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Chapter 1

General Introduction

Proteins perform biological functions by folding into the native structures in phys-

iological conditions. According to Anfinsen’s dogma [1], the native structure is the

minimum free-energy state. Therefore, the amino-acid sequence of proteins deter-

mines the native structure under given environments. The proteins are denatured by

changes in environmental conditions such as pH, temperature, and pressure. The

denaturation of proteins is a reversible process under a low concentration condi-

tion because the proteins recover the native structures when environments return

to physiological conditions. On the other hand, the proteins aggregate and form

fibril structures when they lack folding ability [2]. The aggregation and fibril for-

mation of the proteins tend to occur under high concentration conditions. They are

usually an irreversible process. These aggregates and fibrils are supposed to asso-

ciate with amyloid diseases such as Alzheimer’s and Parkinson’s diseases. Therefore,

understanding the stability, folding process, and mechanisms of aggregation and fib-

ril formation of the proteins are fundamental issues in protein science. Molecular

dynamics (MD) simulation is a powerful tool to investigate the characteristics of

the proteins at atomic-resolution, which complements experimental and theoretical

studies.

1



Aggregation of Amyloidogenic Polypeptides

Proteins and polypeptides inherently convert to the amyloid aggregates and fibrils

that are distinct from the native structures. The amyloid aggregates and fibrils con-

tain characteristic β-rich structures, which is referred to as cross-β structure. X-ray

diffraction from the amyloid aggregated and fibrils shows a characteristic pattern

(cross-β diffraction) that is observed at about 4.7 Å and 10 Å on perpendicular

axes [3]. The diffraction at 4.7 Å derives from the intervals between inter β-strands

within a β-sheet. The diffraction at 10 Å derives from the intervals between in-

ter β-sheets that are stacked one another. To date, X-ray diffraction, solid-state

NMR, and cryo-electron microscopy have reported a variety of amyloid fibril struc-

tures in which they typically form parallel β-sheets [4–14]. Whereas they share the

common features of the amyloids, they have different diameters, twists, packing

patterns between protofilaments, and salt-bridges. Namely, the amyloid fibrils show

heterogeneous amyloid folds referred to as polymorphism.

Amyloid fibril formation appears to be an intrinsic property that proteins pos-

sess in general, rather than a unique property of the amyloidogenic peptides [15–17].

Dobson et al. reported that apomyoglobin, which folds into an α-helical rich struc-

ture in the native state, converts to the fibril structures under the destabilized con-

ditions of the native structure [15]. They also found that even in polyamino acids

peptides such as poly-L-lysine, -glutamic acid, and -threonine can adapt to the fibril

structures under carefully selected conditions [16]. These observations suggest an

inverse side chain effect in the amyloid formation; the amyloid formation is primar-

ily defined by main chain interaction and a distinct process from protein folding in

which side chain contacts play an important role. In other words, the absence of

folding propensity results in the amyloid formation.

These aggregates and fibrils are thought to be a cause of neurodegenerative

diseases. Amyloid-β and α-synuclein are famous as the diseases-related amyloido-

genic polypeptides because deposits and abnormal accumulations of these peptides

were recognized as components in amyloid from Alzheimer’s and Parkinson’s dis-

ease patients. Alzheimer’s disease does not cure even though the amyloid deposits

are removed from the brains of Alzheimer’s patients; no cure has been established
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yet for these diseases. Furthermore, differences in the aggregates and fibrils struc-

tures result in different cytotoxicity and disease symptoms [9, 18–21]. Therefore,

understanding the mechanisms underlying the aggregation and fibril formation is

necessary to establish treatment for the diseases.

Molecular Dynamics Simulation on the Biomolecule

Systems

In 1977, the first application of the MD simulation to a protein was reported by

Karplus et al. [22]. They performed an MD simulation of the bovine pancreatic

trypsin inhibitor for 9.2 ps. Since then, timescale [23, 24], size of systems [25, 26],

and accuracy [27–29] have been central issues in the MD studies of biomolecule sys-

tems. The MD simulations in the canonical [30–33] and isothermal–isobaric [33–35]

ensembles have been widely applied to the biomolecule systems to gain molecular

insights into the structures, conformational changes, functions, and thermodynam-

ics. However, the conformational ensemble obtained from the conventional MD

simulations is limited only from a few local-minimum states in many cases. This

is because proteins have many local-minimum free-energy states and tend to get

trapped in one of them, especially under a low-temperature condition. A specially

designed supercomputer system called Anton has succeeded in the observations of

the folding and unfolding process of the proteins by extending the upper limit of the

time scale up to milliseconds [23, 24]. However, except for this special example, the

typical time-scale that we can access by the all-atom MD simulations is several hun-

dred nanoseconds to microseconds. This time-scale is too short for the proteins to

overcome the free energy barrier. Hence, this situation makes it difficult to perform

an accurate estimation of physical quantities such as free energy differences.

Generalized-Ensemble Algorithms

The generalized-ensemble algorithms [36] are one of the powerful frameworks to over-

come the sampling problems, which is classified into three methods: multicanonical
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algorithm (MUCA) [37–40], simulated tempering (ST) [41, 42], and replica-exchange

method (REM) [43, 44].

The MUCA simulation is based on a flat probability distribution of potential

energy. The flat probability distribution, PMUCA, is expressed by the product of the

density of states, n(U), and a non-Boltzmann weight factor, WMUCA(U), as follows:

PMUCA = n(U)WMUCA(U)

= n(U) exp[−β0UMUCA(U ; T0)] = constant,
(1.1)

where, T0 is a reference temperatures, β0 is a inverse temperature at T0, and UMUCA is

the multicanonical potential energy. Because this artificial non-Boltzmann statistical

ensemble realizes a random walk in the potential energy space, the target system

does not get trapped in local-minimum free-energy states.

The ST simulation regards temperature as a dynamic variable; that is, temper-

ature varies during the simulation. A non-Boltzmann weight factor

WST(U ; T ) ≡ exp{−βU + f(T )} (1.2)

is introduced to realize the uniform distribution of the temperature as follows:

PST(T ) =

∫
dU n(U)WST(U ; T )

=

∫
dU n(U) exp{−βU + f(T )} = constant.

(1.3)

In the ST, therefore, the random walk in the temperature space induces the random

walk in the potential space, and thus, the target system can escape from a local-

minimum free-energy state. The non-Boltzmann weight factors introduced in the

MUCA and ST simulations are not known a priori ; therefore, we have to determine

it in advance by iterative procedures.

The REM utilizes multiple non-interaction copies (or replicas) of the target sys-

tem at different temperatures. The REM is performed through the following pro-

cedures: (i) MD or Monte Carlo (MC) simulations at different temperatures are

performed in parallel and (ii) temperature exchange trials between two replicas are
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attempted at every certain time step using the Metropolis algorithm. Typically, two

replicas that have neighboring temperatures are chosen as a pair of exchange trials.

Each replica realizes a random walk in the temperature space during the simulation,

which induces the random walk in the potential energy space. Thus, the target sys-

tem can escape from a local-minimum free-energy state. The REM is widely used

nowadays because it is not necessary to determine the non-Boltzmann weight fac-

tor in advance. We can perform the replica-exchange simulation only by choosing

the temperatures for the replicas. Importantly, the generalized-ensemble simula-

tions can reproduce the statistical average of physical quantities by the reweighting

techniques after the simulations.

Thanks to the recent improvement of computational hardware and software, we

can apply the MD simulation to the large-scale molecular systems. On the other

hand, the generalized-ensemblte algorithms have drawbacks for applying to the large

molecular systems. In the case of REM, the number of replicas needed increases as

O(
√
N) where N is the degrees of freedom of the system. In other words, the

number of required replicas increases as the system size becomes large. Therefore,

the application of the REM to the large-scale molecular systems is still difficult due

to computational costs. Many algorithms have been proposed to solve the drawback,

which can be classified into two strategies.

The first strategy is an extension of the REM to the multidimensional spaces.

The multidimensional REM [45] (also known as Hamiltonian REM [46]) and its

variants have been proposed; for instance, replica-exchange umbrella sampling [45],

replica-exchange solute tempering [47], and coulomb replica-exchange [48] methods.

The multidimensional REM introduces not only temperature but also any parame-

ters as the exchange parameters. This allows us to decrease the degrees of freedom

regarding replica-exchange by only focusing on the degrees of freedom of interest.

The multidimensional REM can also induce conformational changes of interest by

carefully selecting the exchange parameters.

The second strategy is to improve the replica-exchange procedure itself, for ex-

ample, increasing the transition ratio (acceptance ratio) of the temperature values.

To achieve this, we have to improve algorithms to calculate transition probabilities
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and select candidates for the next state. A replica-permutation method (RPM) [49]

is a good example of this strategy. The RPM performs temperature permutation

among more than two replicas during the simulation, whereas the REM performs

temperature exchange between two replicas. The transition probability is calcu-

lated by the Suwa–Todo algorithm [50] instead of the Metropolis algorithm [51].

The Suwa–Todo algorithm satisfies only the balance condition without imposing

the detailed balance condition. This method minimizes the rejection ratio of the

MC trials. The RPM succeeds in improve sampling efficiency both in temperature

and conformational spaces.

Importance of the Isothermal–Isobaric Ensemble

The generalized-ensemble algorithms were originally developed in the canonical en-

semble. The canonical ensemble simulation does not control the pressure because the

volume of the simulation cell is constant. That is, the canonical ensemble simulation

cannot treat the phenomena involving volume change. In contrast, temperature and

pressure are controlled in experimental conditions. The physical quantities reported

by experiments follow the isothermal–isobaric ensemble. In particular, the temper-

ature and pressure are significant to characterize the thermodynamics properties of

the proteins. Once we obtain temperature and pressure dependence of the difference

in the Gibbs free energy ∆G(T, P ), we can calculate the following thermodynamics

quantities from the partial derivatives or fitting parameter of ∆G(T, P ) [52]: the

differences in the partial molar enthalpy ∆H, the partial molar entropy ∆S, partial

molar heat capacity ∆Cp, partial molar volume ∆V , thermal expansivity factor ∆α,

and compressibility factor ∆β. Therefore, the isothermal–isobaric MD simulation is

significant to reflect experimental conditions.

According to Le Châtelie’s principle, smaller volume states of a substance realize

under high-pressure conditions; namely, the probabilities of the states with smaller

volume increase as pressure increases. This principle tells us that the pressure

perturbation induces the population changes of the conformational states. Let us

suppose that there are various metastable states between the native and denatured
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states. Here, the metastable states are supposed to have a lower population than the

native state in the physiological condition. The populations of the metastable states

that have lower volume than the native state increase as pressure increases. Finally,

the denatured state appears because the denatured states usually has the smallest

partial molar volume. High-pressure experiments have been succeeded in detecting

the metastable states of proteins, conformational changes, and estimation of ther-

modynamics quantities among the native, denatured, and metastable states [53–62].

High-pressure nuclear magnetic resonance experiments further succeeded in deter-

mining the metastable structure of the protein [60]. Therefore, pressure is a robust

tool to detect these metastable states and provide thermodynamics information.

It is also significant to understand the biological meanings of the metastable

state; that is, the relation among structures of the metastable states, functions,

and folding pathways. The MD simulation complements experimental results and

provides atomic-resolution pictures of the volume changes by cavities, water pen-

etration, and solute–solvent interactions [63–69]. As the author mentioned above,

however, the conformation of proteins tend to get trapped in local-minimum free-

energy states in the MD simulation, which prevents us from accurate evaluation of

thermodynamics quantities. The consistency of the thermodynamics quantities be-

tween the simulations and experiments should be ensured before gaining molecular

insight from the simulation. Thus, we need an efficient simulation method in the

isothermal–isobaric ensemble that can cover a wide range of temperature and pres-

sure space. The REM, MUCA, and ST have extended to the isothermal–isobaric

ensemble [63, 70–75]; however, the RPM has not been extended to the isothermal–

isobaric ensemble yet.

The Purpose of This Thesis

In this doctoral thesis, the author addresses the following four research subjects:

1. Development of an isothermal–isobaric replica-permutation method to realize

an efficient molecular simulation in a wide range of temperature and pressure.
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2. Development of a replica sub-permutation method beyond the replica-exchange

and replica-permutation methods.

3. Application of the isothermal–isobaric replica-permutation method to reveal

temperature and pressure dependence of a small protein, chignolin.

4. Investigation of the initial process of the disease-related protein aggregation

by the isothermal–isobaric replica-permutation method.

The former half of this thesis is devoted to the development and improvement of

the replica-permutation method. In Chapter 2, the author introduces the Markov

chain Monte Carlo algorithms and the formulation of the REM and RPM. In Chap-

ter 3, the author describes the development of the isothermal–isobaric replica-

permutation methods. The Suwa–Todo [50], Metropolis [51], and heat bath [76]

algorithms are compared to investigate the effects on the efficiency of the parameter

permutation. In Chapter 4, the author describes the development of the replica

sub-permutation method. In this method, a new permutation algorithm termed

“sub-permutation” is introduced to improve the sampling efficiency in the parame-

ter permutation trials.

The latter half of this thesis is devoted to the application studies of the isothermal–

isobaric replica-permutation method developed by the author. In Chapter 5, the

author investigates the temperature and pressure dependence of the chignolin. The

chignolin consists of ten amino-acid residues and has folded, misfolded, and unfolded

states. Both folded and misfolded conformations have unique β-hairpin structures.

The author evaluates thermodynamics quantities among the three states. The au-

thor finds that the pressure dependence of folded and misfolded chignolin is com-

pletely different and reveals its mechanisms. In Chapter 6, the author investigates

the dimerization of α-synuclein fragments as the initial stage of the aggregation pro-

cess. The α-synuclein is an intrinsically disordered protein consisting of 140 amino

acid residues. The aggregates and fibrils of the α-synuclein are believed to be asso-

ciated with Parkinson’s disease. Here, the author focuses on an 11-residue segment

that is an essential region for both fibril formation and cytotoxicity [9]. The au-

thor investigates the stabilities and structural properties of the fragments along the
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dimerization process. The dimerization mechanism is also presented. Chapter 7 is

devoted to conclusions.
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[30] Shuichi Nosé. A molecular dynamics method for simulations in the canonical

ensemble. Molecular Physics, 52(2):255–268, 1984.
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Chapter 2

Simulation Methods

This chapter introduces Markov chain Monte Carlo algorithms [1], and then reviews

formulation of the replica-exchange method (REM) [2] and replica-permutation

method (RPM) [3].

2.1 Markov Chain Monte Carlo Algorithm

This section introduces the basics of Markov chain Monte Carlo algorithms. Here,

the author assumes a system that has n states. Each state i has a weight wi and

transits to another state j with a transition probability P (i → j). A stochastic flow

v(i → j) from the state i to the state j is defined as follows:

v(i → j) = wiP (i → j). (2.1)

To converge the unique distribution, Markov chain should satisfy ergodicity. That

is, the Markov chain are irreducibility and aperiodicity. In addition, the follow-

ing equations are imposed to obtain the required equilibrium distribution such as

isothermal–isobaric ensemble:

n∑
i=1

P (i → j) = 1, (2.2)

n∑
i=1

wiP (i → j) = wj. (2.3)
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Equation (2.2) is the normalization condition and Eq. (2.3) is the balance condition.

Eqs. (2.2) and (2.3) are summarized by using the stochastic flow as follows:

n∑
i=1

v(i → j) =
n∑

i=1

v(j → i). (2.4)

By performing state transitions with v(i → j) that satisfy Eq. (2.4), the required

statistical ensemble is obtained.

The Metoropolis algorithm [4] (its generalization is called Metropolis–Hastings

algorithm [5]) and heat bath algorithms (also referred to as Gibbs sampler) are

the two most practical implementations of the MCMC algorithms. These algo-

rithms only satisfy the detailed balance condition, which is the sufficient condition

of Eq. (2.4):

v(i → j) = v(j → i). (2.5)

In the Metropolis algorithms, the amount of stochastic flow and transition proba-

bility from state i to state j is given as follows:

v(i → j) =
1

n− 1
min [wi, wj] , i ̸= j, (2.6)

P (i → j) =
v(i → j)

wi

=
1

n− 1
min

[
1,

wj

wi

]
, i ̸= j, (2.7)

where the coefficient 1/(n−1) arises from the random selection of state j from n−1

candidates except state i. In the Metropolis algorithm, transition probability is

calculated by using only the weight of current state wi and the weight of candidate

state wj. In the heat bath algorithms, the amount of stochastic flow and transition

probability from state i to state j are given as

v(i → j) =
wiwj∑n
k=1wk

, ∀i, j, (2.8)

P (i → j) =
v(i → j)

wi

=
wj∑n
k=1wk

, ∀i, j. (2.9)

The schematic figure of the Metropolis and heat bath algorithms is presented in

Figs. 2.1(a) and (b).

The author then introduces the Suwa–Todo algorithm. This algorithm satisfies
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Figure 2.1: Schematic figures of the (a) Metropolis, (b) heat bath, and (c) Suwa–
Todo algorithms.

Eq. (2.4) without imposing the detailed balance condition Eq. (2.5). The Suwa–

Todo algorithm is explained by the following procedure, also Fig. 2.1(c) shows the

schematic of weight allocation. (i) Determine a state that has the maximum weight

factor. If two or more states have the maximum weight factors, one of them is

chosen. The maximum weight is labeled by w1 without loss of generality. Other

weights are labeled as w2, . . . , wn in any order. The following procedure is like filling

a “box” wj by “liquid” i originally in the box wi. The stochastic flow v(i → j) is

the amount of liquid i that moves from box wi to box wj; this corresponds to the

stochastic flow from state i to state j. (ii) Fill the box w2 as much as possible with
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liquid 1 in box w1. The amount of this liquid is v(1 → 2). If liquid 1 in box w1

still remains, then fill the next box w3 with as much liquid as possible by the rest

of liquid 1. This procedure should be continued until all of liquid 1 is moved to

other boxes. The last partially filled box is referred to as wk. The stochastic flows

v(1 → 2), . . . , v(1 → k) are determined via this process. (iii) By using liquid 2, fill

the last partially filled box wk to the maximum extent possible. If box wk is filled,

then fill box wk+1. This procedure should be continued until all of liquid 2 is moved

to other boxes wk+2, . . . , wl. The stochastic flows v(2 → k), . . . , v(2 → l) are

obtained. (iv) Once the last box wn is filled, then fill box w1 by all the remaining

liquids. All liquids are moved to other boxes in this manner.

The amount of stochastic flow of the Suwa–Todo algorithm is formulated as

follows:

v(i → j) = max [0, min [∆ij, wi + wj −∆ij, wi, wj]] , (2.10)

where

∆ij ≡ Si − Sj−1 + w1, (2.11)

Si ≡
i∑

k=1

wk, (2.12)

S0 ≡ Sn, (2.13)

and w1 is assumed to have the maximum weight factor among n states. The tran-

sition probability, P (i → j) = v(i → j)/wi, is obtained by using Eq. (2.10). The

stochastic flow from state i to state i is calculated as follows:

v(i → i) =

max[0, 2w1 − Sn], i = 1

0, i ≥ 2.

(2.14)

This equation implies that the rejection ratio is zero when w1 ≤ Sn/2. Therefore,

the Suwa–Todo algorithm minimizes the rejection ratio. Note that the algorithm is

consistent with the Metropolis algorithm when n = 2.
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2.2 Replica-Exchange Method

Let us consider a system of N atoms and M non-interacting copies (replicas).

Each replica realizes the canonical ensemble at a different temperature Tm (m =

1, 2, . . . ,M). In the REM, temperature and replica correspond one-to-one. There-

fore, the replica index i (i = 1, . . . ,M) is a permutation of the temperature index

m (m = 1, 2 . . . ,M) and vice versa:

i = i(m) ≡ f(m)

m = m(i) ≡ f−1(i),

(2.15)

where f(m) is a mapping function from the temperature index to the replica index,

and f−1(i) is the inverse. A state in the REM is expressed by a combination of the

temperature indices and the replica indices as follows:

Xµ =
[
x
[i(1)]
1 , x

[i(2)]
2 , . . . , x

[i(M)]
M

]
=
[
x
[1]
m(1), x

[2]
m(2), . . . , x

[M ]
m(M)

]
. (2.16)

State Xµ is specified by the M sets of replicas. The state of each replica is expressed

by a set of coordinates and momenta:

x[i]
m ≡ (q[i], p[i])m. (2.17)

The Hamiltonian H in state x
[i]
m is given by the sum of the kinetic energy K and

potential energy U :

H(x[i]
m) = K(p[i]m) + U(q[i]m). (2.18)

In the canonical ensemble at temperature Tm, each state x
[i]
m is weighted by the

Boltzmann factor:

wB = exp[−βmH(x[i]
m)], (2.19)

where βm = 1/kBTm (kB is the Boltzmann constant). Because each replica does not

interact, the weight factor of state Xµ is given by the product of the Boltzmann
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factor of each replica i

wR(Xµ) =
M∏
i=1

exp
[
−βm(i)H(x

[i]
m(i))

]
=

M∏
m=1

exp
[
−βmH(x[i(m)]

m )
]
. (2.20)

Every certain step during the simulation, the REM tries to exchange replicas i and j

at temperatures Tm and Tn, respectively (i = f(m) and j = f(n)). The exchanging

a pair of replicas in the REM is expressed as follows:

Xµ = [. . . , x[i]
m, . . . , x

[j]
n , . . . ] → Xν = [. . . , x[j]′

m , . . . , x[i]′

n , . . . ]. (2.21)

Figure 2.2(a) shows the schematic figure of the REM. The amount of stochastic flow

and transition probability for this replica exchange are obtained by the Metropolis

criteria in Eqs. (2.6) and (2.7):

v(Xµ → Xν) = C min [wR(Xµ), wR(Xν)] , (2.22)

P (Xµ → Xν) = C min

[
1,

wR(Xν)

wR(Xµ)

]
, (2.23)

where C = 1/MC2. When the replica-exchange trial is accepted, the momenta of

the replicas are scaled to satisfy the condition ⟨K(p
[i]
m)⟩Tm = 3

2
NkBTm as follows:

p[i]
′

n =

√
Tn

Tm

p[i]m, (2.24)

p[j]
′

m =

√
Tm

Tn

p[j]n . (2.25)

This rescaling of moment cancel out the kinetic energy term, K, in Eq. (2.23). Thus,

the weight factor

wR(Xµ) =
M∏

m=1

exp[−βmU(x[i(m)]
m )] (2.26)

is used instead of Eq. (2.19). The transition probability is calculated as follows:

P (Xµ → Xν) = Cmin [1, exp(−∆)] , (2.27)

25



(a) Replica-exchange method 

Replica 1
Replica 2
Replica 3
Replica 4

T1

T2

T3

T4

Replica 2
Replica 1
Replica 4
Replica 3

Replica 2
Replica 4
Replica 1
Replica 3

Replica 2
Replica 4
Replica 3
Replica 1

Exchange trial

(b) Replica-permutation method 
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Figure 2.2: Schematic figures of the (a) replica-exchange and (b) replica-permutation
methods.

where ∆ is given as

∆ = (βm − βn)(U(q[j])− U(q[i])). (2.28)

2.3 Replica-Permutation Method

Let us consider performing replica permutation among all M parameters

Xµ =
[
x
[i(1)]
1 , . . . , x

[i(M)]
M

]
→ Xν =

[
x
[j(1)]
1 , . . . , x

[j(M)]
M

]
, (2.29)

or parameter permutation among all M replicas

Xµ =
[
x
[1]
m(1), . . . , x

[M ]
m(M)

]
→ Xν =

[
x
[1]
n(1), . . . , x

[M ]
n(M)

]
, (2.30)
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Table 2.1: An example of replica-permutation candidates for three replicas system.

State index µ Replica 1 Replica 2 Replica 3
1 T1 T2 T3

2 T2 T1 T3

3 T1 T3 T2

4 T2 T3 T1

5 T3 T1 T2

6 T3 T2 T1

where i, j, m, and n are permutation functions. In this method, temperature

permutation among more than two replicas are allowed. Note that the number of

all possible combinations between the replica and temperatures is M !. Therefore,

the range of indices µ and ν are between 1 and M !. Table 2.1 shows an example of

replica-permutation candidates in a three replica system. Figure 2.2(b) shows the

schematic figure of the RPM.

The weight factor in Eq. (2.26) is also used in the RPM because momenta are

modified when the replica permutation is accepted as follows:

p
[i]
n(i) =

√
Tn(i)

Tm(i)

p
[i]
m(i). (2.31)

In the RPM, the Suwa–Todo algorithm, instead of the Metropolis algorithm, is used

to calculate the transition probability. If the Metropolis algorithm is applied to

replica permutation, the transition probability P (Xµ → Xν) becomes lower [3]. In

other words, the rejection ratio becomes large. It should be noted that the heat

bath algorithm is also applicable. This method has been proposed by Plattner et al.

as an infinite swapping method [6, 7]. The Suwa–Todo algorithm minimizes the

rejection ratio. Therefore, it is suitable for replica permutation in comparison with

the Metropolis and heat bath algorithms. The amount of stochastic flow v(Xµ →

Xν) is determined by only replacing the weight wi in Eq. (2.10) with wR(Xµ) as

follows:

v(Xµ → Xν) = max[0,min[∆µν , wR(Xµ)+wR(Xν)−∆µν , wR(Xµ), wR(Xν)]], (2.32)
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where

∆µν ≡ Sµ − Sν−1 + wR(X1), (2.33)

Sµ ≡
µ∑

ν=1

wR(Xν), (2.34)

S0 ≡ SM !. (2.35)

If wR(Xγ) is the maximum weight, Eqs. (2.33) and (2.34) are modified as follows:

∆µν ≡ Sµ − Sν−1 + wR(Xγ), (2.36)

Sµ ≡



µ∑
ν=γ

wR(Xν), for µ ≥ γ

M !∑
ν=γ

wR(Xν) +

µ∑
ν=1

wR(Xν), for µ < γ.

(2.37)

The transition probability, P (Xµ → Xν) = v(Xµ → Xν)/w(Xµ), for ν = 1, . . . , M !

is obtained using Eqs. (2.26) and (2.32). Consequently, the replica permutation from

Xµ to Xν is performed following the obtained transition probability.

To perform the RPM, the permutation functions should be prepared in advance.

The author defines a permutation P
(M)
i for M elements (replicas) is defined as

follows:

P
(M)
i ≡

[
σi(1), σi(2), σi(3), · · · , σi(M)

]
=

 1, 2, 3, · · · , M

σi(1), σi(2), σi(3), · · · , σi(M)

 . (2.38)
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The author also defines a set of all permutations as follows:

{
P (M)

}
≡



P
(M)
1

P
(M)
2

P
[M ]
3

...

P
(M)
M !


=



[
1, 2, 3, · · · , M

]
[
2, 1, 3, · · · , M

]
[
1, 3, 2, · · · , M

]
...[

M, M − 1, M − 2, · · · , 1
]


, (2.39)

where {P (M)} is an M !×M matrix. The matrix {P (M)} can be constructed based

on {P [M−1]}; the first step is to add M at the M -th column of {P [M−1]}:

{
P (M)

}
M

≡
{
[P

(M−1)
i , M ]: for i = 1, · · · , (M − 1)!

}

=



[
1, 2, 3, · · · , M − 1, M

]
[
2, 1, 3, · · · , M − 1, M

]
[
1, 3, 2, · · · , M − 1, M

]
...[

M − 1, M − 2, M − 3, · · · , 1, M
]


, (2.40)

where the subscript i of the braces indicates that {P (M)}i is a set of permutations

that added numberM is at i-th column. Here, a transposition τj,k that is an operator

that exchanges j-th and k-th columns of P
(M)
i is introduced as follows:

τj,k

[
1, · · · , j, · · · , k, · · · , M

]
=
[
1, · · · , k, · · · , j, · · · , M

]
.

(2.41)

The next step is to repeat the adjacent transposition operation on {P (M)}M until
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the number M in {P (M)}M moves to the first column. That is,

{
P (M)

}
M−1

= τM−1,M

{
P (M)

}
M
,{

P (M)
}
M−2

= τM−2,M−1

{
P (M)

}
M−1

,

...{
P (M)

}
2

= τ2,3
{
P (M)

}
3
,{

P (M)
}
1

= τ1,2
{
P (M)

}
2
.

As a result, the set of all permutations for M elements is obtained as follows:

{
P (M)

}
=
{{

P (M)
}
i
: for i = M,M − 1, · · · , 1

}
. (2.42)
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Isothermal–Isobaric

Replica-Permutation Method

M. Yamauchi and H. Okumura. “Development of isothermal–isobaric replica-permutation

method for molecular dynamics and Monte Carlo simulations and its application

to reveal temperature and pressure dependence of folded, misfolded, and unfolded

states of chignolin,” The Journal of Chemical Physics 147, 184107 (14 pages) (2017).
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3.1 Introduction

Molecular dynamics simulation is a powerful tool to study a biomolecule because

it provides us with an atomic picture of the biomolecule. However, sometimes its

conformation gets trapped in a local-minimum free energy state, which hampers

the efficient simulation. To overcome this problem, generalized-ensemble algorithms

have been developed [1].

Multicanonical algorithm [2–5] and simulated tempering [6, 7] are the most popu-

lar generalized-ensemble algorithms. These algorithms are based on non-Boltzmann

weight factors and realize a random work in the energy spaces. However, the non-

Boltzmann weight factors are not known a priori and have to be determined in

advance by iterative procedures. The replica-exchange method (REM) [8, 9] is an-

other successful algorithm. The REM uses some non-interacting copies (replicas) of

a target system. Different temperatures are assigned to the replicas. The canonical

molecular dynamics simulations are performed independently and simultaneously.

By exchanging the temperatures between the replicas, random walks of the replicas

in the temperature (or energy) space are realized. Thus, the simulation can escape

from the local-minimum free-energy states. In the REM, the product of the Boltz-

mann factors for all replicas is used as the probability weight factor. Therefore, we

can carry out a replica-exchange simulation only by assigning the temperature for

each replica without performing the iterative procedures.

A replica-permutation method (RPM) [10] has been proposed as an improved

alternative to the REM. In the RPM, temperatures are permuted among more than

two replicas. To allow this permutation, the Suwa–Todo algorithm [11], instead of
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the Metropolis algorithm [12], is employed. The Suwa–Todo algorithm satisfies only

the global balance condition without imposing the detailed balance condition so

that the rejection ratio can be minimized. The Hamiltonian RPM [13–15] was also

proposed, wherein the parameters introduced in the Hamiltonian were permuted.

The Suwa–Todo algorithm was also used in the simulated tempering method [16].

However, these previous RPM and simulated tempering methods are applicable only

in the canonical ensembles. That is, the volume cannot be changed, and pressure

cannot be specified. Although the REM and simulated tempering method with the

Metropolis algorithm were extended to the isothermal–isobaric ensemble [17, 18], the

RPM has not been extended yet. Thus, the phenomena involving volume change

cannot be treated so far in RPM. On the other hand, in almost all experiments, the

pressure as well as temperature is controlled and proteins change their conformation

via pressure changes [19]. In this regard, it is important to sample the conformations

of biomolecules at various temperatures and pressures more efficiently.

In this study, the author extended the RPM to the isothermal–isobaric ensemble

to propose a new generalized-ensemble algorithm for molecular dynamics and Monte

Carlo simulations. This algorithm is referred to as an isothermal–isobaric RPM.

Not only the temperatures but also the pressures can be permuted so that two-

dimensional random walks in temperature and pressure spaces can be realized. This

is the first example of a two-dimensional RPM. Through the isothermal–isobaric

replica-permutation simulation, one can obtain accurate physical quantities at any

temperature and pressure within a range of employed values. Thus, we can compare

the simulation results with experimental results obtained under identical conditions.

The author considered the effects of employed MC algorithms on sampling effi-

ciency. This study compares three MC algorithms in the replica-permutation trial:

The Suwa–Todo [11], heat bath [20], and metropolis [12] algorithms. The replica-

permutation trial with the heat bath algorithm is also known as the infinite swapping

method (INS) [21, 22]. Both RPM and INS are known to improve the sampling ef-

ficiency in comparison with the REM. The difference between the RPM and INS is

that RPM uses the Suwa–Todo algorithm in the replica-permutation trial, whereas

INS uses the heat bath algorithm. The INS is originally developed in the canonical
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ensemble, but it can be extended to the isothermal–isobaric ensemble in a similar

manner with RPM. Suwa and Todo pointed out that the autocorrelation time by

the Suwa–Todo algorithm is 2.7 times faster than that by the heat bath algorithm in

the four-state Potts model [11]. However, the sampling efficiency of INS and RPM

were not compared so far. This study compares the sampling efficiencies of these

methods and reveals the most suitable MC algorithm of the replica-permutation

trials

3.2 Theory

3.2.1 Isothermal–Isobaric Ensemble

The isothermal–isobaric ensemble is characterized by the number of particles N ,

pressure P , and temperature T . Here, let us consider N -particle system in a box

with volume V . The probability distribution in the isothermal–isobaric ensemble

PNPT of potential energy U and volume V is given as follows:

PNPT (U, V ; T, P ) = n(U, V ) exp[−β(U + PV )], (3.1)

where n(U, V ) is the density of states and β = (1/kBT ) is the inverse temperature

(kB is the Boltzmann constant). The potential energy of the system is a function

of the coordinates and volume: U(r, V ), where r is a set of coordinates defined

as r ≡ {r1, . . . , rN}. The isothermal–isobaric molecular simulation uses the scaled

coordinates [23, 24]. The scaled coordinates is defined as s = V −1/3r when an

isotropic box is used. Accordingly, the weight factor is transformed as

exp[−β(U + PV )] = exp{−β[U(s, V ) + PV ]}V Nds

= exp{−β[U(s, V ) + PV −NkBT log V ]}ds
(3.2)

3.2.2 Isothermal–Isobaric Replica-Permutation Method

Let us consider a system of N atoms and M non-interacting copies (or replicas)

of the system. Each replica is supposed to follow the different thermodynamics
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ensemble specified by the thermodynamics state, λm, where m is a thermodynam-

ics state index. In the isothermal–isobaric ensemble, the thermodynamics state is

characterized by temperature, Tm, and pressure, Pm: λm = [Tm, Pm].

The isothermal–isobaric RPM consider M0 different temperatures, Tm0 (m0 =

1, . . . ,M0), and M1 different pressures, Pm1 (m1 = 1, . . . ,M1). Hence, the total

number of replicas is M = M0 × M1. A parameter permutation among all M

replicas is expressed as follows:

Xµ =
[
x[1]
m(1)

, . . . , x[M ]
m(M)

]
→ Xν =

[
x[1]
n(1)

, . . . , x[M ]
n(M)

]
, (3.3)

where m(i) and n(i) are permutation functions from the replica index to the thermo-

dynamics state index. The parameter permutation can be divided into temperature

and pressure permutations as follows:

Xµ =
[
x
[1]
{m0(1), m1(1)}, . . . , x

[M ]
{m0(M), m1(M)}

]
→ Xν =

[
x
[1]
{n0(1), n1(1)}, . . . , x

[M ]
{n0(M), n1(M)}

]
,

(3.4)

where m0(i) and n0(i) are permutation functions from the replica index to the

temperature index, and m1(i) and n1(i) are permutation functions from the replica

index to the pressure index. Index m0(i) takes a value between 1 and M0, and m1(i)

takes a value between 1 and M1. One-to-one correspondence exists between the

replicas and sets of temperatures and pressures. In the isothermal–isobaric RPM, a

weight factor of the state Xµ is

wR(Xµ) =
M∏
i=1

exp
[
−βm0(i)

(
H(q(i), p(i)) + Pm1(i)V

(i)
)]

. (3.5)

The momenta of the replicas are scaled as

p
[i]
{n0(i), n1(i)} =

√
Tn0(i)

Tm0(i)

p
[i]
{m0(i), m1(i)} (3.6)

when the replica-permutation trial is accepted. This rescale of momenta cancels

out kinetic terms in Eq. (3.5) when calculating the transition probability. Thus, a
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weight factor without the kinetic energy

wR(Xµ) =
M∏
i=1

exp
[
−βm0(i)(U(q(i)) + Pm1(i)V

(i))
]

(3.7)

is usually used instead of Eq. (3.5).

The isothermal–isobaric replica-permutation simulation is performed by the fol-

lowing procedures:

Step. 1 The index µ (µ = 1, . . . ,M !) is assigned to all combinations between the

replicas and sets of temperatures and pressures.

Step. 2 For all replicas, isothermal–isobaric molecular dynamics or Monte Carlo

simulations are performed at the assigned temperature and pressure simul-

taneously and independently over certain steps.

Step. 3 A replica-permutation trial is performed by the Suwa–Todo algorithm. First,

calculate the weight of each state by Eq. (3.7), and determine the max-

imum weight wR(Xγ). Second, calculate the amount of stochastic flow

v(Xµ → Xν) in Eq. (2.32) and the transition probability P (Xµ → Xν) =

v(Xµ → Xν)/wR(Xµ) for ν = 1, . . . ,M !. Finally, transition from state Xµ

to state Xν is accepted stochastically with the probability P (Xµ → Xν).

If another algorithm is employed to calculate the transition probabilities,

such as the Metropolis and heat bath algorithms, this step must modify

following the procedures of each algorithm.

The replica-permutation molecular dynamics (RPMD) or Monte Carlo simulation

in the isothermal–isobaric ensemble is performed by repeating step 2 and step 3.

Because the number of replicas tends to be large in the isothermal–isobaric RPM,

considerable computational cost is incurred to calculate the stochastic flow. To

reduce the computational cost, the author proposes that temperature permutation

and pressure permutation are carried out alternately. Two subsets in which replicas
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have the same number of temperatures or pressures are introduced as follows:

Xµ, [Tm0 ]
=


(Tm0 , P1)

(Tm0 , P2)

. . .

(Tm0 , PM1)

 , Xµ, [Pm1 ]
=


(T1, Pm1)

(T2, Pm1)

. . .

(TM0 , Pm1)

 . (3.8)

In this case, the weight factor of each subset is modified as follows:

(i) For a temperature permutation at each pressure Pm1 (m1 = 1, . . . , M1), the

weight factor for state Xµ, [Pm1 ]
is given by

wR(Xµ, [Pm1 ]
) =

M0∏
i=1

exp
[
−βm0(i)

(
U(q(i)) + Pm1V

(i)
)]

. (3.9)

(ii) For a pressure permutation at each temperature Tm0 (m0 = 0, . . . , M0), the

weight factor for state Xµ, [Tm0 ]
is given by

wR(Xµ, [Tm0 ]
) =

M1∏
i=1

exp
[
−βm0

(
U(q(i)) + Pm1(i)V

(i)
)]

. (3.10)

The term exp[−βm0U(q(i))] is canceled out when calculating the transition prob-

ability because both v(Xµ → Xν) and wR(Xµ) contain this term. Therefore, the

weight factor becomes

wR(Xµ, [Tm0 ]
) =

M1∏
i=1

exp
[
−βm0Pm1(i)V

(i)
]

(3.11)

when calculating the stochastic flow and transition probability.

If M0 or M1 is still large, replicas in the subsets can be divided into smaller

subsets with the following two rules: (i) the number of replicas in one subset is

the same. (ii) the temperature or pressure indices in one subset are sequential and
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cyclic. The subset Xµ, [Pm1 ]
can be divided into

X1
µ, [Pm1 ]

=


(T1, Pm1)

(T2, Pm1)

(T3, Pm1)

(T4, Pm1)

 , X3
µ, [Pm1 ]

=


(T5, Pm1)

(T6, Pm1)

(T7, Pm1)

(T8, Pm1)

 (3.12)

and

X2
µ, [Pm1 ]

=


(T3, Pm1)

(T4, Pm1)

(T5, Pm1)

(T6, Pm1)

 , X4
µ, [Pm1 ]

=


(T1, Pm1)

(T2, Pm1)

(T7, Pm1)

(T8, Pm1)

 . (3.13)

Likewise, the subset Xµ, [Tm0 ]
can be divided as follows:

X1
µ, [Tm0 ]

=


(Tm0 , P1)

(Tm0 , P2)

(Tm0 , P3)

(Tm0 , P4)

 , X3
µ, [Tm0 ]

=


(Tm0 , P5)

(Tm0 , P6)

(Tm0 , P7)

(Tm0 , P8)

 (3.14)

and

X2
µ, [Tm0 ]

=


(Tm0 , P3)

(Tm0 , P4)

(Tm0 , P5)

(Tm0 , P6)

 , X4
µ, [Tm0 ]

=


(Tm0 , P1)

(Tm0 , P2)

(Tm0 , P7)

(Tm0 , P8)

 . (3.15)

If the subset division mentioned above are employed, the procedure of the isothermal–

isobaric RPM in step 3 is slightly modified. One of the following procedures is carried

out alternately instead of step 3:

Step. 3-1 Temperature permutations for X1
µ, [Pm1 ]

and X3
µ, [Pm1 ]

are performed at

each pressure Pm1 (m1 = 1, . . . ,M1).

Step. 3-2 Pressure permutations for X1
µ,[ Tm0 ]

and X3
µ, [Tm0 ]

are performed at each

temperature Tm0 (m0 = 1, . . . , M0).

Step. 3-3 Temperature permutations for X2
µ, [Pm1 ]

and X4
µ, [Pm1 ]

are performed at
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each pressure Pm1 (m1 = 1, . . . , M1).

Step. 3-4 Pressure permutations for X2
µ, [Tm0 ]

and X4
µ, [Tm0 ]

are performed at each

temperature Tm0 (m0 = 1, . . . , M0).

3.2.3 Reweighting Techniques: Estimation of Physical Quan-

tities

After carrying out the isothermal–isobaric replica-permutation simulation, we can

obtain the trajectory data on the multiple equilibrium states (M states, which are

a combination of T = T1, . . . , TM0 and P = P1, . . . , PM1). The arithmetic mean

of the trajectory data from the one equilibrium state gives the isothermal–isobaric

average of a physical quantity, A, at the specified temperature and pressure values

for the simulation, which is as follows:

⟨A⟩Tm0 ,Pm1
=

1

nm

nm∑
i=1

A(xm(i)), (3.16)

where m indicates the thermodynamics state at T = Tm0 and P = Pm1 , nm is the

number of trajectory data, and xm(i) is the state of the system.

A weighted histogram analysis method (WHAM) [25, 26], which is also called

multiple-histogram reweighting technique [27], and a multistate Bennett acceptance

ratio (MBAR) method [28] are other choices to calculate the isothermal–isobaric

averages of the physical quantities. These methods enable us to evaluate the physical

quantities more precisely because they considers all trajectory data from multiple

equilibrium states. The WHAM gives the density of states, whereas the MBAR

cannot directly calculate it. However, the histogram construction of the WHAM

makes bias due to the binning. In adition, the binning is a time-consuming process.

The MBAR does not require making the histogram; thus, the MBAR provides the

weight for each snapshot and the direct estimation of statistical errors.
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Weighted Histogram Analysis Method

The statistical average of a physical quantity, A, at temperature T and pressure P

is given as follows:

⟨A⟩T,P =

∫
dU
∫
dV ω(U, V )A(U, V ) exp[−β(U + PV )]∫

dU
∫
dV ω(U, V ) exp[−β(U + PV )]

(3.17)

where ω(U, V ) is the density of states in the isothermal–isobaric ensemble. The

WHAM provides the procedure to calculate the density of states ω(U, V ) and di-

mensionless Gibbs free energy gm = gij ≡ g(Tm0 , Pm1) as follows:

ω(U, V ) =

∑M0

i=1

∑M1

j=1(1 + 2τij)
−1hij(U, V )∑M0

i=1

∑M1

j=1(1 + 2τij)−1nij exp[gij − βi(U + PjV )]
, (3.18)

exp(−gij) =
∑
U

∑
V

ω(U, V ) exp[−βi(U + PjV )], (3.19)

where hij is the histogram of U and V , nij is the number of the data, and τij is

the integrated autocorrelation time in the simulation at Ti and Pj. In many cases

for biomolecule systems, τij may be set to a constant value [25]. By solving self-

consistent Eqs. (3.18) and (3.19), we can obtain the density of states.

Multistate Bennett Acceptance Ratio

In the MBAR method, the statistical average of a physical quantity A at thermo-

dynamics state α is calculated as follows.

⟨A⟩α =

∑M
j=1

∑Nj

k=1A(xjk)Wjk∑M
j=1

∑Nj

k=1Wjk

=
M∑
j=1

Nj∑
k=1

wjkA(xjk) (3.20)

where Nj is the number of sampling data obtained from each replica j. Index k

indicates the k-th data of replica j. wjk is the weight factor for each data in the

required ensemble, and Wjk in Eq. (3.20) is calculated as

Wjk =
exp[−uα(xjk)]∑M

l=1 Nl exp[gm − ul(xjk)]
. (3.21)
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In the isothermal–isobaric ensemble, uα is expressed as

uα(xjk) = βα[U(xjk) + PαV (xjk)]. (3.22)

The dimensionless Gibbs free energy gm at temperature Tm0(l) and pressure Pm1(l)

can be calculated by solving the following equation iteratively:

gm′ = − ln
M∑
j=1

Nj∑
k=1

exp[−um′(xjk)]∑M
m=1 Nl exp[gm − ul(xjk)]

. (3.23)

The probability for the appropriate reaction coordinate ξ, that is divided into n

bins, is given by

Pi(T, P ; ξ) =
M∑
j=1

Nj∑
k=1

wjkχi(xjk; ξ), (3.24)

where χi is an indicator function that assumes the value of one if the system is in

bin i and zero otherwise. The potential of mean force can then be computed from

Pi(T, P ; ξ) up to an irrelevant additive constant as

Fi(T, P ; ξ) = −kBT ln

(
Pi(T, P ; ξ)

νi

)
, (3.25)

where νi is the relative width of bin i.

3.3 Computational Details

In this study, the author performed three isothermal–isobaric RPMD simulations

with (1) the Suwa–Todo algorithm, (2) the heat bath algorithm, and (3) the Metropo-

lis algorithm. Note that the RPMD with the heat bath algorithm is the identical

to the INS. Hereafter, the RPMD with the Metropolis algorithm will be referred to

as M-RPMD, respectively. The isothermal–isobaric replica-exchange MD (REMD)

simulation was also performed for comparison.

A chignolin [29] in explicit water was used as the test system. The amino acid

sequence of the chignolin is GYDPETGTWG. The simulation system was consists of

one chignolin molecule, 1,621 water molecules, and two sodium ions Na+ as counter
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Table 3.1: Parameter index m to indicate T and P indices of the replicas.

P1 P2 P3 P4

T1 1 2 3 4
T2 5 6 7 8
T3 9 10 11 12
T4 13 14 15 16
T5 17 18 19 20
T6 21 22 23 24

ions. A fully extended chignolin structure was used as the initial structure. A

cubic unit cell with periodic boundary conditions was used. The simulations were

performed using the Generalized-Ensemble Molecular Biophysics (GEMB) program,

which was developed by Prof. Hisashi Okumura and the author and has been applied

to several biomolecules [30–32]. The AMBER parm14SB [33] force field was used for

chignolin, and the TIP3P [34] rigid-body model was used for the water molecules.

The temperature was controlled by the Nosé-Hoover thermostat [35–37] and the

pressure was controlled by the Andersen barostat [24]. The electrostatic potential

energy was calculated by the particle mesh Ewald method [38, 39]. The cutoff

distance was rc = 12.0 Å for both electrostatic and Lennard-Jones potential. The

multiple time-step method [40] was also applied. The time step was taken as ∆t =

0.5 fs for the bonded interactions of the protein atoms; ∆t = 2.0 fs for the non-

bonded interactions of the protein atoms and those between the protein atoms and

solvent molecules; and ∆t = 4.0 fs for the interaction between the solvent molecules.

Because the symplectic rigid-body algorithm was used for the water molecules, ∆t

can be taken as 4.0 fs [41–43]. The following six temperature and four pressure

values were used: 300.0, 307.6, 315.4, 323.4, 331.6, and 340.0 K for temperature;

0.1, 30, 60, and 100 MPa for pressure. Therefore, the number of replicas is 24.

A new parameter index m was introduced to indicate both the temperature and

pressure indices, as listed in Table 3.1.

Because the sampling efficiency may depend on the number of subsets, the author

tested six different settings for the replicas to divide into subsets. The numbers of

temperature and pressure subsets for each pressure and temperature value are as

follows: (T subsets, P subsets) = (1,1), (1,4), (4,1), (4,4), (6,1), and (6,1). That is,
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each subset has the following numbers of replicas in the temperature and pressure

spaces: (T replicas, P replica) = (6,4), (6,2), (3,4), (3,2), (2,4), and (2,2). These

simulations will be referred to as RPMD1, RPMD2, RPMD3, RPMD4, RPMD5,

and REMD. Note that dividing into three temperature subsets and two pressure

subsets, i.e., (T subsets, P subsets) = (6,4), is the identical to the REMD because

each subset has only two replicas in the temperature and pressure spaces: (T replicas,

P replicas) = (2,2). The number of replicas in the subsets of INS and M-RPMD

are same as RPMD1, i.e., (T subset, P subset)=(1,1) and (T replicas, P replicas)

= (6,4).

Trials of replica permutation or exchanges were performed every 0.5 ps. Here,

temperature permutations/exchanges at each pressure Pm1 = P1, . . . , P4 were per-

formed simultaneously at odd-numbered trials, and pressure permutations/exchanges

at each temperature Tm0 = T1, . . . , T6 were performed simultaneously at even-

numbered trials. The trajectory data were stored every 0.5 ps. Above simulations

were performed for 30 ns per replica.

3.4 Results and Discussion

3.4.1 Comparison of Sampling Efficiencies among RPM, INS

and REM

Figure 3.1 show the time series of temperature and pressure indices of replica 1 of

the RPMD1, REMD, INS, and M-RPMD. In the RPMD1, REMD, and INS, each

replica took all temperature and pressure values during the simulation. Because of

the random walks in the temperature-pressure space, the simulation can escape from

local-minimum free-energy state. However, the parameter value does not frequently

transit in the M-RPMD simulation.

The number of tunneling events in the temperature and pressure spaces is listed

in Table 3.2 to quantitatively compare sampling efficiency among the RPMD, REMD,

INS, and M-RPMD. Here, one tunneling event is defined as a round trip between the

highest and lowest values in the temperature or pressure space. Results are listed in
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(a) RPMD1

(c) INS

(b) REMD

(d) M-RPMD

Figure 3.1: Time series of the temperature and pressure indices of replica 1 in the
(a) RPMD1, (b) REMD, (c) INS, and (d) M-RPMD simulations.

Table 3.2: The number of tunneling events in the temperature and pressure spaces.

Method Temperature space Pressure space
RPMD1 64 ± 1 146 ± 2
RPMD2 65 ± 1 37 ± 1
RPMD3 41 ± 1 151 ± 2
RPMD4 43 ± 1 38 ± 1
RPMD5 33 ± 1 148 ± 1
REMD 35 ± 1 38 ± 1
INS 50 ± 1 113 ± 2

M-RPMD 0 ± 0 8 ± 0.4

Table 3.2. The error bars were calculated by the bootstrap method [44]. Tunneling

events in the RPMD1 are larger than those in the INS, REMD, and M-RPMD both

in the temperature and pressure spaces.

Figure 3.2 presents the transition ratio of the parameters to see parameter tran-

sition. In this figure, the longitudinal axis is the parameter index before transition,
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(a) RPMD1 (b) REMD

(d) M-RPMD(c) INS

Figure 3.2: Transition of the parameter index of the (a) RPMD1, (b) REMD, (c)
INS, and (d) M-RPMD simulations. The longitudinal axis is the parameter index
before transition, and the horizontal axis is the parameter index after transition.
Each cell shows the transition ratio in a logarithmic scale.

and the horizontal axis is the parameter index after transition. Let us focus on pa-

rameter index m = 10 as an example. In the REMD, the parameter index transits

from 10 to 6, 9, 10, 11, and 14. This means that the temperature and pressure

indices changed to only the neighboring values (Table 3.2). On the other hand, in

the RPMD1, INS, the parameter index transits from 10 to 2, 6, 8, 9, 10, 11, 12, 14,

and 18. This means that the temperature and pressure indices can transit not only

to the neighboring values but also the non-neighboring values (Table 3.2). In the

M-RPMD, the parameter index is changed from 10 to 6, 9, 10, 11, 12, and 14. The

parameter transition to the non-neighboring values occur in the pressure space, but

it does not occur in the temperature spaces.

Figure 3.3 shows the transition ratio to other indices in the temperature and
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pressure spaces. Here, the transition ratio is defined as follows:

Transition ratio of index i =
Total transitions from index i to other indices

Total replica-permutation trials
.

The transition ratio of RPMD1 is clearly higher than the ratios of INS, REMD,

and M-RPMD. These results clearly indicate that the isothermal–isobaric RPMD

realizes more efficient simulation than the isothermal–isobaric INS, REMD, and M-

RPMD. The replica-permutation simulation with the Suwa–Todo algorithm realize

higher transition ration than that with the heat bath algorithm. One of the reasons

is that the Suwa–Todo algorithm minimizes the rejection ratio (in many cases, it

is rejection free) as Eq. (2.14) indicates, whereas the heat bath algorithm has a

finite rejection ratio. The author also found that the Metropolis algorithm does

not work well in the replica-permutation simulation. The transition probability of

the Metropolis algorithmis given in Eq. (2.7). In Eq. (2.7), min(1, wi/wj) takes a

value from 0 to 1. The coefficient 1/(n− 1) becomes small as the number of states,

n, increases. The replica-permutation trial considers M ! states; and consequently,

the transition probability from state i to state j is in proportion to 1/(M ! − 1).

Therefore the transition probabilities become significantly small as the number of

replicas increases.

3.4.2 Effects of Subset Division on the Sampling Efficiency

Let us compared the sampling efficiency of the isothermal–isobaric RPM among

different numbers of subsets. The number of tunneling events are listed in Table 3.2.

In the temperature space, as the number of replicas in one subset increases, the

number of tunneling events in temperature also increases. Similarly, in the pressure

space, as the number of replicas in one subset increases, the number of tunneling

events in pressure also increases. Fig. 3.4 shows the transition ratio to other indices.

Here, the transition ratio at different pressure indices is shown separately. As the

number of replicas in one subset increases, the transition ratio also becomes large.

These results indicate that the RPM becomes more efficient with a large number of

replicas in one subset.
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(a)
RPMD1
REMD

(b)
RPMD1
INS

RPMD1
M-RPMD(c)

Figure 3.3: Comparison of the transition ratio between (a) RPMD1 and REMD, (b)
RPMD1 and INS, and (c) RPMD1 and M-RPMD.

To explain these results, the author considers the permutation of four replicas,

as shown in Fig. 3.5 (a). The number of the candidates of the next state is 4! = 24.

Let us focus on whether replica 1 transits to another index or not. The number of

candidate states that replica 1 does not transit to another index is six (green round

rectangle). Therefore, the proportion of the rejection candidates in all candidates

is 6/24 = 1/4. Likewise, let us consider the permutation (exchange) of two replicas

as shown in Fig. 3.5 (b). The number of the candidates of the next state is 2! = 2

and the number of candidate states that replica 1 does not transit to another index

is 1. Therefore, the proportion of the rejected candidates for replica 1 among all
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(a) Pm1 = P1 (b) Pm1 = P2

(c) Pm1 = P3 (d) Pm1 = P4

Figure 3.4: Comparison of the transition ratio among the replica-permutation sim-
ulations with a different number of subsets.

candidates is 1/2. This simple example show that if the number of replicas in one

subset increases, then the proportion of rejected candidates for some replica 1 in

all candidates decreases. More generally, the author considers N replicas and 2n

subsets. The number of replicas in one subset is defined as M = N/n. Here, N , n,

and M are natural numbers. Let us focus on whether replica i transits to another

index. The number of total candidates of the next state is M !. The number of

rejected candidates for replica i is (M−1)! because this is the permutation of (M−1)

replicas, except for replica i in one subset. Thus, the proportion of the candidates

that replica i does not transit to any index in all candidates is (M − 1)!/M ! = 1/M .

Therefore, if the number of replicas in one subset increases, the proportion of the

rejection candidates for replica i in all candidates decreases in proportion to 1/M .

Therefore, more efficient simulation can be realized when one subset includes more

numbers of replicas.
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(a) Each subset has 4 replicas (RPMD)

State number

Replica 1
Replica 2
Replica 3
Replica 4

・・・

T1 T1 T1 T1 T1 T1 T2 T2
T2 T2 T3 T3 T4 T4 T1 T1
T3 T4 T2 T4 T2 T3 T3 T4
T4 T3 T4 T2 T3 T2 T4 T3

μ1 μ2 μ3 μ4 μ5 μ6 μ7 μ8

T4 T4 T4
T2 T3 T3
T3 T1 T2
T1 T2 T1

μ22 μ23 μ24

Subset Current state
Candidates that replica 1 does not 
change temperature

Candidates of 
the next state

M = 2 M = 4 M = 8

(c) Ratio of the number of candidates

Candidates that replica i does not 
change the parameter value

All candidates

(b) Each subset has 2 replicas (REMD)

State number

Replica 1
Replica 2
Replica 3
Replica 4

T1 T2
T2 T1
T3 T3
T4 T4

μ1 μ2

Figure 3.5: Schematic figure of the (a) replica-permutation and (b) replica-exchange
candidates

3.5 Conclusions

In this study, the author developed the isothermal–isobaric RPM. The isothermal–

isobaric RPMD performs temperature and pressure permutations among more than

two replicas, which allows efficient sampling from a wide temperature and pressure

range. The author compared the effects of employed MC algorithms in the parameter

permutation trials on the sampling efficiency among the Suwa–Todo, heat bath, and

Metropolis algorithms. The author revealed that the Suwa–Todo algorithm achieves

the most efficient sampling. The author also pointed out that introducing subsets
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effects the transition ratio of the parameters. In the RPM, one subset should include

as many replicas as possible to realize more efficient sampling; however, it is a trade-

off between sampling efficiency and the computational costs of the permutation

trials.
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Development of Replica

Sub-Permutation Method
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dynamics and monte carlo simulations,” Journal of Computational Chemistry 40,
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This chapter is reprinted with permission from “M. Yamauchi and H. Okumura.

Replica sub-permutation method for molecular dynamics and monte carlo simula-

tions, Journal of Computational Chemistry 40, 2694–2711 (2019).” with modifica-

tions. © 2019 John Wiley and Sons.

4.1 Introduction

Molecular dynamics (MD) simulation is a powerful tool for gaining insight into

the molecular properties of biomolecules. To study the properties of biomolecules

through MD simulation, an efficient conformational search is required. Through

recent advances in computational hardware and software, the time scale that we

can observe by an MD simulation has been extended up to several hundred mi-

croseconds [1, 2]. However, obtaining sufficient conformations from the phase space

remains difficult because the conformation of the biomolecules gets trapped in a

local-minimum free-energy state. Generalized-ensemble algorithms [3–10] have been

developed to overcome the sampling problem. Among the generalized-ensemble al-

gorithms, the replica-exchange method (REM) [11, 12] is one of the most widely

used algorithm nowadays.

In the past decade, a number of ideas and algorithms have been applied to the

REM to improve sampling efficiency. For example, velocity rescaling criteria [13]

and temperature spacing [14–16] are examined to optimize acceptance probability.

The exchange-attempt frequency has also been studied, suggesting that frequent

exchange attempts achieve fast convergence of the distribution [17, 18]. The replica-

exchange trial scheme and the method for calculating transition probability also

affect the sampling efficiency. An all-pair exchange scheme [19] using a kinetic MC

algorithm and the variations [20–22] of this scheme have been proposed to enhance

parameter mixing. Instead of the Metropolis algorithm, the Gibbs sampler has

been applied with the modified replica-exchange scheme that is called independence

sampling updates [23].

A replica-permutation method (RPM) [24] has been proposed as an improved al-

ternative to the REM. The RPM performs parameter permutation among more than
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two replicas, whereas the REM performs parameter exchange between two replicas

only. The Suwa–Todo algorithm [25] is used to calculate the transition probability,

as it can minimize the rejection ratio of the MC trials. However, this algorithm is

equivalent to the Metropolis algorithm when there are only two candidates. The

parameter exchange between two replicas is exactly the case, and the REM cannot

make the merit of the Suwa–Todo algorithm. To increase the number of candidates

in the MC trials, parameter permutation between more than two replicas are in-

troduced. Previous studies have compared sampling efficiency for the RPM using

the Metropolis algorithm [26], heat bath algorithm [27] (known as an infinite swap-

ping method [28, 29]), Suwa–Todo algorithm with the detailed balance condition

(DBC) [30], and Suwa–Todo algorithm without the DBC [25]. The Suwa–Todo al-

gorithm without the DBC has been shown to be the most suitable algorithm for

replica permutation in terms of the sampling efficiency [24, 31, 32].

As the author has revealed in Chapter 3, it is desirable to consider all of the

permutations of the parameters associated with the replicas. When the number of

replicas is not particularly large, typically not exceeding ten, the RPM considers all

possible combinations between replicas and parameters. However, as the number

of replicas increases, a considerable computational cost is incurred upon calculating

the transition probability. Therefore, in the majority of cases, it is impractical

to consider all possible combinations. To reduce the number of combinations, the

replicas are divided into several subsets in the RPM. However, employing subsets

is not desirable because it induces a zigzag distribution of the transition ratio, and

the sampling efficiency decreases [32].

In this study, the author propose a replica sub-permutation method (RSPM) for

MD and MC simulations. To reduce the number of combinations between repli-

cas and parameters without the loss of sampling efficiency, the RSPM introduces

a new permutation algorithm referred to as a sub-permutation. In the RSPM, pa-

rameter permutation is performed based on the sub-permutation. The author has

applied the RSPM to an artificially designed protein, chignolin [33], in explicit wa-

ter. The chignolin comprises ten amino acid residues (GYDPETGTWG) and folds

into a β-hairpin structure. Chignolin has been thoroughly studied from a theoret-
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ical standpoint [34–38] and is therefore suitable as a test system. For comparison,

the RPM and REM were also used. The results demonstrate that among the three

methods, the RSPM is the most efficient.

4.2 Theory

4.2.1 Replica Sub-Permutation Method

Let us consider a system of N atoms and M non-interacting copies (or replicas) of

the system. As in the RPM, the RSPM considers performing replica permutation

among all M parameters

Xµ =
[
x
[i(1)]
1 , . . . , x

[i(M)]
M

]
→ Xν =

[
x
[j(1)]
1 , . . . , x

[j(M)]
M

]
, (4.1)

or parameter permutation among all M replicas

Xµ =
[
x
[1]
m(1), . . . , x

[M ]
m(M)

]
→ Xν =

[
x
[1]
n(1), . . . , x

[M ]
n(M)

]
, (4.2)

where x
[i]
m is the state of replicas, i and j are permutation functions from the ther-

modynamics state to the replica index, and m and n are those from the replica index

to the thermodynamics state.

The RSPM introduces a new permutation algorithm to reduce the number of

candidates for the next state Xν . The idea of the RSPM is to use permutations

containing transitions only to neighboring parameter values. Here, let us consider

temperature permutation among four replicas as an example. In the RPM, all

possible candidates between replicas and parameters are considered; thus, there are

24 (= 4!) permutation candidates as shown in Fig. 4.1 (a). On the other hand, in

the RSPM, only permutations satisfying the following transitions are considered: (i)

the replica at temperature T1 transits to T1 or T2; (ii) the replica at temperature T2

transits to T1, T2, or T3; (iii) the replica at temperature T3 transits to T2, T3, or T4;

(iv) the replica at temperature T4 transits to T3 or T4. Permutations that satisfy

the above four conditions from all 24 (= 4!) permutations are selected as candidates
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of the next state Xν . The author term this permutation “sub-permutation”. The

sub-permutation functions S
(M)
i for M elements (replicas) system are defined as

follows:

S
(M)
i ≡

[
σi(1), σi(2), σi(3), · · · , σi(M)

]
=

 1, 2, 3, · · · , M

σi(1), σi(2), σi(3), · · · , σi(M)

 , (4.3)

where

σi(l) =


l − 1, l, or l + 1 when 1 < l < M,

1 or 2 when l = 1,

M − 1 or M when l = M.

(4.4)

The sub-permutation function is similar to permutation function in Eq. (2.38), but

limitation on the values of σi(l) is imposed. A set of sub-permutations is defined as

follows: {
S(M)

}
≡
{
S
(M)
i : for i = 1, · · · , N{S(M)}

}
, (4.5)

where N{S(M)} is the total number of sub-permutations and {S(M)} is an N{S(M)}×M

matrix. Figure 4.1 (b) presents the sub-permutations for four replicas.

The sub-permutations {S(M)} is constructed based on {S(M−1)} and {S(M−2)}

as follows:

{
S(M)

}
=


[
S
(M−1)
i , M

]
: for i = 1, · · · , N{S(M−1)}[

S
(M−2)
i , M, M − 1

]
: for j = 1, · · · , N{S(M−2)}

 (4.6)

where

{
S(1)

}
= [1],

{
S(2)

}
=


[
1, 2

]
[
2, 1

]
 .
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(a) Replica-permutation candidates for four replicas

P1
(4) P2

(4) P3
(4) P4

(4) P5
(4) P6

(4) P7
(4) P8

(4) P22
(4) P23

(4) P24
(4)…

Replica 1 at T1
Replica 2 at T2
Replica 3 at T3
Replica 4 at T4

T1 T1 T1 T1 T1 T1 T2 T2
T2 T2 T3 T3 T4 T4 T1 T1
T3 T4 T2 T4 T2 T3 T3 T4
T4 T3 T4 T2 T3 T2 T4 T3

T4 T4 T4
T2 T3 T3
T3 T1 T2
T1 T2 T1

…

(b) Replica sub-permutation candidates for four replicas

Replica 1 at T1
Replica 2 at T2
Replica 3 at T3
Replica 4 at T4

T1 T1 T1 T1 T1 T1 T2 T2
T2 T2 T3 T3 T4 T4 T1 T1
T3 T4 T2 T4 T2 T3 T3 T4
T4 T3 T4 T2 T3 T2 T4 T3

T4 T4 T4
T2 T3 T3
T3 T1 T2
T1 T2 T1

…

S1
(4) S2

(4) S3
(4) × S4

(4) S5
(4) …× × × × ×

Figure 4.1: Schematic figure of replica-permutation candidates for the (a) replica
permutation and (b) replica sub-permutation of a four-replica system.

In the case of M = 3, for example, the sub-permutations can be constructed as

follows:

{
[S

(M−1)
i , M ]: for i = 1, · · · , N{S(M−1)}

}
=


[
1, 2, 3

]
[
2, 1, 3

]
 ,

{
[S

(M−2)
j , M, M − 1]: for j = 1, · · · , N{S(M−2)}

}
=
{ [

1, 3, 2
] }

.

In a similar manner, the sub-permutations in the case of M = 4 can be obtained as

follows:

{
[S

(M−1)
i , M ]: for i = 1, · · · , N{S(M−1)}

}
=


[
1, 2, 3, 4

]
[
2, 1, 3, 4

]
[
1, 3, 2, 4

]
 ,

{
[S

(M−2)
j , M, M − 1]: for j = 1, · · · , N{S(M−2)}

}
=


[
1, 2, 4, 3

]
[
2, 1, 4, 3

]
 .

The number of sub-permutations N{S(M)} clearly satisfies a following recurrence for-
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mula:

N{S(M)} = N{S(M−1)} +N{S(M−2)} (4.7)

where N{S(1)} = 1 and N{S(2)} = 2. By solving the recurrence formula, the number

of sub-permutations for a system with M elements is obtained:

N{S(M)} =
1√
5


(
1 +

√
5

2

)M+1

−

(
1−

√
5

2

)M+1
 . (4.8)

This is the Fibonacci sequence: N{S(M)} = 1, 2, 3, 5, 8, 13, 21, · · · . The number of

sub-permutations N{S(M)} is smaller than that of all permutations M !, as illustrated

in Fig. 4.2 and Table 4.1. It should be noted that the number of all permutations

for eight and ten replicas in the original RPM (8! = 40, 320 and 10! = 3, 628, 800)

are almost the same with those for 23 and 32 replicas in the RSPM (N{S(23)} =

46, 368 andN{S(32)} = 3, 524, 578), respectively. While the original RPM can perform

parameter permutations among up to eight to ten replicas, the RSPM can perform

parameter permutations among up to 23 to 32 replicas. Thus, the replica sub-

permutation method succeeds in extending the upper limit for the number of replicas

that can be permutated at one permutation trial.

Although, so far, the author has only discussed the sub-permutations contain-

ing transitions from the parameter index l to between l − 1 and l + 1, the sub-

permutations can be extended more generally. For example, it is possible to con-

sider sub-permutations that contain transitions not only to the adjacent parameter

indices, but also to those two or three parameter indices away. Here, ϵ is defined as

a sub-permutation range. The replica at temperature Tm transits to a temperature

between Tm−ϵ and Tm+ϵ when ϵ + 1 ≤ m ≤ M − ϵ. The replica at temperature Tm

transits to a temperature between T1 and Tm+ϵ when m < ϵ+ 1, and between Tm−ϵ

and TM when m > M − ϵ.

Sub-permutation {S(M)} with a range of ϵ can be constructed based on {S(M−1)}.

The first step is to add M at the M -th column of the sub-permutation {S(M−1)}:

{S(M)}M ≡ {[S(M−1)
i , M ]: for i = 1, · · · , N{S(M−1)}}, where subscript i of the braces

indicates that {S(M)}i is a set of sub-permutations that added number M is at
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Figure 4.2: Comparison of the number of permutations

Table 4.1: The number of sub-permutations and permutations.

Replicas Range 1 Range 2 Range 3 All permutations
1 1 1 1 1
2 2 2 2 2
3 3 6 6 6
4 5 14 24 24
5 8 31 78 120
6 13 73 230 720
7 21 172 675 5,040
8 34 400 2,069 40,320
9 55 932 6,404 362,880
10 89 2,177 19,708 3,628,800
11 144 5,081 60,216 39,916,800
12 233 11,854 183,988 479,001,600
13 377 27,662 563,172 6,227,020,800
14 610 64,554 1,725,349 87,178,291,200
15 987 150,639 5,284,109 1,307,674,368,000
16 1,597 351,521 16,177,694 20,922,789,888,000
17 2,584 820,296 49,526,506 355,687,428,096,000
18 4,181 1,914,208 151,635,752 6,402,373,705,728,000
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i-th column. The next step is to perform adjacent transposition to {S(M)}M :

τM−1,M{S(M−1)}M . At this step, N{S(M)}M possible permutations are generated.

Sub-permutations {S(M)}M−1 is defined as a set of permutations such that the num-

ber at theM -th column is not less thanM−ϵ in the possible permutations. Similarly,

the adjacent transposition operation to {S(M)}i (i.e., τi−1,i{S(M)}i) is repeated. Af-

ter every transposition, the permutations in which the number at the M -th column

is less than M − ϵ have to be eliminated. The remaining permutations are defined

as {S(M)}i−1. The adjacent transposition operations are repeated until number M

in the permutations moves to the (M − ϵ)-th column. As a result, the set of all

sub-permutations with the range of ϵ is obtained:

{
S(M)

}
=
{
{S(M)}i: for i = M, M − 1, · · · , M − ϵ

}
. (4.9)

The number of sub-permutations with ranges of 1, 2, and 3 are presented in Fig. 4.1

and Table 4.1 Note that the sub-permutation with a range of ϵ = M gives the

original RPM.

To finalize this section, let us discuss an application involving more than one per-

mutation parameter (i.e. multidimensional parameter space), such as coupled tem-

perature and Hamiltonian replica sub-permutation. The replica sub-permutation

described here limits transitions between similar thermodynamic states, and requires

one-dimensional ordering of the states. In the case of involving more than one per-

mutation parameter, the thermodynamic similarity between states can not be deter-

mined straightforwardly, which makes difficult to order the thermodynamic states in

one dimension; therefore, it is difficult to apply the replica sub-permutation directly.

One strategy to employ more than one permutation parameter, i.e. multidimensional

RSPM, is to perform replica sub-permutation for each parameter individually. That

is, only a sub-permutation of one parameter is performed at one sub-permutation

trial, and a sub-permutation of another parameter is performed at another trial. The

parameter to be permuted is sequentially changed for every sub-permutation trial.

For example, in the temperature and pressure RSPM, temperature and pressure

sub-permutations are performed alternately. The temperature sub-permutation at-
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tempts are performed among the replicas that have the same pressure value, and the

pressure sub-permutation attempts are performed among the replicas that have the

same temperature value. Although each sub-permutation trial is one-dimensional

for temperature or pressure, the random walk in two-dimensional parameter space

are realized during the simulation.

4.3 Computational Details

All simulations in this study used the system comprising one chignolin molecule [33],

1,621 water molecules, and two sodium ions as counter ions. A fully extended struc-

ture was used as the initial structure. The MD simulations were performed using

the Generalized-Ensemble Molecular Biophysics (GEMB) program developed by the

authors. This program has been applied to several proteins [38–41]. A cubic unit

cell with periodic boundary conditions was used. The AMBER parm14SB force

field [42] was used for the chignolin, and the TIP3P rigid-body model [43] was

used for the water molecules. The temperature was controlled by the Nosé-Hoover

thermostat [44–46], and the pressure was controlled by the Andersen barostat [47].

Electrostatic interactions were calculated using the particle mesh Ewald method

(PME) [48, 49]. The cutoff distance was set to 12.0 Å for the van der Waals in-

teractions and the electrostatic interactions in the direct space sum for PME. The

multiple time step method was used [50]. The time step was set to ∆t = 0.5 fs for

bonded interactions of protein atoms, ∆t = 2.0 fs for non-bonded interactions of

protein atoms and for non-bonded interactions between protein atoms and solvent

molecules, and ∆t = 4.0 fs for interactions between solvent molecules. The time step

was able to be set to 4.0 fs because the symplectic rigid-body algorithm [51–53]

was used for the water molecules. The other simulation details described below are

summarized in Table 4.2.
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Table 4.2: Details of simulation set up and parameters.

Method Permutation/exchange algorithm Replicas Temperature (K) Pressure (MPa) Time (ns)

Simulation 1

RSPM
range 1

8 300.0 – 360.0 0.1 45

range 2
range 3

RPM
without subsets

with subsets (4 subsets)
REM neighboring exchange
RSPM range 1

Simulation 2 RPM with subsets (4 subsets) 16 300.0 – 450.0 0.1 2000
REM neightboring exchange
RSPM range 1

300.0 – 450.0 0.1 – 500Simulation 3 RPM with subsets (8 subsets) 160 180
REM neightboring exchange (16 temperatures) (10 pressures)

4.3.1 Simulation 1: Comparison of Sampling Efficiency be-

tween the RSPM, RPM with and without Subsets,

and REM

To compare how the sub-permutation range and subset division affect the sam-

pling efficiency in the parameter space, the author performed three replica sub-

permutation MD (RSPMD) simulation, two replica permutation MD (RPMD) sim-

ulations with and without subsets, and one replica exchange MD (REMD) simu-

lation. There were eight replicas used in the simulations. The temperatures, T1–

T8, were distributed from 300 to 360.0 K: 300.0, 307.9, 316.0, 324.4, 332.9, 341.7,

350.7, and 360.0 K. The pressure was controlled at 0.1 MPa. In the RSPM, three

sub-permutations with ranges of 1, 2, and 3 were used to compare the sampling

efficiency. Each simulation is referred to as RSPM range 1, RSPM range 2, and

RSPM range 3. In the RPMD simulation with subsets, the replicas and tempera-

tures were divided into four subsets. Each subset, therefore, contained four replicas

and temperatures:

X1
µ = [x

[i(1)]
1 , x

[i(2)]
2 , x

[i(3)]
3 , x

[i(4)]
4 ],

X2
µ = [x

[i(5)]
5 , x

[i(6)]
6 , x

[i(7)]
7 , x

[i(8)]
8 ],

X3
µ = [x

[i(1)]
1 , x

[i(2)]
2 , x

[i(7)]
7 , x

[i(8)]
8 ],

X4
µ = [x

[i(3)]
3 , x

[i(4)]
4 , x

[i(5)]
5 , x

[i(6)]
6 ],
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where i is the permutation function from the temperature index to the replica index.

Replica permutations in subsets X1
µ and X2

µ were conducted independently at odd-

numbered permutation trials, while replica permutations in subsets X3
µ and X4

µ were

conducted independently at even-numbered permutation trials. In the REMD simu-

lation, pairs of replicas corresponding to two adjacent temperatures were exchanged

simultaneously. Here, two pairing options, namely, [T1, T2], [T3, T4], [T5, T6], [T7, T8],

and [T2, T3], [T4, T5], [T6, T7], [T1, T8], were used alternately. Replica permutation or

exchange trials were performed every 0.5 ps, and the trajectory data were stored

every 0.5 ps. The simulations were performed for 50 ns per replica, including 5 ns

equilibration per replica.

4.3.2 Simulation 2: Comparison of Sampling Efficiency for

Chignolin Folding

The author then performed RSPMD, RPMD, and REMD simulations to evaluate the

efficiency of protein folding for chignolin. To enhance protein folding and unfolding,

16 replicas and temperatures were employed. Temperatures T1–T16 were distributed

from 300.0 to 450.0 K: 300.0, 308.2, 316.7, 325.3, 334.3, 343.4, 352.8, 362.5 372.4,

382.6, 393.1, 403.9, 414.9, 426.3, 438.0, and 450.0 K. In the RSPM simulation,

the sub-permutation that contained transitions only to adjacent temperatures (i.e.,

range of 1) was employed. In the RPMD simulation, replicas and temperatures

were divided into four subsets. Therefore, each subset contained eight replicas and

temperatures:

X1
µ = [x

[i(1)]
1 , x

[i(2)]
2 , x

[i(3)]
3 , x

[i(4)]
4 , x

[i(5)]
5 , x

[i(6)]
6 , x

[i(7)]
7 , x

[i(8)]
8 ],

X2
µ = [x

[i(9)]
9 , x

[i(10)]
10 , x

[i(11)]
11 , x

[i(12)]
12 , x

[i(13)]
13 , x

[i(14)]
14 , x

[i(15)]
15 , x

[i(16)]
16 ],

X3
µ = [x

[i(5)]
5 , x

[i(6)]
6 , x

[i(7)]
7 , x

[i(8)]
8 , x

[i(9)]
9 , x

[i(10)]
10 , x

[i(11)]
11 , x

[i(12)]
12 ],

X4
µ = [x

[i(1)]
1 , x

[i(2)]
2 , x

[i(3)]
3 , x

[i(4)]
4 , x

[i(13)]
13 , x

[i(14)]
14 , x

[i(15)]
15 , x

[i(16)]
16 ].

Replica permutations in subsets X1
µ and X2

µ were conducted independently at odd-

numbered permutation trials, while replica permutations in subsets X3
µ and X4

µ were
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conducted independently at even-numbered permutation trials. Replica permuta-

tion or exchange trials were performed every 0.5 ps, and the trajectory data were

stored every 0.5 ps. The simulations were performed for 2,100 ns, including 100 ns

equilibration per replica.

4.3.3 Simulation 3: Two-dimensional Replica Sub-Permutation

Simulation

To demonstrate a replica sub-permutation simulation for multiple thermodynamic

parameters, the author performed two-dimensional isothermal–isobaric RSPMD sim-

ulation. For comparison purpose, two-dimensional isothermal–isobaric RPMD [4, 32]

and REMD [54, 55] simulations were also performed. Sixteen temperature and ten

pressure values were employed and the total number of replicas is 160. Tempera-

tures T1–T16 were distributed from 300.0 to 450.0 K: 300.0, 308.2, 316.7, 325.3, 334.3,

343.4, 352.8, 362.5 372.4, 382.6, 393.1, 403.9, 414.9, 426.3, 438.0, and 450.0 K. Note

that the number of temperatures and the temperature values are the same with

Simulation 2. The pressures, P1–P10, were distributed from 0.1 to 500.0 MPa: 0.1,

35.0, 75.0, 120.0, 170.0, 230.0, 290.0, 355.0, 425.0, and 500.0 MPa. Trials of replica

sub-permutations/permutations/exchanges were performed every 0.5 ps. Replica

sub-permutations/permutations/exchanges for temperatures at each pressure Pm1 =

P1, . . . , P10 were performed simultaneously at odd-numbered trials, and those for

pressures at each temperature Tm0 = T1, . . . , T16 were performed simultaneously at

even-numbered trials. Thus, replica sub-permutation/permutation/exchange trials

are performed every 1.0 ps for both temperatures and pressures. In the RPMD

simulation, replicas are further divided into four subsets for the temperature and

pressure permutations. That is, subsets for the temperature permutation at each
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pressure value contained eight replicas:

X1
µ, [Pm1 ]

= [x
[i(1)]
1 , x

[i(2)]
2 , x

[i(3)]
3 , x

[i(4)]
4 , x

[i(5)]
5 , x

[i(6)]
6 , x

[i(7)]
7 , x

[i(8)]
8 ],

X2
µ, [Pm1 ]

= [x
[i(9)]
9 , x

[i(10)]
10 , x

[i(11)]
11 , x

[i(12)]
12 , x

[i(13)]
13 , x

[i(14)]
14 , x

[i(15)]
15 , x

[i(16)]
16 ],

X3
µ, [Pm1 ]

= [x
[i(5)]
5 , x

[i(6)]
6 , x

[i(7)]
7 , x

[i(8)]
8 , x

[i(9)]
9 , x

[i(10)]
10 , x

[i(11)]
11 , x

[i(12)]
12 ],

X4
µ, [Pm1 ]

= [x
[i(1)]
1 , x

[i(2)]
2 , x

[i(3)]
3 , x

[i(4)]
4 , x

[i(13)]
13 , x

[i(14)]
14 , x

[i(15)]
15 , x

[i(16)]
16 ],

and subsets for the pressure permutation at each temperature value contained five

replicas:

X1
µ, [Tm0 ]

= [x
[i(1)]
1 , x

[i(2)]
2 , x

[i(3)]
3 , x

[i(4)]
4 , x

[i(5)]
5 ],

X2
µ, [Tm0 ]

= [x
[i(6)]
6 , x

[i(7)]
7 , x

[i(8)]
8 , x

[i(9)]
9 , x

[i(10)]
10 ],

X3
µ, [Tm0 ]

= [x
[i(1)]
1 , x

[i(2)]
2 , x

[i(8)]
8 , x

[i(9)]
9 , x

[i(10)]
10 ],

X4
µ, [Tm0 ]

= [x
[i(3)]
3 , x

[i(4)]
4 , x

[i(5)]
5 , x

[i(6)]
6 , x

[i(7)]
7 ].

Here, i is permutation function from the temperature or pressure index to the replica

index. Replica permutations in subsets X1
µ and X2

µ were conducted independently in

odd-numbered temperature/pressure permutation trial, while replica permutations

in subsets X3
µ and X4

µ were conducted independently in even-numbered tempera-

ture/pressure permutation trial. The trajectory data were stored every 0.5 ps. The

simulations were performed for 200 ns per replica, including 20 ns equilibration run

per replica.

4.4 Results and Discussion

4.4.1 Simulation 1: Comparison of Sampling Efficiency be-

tween the RSPM, RPM with and without Subsets,

and REM

Figure 4.3 shows the transition ratios of the replicas from one temperature to other

temperatures. Here, the transition ratio at a certain temperature is defined as
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Figure 4.3: Comparison of transition ratios between the RSPMs, RPM with and
without subsets, and REM.

a probability with which the replica at that temperature is transferred to other

temperatures. The RSPM and RPM achieve higher transition ratios than the REM.

The transition ratios of the RSPM and RPM without subsets are nearly identical

to one another and higher than those of the RPM with subsets.

Table 4.3 list the number of tunneling events of the replicas in the temperature

space. A tunneling event is a widely used measure for evaluating sampling efficiency

in the parameter space. Here, a tunneling event is defined as a round trip between

the lowest and highest temperature. Here, errors were estimated by calculating

standard deviation. As expected from the transition ratio, the number of tunneling

events of the RSPM and RPM without subsets is higher than that of the REM

and RPM with subsets. It should be noted that the tunneling events of the RSPM

and RPM without subsets are in good agreement with one another within the error

range. Thus, the RSPM and RPM without subsets achieve the highest number of

tunneling events among the six simulations.

These results indicate that introducing subsets to reduce the number of replica-
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Table 4.3: The number of tunneling events in the temperature space in Simulation
1.

RSPM RPM REM
range 1 range 2 range 3
73 ± 6 70 ± 4 71 ± 3

without subsets with subsets
75 ± 7 56 ± 4 43 ± 4

permutation candidates is unfavorable with respect to sampling efficiency in the

parameter space. Conversely, the sampling efficiency of the RSPM is nearly identical

to the RPM in which all possible combinations between replicas and parameters are

considered. Therefore, the RSPM succeeds in reducing the number of candidates

for the next state without the loss of sampling efficiency, especially the replica sub-

permutation containing transitions only to the adjacent temperatures (i.e., RSPM

range 1).

To provide a rationale for selecting sub-permutation with a range of 1, the au-

thor calculated the transition ratio in more detail. The results are presented in

Fig. 4.4. In the RSPM range 1 and the REM, the temperature of each replica was

transferred only to the adjacent temperatures. The RPM with and without sub-

sets allows replicas to transfer not only to neighboring temperatures, but also to

non-neighboring temperatures. The same holds for RSPM with ranges of 2 and 3.

However, the transition ratios to non-adjacent temperatures are significantly lower

than the transition ratio to the adjacent temperatures. This is because the over-

lap between the probability distributions at two temperatures in the phase space

becomes small as the temperature difference increases. These results indicate that

permutations including transitions to non-adjacent temperatures contribute little to

the sampling efficiency. Therefore, even if transitions to non-adjacent temperatures

are omitted, the sampling efficiency does not decrease; in other words, the RSPM

with a range of 1 is sufficient.
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Figure 4.4: Transition probability from one temperature to other temperatures in
the (a) RSPM range 1, (b) RSPM range 2, (c) RSPM range 3, (d) REM, (e) RPM
without subsets, and (f) RPM with subsets. The vertical axis is the temperature
index before transition, and the horizontal axis is the temperature index after tran-
sition.

4.4.2 Simulation 2: Comparison of Sampling Efficiency for

Chignolin Folding

Transition Ratio and Tunneling Events in the Temperature Space

Figure 4.5 presents the transition ratios from one temperature to other tempera-

tures to evaluate sampling efficiency in the temperature space. The RSPM and

RPM achieve higher transition ratios than the REM. However, uneven transition
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Table 4.4: Comparison of measures of the sampling efficiency in Simulation 2.

Method Tunneling events
Folding-unfolding
events per replica

Folding-unfolding
events at 300 K

Autocorrelation time (ps)

RSPM 412 ± 14 31 ± 5 5079 755.2
RPM 388 ± 17 30 ± 5 4719 926.7
REM 263 ± 13 29 ± 5 2883 1553.9

ratios are seen in the RPM with subsets. Lower transition ratios are observed in

temperature indices 1, 4, 5, 8, 9, 12, 13, and 16 which are temperatures at the subset

terminals. This is because the subsets restricts the temperature transition of the

replicas at the subset terminals. For example, temperature exchanges between tem-

perature indices 4 and 5 and between temperature indices 12 and 13 can occur only

at odd-numbered permutation trials, and a temperature exchange between temper-

ature indices 8 and 9 can occur only at even-numbed permutation trials. Therefore,

transition ratios at the terminal temperatures in the subsets become lower than

those at other temperatures. This unevenness is unfavorable for an efficient simula-

tion. In contrast, the RSPM achieves a smoother transition ratio. The number of

tunneling events in the temperature space is displayed in Table 4.4. Of the three

methods, the RSPM achieves the highest number of tunneling events. Due to a

higher and smoother transition ratio of the replicas in the temperature space, the

RSPM improves tunneling events in comparison with other methods. Thus, the

author conclude that the RSPM is the most efficient of the three methods in the

temperature space.

Validation of Statistical Ensemble and Free-Energy Landscape

Figure 4.6 shows the probability distributions of the potential energy and volume

at each simulated temperature and pressure values to ensure the statistical ensem-

ble. The probability distributions, f(x; Tm0 , Pm1), were obtained by normalizing

potential energy or volume histograms for each simulated temperature and pres-

sure so that the probability distributions satisfy
∫∞
−∞ dEf(E; Tm0 , Pm1) = 1 or∫∞

−∞ dV f(V ; Tm0 , Pm1) = 1. The probability distributions are almost the same

between the RSPMD, RPMD, and REMD simulations both in the potential energy
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Figure 4.5: Comparison of transition ratios between RSPM, RPM, and REM.

and volume spaces. These results support the convergence of the isothermal–isobaric

ensembles; therefore, the RSPM correctly generates the statistical ensembles.

To evaluate the sampling quality of the RSPMD, RPMD, and REMD simula-

tions, the author computed free-energy landscapes (or potential of mean force) from

snapshots at T = 300 K. Free-energy as a function of the reaction coordinates ξ1

and ξ2 is calculated by

F (ξ1, ξ2) = −kBT lnP (ξ1, ξ2), (4.10)

where P (ξ1, ξ2) is the probability distribution. Figures 4.7(a)–(c) present free-energy

landscapes as a function of ξ1 = d(Aps3N−Gly7N) and ξ2 = d(Asp3N− Thr8O),

which are the distance between Asp3O and Gly7N atoms and the distance between

Asp3N and Thr8O atoms, respectively. The two-dimensional free-energy landscapes

have a global minimum state at (ξ1, ξ2) = (6.5 Å, 3.0 Å), which corresponds to

the folded state. There are other minimum states at (ξ1, ξ2) = (4.0 Å, 7.0 Å)

and (ξ1, ξ2) = (8.5 Å, 11.5 Å), which correspond to the misfolded state and the
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Figure 4.6: Potential-energy probability-distributions for (a) RSPMD and REMD,
and (b) RPMD and REMD at all simulated temperatures. Volume-probability dis-
tributions for (c) RSPMD and REMD, and (d) RPMD and REMD at all simulated
temperatures. RSPMD and RPMD data are shown with points, and REMD data
are shown with solid lines.

intermediate state, respectively. Typical conformations in the folded, misfolded,

and intermediate states are illustrated in Figure 4.7(d)–(f). The trends of the 2D

free-energy landscapes between the three simulations are similar, indicating that

each 2D free-energy landscape is well converged. It is also verified that a wider

range of conformations was sampled; thus, each simulation achieved a sufficient

conformational search.

Comparison of the Sampling Efficiency in the Conformational Space

The root mean square deviation (RMSD) was calculated to evaluate the sampling

efficiency in the conformational space. Figure 4.8 presents the time series of the
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Figure 4.7: Two-dimensional free-energy landscapes of the chignolin calculated from
the (a) RSPM, (b) RPM, and (c) REM. Typical structure of the chignolin in the
(d) folded, (e) misfolded, and (f) intermediate states.

RMSD of replica 1. The RMSD is defined as

RMSD = min


√√√√ 1

N

N∑
i=1

(ri − r0
i )

2

 , (4.11)

where N is the number of atoms, ri is the set of coordinates obtained from the

simulation, and r0
i is the set of coordinates of the reference structure. The RMSD

was calculated for heavy atoms (C, N, and Cα) at the backbone with respect to the

reference conformation. The nuclear magnetic resonance (NMR) structure (PDB

ID: 1UAO, Model 1) was used as the reference conformation. Minimization was

performed considering the rigid translation and rotation of ri with respect to the

center of geometry [56]. The RMSD increased and decreased repeatedly; this varia-

tion reflects the folding and unfolding of chignolin.

Here, folding–unfolding events is defined as a measure of sampling efficiency.

One folding-unfolding event is counted when the chignolin molecule completes a cy-
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Figure 4.8: Time series of the RMSD from the NMR structure (PDB ID: 1UAO) of
replica 1 in the (a) RSPM, (b) RPM, and (c) REM.

cle from the folded (unfolded) state to the (unfolded) folded state and back to the

folded (unfolded) state. The structure is considered to be in the folded state when

the RMSD is smaller than 0.6 Å, and in the unfolded state when the RMSD is larger

than 4.0 Å. The number of folding–unfolding events per replica is listed in Table 4.4.

No significant difference was observed among the three methods. However, it is im-

portant to compare the folding-unfolding events at a specific temperature, especially

at a low temperature, because physical quantities are often calculated at that tem-

perature. The author calculated the RMSD and the number of folding–unfolding

events at T = 300 K. The time series of the RMSD at T = 300 K are shown in Fig-
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Figure 4.9: Time series of the RMSD from the NMR structure (PDB ID: 1UAO) at
300 K in the (a) RSPM, (b) RPM, and (c) REM.

ure 4.9. The number of folding–unfolding events at T = 300 K is listed in Table 4.4.

The RSPM achieves the highest number of folding–unfolding events among the three

methods. This is because replica replacement occurs more frequently due to the im-

provement of transition probability, and different conformations are observed one

after another.

To evaluate sampling efficiency in the conformation space more quantitatively,

the author calculated the autocorrelation function of the RMSD and the autocorre-
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lation time at T = 300 K. The autocorrelation function was calculated as follows:

Cx(t) ≡
⟨x(0)x(t)⟩ − ⟨x(0)⟩⟨x(t)⟩

⟨x(0)2⟩ − ⟨x(0)⟩2
, (4.12)

where

⟨x(0)x(t)⟩ = 1

N − t
∆t

N− t
∆t∑

i=1

x(ti)x(ti + t), (4.13)

ti is time at the i-th snapshot, and N is the number of snapshots. The autocorre-

lation time was estimated by

τ =

tmax/∆t∑
i=1

Cx(ti)∆t. (4.14)

In this study, ∆t and tmax were set to 0.5 ps and 50 ns, respectively. The correla-

tion of samples affect the convergence of physical quantities. The autocorrelation

function at a certain temperature is useful for evaluating how fast snapshots be-

come independent at the temperature. In other words, the autocorrelation function

and autocorrelation time at a certain temperature are measures about how many

uncorrelated samples were obtained. Note that the autocorrelation function and

the autocorrelation time calculated here do not mean the real physical quantities of

the chignolin in solution. This is because the structure at T = 300 K is replaced

when replica exchange/permutation trial is accepted. Figure 4.10 presents the au-

tocorrelation functions of the RMSD from the NMR structure at T = 300 K. The

autocorrelation times are listed in Table 4.4. The autocorrelation functions converge

to approximately zero in all simulations. From the inset in Figure 4.10, it can be seen

that the decay of the autocorrelation functions of the RSPM and RPM are faster

than that of the REM. It is also observed that the autocorrelation function in the

RSPM decays slightly faster than that in the RPM. The autocorrelation time of the

RSPM is the smallest among the three methods indicating that a larger number of

independent samples can be obtained using the RSPM. Therefore, the convergence

of other physical quantities is expected to be improved as well. In summary, the
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Figure 4.10: Autocorrelation functions of the RMSD from the NMR structure (PDB
ID: 1UAO) at 300 K. The inset shows the same autocorrelation functions with a
different time scale.

RSPM is the most efficient among the three methods not only in the temperature

space but also in the conformational space.

Convergence of the Population of the Folded State

To confirm the convergence of physical quantities, the author calculated the cumu-

lative average for a fraction of the folded state, which is defined as follows:

fFold(t) =
1

t

∫ t

0

dt′ χ(t′) (4.15)

where χ(t) is an indicator function that takes 1 when the structure at time t is in

the folded state or zero otherwise. Here, a folded chignolin is defined as a structure

that has three hydrogen bonds between the backbone N and O: Asp3O–Gly7N,

Asp3O–Thr8N, and Asp3N–Thr8O [33]. These hydrogen bonds were determined

using the Define Secondary Structure of Proteins (DSSP) algorithm [57]. Figure 4.11
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Figure 4.11: Convergence of the probability of the folded state. (a) Cumulative
average of folded state ffold(t) until time t. (b) Absolute value of the difference in
ffold(t) between time t and at the final time t = 2,100 ns.

(a) presents the cumulative average for the fraction of the folded state at T =

300 K, while Figure 4.11 (b) presents the absolute value of the difference between

the cumulative average at time t and t = 2,100 ns. Note that this average was taken

after the equilibration period of 100 ns. The fraction of the folded state are well

converged, although it differs slightly, and the RSPM achieves faster convergence

than the RPM and REM.
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4.4.3 Simulation 3: Two-dimensional Replica Sub-Permutation

Simulation

Let us discuss the sampling efficiency for the two-dimensional isothermal–isobaric

RSPMD, RPMD, and REMD simulations using 16 temperature and ten pressure

values. Figure 4.12 presents the transition ratios from one parameter value to other

parameter values. Among the three simulations, the RSPM achieves higher transi-

tion ratios in almost all parameter values. As discussed in the previous subsection,

the transition ratios of the parameter decrease in the RPMD with subsets because

the transition ratios of the parameter values at the subset terminals tend to be lower

than those at other parameters values. The same holds for the two-dimensional

isothermal–isobaric RPMD using subsets. In the case of 16 temperatures, the sub-

set boundaries exist between temperature indices 4 and 5, 8 and 9, and 12 and

13. In the case of ten pressures, the boundaries are between pressure indices 2 and

3, 5 and 6, and 7 and 8. The transition ratio decreases more at the intersection

points of the temperature boundaries and the pressure boundaries. Generally, in

the the multidimensional parameter space, the number of intersection points of the

subset terminals increases with increasing the dimensions of the parameter space.

Therefore, transition ratios of the RPMD with subsets tend to decrease in higher-

dimensional parameter spaces.

In order to examine the details, the author calculated transition ratios only

at the temperature or pressure permutation trials. Figure 4.13 (a) presents the

transition ratios for the temperature-permutation trials. As expected, smoother

transition ratio is observed in the RSPMD. In the RPMD, the transition ratios

of the temperature values at the subset terminals such as temperature indices 1,

4, 5, 8, 9, 12, 13, and 16 take lower values than those in the RSPMD while the

peak values of the transition ratio in the RPMD are higher than the RSPMD.

The transition ratios for the temperature-permutation trials increase as pressure

increases in the three methods. In addition, at the peaks of the transition ratios

in the RPMD, the differences between the RSPMD and the RPMD become large

with the pressure increases, especially at the high temperature values. Figure 4.13
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Figure 4.12: Transition ratios from one parameter to other parameters for the
isothermal–isobaric (a) RSPMD, (b) RPMD, and (c) REM using 16 temperatures
and ten pressures. (d) The transition ratios for the parameter permutation sliced at
each pressure. Red, green, and blue lines show the data for RSPMD, RPMD, and
REMD, respectively.

(b) presents the transition ratios for the pressure-permutation trials. The RSPMD

realizes the highest transition ratio for the pressure permutation at all temperature

and pressure values. In the RPMD, small peaks are observed at pressure indices 4

and 9 because pressure values except for indices 4 and 9 are at the subset terminals.

The transition ratios for the pressure-permutation trials decrease as temperature

increase, especially at the low pressure values.

The temperature and pressure dependence of the transition ratios is understood
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Figure 4.13: Transition ratios from one parameter to other parameters (a) for tem-
perature permutation trials and (b) for pressure permutation trials. Red, green, and
blue lines show the data for RSPMD, RPMD, and REMD, respectively.

from the overlap of probability distributions in the potential energy and volume

spaces. Figure 4.14 (a) and 4.15 (a) present the probability distributions of the

potential energy and volume, respectively at each simulated pressure value in the

RSPMD and RPMD simulations. The RSPMD and RPMD have almost the same

potential energy and volume distributions. The pressure dependence of the transi-

tion ratios for temperature-permutation trial can be explained from these distribu-

tions. The peak positions of the potential energy and volume at each temperature

shift to lower values with increasing pressure. In particular, larger peak shifts are

found at higher temperature values. With the peak shifts, overlap between distri-

butions become large both in the potential energy and volume distributions. To
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estimate the overlap between two distributions f1 and f2, the author calculated

following quantity:

overlap[f1, f2] =

∫ ∞

−∞
dE min[f1(E), f2(E)] (4.16)

for the potential energy distributions and

overlap[f1, f2] =

∫ ∞

−∞
dV min[f1(V ), f2(V )] (4.17)

for the volume distributions. overlap[f1, f2] ≃ 1 if distributions f1 and f2 are simi-

lar to each other, and overlap[f1, f2] = 0 if there is no overlap between f1 and f2.

The overlaps between two distributions at adjacent temperatures are shown in Fig-

ures 4.14 (b) and 4.15 (b), and those with second adjacent temperature are shown

in Figures 4.14 (c) and 4.15 (c). The overlaps with the adjacent and the second

adjacent temperatures become large as pressure increases, which causes higher tran-

sition ratios for temperature-permutation trial at high pressure values. The increase

in the overlap with the second adjacent temperatures causes the increase in the

transition probabilities for the permutation candidates that contain the parameter

transitions to the second adjacent temperatures. The RPMD includes such permu-

tation candidates, whereas the RSPMD does not include. As a result, increase in

the transition ratios for the temperature-permutation trials is larger in the RPMD

than in the RSPMD. This tendency stands out more at the high temperature than

low temperature values corresponding to the peak shifts and overlaps in the energy

and volume distributions. Then, the author discuss the temperature dependence

of the transition ratios for pressure-permutation trial. Figure 4.16 (a) shows the

probability distributions of the volume at each simulated temperature value, and

Figure 4.16 (b) and (c) show the overlaps between two distributions at adjacent and

second adjacent pressures, respectively. Note that the probability distributions of

the volume are enough to discuss the transition ratio because the potential energy

term is canceled out when the transition probability for the pressure permutation

is calculated [32]. As temperature increases, the peak positions of the volume dis-

tributions at each pressure shift to larger volume values, and the overlap between
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Figure 4.14: (a) Probability distributions of the potential energy at each pressure
value. The RSPMD data are shown with colored points and the RPMD data
are shown with gray solid lines. The overlap of the potential-energy probability-
distributions (b) between adjacent temperatures and (c) between second adjacent
temperatures calculated from the RPMD simulation. It should be noted that the
overlaps of the probability distributions calculated from the RSPMD and REMD
simulations are almost the same with the RPMD.

distributions become small, especially at the low pressure values. As a result, the

transition ratios decrease at higher temperature values.

Table 4.5 lists the numbers of tunneling events of the replicas. Here, a tunneling

event in the two-dimensional parameter space is calculated as a round trip between

the lowest temperature and pressure values, (T1, P1), and the highest temperature

and pressure values, (T16, P10). In the parameter space, the number of tunneling

events in the RSPMD is the largest among the three methods as expected from the

transition ratios. The numbers of tunneling events in the temperature space for the

RSPMD and RPMD are the same, and higher than that of the REMD. One might

think that this result seems to be contradictory from the conclusion of Simulation

2 in the previous subsection because the RSPMD simulation in Simulation 2 shows
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Figure 4.15: (a) Probability distributions of the volume at each pressure value.
The RSPMD data are shown with colored points and RPMD data are shown with
gray solid lines. The overlaps of the volume-probability distributions (b) between
adjacent temperatures and (c) between second adjacent temperatures calculated
from the RPMD simulation. It should be noted that the overlaps of the probability
distributions calculated from the RSPMD and REMD simulations are almost the
same with the RPMD.

the improvement of the tunneling events in the temperature space. These results are

explained as follows: The transition ratios for the temperature permutation at the

pressure value P1 are almost identical to Simulation 2 when compared Figure 4.5 to

the bottom panel of Figure 4.13 (a). Therefore, it can be reasonable to think that

the RSPMD realizes more efficient temperature transition than the RPMD at lower

pressure values. However, the peak values of the transition ratios in the RPMD

increase, and the difference from the RSPMD become large as pressure increases,

especially at high temperature values as discussed. The RPMD possibly achieves

the efficient temperature transition in comparison with RSPMD at high pressure

values. As a result, the average numbers of tunneling events for the RSPMD and

RPMD simulations are the same in the temperature space. In the pressure space, on
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Figure 4.16: (a) Probability distributions of the volume at each temperature value.
RSPMD data are shown with colored points and RPMD data are shown with gray
solid lines. The overlaps of the volume-probability distributions (b) between adja-
cent pressures and (c) between second adjacent pressures calculated from RPMD
simulation. It should be noted that the overlaps of the probability distributions
calculated from the RSPMD and REMD simulations are almost the same with the
RPMD.

Table 4.5: The number of tunneling events in the parameter space for two-
dimensional RSPMD, RSPMD and REMD simulations in Simulation 3.

Method Whole parameter space Temperature space Pressure space
RSPMD 7 ± 2 28 ± 4 27 ± 4
RPMD 5 ± 1 28 ± 4 10 ± 2
REMD 3 ± 1 18 ± 3 7 ± 2

the other hand, the number tunneling events in the RSPMD is the highest among

the three methods as expected from the transition ratios.
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4.5 Conclusions

In this study, the author proposed a replica sub-permutation method (RSPM) for

MD and MC simulations. This method introduces a new permutation algorithm

called sub-permutation to reduce the number of candidates in parameter permuta-

tion. The sub-permutation is a set of permutations that include transitions only to

neighboring parameters. One might think that the RSPM is similar to the REM

using neighboring exchange scheme. However, it should be emphasized that the

RSPM employs the Suwa–Todo algorithm, while the REM employs the Metropolis

algorithm. RSPM can make the most of the merit of the Suwa–Todo algorithm

because the sub-permutation gives the more than two candidates for the next state.

The author examined sampling efficiency for the RSPM, RPM with and without

subsets, and REM. The results indicate that among the methods, the RSPM and

RPM without subsets are the most efficient in the temperature space. This result

indicates that parameter transition by replica sub-permutation is nearly identical to

replica permutation that uses all possible combinations of replicas and parameters.

Thus, the RSPM succeeds in reducing the number of candidates for the next state

without the loss of sampling efficiency.

The author performed folding simulations of chignolin in explicit water to com-

pare the efficiency of the conformational search for the RSPM, RPM, and REM. The

RSPM achieves the most efficient simulation in the temperature space. In addition,

the author computed the autocorrelation function and autocorrelation time of the

RMSD from the NMR structure at T = 300 K. The RSPM achieves the fastest

decay of the autocorrelation function and, as a result, the shortest autocorrelation

time. These results demonstrate that a larger number of uncorrelated samples can

be obtained from the RSPM simulation, which improves the convergence of phys-

ical quantities. Therefore, the RSPM is the most efficient method not only in the

parameter space but also in the conformational space.
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[21] Manuel Athènes and Florent Calvo. Multiple-replica exchange with information

retrieval. ChemPhysChem, 9(16):2332–2339, 2008.

[22] Hiroko X Kondo and Makoto Taiji. Enhanced exchange algorithm without de-

tailed balance condition for replica exchange method. The Journal of Chemical

Physics, 138(24):244113, 2013.

[23] John D Chodera and Michael R Shirts. Replica exchange and expanded ensem-

ble simulations as gibbs sampling: Simple improvements for enhanced mixing.

The Journal of Chemical Physics, 135(19):194110, 2011.

[24] Satoru G Itoh and Hisashi Okumura. Replica-permutation method with the

suwa–todo algorithm beyond the replica-exchange method. Journal of Chemical

Theory and Computation, 9(1):570–581, 2012.

[25] Hidemaro Suwa and Synge Todo. Markov chain monte carlo method without

detailed balance. Physical Review Letters, 105(12):120603, 2010.

[26] Nicholas Metropolis, Arianna W Rosenbluth, Marshall N Rosenbluth, Au-

gusta H Teller, and Edward Teller. Equation of state calculations by fast

computing machines. The Journal of Chemical Physics, 21(6):1087–1092, 1953.

[27] Stuart Geman and Donald Geman. Stochastic relaxation, gibbs distributions,

and the bayesian restoration of images. IEEE Transactions on Pattern Analysis

and Machine Intelligence, (6):721–741, 1984.

93



[28] Nuria Plattner, J. D. Doll, Paul Dupuis, Hui Wang, Yufei Liu, and J. E. Gu-

bernatis. An infinite swapping approach to the rare-event sampling problem.

The Journal of Chemical Physics, 135(13):134111, 2011.

[29] Nuria Plattner, J. D. Doll, and Markus Meuwly. Overcoming the rare event sam-

pling problem in biological systems with infinite swapping. Journal of Chemical

Theory and Computation, 9(9):4215–4224, 2013.

[30] Hidemaro Suwa. Geometric allocation approach in markov chain monte carlo.

In Geometrically Constructed Markov Chain Monte Carlo Study of Quantum

Spin-phonon Complex Systems, pages 11–42. Springer, 2014.

[31] Hiroaki Nishizawa and Hisashi Okumura. Comparison of replica-permutation

molecular dynamics simulations with and without detailed balance condition.

Journal of the Physical Society of Japan, 84(7):074801, 2015.

[32] Masataka Yamauchi and Hisashi Okumura. Development of isothermal-isobaric

replica-permutation method for molecular dynamics and monte carlo simula-

tions and its application to reveal temperature and pressure dependence of

folded, misfolded, and unfolded states of chignolin. The Journal of Chemical

Physics, 147(18):184107, 2017.

[33] Shinya Honda, Kazuhiko Yamasaki, Yoshito Sawada, and Hisayuki Morii. 10

residue folded peptide designed by segment statistics. Structure, 12(8):1507–

1518, 2004.

[34] David van der Spoel and MMarvin Seibert. Protein folding kinetics and thermo-

dynamics from atomistic simulations. Physical Review Letters, 96(23):238102,

2006.

[35] Daisuke Satoh, Kentaro Shimizu, Shugo Nakamura, and Tohru Terada. Folding

free-energy landscape of a 10-residue mini-protein, chignolin. FEBS letters,

580(14):3422–3426, 2006.

94



[36] Atsushi Suenaga, Tetsu Narumi, Noriyuki Futatsugi, Ryoko Yanai, Yousuke

Ohno, Noriaki Okimoto, and Makoto Taiji. Folding dynamics of 10-residue β-

hairpin peptide chignolin. Chemistry - An Asian Journal, 2(5):591–598, 2007.

[37] Ryuhei Harada and Akio Kitao. Exploring the folding free energy landscape

of a β-hairpin miniprotein, chignolin, using multiscale free energy landscape

calculation method. The Journal of Physical Chemistry B, 115(27):8806–8812,

2011.

[38] Hisashi Okumura. Temperature and pressure denaturation of chignolin: Fold-

ing and unfolding simulation by multibaric-multithermal molecular dynamics

method. Proteins, 80(10):2397–2416, 2012.

[39] Hisashi Okumura and Satoru G Itoh. Amyloid fibril disruption by ultrasonic

cavitation: nonequilibrium molecular dynamics simulations. Journal of the

American Chemical Society, 136(30):10549–10552, 2014.

[40] Hisashi Okumura and Satoru G Itoh. Structural and fluctuational difference

between two ends of aβ amyloid fibril: Md simulations predict only one end

has open conformations. Scientific Reports, 6:38422, 2016.

[41] Rupali Gupta, Shigeru Saito, Yoshiharu Mori, Satoru G Itoh, Hisashi Oku-

mura, and Makoto Tominaga. Structural basis of trpa1 inhibition by hc-030031

utilizing species-specific differences. Scientific Reports, 6:37460, 2016.

[42] James A Maier, Carmenza Martinez, Koushik Kasavajhala, Lauren Wickstrom,

Kevin E Hauser, and Carlos Simmerling. ff14sb: improving the accuracy of

protein side chain and backbone parameters from ff99sb. Journal of Chemical

Theory and Computation, 11(8):3696–3713, 2015.

[43] William L Jorgensen, Jayaraman Chandrasekhar, Jeffry D Madura, Roger W

Impey, and Michael L Klein. Comparison of simple potential functions for

simulating liquid water. The Journal of Chemical Physics, 79(2):926–935, 1983.
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Chapter 5

Unusual Behavior of Chignolin

Under High-Pressure Conditions

M. Yamauchi and H. Okumura. “Development of isothermal–isobaric replica-permutation

method for molecular dynamics and Monte Carlo simulations and its application

to reveal temperature and pressure dependence of folded, misfolded, and unfolded

states of chignolin,” The Journal of Chemical Physics 147, 184107 (14 pages) (2017).
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namics and Monte Carlo simulations and its application to reveal temperature and

pressure dependence of folded, misfolded, and unfolded states of chignolin, The

Journal of Chemical Physics 147, 184107 (14 pages) (2017).” with modifications.

© 2017 AIP Publishing.

5.1 Introduction

Several studies have revealed that pressure induces denaturation of proteins [1].

According to Le Châtelie’s principle, smaller partial volume states of a substance

realize under high-pressure conditions. This means that the pressure-induced confor-

mational changes of the biomolecules are explained by changes in the partial molar

volume. The changes in the partial molar volume of the biomolecules is thought to

be composed of three contributions as follows:

∆V = ∆Vvdw +∆Vcavity +∆Vhydration, (5.1)

where Vvdw is the volume of van der Waals, Vcavity is the volume of cavity (solvent-

inaccessible region) inside the biomolecules, and Vhydration is the volume resulting

from solute–solvent interactions [2]. Although it is established that ∆Vvdw ≃ 0,

it has been under discussion which term (i.e., ∆Vcavity or ∆Vhydration) in Eq. (5.1)

contributes to the changes in the partial molar volume.

The pressure-induced denaturation of the proteins typically explained by the

smaller partial molar volume of the denatured state of proteins due to the lack of

cavities [3]. On the other hand, high pressure studies using model peptides were

conducted to investigate the molecular mechanisms of pressure-induced conforma-

tional changes when the biomolecules do not have cavities in the native state [4–7].

The model peptides that form a single secondary structure, such as α-helix and

β-hairpin, are useful to understand how ∆Vhydration term contributes to the stability

of conformation. This is because they do not have cavity in the native state, and

can be regarded as ∆Vcavity ≃ 0. Interestingly, α-helical peptides such as AK16 pep-
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tide and C-peptide analogs are stabilized under high-pressure conditions, whereas

β-hairpin mini protein chignolin [8] is denatured under high-pressure conditions.

These results imply that only the cavity term in the partial molar volume does not

always characterize the changes in the partial volume. Further studies are necessary

to understand the pressure-induced conformational changes of the biomolecules.

In this study, the author focuses on the high pressure effects on the β-hairpin mini

protein, chignolin. The chignolin has ten amino-acid residues (GYDPETGTWG)

and unique folded and misfolded structures. Both folded and misfolded structures

have similar β-hairpin structures. The chignolin is regarded as a suitable model

protein because of its size and unique secondary structures. The chignolin has been

studied in detail both experimentally and computationally. The temperature depen-

dence of the folded conformation was measured experimentally by Honda et al. [8],

and its pressure dependence was measured by Imamura and Kato [6]. A computa-

tional study on the temperature and pressure dependence of chignolin was performed

by Okumura [9]. However, these studies only focused on the folded and unfolded

states. The author performed isothermal–isobaric replica-permutation simulations

of a β-hairpin mini protein, chignolin, in explicit water solvent to reveals tempera-

ture and pressure dependence of folded, misfolded, and unfolded states of chignolin.

From the simulation, the author obtains a new insight into the temperature and

pressure dependence of the misfolded chignolin. This is the first theoretical work to

investigate the misfolded state under high pressure conditions.

5.2 Computational Details

This study focus on the stability of artificially designed protein, chignolin, under

various temperature and pressure conditions. The amino acid sequence of the chig-

nolin is GYDPETGTWG. The author employed the isothermal–isobaric replica-

permutation molecular dynamics method [10] to achieve the efficient conformational

sampling from wider range of temperature and pressure values. A fully extended

structure was used as the initial structure. The system consists of one chignolin

molecule [8], 1,621 water molecules, and two sodium ions as counter ions. The MD
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simulations were performed using the Generalized-Ensemble Molecular Biophysics

(GEMB) program. A cubic unit cell with periodic boundary conditions was used.

The AMBER parm14SB force field [11] was used for the chignolin, and the TIP3P

rigid-body model [12] was used for the water molecules. The temperature was con-

trolled by the Nosé-Hoover thermostat [13–15], and the pressure was controlled by

the Andersen barostat [16]. Electrostatic interactions were calculated using the par-

ticle mesh Ewald method (PME) [17, 18]. The cutoff distance was set to 12.0 Å

for the van der Waals interactions and the electrostatic interactions in the direct

space sum for PME. The multiple time step method was used [19]. The time step

was set to ∆t = 0.5 fs for bonded interactions of protein atoms, ∆t = 2.0 fs for

non-bonded interactions of protein atoms and for non-bonded interactions between

protein atoms and solvent molecules, and ∆t = 4.0 fs for interactions between sol-

vent molecules. The time step was able to be set to 4.0 fs because the symplectic

rigid-body algorithm [20–22] was used for the water molecules.

Sixteen temperature and ten pressure values were employed in this simulation.

The total number of replicas is 160. Temperatures T1–T16 were distributed from

300.0 to 450.0 K: 300.0, 308.2, 316.7, 325.3, 334.3, 343.4, 352.8, 362.5 372.4, 382.6,

393.1, 403.9, 414.9, 426.3, 438.0, and 450.0 K. Replica permutation trials for tem-

peratures at each pressure Pm1 = P1, . . . , P10 were performed simultaneously at

odd-numbered trials, and those for pressures at each temperature Tm0 = T1, . . . , T16

were performed simultaneously at even-numbered trials. Thus, replica permutation

trials are performed every 1.0 ps for both temperatures and pressures. In the RPMD

simulation, replicas are further divided into four subsets for the temperature and

pressure permutations. That is, subsets for the temperature permutation at each

pressure value contained eight replicas:
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and subsets for the pressure permutation at each temperature value contained five

replicas:

X1
µ, [Tm0 ]

= [x
[i(1)]
1 , x

[i(2)]
2 , x

[i(3)]
3 , x

[i(4)]
4 , x
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5 ],
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6 , x
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Here, i is permutation function from the temperature or pressure index to the replica

index. Replica permutations in subsets X1
µ and X2

µ were conducted independently in

odd-numbered temperature/pressure permutation trial, while replica permutations

in subsets X3
µ and X4

µ were conducted independently in even-numbered tempera-

ture/pressure permutation trial. The trajectory data were stored every 10 ps. The

simulations were performed for 200 ns per replica, including 20 ns equilibration run

per replica; thus, the total simulation time was 32 µs.

In the analysis, the multistate Bennett acceptance ration method [23] was used

to calculate statistical ensemble averages of physical quantities.

5.3 Results and Discussion

5.3.1 Validation of Sampling Quality

Figure 5.1 presents the time series of the temperature and pressure indices of replicas

1 and 40, 80, and 120. To confirm sampling efficiency in the parameter spaces, the

author counted the tunneling events in the temperature and pressure spaces. Here,

one tunneling event was defined as a round trip between the lowest and highest

values in the temperature or pressure space. The average number of tunneling

events per one replica was 28.4 ± 0.3 in the temperature space and 10.4 ± 0.1 in the

pressure space. Figure 5.1 presents the time series of a root mean square deviation

(RMSD) to confirm the sampling quality in the conformational space. The RMSD

was calculated for the backbone N, Cα, and C atoms with respect to the reference

conformation. The nuclear magnetic resonance (NMR) structure (PDB ID: 1UAO,
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Model 1) was used as the reference conformation. The RMSD is defined as

RMSD = min


√√√√ 1

N

N∑
i=1

(ri − r0
i )

2

 , (5.2)

where N is the number of backbone N, Cα, and C atoms; r0
i is the set of the coor-

dinates of the reference conformation; and ri is the set of the coordinates obtained

by the isothermal–isobaric RPMD simulation. The minimization is performed con-

sidering the rigid translations and rigid rotation of ri with respect to the center

of geometry [24]. The RMSD becomes larger and smaller repeatedly. This means

that conformation of the chignolin changes to the native (RMSD ≈ 0.4 Å – 1.0 Å),

metastable (RMSD ≈ 1.2 Å – 1.8 Å), and unfolded structures repeatedly. To count

the folding-unfolding events, the author regarded the folded state as that with as

the RMSD less than 0.6 Å and the unfolded state as that with the RMSD more

than 4.0 Å. One folding-unfolding event is defined as when the chignolin molecule

completes a cycle from the folded (unfolded) state to the unfolded (folded) state

and back to the folded (unfolded) state. The average number of folding-unfolding

events per one replica was 2.3 ± 0.1. These results show that this simulation realize

efficient conformation sampling under various temperature and pressure conditions.

5.3.2 Potential of Mean Force as a Function of RMSD

Figure 5.2 shows the potential of mean force (PMF) or free energy landscape as a

function of the RMSD. When T = 300 K and P = 0.1 MPa, there are two minimum

states: the native state at RMSD = 0.6 Å that corresponds to the folded state [8] and

the metastable state at RMSD = 1.3 Å that is known as the misfolded state [25, 26].

As the temperature or pressure increases, the unfolded state at RMSD = 2.0 – 4.0 Å

become more stable. This means that chignolin is denatured by both temperature

and pressure. Interestingly, as pressure increases, the misfolded state gradually

becomes stable as compared to the folded state. This is the first time that the

pressure dependence of the misfolded state has been reported.

To discuss the temperature and pressure dependence of chignolin in detail, the
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(a) Replica 1 (b) Replica 40

(c) Replica 80 (b) Replica 120

Figure 5.1: Time series of the RMSD, temperature index, and pressure index of (a)
replica 1 (b) replica 40, (c) replica 80, and (d) replica 120.

author give an account of the definitions and characteristics of the folded and mis-

folded states. According to Honda et al. [8], the folded structure has β-hairpin

conformation and forms three dominant hydrogen bonds between the backbone N

and O: Asp3O–Gly7N, Asp3O–Thr8N, and Asp3N–Thr8O. The misfolded structure

is another β-hairpin conformation. Previous computational studies revealed that

the hydrogen bonds Asp3O–Gly7N and Asp3N–Gly7O are typically formed in the

misfolded structure. Hence, the folded and misfolded structure can be distinguished

by the hydrogen bonds in the main chain. One can use Define Secondary Structure

of Proteins (DSSP) algorithm [27] to determine the states. However, the DSSP is

too severe to recognize the folded and misfolded structures because some structures

that are quite similar to an ideal folded or misfolded structure are not recognized

as the folded or misfolded state. Even some models of the native NMR structure

(PDB ID 1UAO) are not recognized as folded.
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(a) P = 0.1 MPa

(b) T = 300 K

Folded Misfolded Unfolded

Folded Misfolded Unfolded

Figure 5.2: Potential of mean force as a function of RMSD (a) P = 0.1 MPa and
(b) T = 300 K.

To avoid this problem, the author constructed RMSD-based definition to de-

termine the folded, misfolded and unfolded states. The procedure for redefining

folded, misfolded, and unfolded states is as follows: First, the author determined

whether the structures obtained from the simulation were consistent with folded,

misfolded, or unfolded state based on the definition based on the hydrogen bonds.

Here, the hydrogen bonds were determined by the DSSP. At this time, the misfolded

structure that had the highest hydrogen bond energy was chosen as the representa-

tive structure of the misfolded state. Next, the author calculated the RMSD with

respect to the NMR structure (RMSD1) and the misfolded structure that are cho-
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(a) (b) 

Folded

Misfolded

Figure 5.3: (a) Potential of mean force as a function of RMSD 1 and RMSD2 at
T = 300 K and P = 0.1 MPa. (b) Definition of the folded and misfolded states.
The minimum value is set to zero.

sen earlier (RMSD2). Then, the author calculated the two-dimensional PMF as a

function of RMSD1 and RMSD2. Here,the PMF was calculated at T = 300 K and

P = 0.1 MPa and the minimum value was set to zero. The result is shown in 5.3

(a). There are two minimum states around (RMSD1, RMSD2) = (0.6, 1.2) and

(1.3, 0.6). To divide two minima clearly, the author also calculated PMF using only

the folded or misfolded structures that satisfied the definition based on hydrogen

bonds. There are two clusters that correspond to the folded and misfolded structures

in Fig. 5.3 (b). Both the folded state minimum and the misfolded state minimum

shown in Fig. 5.3 (b) were set to zero independently. The region where the PMF

was less than 3 kcal/mol was considered as a folded or misfolded state. That is,

when the RMSD1 and RMSD2 of the chignolin were in these regions, the structure

was regarded as the corresponding state (i.e., folded or misfolded state).

The typical conformations of the folded and misfolded states obtained from our

simulation are shown in Fig. 5.4. The folded and misfolded structures have a similar

β-hairpin structure. However, some differences exist. One of the two β-strands in

the β-hairpin structure is shifted along the other β-strand by one residue. Another

difference is that Tyr2 and Trp9 in the folded state form a hydrophobic core, whereas

the side chains of these residues are on opposite sides in the misfolded state.
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(a) Folded state

Back view

(b) Misfolded state

Side view

Hydrophobic
core

Front view

Back view

Opposite 
sides

Side view Front view

Figure 5.4: Typical conformations in the (a) folded state and (b) misfolded state.

5.3.3 Thermodynamics Quantities between Folded and Un-

folded States

The RMSD-based definition was used to calculate the fractions of the folded, mis-

folded, and unfolded states. Figure 5.5(a) shows temperature dependence of the

fraction. As the temperature increases, the fractions of the folded and misfolded

states decrease. This indicates that folded or misfolded chignolin is denatured by

temperature. Figure 5.5(b) shows their pressure dependence of the fraction. As the

pressure increases, the fraction of the folded state decreases, whereas that of the

misfolded state increases at T = 300 K. This result implies that folded chignolin is

denatured by pressure, while misfolded chignolin becomes more stable by pressure.
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(a) 

(b) 

Figure 5.5: (a) Temperature and (b) pressure dependence of the fractions of the
folded, misfolded, and unfolded states.

The folded and misfolded chignolin exhibit different behavior against pressure in

spite of their similar structures.

Thermodynamics quantities are obtained from the fractions. The difference in

the Gibbs free energy ∆G between the unfolded state and the folded state is calcu-

lated as follows:

∆Gunfold = Gunfold −Gfold = RT log

(
ffold
funfold

)
, (5.3)

where R is the gas constant, R = 8.3145 J/(mol K). The Gibbs free energy difference
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∆Gunfold was fitted using the equation proposed by Hawley [28]:

∆G(T, P ) =∆G0 −∆S0(T − T0)−∆CP

[
T

{
ln

(
T

T0

)
− 1

}
+ T0

]
+∆V0(P − P0) +

∆β

2
(P − P0)

2 +∆α(P − P0)(T − T0),

(5.4)

where T0 and P0 are the reference temperature and pressure, respectively, and ∆G0,

∆S0, and ∆V0 are the differences in the Gibbs free energy, entropy, and partial

molar volume, respectively at T0 and P0. Here, ∆G0 was obtained by the RPMD

simulation at T0 and P0. ∆CP is the difference in the heat capacity. Further, ∆α

and ∆β are the differences in the thermal expansivity factor and compressibility

factor, respectively; these factors are related to, but are not the same as, the thermal

expansion coefficient and compressibility in thermodynamics, respectively. Based on

Eq. (5.4), temperature and pressure dependence of ∆G were fitted by the following

equations:

∆G(T ) =∆G0 −∆S0(T − T0)−∆CP

[
T

{
ln

(
T

T0

)
− 1

}
+ T0

]
, (5.5)

∆G(P ) =∆G0 +∆V0(P − P0) +
∆β

2
(P − P0)

2. (5.6)

The denaturation temperature Td and denaturation pressure Pd were defined as the

values where ∆Gunfold = 0.

Figure 5.6 shows the temperature and pressure dependence of ∆Gunfold. Ther-

modynamic parameters obtained from fitting of ∆Gunfold(T ) and ∆Gunfold(P ) are

listed in Tables 5.1 and 5.2. Thermodynamic parameters obtained from fitting of

∆Gunfold(T, P ) are listed in Table 5.3. Here, the error bars of these physical quanti-

ties were calculated by the jackknife method [29, 30].

The differences in the partial molar enthalpy of unfolding ∆Hunfold, the heat ca-

pacity ∆Cunfold
P , and the partial molar volume ∆V unfold of unfolding were calculated

as follows:

∆Hunfold =

[
∂
(
∆Gunfold/T

)
∂ (1/T )

]
P

= R

[
∂ log(ffold/funfold)

∂(1/T )

]
P

, (5.7)
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∆Cunfold
p = −T

(
∂2∆Gunfold

∂T 2

)
P

, (5.8)

∆V unfold =

[
∂∆Gunfold

∂P

]
T

= RT

[
∂ log(ffold/funfold)

∂P

]
T

. (5.9)

By substituting Eq. (5.4) into Eq. (5.7) and Eq. (5.9), the following equations are

obtained:

∆Hunfold(T, P ) =∆G0 + T0∆S0 + (T − T0)∆Cp

+∆V0(P − P0) +
∆β

2
(P − P0)

2

−∆α(P − P0)T0,

(5.10)

∆V unfold(T, P ) = ∆V0 +∆β(P − P0) + ∆α(T − T0). (5.11)

In this study, the differences in partial molar enthalpy ∆Hunfold and partial molar

volume ∆V unfold were estimated at T = Td, and the differences in the internal energy

∆Uunfold and entropy ∆Sunfold were also estimated at Td. The results are listed in

Table 5.4. ∆Hunfold = 15.1± 1.0 kJ/mol and Td = 327± 3 K at P =0.1 MPa were

obtained. In the experiment by Honda et al. [8], ∆Hunfold and Td were estimated as

25.9–32.2 kJ/mol and 311–316 K, respectively. The thermodynamics quantities from

the simulation is in reasonably good agreement with the experiment results of Honda

et al. Note that Honda et al. set ∆Cunfold
p = 0 to fit their experimental data because

their ∆Gunfold was almost a straight line. Then, the author also estimated ∆Hunfold

and Td assuming that ∆Cunfold
p = 0. That is, ∆Gunfold for temperature dependence

was fitted using a first-order polynomial. In this condition, ∆Hunfold = 18.9 ±

0.4 kJ/mol and Td = 318± 3 K are obtained. These results are in better agreement

with the experimental results. The difference in the partial molar enthalpy ∆Hunfold

is positive, meaning that the partial molar enthalpy of the folded structures is lower

than that of the unfolded structures. Here, ∆Uunfold is dominant for ∆Hunfold at

any pressure. That is, that the folded structures are enthalpically (in particular,

energetically) stable. In terms of molecular mechanics, this implies that the folded

structures have more intramolecular hydrogen bonds than the unfolded structures.

Further, ∆Sunfold decreases as pressure increases. The unfolded structures include
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Table 5.1: Thermodynamics parameters obtained from fitting of ∆G(T ).

P (MPa) T0 (K) ∆G0 (kJ/mol) ∆S0 (J/mol/K) ∆Cp (kJ/mol/K)
∆G = Gunfold −Gfold 0.1 300 1.06 ± 0.16 32.5 ± 1.6 0.1590 ± 0.0049

100 300 0.66 ± 0.11 33.6 ± 0.9 0.1184 ± 0.0026
200 300 0.24 ± 0.10 27.3 ± 0.7 0.1467 ± 0.0021
300 300 −0.36 ± 0.09 21.9 ± 0.3 0.1662 ± 0.0005
400 300 −0.52 ± 0.06 24.9 ± 0.2 0.1423 ± 0.0008
500 300 −0.90 ± 0.08 21.8 ± 0.7 0.1595 ± 0.0028

∆G = Gmisfold −Gfold 0.1 300 2.10 ± 0.09 −26.8 ± 0.5 0.170 ± 0.010
100 300 1.66 ± 0.06 −17.4 ± 0.7 0.092 ± 0.007
200 300 1.27 ± 0.06 −18.6 ± 0.4 0.083 ± 0.009
300 300 0.70 ± 0.06 −18.1 ± 0.4 0.071 ± 0.008
400 300 0.26 ± 0.05 −28.2 ± 0.7 0.106 ± 0.006
500 300 −0.15 ± 0.06 −32.9 ± 0.5 0.131 ± 0.008

∆G = Gunfold −Gmisfold 0.1 300 −1.03 ± 0.10 59.3 ± 1.5 −0.011 ± 0.012
100 300 −1.01 ± 0.07 51.0 ± 1.5 0.026 ± 0.007
200 300 −1.03 ± 0.06 45.9 ± 0.9 0.063 ± 0.009
300 300 −1.06 ± 0.06 40.0 ± 0.7 0.095 ± 0.008
400 300 −0.78 ± 0.04 53.1 ± 0.9 0.036 ± 0.006
500 300 −0.75 ± 0.05 54.7 ± 0.5 0.028 ± 0.008

Table 5.2: Thermodynamics parameters obtained from fitting of ∆G(P ).

T (K) P0 (MPa) ∆G0 (kJ/mol) ∆V0 (cm3/mol) ∆β (cm3/mol/MPa)
∆G = Gunfold −Gfold 300 0.1 1.06±0.16 −4.90±0.40 0.0040±0.0010

350 0.1 −1.09±0.10 −2.88±0.18 −0.0002±0.0005
400 0.1 −4.58±0.08 −0.73±0.06 −0.0043±0.0002
450 0.1 −8.63±0.09 2.16±0.22 −0.0135±0.0008

∆G = Gmisfold −Gfold 300 0.1 2.10±0.09 −4.6±0.2 0.0005±0.0007
350 0.1 2.62±0.11 −4.4±0.1 0.0036±0.0004
400 0.1 2.43±0.25 −3.7±0.6 0.0075±0.0019
450 0.1 0.50±0.37 7.0±0.6 −0.0278±0.0022

∆G = Gunfold −Gmisfold 300 0.1 −1.0±0.1 −0.3±0.3 0.0036±0.0008
350 0.1 −3.7±0.1 1.5±0.1 −0.0038±0.0005
400 0.1 −7.0±0.3 2.9±0.6 −0.0118±0.0020
450 0.1 −9.1±0.4 −4.9±0.7 0.0143±0.0024

not only coil-like structures, but also helical structures. The decrease in ∆Sunfold

implies that some structures are suppressed by high pressure. The difference in heat

capacities are positive at all pressures. The folded structures are stabilized by the

hydrogen bonds, and the fluctuations are constrained as compared to the unfolded

state. Therefore, the folded structures have lower heat capacity than the unfolded

structures.
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Table 5.3: Thermodynamic parameters obtained from fitting of ∆Gunfold(T, P ).

Thermodynamics parameters value
T0 (K) 300
P0 (MPa) 0.1
∆G0 (kJ/mol) 1.06
∆S0 (kJ/mol/K) 0.034± 0.001
∆CP (kJ/mol/K) 0.136± 0.004
∆V0 (cm3/mol) −3.5± 0.3
∆α (cm3/mol/K) 0.018± 0.001
∆β (cm3/mol/MPa) −0.0021± 0.0004
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(a) 

(b) 

(c) 

Figure 5.6: The differences in Gibbs free energy between folded and unfolded states.
(a) Temperature, (b) pressure, (c) both temperature and pressure dependence.
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Table 5.5: The partial molar volume difference ∆V between the folded and unfolded
state and the denaturation pressure Pd.

T (K) ∆V (cm3/mol) Pd (MPa)
300 −4.0± 0.2 242± 24
350 −1.8± 0.5 −387± 76

The difference in the partial molar volume of unfolding ∆V unfold are listed in

Table 5.5. According to Imamura et al. the difference in the partial molar volume

was estimated as ∆V unfold = −8.8 cm3/mol by the Fourier transform infrared spec-

trometer experiment at T = 298 K [6]. The difference in the partial molar volume of

unfolding ∆V unfold estimated from the simulation are lower than the experimental

data, but they are still in good agreement with the experimental data. The absolute

value of ∆V unfold becomes small at high temperatures.

5.3.4 Thermodynamics Quantities between Folded and Mis-

folded States

Figure 5.7 shows differences in the Gibss free energy between folded and misfolded

state, ∆Gmisfold = Gmisfold−Gfold. Temperature and pressure dependence of ∆Gmisfold

were fitted using Eq. (5.5) and Eq. (5.6), respectively. Thermodynamic parameters

obtained from fitting of ∆Gmisfold(T ) and ∆Gmisfold(P ) are listed in Tables 5.1 and

5.2. The thermodynamic quantities for the folded and misfolded states at 300 K are

summarized in Table 5.6. The author found that the misfolded state is enthalpically

stable, while the folded state is entropically stable. The contribution of T∆Smisfold

to ∆Gmisfold is greater than that of ∆Hmisfold at P = 0.1− 400 MPa. However, the

contribution of ∆Hmisfold to ∆Gmisfold is slightly greater than that of T∆Smisfold at

P = 500 MPa. The isobaric heat capacity was evaluated as ∆Cmisfold
p = Cmisfold

p −

C fold
p = 0.17 ± 0.01 kJ/mol/K, meaning that the fluctuation of enthalpy of the

misfolded state is larger than that of the folded state. This is because the β-strand

of the misfolded state is shifted by one residue, and the C-terminus has a large

fluctuation.
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(a) 

(b) 

Figure 5.7: The differences in Gibbs free energy between folded and misfolded states.
(a) Temperature and (b) pressure dependence.
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Moreover, the author calculated the difference in the partial molar volume ∆V

between the folded and misfolded states by using Eq. (5.11): ∆V misfold = Vmisfolded−

Vfolded = −4.6 ± 0.2 cm3/mol at T = 300 K. This result means that the partial

molar volume of the misfolded structure is smaller than that of the folded structure.

5.3.5 Stabilization Mechanism of the Misfolded State under

High Pressure Conditions

Let us discuss the reason why the fraction of the folded state decrease while that of

the misfolded state increases as pressure increases. Figure 5.8 presents the average

distance between the hydrogen bonds (Asp3O–Gly7N, Asp3O–Thr8N, and Asp3N–

Thr8O for the folded state, and Asp3O–Gly7N and Asp3N–Gly7O for the misfolded

state) and the closest water molecule. Here, the distance between the hydrogen

bonds and the closest water molecule was defined as follows:

r =
rN−H2O + rO−H2O

2
, (5.12)

where rN−H2O is the distance between the backbone N atom and the O atom of the

closest water molecule, and rO−H2O is the distance between the backbone O atom

and the O atom of the water molecule. Fig. 5.8 shows that the water molecules

were located closer to the hydrogen bond Asp3N–Thr8O of the folded state than to

the other hydrogen bonds. Since the folded state has a hydrophobic core between

Tyr2 and Trp9 at the back side, the hydrogen bond Asp3N–Thr8O is exposed to the

solvent at the front of chignolin. In Fig. 5.9(a), there is space around the hydrogen

bond Asp3N–Thr8O at the front side of the folded structure. The other hydrogen

bonds, Asp3O–Gly7N and Asp3O–Thr8N, are hidden inside chignolin. Thus, water

molecules can approach Asp3N–Thr8O from the front side and break the hydrogen

bonds although they cannot reach close to Asp3O–Gly7N and Asp3O–Thr8N. In

contrast, Fig. 5.9(b) shows that Tyr2 and Trp9 of the misfolded state are oriented

in the opposite direction; and thus, the hydrogen bonds are covered by the side

chains on both sides in the misfolded state and are hidden from the solvent. The

Hydrogen bond Asp3O–Gly7N of the misfolded state is the second closest to the
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Figure 5.8: Pressure dependence of the average distance between hydrogen bonds
and the closest water molecule.

water molecules, as shown in Fig. 5.8. This is because Gly7 has only a hydrogen

atom as its side chain, and a part of the hydrogen bond is exposed to the solvent.

The stability of the chignolin can be explained based on the structural charac-

teristics and thermodynamic quantities of chignolin. Water molecules approach the

protein as the pressure increase. Water breaks the hydrogen bond Asp3N–Thr8O in

the folded state. This result is consistent with the fact that ∆Uunfold between the

folded and unfolded states decrease as pressure increase. Thus, the folded state is

broken and changes into the unfolded or misfolded state. Furthermore, the misfolded

state becomes more enthalpically stable than the folded state under high-pressure

condition. This is because the misfolded state has smaller partial molar volume,

and the compact conformations of the misfolded state have lower values of internal

energy at high pressure, as evident from the data presented in Table 5.6. Therefore,

the fraction of the folded state decreases as pressure increases, while the fractions

of the unfolded and misfolded states increase.
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(a) Folded state

(b) Misfolded state
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××

Figure 5.9: Schematic figure of the mechanism by which folded chignolin becomes
unstable while misfolded chignolin becomes stable under high-pressure conditions.

5.4 Conclusions

In this study, the author applied the isothermal–isobaric replica-permutation method

to a β-hairpin miniprotein, chignolin. Thanks to the efficient sampling by the

isothermal–isobaric replica-permutation simulation, the author succeeded in eval-

uating the thermodynamics quantities such as the differences in the Gibbs free en-

ergy ∆G, partial molar enthalpy ∆H, partila molar volume ∆V , and difference in

the isobaric heat capacity ∆Cp among folded, misfolded and unfolded states. The

obtained thermodynamics quantities are in good agreement with the experimental

results.

In this simulation, the author found a new phenomenon; the misfolded structure

of the chignolin becomes stable under high pressure conditions, whereas that of the

folded structure of the chignolin denature. The author revealed that the molec-

ular mechanism of the different stability between the folded and misfolded struc-
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tures under high pressure conditions arise from different orientation of the Tyr2

and Trp9 side chains. In the folded structures, Tyr2 and Trp9 form hydrophobic

core. Consequently, the hydrogen bond Asp3N–Thr8O, which is important for the

β-hairpin formation, is exposed to the solvents in the opposite side of the hydropho-

bic core. Water molecules approach the hydrogen bond as pressure increases, and

water molecules break the hydrogen bond. Therefore, the folded chignolin transits

to the unfolded state. On the other hand, in the misfolded structure, the hydrogen

bonds that are important to form the misfolded structure are covered with the Try2

and Trp9 side chains. The side chains protect the hydrogen bonds from the ap-

proaching water molecules. Therefore, the misfolded structure becomes more stable

with compressing its structure under high-pressure conditions.
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Chapter 6

Dimerization of α-synuclein

Fragments

M. Yamauchi and H. Okumura. “Dimerization of α-synuclein fragments studied by

isothermal–isobaric replica-permutation molecular dynamics simulation” The Jour-

nal of Chemical Information and Modeling (in press).
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6.1 Introduction

Alpha-synuclein (α-Syn), an intrinsically disordered protein consisting of 140 amino

acid residues, is abundantly distributed in the nucleus and presynaptic nerve termi-

nal [1]. In 1997, α-Syn was identified as the major component of Lewy bodies and

Lewy neurites, which are pathological hallmarks of Parkinson’s disease, Parkinson’s

disease dementia, and dementia with Lewy bodies [2]. Although aggregates and

amyloid fibrils of α-Syn are believed to be associated with Parkinson’s disease, the

mechanisms underlying the aggregation and fibril formation of α-Syn have yet to

be elucidated. It is necessary to understand the aggregation and fibril formation

processes of α-Syn to develop treatment for Parkinson’s disease.

The amino acid sequence of α-Syn is typically divided into three regions based on

its physicochemical properties: the amphipathic N-terminal domain (residues 1–60);

the highly hydrophobic central domain (residues 61–95), which is referred to as the

non-amyloid-β component [3]; and the acidic C-terminal domain (96–140). The hy-

drophobic central domain was originally identified in amyloid taken from the brains

of Alzheimer’s disease patients after amyloid-β (Aβ) and is referred to as the non-

amyloid-β component (NAC). The NAC is an essential region for the aggregation and

amyloid fibril formation of α-Syn [4–14] and responsible for cytotoxicity [6, 9, 10, 14].

A variety of fragments within the NAC domain have been investigated to determine

an essential region for the amyloid formation and its cytotoxicity. These studies

revealed that some fragments within the NAC show a tendency for amyloid forma-

tion and cytotoxicity, but the others do not [7, 9, 10, 13]. Among them, a segment

from the 68th to 78th residue of α-Syn termed NACore, 68GAVVTGVTAVA78, plays

a critical role in both amyloid fibril formation and cytotoxicity [10, 15]. Analysis

of the small crystal structure of NACore using micro-electron diffraction revealed

that the NACore peptides form steric-zipper protofibrils, in which a pair of par-

allel β-sheets are stacked in an antiparallel orientation [15]. The NACore peptide

lacks the residues that contribute to stabilizing the amyloid fold of α-Syn according

to atomic-resolution fibril structures that were recently determined by solid-state

NMR [16] and cryo-electron microscopy [17–20]. However, it is one of the best

model peptides to investigate the mechanisms underlying aggregation and amyloid
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fibril formation of amyloidogenic peptides in general. Although previous experimen-

tal and molecular dynamics studies have investigated the properties and stability of

the NACore aggregates and fibril structures [21–24], the mechanisms involved in the

early stages of aggregation and fibril formation, including the dimerization process,

remain unclear.

In this study, the author investigated the dimerization process of the NACore

peptides by molecular dynamics simulation. The author employed an isothermal–

isobaric replica-permutation molecular dynamics method [25, 26] to achieve efficient

sampling. The replica-permutation method [25–28], a generalized-ensemble method,

is an improved alternative to the replica-exchange method [29, 30]. In the replica-

permutation method, molecular simulations at different temperatures are performed

in parallel, and the temperature permutation among more than two replicas is per-

formed during the simulation. Instead of the Metropolis algorithm [31], the Suwa–

Todo algorithm [32] is applied in the permutation trials so that a higher transition

ratio from one temperature to another can be realized. The author analyzed stabili-

ties and structural properties of the NACore peptides along the dimerization process

and then identified possible mechanisms for the NACore dimer formation.

6.2 Materials and Methods

6.2.1 System Preparation

This study focused on the dimerization of the NACore peptides in the initial stage of

aggregation and fibril formation. The amino acid sequence of the NACore peptide,

a segment from the 68th to 78th residue of α-Syn, is 68GAVVTGVTAVA78 [15].

An initial structure of the isothermal–isobaric replica-permutation simulation was

prepared as follows: the author constructed an extended NACore peptide in which

bonds and angles were set to equilibrium values and all dihedral angles were set to

180◦. The N- and C-termini were not capped following aggregation and fibrillation

experiments [15, 24]. Thus, the N- and C-termini of the NACore peptides have

a positive (+1) and a negative (−1) charge, respectively, but the total charge of

the NACore peptides was zero (i.e., neutralized). Then, the two extended NACore
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Figure 6.1: The initial structure of the isothermal–isobaric replica-permutation sim-
ulation. Two extended NACore peptides and water molecules were placed in a cubic
box.

peptides and 5,720 water molecules were placed in a cubic box so that the distance

between the two peptides was 16 Å. The orientation of the NACore peptides was

randomly determined. No counter ion was contained because a mixture of fibrils

and crystals of the NACore was obtained in sterile water in the experiments [15]

although the counter ions would affect the low temperature trajectories. The total

number of atoms was 17,438. The initial side length of the cubic cell was 55.20 Å.

The initial structure of the simulation is illustrated in Fig. 6.1
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6.2.2 Computational Conditions

To realize efficient conformation sampling for the NACore peptides, an isothermal–

isobaric replica-permutation molecular dynamics method [25, 26] was employed. The

isothermal–isobaric replica-permutation simulation was performed with the Gener-

alized Ensemble Molecular Biophysics (GEMB) program developed by the authors.

This program has been applied to several proteins [25, 28, 33–42]. A cubic unit cell

with periodic boundary conditions was used. The assisted model building with en-

ergy refinement (AMBER) param14SB force field [43] was employed for the NACore

peptides, and the TIP3P rigid-body model [44] was used for the water molecules.

The temperature was controlled by the Nosé–Hoover thermostat [45–47], and the

pressure was controlled by the Andersen barostat [48]. Electrostatic interactions

were calculated using the particle mesh Ewald method (PME) [49, 50]. The cut-

off distance was set to 12.0 Å for the van der Waals interactions and the elec-

trostatic interactions in the direct space sum of the PME. A reversible multiple

time-scale molecular dynamics integrator was applied [51]. The symplectic quater-

nion scheme was adopted for the rigid body water molecules [52–54]. In this in-

tegrator, the author supposed that a force F is composed of three contributions,

F = Ffast+Fintermed+Fslow. Ffast is composed of forces derived from bonded interac-

tions of the peptide atoms. Fintermed is composed of forces derived from non-bonded

interactions (van der Waals and direct space sum of PME) between the peptide

atoms and those between the peptide atoms and solvent molecules. Ffast is com-

posed of forces from non-bonded interactions (van der Waals and direct space sum

of PME) between solvent molecules, and those from the reciprocal space term of

PME for all atoms. Time steps for Ffast, Fintermed, and Fslow were taken as ∆t = 0.5

fs, ∆t = 2.0 fs, and ∆t = 4.0 fs, respectively. The time-step could be set as ∆t = 4.0

fs because the symplectic rigid-body algorithm was used for the water molecules [54].

Eighty replicas were used in the isothermal–isobaric replica-permutation simu-

lation. The temperatures of the replicas, T1 to T80, were distributed from 210.0

to 500.0 K, following Tm = T1γ
m−1, where γ = (TM/T1)

1
M−1 , M is the number of

replicas, T1 = 210.0 K, and TM = 500.0 K. The temperature values used in the sim-

ulation are listed in Table 6.1. The pressure was controlled at 1 atm. To reduce the
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number of combinations between temperatures and replicas that should be consid-

ered in one parameter-permutation trial, the replicas and temperatures were divided

into subsets [25, 27] so that one subset included eight replicas and temperatures as

follows:

X [1−10]
µ =



X1
µ = [x

i(1)
1 , x

i(2)
2 , x

i(3)
3 , x

i(4)
4 , x

i(5)
5 , x

i(6)
6 , x

i(7)
7 , x

i(8)
8 ]

X2
µ = [x

i(9)
9 , x

i(10)
10 , x

i(11)
11 , x

i(12)
12 , x

i(13)
13 , x

i(14)
14 , x

i(15)
15 , x

i(16)
16 ]

...

X10
µ = [x

i(73)
73 , x

i(74)
74 , x

i(75)
75 , x

i(76)
76 , x

i(77)
77 , x

i(78)
78 , x

i(79)
79 , x

i(80)
80 ]


(6.1)

Note that the temperature indices in the subsets should be sequential and cyclic.

The parameter permutation were performed among replicas in the same subset.

Additional subsets are prepared because if the above subsets are used repeatedly,

replicas cannot take all temperature values during a simulation. The additional

subsets were defined by shifting the temperature indices in each subset cyclically

from X
[1−10]
µ as follows:

X [11−20]
µ =



X11
µ = [x

i(77)
77 , x

i(78)
78 , x

i(79)
79 , x

i(80)
80 , x

i(1)
1 , x

i(2)
2 , x

i(3)
3 , x

i(4)
4 ]

X12
µ = [x

i(5)
5 , x

i(6)
6 , x

i(7)
7 , x

i(8)
8 , x

i(9)
9 , x

i(10)
10 , x

i(11)
11 , x

i(12)
12 ]

...

X20
µ = [x

i(69)
69 , x

i(70)
70 , x

i(71)
71 , x

i(72)
72 , x

i(73)
73 , x

i(74)
74 , x

i(75)
75 , x

i(76)
76 ]


(6.2)

Replica permutation in the subsets X
[1−10]
µ were carried out independently at odd-

numbered permutation trials, and replica permutations in the subsets X
[11−20]
µ were

carried out independently at even-numbered trials, which enable the replicas to take

all temperature values during the simulation. The replica-permutation trials were

performed every 2 ps. The trajectory data were stored every 2 ps. The simula-

tion was performed for 1.2 µs, including 0.2 µs equilibrium per replica. The total

simulation time for all replicas was 96 µs.
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Table 6.1: Temperatures used in the isothermal–isobaric replica-permutation simu-
lation.

indices temperatures (K)
T1 –T10 210.0, 212.3, 214.7, 217.0, 219.4, 221.9, 224.3, 226.8, 229.3, 231.8
T11–T20 234.4, 237.0, 239.6, 242.2, 244.9, 247.6, 250.3, 253.1, 255.9, 258.7
T21–T30 261.6, 264.5, 267.4, 270.3, 273.3, 276.3, 279.4, 282.5, 285.6, 288.7
T31–T40 291.9, 295.2, 298.4, 301.7, 305.0, 308.4, 311.8, 315.3, 318.7, 322.3
T41–T50 325.8, 329.4, 333.1, 336.7, 340.5, 344.2, 348.0, 351.9, 355.7, 359.7
T51–T60 363.6, 367.7, 371.7, 375.8, 380.0, 384.2, 388.4, 392.7, 397.0, 401.4
T61–T70 405.8, 410.3, 414.9, 419.4, 424.1, 428.7, 433.5, 438.3, 443.1, 448.0
T71–T80 452.9, 457.9, 463.0, 468.1, 473.3, 478.5, 483.8, 489.1, 494.5, 500.0

6.2.3 A Measure of the Distance between Peptides

A reaction coordinate dαα is introduced as a measure of distance between two NA-

Core peptides. The reaction coordinate dαα is defined as the shortest Cα–Cα distance

between the first and second NACore peptides as follows:

dαα(tk) ≡ min{rααij (tk) | ∀ i ∈ NACore 1,∀ j ∈ NACore 2}, (6.3)

where rααij (tk) is the distance between the Cα atoms of residues i and j at time-step

tk. It is assumed that i and j are residue indices in the first and second NACore

peptides, respectively.

6.2.4 Error Estimation of the Physical Quantities

In the analyses, errors of physical quantities were estimated by the jackknife method [55–

57]. To employ the jackknife method, the trajectories from the production run were

divided into five segments. Therefore, the time length of the trajectories included

in one segment was 200 ns.

6.3 Results and Discussion

6.3.1 Validation of Sampling Quality

Figure 6.2(a) shows the time series of temperatures of the replicas. To evaluate

the sampling quality in the temperature space, the author computed the number
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of tunneling events of the replicas. Here, one tunneling event in the temperature

space was defined as a round trip between the low-temperature region (210.0 K–

298.4K) and the high-temperature region (401.4K–500.0K). The calculation of the

tunneling events was performed after the equilibration period of 200 ns (i.e., the time

series from 200 to 1200 ns were used for the evaluation). The average number of

tunneling events per replica was 21±7. Here, the error was estimated by calculating

the standard deviation over replicas. Almost all replicas took various temperatures

from low to high during the simulation. However, some replicas were trapped in the

low-temperature region for long time-steps, resulting in poor statistics for estimating

physical quantities at low temperatures due to the correlation between snapshots.

Therefore, the analyses in this study were carried out using a trajectory at T34 =

301.7 K if there is no special remark. The average side length of the simulation box

at T34 = 301.7 K was 56.30± 0.07 Å.

Figure 6.2(b) shows the time series of distance between the NACore peptides,

dαα, of the replicas. The number of round trips between the association and disso-

ciation states were computed to confirm the sampling quality in the conformational

space. The author regarded the association state as that with dαα ≤ 4.0 Å and the

dissociation state as that with dαα ≥ 20.0 Å. Here, the threshold dαα = 4.0 Å was se-

lected because an intermolecular hydrogen bond can be formed between main chains.

The other threshold dαα = 20.0 Å was selected as enough far distance in which the

NACore peptides can be regarded as monomers. Note that the average side length

of the simulation cells over all replicas and temperatures was 57.6± 2.3 Å. The av-

erage number of round trips was 125± 54, indicating that the simulation succeeded

in sampling a sufficient number of association-dissociation events of the NACore

peptides. To confirm convergence of the isothermal–isobaric replica-permutation

simulation at T34 = 301.7 K, the author calculated probability distributions over

the time intervals of 200–400 ns, 200–600 ns, 200–800 ns, 200–1000 ns, and 200–

1200 ns in Fig. 6.2(c). The probability distributions for the time intervals over

200–800 ns, 200–1000 ns, and 200–1200 ns remain unchanged, meaning that the

simulation reached equilibrium.
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(a)

(b)

(c)

Figure 6.2: Time series of (a) temperatures and (b) distances between the NACore
peptides, dαα, for replicas 1, 20, 40, 60, and 80. dαα is defined as the shortest
intermolecular Cα–Cα distance between the first and second NACore peptides. (c)
Probability distributions of dαα at T34 = 301.7 K over the time intervals of 200–
400 ns, 200–600 ns, 200–800 ns, 200–1000 ns, and 200–1200 ns.

6.3.2 Dimerization Tendency of the NACore Peptides

To investigate the tendency of dimerization of the NACore peptides, the author

computed free energy as a function of dαα at T34 = 301.7 K. The free energy as a
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Figure 6.3: Free-energy landscape as a function of dαα at T34 = 301.7 K. The
minimum value was set to zero.

function of dαα at temperature Tλ is given by

Fλ(dαα) = −kBTλ ln
Probλ(dαα)

4πd2αα
, (6.4)

where λ is the temperature index, kB is the Boltzmann constant, Probλ is the

probability distribution calculated using only snapshots at Tλ, and the denominator,

4πd2αα, is the Jacobian of the coordinate transformation from Cartesian to polar

coordinates. The result is presented in Fig. 6.3. Here, the bin size of dαα was

0.5 Å and the minimum value was set to zero in this free-energy landscape. For the

convenience of discussion, the author define dimer, pre-dimer, and monomer states

as when dαα < 6.0 Å, 6.0 Å ≤ dαα ≤ 10.0 Å, and 10.0 Å < dαα, respectively.

The free energy has a global-minimum at dαα = 4.0 Å. The free energy difference

between the dimer and monomer states is approximately 4 kcal/mol. This result

indicates that the dimer state is the most stable for the NACore peptides.
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The solvent accessible surface area (SASA) for the two NACore peptides were

calculated to assess approaches of monomers into nascent dimers. Figure 6.4(a)

presents a log scale probability distribution of the SASA as a function of dαα. Here,

a probe sphere of 1.4 Å was employed for the SASA calculation. In the monomer

state, the SASA is between 2, 100 and 3, 000 Å2. In the pre-dimer state, a smaller

SASA is observed with a decrease of dαα from 10.0 Å to 6.0 Å. This result means that

in the pre-dimer state, intermolecular contacts gradually increase as the two NACore

peptides get close to each other. The distance between the two NACore peptides in

the pre-dimer state is too far to form intermolecular main-chain contacts; therefore,

a decrease in the SASA in the pre-dimer state results from the intermolecular side-

chain contacts. In the dimer state, the SASA largely decreases as dαα changes from

6.0 Å to 4.0 Å.

The author then calculated solvent accessibility for each residue at corresponding

dαα values to compare the area exposed to the solvent of amino-acid residues. The

solvent accessibility is defined as the SASA normalized by the maximum SASA of

the amino-acid residue. The maximum SASA of each residue was determined from

the trajectory of SASA of each residue at T = 301.7 K. A decrease in the solvent

accessibility means an increase in contact with other amino-acid residues, and a

smaller solvent accessibility implies that the amino-acid residue forms contacts with

multiple amino-acid residues. Figure 6.4(b) shows the average of solvent accessibility

for each amino-acid residue at corresponding dαα values. The solvent accessibility

for terminal residues is larger than that of amino-acid residues inside the NACore

peptides, Ala69–Val77. The reason for the larger solvent accessibility at the terminal

residues is that an -NH3 group in the N-terminal and a -CO2 group in the C-terminal

are usually exposed to the solvent. The solvent accessibility of Gly73 is the smallest

among the amino-acid residues at any dαα values and largely decreases as dαα changes

from 5.0 Å to 4.0Å in the dimer state. This is because Gly73 has only a hydrogen

atom in the side chain, and is easily covered with other amino acid residues when

in the dimer state. The solvent accessibility gradually decreases as the two NACore

peptides get close to each other. The decrease in the solvent accessibility for residues

Ala69–Thr72 and Val74–Val77 was larger than that for the terminal residues, Gly68
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(a)

(b)

Figure 6.4: (a) Probability distribution of SASA in a logarithmic scale as a function
of dαα. The presented SASA is the sum of the two NACore peptides. The dashed
lines at dαα = 6 Å and 10 Å are the boundary between the dimer (dαα < 6 Å)
and pre-dimer (6 Å ≤ dαα ≤ 10 Å) states and that between the pre-dimer and
monomer (10 Å < dαα) states, respectively. (b) Solvent accessibility of each residue
at corresponding dαα values.

and Ala78. The large decrease in the solvent accessibility of Ala69–Thr72 indicates

that they form contacts with multiple amino-acid residues when the two NACore

peptides get close to each other. On the other hand, the small decrease in the solvent

accessibility of Gly68 and Ala78 implies that they tend to have less contact with

other amino-acid residues.
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6.3.3 Propensity of Secondary Structures along the Dimer-

ization Process

Secondary structures at the corresponding dαα values were analyzed to assess the

structural properties of the NACore peptides on the path of the dimerization pro-

cess. Figure 6.5 presents the probabilities of forming secondary structures and the

ensemble-average values of the number of residues or bridges regarding the secondary

structure at corresponding dαα values. The secondary structures were assigned using

the Define Secondary Structure of Proteins (DSSP) algorithm [58]. The probability

of forming a specific secondary structure at each dαα value was calculated by divid-

ing the number of samples that form the secondary structure by the total number of

samples in the dαα value. The ensemble-average values of the number of residues or

bridges regarding the specific secondary structures at each dαα value were also cal-

culated. The ensemble-average values were defined as dividing accumulation of the

number of residues or bridges with the specific secondary structure in the NACore

peptide for each dαα value by the number of samples in the dαα values. Here, the

two NACore peptides were regarded as two different samples when counting the in-

tramolecular secondary structures, whereas the two NACore peptides were regarded

as one sample when counting the intermolecular secondary structures.

In the monomer state, the NACore peptides form not only the random-coil struc-

ture but also a variety of intramolecular secondary structures, such as the 310-helix,

α-helix, antiparallel β-bridge, and parallel β-bridge. The average number of residues

or bridges forming the intramolecular secondary structures is always less than one

at any dαα value, meaning that the NACore peptides do not always form the in-

tramolecular secondary structures. These results indicate that the NACore peptides

usually have no specific structure in the monomeric form and their behavior is in-

trinsically disordered; thus, the NACore peptides have a low propensity to form

intramolecular secondary structures.

The low propensity of the NACore peptides to form intramolecular secondary

structures is understood from the characteristics of composed amino-acid residues.

The NACore peptides contain four kinds of amino-acid residues: Val, Ala, Gly, and
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Figure 6.5: Probability and the ensemble-average value of the number of residues
or bridges for the (a, b) intramolecular antiparallel and parallel β-bridge structures,
(c, d) 310-helix and α-helix structures, and (e, f) intermolecular antiparallel and
parallel β-bridge structures at the corresponding dαα values. The probability for
each secondary structure at each dαα value was calculated by dividing the number
of samples that have the secondary structure by the total number of samples in each
dαα value. The ensemble-average values were calculated by dividing accumulation
of the number of residues with the secondary structure in the NACore peptide for
each dαα value by the number of samples in each dαα value. The dashed lines at
dαα = 6 Å and 10 Å are the boundary between the dimer (dαα < 6 Å) and pre-
dimer (6 Å ≤ dαα ≤ 10 Å) states and that between the pre-dimer and monomer
(10 Å < dαα) states, respectively.

Thr. Val is known as a structurally indifferent residue because its homo-polypeptide

show a low probability for helical or stretched conformation [59, 60]. Gly is known

as a breaker of secondary structures because Gly has only one hydrogen atom as

the side-chain and this enables dihedral angles to rotate easily. Gly73, which is lo-

cated at the center of the amino-acid sequence, prevents the NACore peptides from

forming a secondary structure. In addition, there are two polar residues, Thr72 and

Thr75. The N- and C-termini have a positive and a negative charge, respectively,

because the NACore peptides were not capped. These Thr and terminal residues

prefer to interact with water molecules, which is unfavorable for the secondary struc-

ture formation. The intramolecular interaction between the terminal residues is not

thought to be stable although the N- and C-termini have the opposite charges. The

possible reason is that rotation of dihedral angles of Gly73, which is at the center
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region of the NACore peptides, prevents the N- and C-termini from keeping them

close to each other. Ilie et al. previously reported the conformational free-energy

landscape of NACore monomer in explicit water by performing a metadynamics

simulation and revealed that the conformational free-energy landscape of the NA-

Core monomer has a common feature of intrinsically disordered proteins [22]; these

results are consistent with these simulation results.

In the pre-dimer state, increases in the α-helix and intramolecular antiparallel

β-bridge structures were found. Figures 6.5(a) and (b) show that the probability

and average number of residues for the α-helix structure gradually increase as dαα

changes from 10.0 Å to 6.0 Å. Furthermore, the author identified a small peak around

dαα = 7.0 Å in the probability and average number of bridges for the intramolecular

antiparallel β-bridge structure in Figs. 6.5(c) and (d). These results indicate that

intramolecular secondary structures become stable in the middle of the dimerization

process.

In the dimer state, the intramolecular β-bridge and helix structures decrease as

shown in Figs. 6.5(a)–(d). On the other hand, the dimer structures connected by

β-bridges become dominant as shown in Figs. 6.5(e) and (f). Although the NACore

dimer can form both intermolecular antiparallel and parallel β-bridges, the NACore

dimer preferentially forms antiparallel β-bridges. Therefore, the NACore dimer with

intermolecular antiparallel β-bridges is the most stable.

Figure 6.6 shows the probability distributions of the number of intermolecular

β-bridges. The DSSP algorithm [58] was used to define the intermolecular antipar-

allel and parallel β-bridges. The distributions of the intermolecular parallel and

antiparallel β-bridge structures were evaluated individually so that the summation

of each distribution would be equal to one. Note that the probabilities for the zero

number of bridges are the accumulation of snapshots that the NACore peptides

do not form an intermolecular parallel or antiparallel β-bridge. The probability of

antiparallel β-bridge formation is higher than that of parallel β-bridge formation,

which is consistent with Fig. 6.5(f). Figure 6.6 also reveals that the intermolecular

antiparallel β-bridges tend to form a longer β-strand structure than that of the inter-

molecular parallel β-bridges. The maximum number of intermolecular antiparallel
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Figure 6.6: Probability distributions of the number of intermolecular β-bridges for
the NACore dimer. The green and blue bars represent the antiparallel β-bridge and
parallel β-bridge structures, respectively. The probability distributions were calcu-
lated for individual structures. The inset shows the same probability distributions
with different ranges.

and parallel β-bridges observed in the trajectory at T34 = 301.7 K were nine and

seven, respectively. These results indicate that the NACore dimer can form a fully

extended antiparallel β-strand structure, whereas it rarely forms a fully extended

parallel β-strand structure.

6.3.4 Mechanism of Increasing Intramolecular Secondary Struc-

tures in the Pre-Dimer State

The probabilities of intramolecular antiparallel β-bridge and α-helix structures in-

crease in the pre-dimer state. To understand the stabilization of the intramolecular

secondary structures in the pre-dimer state, the following thermodynamics quanti-

ties were estimated: the differences in the Gibbs-free energy ∆G, the partial molar
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enthalpy ∆H, and the partial molar entropy ∆S. The difference in the Gibbs free

energy between states A and B is calculated as follows:

∆G = GB −GA = −RT ln

(
fB
fA

)
, (6.5)

where R = 8.3145 J/(mol K) is the gas constant, fA and fB are fractions of the

states A and B, respectively. Here, state A is defined as the NACore structures

that forms an intramolecular secondary structure in the monomer state. State B is

defined as those in the pre-dimer state. The author considered the intramolecular

antiparallel β-bridge and α-helix as the intramolecular secondary structures. The

two NACore peptides were regarded as two different samples. The differences in the

partial molar enthalpy and partial molar entropy are calculated as follows:

∆H =

[
∂(∆G/T )

∂(1/T )

]
P

, (6.6)

∆S =
∆H −∆G

T
. (6.7)

Because the difference in the partial molar enthalpy is derived from the tempera-

ture dependence of the difference in the Gibbs free energy, the author calculated the

differences in the Gibbs free energy in the range of T34 = 301.7 K to T80 = 500.0 K.

The first-order polynomial fitting was performed to evaluate the partial molar en-

thalpy. The temperature dependence of the differences in the Gibbs-free energy

and the results of fitting are presented in Fig. 6.7. The obtained thermodynamics

quantities are listed in Table 6.2. For the NACore structure with an intramolecular

antiparallel β-bridge, ∆H and T∆S are −4.1± 0.4 kJ/mol and −3.1± 0.3 kJ/mol,

respectively. For the NACore structure with α-helix, on the other hand, ∆H and

T∆S are −3.5± 0.5 kJ/mol and −2.3± 0.3 kJ/mol, respectively. Hence, the differ-

ences in the Gibbs free energy are negative due to the contribution from the enthalpy

term. The differences in the Gibbs free energy are negative, meaning that the in-

tramolecular antiparallel β-bridge and α-helix structures in the pre-dimer state are

more stable than those in the monomer state. As for the partial molar enthalpy and

partial molar entropy terms in the Gibbs free energy, both the differences in the par-
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(a)

(b)

(c)

(d)

Figure 6.7: Temperature dependence of the differences in the Gibss free energy
between the pre-dimer (pd) and monomer (m) states of the NACore with (a) in-
tramolecular antiparallel β-bridge and (b) α-helix structures. ∆G/T as a function
of 1/T for the NACore with (c) intramolecular antiparallel β-bridge and (d) α-helix
structures. The results of the first-order polynomial fitting are shown with green
lines.

Table 6.2: Differences in thermodynamics quantities between the pre-dimer and
monomer states at T = 301.7 K.

Secondary structure ∆G (kJ/mol) ∆H (kJ/mol) T∆S (kJ/mol)
Intramolecular antiparallel β-bridge −1.0± 0.2 −4.1± 0.4 −3.1± 0.3

α-helix −1.2± 0.3 −3.5± 0.5 −2.3± 0.3

tial molar enthalpy and partial molar entropy are negative. These results indicate

that the NACore structure with an intramolecular antiparallel β-bridge or α-helix

in the pre-dimer state is enthalpically more stable but entropically unfavorable than

that in the monomer state. The lower entropy of the NACore structures with an

intramolecular antiparallel β-bridge and an α-helix in the pre-dimer state implies

that their conformations are restricted when compared with those in the monomer

state.
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To investigate molecular mechanisms when the differences in the partial molar

entropy become negative, The average number of intermolecular side-chain contacts

was then computed when the NACore peptide had the intramolecular secondary

structures. When the shortest distance between a pair of non-hydrogen atoms in the

side chain was less than 5.0 Å, it was regarded as a side-chain contact. The average

number of intermolecular side-chain contacts for a specific secondary structure was

calculated over the snapshots that have specific secondary structure at each dαα

value. Here, the author focused on the intramolecular antiparallel β-bridge and

α-helix as specific secondary structure. For comparison, the average number of

intermolecular side-chain contacts was also computed by considering all snapshots at

each dαα value. The results are presented in Fig. 6.8. When the NACore peptides are

in the monomer state, no intermolecular side-chain contact is observed. When the

NACore peptides are in the pre-dimer states, the average number of intermolecular

side-chain contacts increases as the NACore peptides get close to each other. In the

pre-dimer state, there are more intermolecular side-chain contacts when the NACore

peptides form an intramolecular antiparallel β-bridge or α-helix than the average

values of intermolecular side-chain contacts over all snapshots at each dαα value.

These results imply that intermolecular side-chain contacts play an important role

in stabilizing the intramolecular secondary structures in the pre-dimer state.

The mechanism of increasing the intramolecular secondary structures by the in-

termolecular side-chain contacts can be explained as follows: Two NACore peptides

have intermolecular side-chain contacts when they are close to each other and are

in the pre-dimer state. The intermolecular side-chain contacts suppress the motion

of the NACore peptides. This situation is entropically unfavorable for the NACore

peptide and a lower enthalpy is preferred to compensate for the loss of entropy.

Therefore, the NACore peptide forms hydrogen bonds to have a lower enthalpy

conformation and, as a result, an intramolecular secondary structure, such as an

antiparallel β-bridge or an α-helix is formed. Note that in the pre-dimer state, hy-

drogen bonds are formed only between intramolecular residues. This is because the

distance between two NACore peptides in the pre-dimer state is too large to form

intermolecular hydrogen bonds.
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Figure 6.8: Average number of intermolecular side-chain contacts at corresponding
dαα values. Data for all snapshots, intramolecular antiparallel β-bridge, and α-
helix are shown in open green squares, blue open circles, and red open triangles,
respectively.

The stabilization of the intramolecular secondary structures on the middle of

dimerization was observed not only for the NACore but also for Aβ(29–42) peptides.

Itoh et al. found that the β-hairpin structure increases when two Aβ(29–42) pep-

tides come close to each other and have intermolecular side-chain contacts [61, 62].

Therefore, the stabilization of intramolecular secondary structures in the middle of

the dimerization process appears to be a common property of amyloidogenic pep-

tides.

6.3.5 Intermolecular Residue Contacts in the Dimer State

To investigate the molecular mechanism of how the NACore peptides form the inter-

molecular β-bridge structure in the dimer state, the author calculated the probability

of intermolecular residue contacts at the corresponding dαα values. The probability
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of intermolecular residue contact is defined as the arithmetic mean of the inter-

molecular residue-contact maps at the target temperature, T34 = 301.7 K. The

intermolecular residue-contact map between residues i and j, Qintermol
ij (tk), is defined

as

Qintermol
ij (tk) =

1 for rij(tk) ≤ 6.5 Å,

0 for rij(tk) > 6.5 Å,

(6.8)

where rij(tk) is the distance between the Cα atoms in residues i and j at time-step

tk. It was assumed that residues i and j belonged to different NACore peptides.

Figures 6.9 shows the probability of intermolecular residue contact at corresponding

dαα values. Here, the bin size of dαα was set to 1.0 Å. The intermolecular residue

contacts were observed only when dαα = 6.0 Å or less due to the definition by

Eq. (6.8). The highest intermolecular contact probability at dαα = 6.0 Å is found

between Gly68 (N-terminus) and Ala78 (C-terminus), as indicated by red arrows in

Fig. 6.9(a). Gly68 at the N-terminus and Ala78 at the C-terminus are positively and

negatively charged, respectively, because they were not capped. The attractive force

due to the electrostatic interaction tends to draw the N- and C-termini closer to each

other than other intermolecular residue pairs. Therefore, the electrostatic interaction

between these partial charges plays an important role in capturing other NACore

peptides. The probability of residue contacts also reveals that Gly68 and Ala78 tend

to have one direct contact rather than to have contacts with multiple amino-acid

residues, which is consistent with the small decreases in the solvent accessibility

of Gly68 and Ala78 as shown in Fig. 6.4(b). When dαα = 5.0 Å, increases in the

probability of intermolecular contact are observed, not only between the N- and

C-termini but also between residues corresponding to diagonal components on the

contact map. Consecutive residue contacts on the diagonal components on the

contact map are typically observed when there is a parallel or antiparallel β-strand

structure. In addition, intermolecular antiparallel and parallel β-bridges begin to

increase when dαα changes from 6.0 Å to 5.0 Å as shown in Figs. 6.5(e) and (f).

Therefore, the increase in the probability of intermolecular contact on the diagonal

components arises from the formation of intermolecular antiparallel and parallel
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(c) dαα = 4.0 Å(b) dαα = 5.0 Å
Antiparallel β

Parallel β

(a) dαα = 6.0 Å

Figure 6.9: Probability of intermolecular residue contacts between the NACore pep-
tides. A contact is considered when the distance between Cα atoms is less than 6.5
Å.

β-bridges. Intermolecular antiparallel β-bridges tend to form between the regions

Val70–Thr72 and Val74–Ala76, while the intermolecular parallel β-bridges tend to

form between Val70–Thr72 and Val70–Thr72. More intermolecular contacts are

observed when dαα = 4.0 Å. The probabilities of intermolecular contacts around the

diagonal components, especially the contacts related to the antiparallel β-bridge,

increase.

6.3.6 Intermolecular β-Bridge Formation in the Dimeriza-

tion Process

As seen in Figs. 6.5(c) and (d), the intramolecular antiparallel β-bridge structure

was stabilized in the pre-dimer state. To elucidate the role of the intramolecular

β-bridge structure in forming the intermolecular β-bridge structure, the author ana-

lyzed the NACore dimer structures that have both intramolecular and intermolecular

β-bridges. Figure 6.10 presents the probability distribution of the number of residues

shared by both intramolecular and intermolecular β-bridges. The sum of probabili-

ties that the NACore peptides have shared residues between the intramolecular and

intermolecular β-bridges is higher than the probability that the NACore peptides

do not so. In particular, intermolecular antiparallel β-bridges tend to be formed.

These results suggest that intermolecular β-bridges are easily formed by binding

intramolecular β-bridges if the intramolecular β-bridges have already been formed.

Therefore, there is a possible pathway that an intermolecular β-bridge structure is
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Figure 6.10: Probability distribution of the number of residues shared by intramolec-
ular and intermolecular β-bridges. The blue, green, and red bars represent the
antiparallel β-bridge, parallel β-bridge, and both of them, respectively. A corre-
sponding structure is shown above each bar. The N- and C-termini are colored
red and blue, respectively, for the first NACore peptide. The N- and C-termini are
colored orange and green, respectively, for the second NACore peptide.

formed by binding with an intramolecular β-bridge that has already formed.

To investigate how intermolecular β-bridges are formed, the author calculated the

two-dimensional probability distributions with respect to the number of intramolec-

ular and intermolecular β-bridges at various dαα values. Here, the bin size of dαα

was set to 1.0 Å and the probability distribution was normalized at each dαα value.

Note that the number of intramolecular β-bridges was summed over the two NA-

Core peptides. The results are presented in Figs. 6.11(a)–(c). When dαα = 6.0 Å,

there is no intermolecular β-bridge structure, and the NACore peptides form only

intramolecular β-bridges or other intramolecular conformations. Intermolecular β-

bridges are observed when dαα ≤ 5.0 Å. When dαα = 5.0 Å, the NACore dimer that

forms one intermolecular β-bridge with no intramolecular β-bridge has the highest
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(c) dαα = 4.0 Å

(f) dαα = 4.0 Å

(b) dαα = 5.0 Å

(e) dαα = 5.0 Å

(a) dαα = 6.0 Å

(d) dαα = 6.0 Å

Figure 6.11: (a)–(c) Two-dimensional probability distributions with respect to the
number of intramolecular β-bridges and intermolecular β-bridges at the correspond-
ing dαα values. The number of intramolecular β-bridges was summed over two
NACore peptides. (d)–(f) Two-dimensional probability distributions with respect
to the number of residues forming helix and intermolecular β-bridges at the cor-
responding dαα values. Representative structures are also presented. The N- and
C-termini are colored red and blue, respectively, for the first NACore peptide. The
N- and C-termini are colored orange and green, respectively, for the second NACore
peptide.

probability, and the NACore dimer that forms two intermolecular β-bridges with

no intramolecular β-bridge has the second highest probability. Compared to the

probabilities of NACore dimer structures that form only intermolecular β-bridges,

the probabilities that the NACore dimer has both intermolecular and intramolecular

β-bridges are much lower. When dαα = 4.0 Å, longer β-strand structures without

an intramolecular β-bridge were formed.

From the results in the above paragraph, another pathway of the intermolecular

β-bridge formation is found; an intermolecular β-bridge is formed directly between

residues that have no specific structure when the two NACore peptides are close to

each other. If it tends to take the pathway by which an intermolecular β-bridge is

formed via binding with an intramolecular β-bridge, the probabilities of the dimer

structures that form both intermolecular and intramolecular β-bridges should be
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higher than those of the dimer structures that only form intermolecular β-bridges

with no intramolecular β-bridge. In other words, in Fig. 6.11(b), the probabilities

in the region surrounded by the blue square should be higher than those in the

region surrounded by the red square or orange rectangle. As Fig. 6.10 shoed, inter-

molecular β-bridges are easily formed by binding intramolecular β-bridges when the

intramolecular β-bridges have already been formed. However, Figs. 6.11(b) and (c)

indicate that the dimer structures that have both intermolecular and intramolecular

β-bridges were minority in the structural ensemble in the dimer state. This is due to

the low proportion of intramolecular β-bridges in the monomer and pre-dimer states.

In fact, Fig. 6.5 indicates that the coil structure is dominant both in the monomer

and pre-dimer states even though the stabilization of β-bridge and α-helix structures

is observed in the pre-dimer states. Therefore, it is reasonable to conclude that there

is a low tendency to take the pathway by which an intermolecular β-bridge structure

is formed by binding with and intramolecular β-bridges. In contrast, the NACore

peptides prefer to form intermolecular β-bridges without forming intramolecular β-

bridges when dαα = 5.0 Å. This result support that there is a high tendency to

take the pathway by which an intermolecular β-bridge is formed directly between

the residues that have no specific structures when the NACore peptides get close to

each other. Figure 6.12 shows the probability distribution of the number of inter-

molecular β-bridges when the NACore dimer forms intermolecular β-bridges but no

intramolecular β-bridge. An intermolecular antiparallel β-bridge is likely to form

though both antiparallel and parallel β-bridges are observed. Therefore, antiparallel

β-bridge is likely in the spontaneous intermolecular β-bridge formation.

The author further discuss how helix structures, which are stabilized in the

pre-dimer state, play a role in the dimerization. Figures 6.11(d)–(f) present two-

dimensional probability distributions with respect to the number of residues with

helix structure and intermolecular β-bridges at various dαα values. When dαα =

6.0 Å, there is no intermolecular β-bridge structure, and the NACore peptides form

only helix or other intramolecular structures. The intermolecular β-bridge begins to

form when dαα = 5.0 Å. The most likely dimer conformation is one inter molecular

β-bridge with no helical structures. Longer intermolecular β-strand structures are
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Figure 6.12: Probability distribution of the number of intermolecular β-bridges when
the NACore dimer forms intermolecular β-bridges but no intramolecular β-bridge.
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observed when dαα = 4.0 Å. Although there are NACore dimers that form both helix

and intermolecular β-bridges, its probabilities are low as shown in Figs. 6.11(e) and

(f). The intermolecular β-bridges usually form between the residues that do not

form helix structures.

In the aggregation of various amyloidogenic peptides, the transition from α-

helical to β-rich conformations has been observed [63–72]. For instance, Qi et al.

identified the following two mechanisms in the transition from α-helical to β-rich

conformations of the human amylin fragment dimer: (i) the random coil part of

the helical conformation directly transits into an intermolecular β-sheet and (ii)

the helical conformation first unfolded to coil conformation and then the coil struc-

tures convert into an intermolecular β-sheet [65]. In the dimerization process of the

NACore peptides, the spontaneous intermolecular β-bridge formation is more likely

than the intermolecular β-bridge formation through helix structure considering from
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Figs. 6.11(d) and (e). This is because, in the NACore peptides, the coil conformation

is dominant in both the monomer and pre-dimer states even though the α-helical

conformation is stabilized in the pre-dimer state as shown in Figs. 6.5(a) and (b).

Thus, the helical conformations are unlikely to trigger the formation of intermolec-

ular β-bridges.

The data indicate two possible pathways of intermolecular β-bridge formation in

the dimerization process: (i) an intermolecular β-bridge structure is formed by bind-

ing with an intramolecular β-bridge that has already formed, or (ii) an intermolecular

β-bridge is formed directly between residues that have no specific structure when

the two NACore peptides are close to each other. Judging from Figs. 6.11(a)–(c) the

latter pathway is more likely than the former one in the dimerization of the NACore

peptides. This is because the NACore peptides have a low propensity to form in-

tramolecular secondary structures and consequently the NACore peptides have less

opportunity to take the former pathway. These observations can be regarded as

an example of “inverse side chain effect” [73] or “natively disordered model” [74]:

amyloid formation is primarily defined by main chain interactions, and is a distinct

process from protein folding in which the side chain contacts play an important role

(i.e., absence of folding propensity results in amyloid formation).

On the other hand, a number of experimental and computational studies have

investigated the role of β-hairpin formation in the aggregation of amyloidogenic

peptides such as α-Syn, Aβ peptide, β2-microglobulin, and islet amyloid polypep-

tide [61, 62, 75–98]. These studies have revealed that although these amyloidogenic

peptides in monomeric form have an intrinsically disordered nature, an ordered con-

formation such as β-hairpin as well as random coil was found in the conformational

ensembles [77–86]. Furthermore, the β-hairpin structure also participates in the

dimer structures [61, 62, 82–84, 88–94]. It has been suggested that the β-hairpin

structure intermediates the intermolecular β-bridge formation and accelerates the

aggregation of amyloidogenic peptides [61, 62, 82, 84, 86, 87, 95–98]. These observa-

tions indicate that, in the aggregation process of amyloidogenic peptides, intermolec-

ular β-bridges are easily formed on intramolecular β-bridges if the intramolecular

β-bridges are already formed. Thus, if an amyloidogenic peptide has a high propen-
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sity to form intramolecular β-bridges, intermolecular β-bridges tend to form on the

intramolecular β-bridges. To support this idea, let us discuss the dimerization mech-

anism of amyloid-β(29–42) reported by Itoh et al. [61, 62], which is a comparable

example to the present study. They revealed that the intermolecular β-bridges are

readily formed when there are intramolecular β-bridges in the dimerization process

of amyloid-β(29–42). The average number of residues forming the intramolecular β-

bridges of amyloid-β(29–42) is approximately three when it is in the monomer state.

In the pre-dimer state, more intramolecular β-bridges are observed. This means

that amyloid-β(29–42) has a high propensity to form intramolecular β-bridges in

the monomer and pre-dimer states. This propensity was observed by NMR exper-

iments as well as molecular dynamics simulations [99]. Aβ(29–42) peptide, with

amino-acid sequence Ace-GAIIGLMVGGVVIA-Nme, has only hydrophobic amino

acid residues. Because of its high hydrophobicity, amyloid-β(29–42) tends to form

the β-hairpin structure as a low-enthalpy conformation. Due to the high proportion

of intramolecular β-bridges in the monomer and pre-dimer states, the probability of

taking the pathway that forms the intermolecular β-bridges on the intramolecular

β-bridges is also high in the dimerization of amyloid-β(29–42).

Therefore, the author propose that pathway of an intermolecular β-bridge forma-

tion of the amyloidogenic peptide depends on its propensity to form an intramolec-

ular secondary structure, especially intramolecular β-bridges. If the amyloidogenic

peptide has a high propensity to form intramolecular β-bridges, intermolecular β-

bridges tend to form on the intramolecular β-bridges. This is because intermolecular

β-bridges are easily formed on the intramolecular β-bridges. On the other hand, if

an amyloidogenic peptide has a low propensity to form intramolecular β-bridges, the

intermolecular β-bridges tend to be formed directly between residues with no spe-

cific structure. This mechanism could be applied not only for the NACore peptide

but also for amyloidogenic peptides in general.
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6.4 Conclusions

The author investigated the dimerization of NACore peptides by molecular dynam-

ics simulation. The author employed the isothermal–isobaric replica-permutation

method for the two NACore peptides in explicit water to achieve efficient conforma-

tional sampling. The free-energy landscape as a function of dαα, which is a measure

of the distance between the peptides, at T34 = 301.7 K revealed that the dimer state

was the most stable for the NACore peptides. By analyzing the secondary structure,

the author revealed that the NACore dimer with intermolecular β-bridges is dom-

inant in the dimer state. More intermolecular antiparallel β-bridges are observed

than the intermolecular parallel β-bridges in the NACore dimer structures.

The author also found that the intramolecular antiparallel β-bridge and α-helix

structures are stabilized in the pre-dimer state. The author revealed that the NA-

Core structures with an intramolecular antiparallel β-bridge or α-helix in the pre-

dimer state are enthalpically stable but entropically unfavorable than those in the

monomer state. This is because the intermolecular side-chain contacts between the

NACore peptides suppress the motion of the peptides, which leads to entropy reduc-

tion. To compensate for the entropy loss, the NACore peptide forms intramolecular

hydrogen-bonds to be of lower enthalpy conformation; as a result, increases in the

intramolecular antiparallel β-bridges and α-helix structures are observed. The sta-

bilization of the intramolecular secondary structures in the pre-dimer state has also

been reported in the dimerization process of amyloid-β(29-42) peptides [61, 62].

Therefore, it is suggested that the stabilization of the intramolecular secondary

structure in the middle of the dimerization process is a common property of amy-

loidogenic peptides.

In the dimerization of the NACore peptides, there are two possible pathways

of intermolecular β-bridge formation: (i) an intermolecular β-bridge structure is

formed by binding with an intramolecular β-bridge that has already formed, and

(ii) an intermolecular β-bridge is formed directly between residues that have no

specific structure when the two NACore peptides are close to each other. The

author revealed that the latter pathway tends to be realized in the dimerization of the

NACore peptides. This is because the random coil conformation is dominant in both
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the monomer and pre-dimer states even though the intramolecular antiparallel β-

bridge and α-helix structures are stabilized in the pre-dimer state. In other word, the

high propensity of the NACore peptide to form a coil conformation in the monomer

and pre-dimer states hide the former pathway.

On the other hand, when the NACore dimer has both intramolecular and inter-

molecular β-bridges, the intramolecular β-bridges and intermolecular β-bridges tend

to share the same residues. This result suggests that an intermolecular β-bridge is

easily formed when an intramolecular β-bridge has already formed. Moreover, the

propensity of the intramolecular β-bridge formation in the monomeric form possibly

changes the pathway of the intermolecular β-bridge formation. In fact, a role of the

β-hairpin structure in the dimerization process has been investigated in other amy-

loidogenic peptides as well, suggesting that the β-hairpin structure intermediate the

intermolecular β-bridge formation and accelerate the aggregation of amyloidogenic

peptides [61, 62, 82, 84, 86, 95–98]. Therefore, the author propose a general view of

intermolecular β-bridge formation in the dimerization process, which is as follows:

the propensity of an amyloidogenic peptide to form intramolecular β-bridges de-

termines the mechanism of forming intermolecular β-bridges. If the amyloidogenic

peptide has a high propensity to form intramolecular β-bridges, intermolecular β-

bridges tend to form on the intramolecular β-bridges. If the amyloidogenic peptide

has a low propensity to form intramolecular β-bridges, the intermolecular β-bridges

tend to form directly between residues with no specific structures.

Insights from this simulation provide useful information to assess the general

mechanisms underlying the aggregation and fibril formation of amyloidogenic pep-

tides. Further comparisons among amyloidogenic peptides are necessary to confirm

the relationship between the propensity to form intramolecular structures and the

fibrillation process. The author believe that these insights will also help to under-

stand the polymorphism of amyloid fibril structures and their cytotoxicity.
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tolomé Vilanova, Miquel Adrover, and Juan Frau. A Coarse-Grained Molec-

ular Dynamics Approach to the Study of the Intrinsically Disordered Protein

165



α-Synuclein. Journal of Chemical Information and Modeling, 59(4):1458–1471,

2019.

[80] Guanghong Wei and Joan Emma Shea. Effects of solvent on the structure of

the alzheimer amyloid-β(25-35) peptide. Biophysical Journal, 91(5):1638–1647,

2006.

[81] Nicolas L. Fawzi, Aaron H. Phillips, Jory Z. Ruscio, Michaeleen Doucleff,

David E. Wemmer, and Teresa Head-Gordon. Structure and dynamics of the

Aβ21-30 peptide from the interplay of NMR experiments and molecular simu-

lations. Journal of the American Chemical Society, 130(19):6145–6158, 2008.

[82] Govardhan Reddy, John E. Straub, and D. Thirumalai. Influence of preformed

Asp23-Lys28 salt bridge on the conformational fluctuations of monomers and

dimers of Aβ peptides with implications for rates of fibril formation. Journal

of Physical Chemistry B, 113(4):1162–1172, 2009.

[83] Yassmine Chebaro, Normand Mousseau, and Philippe Derreumaux. Structures

and thermodynamics of alzheimer’s amyloid-β Aβ(16-35) monomer and dimer

by replica exchange molecular dynamics simulations: Implication for full-length

Aβ fibrillation. Journal of Physical Chemistry B, 113(21):7668–7675, 2009.

[84] Luca Larini and Joan-Emma Shea. Role of β-Hairpin Formation in Aggrega-

tion: The Self-Assembly of the Amyloid-β(25–35) Peptide. Biophysical Journal,

103(3):576–586, 2012.

[85] Masamichi Nishino, Yuji Sugita, Takao Yoda, and Yuko Okamoto. Structures of

a peptide fragment of β 2 -microglobulin studied by replica-exchange molecular

dynamics simulations - Towards the understanding of the mechanism of amyloid

formation. FEBS Letters, 579(24):5425–5429, 2005.

[86] Sang Hee Shim, Ruchi Gupta, Yun L. Ling, David B. Strasfeld, Daniel P.

Raleigh, and Martin T. Zanni. Two-dimensional IR spectroscopy and isotope

labeling defines the pathway of amyloid formation with residue-specific resolu-

tion. Proceedings of the National Academy of Sciences of the United States of

America, 106(16):6614–6619, 2009.

166



[87] Nicholas F. Dupuis, Chun Wu, Joan-Emma Shea, and Michael T. Bowers.

The Amyloid Formation Mechanism in Human IAPP: Dimers Have β-Strand

Monomer－Monomer Interfaces. Journal of the American Chemical Society,

133(19):7240–7243, 2011.

[88] Tingting Zhang, Yuanxin Tian, Zhonghuang Li, Shuwen Liu, Siming Liu, Xiang

Hu, Zichao Yang, Xiaotong Ling, and Jiajie Zhang. Molecular Dynamics Study

to Investigate the Dimeric Structure of the Full-Length α-Synuclein in Aqueous

Solution. Journal of Chemical Information and Modeling, 57(9):2281–2293,

2017.

[89] Guanghong Wei, Andrew I. Jewett, and Joan-Emma Shea. Structural diversity

of dimers of the Alzheimer amyloid-β(25–35) peptide and polymorphism of the

resulting fibrils. Physical Chemistry Chemical Physics, 12(14):3622, 2010.

[90] Bogdan Tarus, Thanh T. Tran, Jessica Nasica-Labouze, Fabio Sterpone,

Phuong H. Nguyen, and Philippe Derreumaux. Structures of the Alzheimer’s

Wild-Type Aβ1-40 Dimer from Atomistic Simulations. Journal of Physical

Chemistry B, 119(33):10478–10487, 2015.

[91] Phuong H. Nguyen, Fabio Sterpone, Josep M. Campanera, Jessica Nasica-

Labouze, and Philippe Derreumaux. Impact of the A2V Mutation on the

Heterozygous and Homozygous Aβ1-40 Dimer Structures from Atomistic Sim-

ulations. ACS Chemical Neuroscience, 7(6):823–832, 2016.

[92] Phuong H. Nguyen, Fabio Sterpone, Ramon Pouplana, Philippe Derreumaux,

and Josep M. Campanera. Dimerization mechanism of Alzheimer Aβ40 pep-

tides: The high content of intrapeptide-stabilized conformations in A2V and

A2T heterozygous dimers retards amyloid fibril formation. Journal of Physical

Chemistry B, 120(47):12111–12126, 2016.

[93] Payel Das, Anita R. Chacko, and Georges Belfort. Alzheimer’s Protective

Cross-Interaction between Wild-Type and A2T Variants Alters Aβ42 Dimer

Structure. ACS Chemical Neuroscience, 8(3):606–618, 2017.

167



[94] Viet Hoang Man, Phuong H. Nguyen, and Philippe Derreumaux. High-

Resolution Structures of the Amyloid-β 1-42 Dimers from the Comparison of

Four Atomistic Force Fields. Journal of Physical Chemistry B, 121(24):5977–

5987, 2017.

[95] Frisco Rose, Miroslav Hodak, and Jerzy Bernholc. Mechanism of copper(II)-

induced misfolding of Parkinson’s disease protein. Scientific Reports, 1(Ii):1–5,

2011.

[96] Kelly N.L. Huggins, Marco Bisaglia, Luigi Bubacco, Marianna Tatarek-Nossol,

Aphrodite Kapurniotu, and Niels H. Andersen. Designed hairpin peptides in-

terfere with amyloidogenesis pathways: Fibril formation and cytotoxicity inhi-

bition, interception of the preamyloid state. Biochemistry, 50(38):8202–8212,

2011.

[97] Ewa A. Mirecka, Hamed Shaykhalishahi, Aziz Gauhar, Şerife Akgül, Justin
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Chapter 7

Conclusions

Proteins perform biological functions by folding into the native structures that are

the minimum free-energy state. On the other hand, the misfolding of proteins re-

sults in aggregation and amyloid fibril formation [1]. These aggregates and fibrils

are believed to be associated with neurodegenerative disorders such as Alzheimer’s

and Parkinson’s diseases. Therefore, understanding protein stability, aggregation

mechanism, fibril formation process are fundamental and significant issues in pro-

tein science. All-atom molecular dynamics simulation is a useful tool to reveal the

behavior of biomolecules at atomic-resolution, which complements experiments and

theories. However, the conformation of biomolecules tends to get trapped in the

local-minimum free-energy state due to its complex free-energy landscape. This sit-

uation hampers the efficient conformational sampling of the biomolecules. In this

thesis, the author investigated the following four subjects regarding the above is-

sues: (i) Development of isothermal-isobaric replica-permutation method (RPM);

(ii) Development of replica sub-permutation method (RSPM); (iii) Investigation of

structural stability of a small protein, chignolin, under various temperature and

pressure conditions; and (iv) Dimerization process of α-synuclein fragments as the

initial stage of aggregation.

In Chapter 3, the author proposed the isothermal–isobaric RPM to realize an

efficient simulation of the biomolecules under a wide range of temperature and pres-

sure. The RPM was originally proposed in the canonical ensemble. This means

that the original RPM cannot evaluate physical quantities such as the differences
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in the partial molar enthalpy, ∆H, and the partial molar volume, ∆V , because

it does not control the pressure. In this study, the author extended the RPM to

the isothermal–isobaric ensemble. The isothermal–isobaric RPM performs not only

temperature but also pressure permutation to realize two-dimensional random walks

in temperature and pressure spaces. Therefore, we can obtain physical quantities

at various temperature and pressure values after the simulation. This is the first

realization of a multidimensional RPM. The author compared sampling efficiency

among the RPM with the Suwa–Todo, heat bath, metropolis algorithms, and the

replica-exchange method (REM). The RPM with the Suwa–Todo algorithm achieves

the most efficient parameter transitions among them. The author also pointed out

that introducing subsets affects the transition ratio of the parameters. Therefore,

one subset should include as many replicas as possible to realize more efficient sam-

pling; however, it is a trade-off between sampling efficiency and the computational

costs in the permutation trials. The upper limit of the number of replicas in one

subset is from eight to ten in practical.

In Chapter 4, the author developed the RSPM. This method introduces a new

permutation algorithm termed “sub-permutation” to reduce the number of per-

mutation candidates. The sub-permutation is a set of permutations that include

transitions only to neighboring parameters. Therefore, we can avoid using subsets,

which is not desirable in the sampling efficiency, to reduce the number of permu-

tation candidates. The author showed that the parameter transition by RSPM is

nearly identical to the replica permutation that uses all possible combinations be-

tween replicas and parameters. Thus, the RSPM succeeds in reducing the number

of permutation candidates without the loss of sampling efficiency. The author also

demonstrated that the RSPM achieves more efficient simulation than the RPM and

REM when we need more than eight replicas or perform multidimensional replica

simulations. The RSPM will be a useful technique when we need more replicas to

tackle a large-scale molecular system.

In Chapter 5, the author described an application study of the isothermal–

isobaric RPM to the β-hairpin mini protein, chignolin, that consists of ten amino-

acid residues. The chignolin has folded and misfolded structures as the native and
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metastable states, respectively. Both of them have β-hairpin structures and similar

to each other. In this study, the author performed the isothermal–isobaric replica-

permutation simulation to the chignolin. We succeeded in the conformational sam-

pling of the chignolin from T = 300–450 K and P = 0.1–500 MPa by one simulation.

The author evaluated the melting temperature Tm, differences in the partial molar

enthalpy ∆H, the partial molar volume ∆V between folded and unfolded states.

They are in good agreement with the experimental results. In addition, we gained

the difference in isobaric heat capacity ∆Cp between folded and unfolded states that

could not evaluate in the experiment.

The author also revealed that the folded and misfolded states show completely

different stability under high-pressure conditions; the folded structure decreases as

pressure increases, whereas the misfolded structure increases as pressure increases.

The difference in the partial molar volume was estimated as ∆V = Vmisfold − Vfold =

−4.6 ± 0.2 cm3/mol at T = 300 K. That is, the misfolded chignolin has a smaller

partial molar volume than the folded chignolin. The different pressure dependence

of folded and misfolded state is strange because both folded and misfolded states

have β-hairpin structure. To explore this unusual pressure dependence of the folded

and misfolded states, the author focused on the orientation of Tyr2 and Trp9 side

chains.In the folded structures, Tyr2 and Trp9 form a hydrophobic core. Con-

sequently, the hydrogen bond Asp3N–Thr8O, which is essential for the β-hairpin

formation, is exposed to the solvents on the opposite side of the hydrophobic core.

Water molecules approach and break the hydrogen bond as pressure increases. As

a result, the folded states decrease under high-pressure conditions. In the misfolded

state, on the other hand, the hydrogen bonds that are essential to form β-hairpin

structure are covered with the Tyr2 and Trp9 side chains. Namely, the hydrogen

bonds do not expose to the solvent. The side chains protect the hydrogen bonds

from the approaching water molecules under high-pressure conditions. Therefore,

the misfolded structure becomes more stable with further compressing its structure

under the high-pressure conditions.

In Chapter 6, the author investigated the dimerization process of α-synuclein

fragments by the isothermal–isobaric replica-permutation molecular dynamics sim-

171



ulation. In particular, we focused on a segment from 68th to 78th of α-synuclein

called NACore because the NACore is an essential region for both fibril forma-

tion and cytotoxicity of the α-synuclein. Analyses of the free-energy landscape and

secondary structure revealed that the dimer structure with the intermolecular an-

tiparallel β-bridge is the most stable. The author also found that intramolecular

secondary structure such as α-helix and antiparallel β-bridge were stabilized in the

pre-dimer state. The evaluation of differences in the partial molar enthalpy ∆H and

partial molar entropy ∆S revealed that the NACore structures with intramolecular

antiparallel β-bridge or α-helix in the pre-dimer state are enthalpically stable but

entropically unfavorable than those in the monomer state. As for the dimerization

process, we identified that the intermolecular β-bridge tends to spontaneously form

between residues that do not have a secondary structure. This is because the NA-

Core peptides have low a propensity to form intramolecular secondary structures.

From the simulation, the author proposed that the pathway of an intermolecular

β-bridge formation of amyloidogenic peptide depends on its propensity to form an

intramolecular secondary structure.

In the two application studies in Chapters 5 and 6, we have gained fundamental

knowledge about the stabilization/destabilization mechanisms of the β-hairpin pro-

tein under high-pressure conditions, and aggregation process of amyloidogenic pep-

tides. Furthermore, the application studies have demonstrated that the isothermal–

isobaric RPM and RSPM are a powerful tool to investigate molecular insight such

as conformational changes and the aggregation process of proteins. They also have

demonstrated that the isothermal–isobaric RPM and RSPM enable accurate esti-

mation of the free energy and thermodynamics quantities, which is important to

compare the simulations with the experimental data and understand the character-

istics of the proteins. Because the isothermal–isobaric RPM and RSPM can access

higher pressure and lower temperature region, cold denaturation of biomolecules is

also one of the targets of these methods [2–7]. Furthermore, not only focusing on

temperature and pressure permutations but also introducing other permutation pa-

rameters such as Hamiltonian [8–12], chemical potential [13], and pH [14] are future

applications to make the RPM more useful.
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