R,t is called an SRCP if it satis�es R, and for every path Ps,R,t in G satisfying

R, we have:
cost(Pmin

s,R,t) ≤ cost(Ps,R,t).

We refer cost(Pmin
s,R,t) as dR(s, t).

De�nition 5.6 (SRCP problem) An SRCP problem is to �nd an SRCP for a given SRCP
query.

5.2.2 P-SRCP: a Practical Class of SRCP Queries

In general, SRCP queries are more di�cult to solve than existing category-constrained
shortest path queries. The di�culty comes from two constructors in the SRCP queries,
one is the closure and the other is the alternation. In the case that each vertex belongs to
only one category, SRCP queries correspond to regular simple path queries [73] whose
evaluation are in general NP-hard. To provide an e�cient and practical algorithm to
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solve SRCP queries, we simplify them by restricting the use of the closure. We call
such restricted queries P-SRCP queries.

Given an SRCP query
⟨s, t ,R⟩

where R is a regular expression, we show that we can simplify the SRCP problem by
localizing the global closure. This is based on the following two observations. First, it
is usually more practical to consider a path passing a vertex of category C (i.e., _ ∗ Ĉ_∗,
where _ denotes an arbitrary category) than a path just containing an exactly single
vertex of category (i.e., Ĉ). This would suggest us to regard _ ∗ Ĉ_∗ as a primitive.
Second, the concatenation of _∗ Ĉ_∗ with a closure will cancel the e�ect of the closure.
This means that the following two SRCP queries,

⟨s, t ,_ ∗ Ĉ_ ∗ R∗⟩
⟨s, t ,R ∗ _ ∗ Ĉ_∗⟩

will have the same e�ect as the query

⟨s, t ,_ ∗ Ĉ_∗⟩

It is because the shortest path obtained from the last query should be the shortest
path from the �rst two queries.

Given the above, we will simplify regular expressions to make the closure appear
only in the form of _ ∗ Ĉ_∗.

De�nition 5.7 (Simpli�ed Regular Expression (SRE)) The syntax for SREs is:

R ∶∶= _∗Ĉ_∗ ∣ RR ∣ R “∣” R

For simplicity, we use “C” as an abbreviation of “_∗Ĉ_∗”.

De�nition 5.8 (P-SRCP Query) A P-SRCP query is an SRCP query

⟨s, t ,R⟩

where R is a simpli�ed regular expression.
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Figure 5.2: A P-SRCP query example ⟨s, t ,O (GY ∣B)V⟩. All edges have the same weight
of 1. Two of the SRCPs are shaded in grey and pink. dR(s, t) = 9.

In the rest of this chapter, we will focus on P-SRCP queries.
Figure 5.2 shows an example of P-SRCP query and paths satisfying the query

⟨s, t ,O (GY ∣B)V⟩. The input graph has �ve categories O, G, B, V, and Y. Vertices in
the same category have the same shape and color. Because of alternations in the query,
it is possible to have many optimal paths Pmin

s,R,t that have the same optimal cost dR(s, t).
Also note that there is no requirement that two vertices in two di�erent categories
must be directly connected. For example, the optimal path s

1Ð→ o1
1Ð→ д2

1Ð→ y0
1Ð→ . . . 1Ð→

v0
1Ð→ . . . 1Ð→ t⟩ spells out the constraint “OGYV”, however the vertex y0 in Y connects

to the vertex v0 in V via two other vertices, although Y and V are contiguous in the
constraint.

5.2.3 Expressiveness of P-SRCP

Although P-SRCP queries are restricted, they are powerful enough to express many
interesting category-constrained shortest path queries including those with partial or
total order constraints.

Generalized Shortest Path (GSP) Queries

This query is to �nd the shortest path from a starting point to a destination point,
passing at least one point from each of a set of speci�ed categories in a speci�ed
order [74]. A GSP is expressed in our P-SRCP query as follows.

⟨s, t ,C1C2 . . .Ck⟩



92 Chapter 5. SWRP Queries with Shortest Path Conditions

where s and t are the starting point and destination point, respectively.

Optimal Sequenced Route (OSR) Queries

An OSR query is to �nd the shortest path starting from a given point and passing
through a number of categories in a particular order [75]. This query is di�erent from
the GSP query in the sense that the destination is not a point but a category. To express
this query in our SRCP query, we create an arti�cial destination vertex t ′ in the input
graph, and add edges with weight 0 from vertices in the last category of the order
constraints to t ′. The P-SRCP query is then as follows.

⟨s, t ′,C1C2 . . .Ck⟩

Trip Planning Queries/Generalized Traveling Salesman Path ProblemQueries
(TPQ/GTSPP)

A trip planning query [76] or generalized traveling salesman path problem query [77]
is to �nd the shortest path from a starting point to a destination point that passes
through at least one point from each of a set of categories (there is no speci�c order
speci�ed in the query). A TPQ/GTSPP query with a set of k categories is written in our
P-SRCP query as follows.

⟨s, t ,R1 ∣R2 ∣ . . . ∣Rk!⟩

where Ris (i = 1 . . .k!) are permutations of the set {C1,C2, . . . ,Ck}. For example, R1 is
C1C2 . . .Ck , R2 is C2C1 . . .Ck , and so on.

Optimal Route Queries (ORQ) with Arbitrary Order Constraints

This query is to �nd the shortest path that starts from a starting point and covers a
user-speci�ed set of categories (e.g. {gas station, museum, park, restaurant}) [78].
Moreover, users can specify partial order constraints between some speci�c categories
of the set, e.g. a gas station must be visited before a restaurant, while other categories
can be visited in an arbitrary order. Such order constraints are expressed in a visit order
graph, in which each vertex is a category, an edge from a category Ci to a category Cj

denotes that Ci must be visited before Cj .
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Regular-Expression-Constrained Shortest Path Queries [79]
General SRCP Queries (this paper)

SRCP Queries with SREs (P-SRCP, this paper)
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(TPQ [76], GTSPP [77]) (OSR [75], GSP [74])

Figure 5.3: Relationship between SRCP queries and existing queries.

To express the optimal route queries with arbitrary order constraints in our P-SRCP
query, there are two things needed to be done. First, we need to generate total order
constraints from the visit order graph, then put them together in the form of P-SRCP
queries by using alternation operators. A simple way to generate the total order
constraints is �rst enumerating all permutations of the set of categories, and then
�ltering out permutations that do not satisfy constraints in the visit order graph.
Second, we need to create an arti�cial destination vertex t ′ for the P-SRCP query,
which is done by adding edges with weight 0 from vertices in all categories in the set
of categories to t ′. The P-SRCP query is �nally as follows.

⟨s, t ′,R1 ∣R2 ∣ . . . ∣Rl⟩

where Ris (i = 1 . . . l ) are total order constraints satisfying the visit order graph.

In summary, Figure 5.3 shows the relationships between our SRCP queries and other
queries. The general SRCP query is a subset of the regular-expression-constrained
shortest path query [79] in which its regular expression is de�ned over vertex labels. A
practical subset of the general SRCP queries (P-SRCP), whose constraints are simpli�ed
regular expressions, is considered in this paper. Although it is limited, it covers all
existing important problems such as queries with arbitrary order, total order, or no
order constraints.
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5.3 Derivation of an E�cient Algorithm for P-SRCP

Queries

A naive approach for answering the P-SRCP query (s, t ,R) is considering it as a
combination of existing queries with total order constraints. To do that, we �rst
generate all total order constraints Ri of the input SRE R. For example, consider an
SRE “B(C ∣S)”, we generate two equivalent constraints R1 = “BC” and R2 = “BS”. Then
we evaluate sub-queries ⟨s, t ,Ri⟩, e.g. ⟨s, t ,BS⟩, ⟨s, t ,BC⟩, independently by e�cient
algorithms for total order constraints (e.g. algorithms for optimal sequenced route [75]
or generalized shortest path [74]). Finally we take the minimum cost from results
of each sub-queries. This approach is straightforward but ine�cient due to many
redundant computations between the evaluations of sub-queries, e.g. two sub-queries
in the above example would share a computation for paths from s to the category
B. Moreover, computations from the category B to the category C and S can be
overlapped in terms of visited edges/vertices.

In this section, we propose a dynamic programming solution to solve the P-SRCP
problem in an e�cient way, in which we reduce the P-SRCP problem to a series of
single source shortest path searches.

5.3.1 SREs as Directed Acyclic Graphs

It is well known that a regular expression can be expressed by a non-deterministic �nite
state automaton with ϵ-transitions (NFA-ϵ) [24]. However, the use of ϵ-transitions is
not necessary due to the absence of closures in SREs of P-SRCP queries. Hence, we
directly transform an SRE to an NFA without ϵ-transitions. This NFA is a directed
acyclic graph (DAG) GR that represents the structure of SREs in P-SRCP queries.
Hereafter, we refer to vertices in a query graph as nodes, to distinguish them from
vertices in the input graph. Nodes of GR are object identi�ers (OIDs) that are integers
uniquely identifying a node, and edges of GR are labeled by categories in R. Given an
SRE R, the following function gen_dag generates a constraint graph GR for R. Note
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that, the generated graph is special in the sense that it has a source and a sink.

gen_dag R = let ⟨sc,GR, sk⟩ = rec R in dag
where

rec C = let d = newEdдe(C)
in ⟨source(d),d, target(d)⟩

rec (R1R2) = (rec R1) ⊖ (rec R2)
rec (R1 ∣R2) = (rec R1) : (rec R2)

⟨sc1,GR1, sk1⟩ ⊖ ⟨sc2,GR2 , sk2⟩ = ⟨sc1, seq(GR1,GR2), sk2⟩
⟨sc1,GR1, sk1⟩ : ⟨sc2,GR2 , sk2⟩ = ⟨sc1 ⊙ sc2,merge(GR1,GR2), sk1 ⊙ sk2⟩

Given an SRE R, a recursive function rec computes a triple ⟨sc,GR, sk⟩ where sc
and sk are the source and sink node in the constraint graph GR, respectively. For the
terminal case C, we create a singleton graph GC containing only one edge d labeled by
the category C. The source node of GC is the source node of d , and the sink node is
the target node of d . The function seq is to construct a new constraint graph by �rst
replacing sk1 in GR1 and sc2 in GR2 by a new OID w = sk1 ⊙ sc2 , then unioning these
two constraint graphs. The function merge is to construct a new constraint graph by
�rst replacing sc1 in GR1 and sc2 in GR2 by a new oid sc12 = sc1 ⊙ sc2 , and then replacing
sk1 in GR2 and sk2 in GR2 by a new OID sk12 = sk1 ⊙ sk2 , �nally unioning these two
constraint graphs.

To present the semantics of the whole query Q = ⟨s, t ,R⟩, we introduce a query
graph GQ = (VQ ,EQ) that is constructed from the graph GR by attaching an incoming
edge labeled by {s} to the source node of GR , and an outgoing edge labeled by {t} to
the sink node of GR . Figure 5.4 shows a query graph of the query ⟨s, t ,O (GY ∣B)V⟩, in
which two sets {s} and {t} are called dummy categories (superscripts of edge labels
will be explained later in the Sect. 5.3.2).

5.3.2 Dynamic Programming Formulation

Next, we formalize a dynamic programming strategy to answer P-SRCP queries by
using their query graphs. Given a P-SRCP query Q = ⟨s, t ,R⟩, we establish a DP table X
in order to store values during computation. Each row in the table corresponds to
a category on an edge of the graph GQ . Therefore, the table X has ∣EQ ∣ rows, and д
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columns where д is the maximum size of categories in the query Q . “X [i, j]” is the
value for the j-th vertex in the category at the row i . For simplicity, we add superscripts
to categories in the query to denote their row indices in the table. For example, for this
user-de�ned query ⟨s, t ,O (GY ∣B)V⟩, we have ⟨s0, t6,O1 (G2Y3 ∣B4)V5⟩.

The DP table X is computed according to a topological sort of the query graph GQ

as follows. For each node u in the topological sort, we generate a computation step (CS),
inu → outu , where

inu = {r ∣ (v, l ,u) ∈ EQ ,Cr ← l}
outu = {r ∣ (u, l ,w) ∈ EQ ,Cr ← l},

computing values of the rows in the list outu by using values in the rows in the list inu .
Computation steps form a dynamic programming formulation for the P-SRCP problem.
Following is the computing formulation of the computation step inu → outu .

X [i, j]
i∈outu

=
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

0 If i = 0

min
r∈inu

{ min
0≤l<∣Cr ∣

{X [r , l] + d(cr ,l ,ci,j)}} If i > 0

where, Cr is the category corresponding to the r -th row in the DP table X , ci,j is the
j-th vertex in the category Ci .

Lemma 5.9 Value X [i, j] in the DP table represents the optimal cost of the P-SRCP of the
query ⟨s,ci,j ,Ri⟩ where Ri is the SRE corresponding to a subgraph of GQ that includes all
paths from the node just after the source node of GQ to the source node of the edge labeled
Ci .

For example, consider the query ⟨s0, t6,O1 (G2Y3 ∣B4)V5⟩, its query graph is shown in
Figure 5.4. The value X [3, 1] will represent the optimal cost of the P-SRCP of the query
⟨s,y1,R3⟩ in which R3 = O1G2 corresponding to the subgraph having edges from the node
1 (the node just after the source node of GQ ) to the node 3 (the source node of the edge Y3).

Proof. We prove this by induction on the sequence of computation steps 1 ≤ k ≤ N , in
which N is the number of computation steps (the number of nodes in GQ ).

For the base case, where k = 1, then this claim is trivially true, because X [0, 0] is
the optimal cost for the query ⟨s,c0,0,R0⟩ = ⟨s,s,{}⟩ which has dR(s,s) = 0.

For the induction step, k > 1. Let u be the node in GQ that generates the k-th
computation step. For a set of nodesVu that are before the node u in the topological sort
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0 1 2
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O1 G2
B4

Y3

V5 {t}6

Figure 5.4: A query graph of the query ⟨s, t ,O (GY ∣B)V⟩. Integers in nodes are OIDs.
Superscripts of categories are equivalent row indices in the DP table. The subgraph
from the node 1 to the node 5 is a DAG graph corresponding to the SRE O (GY ∣B)V.

of GQ , let Eu be a set of edges related to nodes in Vu , and ps be a set of row indices of
categories on the edges in Eu . Our induction hypothesis assumes that this claim holds
true for all values X [i, ●], i ∈ ps . Let consider the (k + 1)-th computation step generated
by the node v in GQ , that is inv → outv , in which inv and outv is the set of row indices
of all incoming and outgoing edges of the node v , respectively. It is clear that inv ⊆ ps .
Since each ci,j is a member of category Ci , i ∈ outv , j = 0 . . . (∣Ci ∣ − 1), it su�ces to
�nd the shortest path cost from vertices cr ,l in categories Cr (r ∈ inv ,0 ≤ l < ∣Cr ∣) to
ci,j . It follows from our induction hypothesis that the value of X [i, j] is computed by
min
r∈inv

{ min
0≤l<∣Cr ∣

{X [r , l] + d(cr ,l ,ci,j)}}. ⊓⊔

Corollary 5.10 Let m be the row index of the dummy category {t}. Value X [m,0]
represents the cost of the P-SRCP of the query ⟨s, t ,R⟩.

Figure 5.5 shows a table containing costs during the computation of the query
⟨s0, t6,O1 (G2Y3 ∣B4)V5⟩. The order of computation steps is as follows.

1st step: [] → [0]
2nd step: [0] → [1]
3rd step: [1] → [2, 4]
4th step: [2] → [3]
5th step: [3, 4] → [5]
6th step: [5] → [6]
7th step: [6] → []

The optimal cost dR(s, t) = 9 of the query is stored at the last row (its row index is 6
that is the index of the dummy category {t}) of the table. Note that the �rst step is
actually to initialize the value of X [0, 0], and the last step does nothing.
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O1 1 2

G2 2 3 6

Y3 3 7 4
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Figure 5.5: A table of optimal costs for the query in Figure 5.2. The �rst column
contains names of categories. The �rst row contains indices of vertices in a category.
Curved arrows on the left indicate computation steps and its orders.

5.3.3 Single Source Shortest Path Search

A computation step “xs → ys” is to compute values in rows in the list ys by using
rows in xs . Let Uxs be a union of categories corresponding to rows in xs and Uys be a
union of categories corresponding to rows in ys , then the step “xs → ys” is equivalent
to computing values for the vertices in categoryUys from values of the vertices in
categoryUxs . This can be done by using a many-to-many shortest path search from the
vertices inUxs to the vertices inUys . However, such a many-to-many search leads to
many redundant computations due to repeatedly visiting the input graph. By creating
a super-vertex s′ and edges from s′ to the vertices u inUxs with weights being values of
u in the DP table [74], we can e�ciently compute values for the vertices in Uys by
using a single shortest path search from s′ until all vertices in Uys are settled (Assume
that we use Dijkstra algorithm [80]).

Theorem 5.11 Given a weighted graph Gw = (V,E) and a P-SRCP query Q = ⟨s, t ,R⟩.
Let GQ = (VQ ,EQ) be the query graph of Q and Tsssp be the complexity of a single source
shortest path search, the cost of our algorithm is O(∣VQ ∣Tsssp), and the space complexity of
the algorithm is O(∣EQ ∣).

Corollary 5.12 Given a weighted graph Gw = (V,E) and a P-SRCP query Q = ⟨s, t ,R⟩.
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Let GQ = (VQ ,EQ) be the query graph of Q . When a Dijkstra algorithm with a Fibonacci
heap is used for SSSP searches [81], our algorithm answers Q in the time complexity of
O(∣VQ ∣(∣E ∣ + ∣V∣loд∣V∣)).

One advantage of this approach is that it is independent of the underlying SSSP
search. Thus, we can use any fast SSSP algorithm to implement, such as Contraction
Hierarchies technique [82, 74], Delta-Stepping [83], PHASE [84], etc. This is useful
because we can apply di�erent e�cient SSSP algorithms for di�erent kinds of graphs
(road networks, social networks, biological networks, etc.)

5.3.4 Optimizations

Although the dynamic programming formulation can help solve the P-SRCP problem,
there is a need in optimizing the P-SRCP query algorithm. First, the number of
computation steps (∣VQ ∣) depends on user-de�ned queries. For example, two queries,
⟨s, t , (OGYV ∣OBV)⟩ and ⟨s, t ,O (GY ∣B)V⟩, have the same meaning, but the former
needs six computation steps and the latter needs �ve computation steps. Second,
consider the Trip Planning Query that is to �nd the shortest path going through at
least one point in each category of a given set of categories C = {C1,C2, . . . ,Ck}. It can
be presented in P-SRCP query as ⟨s, t ,R1 ∣R2 ∣ . . . ∣Rk!⟩ where Ris are permutations of
the set C, i = 1 . . .k!. In this case, ∣VQ ∣ will be ((k − 1)k!+ 2) which is not practical even
for small k (e.g. k = 5. See Sect. 5.4 for more discussion). This section will discuss how
to engineer an e�cient algorithm for answering the P-SRCP query.

Time Complexity The problem of optimizing the time complexity is de�ned as
�nding a graph with the minimum number of nodes that generates exactly the same
total order constraints as a given query graph. A query graph is a subclass of NFA [24]
whose minimization is computationally hard, and cannot in general be solved in
polynomial time. However, there exists a well-known algorithm for minimizing
NFAs [24] that computes a minimal equivalent DFA with respect to the number of nodes,
and consists of two steps: determinization and minimization. The determinization step
is to compute a DFA from an NFA, then the DFA is minimized by the minimization step
to get a minimal DFA. Ström [85] has proposed two simpli�ed algorithms for the two
steps determinization and minimization in the case of word graphs that represent a set
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of hypotheses in speech recognition system. A word graph is a DAG with exactly one
source node and one sink node. Here, we apply these algorithms to optimize query
graphs which have a similar structure to word graphs.

Space Complexity For our approach, the number of rows in the DP table is equal to
the number of edges in the query graph GQ . Although the optimization of the number
of nodes in GQ also causes a decrease of the number of edges, this decrease is not
remarkable. Moreover, because the number of elements in each row of the table is
equal to the number of vertices in the equivalent category, the size of the DP table
becomes large when the query contains a "long” total order constraints, leading to
out-of-memory errors. Therefore we need to e�ciently manage the DP table. One
solution to managing the DP table is dynamically creating it. As discussed before,
the DP table is constructed according to a topological sort of the query graph of a
query. When considering a node in that topological order, incoming edges are used to
compute values for rows corresponding to outgoing edges, and never used again. Thus,
after each computation step, we do not need to store rows corresponding to incoming
edges.

Query Structure Although two determinization and minimization optimizations
result in a minimal query graph GQ in terms of the number of nodes, for some
user-de�ned queries, we can get a smaller graph GQ by preprocessing the SREs in the
user-de�ned queries. Consider P-SRCP queries in the following form,

⟨s, t ,R1R2R3 ∣R2⟩,

where R1,R2,R3 are arbitrary SREs. They have the same e�ect as the query

⟨s, t ,R2⟩.

Therefore, for this kind of queries, we can eliminate all SREs that contain another SREs.
This can be generalized for P-SRCP queries having more alternatives.
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Figure 5.6: A testbed framework for SRCP queries.

5.4 Implementation and Experiments

5.4.1 Implementation

We implemented a testbed framework1 to answer P-SRCP queries. An overview of our
framework is showed in Figure 5.6. First, it takes a P-SRCP query as input, parses it to
get a query graph, then optimizes the query graph by two steps “determinization” and
“minimization”. Next, it will generate a sequence of computation steps, in which each
computation step is executed by a single source shortest path search. For simplicity, we
just compute the optimal cost of the optimal paths satisfying the query. However, one
can extract the optimal paths by tracing computation steps.

For an implementation of a single source shortest path, we used a fast algorithm
proposed by Rice [74] that used Contraction Hierarchies. Contraction Hierarchies
(CH) technique currently is one of the fastest speed-up technique for shortest path
problem on road networks [86]. Its idea is preprocessing a graph by augmenting it
with shortcuts so that shortest path costs are preserved. Shortcuts are then intensively
used by a bidirectional Dijkstra algorithm to speed up the shortest path search on the
augmented graph.

The following programs are implemented and used in our experiments to compare
results of discussed algorithms.

1http://www.prg.nii.ac.jp/members/tungld/srcp-July2014.tar.gz
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• gsp: the algorithm proposed by Rice [74] to answer the Generalized Shortest
Path Query that uses total order constraints ⟨s, t ,C1C2 . . .Ck⟩. We implemented
the core of this algorithm (without some heuristic technique).

• perm: a naive algorithm, which was mentioned in the beginning of the Sect. 5.3,
to answer the P-SRCP query by evaluating sub-queries for all total order
constraints, then taking the minimal cost from the sub-queries. Sub-queries are
evaluated by the gsp algorithm.

• srcp-noopt: our algorithm for the P-SRCP query without optimizations.

• srcp-opt: our algorithm for the P-SRCP query with optimizations. Two optimiza-
tions were implemented: the determinization and the minimization. To store a
set of nodes, we used a standard class std::set which supports equality comparison.
We used a class std::unordered_map as a hash table to store sets of nodes, which
allows for fast access to the sets of nodes to determine their existing elements.
The boost graph library [87] is used to implement the optimizations.

5.4.2 Experiments

All our experiments were run on a Macbook Pro machine that has a 2.6 GHz Intel Core
i5, 8 GB 1600 MHz DDR3 memory, clang-503.0.40 (based on LLVM 3.4svn). Programs
were compiled with optimization level 3. We used a library of contraction hierarchies
written by Robert Geisberger [88] in C++ to create and access augmented graphs.

Experiments were performed with a graph of the Full USA road network, having
23, 947, 347 vertices and 58, 333, 344 edges. We borrowed the graph from the benchmarks
of the 9th DIMACS implementation challenge [89]. It took about 25 minutes to create
an augmented graph using the CH technique (this graph will be used as a common
input graph for programs in our experiments).

Categories used in our queries are generated randomly and have the same number
of vertices.

In�uence of the Optimizations

We measure the performance of our algorithm for the trip planning queries which are
expensive queries. The Trip Planning Query (TPQ) with k categories is written in the
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P-SRCP queries as follows.
⟨s, t ,R1 ∣R2 ∣ . . . ∣Rk!⟩

where Ris are permutations of the set {C1,C2, . . . ,Ck}, i = 1 . . .k!. For example, R1 is
C1C2 . . .Ck , R2 is C2C1 . . .Ck , and so on.

First, we �x the number of categories being 5, and then change the size of
categories. The naive solution that generates all permutations of categories requires
720 computation steps ((5 + 1) ∗ 5!). Without optimizations, our algorithm generates
482 computation steps which is nearly half of that of the naive solution. By using
optimizations, the number of computation steps reduces to 32 (25). Performance of
algorithms is represented in Figure 5.7. It shows that the srcp-opt algorithm is quite
scalable when the size of categories is increased.

Next, we will see the e�ect of the number of categories on the performance of
the query. We �x the size of each category and change the number of categories
in the query. As indicated in Figure 5.8, the running time of the perm algorithm
is signi�cantly increased, while the srcp-opt algorithm is quite stable. Although
the srcp-noopt algorithm can reduce the number of computation steps twice, it
still follows a factorial running time. This experiments show the importance of
optimizations in our solution.

In�uence of the Alternation Operators

To see the impact of alternation operators ( ∣ ) for a given query on the performance of
our optimal algorithm, we do experiments with queries which di�er in the number of
alternation operators, while the number of categories is the same. Starting with a
query without alternatives, each time we insert one “ ∣ " operator to create a new query.
In particular, we use the following queries.

Q1 = ⟨s, t ,C1C2C3C4C5C6C7C8⟩
Q2 = ⟨s, t , (C1 ∣C2)C3C4C5C6C7C8⟩
Q3 = ⟨s, t , (C1 ∣C2)(C3 ∣C4)C5C6C7C8⟩
Q4 = ⟨s, t , (C1 ∣C2)(C3 ∣C4)(C5 ∣C6)C7C8⟩
Q5 = ⟨s, t , (C1 ∣C2)(C3 ∣C4)(C5 ∣C6)(C7 ∣C8)⟩

Figure 5.9 shows the result. It is interesting that when there are more options in the
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Table 5.1: The number of computation steps in each query.

query Q1 Q2 Q3 Q4 Q5

perm 9 16 28 48 80
srcp-opt 9 8 7 6 5

P-SRCP query, our algorithm becomes faster. Looking the Table 5.1 that shows the
number of computation steps for each query, we see that the reason of such good
performance is that the number of computation steps is reduced, leading to a decrease
of the running time of our algorithm. Meanwhile, if we use the perm algorithm, then
the number of computation steps will be dramatically increased because there are
many total order constraints generated. This result also shows that our algorithm can
reduce a large amount of redundant computation steps when alternation operators
appear in the query.

Overhead of Optimizations

First, we measure the performance of our algorithm when answering the query GSP. We
compare it to the algorithm proposed by Rice [74]. As can be seen in Figure 5.10, two
algorithms have the same performance when the number of categories is increased. This
is easy to understand because, for this query, our algorithm leads to the same dynamic
programming table as that of gsp algorithm. Moreover, there is no improvement on the
structure of the query when applying optimizations, thus the overhead is very small.
However, for the trip planning queries, the overhead of optimizations, in particular, the
overhead of the forward optimization, is expensive. Table 5.2 shows the running times
of the determinization and minimization optimizations when the number of categories
(k) is changed from 1 to 6. With small k (1, 2, 3, 4), the minimization optimization takes
less time than the determinization optimization. Nevertheless, the determinization
optimization is more expensive with larger k (5, 6). This is because, the determinization
optimization has an exponential time complexity, while the minimization optimization
takes a linearithmic time complexity. Furthermore, both optimizations highly depend
on the way of storing sets of nodes during their computations. This e�ects the
performance of determining whether a set already exists or not.
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Table 5.2: Performance of optimizations.

k 1 2 3 4 5 6

determinization (ms) 0.026 0.033 0.069 0.290 2.566 53.697
minimization (ms) 0.018 0.034 0.084 0.302 1.580 10.872

5.5 Related Work

The category-constrained shortest path problem is a variant of regular-language-
constrained shortest path queries in which constraints are on a set of vertices in a
graph instead of individual vertices/edges. There are many solutions proposed to
answer such queries. Each solution is for a speci�c kind of constraints over categories.

Trip Planning Queries [76] is the query that has no ordered constraints. The
existence of multiple choices per category makes the problem di�cult to solve. The
complexity of the TPQ is NP-hard with respect to the number of categories. Several
approximation algorithms are proposed. These algorithms are based on nearest
neighbor searches. A feasible path is formed by iteratively visiting the nearest neighbor
of the last vertices added to the path from all vertices in the categories that have
not been visited yet. The second one is the minimum distance algorithm, a novel
greedy algorithm, which results in a much better approximation bound. The algorithm
chooses a set of vertices, one vertex per one category in the query. These vertices are
chosen so that the total distance from the start vertex to it and from it to the end
vertex is the minimum among vertices in the same categories. The algorithm then
creates a path by following these vertices in a nearest neighbor order. Rice et al. [77]
proposed an exact solution for the Generalized Traveling Salesman Path Problem
Query (GTSPP) that is similar to TPQ. The algorithm is building a product graph of the
original graph Gw = (V,E) and a covering graph built on the power set of the query’s
categories. Finding the answer of the GTSPP query is �nding the shortest path in the
product graph. The time complexity is O(2k(∣E∣ + ∣V∣k + ∣V∣loд∣V∣)), in which k is the
number of categories in the query. The algorithm is then improved by incorporating
the graph preprocessing technique called Contraction Hierarchies (CH) [82], resulting
in the time complexity of O(2k(m′ + ∣V∣k)), in whichm′ is the number of edges of the
preprocessed graph. It is noted that the improved algorithm is slightly di�erent from
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the original algorithm, in which it executes a series of sweeping phases according to
levels of an abstraction of the product graph, and highly depends on the CH technique.

In parallel to Li et al.’s work [76], Sharifzadeh et al [75] proposed the optimal
sequenced route query (OSR) that is similar to TPQ but imposed a total order constraints
over categories. In other words, OSR query is to �nd the shortest path starting from a
given point and passing through a number of categories in a particular order. They
proposed two algorithms to operate on the Euclidean distance. The �rst one is LORD, a
light threshold-based iterative algorithm. First, LORD uses a greedy search to �nd
an threshold (upper-bound) for the cost of the optimal path. The greedy search is a
successive nearest neighbor search from the starting vertex to the last category. Then,
the LORD �nds the optimal path in the reverse order, from the last category to the
starting vertex. During the �nding, it updates the threshold value and uses it to prune
vertices that cannot belong to the optimal path. The second algorithm is R-LORD, an
extension of the LORD, that uses R-tree to e�ciently examine the threshold values.
However, both algorithms are impractical when applied to road networks where
nearest neighbor searches are very expensive. Thus, another algorithm, progressive
neighbor exploration (PNE), has been proposed in [75]. The idea of the PNE is to
incrementally create the set of candidate paths. At each step it needs two nearest
neighbor searches: one is to expand the current best candidate path, the other is to
re�ne that path by replacing the last vertex in the path by a new vertex.

Sharifzadeh et al. [90] introduced a pre-processing approach for the OSR query by
using additively weighted Voronoi diagrams. This approach is e�cient and practical
compared with R-LORD algorithm, however, one of the disadvantages is that it is not
�exible when requiring �xed sequences among categories. Rice et al. [74] proposed
another approach using Contraction Hierarchies technique and dynamic programming
for the Generalized Shortest Path (GSP) query that was the same as the OSR query
but having only one destination point. Its advantage is that it can be applied to any
possible set of categories in a query. Our work is inspired by the idea of a dynamic
programming formulation from Rice et al.’s work, and we extend their algorithm in two
aspects. First, we allow multiple categories involved in a computation steps. Second,
we introduce “jumping” computations in the DP table that compute an arbitrary row
from an other arbitrary row in the table, allowing us to freely describe computation
steps guided by a directed acyclic graph representation.
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The one being close to our SRCP query is the optimal route queries with arbitrary
order constraints proposed by Li et al. [78]. This query considers partial order
constraints over categories, which are described by a visit order graph. Two algorithms
have been proposed namely Backward search and Forward search. The backward
search algorithm computes the optimal paths in reverse manner similar to R-LORD
algorithm [75]. However, instead of loading vertices belonging to the last category,
the backward search retrieves the set of candidate vertices that may be part of the
optimal path, which belong to any categories contained in the visit order graph. The
forward search is similar to a greedy algorithm. It also uses the backward search
algorithm for backtracking process, eliminating some vertices that cannot be a part of
the optimal path. Both algorithms have the time complexity of O(N 2 ⋅ 2k), in which
k is the number of categories in the visit order graph and N is the total number of
vertices in the data set (road networks or spatial databases).

5.6 Summary

In this chapter, we have introduced a general SRCP query for �nding optimal paths
constrained by categories. The purpose is to help extend the SWRP queries to support
shortest-path conditions as discussed at the beginning of the chapter. We have found a
reasonable subset of the general SRCP queries that uses simpli�ed regular expressions
as constraints. Even though this subset is simpli�ed, it covers all of the existing
category-constrained shortest path queries and has e�cient implementation. We have
proposed a dynamic programming formulation to solve the subset of SRCP queries in
which the queries are reduced to a sequence of single source shortest path searches on
the input graph. This result is important because we can use any fast single source
shortest path search even with preprocessing to speed up the query. By exploiting a
directed acyclic graph representation of a query, we can easily derive an e�cient
algorithm for answering the query.
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6
Conclusion

6.1 Summary of the Dissertation

Writing programs in distributed programming models is often non-trivial. In this
dissertation, we have proposed a graph querying framework on top of Pregel to ease
the burden of users in writing parallel programs to process big graphs, where users just
write their queries in the form of “select . . .where . . .” and regular expressions. Our
framework is a combination of a solid foundation of structural recursion on graphs and
scalable graph processing models such as Pregel or MapReduce.

In the �rst part of this dissertation, we have presented our framework in detail. We
have proposed an e�cient evaluation for select-where regular path queries which do
not include graph conditions. Our solution is a combination of recursive semantics
and bulk semantics of structural recursion, which signi�cantly reduces the size of
intermediate graphs. As for queries with graph conditions, we have proposed a solution
to reduce them to two queries without conditions, and one speci�c iterative parallel
algorithm. Experimental results show that our solutions can produce e�cient Pregel
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programs that are scalable to big graphs.
In the second part, we have proposed a functional-based approach to exploit

the parallelism of the phase Mark that takes much time during the evaluation of
select-where regular path queries. This phase is close to the regular reachability
queries. We have shown that the functional-based approach is very e�ective to speedup
the regular reachability queries, where it reduces a large amount of computation
during a local computation and minimize communication data. We have discussed how
to extend the algorithm for regular reachability queries to the phase Mark.

In the remaining part, we have focused on extending the expressiveness of select-
where regular path queries to support shortest-path conditions. We have shown
that this extension requires to solve an additional query that is the shortest regular
category-path query. By using a dynamic programming formulation, we have shown
that a shortest regular category-path query can be e�ciently answered by a sequence
of single source shortest path searches. This is useful because we can utilize fast single
source shortest path algorithms that are optimized for di�erent graphs (road networks,
social networks, biological networks) and environments (shared or distributed memory).

6.2 Future Work

There are two categories of work needed to be done in the future.

6.2.1 Supporting More Queries

SupportingCartesian product,GroupBy and Join queries For such queries, their
speci�cations in structural recursion need to be able to join graphs based on two edge
variables that are parameters of two di�erent structural recursive functions. It is not
clear how to transform such speci�cations to existing speci�cations supported so far,
or how to translate them to programs in distributed programming models.

Problems on graphs up to isomorphism The graph data model for select-where
regular path queries in this dissertation assumes set semantics where the duplication
of data is eliminated. For example, assume a query retrieves all family names of people
in a community. If there are one million people, but only ten di�erent family names,
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then our query returns only ten elements. It is shown that we can extend structural
recursion on graphs to bag semantics [91]. By that way, it has potential to solve
problems on graphs up to isomorphism, say, counting triangles.

6.2.2 Making the Framework More E�cient

Graph partitioning strategies It is often the case that graph algorithms are a�ected
by graph partitioning strategies. In our framework, each computation phase transforms
a graph into a new graph. Hence, it might not obtain the best performance with a single
partitioning strategy for the whole framework. It is necessary to do a comprehensive
study on the a�ection of partitioning strategies on phases in the framework.

ϵ-edges elimination Another problem is related to an e�cient algorithm to eliminate
ϵ-edges. Afrati et al. [92] proposes an e�cient distributed algorithm to compute
transitive closure on clusters. It would be interesting to integrate that algorithm into
our framework. Checking graph conditions without eliminating ϵ-edges may be
quickly performed by random walks on graphs [93, 94, 7], it is however non-trivial to
handle the general case where nested queries are allowed.
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