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Chapter 1

Introduction

Einstein’s general relativity and quantum mechanics are the two basic theory which support
a present physics but it is known that they are incompatible. There are a lot of difficulties
to construct the quantum gravity theory. First of all, the quantization of the gravitational
field based on the Einstein gravity theory leads to the unrenormalizability problem. Moreover,
the theory also becomes unstable even in a non-perturbative method since the Einstein-Hilbert
action can takes indefinite value. Besides, we can not physically eliminate a spacetime solution
with singularity since the action becomes finite for such a configuration.

In order to resolve these problems, the approach that we introduce higher derivative actions
bounded from below involving the square of Riemann curvature tensor has been proposed [1, 2,
3, 5, 6, 7, 8, 9, 10]. In this approach, the action for singular spacetime configurations such as
Schwarzschild solution diverges and thus such solutions are eliminated quantum mechanically.
On the other hand, however, one could not avoid the problem that physical ghost mode, what
is called massive graviton, emerges when one dealt all gravitational fields perturbatively. So, it
is appropriate to suppose that we need some kind of non-perturbative method to quantize such
higher derivative fields.

In our study, we consider the renormalizable quantum conformal gravity proposed in recent
years [11, 12, 13, 14]. We then apply a non-perturbative method [15, 16, 17, 18, 19, 20, 21, 22, 23]
learned from the development of two-dimensional quantum gravity [24, 25, 26, 27, 28, 29].
That is to quantize gravity by taking into account contributions induced from the path integral
measure, what is called the Wess-Zumino action [30, 31] with respect to the conformal anomaly
[32, 33, 34, 35, 36, 37, 38, 39, 40]. In order to carry out it, we manage the conformal mode of
gravitational fields non-perturbatively without introducing its coupling constant. On the other
hand, we dealt the traceless tensor mode perturbatively.

In the above quantization method, the following important natures emerges. The first is that
the general coordinate invariance in such a non-perturbative treatment leads to the background-
metric free nature [15, 16, 17, 18, 19, 20, 21, 22, 23]. It is realized as a gauge equivalency under
the conformal transformation, which is called BRST conformal symmetry [22, 23]. Owing to
this symmetry, we can choose the flat background without changing physics and can calculate
quantum correction in the same way to usual quantum field theory. Besides, the BRST conformal
symmetry makes the gravitational ghost mode unphysical. The second is that there is a new
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dynamical scale of quantum gravity [11, 12, 13, 14]. It is indicated from that the beta function
of the coupling constant for the traceless tensor mode becomes negative. The background free
spacetime and the classical spacetime are separated at this scale.

The conformal invariance has a crucial role in our non-perturbative formulation of quantum
gravity. Its importance in physics is also suggested by the recent experiments on cosmic mi-
crowave background (CMB) [41, 42] which indicates the fluctuation in early universe to be scale
invariant. From this, it is a good guess that conformal invariance is fundamental in quantum
gravity.

The purpose of this study is to examine the renormalization structure in our quantum con-
formal gravity theory with using dimensional regularization [11, 12, 13, 14]. The advantages
of using this regularization are that it preserves the diffeomorphism invariance at all orders in
perturbation and that the path integral becomes independent of how to choose the functional
measure. Then, the information of the conformal anomaly hides between the D and 4 dimen-
sions, in contrast with the case using just four dimensional quantization method. So, it is quite
important to determine the D dependence of the gravitational action. However, there are some
ambiguities when we generalize the four-dimensional gravitational action into D-dimensional
one.

Recently, such ambiguities was resolved by analyzing Hathrell’s renormalization equation
in the case of quantum field theory in curved space with dimensionless conformal coupling
[36, 37, 38, 39, 40, 14]. It was then found that the D dimensional gravitational actions can be
determined at all orders of perturbation, which are classified into two forms only that reduce
to conformally invariant ones at four dimensions, namely, the square of the Weyl tensor and
the Euler density [40, 14]. The renormalizable quantum conformal gravity we consider here is
formulated using these actions [13, 14].

As mentioned above, a significant feature on this theory is that the dynamics of the conformal
mode is induced quantum mechanically. In dimensional regularization, such dynamics emerges
from Laurent expansion of the D-dimensional gravitational bare action around four dimensions.
The pole terms are ordinary counterterms. On the other hand, the finite terms with non-
negative powers of D − 4 produce interaction terms of the conformal mode, which are nothing
but the Wess-Zumino action for conformal anomaly induced quantum mechanically. Especially,
the lowest term is called the Riegert action [15] that gives the kinetic term of the conformal
mode. The renormalization of quantum gravity is carried out with incorporating these induced
terms. Then, the conformal mode does not receive renormalization, namely, its renormalization
factor becomes unity. This property comes from the thing that the conformal mode is treated
exactly without introducing the independent coupling for this mode.

For the traceless tensor mode, its dynamics is described by the Weyl action with introduc-
ing a dimensionless coupling constant t. The perturbation theory is then defined around the
conformally flat spacetime in which the Weyl tensor vanishes. Since the beta function becomes
negative, its coupling constant indicates what is called the asymptotic freedom. However, we
here emphasize that it does not show the free graviton picture propagating on flat spacetime
at high energy limit since the conformal mode still non-perturbatively fluctuates and thus the
spacetime is in completely quantum mechanical phase.

In this thesis, we consider the system with adding the cosmological term and the Einstein
term. The anomalous dimensions of the cosmological constant and the Planck mass can be
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calculated properly by taking the Wess-Zumino interactions into account, and it has been con-
firmed that the result at the zeroth order of t agrees with the exact solution derived from the
BRST conformal symmetry [13]. One of the main achievements done in this thesis is that we
calculate the loop corrections to the cosmological constant and the Planck mass at the order of
αt = t2/4π [14]. Especially, for the cosmological constant, it is given at the two-loop level in this
formulation. The result of the cosmological constant shows that its t-dependent part is negative
while that of the Planck mass is positive. Also, the demonstration of two-loop renormalizability
itself is one of the important purposes of this work.

Furthermore, we consider the effective action related to the cosmological term that depends
on the conformal mode only and examine its renormalization group equation. Owing to the
non-renormalization property of the conformal mode, we then find that it does not depend on
the renormalization group parameter. Since the physical quantity should be invariant under
the renormalization group flow, this implies that the effective potential for the cosmological
term is the physical cosmological constant in this formulation. We then calculate the physical
cosmological constant at the one-loop level explicitly and show that it is given by a function of
the renormalized cosmological constant and the renormalized Planck mass. So, we consider its
value to be the observed value.

This thesis is organized as follows. In chapter 2, we first mention the basic structure of quan-
tum conformal gravity, emphasizing the importance of the Wess-Zumino action for conformal
anomaly in order to preserve diffeomorphism invariance at the quantum level. And also, how
to remove the spacetime singularity and how to overcome the negative-metric mode problem
are briefly summarized here. In chapter 3, we present the formulation using dimensional regu-
larization. After mentioned how to determine the D-dimensional gravitational action without
ambiguities, we provide the propagators and interactions of the gravitational fields, including
the Wess-Zumino actions. We then explain the renormalization techniques to systematically
incorporate the induced dynamics of the conformal mode, in which it is emphasized that the
information of the Wess-Zumino action hides between D and 4 dimensions in this regularization.
Here, we present the beta function of the coupling which becomes negative, we also demonstrate
the non-renormalization property of the conformal mode at the order of αt. In chapter 4, we
consider the system with adding the cosmological term and the Einstein term and calculate the
anomalous dimensions at higher loops, including the corrections of αt. For these calculations,
we choose Landau gauge in order to reduce the numbers of the Feynman diagrams considerably.
In chapter 5, we study the effective action with respect to the conformal mode. We first examine
the renormalization group equation and show that such effective action becomes invariant under
renormalization group flow. And then we calculate such a effective potential as the physical
cosmological constant explicitly at the one-loop level. In chapter 6, we summarize our study
and discuss its physical meanings. In appendix B, we demonstrate that the D-dependence of
the gravitational action can be determined uniquely at all orders in the case of QCD in curved
space. In other appendices, we present various gravitational formulae, details of calculations
and integral formulae for loop calculations.
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Chapter 2

Basic structure

First of all, we overview the basic structure of four-dimensional quantum gravity we discuss in
this thesis.

In order to construct the quantum gravity theory, we here impose basic three conditions:
the diffeomorphism invariance, the finiteness of the theory and 4-dimensional spacetime. Diffeo-
morphism invariance is one of the basic principles of Einstein gravity, and we assume that this
symmetry remains also in quantum theory. The second condition means that physical quantities
should be finite. That is to say, the theory is renormalizable as well as there is no singular point.
Third, we consider the 4-dimensional spacetime since extra dimensions are not observed yet and
there is no reason to consider them at the present stage.

2.1 Quantum conformal gravity action

It is known that quantum gravity theories based the Einstein action can not be renormalizable
since the gravitational coupling has dimension. In order to resolve this problem and also ensure
the positivity of the action, we introduce the fourth derivative action. Besides, we think that
the conformal symmetry is important in a high energy region. So, we consider four-dimensional
quantum gravity theory that has conformally invariant actions for fourth order gravitational
terms and matter fields, which is given as

I =

∫
d4x

√
g

{
1

t2
CαβγδC

αβγδ + bG4 −
M2
P

2
R+ Λ+ Lconf.matter

}
, (2.1)

where t is a dimensionless coupling governing the dynamics of quantum gravity. The coefficient
b is introduced to eliminate divergences proportional to G4. We should note that this constant
is not the independent coupling since the Euler term does not include the kinetic term. Here, we
also add the Einstein term and the cosmological term, which do not prevent the renormalizability
since we consider the energy scale beyond the Planck scale.

Quantum gravity is defined by path integral over the gravitational fields with the weight e−I .
The fourth order part of the action gives the kinetic term of this theory and here we consider
this part. The dynamics of the traceless tensor mode is governed by the Weyl action. The
coupling constant t introduced in front of this action defines the perturbation theory expanded

6



about the conformally flat spacetime satisfying Cαβγδ = 0. On the other hand, since the forth
order action is conformally invariant, it does not depend on the conformal mode. Therefore,
since the conformal mode is not restricted by this action, it must be treated exactly. From this,
the gravitational field is expanded as

gαβ = e2ϕḡαβ , ḡαβ = (ĝeth)αβ = ĝαβ + thαβ +
t2

2
hαγh

γ
β + · · · , (2.2)

where hαβ is a traceless tensor mode satisfying hαα = ĝαβhαβ = 0. We should note that the
conformal factor is written in the exponential of the conformal mode ϕ in order to ensure its
positivity and we do not introduce the coupling constant for this mode, unlike the case of the
traceless tensor mode.

One of the most important features of this quantum gravity theory is that although there
is no fourth order dynamics of the conformal mode in this action, it is induced from the path
integral measure, what is called Wess-Zumino action. It is Jacobian necessary to preserve the
diffeomorphism invariance when we translate the diffeomorphism invariant measure on gαβ into
the practical measure defined on the background metric ĝαβ. From this, we can write the path
integral as

e−Γ =

∫
[dgdf ]ge

−I(f,g) =

∫
[dϕdhdf ]ĝe

−S(ϕ,ḡ)−I(f,g), (2.3)

where S is the Wess-Zumino action for conformal anomaly. The field f expresses a conformally
coupled matter field. The Wess-Zumino action emerges from the zeroth order of the expansion
with respect to coupling constant t, which is called Riegert action [15] defined by

SR(ϕ, ḡ) =
bc

(4π)2

∫
d4x

√
ḡ

[
2ϕ∆̄4ϕ+

(
Ḡ4 −

2

3
∇̄2R̄

)
ϕ

]
, (2.4)

where ∆4 is the fourth-order differential operator defined as

∆4 = ∇4 + 2Rαβ∇α∇β −
2

3
R∇2 +

1

3
∇αR∇α, (2.5)

which becomes conformally invariant at four dimensions for scalar quantities and it is self-adjoint.
The coefficient bc is obtained from the one-loop calculation of the conformal anomaly as

bc =
1

360
(NS + 11NF + 62NA) +

769

180
. (2.6)

The first three terms are the contribution from matter fields in which NS , NF , NA are respec-
tively the number of scalar, fermion and gauge fields [32, 33, 34]. The last term is the sum of
87/20 [9] and −7/90 [17] respectively coming from the gravitational fields hαβ and ϕ. Thus,
since bc is positive, the Riegert action becomes positive definite.

The dynamics of the traceless tensor mode is governed by the Weyl action with the dimen-
sionless coupling t. The beta function of the coupling αt = t2/4π is calculated at one-loop level
as

βt ≡
µ

αt

dαt
dα

= −
[

1

120
(NS + 6NF + 12NA) +

197

30

]
αt
4π
, (2.7)
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which becomes negative. So, we find that the traceless tensor mode indicates the asymptotically
free nature. This justifies that we consider the perturbation theory about conformally flat
spacetime.

We should note that this asymptotic freedom does not mean the realization of the picture
that free gravitons are propagating on the flat background at high energy regions. That is
because the conformal mode still fluctuates non-perturbatively and thus there is no classical
spacetime as the base of such picture.

Here, we also mention that this theory does not have spacetime singularity. It is because the
Weyl action is bounded from below and includes the square of the Riemann curvature tensor, and
thus the singular configurations that this action diverges are excluded quantum mechanically.

2.2 Diffeomorphism invariance

Under the metric decomposition (2.2), the general coordinate transformation defined as

δξgαβ = gαγ∇βξ
γ + gγβ∇αξ

γ (2.8)

is completely separated into the transformations of the conformal mode and the traceless tensor
mode as

δξϕ = ξγ∇̂γϕ+
1

4
∇̂γξ

γ ,

δξ ḡαβ = ḡαγ∇̄βξ
γ + ḡβγ∇̄αξ

γ − 1

2
ĝαβ∇̂γξ

γ ,

(2.9)

where ∇̄αξ
α = ∇̂αξ

α is used. Moreover, we can rewrite the second equation in terms of hαβ as

δξhαβ =
1

t

(
∇̂αξβ + ∇̂βξα − 1

2
ĝαβ∇̂γξ

γ

)
+ ∇̂γhαβξ

γ +
1

2
hαγ(∇̂βξ

γ − ∇̂γξβ) +
1

2
hβγ(∇̂αξ

γ − ∇̂γξα)

+O(h2),

(2.10)

where ξα = ĝαβξ
β.

BRST conformal symmetry Because of the non-perturbative treatment of the conformal
mode, our quantum conformal gravity has a very important property at t = 0, called the BRST
conformal symmetry [22, 23]. It arises as a part of diffeomorphism symmetry in which the gauge
parameter ξα is given as the conformal Killing vectors satisfying the equation

∇̂αζβ + ∇̂βζα − 1

2
ĝαβ∇̂γζ

γ = 0. (2.11)

In this case, the first term of the transformation (2.10) vanishes and the second term becomes
effective. We then obtain the conformal transformations

δζϕ = ζγ∂γϕ+
1

4
∇̂γζ

γ , (2.12)

δζhαβ = ζγ∇̂γhαβ +
1

2
hαγ

(
∇̂βζ

γ − ∇̂ζβ
)
+

1

2
hβγ

(
∇̂αζ

γ − ∇̂γζα

)
(2.13)
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as a gauge transformation. The BRST conformal transformation is defined by replacing the
gauge parameter ζα with the corresponding ghost field. This symmetry means that all theories
connecting one another by conformal transformations becomes gauge-equivalent.

Thus, at the vanishing coupling limit of t = 0, the quantum gravity system can be described
as a conformal field theory with BRST conformal symmetry. This system is governed by the
induced Riegert action (2.4) and the kinetic term of the Weyl action. The physical states of
quantum gravity are defined at the t = 0 limit. We then have found that the BRST conformal
symmetry makes all negative-metric modes unphysical and physical fields are given by a real
primary scalar with a definite conformal dimension in terms of conformal field theory. The
anomalous dimensions of physical fields at t = 0 can be determined exactly using this symmetry.

The BRST conformal symmetry is nothing but a representation of the background change
of the background metric

ĝαβ → e2σ ĝαβ . (2.14)

This invariance originally comes from that the conformal mode is treated exactly so that the
shift change of the conformal mode ϕ → ϕ + σ is equivalent to the conformal change of the
background metric (2.14). Since the conformal mode is now the integration variable and the
path integral measure is invariant under the local shift, the theory becomes invariant under the
conformal change of the background metric. As a consequence, we can choose any background
as far as it is conformally flat. In what follows, when we calculate loop corrections, we take the
flat background ĝαβ = δαβ .
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Chapter 3

Renormalizable quantum gravity

In the previous chapter, we overviewed the basic structure of four-dimensional quantum confor-
mal gravity. In this chapter, we formulate this theory with using dimensional regularization. The
advantages of using this regularization are that it is only the method we can calculate higher loop
corrections with preserving the diffeomorphism invariance. And also, the theory becomes inde-
pendent of the choice of the path integral measure owing to the property of

∫
dDp = δ(D)(0) = 0.

Moreover, there are no quadratic and quartic divergences, which are substantial in UV theo-
ries without Landau pole. On the other hand, since the contributions from the measure such
as conformal anomalies are hidden between D and 4 dimensions, we have to determine the D
dependence of the gravitational action exactly.

When we generalize the fourth derivative action in four dimensions into that in arbitrary
dimensions, ambiguities emerge. We recently resolved this problem with using Hathrell’s renor-
malization group equation and then we determined the form of the gravitational actions: the
square of the D-dimensional Weyl tensor FD and the modified Euler density GD (Details are
presented in appendix B).

Furthermore, as mentioned before, this theory has the background metric independence
represented as BRST conformal symmetry. Owing to this symmetry, we can choose the flat
metric as a background. Thus, we can formulate quantum gravity theory as a usual quantum
field theory on the flat spacetime.

3.1 Quantum conformal gravity action in D dimensions

Here, we use the obtained counterterms as an quantum gravity action and consider the system
with adding the Einstein-Hilbert action, the cosmological constant term and the conformally
coupled matter field action [13, 14]. Then, our quantum gravity action is expressed as

S =

∫
dDx

√
g

[
1

t20
FD + b0GD + Λ0 −

M2
0

2
R+ Lmatter

]
, (3.1)

where t0 is the bare dimensionless gravitational coupling constant. The b0 is another dimen-
sionless bare quantity, but it is not an independent coupling as mentioned below. The mass
parameters M0 and Λ0 are the bare Planck mass and the bare cosmological constant.
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Here again, we present the D-dimensional Weyl action

FD = C2
αβγδ = RαβγδR

αβγδ − 4

D − 2
RαβR

αβ +
2

(D − 1)(D − 2)
R2 (3.2)

and the D-dimensional Euler density, which is determined to be

GD = G4 + (D − 4)χ(D)H2, (3.3)

where G4 is the usual Euler combination and H is a rescaled scalar curvature defined as G4 =
R2
αβγδ − 4R2

αβ +R2 and H = R/(D − 1), respectively. The function χ is expanded around four
dimensions as

χ(D) =

∞∑
n=1

χn(D − 4)n−1. (3.4)

The coefficient χn can be determined order by order and the first two coefficients have been
calculated (see eq. (B.86)) as

χ1 =
1

2
, χ2 =

3

4
. (3.5)

We have then shown that these are universal values independent of gauge group and the contents
of matter fields as far as they are conformally coupled. Further from the same analysis of QED,
it has been found that χ1,2 are the same values and χ3 is given by 1/3. We use these values also
in quantum gravity since it should reduce to the curved theory in the classical limit of gravity
such as, for instance the large N limit of gauge group SU(N).

3.2 Renormalization procedure

The perturbation in t0 implies that the gravitational field is expanded around a conformally
flat spacetime where the Weyl tensor vanishes. Thus, we quantize the gravitational field by
separating into the conformal mode ϕ and the traceless tensor mode h0αβ as

gαβ = e2ϕḡαβ, ḡαβ = (et0h0)αβ = δαβ + t0h0αβ +
t20
2
hγ0αh0γα + · · · , (3.6)

where hα0α = 0 and the flat background is taken in what follows.
The renormalization factors of the traceless tensor mode and the coupling constant are

defined as usual by

h0αβ = Z
1
2
h hαβ , t0 = µ2−

D
2 Ztt, (3.7)

where µ is a mass scale and the renormalized coupling t is dimensionless. On the other hand, since
we do not introduce the coupling constant for the conformal mode, diffeomorphism invariance
requires that it is not renormalized such that

Zϕ = 1. (3.8)
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It can be easily understand from the fact that the gauge invariance results in the relationship
between the renormalization factors of the coupling constant and the corresponding gauge field.1

No coupling constant thus implies that there is no field-renormalization factor. For this reason,
we write the conformal mode ϕ, not ϕ0 in (3.6). This is one of the most important features in our
renormalization calculations, which reflects the independence of the choice of the background
metric as mentioned above.

We here expand these renormalization factors as follows:

lnZh =
∞∑
n=1

fn
(D − 4)n

, lnZ−2
t =

∞∑
n=1

gn
(D − 4)n

. (3.9)

Using these terms, we can renormalize UV divergences proportional to the FD term. The beta
function of the coupling constant is then defined as

βt ≡
µ

αt

dαt
dµ

= D − 4 + β̄t, (3.10)

where αt = t2/4π and β̄t = µd(lnZ−2
t )/dµ.

In comparison with the traceless tensor mode, the conformal mode has more complicated
renormalization structure. Since the volume integral of GD becomes topological at four dimen-
sion, its kinetic term emerges from the first order of D − 4. This means that GD does not
contribute to classical gravitational dynamics. And so, we define the bare coupling constant b0
in a pure pole series as follows:

b0 =
µD−4

(4π)
D
2

∞∑
n=1

bn
(D − 4)n

. (3.11)

Its residues bn at n ≥ 2 are the function of the coupling constant t only, while the residue of
simple pole b1 has both a constant part b and a coupling dependent part b′ as

b1 = b+ b′1(αt). (3.12)

In order to work out various renormalization calculation with respect to the conformal mode, we
need some kind of procedure which incorporates the dynamics induced quantum mechanically.
Here, we propose that for the moment we temporarily treat b as another coupling constant for
the conformal mode. In that case, the effective action becomes finite up to the topological term,
which is expressed as follows:

Γ =
µD−4

(4π)
D
2

b− bc
D − 4

∫
dDx

√
ĝĜ4 + ΓR(αt, b), (3.13)

1For instance, ZeZ
1/2
3 = 1 in QED. Precisely, the argument in general holds only for the background gauge

field in the background field method [45]. For the conformal mode, however, it is true since this mode is not
gauge-fixed unlike the traceless tensor mode so that the renormalization factor of the conformal mode is the same
to that of the background and it becomes unity from diffeomorphism invariance. Later, the background field
method is used in various loop calculations.
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where ΓR is a renormalized effective action. We should notice that the divergent term emerges
only when we choose a curved background metric. The constant bc comes from the direct one
loop calculation given by eq. (2.6). After the renormalization procedure is carried out, we take
b = bc. In this way, we can obtain the finite effective action ΓR(t, bc) whose dynamics is governed
by a single gravitational coupling t.

From the renormalization group equation µdb0/dµ = 0, we obtain the following expression:

µ
db

dµ
= (D − 4)β̄b, (3.14)

where β̄b is a finite function given as

β̄g = −
(
∂b1
∂b

)−1(
b1 + αt

∂b1
∂αt

)
. (3.15)

Here, in order to be able to replace the coupling b to the constant bc at the end, the condition
µdb/dµ = 0 should be satisfied at four dimensions. Therefore, (3.14) ensures the validity of the
renormalization procedure proposed above.

From the renormalization group analysis of QED and QCD in curved space, we find that
b′1 in (3.12) arises at the fourth order of the gauge-coupling constant. From this fact and the
similarity between the gauge field and the traceless tensor field ruled by the Weyl action, we
can guess that the αt dependence of b′1 is also given as

b′1 = O(α2
t ), (3.16)

and then we obtain β̄b = −b + O(α2
t ). This assumption should be verified through direct two-

loop calculations of three-point functions of the traceless tensor mode or indirect calculations
using the renormalization group equation, but this work is not complete yet.

3.3 Propagators and Wess-Zumino interactions

In this section, we will derive the conformal mode propagator and the traceless tensor mode
propagator, and Wess-Zumino interactions to calculate some Feynman diagrams.

3.3.1 The FD term

The Weyl term in D-dimensions is expanded as follows

1

t20

∫
dDx

√
gFD =

1

t20

∫
dDxe(D−4)ϕC̄αβγδC̄

αβγδ

=

∫
dDx

[
1

t20
C̄αβγδC̄

αβγδ +
D − 4

t20
ϕC̄αβγδC̄

αβγδ + · · ·
]
. (3.17)

The first term of R.H.S gives the propagator and self-interactions of the traceless tensor mode.
The second and other terms are the induced Wess-Zumino actions associated with the Weyl-
squared conformal anomaly, which give new interactions that involve the conformal mode.
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The kinetic term of the traceless tensor mode is then given as∫
dDx

[
D − 3

D − 2

(
h0αβ∂

4h0
αβ + 2χ0α∂

2χ0β

)
− D − 3

D − 1
χα0∂α∂βχ

β
0

]
, (3.18)

where χ0α is defined as

χ0α = ∂βh0αβ . (3.19)

Also, we introduce the gauge fixing term defined in Appendix B as∫
dDx

1

ζ0
χ0αN

αβχ0αβ (3.20)

where Nαβ is defined as

Nαβ =
2(D − 3)

D − 2

(
−2ηαβ∂

2 +
D − 2

D − 1
∂α∂β

)
(3.21)

and the gauge parameter is renormalized using the renormalization factor of h as ζ0 = Zhζ. The
renormalization of the ghost sector defined in Appendix C is carried out as usual by introducing
its own renormalization factor.

Now, we derive the propagator of the traceless tensor mode in arbitrary gauge. The full
kinetic action of the traceless tensor mode in momentum space is

Skinh =
1

2

∫
dDk

(2π)D
hαβ(k)K

(ζ)
αβ,γδ(k)hγδ(−k), (3.22)

where taking into account of the traceless condition and the symmetry of indices, the complete

form of the kernel K
(ζ)
αβ,γδ(k) is given as

K
(ζ)
αβ,γδ(k) =

2(D − 3)

D − 2

{
IHαβ,γδk

4 +
1− ζ

ζ

[
1

2
(δαγkβkδ + δβγkαkδ + δαδkβkγ + δβδkαkγ)k

2

− 1

D − 1
(δαβkγkδ + δγδkαkβ)k

2 +
1

D(D − 1)
δαβδγδk

4 − D − 2

D − 1
kαkβkγkδ

]}
. (3.23)

Here, IHαβ,γδ is an identity operator defined as

IHαβ,γδ =
1

2
(δαγδβδ + δαδδβγ)−

1

D
δαβδγδ, (3.24)

which satisfies (IH)
2
= IH . Then, the equation of motion is expressed as K

(ζ)
αβ,γδ(k)h

γδ(k) = 0.

By solving the inverse of K
(ζ)
αβ,γδ(k), we can obtain the traceless tensor mode propagator as

follows

⟨hαβ(k)hγδ(−k)⟩ =
D − 2

2(D − 3)

1

k4
I
(ζ)
αβ,γδ(k), (3.25)
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where

I
(ζ)
αβ,γδ(k) =

1

2
(δαγδβδ + δαδδβγ)−

1

D
δαβδγδ

+ (ζ − 1)

{
1

2

(
δαγ

kβkδ
k2

+ δαδ
kβkγ
k2

+ δβγ
kαkδ
k2

+ δβδ
kαkγ
k2

)
− 1

D − 1

(
δαβ

kγkδ
k2

+ δγδ
kαkβ
k2

)
+

1

D(D − 1)
δαβδγδ −

D − 2

D − 1

kαkβkγkδ
k4

}
. (3.26)

When we act momentum kα on (3.25),

kα⟨hαβ(k)hγδ(−k)⟩ = ζ
D − 2

2(D − 3)

1

k4

(
1

2
kγδβδ +

1

2
kδδβγ −

1

D
kβδγδ

)
. (3.27)

From this, the traceless tensor mode propagator satisfies the transverse condition when we take
ζ = 0, which is called Landau gauge.

When we expand the second term in equation (3.17), we obtain the three point interaction,
which is given as

S
(D−4)
F [ϕhh] = (D − 4)

∫
dDxϕ

[
∂γ∂δhαβ∂

γ∂δhαβ − 2∂γ∂βhαδ∂
γ∂αhβδ + ∂γ∂δhαβ∂

α∂βhγδ

− 4

D − 2

{
1

4
∂2hαβ∂

2hαβ − ∂2hαβ∂αχβ +
1

2
∂αχβ∂

αχβ +
1

2
∂αχβ∂

βχα
}

+
2

(D − 1)(D − 2)
∂αχ

α∂βχ
β

]
, (3.28)

where χα = ∂βhαβ . We use this interaction to calculate the two-loop quantum gravity correction
of the cosmological constant. The interaction term in momentum space is written in Appendix
D because their expressions are very long.

3.3.2 The GD term

The kinetic term of the conformal mode and their interaction arise from the D-dimensional
Euler term GD. From the expression of the bare coefficient b0 (3.11), we can expand it in terms
of the conformal mode as follows:

b0

∫
dDx

√
gGD =

µD−4

(4π)
D
2

∫
dDx

√
ĝ

{(
b1

D − 4
+

b2
(D − 4)2

+ · · ·
)
Ḡ4

+

(
b1 +

b2
D − 4

+ · · ·
)(

2ϕ∆̄4ϕ+ Ḡ4ϕ− 2

3
R̄∇̄2ϕ+

1

18
R̄2

)
+ {(D − 4)b1 + b2 + · · · }

(
ϕ2∆̄4ϕ+

1

2
Ḡ4ϕ

2 + 3ϕ∇̄4ϕ

+ 4ϕR̄αβ∇̄α∇̄βϕ− 14

9
ϕR̄∇̄2ϕ+

10

9
ϕ∇̄αR̄∇̄αϕ

− 7

9
R̄∇̄2ϕ+

1

18
R̄2ϕ+

5

108
R̄2

)
+ · · ·

}
, (3.29)
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The first term in R.H.S of (3.29) is the counterterm to suppress the UV divergences proportional
to Ḡ4, which determine the residue bn in eq. (3.11). We here emphasize that the finite part
proportional to b1 in the second term gives the Riegert action (2.4), which is the Wess-Zumino
action related to the conformal anomaly E4 (B.87) at four dimensions.

We find that the kinetic term of the conformal mode is derived from the Riegert action as

Skin
ϕ = 2b

µD−4

(4π)
D
2

∫
dDxϕ∂4ϕ. (3.30)

From this, we can obtain the conformal mode propagator as follows:

⟨ϕ(k)ϕ(−k)⟩ = µ4−D(4π)
D
2

4b

1

k4
. (3.31)

Therefore, quantum corrections from this mode are expanded in a power series with respect to
1/b, which corresponds to considering the large-N expansion for the number of matter fields
NS , NF and NA in eq. (2.6).

Next, we present gravitational interactions to calculate various diagrams in what follows.
First, the three-point self-interaction induced in the second term is given as

S
(D−4)b
[ϕϕϕ] = (D − 4)b

µD−4

(4π)
D
2

∫
dDxϕ2∂4ϕ. (3.32)

Here, note that the contribution of this interaction to UV divergences arises in two or higher
than two loop corrections because of the presence of the D − 4 factor.

Furthermore, expanding the metric ḡαβ in each term with respect to the traceless tensor
mode, we obtain the interactions between the conformal mode and the traceless tensor mode.
From the −2ϕ∇̄2R̄/3 and R̄2/18 terms in the third terms of eq. (3.29), we obtain two quadratic
interactions

SbtG[ϕh] = −2

3
bt
µD/2−2

(4π)D/2

∫
dDx∂2∂α∂βϕhαβ, (3.33)

Sbt
2

G[hh] =
bt2

(4π)D/2

∫
dDx

1

18
∂αχ

α∂βχ
β. (3.34)

We should note that these interactions do not contribute to loop calculations in Landau gauge.
Therefore, when we choose Landau gauge, we can reduce the number of Feynman diagrams.

The three-point interaction derived from the 2ϕ∆̄4ϕ term is given as

SbtG[ϕϕh] = b
µD−4

(4π)D/2

∫
dDx2ϕ∆̄4ϕ|O(t) (3.35)

= bt
µD/2−2

(4π)D/2

∫
dDxhαβ

(
4∂αϕ∂β∂

2ϕ+
8

3
∂γ∂αϕ∂γ∂βϕ− 4

3
∂γϕ∂α∂β∂γϕ− 4∂α∂βϕ∂

2ϕ

)
(3.36)
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and the four-point interaction is

Sbt
2

G[ϕϕhh] = 2b
µD−4

(4π)D/2

∫
dDxϕ∆̄4ϕ|O(t2)

= 2bt2
1

(4π)D/2

∫
dDxϕ

[
hαβ

(
∂α∂βh

γδ∂γ∂δϕ+ 2∂αh
γδ∂β∂γ∂δϕ

+ hγδ∂α∂β∂γ∂δϕ+
1

2
∂αhγβ∂

γ∂2ϕ+
1

2
χβ∂α∂

2ϕ+ ∂α∂βχ
γ∂γϕ

+ 2∂αχ
γ∂β∂γϕ+ 2χγ∂α∂β∂γϕ

)
+ χα∂αh

γδ∂γ∂δϕ+ χα∂αχ
β∂βϕ

+ χαχβ∂α∂βϕ+
1

2
(h2)αβ∂α∂β∂

2ϕ

+ ∂2
{
1

2
(h2)αβ∂α∂βϕ+

1

2
hαβ∂αh

γ
β∂γϕ+

1

2
hαβχβ∂αϕ

}
+ 2ϕ

{
−1

2
∂αχβ∂αhβγ∂

γϕ− 1

2
∂αχβ∂

βhαγ∂γϕ+
1

2
∂αχβ∂γhαβ∂γϕ+

1

2
∂2hαβ∂αhβγ∂

γϕ

− 1

4
∂2hαβ∂γhαβ∂γϕ− hαβ∂βχ

γ∂α∂γϕ− hαβ∂γχβ∂α∂γϕ+
1

2
hαβ∂2hβγ∂α∂

γϕ

− 1

2
∂γhαβ∂

βhγδ∂
α∂δϕ− 1

4
∂γhαβ∂

δhαβ∂γ∂δϕ

− 1

2
∂α(hαβ∂

γhβδ)∂γ∂δϕ+
1

2
∂γ(hαβ∂δh

βγ)∂α∂δϕ+
1

2
∂α(hαβ∂

βhγδ)∂
γ∂δϕ

}
− 2

3
ϕ

{
−χα

(
∂βχ

β∂αϕ+
1

2
χα∂

2ϕ

)
− hαβ(∂αχβ∂

2ϕ+ ∂γχ
γ∂α∂βϕ)−

1

4
∂γhαβ∂γhαβ∂

2ϕ

}
+

1

3
ϕ

{
−1

2
∂γhαβ∂γ∂δhαβ∂

δϕ− 1

2
∂α(χβχ

β)∂αϕ− ∂γ(h
αβ∂αχβ)∂

γϕ− hαβ∂β∂γχ
γ∂αϕ

}]
.

(3.37)

Furthermore, we need the following interactions in order to calculate the two-loop quantum
gravity corrections for cosmological constant in next chapter. The three-point interaction with
bt2 follows from ϕ(Ḡ4 − 2∇̄2R̄/3) in the second term of eq. (3.29) is given as

Sbt
2

G[ϕhh] = b
µD−4

(4π)D/2

∫
dDxϕ

(
Ḡ4 −

2

3
∇̄2R̄

)∣∣∣∣
O(t2)

= bt2
1

(4π)D/2

∫
dDxϕ

[
4

3
∂γ∂δhαβ∂

γ∂δhαβ − 2δβγ∂ϵ∂
δhαβ∂

ϵ∂αhγδ

+ ∂γ∂δhαβ∂
α∂βhγδ − 2δβδ∂ϵ∂

αhαβ∂
ϵ∂γhγδ − 2∂β∂γhαβ∂

α∂δhγδ

− δαγδβδ∂2hαβ∂
2hγδ + 4δβδ∂2hαβ∂

α∂δhγδ + ∂α∂βhαβ∂
γ∂δhγδ

+
1

3
δαγδβδ∂ϵhαβ∂

2∂ϵhγδ +
1

3
δαδ∂2(∂βhαβ∂

γhγδ) +
2

3
δβδ∂2(hαβ∂

α∂γhγδ)

+
2

3
hαβ∂

α∂β∂γ∂δhγδ +
2

3
∂βhαβ∂

α∂γ∂δhγδ

]
. (3.38)
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The three-point interaction with (D−4)bt obtained by expanding the quadratic part of ϕ in the
third terms of eq. (3.29) up to the order O(t) is given as

S
(D−4)bt
G[ϕϕh] = (D−4)b

µD−4

(4π)D/2

∫
dDx

[
1

2
Ḡ4ϕ

2+3ϕ∇̄4ϕ+R̄αβ∇̄α∇̄βϕ−
14

9
ϕR̄∇̄2ϕ+

10

9
ϕ∇̄γR̄∇̄γϕ

]∣∣∣∣
O(t)

= −(D − 4)bt
µD/2−2

(4π)D/2

∫
dDxϕ

[
2∂2hαβ∂α∂βϕ+ 6hαβ∂α∂β∂

2ϕ+ 6χα∂α∂
2ϕ

− 4∂αχβ∂α∂βϕ− 10

9
∂α∂βχ

α∂βϕ+
14

9
∂αχ

α∂2ϕ

]
. (3.39)

Moreover, expanding up to O(t2), we obtain the following four-point interaction:

S
(D−4)bt2

G[ϕϕhh] = (D−4)b
µD−4

(4π)D/2

∫
dDx

[
1

2
Ḡ4ϕ

2+3ϕ∇̄4ϕ+R̄αβ∇̄α∇̄βϕ−
14

9
ϕR̄∇̄2ϕ+

10

9
ϕ∇̄γR̄∇̄γϕ

]∣∣∣∣
O(t2)

= (D − 4)bt2
1

(4π)D/2

∫
dDx

[
1

2
(∂γ∂δhαβ∂

γ∂δhαβ − 2∂γ∂βhαδ∂
γ∂αhβδ

+ ∂γ∂δhαβ∂
αβhγδ − 2∂αχβ∂

αχβ − 2∂αχβ∂
αχβ − 2∂αχβ∂

βχα

− ∂2hαβ∂
2hαβ + 4∂αχβ∂

2hαβ + ∂αχ
α∂βχ

β)ϕ2

+ 3ϕ

{
∂2
(
1

2
(h2)αβ∂α∂βϕ+

1

2
hαβ∂αh

γ
β∂γϕ+

1

2
hαβχβ∂αϕ

)
+ hαβ

(
∂α∂βh

γδ∂γ∂δϕ+ 2∂αh
γδ∂β∂γ∂δϕ+ hγδ∂α∂β∂γ∂δϕ+

1

2
∂αh

γ
β∂γ∂

2ϕ

+
1

2
χβ∂α∂

2ϕ+ ∂α∂βχ
γ∂γϕ+ 2∂αχ

γ∂β∂γϕ+ 2χγ∂α∂β∂γϕ

)
+ χα∂αh

γδ∂γ∂δϕ+ χα∂αχ
β∂βϕ+ χαχβ∂α∂βϕ+

1

2
(h2)αβ∂α∂β∂

2ϕ

}
+ 4ϕ

{
−1

2
∂αχβ∂αhβγ∂

γϕ− 1

2
∂αχβ∂

βhαγ∂γϕ+
1

2
∂αχβ∂γhαβ∂γϕ

+
1

2
∂2hαβ∂αhβγ∂

γϕ− 1

4
∂2hαβ∂γhαβ∂γϕ− hαβ∂βχ

γ∂α∂γϕ− hαβ∂γχβ∂α∂γϕ

+
1

2
hαβ∂2hβγ∂α∂

γϕ− 1

2
∂γhαβ∂

βhγδ∂
α∂δϕ− 1

4
∂γhαβ∂

δhαβ∂γ∂δϕ

− 1

2
∂α(hαβ∂

γhβδ)∂γ∂δϕ+
1

2
∂γ(hαβ∂δh

βγ)∂α∂δϕ+
1

2
∂α(hαβ∂

βhγδ)∂
γ∂δϕ

}
− 14

9
ϕ

{
−χα

(
∂βχ

β∂αϕ+
1

2
χα∂

2ϕ

)
− hαβ(∂αχβ∂

2ϕ+ ∂γχ
γ∂α∂βϕ)−

1

4
∂γhαβ∂γhαβ∂

2ϕ

}
+

10

9
ϕ

{
−1

2
∂γhαβ∂γ∂δhαβ∂

δϕ− 1

2
∂α(χβχ

β)∂αϕ− ∂γ(h
αβ∂αχβ)∂

γϕ

− hαβ∂β∂γχ
γ∂αϕ

}]
. (3.40)
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3.4 Calculations of two-points functions

We present some results of the renormalization factors for loop diagrams with gravitational
internal lines. Some of them have already been calculated elsewhere [11, 13]. We here add new
calculations in arbitrary gauge as well [14].

First, we mention how to treat IR divergences. In fourth-order theories, in general, IR
divergences become stronger than those in the usual second-order field theories. Further, since
the Einstein term and the cosmological constant term have the exponential factor of ϕ, these
terms cannot be considered as usual mass terms. So, we have to regularize IR divergences by
introducing an infinitesimal mass parameter z in the propagators (3.25) and (3.31) as

1

k4
→ 1

k4z
=

1

(k2 + z2)2
, (3.41)

while we do not introduce z in the tensor part I
(ζ)
αβ,γδ(k) to preserve the transverse and traceless

properties. Since this mass parameter violates diffeomorphism invariance, it is a virtual param-
eter that should be canceled out at the end. This means that a massive graviton is not gauge
invariant. In the first place, the ordinary particle picture itself is not true.

In Feynman diagrams, the conformal mode ϕ and the traceless tensor mode hαβ are respec-
tively denoted by a solid line and a wave line.

3.4.1 Beta function

First, let us calculate the beta function of the coupling αt defined by eq. (3.10). We here
calculate the contribution from the two-point function of hαβ with an internal ϕ-line denoted
by Figure.3.1, as an example.

Using the three-point interaction SbtG[ϕϕh](3.36) with the momentum function V 3
αβ (E.1), we

can calculate the contribution from the diagram (a) in Figure.3.1 as

ΓW
1 = −µ

4−D

16
t2
∫

dDk

(2π)D
hαβ(k)hγδ(−k)

∫
dDp

(2π)D
1

p4z(p+ k)4z

× V 3
αβ(p,−p− k)V 3

γδ(−p, p+ k)

=
αt
4π

∫
dDk

(2π)D
hαβ(k)hγδ(−k)

{
1

30

(
1

2
δαγδβδk

4 − δαγkβkδk
2

+
1

3
kαkβkγkδ

)(
− 2

D − 4
− γ + ln 4π − ln

k2

µ2
+

229

60

)
− 1

270
kαkβkγkδ

}
,

(3.42)

where there is no b dependence and IR divergences cancel out within this diagram. On the other
hand, the tadpole diagram (b) coming from the four-point interaction Sbt

2

G[ϕϕhh] (3.37) gives no
contributions because the tadpole integral vanishes at the limit z → 0 due to the presence of
derivatives on the ϕ field in the interaction.

R.H.S of the above equation can be combined into the D-dimensional Weyl form and thus
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the effective action from Figure.3.1 is given by

ΓW
1 =

αt
4π

∫
dDk

(2π)D
hαβ(k)hγδ(−k)

{
− 1

30

(
2

D − 4
− γ + ln 4π + ln

k2

µ2
− 289

60

)
×
[
D − 3

D − 2

(
δαγδβδk

4 − 2δαγkβkδk
2
)
+
D − 3

D − 1
kαkβkγkδ

]}
. (3.43)

This divergence can be removed using the field renormalization factor Zh defined in (3.7) such
that Zh − 1 is taken to be (1/15)(αt/4π)/(D − 4). Since this diagram is gauge invariant, it has

a relationship with the renormalization factor Zt (3.7) such as ZtZ
1/2
h = 1. Thus, we obtain the

contribution to Zt − 1 from Figure.3.1 to be (−1/30)(αt/4π)/(D − 4). This result is consistent
with the previous calculation using the DeWitt-Schwinger method in four dimensions [17].

(a) (b)

Figure 3.1: The two-point function of hαβ corrected with the conformal mode ϕ

In general, the renormalization factor for the coupling constant is given by [32, 33, 34]

Zt = 1 +

[
1

240
(NS + 6NF + 12NA) +

197

60

]
αt
4π

1

D − 4
+O(α2

t ). (3.44)

For the contribution from the traceless tensor mode, we here quote the result [9, 17, 19] obtained
by using the background field method [45] as follows. Introducing the background traceless tensor

mode as ĝαβ = (etĥ)αβ and calculating the two-point function of the background ĥαβ , we obtain

the contribution 199/60 for Zt using the relation ZtZ
1/2

ĥ
= 1 ensured by the gauge invariance of

the background, where Zĥ is the renormalization factor of the background ĥαβ (see footnote 1).
The sum of this value and −1/30 from the conformal mode calculated above gives the last term
at O(αt). Thus, we obtain the beta function (2.7) that has the negative value. The coupling
αt indicates the asymptotic freedom, which guarantees that we develop the perturbation theory
about conformally flat spacetime.

Here, note that the asymptotic limit does not mean the realization of a picture in which
free gravitons are propagating in the flat spacetime because the conformal mode is still non-
perturbative and so the spacetime totally fluctuates quantum mechanically. And also, it indi-
cates that scalar-like fluctuations by the conformal mode are much more dominant than tensor
fluctuations at very high energies.

3.4.2 Non-renormalization theorem

In this subsection we demonstrate that the non-renormalization theorem Zϕ=1 (3.8) indeed holds
at O(αt) in arbitrary gauge. Figure 3.2 shows Feynman diagrams for the two-point function of
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bt bt

(a) Γ1

bt
2

(b) Γ2

Figure 3.2: One loop correction of the conformal mode with respect to the traceless tensor mode

the conformal mode with an internal line of the traceless tensor mode.
These corrections are calculated as follows

ΓR1 = 2b
αt
4π

µD−4

(4π)D/2

∫
dDp

(2π)D
ϕ(p)ϕ(−p)p4

[
10

3(D − 4)
+

5

3

(
γ − ln 4π + ln

z2

µ2

)
− 43

18

+ ζ

{
8

3(D − 4)
+

4

3

(
γ − ln 4π + ln

z2

µ2

)
− 10

9

}]
, (3.45)

ΓR2 = 2b
αt
4π

µD−4

(4π)D/2

∫
dDp

(2π)D
ϕ(p)ϕ(−p)p4

[
− 10

3(D − 4)
− 5

3

(
γ − ln 4π + ln

z2

µ2

)
+ ζ

{
− 8

3(D − 4)
− 4

3

(
γ − ln 4π + ln

z2

µ2

)
+

13

9

}]
. (3.46)

From these calculations, the one-loop correction for the two-point function is expressed as

ΓR1+2 = 2b
αt
4π

µD−4

(4π)D/2

∫
dDp

(2π)D
ϕ(p)ϕ(−p)p4

[
−25

12
+

1

3
ζ

]
. (3.47)

The UV and IR divergences are respectively canceled and we find that the conformal mode is
not renormalized. Thus, the renormalization factor of ϕ becomes Zϕ = 1 at O(αt).

The other nontrivial test of he non-renormalization theorem have been done in the quantum
conformal gravity coupled to QED at O(α3

e) and at O(α3
e/b) with a internal ϕ-line, where αe is

the fine structure constant of QED [11].
In the following calculations, we also see that the renormalization can be carried out with

holding Zϕ = 1.
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Chapter 4

Renormalization of mass parameters

Let us calculate the anomalous dimensions of the Planck mass and the cosmological constant
with holding Zϕ = 1 [13, 14], including a consistency check of the renormalizability. We first
calculate them at t = 0 and demonstrate that the results agree with the exact solution derived
using the BRST conformal symmetry. We then calculate quantum corrections at the order of
αt.

4.1 Definitions of anomalous dimension

The bare Planck mass is represented with the renormalization factor ZEH as

M2
0 = µD−4ZEHM

2. (4.1)

The anomalous dimension of the Planck mass is defined as

γEH ≡ − µ

M2

dM2

dµ
= D − 4 + γ̄EH, (4.2)

where γ̄EH ≡ µ d
dµ lnZEH.

The cosmological constant is represented with using the renormalization factor ZΛ and the
pure-pole factor LM by

Λ0 = µD−4ZΛ

(
Λ + LMM

4
)
. (4.3)

Its anomalous dimension is then defined as

γΛ ≡ −µ
Λ

dΛ

dµ
= D − 4 + γ̄Λ +

M4

Λ
δ̄Λ, (4.4)

where γ̄Λ and δ̄Λ are respectively defined by

γ̄Λ = µ
d

dµ
lnZΛ, (4.5)

δ̄Λ = µ
dLM
dµ

− (D − 4)LM + (γ̄Λ − 2γ̄EH)LM . (4.6)
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In general, these anomalous dimensions are expanded in power series of 1/bc. Indeed, in the
classical limit defined as bc → ∞, quantum corrections with respect to conformal mode should
vanish since the conformal mode does not propagate in this limit. Therefore, the anomalous
dimension of the cosmological constant should vanish at the classical limit even at αt ̸= 0. On
the other hand, the anomalous dimension of the Planck mass has a quantum correction by αt
that does not vanish at the classical limit.

4.2 Anomalous dimensions and BRST conformal symmetry

The anomalous dimension of the cosmological constant at t = 0 have been calculated up to the
order of 1/b3c . The corresponding Feynman diagrams are shown in Figure 4.1. These diagrams
are evaluated with particular attention to the dependence of fictitious mass scale z. We then
extract UV divergences only, which all yield simple poles, while IR divergences are ignored for
the moment, which are discussed in the next chapter.

(a)

(D − 4)b

(b)

(D − 4)b (D − 4)b

(c)

(D − 4)2b

(d)

Figure 4.1: Diagrams for the cosmological constant with respect to ϕ up to order O( 1
b3
)

The UV divergences can be renormalized by taking the renormalization factor as

ZΛ = 1 +

(
4

b
+

4

b2
+

20

3

1

b3

)
1

D − 4
. (4.7)

Using eq. (4.7), we thus obtain the following expression:

γ̄Λ =
4

b
+

8

b2
+

20

b3
. (4.8)

This value vanishes at the large b limit, which is consistent with the classical limit.
Substituting b for bc at last, we obtain it in four dimension at four dimensions. This result

agrees with the first three terms of the 1/bc expansion of the exact solution

γΛ = 2bc

(
1−

√
1− 4

bc

)
− 4 (4.9)

derived by using the BRST conformal symmetry.
We next present the anomalous dimension for the Planck mass and δ̄Λ in the mass-dependent

part of (4.4). The Feynman diagrams for these quantities are shown in Figure.4.2, in which the
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∂2φ

(a)

∂2φ

(b) (c)

Figure 4.2: Diagrams for the Einstein Hilbert term with respect to ϕ up to order O( 1
b2
)

t2

∂2φ

(a)

t

bt

∂2φ

(b)

bt bt∂αφ ∂αφ

(c)

t

∂αφ

bt

∂αφ

(d)

t

t

(e)

Figure 4.3: The first four diagrams are for ZEH at O(αt) and the last one is for LM at O(αt/b)

first two contribute to ZEH and the third contributes to LM . We then obtain the renormalization
factors up to the second order of 1/b as

ZEH = 1 +

(
1

b
+

1

2b2

)
1

D − 4
, LM = −9

8

(4π)2

b2
1

D − 4
. (4.10)

From the first one, we obtain the following expression

γ̄EH =
1

b
+

1

b2
. (4.11)

By taking b = bc at last, we obtain the anomalous dimension of the Planck mass at four
dimensions. This value also agrees with the exact solution γ̄EH = 2bc(1 −

√
1− 2/bc) − 2

derived by using the BRST conformal symmetry. The pole term LM gives the contribution

δ̄M = −9(4π)2

8b2
. (4.12)

4.3 Anomalous dimensions at order of αt

Next, we consider the contributions at O(αt) to the anomalous dimensions of the mass param-
eters.
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Planck mass First, we consider quantum corrections to the Planck mass. The potentially
divergent O(αt) Feynman diagrams in Landau gauge are shown in Figure. 4.3, in which the first
four diagrams contribute to ZEH . However, the three diagrams (4.3b), (4.3c) and (4.3d) have
no UV divergences in Landau gauge. The last diagram (4.3e) that contributes to LM also has
no UV divergences. Thus, only (4.3a) gives the contribution as

ZEH = 1 +
5

4

αt
4π

1

D − 4
. (4.13)

Combining with the coupling-independent part, we obtain the anomalous dimension of the
Planck mass as

γ̄EH =
1

b
+

1

b2
+

5

4

αt
4π

(4.14)

with b = bc.

Cosmological constant The anomalous dimension of the cosmological constant at O(αt)
arises at the two-loop level, which is exactly given as the function at O(αt/b) that vanishes at
the classical limit of b→ ∞.

In Landau gauge, five Feynman diagrams contribute to the anomalous dimensions. In what
follows, we calculate UV divergences of the respective diagrams in order with leaving gauge
parameter ζ, which is taken to be zero when we calculate the anomalous dimensions at last.

We first calculate the contribution from the two-loop Feynman diagram that includes the
diagram (D.1a) calculated in Section 3.4.2 and in Appendix E, which gives

ΓΛ
1 =

bt bt
=
t2

b
Λ(4π)

D
2
−4µ4−D(z2)D−4

∫
dDxeDϕ

×
[

40

3(D − 4)2
+

6

D − 4
+ ζ

(
32

3(D − 4)2
+

4

D − 4

)]
, (4.15)

where the integrand F1 is defined by (D.2). Two-loop Feynman diagram with the diagram
(D.1b) is also calculated as

ΓΛ
2 =

bt
2

= − t
2

b
Λµ4−D(z2)D−4(4π)

D
2
−4

∫
dDxeDϕ

×
[

40

3(D − 4)2
+

124

9(D − 4)
+ ζ

{
32

3(D − 4)2
+

47

9(D − 4)

}]
, (4.16)
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where the integrand F2 is defined by (D.4). As a consequence of the non-renormalization theorem
of ϕ discussed in Chapter 3, the double poles in ΓΛ

1 and ΓΛ
2 cancel out.

Besides, there are three two-loop Feynman diagrams that yield simple poles only. One of
them is given as

ΓΛ
3 =

bt D − 4

=
t2

b
µ4−DΛµ4−Dµ4−D(z2)D−4(4π)

D
2
−4

∫
dDxeDϕ

[
25

3(D − 4)
+

85

6

]
, (4.17)

where the integrand F3 is defined by (D.6). This is independent of the gauge parameter. The
others are given as

ΓΛ
4 =

(D − 4)bt bt

= − t
2

b
Λµ4−D(z2)D−4(4π)

D
2
−4

∫
dDxeDϕ

[
20

D − 4
+ ζ

16

D − 4

]
, (4.18)

where F4 is defined by (D.8) and

ΓΛ
5 =

(D − 4)bt2

= − t
2

b
Λµ4−D(z2)D−4(4π)

D
2
−4

∫
dDxeDϕ

[
20

D − 4
+ ζ

16

D − 4

]
, (4.19)

where F5 is defined by (D.10).
Combining these five contributions, we finally obtain the following simple pole divergence:

ΓΛ =

bt
2

=
t2

b
Λ(4π)

D
2
−4µD−4(z2)D−4

∫
dDxeDϕ

(
155

9(D − 4)
+ ζ

127

9(D − 4)

)
. (4.20)

Thus, the two-loop renormalization factor of the cosmological constant given at the order of
αt/b is calculated in Landau gauge as

ZΛ = 1− 155

9b

αt
4π

1

D − 4
(4.21)

by taking ζ = 0 at last.
The anomalous dimension of the cosmological constant is finally calculated as

γΛ =
4

b
+

8

b2
+

20

b3
− 9(4π)2

8b2
M4

Λ
− 310

9b

αt
4π
, (4.22)
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where the last term is the two-loop contribution and the αt-independent contributions calculated
before are also added. This expression is physically acceptable since it vanishes at the classical
limit.

Here, we have calculated the anomalous dimension in Landau gauge in order to reduce
the number of Feynman diagrams and also to obtain physically acceptable results directly. It is
because in arbitrary gauge the interaction SbtG[ϕh] becomes effective and then yields contributions
with positive power of b that do not vanish in the classical limit. Of course, such a unphysical
behavior should disappear at last, but it is difficult to show that at present.
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Chapter 5

Physical cosmological constant

Recall that the gravitational theories based on the Einstein action can not go beyond the Planck
scale. So, the Planck mass scale gives the UV cutoff of such classical or quantum theories. And
also, the existence of the UV cutoff is one of the reason behind the cosmological constant problem
[43]. On the other hand, our theory does not have UV cutoff, and so we can discuss this problem
free from it.

So, in this chapter, we first consider what the physical cosmological constant is [44]. Here,
recall that when we define a physical mass of particle in quantum field theories, we usually adopt
the on-shell renormalization scheme. On the other hand, such a scheme is not known for certain
for renormalization of the cosmological constant in quantum gravity. Thus, it is the matter
what the physical quantity is. In order to answer it, we here examine the effective action of the
cosmological term and its behavior under the renormalization group flow.

As for considering the cosmological term, it is sufficient to consider the effective action that
depends on the conformal mode background σ only, which is expanded in a power series as

Γ(σ) =
∑
n

1

n!

∫
dDx1 · · · dDxnΓ(n)(x1, · · · , xn)σ(x1) · · ·σ(xn)

=
∑
n

1

n!

∫
dDk1
(2π)D

· · · d
Dkn

(2π)D
(2π)Dδ(D)(k1 + · · ·+ kn)

× Γ(n)(k1, · · · , kn)σ(k1) · · ·σ(kn), (5.1)

where Γ(n) is the n-point Green function given as the sum of all 1PI Feynman diagrams with
n external legs of σ. In what follows, we first study the renormalization group equation for the
n-point Green function.

The renormalization group analysis of Γ(n) can be carried out as in the case of the φ4-theory
[46, 47, 48, 49, 50]. One of the crucial difference is that the conformal mode is not renormalized
such that Zϕ = 1. The background field σ is also not renormalized (see footnote 1). Therefore,
the renormalized Γ(n) is the same as the bare one, and thus µdΓ(n)/dµ = 0 is satisfied.

The effective potential V is given by the zero momentum part of Γ(n)(k1, · · · , kn), which is
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expressed as

V (σ) =
∑
n

Γ(n)(0, · · · , 0)
∫
dDxσn(x). (5.2)

The diffeomorphism invariance implies that Γ(n)(0, · · · , 0) = vDn and thus the effective potential
has the form

V (σ) = v

∫
dDxeDσ(x). (5.3)

The renormalization group equation implies that v is scale invariant as

µ
d

dµ
v = 0. (5.4)

We thus find that the effective potential is the physical cosmological constant, which can be
observed cosmologically.

Before calculating the physical cosmological constant at the one-loop level explicitly, we first
discuss the renormalization structure of the effective action, which will gives a renormalization
group improvement of it.

5.1 Renormalization group structure

The renormalization group equation is derived from the condition µdΓ(n)/dµ = 0, which gives
the following equation:(

µ
∂

∂µ
+ βtαt

∂

∂αt
− γΛΛ

∂

∂Λ
− γEHM

2 ∂

∂M2

)
Γ(n)

(
kj , αt,Λ,M

2, µ
)
= 0, (5.5)

where we take D = 4 and thus the bar on the renormalization group quantities are suppressed
here, which are used to define the running couplings later, and also the differential term (D −
4)β̄b∂/∂b is removed.

Changing the momentum variable as kj → λkj and do the dimensional analysis. Then, we
find that Γ(n) has the following form:

Γ(n)
(
λkj , αt,Λ,M

2, µ
)
= µ4Ω

(n)
1

(
λkj
µ
, αt,

Λ

µ4
,
M2

µ2

)
+ ΛΩ

(n)
2

(
λkj
µ
, αt,

Λ

µ4
,
M2

µ2

)
+M4Ω

(n)
3

(
λkj
µ
, αt,

Λ

µ4
,
M2

µ2

)
. (5.6)

This implies that Γ(n) satisfies the differential equation(
µ
∂

∂µ
+ 4Λ

∂

∂Λ
+ 2M2 ∂

∂M2
+ λ

∂

∂λ
− 4

)
Γ(n)

(
λkj , αt,Λ,M

2, µ
)
= 0. (5.7)
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Therefore, combining (5.5) with (5.7) and removing the partial derivative with respect to µ, we
obtain the expression[

−λ ∂

∂λ
+ βt(αt)αt

∂

∂αt
− (4 + γΛ(αt,Λ,M

2))Λ
∂

∂Λ

− (2 + γEH(αt))M
2 ∂

∂M2
+ 4

]
Γ(n)(λkj , αt,Λ,M

2, µ) = 0. (5.8)

Here, we introduce the running coupling constant ᾱt(λ), the running cosmological constant
Λ̄(λ) and the running Planck mass M̄(λ), which are defined using the following differential
equations:

−λ d

dλ
ᾱt(λ) = βt

(
ᾱt(λ)

)
ᾱt(λ),

−λ d

dλ
Λ̄(λ) = −

[
4 + γΛ

(
ᾱt(λ), Λ̄(λ), M̄

2(λ)
)]

Λ̄(λ),

−λ d

dλ
M̄2(λ) = −

[
2 + γEH

(
ᾱt(λ)

)]
M̄2(λ).

(5.9)

If we replace αt, Λ and M with the corresponding running quantities in equation (5.8), we find
that this equation can be written with the help of the defining equations (5.9) as(

−λ d

dλ
+ 4

)
Γ(n)

(
λkj , ᾱt(λ), Λ̄(λ), M̄

2(λ), µ
)
= 0. (5.10)

Here, we should note that this equation is written in terms of total differential with respect to
λ, not partial one. The solution of this renormalization group equation is thus given as

Γ(n)
(
λkj , ᾱt(λ), Λ̄(λ), M̄

2(λ), µ
)
= λ4Γ(n)(kj , αt,Λ,M

2, µ) (5.11)

by setting the conditions of ᾱt(1) = αt, Λ̄(1) = Λ and M̄2(1) =M2.
From the solution of the renormalization group equations (5.11) with kj = 0 and the expres-

sion (5.2), we obtain the following equation:

V
(
ᾱt(λ), Λ̄(λ), M̄

2(λ), µ
)
= λ4V (αt,Λ,M

2, µ). (5.12)

Thus, the physical cosmological constant improved by renormalization group equation is given
as

V = v̄(λ)e4σ, v̄(λ) = λ−4v(ᾱt(λ), Λ̄(λ), M̄
2(λ), µ), (5.13)

which does not depend on the renormalization group parameter such that λdv̄(λ)/dλ = 0.

5.2 Explicit form of the physical cosmological constant

Having seen above, the effective potential gives the physical cosmological constant that is inde-
pendent of the renormalization group flow. Here, we calculate explicit form of it at the one-loop
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level, in which the background field σ is taken to be a constant. We then consider the large b
limit, while the ratios Λ/b, M2/b and bt2 are taken to be the order of unity. In this limit, the
one-loop approximation becomes valid and loop corrections to the effective potential are written
by a function of these ratios.

The conformal mode is here separated into the constant background and quantum field ϕ̃ as

ϕ = σ + ϕ̃. (5.14)

Expanding the gravitational action up to the second order of the quantum fields ϕ̃ and hαβ in
Landau gauge, we obtain the following action:

Skin = Sϕ2 + Sh2 + Sc, (5.15)

where each term is given as

Sϕ2 =

∫
dDx

{
µD−4

(4π)D/2
[
2bϕ̃∂4ϕ̃+ (D − 4)b(2σ + 3)ϕ̃∂4ϕ̃

]
+

(D − 1)(D − 2)

2
µD−4M2e(D−2)σϕ̃∂2ϕ̃+ µD−4ΛeDσ

(
1 +

D2

2
ϕ̃2
)}

,

Sh2 =

∫
dDx

{
1

2
hαβK

(0)αβ,γδ + (D − 4)
D − 3

D − 2
σhαβ∂

4hαβ

− t2

8
M2e(D−2)σhαβ∂

2hαβ
}
,

Sc =

∫
dDxµD−4

[
(ZΛ − 1)Λ + LMM

4
]
eDσ,

(5.16)

where K(0)αβ,γδ is the differential operator in Landau gauge whose momentum representation is
given by (3.23). The renormalization factors in the last counterterm are given by those calculated
in the previous chapter.

As mentioned before, in fourth order theories, IR divergences become strong. In the following
calculations, we take care of IR divergences and show that they indeed disappear at last.

Contributions from the conformal mode We first calculate the contribution from ϕ̃ to
the effective potential. In order to normalize the action, we rescale the quantum field ϕ̃ as

ϕ̃ =

√√√√ (4π)
D
2

4bµD−4
{
1 + (D − 4)

(
3
2 + σ

)}φ. (5.17)

ΛeDσ M2e(D−2)σ

ΛeDσ

ΛeDσ

ΛeDσ

M2e(D−2)σ

M2e(D−2)σ

+ + +Vϕ = + · · ·

Figure 5.1: One-loop contributions from the conformal mode
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We then obtain the following expression

Sϕ2 =
1

2

∫
dDk

(2π)D
φ(k)Dφφ(−k) =

1

2

∫
dDk

(2π)D
φ(k)

[
k4 −Ak2 +B

]
φ(−k), (5.18)

where A and B are defined as

A =
(4π)

D
2 (D − 1)(D − 2)

4b
[
1 + (D − 4)

(
σ + 3

2

)]M2e(D−2)σ,

B =
(4π)

D
2 D2

4b
[
1 + (D − 4)

(
σ + 3

2

)]ΛeDσ. (5.19)

The one-loop correction to the effective potential is then expressed as follows:

Vϕ = − ln
[
det(D−1

0 Dφ)
]− 1

2

=
1

2

∫
dDk

(2π)D
ln

(
1− A

k2
+
B

k4

)
, (5.20)

where D0 = k4 is the inverse of the propagator of the rescaled field φ. The corresponding
diagrams are shown in Figure. 5.1. Expanding the logarithmic function in a power series of A
and B, we obtain the following expression:

Vϕ =
1

2

∞∑
n=1

(−1)n−1

n

∫
dDk

(2π)D

(
− A

k2
+
B

k4

)n
=

1

2

∞∑
n=1

n∑
m=0

(−1)n−1

n

n!

m!(n−m)!
(−A)mBn−mI2n−m(z), (5.21)

where the loop integral Iℓ is defined as

Iℓ(z) =

∫
dDk

(2π)D
1

(k2 + z2)ℓ
, (5.22)

which is evaluated by introducing infinitesimal fictitious mass z as mentioned before. The
integral Iℓ has UV and IR divergences for ℓ ≤ 2, while for ℓ > 2 it has only IR divergences.
After carrying out the calculation, we take the vanishing limit of the mass z.

The integral I1 vanishes at the limit z → 0, while I2 has both UV and IR divergences as

I2(z) =
1

(4π)2

(
− 2

D − 4
− γ + ln 4π − ln z2

)
. (5.23)

The integral with ℓ > 2 has IR divergences only written in a negative powers of z as

Iℓ(z) =
1

(4π)2
1

(ℓ− 1)(ℓ− 2)

(
1

z2

)ℓ−2

.
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Substituting these results into (5.21), we obtain the following expression:

Vϕ =
1

(4π)2

[(
B

2
− A2

4

)(
− 2

D − 4
− γ + ln 4π − ln z2

)
+
AB

4

1

z2
− B2

24

1

z4

]
+

1

2(4π)2

∞∑
n=3

n∑
m=0

(−1)n−1

n

n!

m!(n−m)!
(−1)mAmBn−m (z2)2−2n+m

(2n−m− 1)(2n−m− 2)
. (5.24)

The sum of the infinite series part can be evaluated using the formula given in Appendix G. We
can then take the limit of z → 0 and show that IR divergences indeed cancel out. In this way,
we obtain the expression that has UV divergences only as follows:

Vϕ =
1

(4π)2

(
B

2
− A2

4

)(
− 2

D − 4
− γ + ln 4π

)
+

1

(4π)2

[
1

8
(2B −A2)(3− lnB)− A

4

√
4B −A2 arccos

(
A

2
√
B

)]
. (5.25)

Substituting the expression of A and B, the part with the pole is now expanded as follows:

1

(4π)2

(
A2

2
−B

)
1

D − 4
=

9π2M4eDσ

b2

(
2

D − 4
+ 2 ln 4π − 2σ − 8

3

)
− 2ΛeDσ

b

(
2

D − 4
+ ln 4π − 2σ − 2

)
. (5.26)

The UV divergences are subtracted by the counterterms in the MS scheme. Taking D = 4 and
combining all finite terms, we obtain the following effective potential:

Vϕ = e4σ

[
Λ

b
(7− 2 ln 4π)− 9π2M4

2b

(
25

3
− 4 ln 4π

)

−
(
Λ

b
− 9π2M4

2b2

)
ln

64π2Λ

bµ4
− 6πM2

b

√
Λ

b
− 9π2M4

4b2
arccos

(
3πM2

2
√
bΛ

)]
. (5.27)

Here, note that there is no σ-dependence apart from the overall factor.

+
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Figure 5.2: One-loop contributions from the traceless tensor mode
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Contributions from the traceless tensor mode We next calculate the contribution from
the traceless tensor mode for the effective potential in Landau gauge, whose diagrams are shown
in Figure. 5.2 We here rewrite the action in the following form

Sh2 =
1

2

∫
dDk

(2π)D
hαβ(k)K

αβ,γδ
h (k)hγδ(−k). (5.28)

The function Kαβ,γδ
h of momentum is given as

Kαβ,γδ
h = K(0)αβ

,µν

[
Iµν,γδH +

{
(D − 4)σ +

C

k2

}
I(0)µν,γδ

]
, (5.29)

C = t2
D − 2

8(D − 3)
M2e(D−2)σ, (5.30)

where K(0)αβ,γδ = K(ζ)αβ,γδ|ζ→0. The one-loop correction to the effective potential is then given
as

Vh = − ln
[
det
(
(K(0)−1)αβ,µνK

µν,γδ
h

)]− 1
2

=
(D + 1)(D − 2)

4

∞∑
n=1

(−1)n−1

n

[
CnIn(z) + (D − 4)nσCn−1In−1(z)

]
, (5.31)

where
(
K(0)−1

)αβ,γδ
is the free propagator of the traceless tensor mode in Landau gauge and we

use Tr[(I(0))n] = Tr[I(0)] = (D+1)(D− 2)/2. Evaluating loop integrals as mentioned above, we
obtain the following expression:

Vh =
(D + 1)(D − 2)

4(4π)2

[(
1

2
− (D − 4)σ

)
C2

(
2

D − 4
− γ + ln 4π + ln z2

)

+ z4g

(
C

z2

)
+ (D − 4)σC2h

(
C

z2

)]
, (5.32)

where the functions g and h are defined as (G.1) and (G.2) in Appendix G. This also becomes
finite in the z → 0 limit and thus all IR divergences cancel out.

Substituting the expressions of C into the expression above and expanding around four
dimensions, we can separate it into the UV divergent part and the finite part at four dimensions.
After subtracting the UV divergence using the counterterm, we obtain the one-loop contribution
from the traceless tensor mode as

Vh =
5

128
e4σ

t4

(4π)2
M4

[
ln
t4M4

16µ4
− 21

5

]
. (5.33)

This also becomes independent of σ apart from the overall factor.
Combining two contributions calculated above, we finally obtain the effective potential for

the cosmological constant term, which is expressed as

V = Λe4σ + Vϕ + Vh = v(αt,Λ,M
2, µ)e4σ, (5.34)
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where

v = Λ+
Λ

b
(7− 2 ln 4π)− 9π2M4

2b

(
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3
− 4 ln 4π

)
−
(
Λ

b
− 9π2M4

2b2

)
ln

64π2Λ

bµ4
− 6πM2

b

√
Λ

b
− 9π2M4

4b2
arccos

(
3πM2

2
√
bΛ

)
+

5

128
α2
tM

4

[
ln

(4π)2α2
tM

4

16µ4
− 21

5

]
. (5.35)

Thus, we obtain the physical cosmological constant v as a function of the renormalized
quantities of the cosmological constant and the Planck mass and the coupling constant. What v
becomes independent of σ reflects the invariance under the renormalization group flow discussed
before. This indicates that if we take the physical cosmological constant small or zero initially
at ᾱt = 0, the value is preserved even at low energies.

This result also indicates in the view point of quantum field theory as follows. The cosmo-
logical constant in the action should be positive and not so small since the action is bounded
from below enough for the path integral to be stable. Nevertheless, we can take the physical
cosmological constant any values even though the cosmological constant in the action is not
small.
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Chapter 6

Summary and discussion

We studied the renormalizable quantum conformal gravity and its renormalization structure us-
ing dimensional regularization. It is a UV complete quantum gravity theory without UV cutoff
and thus it can describe spacetime dynamics beyond the Planck scale. The gravitational actions
are defined by the square of the D-dimensional Weyl tensor FD (3.2) and the D-dimensional
extension of the Euler density GD (3.3), which are determined through the analysis of Hathrell’s
renormalization group equations (see appendix B). The theory has a single dimensionless cou-
pling t that is introduced in front of the Weyl action and thus the dynamics of the traceless
tensor mode is handled in the perturbation theory. In contrast, the conformal factor of the
metric field is treated exactly in the exponential form of the conformal mode in which we do not
introduce the coupling constant. The dynamics of this mode is governed by the Wess-Zumino
actions induced quantum mechanically. Especially, its kinetic term is given by the Riegert action
at the zeroth order of the coupling t. The coefficient of the Riegert action denoted by bc is given
by the one-loop coefficient of the conformal anomaly proportional to the Euler term, and thus
quantum corrections by the conformal mode is expanded by the inverse of bc.

We first provided the two-point functions of gravitational fields, including the calculation
of the beta function and the demonstration of the non-renormalization theorem represented
by Zϕ = 1. We then studied the conformal gravity system with adding the Einstein-Hilbeert
action and the cosmological term, and calculated the anomalous dimensions of the cosmological
constant and the Planck mass. Even at the zeroth order of t, there are loop corrections for these
mass parameters. The anomalous dimension for the cosmological constant has been calculated
at three-loop level up to the order of 1/b3c and that for the Planck mass was calculated up to
the order of 1/b2c . As a consistency check, it has been found that their results agree with the
exact solutions obtained by imposing the BRST conformal invariance.

One of the main calculations in this thesis is the calculation of the anomalous dimensions
up to the order of αt = t2/4π. In order to reduce the number of Feynman diagrams and to
avoid some indeterminate factors, we choose Landau gauge. We then found that the anomalous
dimension with respect to the Planck mass is positive, but that of the cosmological constant,
which is given by two-loop diagrams, becomes negative as given in (4.22). Field-theoretically, it
gives a non-trivial examination of two-loop renormalizability of our quantum gravity theory. At
this time, we would like to emphasize the fact that there is no other renormalizable quantum
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gravity theories that are well-defined at the higher loop level.
We also studied the renormalization group equation of the effective action with respect to

the cosmological term that depends on the conformal mode only. Due to the diffeomorphism
invariance and the non-renormalizability of the conformal mode, we showed that the effective
potential becomes invariant under the renormalization group flow. Thus, it was found that the
effective potential gives the physical cosmological constant we can observe.

The physical cosmological constant was calculated at the one-loop level explicitly. It consists
of two renormalized parameters of the Planck mass and the cosmological constant so that we
can take its value small actually without suffering from the instability of the path integral as
mentioned in the last of Chapter 5. So, we take the value small and it will be passed on to the
low energy effective theory of gravity given by an expansion in derivatives of the metric field
[52]. It will give a new perspective on the cosmological constant problem free from UV cutoff.

In fourth order quantum field theory, IR divergences become stronger than those of usual
second order theories. So, throughout our calculations, we introduce a fictitious small mass to
regularize IR divergences, which violates diffeomorphism invariance. As a consistency check, we
showed that all IR divergences indeed cancel out, especially in the calculation of the effective
potential in which more strong IR divergences arise.

Finally, we discuss the physical meanings of which the beta function of the coupling constant
t becomes negative. This indicates that at very high energies fluctuations of the traceless tensor
mode become less dominant, while those of the conformal mode are still filled in spacetime non-
perturbatively, which results in the background-metric independent nature, called the BRST
conformal symmetry. The negativity of the beta function also indicates that there is a new
dynamical IR scale denoted by ΛQG where the conformal invariance breaks down. Thus, at this
scale, the phase transition occurs and spacetime changes from the conformally invariant phase
to the present classical phase in which gravitons and elementary particles propagates in the fixed
background. We can construct an inflationary scenario that begins at the Planck mass scaleMP

and ends at the dynamical scale ΛQG if we take their order as MP ≥ ΛQG [51, 52, 53].
What is the physical quantity in our quantum gravity theory which can be observed through

cosmological experiments? The physical cosmological constant is one of them. The physical
Planck mass also will be defined in the same way through the effective action whose form is
fixed by diffeomorphism invariance. On the other hand, we can not define the S-matrix as a
physical quantity since spacetime still fully fluctuates even at t = 0 so that there is no flat
spacetime to define the asymptotic state.

Cosmologically, the primordial power spectrum of the early universe is one of the physical
observables. In a linear approximation which becomes valid at the large bc limit, the primordial
spectrum is given by the two-point function of the conformal mode, which provides the scale-
invariant spectrum what is called Harrison-Zel’dovich spectrum with positive amplitude 1/bc
[51, 52, 53]. In general, however, there is no systematical argument yet to derive observables
or full power spectra from Green functions among physical diffeomorphism invariant operators
such as the LSZ reduction formula in the S-matrix. So, we can not discuss the detail of the
spectrum beyond the linear approximation at present. It is left as a future issue.

A further direction of the study of renormalizability is that we develop the analysis of renor-
malization group equations by Hathrell into our quantum gravity system in order to verify
whether our renormalization procedure is going well at all orders and to clarify the renormal-
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ization structure such as the gauge-parameter dependence in arbitrary gauge [54, 55] and so
on. Further research on these things would clarify the structure of quantum gravity and of the
dynamics of the early universe.
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Appendix A

Gravitational formulae

A.1 Curvature tensor and their properties

Riemann tensor is defined through the equation

[∇γ ,∇δ]A
α = RαβγδA

β. (A.1)

Besides, Ricci tensor defined by contracting the first and the third indices of Riemann tensor
satisfies

[∇α,∇β]A
α = RαβA

α. (A.2)

The definitions of Christoffel symbol, Riemann tensor, Ricci tensor, Ricci scalar are written as
follows:

Γαβγ =
1

2
gαµ(∂γgµβ + ∂βgµγ − ∂µgβγ),

Rαβγδ = ∂γΓ
α
βδ − ∂δΓ

α
βγ + ΓαµγΓ

µ
βδ − ΓαµδΓ

µ
βγ ,

Rαβ = Rµαµβ ,

R = gαβRαβ .

Bianchi identity is
∇λR

µ
ανβ +∇νR

µ
αβλ +∇βR

µ
αλν = 0.

We can derive following relation with above formula.

∇βR
µανβ = −∇µRνα +∇αRνµ,

∇α∇βR
µανβ = −1

2
∇µ∇νR+∇2Rµν +RµανβRαβ −RµαRνα,

∇µR
µν =

1

2
∇νR,

∇α∇2A−∇2∇αA = Rαβ∇βA.
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A.2 Variations of the gravitational quantities

We here present various variations in what follows.

δgµν = −gµαgνβδgαβ , (A.3)

δ
√
−g =

1

2

√
−ggµνδgµν = −1

2

√
−ggµνδgµν , (A.4)

δΓαβγ =
1

2
gαµ(∇γδgµβ +∇βδgµγ −∇µδgβγ), (A.5)

δRαβγδ =
1

2
gαµ(∇γ∇δδgµβ +∇γ∇βδgµδ −∇γ∇µδgβδ −∇δ∇γδgµβ

−∇δ∇βδgµγ +∇δ∇µδgβγ), (A.6)

δRαβγδ = −Rαµγδgβνδgµν −Rαβµδgγνδgµν −Rαβγµgδνδgµν

+
1

2
gαµgβνgγλgδσ

(
∇λ∇σδgµν +∇λ∇νδgµσ −∇λ∇µδgνσ

−∇σ∇λδgµν −∇σ∇νδgµλ +∇σ∇µδgνλ), (A.7)

δRαβ =
1

2

{
∇α∇µδgµβ +∇β∇µδgµα −∇2δgαβ −∇α∇β(g

µνδgµν)
}

−Rµ να βδgµν +
1

2
(Rµαδgµβ +Rµβδgµα), (A.8)

δR = −Rαβδgαβ +∇α∇βδgαβ −∇2(gαβδgαβ). (A.9)

Also, the variations of a scalar field with derivatives can be written as follows:

δ(∇αA) = ∇αδA, (A.10)

δ(∇α∇βA) = ∇α∇βδA− 1

2
∇γA(∇βδgγα +∇αδgγβ −∇γδgαβ), (A.11)

δ(∇2A) = ∇2δA−∇α∇βAδgαβ −∇αA∇βδgαβ +
1

2
∇γA∇γ(g

αβδgαβ), (A.12)

δ(∇4A) = ∇4δA−∇2(δgµν∇µ∇νA)−∇2(∇µA∇νδgµν)

+
1

2
∇2(∇λA∇λ(g

µνδgµν))− δgµν∇µ∇ν∇2A

−∇µ∇2A∇νδgµν +
1

2
∇λ∇2A∇λ(g

µνδgµν). (A.13)
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Using above formulae, the variations of scalar quantities with curvatures are given as follows:

δ(R2) = 2R{−Rµνδgµν +∇µ∇νδgµν −∇2(gµνδgµν)}, (A.14)

δ(RαβRαβ) = 2Rαµ∇α∇νδgµν −Rµν∇2δgµν −Rαβ∇α∇β(g
µνδgµν)− 2RαβR

µανβδgµν , (A.15)

δ(RαβγδRαβγδ) = 2RµβγδRνβγδδgµν + 2Rαβγδ(∇γ∇βδgαδ −∇γ∇αδgβδ), (A.16)

δ(∇2R) = −∇µ∇νRδgµν −∇λR∇µ
(
gνλδgµν) +

1

2
∇λR∇λ(gµνδgµν)

−∇2(Rµνδgµν) +∇2∇µ∇νδgµν −∇4(gµνδgµν), (A.17)

δ(Rαβ∇α∇βA) = Rβγ∇α∇βAδg
αγ +Rαδ∇α∇βAδg

βδ

+
1

2
∇δ∇β

(
gαγδgγδ

)
∇α∇βA+

1

2
∇γ∇α(gβδδgδγ∇α∇βA

− 1

2
∇α∇βA∇2δgαβ −

1

2
∇α∇β

(
gγδδgγδ

)
∇α∇βA

+Rαβ∇α∇βδA− 1

2
Rαβ∇γA

(
∇βδgγα +∇αδgγβ −∇γδgαβ

)
, (A.18)

δ(R∇2A) =
[
−Rαβδgαβ +∇α∇βδgαβ −∇2(gαβδgαβ)

]
∇2A

+R

[
∇2δA−∇α∇βAδgαβ −∇αA∇βδgαβ +

1

2
∇γA∇γ(g

αβδgαβ)

]
, (A.19)

δ(∇αR∇αA) = ∇αR∇βAδgαβ −∇αA∇αR
γδδgγδ +∇αA∇α∇γ∇δδgγδ

−∇αA∇α∇2(gγδδgγδ) +∇αR∇αδA. (A.20)

A.2.1 Energy-momentum tensors

Energy-momentum tensor is defined by

θαβ ≡ 2√
−g

δ

δgαβ
S, (A.21)

The variations of gravitational quantities are presented in what follows.

2√
−g

∫
dDx

δ(
√
−gFD)
δgµν

= FDg
µν−4

(
RµβγδRνβγδ−

4

D − 2
RαβR

µανβ+
2

(D − 1)(D − 2)
RRµν

)
− 8∇α∇βR

µανβ − 8

D − 1
∇ν∇µR+

8

D − 2
∇2Rµν +

4(D − 3)

(D − 1)(D − 2)
∇2Rgµν , (A.22)
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2√
−g

∫
dDx

δ(
√
−gG4)

δgµν
= G4g

µν − 4
(
RµβγδRνβγδ − 4RµαRνα +RRµν

)
− 8(RµαRνα −RµανβRαβ), (A.23)

2√
−g

∫
dDx

δ(
√
−gR2)

δgµν
= R2gµν − 4RRµν + 4∇ν∇µR− 4∇2Rgµν , (A.24)

2√
−g

∫
dDxgµν

δ
√
−gR
δgµν

= Rgµν − 2Rµν . (A.25)

The trace of the energy momentum tensor is defined by

θ ≡ gαβθ
αβ = gαβ

2√
−g

δ

δgαβ
S =

δS

δΩ
(A.26)

and the conformal variation of the respective quantities are given by∫
dDxgµν

δ(
√
−gFD)
δΩ

= (D − 4)FD, (A.27)

∫
dDxgµν

δ(
√
−gG4)

δΩ
= (D − 4)G4, (A.28)

∫
dDxgµν

δ(
√
−gR2)

δΩ
= (D − 4)R2 − 4(D − 1)∇2R. (A.29)

A.2.2 Local conformal variations of gravitational quantities

δ

δΩ(y)
RαβγδRαβγδ(x) =

−4√
−g

{
RαβγδRαβγδδ(x− y) + 2Rαβ∇α∇βδ(x− y)

}
, (A.30)

δ

δΩ(y)
RαβRαβ(x) = − 2√

−g

{
(D − 2)Rαβ∇α∇βδ(x− y) + 2RαβRαβδ(x− y)−R∇2δ(x− y)

}
,

(A.31)

δ

δΩ(y)
R2(x) =

−4√
−g
{
R2δ(x− y) + (D − 1)R∇2δ(x− y)

}
, (A.32)

δ

δΩ(y)
Rαβ(x) =

−1√
−g
{
(D − 2)∇α∇βδ(x− y) + gαβ∇2δ(x− y)

}
, (A.33)

δ

δΩ(y)
R(x) =

−2√
−g
{
Rδ(x− y) + (D − 1)∇2δ(x− y)

}
, (A.34)

δ

δΩ(y)
∇2R(x) =

2√
−g

{
−2∇2Rδ(x− y) +

(
D

2
− 3

)
∇λR∇λδ(x− y)−R∇2δ(x− y)

− (D − 1)∇4δ(x− y)

}
. (A.35)
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A.2.3 Conformal mode dependence of the gravitational quantities

We separate the gravitational field into the conformal mode and the traceless tensor mode such
as gαβ = e2ϕḡαβ , the gravitational quantities are then expanded in what follows.

Rαβγδ = R̄αβγδ + ḡβγ
(
∇̄δ∇̄αϕ− ∇̄αϕ∇̄δϕ

)
− ḡβδ(∇̄γ∇̄αϕ− ∇̄αϕ∇̄γϕ)

− ḡµν(∇̄δ∇̄αϕ− ∇̄αϕ∇̄δϕ+ ḡβδ∇̄µϕ∇̄µϕ) + δ̄αδ (∇̄β∇̄γϕ− ∇̄β∇̄γϕ+ ∇̄β∇̄γϕ), (A.36)

Rαβ = R̄αβ − (D − 2)∇̄α∇̄βϕ+ (D − 2)∇̄αϕ∇̄βϕ− ḡαβ{∇̄2ϕ+ (D − 2)∇̄µϕ∇̄µϕ}, (A.37)

R = e−2ϕ[R̄− 2(D − 1)∇̄2ϕ− (D − 1)(D − 2)∇̄µϕ∇̄µϕ], (A.38)

RαβγδRαβγδ = e−4ϕ
[
R̄αβγδR̄αβγδ − 8R̄αβ(∇̄α∇̄βϕ− ∇̄αϕ∇̄βϕ)− 4R̄∇̄αϕ∇̄αϕ

+ 4(∇̄2ϕ)2 + 8(D − 2)∇̄2ϕ∇̄αϕ∇̄αϕ+ 4(D − 2)∇̄α∇̄βϕ∇̄α∇̄βϕ

− 8(D − 2)∇̄α∇̄βϕ∇̄αϕ∇̄βϕ+ 2(D − 1)(D − 2)∇̄αϕ∇̄αϕ∇̄β∇̄βϕ, (A.39)

RαβRαβ = e−4ϕ
[
R̄αβR̄αβ − 2(D − 2)R̄αβ(∇̄α∇̄βϕ− ∇̄αϕ∇̄βϕ)

− 2R̄
{
∇̄2ϕ+ (D − 2)∇̄µϕ∇̄µϕ

}
+ (3D − 4)(∇̄2ϕ)2

+ 2(D − 2)(2D − 3)∇̄2ϕ∇̄µϕ∇̄µϕ+ (D − 2)2∇̄α∇̄βϕ∇̄α∇̄βϕ

− 2(D − 2)2∇̄α∇̄βϕ∇̄αϕ∇̄βϕ+ (D − 1)(D − 2)2∇̄αϕ∇̄αϕ∇̄βϕ∇̄βϕ
]
, (A.40)

R2 = e−4ϕ[R̄2 − 2(D − 1)R̄{2∇̄2ϕ+ (D − 2)∇̄µϕ∇̄µϕ}+ 4(D − 1)2(∇̄2ϕ)2

+ 4(D − 1)2(D − 2)∇̄2ϕ∇̄µϕ∇̄µϕ+ (D − 1)2(D − 2)2∇̄αϕ∇̄αϕ∇̄βϕ∇̄βϕ], (A.41)

∇2R = e−4ϕ
[
∇̄2R̄− 2(D − 1)(D − 2)R̄µν∇̄µϕ∇̄νϕ− 2

(
∇̄2phi+ (D − 4)∇̄µϕ∇̄µϕ

)
R̄

+ (D − 6)∇̄µR̄∇̄µϕ− 2(D − 1)∇̄4ϕ+ 4(D − 1)(∇̄2ϕ)2

+ 2(D − 1)(3D − 10)∇̄2ϕ∇̄µϕ∇̄µϕ− 2(D − 1)(D − 2)(D − 6)∇̄µ∇̄νϕ∇̄µϕ∇̄νϕ

− 2(D − 1)(D − 2)∇̄µ∇̄νϕ∇̄µ∇̄νϕ− 4(D − 1)(D − 4)∇̄µ∇̄2ϕ∇̄µϕ

+ 2(D − 1)(D − 2)(D − 4)∇̄µϕ∇̄µϕ∇̄νϕ∇̄νϕ
]
, (A.42)

G4 = e−4ϕ
[
Ḡ4 + 8(D − 3)R̄αβ

(
∇̄α∇̄βϕ− ∇̄αϕ∇̄βϕ

)
− 2(D − 3)R̄

{
2∇̄2ϕ+ (D − 4)∇̄αϕ∇̄αϕ

}
+ 4(D − 2)(D − 3)(∇̄2ϕ)2 + 4(D − 2)(D − 3)2∇̄2ϕ∇̄αϕ∇̄αϕ

− 4(D − 2)(D − 3)∇̄α∇̄βϕ∇̄α∇̄βϕ+ 8(D − 2)(D − 3)∇̄α∇̄βϕ∇̄αϕ∇̄βϕ

+ (D − 1)(D − 2)(D − 3)(D − 4)∇̄αϕ∇̄αϕ∇̄βϕ∇̄βϕ
]
. (A.43)

43



A.3 Perturbations in traceless tensor mode

The metric tensor with the bar is expanded in terms of the traceless tensor mode as

ḡαβ = (ĝeh)αβ = ĝαβ + hαβ +
1

2
(h2)αβ +

1

6
(h3)αβ +O(h4). (A.44)

Christoffel symbol with the bar is expanded as

Γ̄αβγ =
1

2
ḡαµ(∂γ ḡµβ + ∂β ḡµγ − ∂µḡβγ)

= Γ̂αβγ +Hα
βγ + (H2)αβγ + (H3)αβγ , (A.45)

where Hα
βγ , (H

2)αβγ and (H3)αβγ are defined as

Hα
βγ = ∇̂(βh

α
γ) −

1

2
∇̂αhβγ , (A.46)

(H2)αβγ =
1

2
∇̂(β(h

2)αγ) −
1

4
∇̂α(h2)βγ − hαµ∇̂(βh

µ
γ) +

1

2
hαµ∇̂µhβγ , (A.47)

(H3)αβγ =
1

2
(h2)αµ

(
∇̂(βh

µ
γ) −

1

2
∇̂µhβγ

)
− 1

2
hαµ(∇̂(β(h

2)µγ)

− 1

2
∇̂µ(h2)βγ) +

1

6
(∇̂(β(h

3)αγ) −
1

2
∇̂α(h3)βγ). (A.48)

Riemann tensor, Ricci tensor and Ricci scalar are expanded as follows:

R̄αβγδ = R̂αβγδ + ∇̂γ

{
∇̂(βh

α
δ) −

1

2
∇̂αhβδ +

1

2
∇̂(β(h

2)αδ) −
1

4
∇̂α(h2)βδ

− hαµ∇̂(βh
µ
δ) +

1

2
hαµ∇̂µhβδ

}
+ ∇̂δ

{
∇̂(βh

α
γ) −

1

2
∇̂αhβγ +

1

2
∇̂(β(h

2)αγ)

− 1

4
∇̂α(h2)βγ − hαµ∇̂(βh

µ
γ) +

1

2
hαµ∇̂µhβγ

}
+

(
∇̂(µh

α
γ) −

1

2
∇̂αhµγ

)(
∇̂(βh

µ
δ) −

1

2
∇̂µhβδ

)
−
(
∇̂(µh

α
δ) −

1

2
∇̂αhµδ

)(
∇̂(βh

µ
γ) −

1

2
∇̂µhβγ

)
, (A.49)

R̄αβ = R̂αβ − R̂µανβh
ν
µ + R̂µ(αh

α
β) + ∇̂(α∇̂µhβ)µ

− 1

2
∇̂2hαβ −

1

2
hµ(α∇̂

2hβ)µ −
1

2
(∇̂µhν(α∇̂νh µ

β) )−
1

4
∇̂αh

µ
ν∇̂βh

ν
µ

− 1

2
∇̂µ(h

µ
ν∇̂(αh

ν
β) +

1

2
∇̂µ(h

ν
(α∇̂β)h

µ
ν) +

1

2
∇̂ν(h

µ
ν∇̂νhαβ), (A.50)
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R̄ = R̂− R̂µνh
µν + ∇̂µ∇̂νh

µν +
1

2
R̂µανβh

ν
µh

αβ − 1

4
∇̂λh

µ
ν∇̂λhνµ

+
1

2
∇̂µh

µ
λ∇̂νh

νλ − ∇̂µ(h
µ
ν∇̂λhνλ). (A.51)

In the following, we take the flat background metric. The expansion of the curvature-squared
quantities are then given as follows:

R̄αβγδR̄αβγδ = ∂γ∂δhαβ∂
γ∂δhαβ − 2∂γ∂βhαδ∂

γ∂αhβδ + ∂γ∂δhαβ∂
α∂βhγδ, (A.52)

R̄αβR̄αβ =
1

2
∂αχβ∂

αχβ +
1

2
∂αχβ∂

βχα +
1

4
∂2hαβ∂

2hαβ − ∂αχβ∂
2hαβ , (A.53)

R̄2 = ∂αχ
α∂βχ

β, (A.54)

∇̄2R̄ = ∂2∂αχ
α − 1

2
∂γhαβ∂

2∂γhαβ − 1

2
∂γ∂δhαβ∂

γ∂δhαβ − 1

2
∂2(χαχ

α)

− ∂2(hαβ∂αχβ)− hαβ∂α∂β∂γχ
γ − χα∂α∂βχ

β, (A.55)

where χα = ∂βhαβ. Besides, the expansions of the quantities with the conformal mode which
are necessary in the text are given in what follows.

∇̄2ϕ = ∂2ϕ− hαβ∂α∂βϕ− χα∂αϕ+
1

2
(h2)αβ∂α∂βϕ+

1

2
hαβ∂αh

γ
β∂γϕ+

1

2
hαβχβ∂αϕ, (A.56)

∇̄4ϕ = ∂4ϕ− {∂2(hαβ∂α∂βϕ+ χα∂αϕ) + hαβ∂α∂β∂
2ϕ+ χα∂α∂

2ϕ}

+ ∂2
{
1

2
(h2)αβ∂α∂βϕ+

1

2
hαβ∂αh

γ
β∂γϕ+

1

2
hαβχβ∂αϕ

}
+ hαβ

(
∂α∂βh

γδ∂γ∂δϕ+ 2∂αh
γδ∂β∂γ∂δϕ+ hγδ∂α∂β∂γ∂δϕ

+
1

2
∂αh

γ
β∂γ∂

2ϕ+
1

2
χβ∂α∂

2ϕ+ ∂α∂βχ
γ∂γϕ

+ 2∂αχ
γ∂β∂γϕ+ 2χγ∂α∂β∂γϕ

)
+ χα∂αh

γδ∂γ∂δϕ+ χα∂αχ
β∂βϕ+ χαχβ∂α∂βϕ+

1

2
(h2)αβ∂α∂β∂

2ϕ, (A.57)
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R̄αβ∇̄α∇̄βϕ = ∂αχβ∂
α∂βϕ− 1

2
∂2hαβ∂

α∂βϕ

− 1

2
∂αχβ∂αhβγ∂

γϕ− 1

2
∂αχβ∂

βhαγ∂γϕ+
1

2
∂αχβ∂γhαβ∂γϕ

+
1

2
∂2hαβ∂αhβγ∂

γϕ− 1

4
∂2hαβ∂γhαβ∂γϕ− hαβ∂βχ

γ∂α∂γϕ

− hαβ∂γχβ∂α∂γϕ+
1

2
hαβ∂2hβγ∂α∂

γϕ− 1

2
∂γhαβ∂

βhγδ∂
α∂δϕ

− 1

4
∂γhαβ∂

δhαβ∂γ∂δϕ− 1

2
∂α(hαβ∂

γhβδ)∂γ∂δϕ

+
1

2
∂γ(hαβ∂δh

βγ)∂α∂δϕ+
1

2
∂α(hαβ∂

βhγδ)∂
γ∂δϕ, (A.58)

R̄∇̄2ϕ = ∂αχ
α∂2ϕ− χα

(
∂βχ

β∂αϕ+
1

2
χα∂

2ϕ

)
− hαβ(∂αχβ∂

2ϕ+ ∂γχ
γ∂α∂βϕ)−

1

4
∂γhαβ∂γhαβ∂

2ϕ, (A.59)

∇̄αR̄∇̄αϕ = ∂α∂βχ
α∂βϕ− 1

2
∂γhαβ∂γ∂δhαβ∂

δϕ

− 1

2
∂α(χβχ

β)∂αϕ− ∂γ(h
αβ∂αχβ)∂

γϕ− hαβ∂β∂γχ
γ∂αϕ. (A.60)
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Appendix B

Determination of the gravitational
action

The advantages of using dimensional ragularization are that it does not break diffeomorphism
invariance and the theory becomes independent of the choice of the path integral measure owing
to
∫
dDp = δ(D)(0) = 0. In this case, the contribution from the measure such as conformal

anomaly directly expressed as a D dependence of the action. However, when we generalize a
four dimensional action to D-dimensional one, many ambiguities emerge, differently from the
case of ordinary gauge field action. In order to settle the ambiguities, we begin our discussion
by considering the determination of the forms of gravitational counterterms [40, 14] based on
QCD in curved space as an example of conformally coupled quantum field theory.

B.1 QCD on curved space

QCD action on curved space is defined as follows

S =

∫
dDx

√
g

{
1

g20

[
1

4
F0

a
αβF0

aαβ +
1

2ξ0
(∇αA0

a
α)

2

]
+ iψ̄0γ

αDαψ0

− i∂αc̃a0(∂αc0
a − fabcA0

b
αc0

c) + a0FD + b0G4 + c0H
2

}
, (B.1)

where

F0
a
αβ = ∂αA0

a
β − ∂βA0

a
β − fabcA0

b
αA0

c
β,

Dα = ∂α + ωαµν
Σµν
2

−A0
a
αT

a, Σµν = −1

4
[γµ, γν ]

ωαµν = eβµ(∂αeβν − Γγαβeγν)

(B.2)

and ωαµν , e
α
µ, Σµν are respectively the spin connection and the vielbein and the Lorentz gener-

ator. Only in this chapter, Euclidean indices are written in µ and ν and the gamma matrix can
be expressed as γα = eαµγ

µ. The algebra for gamma matrices is defined as {γµ, γν} = −2δµν .
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The generators of Lie group are normalized as

Tr(T aT b) = −TRδab and facdf bcd = CGδ
ab. (B.3)

For the moment, we consider three kinds of gravitational counterterms FD, G4 and H
2 which

are every possible combination of the fourth-derivative terms.. FD is the square ofD-dimensional
Weyl tensor Cαβγδ. , which is defined as

Cαβγδ = Rαβγδ −
2

D − 2
(gα[γRδ]β − gβ[γRδ]α) +

1

(D − 1)(D − 2)
gα[γgδ]βR, (B.4)

and the square of it is

FD = CαβγδCαβγδ = RαβγδRαβγδ −
4

D − 2
RαβRαβ +

2

(D − 1)(D − 2)
R2. (B.5)

The quantity G4 is four dimensional Euler density and H is a rescaled Ricci scalar defined as
follows

G4 = RαβγδRαβγδ − 4RαβRαβ +R2, H =
R

D − 1
. (B.6)

In the following, we will show that the two counter terms with b0 and c0 are combined into one
at last through various renormalization group equations.

The renormalization factors for quantum fields and coupling constant, gauge parameter are
defined as

A0
a
α = µ2−

D
2 Z

1
2
AA

a
α, ψ0 = Z

1
2
2 ψ, (B.7)

g0 = µ2−
D
2 Zgg, ξ0 = ZAZ

−2
g ξ, (B.8)

where µ is a mass scale to make some quantities dimensionless.
The renormalization group equations are derived from what bare quantities does not depend

on the mass scale, and now the differential operator with respect to µ is expressed as

µ
d

dµ
= µ

∂

∂µ
+ µ

dαg
dµ

∂

∂αg
+ µ

dξ

dµ

∂

∂ξ
+ · · · , (B.9)

where αg = g2/4π. We first find the beta function of αg. The renormalization group equation is

0 = µ
d

dµ

g20
4π

= µ4−D
{
(4−D)Z2

gαg + 2Zgµ
dZg
dµ

αg + Z2
gµ
dαg
dµ

}
(B.10)

When we define β̄g as

β̄g(αg) = −2µ
d

dµ
lnZg, (B.11)
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the beta function of αg is expressed as follows

βg(αg, D) ≡ µ

αg

dαg
dµ

= D − 4 + β̄g(αg). (B.12)

If we expand the renormalization factor as

lnZg =

∞∑
n=1

fn(αg)

(D − 4)n
, (B.13)

we obtain

β̄g = −2αg
∂f1
∂αg

,
∂fn+1

∂αg
+ β̄g

∂fn
∂αg

= 0. (B.14)

Besides, the anomalous dimensions of the fields Aaα, ψ are defined as

γA = µ
d lnZA
dµ

, γ2 = µ
d lnZ2

dµ
. (B.15)

The coefficients of the Weyl term, Euler term and modified Ricci scalar squared are given as

a0 = µD−4(a+ La)

b0 = µD−4(b+ Lb)

c0 = µD−4(c+ Lc).

(B.16)

These La,b,c are pole term which take the form as follows

La =

∞∑
n=1

an
(D − 4)n

Lb =

∞∑
n=1

bn
(D − 4)n

.

Lc =

∞∑
n=1

cn
(D − 4)n

.

The beta functions of these coefficients are expressed in the same form as

βa = µ
da

dµ
= −(D − 4)a+ β̄a,

βb = µ
db

dµ
= −(D − 4)b+ β̄b,

βc = µ
dc

dµ
= −(D − 4)c+ β̄c,

(B.17)
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We can also obtain the recurrence relation in a manner similar to the beta function of αg as

β̄a = −∂(αga1)
∂αg

,
∂

∂αg
(αgan+1) + β̄αg

∂an
∂αg

= 0,

β̄b = −∂(αgb1)
∂αg

,
∂

∂αg
(αgbn+1) + β̄αg

∂bn
∂αg

= 0,

β̄c = −∂(αgc1)
∂αg

,
∂

∂αg
(αgcn+1) + β̄αg

∂cn
∂αg

= 0.

(B.18)

B.1.1 Normal products

When we discuss the finiteness condition of the theory, we significantly use finite composite
operators called normal products in curved space [36, 37, 38, 39, 40, 14], which is described
as [operator]. In what follows, we first derive the normal product of square of the gauge field
strength [F aαβF

aαβ ]. Then, using it, we rewrite the energy-momentum tensor in terms of normal
products.

We here consider the renormalized correlation function given by⟨
NA∏
j=1

Aaµj (xj)

Nψ∏
k=1

(ψandψ̄)(xk)

⟩

= (µD−4ZA)
−NA

2 Z
−
Nψ
2

2

∫
dA0dψ0dψ̄0

NA∏
j=1

Aa0µj (xj)

Nψ∏
k=1

(ψ0andψ̄0)(xk)e
−S . (B.19)

First, we introduce the equation-of-motion operators for gauge field and fermion field as

EA =
1
√
g
Aaα

δS

δAaα

= − 1

g20

(
A0

a
β∇αF0

aαβ + fabcA0
b
αA0

c
βF0

aαβ

)
− iψ̄0γ

αA0
a
αT

aψ0

− 1

g20ξ0
A0

a
α∇α∇βA0

a
β − fabc(∇αc̄a0)A0

b
αc0

c,

Eψ =
δS

δχ
≡ 1

√
g
ψa

δS

δψa
+

1
√
g
ψ̄a

δS

δψ̄a

= iψ̄0(γ
αD⃗α − ⃗Dαγ

α)ψ0.

(B.20)

Inserting the equation-of-motion operator into the renormalized correlation function and per-
forming the partial integration, we obtain the following equations.⟨

E0A(x)

NA∏
j=1

Aaµj (xj)

⟩
=

NA∑
j=1

1
√
g
δ(D)(x− xj)

⟨
NA∏
j=1

Aaµj (xj)

⟩
,

⟨
E0ψ(x)

Nψ∏
j=1

(ψandψ̄)(xj)

⟩
=

Nψ∑
j=1

1
√
g
δ(D)(x− xj)

⟨Nψ∏
j

(ψandψ̄)(xj)

⟩
.

(B.21)
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Here, note that there is no term from functional differentials at the same point since it is
dimensionally regularized to zero as δAa0µ(x)/δA

b
0ν(x) = δab δ

µ
ν δ(0) = 0. The R.H.S is finite and

thus the L.H.S is finite. Therefore, the equation-of-motion operators are finite operators and we
can write them in terms of normal products as

E0A = [EA], E0ψ = [Eψ]. (B.22)

From eq.(B.21),
∫ √

gE0A and
∫ √

gE0ψ can be respectively replaced with the numbers NA and
Nψ in correlation functions.

In order to derive the normal product of [F aαβF
aαβ ], we consider the finite function obtained

by applying the differential operators αg
∂
∂αg

and ξ ∂∂ξ to the correlation function. We here
consider the following combination:(

αg
∂

∂αg
− ξ

∂

∂ξ

)⟨NA∏
j=1

Aµj (xj)

Nψ∏
k=1

(ψandψ̄)(xk)

⟩
= finite

=

(
αg

∂

∂αg
− ξ

∂

∂ξ

){
−NA

2
lnZA −

Nψ

2
lnZ2

}⟨NA∏
j=1

Aµj (xj)

Nψ∏
k=1

(ψandψ̄)(xk)

⟩

−

⟨(
αg

∂

∂αg
− ξ

∂

∂ξ

) NA∏
j=1

Aµj (xj)

Nψ∏
k=1

(ψandψ̄)(xk)

⟩

=

⟨∫
dDx

√
g

{
−[EA]

γ̃A
2βg

− [Eψ]
γ̃2
2βg

+
D − 4

βg

1

4g20
F a0αβF

aαβ
0 +

1

βg

γ̃A
2g20ξ0

(∇αAa0α)
2

+
D − 4

βg
µD−4

[(
La +

β̄a
D − 4

)
FD +

(
Lb +

β̄b
D − 4

)
G4 +

(
Lc +

β̄c
D − 4

)
H2

]}
×

NA∏
j=1

Aµj (xj)

Nψ∏
k=1

(ψandψ̄)(xk)

⟩
, (B.23)

where

γ̃A = γA +
[
−(D − 4) + γA

]
ξ
∂

∂ξ
lnZA, γ̃2 = γ2 +

[
−(D − 4) + γA

]
ξ
∂

∂ξ
lnZ2 (B.24)

and we use the relations

αg
∂g0
∂αg

=
D − 4

2βg
g0,

αg
∂ξ0
∂αg

=
1

βg
(β̄g + γA)

(
1 + ξ

∂

∂ξ

)
ξ0,

αg
∂a0
∂αg

= −D − 4

βg
µD−4

(
La +

β̄a
D − 4

)
, αg

∂b0
∂αg

= −D − 4

βg
µD−4

(
Lb +

β̄b
D − 4

)
,

αg
∂c0
∂αg

= −D − 4

βg
µD−4

(
Lc +

β̄c
D − 4

)
.
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The gauge-fixing term in the correlation function has the following form:∫
dDx

√
g

1

g20ξ0
(∇αAa0α) =

∫
dD

√
g[Ec] + BRST trivial (B.25)

under the on-shell BRST transformation, where [Ec] is the equation-of-motion operator for the
ghost field defined as in the case of fermion fields. Therefore, this term vanishes in physical
correlation functions (B.19) in which ghost fields are not included. So, we obtain the finiteness
condition⟨∫

dDx
√
g

{
D − 4

βg

1

4g20
F0

a
αβF0

aαβ − [EA]
γ̃A
2βg

− [Eψ]
γ̃2
2βg

+
D − 4

βg
µD−4

[(
La +

β̄a
D − 4

)
FD +

(
Lb +

β̄b
D − 4

)
G4 +

(
Lc +

β̄c
D − 4

)
H2

]}

×
NA∏
j=1

Aµj (xj)

Nψ∏
k=1

(ψandψ̄)(xk)

⟩
= finite. (B.26)

Here, noting the reciprocal of the beta function is expanded as

1

β
=

1

D − 4

(
1 +

∞∑
n=1

(−β̄)n

(D − 4)n

)
, (B.27)

we can see that the expression inside the bracket as the form of normal product of the square
of gauge field strength which is required to be the form[

F aαβF
aαβ
]
=
(
1 +

∑
poles

)
F a0αβF

aαβ
0 +

(∑
poles

)
× (other operators). (B.28)

We thus find that the normal product

1

4g2

[
F aαβF

aαβ
]
=
D − 4

βg

1

4g20
F a0αβF

aαβ
0 − E0A

γ̃A
2βg

− E0ψ
γ̃2
2βg

+
D − 4

βg
µD−4

[(
La +

β̄a
D − 4

)
FD+

(
Lb +

β̄b
D − 4

)
G4+

(
Lc +

β̄c
D − 4

)
H2− 4(σ + Lσ)

D − 4
∇2H

]
(B.29)

up to the BRST trivial term. Moreover, we add the last term since the possible total derivative
terms that is only ∇2H, which has to determined by imposing the finiteness conditions for the
energy-momentum tensor below.

The trace of energy-momentum tensor, namely conformal anomaly is defined by the confor-
mal variation of the action as

θ ≡ 2
√
g
gαβ

δS

δgαβ
=
δS

δΩ

=
D − 4

4
F0

a
αβF0

aαβ +
D − 1

2
E0ψ + (D − 4)[a0FD + b0G4 + c0H

2]− 4c0∇2H (B.30)
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up to the gauge-fixing term. This operator is one of the normal product since it satisfies

δ

δΩ(x)

⟨NA∏
j=1

Aaµj (xj)

Nψ∏
k=1

(ψandψ̄)(xk)

⟩
=

⟨
θ(x)

NA∏
j=1

Aaµj (xj)

Nψ∏
k=1

(ψandψ̄)(xk)

⟩
= finite. (B.31)

Using the expression of [F aαβF
aαβ], we can rewrite it in terms of various normal products and

finite quantities as

θ =
βg
4g2
[
F aαβF

aαβ
]
+
γ̃A
2
[EA] +

1

2
(D − 1 + γ̃2)[Eψ]− µD−4[βaFD + βbG4 + βcH

2]

− 4µD−4(c− σ)∇2H, (B.32)

where the last term is determined later.
In what follows, we consider the two-and three-point function of the trace of the energy-

momentum tensor, which give us important conditions to determine the forms of gravitational
action and also conformal anomaly.

B.2 Hathrell’s renormalization group equations

Let us derive the non-trivial renormalization group equations which corrects the gravitational
counterterms with bare constants b0 and c0 [37, 38, 39, 40, 14].

Two point function Since the partition function is finite, its gravitational variation should
be finite too. Acting the conformal variation twice on the partition function, we obtain the
following condition:

⟨θ(x)θ(y)⟩ −
⟨
δθ(x)

δΩ(y)

⟩
= finite (B.33)

Taking flat space and going to momentum space, we obtain the equation:

⟨θ(p)θ(−p)⟩flat − 8c0p
4 = finite. (B.34)

Now, we introduce the following expression.

θ̄ ≡ θ − D − 1

2
[Eψ] . (B.35)

In terms of this variable, the equation above can be expressed as⟨
θ̄(p)θ̄(−p)

⟩
flat

− 8p4µD−4Lc = finite. (B.36)

Here, we use the fact that since one-point functions are dimensionally regularized to zero for a
massless theory in flat space, the two-point function including the equation-of-motion operator
vanishes, for instance, as

⟨Eψ(x)P (y)⟩|flat =
⟨
δP (y)

δχ(x)

⟩
flat

= 0, (B.37)

53



where P (y) is an composite field. We also introduce the composite operator defined as

{A2} ≡ D − 4

βg

1

4g20
F0

a
αβF0

aαβ

=
1

4g2

[
F aαβF

aαβ
]
+

1

βg
(γ̃A [EA] + γ̃2 [Eψ]) .

(B.38)

We then obtain the following relation:

βg
{
A2
}
= (D − 4)

1

4g20
F0

a
αβF0

aαβ = θ̄
∣∣
flat
. (B.39)

Let us consider the two-point function of the composite operator {A2} defined as

ΓAA(p
2) ≡

⟨
{A2(p)}{A2(−p)}

⟩
flat

. (B.40)

This is written in terms of the two point function of the composite operator [F aαβF
aαβ] since the

two-point function including equation-of-motion operator disappears. Also, the correlation func-
tion of renormalized operators does not involve non-local divergence. Therefore, the divergence
of ΓAA is written in terms of a pure pole as

ΓAA − p4µD−4

(
D − 4

βg

)2

Lx = finite. (B.41)

where the pure pole term Lx is defined as

Lx =
∞∑
n=1

xn
(D − 4)n

(B.42)

and the factor (D − 4)2/β2g is introduced for later convenience.
Since β2gΓAA = ⟨θθ̄⟩, we can see that by combining eq.(B.36) and (B.41), the pure pole terms

satisfy the following relation:

(D − 4)2Lx − 8Lc = finite. (B.43)

It is obviously

cn =
1

8
xn+2. (B.44)

This indicates that if the residue x3 is calculated, we can find c1 and then general cn through
the renormalization group equation if we calculate the residue x3. So, we then have to derive
the relationship between x3 and x1 using renormalization group equation.

So, we next derive the renormalization group equation that gives the relationship between
the residues x3 and x1. In order to derive it, we here use the fact that if F is a finite quantity,

1

βng
µ
d

dµ
(βng F ) = µ

dF

dµ
+ nαg

∂β̄g
∂αg

= finite. (B.45)
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Applying this fact of n = 2 to eq. (B.41) as a finite quantity, we obtain the following condition:

1

β2g
µ
d

dµ

{
β2g

[
ΓAA − p4µD−4

(
D − 4

βg

)2

Lx

]}
= finite. (B.46)

Since βg{A2} can be written in bare quantities, it satisfies µd(β{A2})/dµ = 0. Thus, we obtain
the following renormalization group equation:

1

β2g
µ
d

dµ
{µD−4(D − 4)2Lx} = finite. (B.47)

Expanding these equations and bringing out parts that poles are canceled, we obtain

∂

∂αg
(αgx2)−

β̄g
αg

∂

∂αg
(α2

gx1) = 0,

∂

∂αg
(αgx3)−

β̄g
αg

∂

∂αg
(α2

gx2) +
β̄2g
α2
g

∂

∂αg
(α3

gx1) = 0.

(B.48)

Using these equations, we can find the residues x2 and x3 from x1.

Three point function Then, we consider the three point function of the energy-momentum
tensor, which satisfies

⟨θ(x)θ(y)θ(z)⟩ −
⟨
δθ(x)

δΩ(y)
θ(z)

⟩
−
⟨
δθ(y)

δΩ(z)
θ(x)

⟩
−
⟨
δθ(z)

δΩ(x)
θ(y)

⟩
+

⟨
δS

δΩ(x)δΩ(y)δΩ(z)

⟩
= finite. (B.49)

It is convenient to define the following quantity.

θ̄(y, z) ≡ δθ̄(y)

δΩ(z)
− D − 1

2

δθ̄(y)

δχ(z)
, (B.50)

which satisfies the symmetric condition θ̄(y, z) = θ̄(z, y). In terms of θ̄(x) and θ̄(x, y), the
condition of the three points function of θ can be written in flat space as

⟨θ̄(x)θ̄(y)θ̄(z)⟩flat − ⟨θ̄(x)θ̄(y, z)⟩flat − ⟨θ̄(y)θ̄(z, x)⟩flat − ⟨θ̄(z)θ̄(x, y)⟩flat

+

⟨
δ3S

δΩ(x)δΩ(y)δΩ(z)

⟩
flat

= finite. (B.51)

The trace of energy-momentum tensor in flat space is θ̄(x)|flat = βg{A2}, and this leads to the
following equation

θ̄(x, y)|flat = −4βg{A2}δ(D)(x− y) + 8c0∂
4δ(D)(x− y). (B.52)
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Using these expressions, we obtain the following relations:⟨
θ̄(x)θ̄(y)θ̄(z)

⟩
|flat = β3g ⟨{A2(x)}{A2(y)}{A2(z)}⟩|flat,⟨

θ̄(x)θ̄(y, z)
⟩
|flat = −4β2g ⟨{A2(x)}{A2(y)}⟩|flatδ(D)(x− y).

(B.53)

Going to momentum space, and denoting the three-point function of {A2} by ΓAAA, equation
(B.51) is then expressed as follows:

β3gΓAAA(p
2
x, p

2
y, p

2
z) + 4β2g{ΓAA(p2x) + ΓAA(py)

2 + ΓAA(p
2
z)}+ b0B(p2x, p

2
y, p

2
z) + c0C(p

2
x, p

2
y, p

2
z)

= finite, (B.54)

where

B(p2x, p
2
y, p

2
z) = −2(D − 2)(D − 3)(D − 4)

[
p4x + p4y + p4z − 2(p2xp

2
y + p2yp

2
z + p2zp

2
x)
]
,

C(p2x, p
2
y, p

2
z) = −4

[
(D + 2)(p4x + p4y + p4z) + 4(p2xp

2
y + p2yp

2
z + p2zp

2
x)
]
.

(B.55)

These relations respectively take

B(p2, p2, 0) = 0,

C(p2, p2, 0) = −8(D + 4)p4
(B.56)

at p2x = p2y = p2p2z = 0 and

B(p2, 0, 0) = −2(D − 2)(D − 3)(D − 4)p4,

C(p2, 0, 0) = −4(D + 2)p4
(B.57)

at p2x = p2, p2y = p2z = 0. Therefore, we obtain the following relations

β3gΓAAA(p
2, p2, 0)− 8(D − 4)p4µD−4Lc = finite (B.58)

and

β3gΓAAA(p
2, 0, 0)− p4µD−4[2(D − 2)(D − 3)(D − 4)Lb + 4(D − 6)Lc] = finite. (B.59)

The three point function ΓAAA generally has the following form:

ΓAAA(p
2
x, p

2
y, p

2
z)−

∑
(poles)×

[
ΓAA(p

2
x) + ΓAA(p

2
y) + ΓAA(p

2
z)
]

− µD−4
∑

(poles)× {terms of p2i p
2
j} = finite. (B.60)

Since three point functions involving [Eψ] do not vanish, the term [Eψ]/βg in {A2} produces
non-local poles by the presence of 1/βg. Thus, ΓAAA has non-local poles unlike ΓAA. The second
term in (B.60) plays an important role to cancel out such non-local poles.

In order to determine the pure-pole factor in front of ΓAA in (B.60), we consider the equation
obtained by applying αg∂/∂αg to (B.41). We then obtain the equation for ΓAAA(p

2, p2, 0)
owing to αg∂{A2}/∂αg = −(αg/βg)(∂β̄g/∂αg){A2} and αg∂S/∂αg|flat = −

∫
dDx{A2} up to
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BRST trivial terms. The pole factor can be extracted from this equation and fixed to be
(α2

g/βg)∂(β̄g/αg)/∂αg. Therefore, ΓAAA(p
2, 0, 0) has the following form:

ΓAAA(p
2, 0, 0)−

α2
g

βg

∂

∂αg

(
β̄g
αg

)
ΓAA(p

2)− p4µD−4

(
D − 4

βg

)3

Ly = finite, (B.61)

where

Ly =
∞∑
n=1

yn
(D − 4)n

. (B.62)

Multiplying β3g to equation (B.61) and using the expression of (B.59), we obtain the following
pole relation:

2(D − 2)(D − 3)(D − 4)Lb + 4

{
D − 6− 2α2

g

∂

∂αg

(
β̄g
αg

)}
Lc − (D − 4)3Ly = finite. (B.63)

Moreover, since µ d
dµ(β

3
gΓAAA) = 0, we can obtain the renormalization group equation connecting

Lx and Ly by applying (B.45) at n = 3 to (B.61) as a finite quantity as follows:(
D − 4

βg

)3 [
(D − 4)Ly + µ

d

dµ
Ly

]
+ α2

g

∂2β̄g
∂α2

g

(
D − 4

βg

)2

Lx = finite. (B.64)

B.2.1 Determination of gravitational counterterms and conformal anomalies

Having clarified the relations between the respective residues, we will now discuss the determi-
nation of the gravitational counterterm [40, 14]. As we seen above, the pure pole terms Lb and
Lc have a one-to-one connection. This means that we can unify the Euler term and the square
of the rescaled Ricci scalar. In this case, the number of gravitational counterterm reduces to
two. Then, we write the gravitational action as

Sg =

∫
dDx

√
g{a0FD + b0GD} (B.65)

where

GD ≡ G4 + (D − 4)χ(D)H2. (B.66)

The coefficient χ(D) is a finite function with respect to D only. Using the counterterm (B.65),
we can obtain the finiteness conditions that simply result in Hathrell’s renormalization group
equations, (B.43), (B.47), (B.63), and (B.64), under the relation

Lc − (D − 4)χ(D)Lb = finite. (B.67)

Thus, we can make the theory finite using only two gravitational counterterms. We will show
later that the function χ can be determined completely by solving the coupled renormalization
group equations order by order.
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On the other hand, we have to pay attention to the calculation of the finite quantities such
as the expression of the conformal anomaly, since the gravitational counterterm (B.65) indicate
that the finite parameter c is eliminated and extra finite terms are added.

When we use the counterterm (B.65) and repeat the calculation as before, we obtain the
following normal product:

1

4g2
[
F aαβF

aαβ
]
=
D − 4

βg

1

4g20
F0

a
αβF0

aαβ − [EA]
γ̃A
2βg

− [Eψ]
γ̃2
2βg

+
D − 4

βg
µD−4

[(
La +

β̄a
D − 4

)
FD +

(
Lb +

β̄b
D − 4

)
GD − 4χ(D)(σ + Lσ)

D − 4
∇2H

]
. (B.68)

Using this normal product, we can obtain the trace of energy-momentum tensor expressed in a
manifestly finite form as

θ =
D − 4

4g20
F0

a
αβF0

aαβ +
D − 1

2
E0ψ + (D − 4)a0FD

+ b0[(D − 4)G4 + χ(D)(D − 4){(D − 4)H2 − 4∇2H}]

=
βg
4g2
[
F aαβF

aαβ
]
+
γ̃A
2
[EA] +

D − 1 + γ̃2
2

[Eψ]− µD−4(βaFD + βbGD)

− 4µD−4χ(D)
[
(D − 4)(b+ Lb)− (σ + Lσ)

]
∇2H. (B.69)

The coefficient in the last term
[
(D − 4)(b+ Lb)− (σ + Lσ)

]
is expressed as

(D − 4)b− σ + b1 +

∞∑
n=1

bn+1 − σn
(D − 4)n

. (B.70)

This must be finite for the reason of the finiteness of the energy-momentum tensor such that

bn+1 = σn (n ≥ 1). (B.71)

Acting 1
βg
µ d
dµ on the expression (B.69) and noting µ dθdµ = 0, we obtain

1

βg
µ
d

dµ

([
βg
4g2

F aαβF
aαβ

])
= − 1

2βg
µ
d

dµ

{
(D − 1 + γ̃2)[Eψ] + γ̃A[EA]

}
+

1

βg
µ
d

dµ
[µD−4(βaFD + βbGD)] +

4(D − 4)

βg
χ(D)µD−4(β̄b − σ + b1)∇2H

= −1

2

∂γ̃2
∂αg

[Eψ]−
1

2

∂γ̃A
∂αg

[EA] + µD−4

(
αg
∂β̄a
∂αg

FD + αg
∂β̄b
∂αg

GD

)
+

4(D − 4)

βg
χ(D)µD−4(β̄b − σ + b1)∇2H (B.72)

Since L.H.S is finite owing to (B.45), R.H.S should be also finite. The divergent term is only
the last term, and therefore

σ = b1 + β̄b. (B.73)
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Substituting this into the equation (B.69), we obtain the following form of the conformal anomaly

θ =
βg
4g2
[
F aαβF

aαβ
]
+
γ̃A
2
[EA] +

D − 1 + γ̃2
2

[Eψ]− µD−4(βaFD + βbED), (B.74)

where the last term is defined as

ED = GD − 4χ(D)∇2H. (B.75)

It has a desirable property similar to the other conformal anomalies FD and (F aαβ)
2, which is

δ

δΩ

∫
dDx

√
gED = (D − 4)ED. (B.76)

It is clear that the volume integral of ED is nothing less than that of counterterm GD.
Now, we determine the function χ(D) order by order. To determine the pole terms, we need

the information of the QCD beta function and the simple-pole residues of Lx and Ly. In order
to find respective residues, we expand the beta function β̄g and the residues x1 and y1 in a power
series with respect to αg as follows

β̄g = β1αg + β2α
2
g + β3α

3
g +O(α4

g),

x1 = X1 +X2αg +X3α
2
g +O(α3

g),

y1 = Y1 + Y2αg + Y3α
2
g +O(α2

g).

(B.77)

Furthermore, we expand χ(D) in a power series of D − 4 as

χ(D) = χ1 + χ2(D − 4) + χ3(D − 4)2 + · · · . (B.78)

The solution for the first three terms of χ is then given as

χ1 =
1

2
, (B.79)

χ2 = 1− Y1
4X1

, (B.80)

χ3 =
1

8

(
2− Y1

X1

)(
3− Y1

X1

)
− 1

6

β2
β21

(
1− Y1

X1

)
+

1

6

X2

β1X1

(
Y2
X2

− 3

2

Y1
X1

)
. (B.81)

The constants X1 and Y1 follow from the calculation of ΓAA and ΓAAA whose diagrams are
shown in Figure B.1 up to one loop level. The results are

ΓAA(p
2) = −r

2

µD−4

(4π)2
p4

1

D − 4
(B.82)

ΓAAA(p
3) = −r

2

µD−4

(4π)2
p4

1

D − 4
(B.83)

We thus obtain that X1 = Y1 = − r
2(4π)2

from the above equations where r is the dimension of

Lie group. From this, we immediately find

χ2 =
3

4
. (B.84)
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{A2} {A2}

(a) Two point function ΓAA

{A2} {A2}

{A2}

(b) Three point function ΓAAA

Figure B.1: Feynman diagrams with respect to the composite operator {A2}

In this way, we can see that at least χ1 and χ2 are the universal coefficients independent of the
gauge group and the fermion representation. At present, it is not clear whether the coefficient
χn(n ≥ 3) has a universal value independent of the theories or not. Regardless of the theory, χn
can be determined at all orders.

Then, we calculate the explicit value of b′1, which is the coupling-dependent part of b1.
From χ1 = 1/2, we obtain the relation b2 = 2c1 + O(α4

g). The residue c1 = x3/8 is obtained
from x1 using the renormalization equation (B.48). Since x1 = X1 + O(αg)., we obtain c1 =
−β1β2X1α

3
g/96+O(α4

g) and therefore we can find b2. Further, using the renormalization group
equation among bn, we obtain

b′1 =
β2X1

24
α2
g +O(α3

g). (B.85)

Thus, the coupling dependent part of the residue b1 starts from O(α2
g).

The expansion of the function χ(D) up to the second order of D − 4 finally becomes

χ(D) =
1

2
+

3

4
(D − 4) + · · · . (B.86)

The above equation shows that the first two coefficient of χ(D) in QCD are in common with
QED. In QED, the third coefficient has been calculated to be χ3 = 1/3.

At the D → 4 limit, the conformal anomaly ED reduces to the form

E4 = G4 −
2

3
∇2R. (B.87)

This is exactly the combination proposed by Riegert in 1984 [15].
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Appendix C

BRST transformations and gauge
fixing terms

The action of the non-abelian gauge field and the kinetic term of the traceless tensor mode are
given as follows:

SYM + h =

∫
dDx

[
1

4g20
F a0 αβF

a
0
αβ +

D − 3

D − 2
(h0αβ∂

4h0
αβ + 2χ0α∂

2χ0
α)

+
D − 3

D − 1
∂αχ0

α∂βχ0
β

]
. (C.1)

In order to quantize them, we introduce the gauge fixing terms and the ghost actions as [9, 56]

Sg.f+FP =

∫
dDxδB

{
c̃a0

(
∂αA0

a
α − g20ξ0

2
Ba

0

)
+ c̃0αN

αβ

(
χ0β −

ζ0
2
B0β

)}
, (C.2)

where δB is the BRST transformation defined soon below. c̃a0 and c̃α0 are respectively the
anti-ghost fields for the gauge and diffeomorphism transformations and Ba

0 and B0α are the
corresponding Nakanishi-Lautrup fields.The differential operator Nαβ is given as

Nαβ =
2(D − 3)

D − 2

(
−2ηαβ∂

2 +
D − 2

D − 1
∂α∂β

)
. (C.3)

From the transformation laws of the traceless tensor mode and the gauge field, we can write down
the BRST transformations of both fields with replacing gauge parameters into the corresponding
Faddeev Popov ghosts ca0 and c0α as

δBA0
a
α = ∂αc0

a − fabcA0
b
αc0

c + t0(A
a
0γ∂αc0

γ + c0
γ∂γA

a
0α), (C.4)

δBh0αβ = ∂αc0β + ∂βc0α − 2

D
ηαβ∂γc0

γ + tc0
γ∂γh0αβ +

t0
2
h0αγ(∂βc0

γ − ∂γc0β)

+
t0
2
h0βγ(∂αc0

γ − ∂γc0α) +O(h2). (C.5)
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Besides, the BRST transformation of the conformal mode is given as

δBϕ = t0c
γ∇̂γϕ+

t0
D
∇̂c0γ . (C.6)

The transformation laws of Faddeev-Popov ghost fields and Nakanishi-Lautrup fields are deter-
mined from their nilpotency as

δBc
a
0 = t0c0

γ∂γc
a
0, δB c̃

a
0 = Ba

0 , δBB
a
0 = 0,

δBc0α = t0c0
γ∂γc0α, δB c̃

α
0 = B0

α, δBB0
α = 0.

(C.7)

So, the gauge fixing terms and Faddeev-Popov ghost terms become

Sg.f+FP =

∫
dDx

[
Ba

0

(
∂αAa0α − g20ξ0

2
Ba

0

)
− c̃a0∂

αδBA
a
0

+B0αN
αβ

(
χ0β −

ζ0
2
B0β

)
− c̃0αN

αβ∂γδBh0γβ

]
.

When we integrate out the Nakanishi-Lautrup fields, we finally obtain the gauge fixing terms of
gauge field and the traceless tensor mode as follows:

Sg.f =

∫
dDx

[
1

2ξ0
∂αAa0α∂

βAa0β +
1

2ζ0
χ0αN

αβχ0β

]
. (C.8)
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Appendix D

Contractions of the traceless tensor
mode

We need to contract the indices of the tensor mode propagator to find the integrand for loop
calculations. Feynman diagrams which we need are as Figure D.1. We here present the results,
which are calculated using MAXIMA sofware, in what follows.

Γ1 = −bt2 1

(4π)D/2
D − 2

4(D − 3)

∫
dDpdDq

(2π)2D
ϕ(p)ϕ(−p) F1(p

2, q2)

(q2 + z2)2{(p− q)2 + z2}2
, (D.1)

bt bt

(a) Γ1
bt

2

(b) Γ2

bt D − 4

(c) Γ3

(D − 4)bt bt

(d) Γ4
(D − 4)bt2

(e) Γ5

Figure D.1: Corrections of conformal mode with respect to traceless tensor mode
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where

F1(p
2, q2) =

16(D − 2)

D − 1

{(
p2
)4

+ 2
(
p2
)3
q2 +

(
p2
)2(

q2
)2 − 2

((
p2
)2
q2 +

(
p2
)3)

(p · q)

−
(
2
(p2)3

q2
+ 3(p2)2 + 2p2q2

)
(p · q)2 + 4

(
(p2)2

q2
+ p2

)
(p · q)3

+

(
(p2)2

(q2)2
+ 1

)
(p · q)4 − 2

(
p2

(q2)2
+

1

(q2)

)
(p · q)5 + (p · q)6

(q2)2

}
+ ζ

{
16

D(D − 1)

(
p2
)4

+
8
(
3D2 − 7D + 16

)
3D(D − 1)

(
p2
)3
q2

+
8
(
11D2 − 25D + 32

)
9D(D − 1)

(
p2
)2(

q2
)2

+ 2 p2
(
q2
)3

−
(
32(D2 − 2D + 2)

D(D − 1)
(p2)3 +

16(11D2 − 23D + 18)

3D(D − 1)

(
p2
)2
q2 − 16(11D − 8)

9D
p2
(
q2
)2)

(p · q)

+

(
32(D − 2)

D − 1

(p2)3

q2
+

8
(
43D2 − 85D + 24

)
3D(D − 1)

(p2)2

+
8
(
23D2 − 43D + 8

)
3D(D − 1)

p2q2 − 2(D + 8)

9D
(q2)2

)
(p · q)2

+

(
−64(D − 2)

D − 1

(p2)2

q2
− 16(13D − 25)

3(D − 1)
p2 +

16

3
q2
)
(p · q)3

+

(
−16(D − 2)

D − 1

(p2)2

(q2)2
− 16(4D − 7)

3(D − 1)

)
(p · q)4

+

(
32(D − 2)

D − 1

1

q2
+

32(D − 2)

D − 1

p2

(q2)2

)
(p · q)5 − 16(D − 2)

D − 1

(p · q)6

(q2)2

}
. (D.2)

The contribution from the second diagram is

Γ2 = bt2
1

(4π)D/2
D − 2

2(D − 3)

∫
dDpdDq

(2π)2D
ϕ(p)ϕ(−p)F2(p

2, q2)

(q2 + z2)2
, (D.3)

where

F2(p, q) = bt2
1

(4π)D/2
D − 2

2(D − 3)

∫
dDpdDq

(2π)2D
ϕ(p)ϕ(−p) 1

(q2 + z2)2

×
[
(D − 2)(D + 3)

D − 1
(p2)2 − (D − 7)(D − 2)(D + 1)

6(D − 1)
p2q2

+

(
−(D − 2)(D + 5)

D − 1

p2(p · q)2

q2
+

(D − 3)(D − 2)(D + 1)

2(D − 1)

)
+

2(D − 2)

D − 1

(p · q)4

(q2)2

+ ζ

{
D2 −D + 4

D(D − 1)
(p2)2 +

2(2D2 − 5D + 6)

3D(D − 1)
p2q2

+

(
(D − 2)(D + 5)

D − 1

p2

q2
− 2(D2 − 4D + 6)

3D(D − 1)

)
(p · q)2 − 2(D − 2)

D − 1

(p · q)4

(q2)2

}]
. (D.4)
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The contribution from the third diagram is

Γ3 = −bt2 1

(4π)D/2
(D − 4)(D − 2)2

2(D − 3)2

∫
dDpdDq

(2π)2D
ϕ(q)ϕ(−q) F3(p, q)

(p2 + z2)2{(p− q)2 + z2}2
, (D.5)

where

F3(p, q) =
(D − 3)(7D + 19)

12(D − 1)
(p2)2(q2)2 − (D − 3)(D + 1)(7D − 19)

12(D − 1)
(p2)3q2

+

{
(D − 3)(D + 1)(5D − 13)

4(D − 1)
(p2)2q2 − (D − 3)(D + 1)

12(D − 1)
p2(q2)2

}
(p · q)

+

{
(D − 3)2(D + 1)

2(D − 1)
(p2)2 − (D − 3)(9D2 +D + 16)

12(D − 1)
p2q2

}
(p · q)2

+

{
−(D − 3)2(D + 1)

D − 1
p2 +

(D − 3)D(D + 1)

12(D − 1)
q2
}
(p · q)3 + (p · q)4D(D − 3)

2
. (D.6)

The contribution from the fourth diagram is

Γ4 = bt2
1

(4π)D/2
(D − 2)(D − 4)

2(D − 3)

∫
dDpdDq

(2π)2D
ϕ(p)ϕ(−p) F4(p

2, q2)

(q2 + z2)2{(q − p)2 + z2}2
, (D.7)

where

F4(p
2, q2) =

D − 2

D − 1

{
−24(p2)4 − 44(p2)3q2 − 20(p2)2(q2)2 +

(
48(p2)3 + 44(p2)2q2

)
(p · q)

+

(
48(p2)3

q2
+ 64(p2)2 + 40p2q2

)
(p · q)2 +

(
−96(p2)2

q2
− 88p2

)
(p · q)3

+

(
−24(p2)2

(q2)2
+

4p2

q2
− 20

)
(p · q)4 +

(
48p2

(q2)2
+

44

q2

)
(p · q)5 − 24

(q2)2
(p · q)6

}
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+ ζ

{
− 24

D(D − 1)
(p2)4 − 4(27D2 − 59D + 131)

9D(D − 1)
(p2)3q2 − 20(19D2 − 41D + 49)

27D(D − 1)
(p2)2(q2)2

− 31D − 16

9D
p2(q2)3 +

(
48(D2 − 2D + 2)

D(D − 1)
(p2)3 +

4(194D2 − 398D + 303)

9D(D − 1)
(p2)2q2

+
52(16D − 13)

27D
p2(q2)2 +

4(D − 1)

9D
(q2)3

)
(p · q)

+

(
−48(D − 2)

D − 1

(p2)3

q2
− 4(393D2 − 761D + 234)

9D(D − 1)
(p2)2

− 8(107D2 − 205D + 53)

9D(D − 1)
p2q2 − 47D − 92

27D
(q2)2

)
(p · q)2

+

(
96(D − 2)

D − 1

(p2)2

q2
+

8(122D2 − 239D + 18)

9D(D − 1)
p2 − 4(7D + 6)

9D
q2
)
(p · q)3

+

(
24(D − 2)

D − 1

(p2)2

(q2)2
− 4(D − 2)

D − 1

p2

q2
+

4(58D − 103)

9D(D − 1)

)
(p · q)4

+

(
−48(D − 2)

D − 1

p2

(q2)2
− 44(D − 2)

D − 1

1

q2

)
(p · q)5 + 24(D − 2)

D − 1

(p · q)6

(q2)2

}]
. (D.8)

Finally, The contribution from the fifth diagram is

Γ5 = (D − 4)bt2
1

(4π)D/2
D − 2

2(D − 3)

∫
dDpdDq

(2π)2D
ϕ(p)ϕ(−p)F5(p

2, q2)

(q2 + z2)2
, (D.9)

where

F5(p
2, q2) =

3(D − 2)(D + 3)

2(D − 1)
(p2)2 − (7D − 43)(D − 2)(D + 1)

36(D − 1)
p2q2

+

(
−3(D − 2)(D + 5)

2(D − 1)

p2

q2
+

(D − 3)(D − 2)(D + 1)

2(D − 1)

)
(p · q)2 + 3(D − 2)

D − 1

(p · q)4

(q2)2

+ ζ

{
3(D2 −D + 4)

2D(D − 1)
(p2)2 +

17D2 − 38D + 39

9D(D − 1)
p2q2

+

(
3(D − 2)(D + 5)

2(D − 1)

p2

q2
+
D2 + 17D − 54

18D(D − 1)

)
(p · q)2 − 3(D − 2)

D − 1

(p · q)4

(q2)2

}]
. (D.10)
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Appendix E

Interactions in momentum space

We here present the interactions in momentum space with care of symmetric properties of indices
in what follows.

SbtG[ϕh] = −2

3
bt
µD/2−2

(4π)D/2

∫
dDk

(2π)D
k2kαkβϕ(k)hαβ(−k),

SbtG[ϕϕh] =
µD/2−2

(4π)D/2
bt

∫
dDpdDq

(2π)2D
ϕ(p)ϕ(q)hαβ(−p− q)V 3

αβ(p, q),

where

V 3
αβ(p, q) = (pαqβ + qαpβ − 2qαqβ)p2 + (qαpβ + pαqβ − 2pαpβ)q2

− 2

3
(pαpβ − 2pαqβ − 2qαpβ + qαqβ)(p · q). (E.1)

S
(D−4)bt
G[ϕϕh] = −(D − 4)bt

µ
D
2
−2

(4π)D/2

∫
dDpdDq

(2π)2D
ϕ(p)ϕ(q)hαβ(−p− q)T 3

αβ(p, q), (E.2)

where

T 3
αβ(p, q) =

1

6
(14qαqβ − 7pαqβ − 7qαpβ + 2pαpβ)p2 +

1

6
(2qαqβ − 7pαqβ − 7qαpβ + 14pαpβ)q2

+
2

9
(5qαqβ − 4pαqβ − 4qαpβ + 5pαpβ)(p · q). (E.3)

Sbt
2

G[ϕhh] = bt2
1

(4π)D/2

∫
dDpdDq

(2π)2D
hαβ(p)hγδ(q)ϕ(−p− q)S3

αβ,γδ(p, q), (E.4)
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S3
αβ,γδ(p, q) =

2

3
(δαγδβδ + δαδδβγ)(p · q)2 − 1

2
(δαγpδqβ + δαδpγqβ + δβγpδqα + δβδpγqα)(p · q)

+ pγpδqαqβ − 1

2
(δαγpβqδ + δαδpβqγ + pαδβγqδ + pαδβδqγ)(p · q)

− 1

2
(pαpγqβqδ + pαpδqβqγ + pβpγqαqδ + pβpδqαqγ)− 1

2
(δαγδβδ + δαδδβγ)p2q2

+
1

2
(δαγqβqδ + δαδqβqγ + δβγqαqδ + δβδqαqγ)p2

+
1

2
(δαγpβpδ + δαδpβpγ + δβγpαpδ + δβδpαpγ)q2

+ pαpβqγqδ +
1

12
(δαγδβδ + δαδδβγ)(p2 + q2)(p · q)

+
1

12
(δαγpβqδ + δαδpβqγ + δβγpαqδ + δβδpαqγ)(p+ q)2

+
1

12
(δαγ(pβpδ + qβqδ) + δαδ(pβpγ + qβqγ)

+ δβγ(pαpδ + qαqδ) + δβδ(pαpγ + qαqγ))(p+ q)2

+
1

3
pαpβpγpδ +

1

3
qαqβqγqδ +

1

6
pαpβ(pγqδ + pδqγ) +

1

6
(pαqβ + pβqα)qγqδ. (E.5)

S
(D−4)
F [ϕhh] =(D − 4)

∫
dDpdDq

(2π)2D
hαβ(p)hγδ(q)ϕ(−p− q)W 3

αβ,γδ(p, q),

where

W 3
αβ,γδ(p, q) =

1

2
(p·q)2(δαγδβδ+δαδδβγ)−1

2
(p·q)(qαpγδβδ+qαpδδβγ+qβpγδαδ+qβpδδαγ)+qαqβpγpδ

− 1

2(D − 2)

{
p2q2(δαγδβδ + δαδδβγ)− p2(qαqγδβδ + qαqδδβγ + qβqγδαδ + qβqδδαγ)

− q2(pαpγδβδ + pαpδδβγ + pβpγδαδ + pβpδδαγ)

+ (p · q)(pαqγδβδ + pαqδδβγ + pβqγδαδ + pβqδδαγ)

+ pαpγqβqδ + pαpδqβqγ + pβpγqαqδ + pβpδqαqγ
}

+
2

(D − 1)(D − 2)
pαpβqγqδ. (E.6)

Sbt
2

G[ϕϕhh] = bt2
1

(4π)D/2

∫
dDpdDqdDrdDs

(2π)4D
(2π)DδD(p+ q + r + s)ϕ(p)ϕ(s)hαβ(q)hγδ(r)V

4αβγδ(q, r, s),
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where

V 4αβγδ(q, r, s) =
δαγ δβδ (q · r) s2

6
+
δαδ δβγ (q · r) s2

6
+
sα δβγsds2

4
+
rα δβγsδs2

8
+
qα δβγsδs2

8
+
δαγsβsδs2

4

+
δαγrβsδs2

8
+
δαγqβsδs2

8
+
sαδβγrδs2

8
+
rαδβγrδs2

6
+
qαδβγrδs2

6
+
δαγsβrδs2

8

+
δαγrβrδs2

6
+
δαγqβrδs2

6
+
sαδβγqδs2

8
+
qαδβγqδs2

6
+
δαγsβqδs2

8
+
δαγqβqδs2

6

+
sαδβδsγs2

4
+
rαδβδsγs2

8
+
qαδβδsγs2

8
+
δαδsβsγs2

4
+
δαδrβsγs2

8
+
δαδqβsγs2

8

+
sαδβδrγs2

8
+
rαδβδrγs2

6
+
qαδβδrγs2

6
+
δαδsβrγs2

8
+
δαδrβrγs2

6
+
δαδqβrγs2

6

+
sαδβδqγs2

8
+
qαδβδqγs2

6
+
δαδsβqγs2

8
+
δαδqβqγs2

6
− δαγδβδ(q · s)(r · s)

2
− δαδδβγ(q · s)(r · s)

2

− δαγδβδ(q · r)(r · s)
12

− δαδδβγ(q · r)(r · s)
12

− δαγδβδq2(r · s)
4

− δαδδβγq2(r · s)
4

− rαδβγsδ(r · s)
4

− qαδβγsδ(r · s)
4

− δαγrβsδ(r · s)
4

− δαγqβsδ(r · s)
4

− sαδβγrδ(r · s)
4

− rαδβγrδ(r · s)
12

− qαδβγrδ(r · s)
12

− δαγsβrδ(r · s)
4

− δαγrβrδ(r · s)
12

− δαγqβrδ(r · s)
12

+
sαδβγqδ(r · s)

4

+
qαδβγqδ(r · s)

6
+
δαγsβqδ(r · s)

4
+
δαγqβqδ(r · s)

6
− rαδβδsγ(r · s)

4
− qαδβδsγ(r · s)

4

− δαδrβsγ(r · s)
4

− δαδqβsγ(r · s)
4

− sαδβδrγ(r · s)
4

− rαδβδrγ(r · s)
12

− qαδβδrγ(r · s)
12

− δαδsβrγ(r · s)
4

− δαδrβrγ(r · s)
12

− δαδqβrγ(r · s)
12

+
sαδβδqγ(r · s)

4
+
qαδβδqγ(r · s)

6

+
δαδsβqγ(r · s)

4
+
δαδ qβqγ(r · s)

6
− δαγδβδ(q · s)r2

4
− δαδδβγ(q · s)r2

4
+
sαδβγsδr2

4

+
δαγsβsδr2

4
+
sα δβγqδr2

4
+
δαγsβqδr2

4
+
sαδβδsγr2

4
+
δαδsβsγr2

4
+
sαδβδqγr2

4

+
δαδsβqγr2

4
− δαγδβδ(q · r)(q · s)

12
− δαδ δβγ (q · r) (q · s)

12
+
rα δβγ sδ(q · s)

4
− qα δβγ sδ(q · s)

4

+
δαγrβsδ(q · s)

4
− δαγqβsδ(q · s)

4
− sαδβγrδ(q · s)

4
+
rαδβγrδ(q · s)

6
− qαδβγrδ(q · s)

12

− δαγsβrδ(q · s)
4

+
δαγrβrδ(q · s)

6
− δαγqβrδ(q · s)

12
− sαδβγqδ(q · s)

4
− qαδβγqδ(q · s)

12

− δαγsβqδ(q · s)
4

− δαγqβ qδ(q · s)
12

+
rαδβδsγ (q · s)

4
− qα δβδ sγ (q · s)

4
+
δαδ rβ sγ (q · s)

4

− δαδ qβ sγ (q · s)
4

− sα δβδ rγ (q · s)
4

+
rα δβδ rγ (q · s)

6
− qα δβδ rγ (q · s)

12
− δαδ sβ rγ (q · s)

4

+
δαδ rβ rγ (q · s)

6
− δαδ qβ rγ (q · s)

12
− sα δβδ qγ (q · s)

4
− qα δβδ qγ (q · s)

12
− δαδ sβ qγ (q · s)

4
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− δαδ qβ qγ (q · s)
12

− qα δβγ sδ (q · r)
4

− δαγ qβ sδ (q · r)
4

− sα δβγ rδ (q · r)
4

− δαγ sβ rδ (q · r)
4

− qα δβδ sγ (q · r)
4

− δαδ qβ sγ (q · r)
4

− sα δβδ rγ (q · r)
4

− δαδ sβ rγ (q · r)
4

+
sα δβγ sδ q2

4

+
rα δβγ sδ q2

4
+
δαγ sβ sδ q2

4
+
δαγ rβ sδ q2

4
+
sα δβδ sγ q2

4
+
rα δβδ sγ q2

4
+
δαδ sβ sγ q2

4
+
δαδ rβ sγ q2

4

+ 2 sα sβ sγ sδ + rα sβ sγ sδ + qα sβ sγ sδ + sα rβ sγ sδ + 2 rα rβ sγ sδ + qα rβ sγ sδ

+ sα qβ sγ sδ + rα qβ sγ sδ +
2 qα qβ sγ sδ

3
+ sα sβ rγ sδ +

qα sβ rγ sδ

2
+
rα rβ rγ sδ

2

+
qα rβ rγ sδ

4
+
sα qβ rγ sδ

2
+
rα qβ rγ sδ

4
+
qα qβ rγ sδ

3
+ sα sβ qγ sδ − rα sβ qγ sδ

2

− sα rβ qγ sδ

2
− qα rβ qγ sδ

4
− rα qβ qγ sδ

4
− qα qβ qγ sδ

6
+ sα sβ sγ rδ +

qα sβ sγ rδ

2

+
rα rβ sγ rδ

2
+
qα rβ sγ rδ

4
+
sα qβ sγ rδ

2
+
rα qβ sγ rδ

4
+
qα qβ sγ rδ

3
+

2 sα sβ rγ rδ

3

− rα sβ rγ rδ

6
+
qα sβ rγ rδ

3
− sα rβ rγ rδ

6
+
sα qβ rγ rδ

3
+ sα sβ qγ rδ − rα sβ qγ rδ

4

+
qα sβ qγ rδ

4
− sα rβ qγ rδ

4
+
sα qβ qγ rδ

4
+ sα sβ sγ qδ − rα sβ sγ qδ

2
− sα rβ sγ qδ

2

− qα rβ sγ qδ

4
− rα qβ sγ qδ

4
− qα qβ sγ qδ

6
+ sα sβ rγ qδ − rα sβ rγ qδ

4
+
qα sβ rγ qδ

4

− sα rβ rγ qδ

4
+
sα qβ rγ qδ

4
+ 2 sα sβ qγ qδ +

qα sβ qγ qδ

2
+
sα qβ qγ qδ

2

+

(
sα δβγ sδ

4
+
rα δβγ sδ

8
+
qα δβγ sδ

8
+
δαγ sβ sδ

4
+
δαγ rβ sδ

8

+
δαγ qβ sδ

8
+
sα δβγ rδ

8
+
δαγ sβ rδ

8
+
sα δβγ qδ

8
+
δαγ sβ qδ

8

+
sα δβδ sγ

4
+
rα δβδ sγ

8
+
qα δβδ sγ

8
+
δαδ sβ sγ

4
+
δαδ rβ sγ

8

+
δαδ qβ sγ

8
+
sα δβδ rγ

8
+
δαδ sβ rγ

8
+
sα δβδ qγ

8
+
δαδ sβ qγ

8

)
(q + r + s)2. (E.7)

S
(D−4)bt2

G[ϕϕhh] = (D−4)bt2
1

(4π)D/2

∫
dDpdDqdDrdDs

(2π)4D
(2π)DδD(p+ q+ r+ s)ϕ(p)ϕ(s)hαβ(q)hγδ(r)

× T 4αβγδ(q, r, s), (E.8)
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where

T 4αβγδ(q, r, s) =
7 δαγ δβδ (q · r) s2

36
+
7 δαδ δβγ (q · r) s2

36
+
3 sα δβγ sδ s2

8
+
3 rα δβγ sδ s2

16
+
3 qα δβγ sδ s2

16

+
3 δαγ sβ sδ s2

8
+

3 δαγ rβ sδ s2

16
+

3 δαγ qβ sδ s2

16
+

3 sα δβγ rδ s2

16
+

7 rα δβγ rδ s2

36
+

7 qα δβγ rδ s2

36

+
3 δαγ sβ rδ s2

16
+

7 δαγ rβ rδ s2

36
+

7 δαγ qβ rδ s2

36
+

3 sα δβγ qδ s2

16
+

7 qα δβγ qδ s2

36
+

3 δαγ sβ qδ s2

16

+
7 δαγ qβ qδ s2

36
+

3 sα δβδ sγ s2

8
+

3 rα δβδ sγ s2

16
+

3 qα δβδ sγ s2

16
+

3 δαδ sβ sγ s2

8
+

3 δαδ rβ sγ s2

16

+
3 δαδ qβ sγ s2

16
+

3 sα δβδ rγ s2

16
+

7 rα δβδ rγ s2

36
+

7 qα δβδ rγ s2

36
+

3 δαδ sβ rγ s2

16
+

7 δαδ rβ rγ s2

36

+
7 δαδ qβ rγ s2

36
+
3 sα δβδ qγ s2

16
+
7 qα δβδ qγ s2

36
+
3 δαδ sβ qγ s2

16
+
7 δαδ qβ qγ s2

36
−δ

αγ δβδ (q · s) (r · s)
2

−δ
αδ δβγ (q · s) (r · s)

2
−5 δαγ δβδ (q · r) (r · s)

36
−5 δαδ δβγ (q · r) (r · s)

36
−δ

αγ δβδ q2 (r · s)
4

−δ
αδ δβγ q2 (r · s)

4

−r
α δβγ sδ (r · s)

4
−q

α δβγ sδ (r · s)
4

−δ
αγ rβ sδ (r · s)

4
−δ

αγ qβ sδ (r · s)
4

−s
α δβγ rδ (r · s)

4
−5 rα δβγ rδ (r · s)

36

−5 qα δβγ rδ (r · s)
36

−δ
αγ sβ rδ (r · s)

4
−5 δαγ rβ rδ (r · s)

36
−5 δαγ qβ rδ (r · s)

36
+
sα δβγ qδ (r · s)

4
+
qα δβγ qδ (r · s)

9

+
δαγ sβ qδ (r · s)

4
+
δαγ qβ qδ (r · s)

9
−r

α δβδ sγ (r · s)
4

−q
α δβδ sγ (r · s)

4
−δ

αδ rβ sγ (r · s)
4

−δ
αδ qβ sγ (r · s)

4

−s
α δβδ rγ (r · s)

4
−5 rα δβδ rγ (r · s)

36
−5 qα δβδ rγ (r · s)

36
−δ

αδ sβ rγ (r · s)
4

−5 δαδ rβ rγ (r · s)
36

−5 δαδ qβ rγ (r · s)
36

+
sα δβδ qγ (r · s)

4
+
qα δβδ qγ (r · s)

9
+
δαδ sβ qγ (r · s)

4
+
δαδ qβ qγ (r · s)

9
−δ

αγ δβδ (q · s) r2

4
−δ

αδ δβγ (q · s) r2

4

− δ
αγ δβδ q2 r2

4
− δ

αδ δβγ q2 r2

4
+
sα δβγ sδ r2

4
+
δαγ sβ sδ r2

4
+
sα δβγ qδ r2

4
+
qα δβγ qδ r2

4
+
δαγ sβ qδ r2

4

+
δαγ qβ qδ r2

4
+
sα δβδ sγ r2

4
+
δαδ sβ sγ r2

4
+
sα δβδ qγ r2

4
+
qα δβδ qγ r2

4
+
δαδ sβ qγ r2

4
+
δαδ qβ qγ r2

4

−5 δαγ δβδ (q · r) (q · s)
36

−5 δαδ δβγ (q · r) (q · s)
36

+
rα δβγ sδ (q · s)

4
−q

α δβγ sδ (q · s)
4

+
δαγ rβ sδ (q · s)

4

−δ
αγ qβ sδ (q · s)

4
−s

α δβγ rδ (q · s)
4

+
rα δβγ rδ (q · s)

9
−5 qα δβγ rδ (q · s)

36
−δ

αγ sβ rδ (q · s)
4

+
δαγ rβ rδ (q · s)

9

−5 δαγ qβ rδ (q · s)
36

−s
α δβγ qδ (q · s)

4
−5 qα δβγ qδ (q · s)

36
−δ

αγ sβ qδ (q · s)
4

−5 δαγ qβ qδ (q · s)
36

+
rα δβδ sγ (q · s)

4

−q
α δβδ sγ (q · s)

4
+
δαδ rβ sγ (q · s)

4
−δ

αδ qβ sγ (q · s)
4

−s
α δβδ rγ (q · s)

4
+
rα δβδ rγ (q · s)

9
−5 qα δβδ rγ (q · s)

36

−δ
αδ sβ rγ (q · s)

4
+
δαδ rβ rγ (q · s)

9
−5 δαδ qβ rγ (q · s)

36
−s

α δβδ qγ (q · s)
4

−5 qα δβδ qγ (q · s)
36

−δ
αδ sβ qγ (q · s)

4

−5 δαδ qβ qγ (q · s)
36

+
δαγ δβδ (q · r)2

4
+
δαδ δβγ (q · r)2

4
−q

α δβγ sδ (q · r)
4

−δ
αγ qβ sδ (q · r)

4
−s

α δβγ rδ (q · r)
4
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−q
α δβγ rδ (q · r)

4
−δ

αγ sβ rδ (q · r)
4

−δ
αγ qβ rδ (q · r)

4
−r

α δβγ qδ (q · r)
4

−δ
αγ rβ qδ (q · r)

4
−q

α δβδ sγ (q · r)
4

−δ
αδ qβ sγ (q · r)

4
−s

α δβδ rγ (q · r)
4

−q
α δβδ rγ (q · r)

4
−δ

αδ sβ rγ (q · r)
4

−δ
αδ qβ rγ (q · r)

4
−r

α δβδ qγ (q · r)
4

−δ
αδ rβ qγ (q · r)

4
+
sα δβγ sδ q2

4
+
rα δβγ sδ q2

4
+
δαγ sβ sδ q2

4
+
δαγ rβ sδ q2

4
+
rα δβγ rδ q2

4
+
δαγ rβ rδ q2

4

+
sα δβδ sγ q2

4
+
rα δβδ sγ q2

4
+
δαδ sβ sγ q2

4
+
δαδ rβ sγ q2

4
+
rα δβδ rγ q2

4
+
δαδ rβ rγ q2

4
+3 sα sβ sγ sδ

+
3 rα sβ sγ sδ

2
+
3 qα sβ sγ sδ

2
+
3 sα rβ sγ sδ

2
+
5 rα rβ sγ sδ

2
+
5 qα rβ sγ sδ

4
+
3 sα qβ sγ sδ

2
+
5 rα qβ sγ sδ

4

+
7 qα qβ sγ sδ

9
+
3 sα sβ rγ sδ

2
+
rα sβ rγ sδ

4
+
3 qα sβ rγ sδ

4
+
sα rβ rγ sδ

4
+
3 rα rβ rγ sδ

4
+
3 qα rβ rγ sδ

8

+
3 sα qβ rγ sδ

4
+
3 rα qβ rγ sδ

8
+
7 qα qβ rγ sδ

18
+
3 sα sβ qγ sδ

2
− rα sβ qγ sδ

2
+
qα sβ qγ sδ

4
− sα rβ qγ sδ

2

− qα rβ qγ sδ

4
+
sα qβ qγ sδ

4
− rα qβ qγ sδ

4
− 5 qα qβ qγ sδ

18
+

3 sα sβ sγ rδ

2
+
rα sβ sγ rδ

4
+

3 qα sβ sγ rδ

4

+
sα rβ sγ rδ

4
+
3 rα rβ sγ rδ

4
+
3 qα rβ sγ rδ

8
+
3 sα qβ sγ rδ

4
+
3 rα qβ sγ rδ

8
+
7 qα qβ sγ rδ

18
+
7 sα sβ rγ rδ

9

− 5 rα sβ rγ rδ

18
+
7 qα sβ rγ rδ

18
− 5 sα rβ rγ rδ

18
+
7 sα qβ rγ rδ

18
+
qα qβ rγ rδ

2
+
5 sα sβ qγ rδ

4
− r

α sβ qγ rδ

4

+
3 qα sβ qγ rδ

8
− sα rβ qγ rδ

4
− qα rβ qγ rδ

4
+

3 sα qβ qγ rδ

8
− rα qβ qγ rδ

4
+

3 sα sβ sγ qδ

2
− rα sβ sγ qδ

2

+
qα sβ sγ qδ

4
− sα rβ sγ qδ

2
− qα rβ sγ qδ

4
+
sα qβ sγ qδ

4
− rα qβ sγ qδ

4
− 5 qα qβ sγ qδ

18
+

5 sα sβ rγ qδ

4

− rα sβ rγ qδ

4
+

3 qα sβ rγ qδ

8
− sα rβ rγ qδ

4
− qα rβ rγ qδ

4
+

3 sα qβ rγ qδ

8
− rα qβ rγ qδ

4
+

5 sα sβ qγ qδ

2

+
3 qα sβ qγ qδ

4
+
rα rβ qγ qδ

2
+

3 sα qβ qγ qδ

4

+

(
3 sα δβγ sδ

8
+

3 rα δβγ sδ

16
+

3 qα δβγ sδ

16
+

3 δαγ sβ sδ

8
+

3 δαγ rβ sδ

16
+

3 δαγ qβ sδ

16
+

3 sα δβγ rδ

16

+
3 δαγ sβ rδ

16
+

3 sα δβγ qδ

16
+

3 δαγ sβ qδ

16
+

3 sα δβδ sγ

8
+

3 rα δβδ sγ

16
+

3 qα δβδ sγ

16
+

3 δαδ sβ sγ

8

+
3 δαδ rβ sγ

16
+

3 δαδ qβ sγ

16
+

3 sα δβδ rγ

16
+

3 δαδ sβ rγ

16
+

3 sα δβδ qγ

16
+

3 δαδ sβ qγ

16

)
(q + r + s)2.

(E.9)
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Appendix F

Loop integrals

We encounter the momentum integral when we calculate Feynman diagrams. So, it is conve-
nience to evaluate them previously. We will present their expressions here. For convenience, we
use D̄ defined as

2

D̄ − 4
=

2

D − 4
+ γ − ln 4π (F.1)

in what follows.
First, we evaluate the following integrals which emerge in one loop calculation of the anoma-

lous dimension:

Inα =

∫
dDk

(2π)D
(k2)α(k · ℓ)n

(k2 + z2)2[(k − ℓ)2 + z2]2

= Γ(4)

∫ 1

0
dxx(1− x)

∫
dDp

(2π)D
(p+ xℓ)2α(p · ℓ+ xℓ2)n

(p2 +K)4
,

(F.2)

where K is defined as

K = z2 + x(1− x)ℓ2. (F.3)

We also need the following integral:

Jnβ =

∫
dDk

(2π)D
(k · ℓ)n

(k2 + z2)2[(k − ℓ)2 + z2]2(k2)β

=
Γ(β + 4)

Γ(β)

∫ 1

0
dxx(1− x)β+1

∫ 1

0
dyy(1− y)β−1

∫
dDp

(2π)D
(p · ℓ+ xℓ2)n

(p2 + L)β+4
,

(F.4)

where L is defined as

L = (x+ y − xy)z2 + x(1− x)ℓ2. (F.5)

Here, we can not define J
(0)
2 because we can not take care the IR divergence in this integral using

a cutoff z. However, it is no problem because that integral does not appear in our calculations.
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In order to evaluate (F.2) by expanding the numerator, we need following integral:.

Fn,m = (4π)2Γ(4)

∫
dDp

(2π)D
(p2)n(p · ℓ)2m

(p2 +K)4

= (ℓ2)
D
2
+n+2m−4F̄n,m, (F.6)

where F̄n,m is expressed as

F̄n,m =
1

(4π)
D
2
−2

Γ
(
m+ 1

2

)
Γ
(
n+m+ D

2

)
Γ
(
4− n−m− D

2

)
Γ
(
1
2

)
Γ
(
m+ D

2

) K̄
D
2
+n+m−4 (F.7)

and K̄ is defined as

K̄ =
K

ℓ2
= w2 + x(1− x), w2 =

z2

ℓ2
. (F.8)

Since F̄n,m is simplified as

F̄n−k,k =
Γ
(
D
2

)
Γ
(
k + 1

2

)
Γ
(
k + D

2

)
Γ
(
1
2

) F̄n,0, (F.9)

it is enough to calculate F̄n,0.
Next, in order to evaluate (F.4) by expanding the numerator, we need the following integral:

Rm;β = (4π)2
Γ (β + 4)

Γ(β)

∫
dDp

(2π)D
(p · ℓ)2m

(p2 + L)β+4

= (ℓ2)
D
2
+2m−β−4R̄m;β, (F.10)

where R̄m;β is defined as

R̄m;β =
1

(4π)
D
2
−2

Γ
(
m+ 1

2

)
Γ
(
β + 4−m− D

2

)
Γ
(
1
2

)
Γ (β)

L̄
D
2
+m−β−4, (F.11)

and L̄ is defined as

L̄ =
L

ℓ2
= (x+ y − xy)w2 + x(1− x). (F.12)

Then the integrals (F.2) and (F.4) are respectively expressed in a linear combinations of the
following integrals:

[
xaF̄n,m

]
=

∫ 1

0
dxxa+1(1− x)F̄n,m,[

xaR̄m;β

]
=

∫ 1

0
dxxa+1(1− x)β+1

∫ 1

0
dyy(1− y)β−1R̄m;β. (F.13)
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We present the results of these integrals, which we need in our calculations in what follows. We
first give the results including only UV divergences, which are[

F̄4,0

]
= − 6

7(D̄ − 4)
+

729

980
,
[
F̄3,0

]
=

8

5(D̄ − 4)
− 89

75
,[

xF̄3,0

]
=

4

5(D̄ − 4)
− 89

150
,
[
x2F̄3,0

]
=

16

35(D̄ − 4)
− 1276

3675
,
[
F̄2,0

]
= − 2

D̄ − 4
+

5

6
,[

xF̄2,0

]
= − 1

D̄ − 4
+

5

12
,
[
x2F̄2,0

]
= − 3

5(D̄ − 4)
+

27

100
,
[
x3F̄2,0

]
= − 2

5(D̄ − 4)
+

59

300
,[

x4F̄2,0

]
= − 2

7(D̄ − 4)
+

449

2940
,
[
F̄1,0

]
= 2,

[
xF̄1,0

]
= 1,

[
x2F̄1,0

]
=

2

3
,[

x3F̄1,0

]
=

1

2
,
[
x4F̄1,0

]
=

2

5
,
[
x5F̄1,0

]
=

1

3
,
[
x6F̄1,0

]
=

2

7
.

(F.14)

Besides, we give the results including only IR divergence as follows:[
F̄0,0

]
= −2 lnw2 − 2,

[
xF̄0,0

]
= − lnw2 − 1,

[
x2F̄0,0

]
= − lnw2 − 2,[

x3F̄0,0

]
= − lnw2 − 5

2
,
[
x4F̄0,0

]
= − lnw2 − 17

6
,
[
x5F̄0,0

]
= − lnw2 − 37

12
,[

x6F̄0,0

]
= − lnw2 − 197

60
,
[
x7F̄0,0

]
= − lnw2 − 69

20
,
[
x8F̄0,0

]
= − lnw2 − 503

140
,

(F.15)

which are calculated by setting D = 4 and w2 ≪ 1.
Next, we give the results of integrals [xaR̄m;β]. The results in the case of β = 1 are[

R̄0;1

]
=

1

w2
− 2 lnw2 − 11

2
,
[
xR̄0;1

]
= −2 lnw2 − 5

2
,
[
x2R̄0;1

]
= − lnw2 − 3

2
,[

x3R̄0;1

]
= − lnw2 − 5

2
,
[
x4R̄0;1

]
= − lnw2 − 3,

[
x5R̄0;1

]
= − lnw2 − 10

3
,[

x6R̄0;1

]
= − lnw2 − 43

12
,
[
R̄1;1

]
= −1

4
lnw2 − 1

8
,
[
xR̄1;1

]
=

1

4
,
[
x2R̄1;1

]
=

1

8
,[

x3R̄1;1

]
=

1

12
,
[
x4R̄1;1

]
=

1

16
,
[
R̄2;1

]
=

3

16
,
[
xR̄2;1

]
=

1

16
,
[
x2R̄2;1

]
=

1

32
,[

R̄3;1

]
= − 5

32(D̄ − 4)
+

25

192
,
[
xR̄3;1

]
= − 1

16(D̄ − 4)
+

47

960
.

(F.16)

The results in the case of β = 2 are[
xR̄0;2

]
=

1

w2
− 2 lnw2 − 41

6
,
[
x2R̄0;2

]
= −2 lnw2 − 17

6
,
[
x3R̄0;2

]
= − lnw2 − 11

6
,[

x4R̄0;2

]
= − lnw2 − 17

6
,
[
x5R̄0;2

]
= − lnw2 − 10

3
,
[
x6R̄0;2

]
= − lnw2 − 11

3
,[

R̄1;2

]
=

1

4
lnw2 − 2

3
,
[
xR̄1;2

]
= −1

6
lnw2 − 1

9
,
[
x2R̄1;2

]
=

1

6
,
[
x3R̄1;2

]
=

1

12
,[

x4R̄1;2

]
=

1

18
,
[
R̄2;2

]
= −1

8
lnw2 − 7

48
,
[
xR̄2;2

]
=

1

16
,
[
x2R̄2;2

]
=

1

48
,[

R̄3;2

]
=

5

48
.

(F.17)
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The integrals (F.2) and (F.4) are then summarized as follows:

I
(0)
0 =

1

(4π)2
1

ℓ4
(2 ln ℓ2 − 2 ln z2 − 2), I

(0)
1 =

1

(4π)2
1

ℓ2
(ln ℓ2 − ln z2),

I
(0)
2 =

1

(4π)2

(
− 2

D̄ − 4
− ln z2

)
, I

(0)
3 =

1

(4π)2
ℓ2
(
− 2

D̄ − 4
− ln z2

)
,

I
(0)
4 =

1

(4π)2
ℓ4
(
− 2

D̄ − 4
− ln z2

)
, I

(1)
0 =

1

(4π)2
1

ℓ2
(ln ℓ2 − ln z2 − 1),

I
(1)
1 =

1

(4π)2
(ln ℓ2 − ln z2 − 1), I

(1)
2 =

1

(4π)2
ℓ2
(
− 2

D̄ − 4
− ln z2

)
,

I
(1)
3 =

1

(4π)2
ℓ4
(
− 2

D̄ − 4
− ln z2

)
, I

(2)
0 =

1

(4π)2

(
ln ℓ2 − ln z2 − 3

2

)
,

I
(2)
1 =

1

(4π)2
ℓ2
(
− 1

2(D̄ − 4)
+

3

4
ln ℓ2 − ln z2 − 1

)
, I

(2)
2 =

1

(4π)2
ℓ4
(
− 2

D̄ − 4
− ln z2

)
,

I
(3)
0 =

1

(4π)2
ℓ2
(
ln ℓ2 − ln z2 − 7

4

)
, I

(3)
1 =

1

(4π)2
ℓ4
(
− 1

D̄ − 4
+

1

2
ln ℓ2 − ln z2 − 3

4

)
,

I
(4)
0 =

1

(4π)2
ℓ4
(
− 1

4(D̄ − 4)
+

7

8
ln ℓ2 − ln z2 − 13

8

)
.

(F.18)

and

J
(0)
1 =

1

(4π)2
1

ℓ6

(
2 ln ℓ2 − 2 ln z2 − 11

2
+
ℓ2

z2

)
, J

(1)
1 =

1

(4π)2
1

ℓ4

(
2 ln ℓ2 − 2 ln z2 − 5

2

)
,

J
(2)
1 =

1

(4π)2
1

ℓ2

(
5

4
ln ℓ2 − 5

4
ln z2 − 13

8

)
, J

(3)
1 =

1

(4π)2

(
ln ℓ2 − ln z2 − 7

4

)
,

J
(4)
1 =

1

(4π)2
ℓ2
(
ln ℓ2 − ln z2 − 33

16

)
, J

(5)
1 =

1

(4π)2
ℓ4
(
ln ℓ2 − ln z2 − 35

16

)
,

J
(6)
1 =

1

(4π)2
ℓ6
(
− 5

32(D̄ − 4)
+

59

64
ln ℓ2 − ln z2 − 131

64

)
,

J
(1)
2 =

1

(4π)2
1

ℓ6

(
2 ln ℓ2 − 2 ln z2 − 41

6
+
ℓ2

z2

)
, J

(2)
2 =

1

(4π)2
1

ℓ4

(
2 ln ℓ2 − 2 ln z2 − 7

2
+

ℓ2

4z2

)
,

J
(3)
2 =

1

(4π)2
1

ℓ2

(
3

2
ln ℓ2 − 3

2
ln z2 − 13

6

)
, J

(4)
2 =

1

(4π)2

(
9

8
ln ℓ2 − 9

8
ln z2 − 95

48

)
,

J
(5)
2 =

1

(4π)2
ℓ2
(
ln ℓ2 − ln z2 − 35

16

)
, J

(6)
2 =

1

(4π)2
ℓ4
(
ln ℓ2 − ln z2 − 29

12

)
.

(F.19)

Formulae for two loop calculations Next, we present expressions for two loop calculations
of Feynman diagrams, which are used to evaluate the anomalous dimensions. We then encounter
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the integrals in the following form

Λ
[
(ℓ2)4−n−αI(n)α

]
=

∫
dDℓ

(2π)D
1

(ℓ2 + z2)4
(ℓ2)4−n−αI(n)α ,

Λ
[
(ℓ2)4−n+βJ

(n)
β

]
=

∫
dDℓ

(2π)D
1

(ℓ2 + z2)4
(ℓ2)4−n+βJ

(n)
β .

(F.20)

These integrals are respectively expressed in the linear combination of the two loop integrals
defined as

L
[
xaF̄n,m

]
= (4π)2

∫
dDℓ

(2π)D
1

(ℓ2 + z2)4
(ℓ2)

D
2
[
xaF̄n,m

]
, (F.21)

L
[
xaR̄m;β

]
= (4π)2

∫
dDℓ

(2π)D
1

(ℓ2 + z2)4
(ℓ2)

D
2
[
xaR̄m;β

]
. (F.22)

We first evaluate the integral (F.21). We can easily calculate it when L[xaF̄n,m] does not include
IR divergences. The integral is simplified in this case as

L
[
xaF̄n,m

]
=
[
xaF̄n,m

]
(4π)2

∫
dDℓ

(2π)D
1

(ℓ2 + z2)4
(ℓ2)

D
2

=
[
xaF̄n,m

] 1

(4π)
D
2
−2

Γ(D)Γ(4−D)

Γ
(
D
2

)
Γ(4)

(z2)D−4

=
[
xaF̄n,m

](
− 1

D̄ − 4
− 4

3

)
(z2)D−4. (F.23)
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Using previous calculations, we obtain the results as follows,

L
[
F̄4,0

]
= (z2)D−4

(
6

7(D̄ − 4)2
+

391

980(D̄ − 4)

)
,

L
[
F̄3,0

]
= (z2)D−4

(
− 8

5(D̄ − 4)2
− 71

75(D̄ − 4)

)
,

L
[
xF̄3,0

]
= (z2)D−4

(
− 4

5(D̄ − 4)2
− 71

150(D̄ − 4)

)
,

L
[
x2F̄3,0

]
= (z2)D−4

(
− 16

35(D̄ − 4)2
− 964

3675(D̄ − 4)

)
,

L
[
F̄2,0

]
= (z2)D−4

(
2

(D̄ − 4)2
+

11

6(D̄ − 4)

)
,

L
[
xF̄2,0

]
= (z2)D−4

(
1

(D̄ − 4)2
+

11

12(D̄ − 4)

)
,

L
[
x2F̄2,0

]
= (z2)D−4

(
3

5(D̄ − 4)2
+

53

100(D̄ − 4)

)
,

L
[
x3F̄2,0

]
= (z2)D−4

(
2

5(D̄ − 4)2
+

101

300(D̄ − 4)

)
,

L
[
x4F̄2,0

]
= (z2)D−4

(
2

7(D̄ − 4)2
+

671

2940(D̄ − 4)

)
, L

[
F̄1,0

]
= −(z2)D−4 2

D̄ − 4
,

L
[
xF̄1,0

]
= −(z2)D−4 1

D̄ − 4
, L

[
x2F̄1,0

]
= −(z2)D−4 2

3(D̄ − 4)
,

L
[
x3F̄1,0

]
= −(z2)D−4 1

2(D̄ − 4)
, L

[
[x4F̄1,0

]
= −(z2)D−4 2

5(D̄ − 4)
,

L
[
x5F̄1,0

]
= −(z2)D−4 1

3(D̄ − 4)
, L

[
x6F̄1,0

]
= −(z2)D−4 2

7(D̄ − 4)
.

(F.24)

On the other hand, the calculations of the integral L[xaF̄0,0] which includes IR divergences
are more complicated than that of the integral L[xaF̄n,m]. L[x

aF̄0,0] is now expressed as

L
[
xaF̄0,0

]
= (4π)4−

D
2 Γ

(
4− D

2

)∫ 1

0
dxxa+1(1− x)

∫
dDℓ

(2π)D
1

[z2 + x(1− x)ℓ2]4−
D
2

(
ℓ2

ℓ2 + z2

)4

.

(F.25)

Here, we expand
(

ℓ2

ℓ2+z2

)4
in a power series

(
ℓ2

ℓ2 + z2

)4

=

4∑
s=0

(−1)s4Cs

(
z2

ℓ2 + z2

)s
. (F.26)

We find that UV divergences become smaller as s increases in this expression. We pick up the
UV divergent terms, while we eliminate the IR divergent terms and finite terms here. In the
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case of s = 0,

L
[
xaF̄0,0

]
s=0

= (4π)4−
D
2 Γ

(
4− D

2

)∫ 1

0
dxxa+1(1− x)

∫
dDℓ

(2π)D
1[

z2 + x(1− x)ℓ2
]4−D

2

= (4π)4−
D
2 Γ

(
4− D

2

)∫ 1

0
dxxa+

D
2
−3(1− x)

D
2
−3

∫
dDℓ

(2π)D
1[

ℓ2 + z2

x(1−x)

]4−D
2

= (4π)4−DΓ(4−D)(z2)D−4

∫ 1

0
dxxa−

D
2
+1(1− x)−

D
2
+1

= (4π)4−D(z2)D−4Γ(4−D)
Γ
(
a− D

2 + 2
)
Γ
(
2− D

2

)
Γ (a+ 4−D)

. (F.27)

This calculation leads to the following results:

L
[
F̄0,0

]
= (z2)4−D

4

(D̄ − 4)2
, L

[
xF̄0,0

]
= (z2)4−D

2

(D̄ − 4)2
,

L
[
x2F̄0,0

]
= (z2)4−D

(
2

(D̄ − 4)2
+

1

D̄ − 4

)
, L

[
x3F̄0,0

]
= (z2)4−D

(
2

(D̄ − 4)2
+

3

2(D̄ − 4)

)
,

L
[
x4F̄0,0

]
= (z2)4−D

(
2

(D̄ − 4)2
+

11

6(D̄ − 4)

)
, L

[
x5F̄0,0

]
= (z2)4−D

(
2

(D̄ − 4)2
+

25

12(D̄ − 4)

)
,

L
[
x6F̄0,0

]
= (z2)4−D

(
2

(D̄ − 4)2
+

137

60(D̄ − 4)

)
, L

[
x7F̄0,0

]
= (z2)4−D

(
2

(D̄ − 4)2
+

49

20(D̄ − 4)

)
,

L
[
x8F̄0,0

]
= (z2)4−D

(
2

(D̄ − 4)2
+

363

140(D̄ − 4)

)
.

(F.28)

Also, in the case of s = 1,

L
[
xaF̄0,0

]
s=1

= (4π)4−
D
2 Γ

(
4− D

2

)∫ 1

0
dxxa+1(1− x)

∫
dDℓ

(2π)D
−4[

z2 + x(1− x)ℓ2
]4−D

2

z2

ℓ2 + z2

= −4(4π)4−
D
2 Γ

(
5− D

2

)
z2
∫ 1

0
dxxa+

D
2
−3(1− x)

D
2
−3

∫ 1

0
dyy3−

D
2

×
∫

dDℓ

(2π)D
1[

ℓ2 +
(
1− y + y

x(1−x)

)
z2
]5−D

2

= −4(4π)4−DΓ(5−D)(z2)D−4

∫ 1

0
dxxa+

D
2
−3(1− x)

D
2
−3

×
∫ 1

0
dyy3−

D
2

(
1− y +

y

x(1− x)

)D−5

.

(F.29)

This parameter integral gives a finite value. Therefore, L[xaF̄0,0] has no divergences for s ≥ 1.
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Then, we will present the integral (F.22). This is expressed as

L
[
xaR̄m;β

]
s=0

= (4π)4−
D
2
Γ
(
m+ 1

2

)
Γ
(
4 + β −m− D

2

)
Γ
(
1
2

)
Γ (β)

×
∫

dDℓ

(2π)D
(ℓ2)

D
2

(ℓ2 + z2)4

∫ 1

0
dxxa+1(1− x)β+1

∫ 1

0
dyy(1− y)β−1

×
[
(x+ y − xy)w2 + x(1− x)

]D
2
+m−β−4

= (4π)4−
D
2
Γ
(
m+ 1

2

)
Γ
(
4 + β −m− D

2

)
Γ
(
1
2

)
Γ (β)

∫ 1

0
dxxa+1(1− x)β+1

∫ 1

0
dyy(1− y)β−1

×
∫

dDℓ

(2π)D
(ℓ2)β−m

[(x+ y − xy)z2 + x(1− x)ℓ2]4+β−m−D
2

(
ℓ2

ℓ2 + z2

)4

. (F.30)

The integrals R̄m;1(m = 2, 3) and R̄3,2 have no IR divergences, and so we calculate these integrals
at w = 0 at these points. The calculation results are as follows:

L
[
R̄2;1

]
= −(z2)D−4 3

16(D̄ − 4)
, L

[
xR̄2;1

]
= −(z2)D−4 1

16(D̄ − 4)
,

L
[
x2R̄2;1

]
= −(z2)D−4 1

32(D̄ − 4)
, L

[
R̄3;1

]
= (z2)D−4

(
5

32(D̄ − 4)2
+

5

64(D̄ − 4)

)
,

L
[
xR̄3;1

]
= (z2)D−4

(
1

16(D̄ − 4)2
+

11

320(D̄ − 4)

)
,

L
[
R̄3;2

]
= −(z2)D−4 5

48(D̄ − 4)
.

(F.31)

Next, let us consider the calculation of integral including IR divergence. We can calculate this
using method similar to the calculation of integral (F.21). If s = 0 in the expansion in power
series (F.26),

L
[
xaR̄m;β

]
s=0

= (4π)4−D(z2)D−4Γ
(
m+ 1

2

)
Γ(4−D)Γ

(
D
2 −m+ β

)
Γ
(
1
2

)
Γ(β)Γ

(
D
2

)
×
∫ 1

0
dxxa−

D
2
+m(1− x)m−D

2
+1

∫ 1

0
dyy(1− y)β−1(x+ y − xy)D−4 (F.32)

In case that β = 1 and m = 0,

L
[
xaR̄0;1

]
s=0

= (4π)4−D(z2)D−4D

2
Γ(4−D)

∫ 1

0
dxxa−

D
2 (1− x)1−

D
2

∫ 1

0
dyy(x+ y − xy)D−4.

(F.33)

Changing variables x → 1 − u and y → 1 − v and integrating u and v using the expansion
formula

(1− uv)−b =
∞∑
r=0

Γ(b+ r)

Γ(b)

(uv)r

r!
, (F.34)
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this integral is expressed as

L
[
xaR̄0;1

]
s=0

= (4π)4−D(z2)D−4D

2
Γ

(
a− D

2
+ 1

)[
Γ(4−D)Γ

(
2− D

2

)
2Γ (a+ 3−D)

+
∞∑
r=1

Γ(4−D + r)Γ
(
2− D

2 + r
)

Γ(r + 3)Γ(a+ 3−D + r)

]
. (F.35)

Also, the part of s = 1 concerning UV divergences can be calculated in the same way as

L
[
xaR̄0;1

]
s=1

= −4(4π)4−D(z2)D−4Γ

(
2− D

2
+ a

) ∞∑
r=0

Γ
(
3− D

2 + r
)
Γ(5−D + r)

Γ(5−D + a+ r)Γ(r + 3)
. (F.36)

The integral in the case of s ≥ 2 does not contain UV divergence. Therefore, the integral
L[xaR̄0;1] is finally expressed as

L
[
xaR̄0;1

]
= (4π)4−D(z2)D−4

[
D

2
Γ

(
1− D

2
+ a

){
Γ(4−D)Γ

(
2− D

2

)
2Γ(3−D + a)

+

∞∑
r=1

Γ(r)Γ(r)

Γ(r + 3)Γ(−1 + a+ r)

}
− 4Γ

(
2− D

2
+ a

) ∞∑
r=0

Γ(1 + r)Γ(1 + r)

Γ(r + 3)Γ(1 + a+ r)

]
, (F.37)

where we take D = 4 for the part that do not contribute to UV divergences. In the same way,
integrals L[xaR̄m;β] in other cases are respectively

L
[
xaR̄1;1

]
= (4π)4−D(z2)D−4Γ

(
a+ 2− D

2

)
2

[
Γ(4−D)Γ

(
3− D

2

)
2Γ(5−D + a)

+

∞∑
r=1

Γ(r)Γ(r + 1)

Γ(r + 3)Γ(a+ r + 1)

]
(F.38)

and

L
[
xaR̄0;2

]
= (4π)4−D(z2)D−4

[
D(D + 2)

4
Γ

(
−D

2
+ a

){
Γ
(
2− D

2

)
Γ(4−D)

6Γ(2−D + a)

+

∞∑
r=1

Γ(r)2Γ(r + 2)

Γ(−2 + a+ r)Γ(r + 1)Γ(r + 4)

}
− 2DΓ

(
1− D

2
+ a

) ∞∑
r=0

Γ(r + 1)Γ(r + 2)

Γ(r + a)Γ(r + 4)

]
, (F.39)

L
[
xaR̄1;2

]
= (4π)4−D(z2)D−4

[
D

4
Γ

(
a+ 1− D

2

){
Γ(4−D)Γ

(
3− D

2

)
6Γ(4−D + a)

+
∞∑
r=1

Γ(r)Γ(r + 2)

Γ(r + a)Γ(r + 4)

}

− 2Γ

(
a+ 2− D

2

) ∞∑
r=0

Γ(r + 2)2

Γ(r + 4)Γ(a+ r + 2)

]
, (F.40)
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L
[
xaR̄2;2

]
= (4π)4−D(z2)D−4 3Γ

(
a+ 2− D

2

)
4

[
Γ(4−D)Γ

(
4− D

2

)
6Γ(a+ 6−D)

+

∞∑
r=1

Γ(r)Γ(r + 2)2

Γ(r + 1)Γ(r + 4)Γ(a+ 2 + r)

]
. (F.41)

The calculations are summarized as follows:

L[R̄0;1] = (z2)D−4

(
4

(D̄ − 4)2
+

12

D̄ − 4

)
, L[xR̄0;1] = (z2)D−4 4

(D̄ − 4)2
,

L[x2R̄0;1] = (z2)D−4

(
2

(D̄ − 4)2
+

1

2(D̄ − 4)

)
, L[x3R̄0;1] = (z2)D−4

(
2

(D̄ − 4)2
+

3

2(D̄ − 4)

)
,

L[x4R̄0;1] = (z2)D−4

(
2

(D̄ − 4)2
+

2

D̄ − 4

)
, L[x5R̄0;1] = (z2)D−4

(
2

(D̄ − 4)2
+

7

3(D̄ − 4)

)
,

L[x6R̄0;1] = (z2)D−4

(
2

(D̄ − 4)2
+

31

12(D̄ − 4)

)
,

L[R̄1;1] = (z2)D−4

(
1

2(D̄ − 4)2
− 1

4(D̄ − 4)

)
, L[xR̄1;1] = −(z2)D−4 1

4(D̄ − 4)
,

L[x2R̄1;1] = −(z2)D−4 1

8(D̄ − 4)
, L[x3R̄1;1] = −(z2)D−4 1

12(D̄ − 4)
,

L[x4R̄1;1] = −(z2)D−4 1

16(D̄ − 4)
,

L[xR̄0;2] = (z2)D−4

(
4

(D̄ − 4)2
+

14

D̄ − 4

)
, L[x2R̄0;2] = (z2)D−4 4

(D̄ − 4)2
,

L[x3R̄0;2] = (z2)D−4

(
2

(D̄ − 4)2
+

5

6(D̄ − 4)

)
, L[x4R̄0;2] = (z2)D−4

(
2

(D̄ − 4)2
+

11

6(D̄ − 4)

)
,

L[x5R̄0;2] = (z2)D−4

(
2

(D̄ − 4)2
+

7

3(D̄ − 4)

)
, L[x6R̄0;2] = (z2)D−4

(
2

(D̄ − 4)2
+

8

3(D̄ − 4)

)
,

L[R̄1;2] = (z2)D−4 3

D̄ − 4
, L[xR̄1;2] = (z2)D−4

(
1

3(D̄ − 4)2
− 7

36(D̄ − 4)

)
,

L[x2R̄1;2] = −(z2)D−4 1

6(D̄ − 4)
, L[x3R̄1;2] = −(z2)D−4 1

12(D̄ − 4)
,

L[x4R̄1;2] = −(z2)D−4 1

18(D̄ − 4)
,

L[R̄2;2] = (z2)D−4

(
1

4(D̄ − 4)2
− 1

12(D̄ − 4)

)
,

L[xR̄2;2] = −(z2)D−4 1

16(D̄ − 4)
, L[x2R̄2;2] = −(z2)D−4 1

48(D̄ − 4)
,

L[x3R̄2;2] = −(z2)D−4 1

96(D̄ − 4)
.

(F.42)

Using the above integral formulae, we can calculate UV divergence of the two-loop Λ integral.
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The explicit values of the Λ-integral for I
(n)
α are given as

Λ[ℓ8I
(0)
0 ] =

(z2)D−4

(4π)4
4

(D̄ − 4)2
, Λ[ℓ6I

(0)
1 ] =

(z2)D−4

(4π)4

(
2

(D̄ − 4)2
− 1

(D̄ − 4)

)
,

Λ[ℓ4I
(0)
2 ] =

(z2)D−4

(4π)4

(
4

(D̄ − 4)2
+

5

3(D̄ − 4)

)
, Λ[ℓ2I

(0)
3 ] =

(z2)D−4

(4π)4

(
4

(D̄ − 4)2
+

5

3(D̄ − 4)

)
,

Λ[I
(0)
4 ] =

(z2)D−4

(4π)4

(
4

(D̄ − 4)2
+

5

3(D̄ − 4)

)
,

Λ[ℓ6I
(1)
0 ] =

(z2)D−4

(4π)4
2

(D̄ − 4)2
, Λ[ℓ4I

(1)
1 ] =

(z2)D−4

(4π)4
2

(D̄ − 4)2
,

Λ[ℓ2I
(1)
2 ] =

(z2)D−4

(4π)4

(
4

(D̄ − 4)2
+

5

3(D̄ − 4)

)
, Λ[I

(1)
3 ] =

(z2)D−4

(4π)4

(
4

(D̄ − 4)2
+

5

3(D̄ − 4)

)
,

Λ[ℓ4I
(2)
0 ] =

(z2)D−4

(4π)4

(
2

(D̄ − 4)2
+

1

2(D̄ − 4)

)
, Λ[ℓ2I

(2)
1 ] =

(z2)D−4

(4π)4

(
5

2(D̄ − 4)2
+

2

3(D̄ − 4)

)
,

Λ[I
(2)
2 ] =

(z2)D−4

(4π)4

(
4

(D̄ − 4)2
+

5

3(D̄ − 4)

)
,

Λ[ℓ2I
(3)
0 ] =

(z2)D−4

(4π)4

(
2

(D̄ − 4)2
+

3

4(D̄ − 4)

)
, Λ[I

(3)
1 ] =

(z2)D−4

(4π)4

(
3

(D̄ − 4)2
+

13

12(D̄ − 4)

)
,

Λ[I
(4)
0 ] =

(z2)D−4

(4π)4

(
9

4(D̄ − 4)2
+

23

24(D̄ − 4)

)
.

(F.43)

The explicit values of the Λ-integrals for J
(n)
β are given as

Λ[ℓ10J
(0)
1 ] =

(z2)(D−4)

(4π)4

(
4

(D̄ − 4)2
+

12

(D − 4)

)
, Λ[ℓ8J

(1)
1 ] =

(z2)(D−4)

(4π)4
4

(D̄ − 4)2
,

Λ[ℓ6J
(2)
1 ] =

(z2)(D−4)

(4π)4

(
5

2(D̄ − 4)2
+

1

4(D̄ − 4)

)
, Λ[ℓ4J

(3)
1 ] =

(z2)(D−4)

(4π)4

(
2

(D̄ − 4)2
+

3

4(D̄ − 4)

)
,

Λ[ℓ2J
(4)
1 ] =

(z2)(D−4)

(4π)4

(
2

(D̄ − 4)2
+

17

16(D̄ − 4)

)
, Λ[J

(5)
1 ] =

(z2)(D−4)

(4π)4

(
2

(D̄ − 4)2
+

19

16(D̄ − 4)

)
,

Λ[ℓ−2J
(6)
1 ] =

(z2)(D−4)

(4π)4

(
69

32(D̄ − 4)2
+

241

192(D̄ − 4)

)
,

Λ[ℓ10J
(1)
2 ] =

(z2)(D−4)

(4π)4

(
4

(D̄ − 4)2
+

14

(D̄ − 4)

)
, Λ[ℓ8J

(2)
2 ] =

(z2)(D−4)

(4π)4

(
4

(D̄ − 4)2
+

3

(D̄ − 4)

)
,

Λ[ℓ6J
(3)
2 ] =

(z2)(D−4)

(4π)4

(
3

(D̄ − 4)2
+

1

4(D̄ − 4)

)
, Λ[ℓ4J

(4)
2 ] =

(z2)(D−4)

(4π)4

(
9

4(D̄ − 4)2
+

3

4(D̄ − 4)

)
,

Λ[ℓ2J
(5)
2 ] =

(z2)(D−4)

(4π)4

(
2

(D̄ − 4)2
+

19

16(D̄ − 4)

)
, Λ[J

(6)
2 ] =

(z2)(D−4)

(4π)4

(
2

(D̄ − 4)2
+

17

12(D̄ − 4)

)
.

(F.44)
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We should note that Λ[ℓ12J
(0)
2 ] is not defined but it is not necessary in our calculations.
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Appendix G

Evaluations of the sum of infinite
series

We use the following infinite series to calculate the effective potential:

f(x, y) ≡
∞∑
n=3

n∑
m=0

n!

m!(n−m)!

(−1)n+m−1

2n(2n−m− 1)(2n−m− 2)
x2n−mym.

The second differential of this function divided by x is easily evaluated as

∂2

∂x2

(
1

x
f(x, y)

)
=

∞∑
n=3

n∑
m=0

n!

m!(n−m)!

(−1)n+m−1

2n
x2n−m−3ym

=
1

2x3

∞∑
n=3

(−1)n−1

n

n∑
m=0

n!

m!(n−m)!
x2(n−m)(−xy)m

=
1

2x3

∞∑
n=3

(−1)n−1

n
(x2 − xy)n

=
1

2x3

[
ln(1 + x2 − xy)− x2 + xy +

1

2
(x2 − xy)2

]
Therefore, we can express f(x, y) as

f(x, y) = x

∫ x

0
du

∫ u

0
dv

∂2

∂v2

(
1

v
f(v, y)

)
=

3

4
x2 +

x4

24
+

1

4
(1− x2)xy − 3

8
x2y2

+

{
x2y2

8
− xy

4
− x2

4
+

1

4

}
ln(1− xy + x2)

+

(
x2y

4
− x

2

)√
4− y2 arctan

(
x
√
4− y2

2− xy

)
,
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where we use

arctanu± arctan v = arctan

(
u± v

1∓ uv

)
.

Next, we define the function g(x) as

g(x) ≡
∞∑
n=1

(−1)n−1

n(n+ 1)(n+ 2)
xn+2.

Its derivatives are evaluated as follows:

∂2g

∂x2
=

∞∑
n=1

(−1)n−1

n
xn = ln(1 + x).

We can then obtain g(x) by integrating the above function as

g(x) =
(1 + x)2

2
ln(1 + x)− 3

4
x(x+ 2). (G.1)

Similarly, we can also derive the following function

h(x) ≡
∞∑
n=1

(−1)n

n(n+ 1)
xn

as

h(x) =
1 + x

x
[1− ln(1 + x)] . (G.2)
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