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Preface 
 

Traditionally, synthesis of new materials and the investigation of their properties has been subject to the experience and intuition 
of individual researchers. However, in recent years, especially after the launch the Materials Genome Initiative (MGI) in the 
United States 2011, a new field of research called “materials informatics” has been receiving a lot of attention. Materials 
informatics is an emerging new interdisciplinary field of materials science and data science. The major focus of materials 
informatics is to develop a computational scheme that aims to improve efficiency in the development of new innovative 
materials.  

In order to build the computational scheme, we need to solve the inverse problem, which refers to the task of predicting 
candidate materials with a given set of desired properties by finding the inverse map of the forward prediction model. Here, the 
forward predictive model refers to a statistical model that forwardly predicts the physicochemical properties of a given input 
material, and learning this model from a given material dataset can be considered the forward problem. In order to learn a 
statistical model from a material dataset, the input materials must be represented numerically in some way. The above three 
tasks can be regarded as “generation,” “learning,” and “representation” of material data. In this thesis, we present two studies 
in materials informatics on the representation and learning of material data, including chemical elements and crystal structures 
similarity. 

In what follows, an overall overview of materials informatics is summarized in Chapter 1. With regard to the two studies 
mentioned above, an overview of materials informatics on inorganic materials is discussed in Chapter 2. Chapter 2 also clarifies 
the scientific contributions of the two studies in relation to the overall workflow. In Chapter 3, we present the study on automated 
design of periodic tables, formulating the task of periodic table design as a data visualization problem (or dimension reduction 
problem). In Chapter 4, we present the study on crystal structure prediction with machine learning-based element substitution, 
formulating the task of crystal structure prediction as a metric learning problem (the crystal structure prediction is a task to 
predict the stable or metastable crystalline state of a material with a given chemical composition). The main motivation of the 
studies is to show that the unique approaches constructed from the perspective of data science can provide new problem settings 
to the two fundamental problems in physical chemistry (the design of periodic table and the crystal structure prediction). Finally, 
Chapter 5 concludes this thesis. 
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1 Introduction 
The rapid development of materials databases and recent advances in machine learning techniques have led to a significant shift 
in the field of materials science, giving rise to a new interdisciplinary field called “materials informatics.” This field utilizes a 
combination of machine learning techniques and digital technologies to promote the development and discovery of new 
materials as well as to further our understanding of material systems [1]. The major focus of materials informatics is to develop 
a computational scheme that can improve efficiency in the development of new innovative materials (computational materials 
design) [2]. In general, the design space of materials research is considerably vast. For example, it is estimated that there are 
about 1060 candidate molecules in the chemical space of small organic molecules alone [3]. On the contrary, the number of 
synthesized molecules in public databases is in the order of 108 at most. Therefore, there is still a vast unexplored area in the 
chemical space. Furthermore, in the study of advanced materials, the size of the design space increases drastically with the 
addition of various design parameters such as the selection of additives and solvents, compositional features in the fabrication 
of composite materials, various kinds of processing conditions, and so on. Using machine learning as a technological driving 
force, new materials with innovative properties can be discovered from such vast search space. This is precisely the primary 
objective of this emerging new field.  

The basic workflow of materials informatics consists of forward and inverse problems (Fig. 1.1). For example, the 
objective of the forward problem is to obtain a statistical model 𝑌 = 𝑓(𝑋) that forwardly predicts physicochemical properties 
𝑌 of any given input material 𝑋. The inverse problem, on the contrary, predicts candidate materials 𝑋 with a given set of 
desired properties	𝑌 = 𝑌∗ by finding the inverse map of the forward model. The workflow is common and not worthy of special 
mention, but one of the distinctive features of data analysis in materials informatics lies in the particularity and high-
dimensionality of the input variable 𝑋 to be handled. Variables such as chemical compositions, molecules, crystal structures, 
etc. are generally non-trivial to represent numerically as fixed-length vectors. Therefore, in order to formulate such a scientific 
task within the framework of data science, we need to design descriptors that quantify the patterns of 𝑋. In addition, to solve 
the inverse problem, we need a generative model of 𝑋 that can move freely in a vast search space. 

The task can be seen as “representation,” “learning,” and “generation” of material data. An input variable such as chemical 
composition, molecule, or crystal structure is numerically “represented” into a descriptor vector, and the mapping from the 
vectorized input to an output property is “learned” with a given dataset. The inverse mapping of the model is then explored by 
computationally “generating” materials with desired properties to identify promising candidates. In this thesis, we will present 
two studies on the representation and learning of material data, including chemical elements and crystal structures similarity, in 
Chapters 3 and 4, respectively. 

Data representation and visualization are important machine learning techniques that aim to computationally visualize 
high-dimensional data [4]. In particular, data visualization is helpful in understanding the overall picture of the distribution of 
high-dimensional materials data. In Chapter 3, we present the study on computational design of periodic tables using an 
unsupervised machine learning algorithm [5]. The object to be represented and visualized here is a set of chemical elements 
with their observed physicochemical properties. An excellent way of representing element species has already been well-
established as the periodic table of the chemical elements; in 1869, the first draft of the periodic table was developed and 
published by Russian chemist Dmitri Mendeleev [6]. In terms of data science, his achievement can be viewed as a successful 
example of feature embedding based on human cognition; chemical properties of all known elements at that time were 
compressed onto the two-dimensional grid system for a tabular display. In this thesis, we seek to answer whether machine 
learning can reproduce or recreate the periodic table by using observed physicochemical properties of the elements. To achieve 
this goal, we developed a periodic table generator (PTG). The PTG is an unsupervised machine learning algorithm based on 
generative topographic mapping (GTM) [7] that can automate the translation of high-dimensional data into a tabular form with 
varying layouts. PTG autonomously has produced various arrangements of chemical symbols, which organize a two-
dimensional array such as Mendeleev’s periodic table or three-dimensional spiral table according to the underlying periodicity 
in the given data. We further show what PTG learns from the element data and how the element features, such as melting point 
and electronegativity, are compressed to the lower-dimensional latent spaces. The related literature and background of this study 
are summarized in Sections 2.7 and 2.8. The GTM, which is the basis of the proposed method, is described in detail in Sections 
2.9 and 2.10.  

In Chapter 4, we describe the study on data-driven crystal structure prediction using structural similarity. The goal of the 
crystal structure prediction is to predict and discover the stable or metastable crystalline state of a material with a given chemical 
composition. This prediction task is a critical and inevitable part in the entire workflow of the computational design of inorganic 
solid-state materials. The problem of predicting the crystal structure formed by an arbitrary chemical composition remains 
unsolved in solid-state physics. In principle, stable or metastable structures formed by atomic or molecular assemblies can be 
found by solving a local optimization problem for a potential energy surface defined on the space of atomic coordinates. The 
major approach to the computational crystal structure prediction relies on the repeated calculation of first-principles potential 
energy surfaces, such as density functional theory (DFT) calculations [8, 9]. However, for complex systems, such as the one 
with many atoms per unit cell, the iterative gradient descent on the potential energy surface using first-principles calculations 
is prohibitively expensive. It is known that such an ab initio approach cannot identify crystals with more than 30-40 atoms per 
unit cell. In this thesis, we present a robust method for crystal structure prediction based on element substitution using machine-
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learned crystal structure similarity. The method relies on a machine learning algorithm referred to as metric learning [10]. This 
algorithm is used to learn the representation of crystal structure similarity with a given dataset and to automate the selection of 
template structures from a crystal structure database that have high chemical replaceability to the unknown stable structure for 
a given chemical composition. In metric learning, a binary classifier is constructed to determine whether the crystal structures 
of two given chemical compositions are identical or not. Here, crystals with sufficiently high structural similarity are treated as 
identical, and the labeled dataset is extracted from the crystal structure database. A broader background of this study and 
literature related to the computational design of inorganic solid-state materials is included in Sections 2.1 to 2.6. 

 

 
 

Figure 1.1. Basic workflow of materials informatics 
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2 Review of materials informatics on inorganic materials 
Here, we briefly discuss the history and recent developments in materials informatics on inorganic materials. In particular, we 
aim to clarify the scientific contribution of our two studies, “recreation of the periodic table using an unsupervised machine 
learning algorithm” and “crystal structure prediction based on machine learning representation of crystal structure similarity,” 
in relation to the overall workflow. In Sections 2.1 to 2.6, an overview and recent studies related to the computational design of 
inorganic solid-state materials are discussed. Particularly, crystal structure prediction is discussed in Section 2.6 and s 
representation learning for materials data including chemical element species is discussed in Sections 2.7 and 2.8. Since the 
periodic table generation described in Chapter 3 relies on the GTM and its variant called GTM with latent variable dependent 
length-scale and variance (GTM-LDLV) [11], their methodological basis is discussed in Sections 2.9 and 2.10, respectively. 

2.1 Introduction 
The field of materials informatics offers various machine learning techniques that enable us to improve the efficiency of 
development of new materials found via data-driven method [1]. Traditionally, new inorganic compounds have been discovered 
through trial-and-error based on human intuition and through laborious, time-consuming synthetic experiments. However, 
thanks to advances in ab initio first-principles calculations, such as density functional theory (DFT) calculations [8, 9], materials 
research based on theory and computational science has played a major role in the past decades. High accuracy and increasing 
efficiency of the DFT calculations has enabled researchers to perform comprehensive studies on a large number of compounds, 
leading to the rapid expansion of DFT-based materials properties and crystal structure databases (as detailed in Section 2.2). 
Furthermore, the accumulation of massive data has greatly facilitated a wide variety of successful applications of machine 
learning. In recent years, more advanced methods, which combine accurate but time-consuming DFT calculations and fast 
machine learning techniques, have been proposed.  

The basic workflow of the computational materials design is illustrated in Fig. 2.1. The individual tasks (such as 
“representation of materials”) are detailed in Sections 2.2 to 2.6. In materials informatics of inorganic crystalline materials, the 
most fundamental input variable is the chemical composition, which represents the content of element species consisting of a 
material. Given the chemical composition and the temperature and pressure of the system, the crystal structure of assembled 
atoms in a stable or metastable state can, in principle, be determined ab initio. The crystal structure can be predicted by iteratively 
evaluating the potential energy function defined on the atomic coordinates using first-principles calculations to find the local 
minimum solution. While the problem formulation is clear, due to the high computational cost of iterative first-principles 
calculations, such ab initio approaches are still unable to solve crystalline systems with a large number of atoms, such as 30-40 
atoms per unit cell. In Chapter 4, we describe an ultra-efficient and accurate workflow for crystal structure prediction that 
utilizes a metric learning technique that learns the relationship between the similarity of chemical composition and the one of 
crystal structures from existing crystal data. The method does not require any first-principles calculations, except for a validation 
step. 

Once a crystal structure is determined, the mapping to physical properties can be obtained by first-principles calculations, 
which again require significant computational resources. In summary, forward prediction consists of two steps: from chemical 
composition to crystal structure, and from crystal structure to properties. Recently, various attempts have been made to speed-
up the computation of these two tasks by using surrogate machine learning models. The task of predicting properties from 
crystal structures using machine learning has been a central problem in materials informatics from its early days. There has also 
been much work on predicting properties directly from chemical composition, ignoring the crystal structure in the middle of the 
workflow. The key issue here is the design of descriptors for the chemical composition and crystal structure. The chemical 
composition consists of a list of elements and their contents. The number of elements, the constituent units, varies across 
different materials. For example, the number of elemental species differs between binary and ternary compounds. In order to 
deal with such set variables, a vector representation is usually defined by combining a predefined set of elemental features with 
compositional ratios and taking their summary statistics such as weighted average and weighted variance (Section 2.3). In the 
study on the periodic table, discussed in Chapter 3, unsupervised learning was applied to obtain feature representations of 
elements from data on physicochemical properties. For the representation of crystal structures, descriptors that numerically 
describe the topology, geometry, size, symmetry, etc. of the atomic arrangement were used, with the feature units representing 
the surrounding environment of each atom (Section 2.3). Another approach is to include calculated or experimental values of 
physical properties such as lattice parameter, band gap, density of states, etc. in the descriptors. However, descriptors including 
physical properties are computationally very expensive, and the resulting predictive models are not suitable for exhaustive 
screening. Nonetheless, once such a vector representation is obtained, the mapping from vectorized materials to real-valued 
properties can be estimated by applying conventional supervised learning. 

Once a forward prediction model	𝑌 = 𝑓(𝑋) is obtained, its inverse map is obtained to predict a material 𝑋 with an 
arbitrary property	𝑌 = 𝑌∗. The simplest way to solve the inverse problem is virtual high-throughput screening. A library of a 
large number of candidate inputs is constructed and then screening experiments are carried out using the trained model. In 
general, the computational cost of machine learning models is much lower than that of experiments or theoretical calculations, 
and thus a large number of candidate materials can be evaluated. Although machine learning has been used to screen materials 
for drug discovery since a long time, it has only recently been applied to materials research. Gómez-Bombarelli et al. [3] used 



  9 

a neural network trained on first-principles data to screen more than 400,000 candidate materials and discover new molecules 
for organic LEDs with high external quantum yields. Seko et al. [12] calculated the lattice thermal conductivity of 101 inorganic 
compounds using first-principles calculations, and combined Bayesian optimization [13] and Gaussian process regression [14] 
to derive a property prediction model. Using this model, they screened 54,779 compounds in the Materials Project [15] and 
identified 221 compounds with low thermal conductivity. Carrete et al. [16] used the theoretical thermal conductivity values of 
32 half-Heusler compounds to derive a regression model using random forest algorithm and 450 low thermal conductivity 
compounds registered in the AFLOW database were screened. Pilania et al. [17] calculated 8 physical properties (band gap, 
formation energy, dielectric constant, etc.) for 175 polymeric materials (polyethylene) whose repeating units consisted of four 
blocks of basic elements using first-principles calculations and then applied kernel ridge regression. The prediction model of 
each property was constructed by applying kernel ridge regression. Using this model, 29,365 polymer materials with 8 blocks 
of polymer units were screened. Wu et al. [18] synthesized a new polymer with high thermal conductivity by deriving a model 
to predict thermophysical properties using the polymer property database PoLyInfo [19]. A virtual library was created using a 
Bayesian molecular generation algorithm, and the three polymers predicted to have high thermal conductivity were selected for 
experimental validation. To derive a predictive model of thermal conductivity from a small amount of data, transition learning 
was utilized; the prediction model was derived from other physical properties of polymers that are correlated with thermal 
conductivity, such as glass transition temperature and specific heat, and the pretrained model was fine-tuned using a small 
amount of data to obtain a highly accurate prediction model of thermal conductivity. In Chapter 4, we construct a binary 
classification model that predicts the crystal structure identity of any two chemical compositions and we also perform a virtual 
screening to predict stable crystal structures. Specifically, a query composition with an unknown crystal structure and a chemical 
composition with a known crystal structure is input to the model, and the chemical composition with the same structure is 
identified. 

 

 
Figure 2.1. Basic workflow of the computational design of inorganic solid-state materials 
 
 
2.2 Crystal structure databases 
The emergence of comprehensive databases of crystal structures has played a key role in the development and widespread use 
of materials informatics. Various databases have been created so far, such as the Cambridge Crystallographic Data Centre 
(CCDC) in 1965 [20], the Inorganic Crystal Structure Database (ICSD) in 1983 [21], CRYSTMET in 1993 [22], Pauling File 
in 2002 [23], the Crystallography Open Database (COD) in 2003 [24], and Pearson’s Crystal Data (PCD) in 2007 [25]. 
Furthermore, thanks to DFT calculations and increasing computing power, a wide variety of computational materials databases, 
such as the Predicted Crystallography Open Database (PCOD) in 2005, the Materials Project (MP) database [15,26] and the 
Automatic FLOW for Materials Discovery database (AFLOW) in 2011 [27], the Harvard Clean Energy Project (CEP) [28] and 
the Open Quantum Materials Database (OQMD) in 2013 [29], and the Novel Materials Discovery Laboratory (NOMAD) in 
2015 [30], have been created. The Materials Project database was used for both the studies described in Chapters 3 and 4. While 
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the development of such databases has enhanced the potential of machine learning approaches in materials science, in order to 
apply them to machine learning, it is necessary to transform the data into a form (a descriptor vector) that is readable by machine 
learning algorithms. In the next section, we provide an overview of existing representation techniques for crystal structure 
information. 
 
2.3 Representation of inorganic materials 
Compositional descriptors express the amounts of chemical elements. For example, a conventional compositional descriptor 
operates with a predefined set of element features, such as electronegativity and atomic weight [31, 32]. For a given composition 
ratio, the feature values of constituent elements are collapsed to a quantity to describe a compositional feature; for example, by 
using the weighted mean and weighted variance of the element features. Here, we describe the compositional descriptor. The 
chemical formula is denoted by	𝑋 = 𝑋)*

+ 𝑋),
- ⋯𝑋)/

0 . Each element of the descriptor vector takes the following form: 
𝜙2,4(𝑋) = 𝑔6𝑐+,… , 𝑐0, 𝜂(𝑋+),… , 𝜂(𝑋0):. 

The notation 𝜂(𝑋0)  on the right-hand side denotes a feature quantity of element 𝑋0 , such as the atomic weight, 
electronegativity, or polarizability. With the function 𝑔, the 𝐾 element features 𝜂(𝑋+),… , 𝜂(𝑋0) with fraction 𝑐+, … , 𝑐0 
are converted into the compositional feature. For 𝑔, we can operate with the weighted average, weighted variance, max-pooling, 
and min-pooling, as given by 

𝜙=>?,4(𝑋) =
1

∑ 𝑐00
BC+

D𝑐0
0

BC+

𝜂(𝑋0), 

𝜙>=E,4(𝑋) =
1

∑ 𝑐00
BC+

D𝑐0
0

BC+

F𝜂(𝑋0) − 𝜙=>?,4(𝑋)H
-
, 

𝜙I=J,4(𝑋) = max	{	𝜂(𝑋+),… , 𝜂(𝑋0)}, 
𝜙IPQ,4(𝑋) = min	{	𝜂(𝑋+),… , 𝜂(𝑋0)}. 

 
Table. 4.2 provides a list of the 58 element features used in the analysis in Chapter 4 that were implemented in XenonPy, a 
Python open-source platform for materials informatics [33]. The element feature set includes the atomic number, bond radius, 
van der Waals radius, electronegativity, thermal conductivity, bandgap, polarizability, boiling point, melting point, number of 
valence electrons in each orbital, and so on. 

Due to the complexity of 3D periodic crystal structures of inorganic solid-state materials, the task to encode the structural 
information into a finite-length descriptor vector is not obvious [2]. Therefore, the representation of inorganic material 
information itself is an important research subject in this field, and various representation methods have been proposed so far 
[34]. In some studies, only indirect information (ignoring complex information like crystal structure) such as chemical 
composition is used as a descriptor [35, 36]. However, it is reported that the inclusion of structural information such as radial 
distribution function could significantly improve the prediction accuracy even further (Seko et al. [31]).  

The properties of ideal representation should include invariance, uniqueness, stability, and interpretability [34]. As a 
representation method of crystal structure, Zimmermann and Jain proposed local structure order parameters [37]. This method 
calculates a vector-type descriptor (site fingerprint) for each atomic site in the crystal structure by evaluating the degree of 
resemblance of the coordination environment of an atomic site to the preset-coordination motifs. Then, a crystal structure 
descriptor is calculated by taking statistics for each element of the site fingerprints across all atomic sites in the crystal structure. 
Most representation methods of crystal structure based on local environment of each atom calculate a crystal structure descriptor 
similar to this procedure. Bartok et al. [38] proposed a representation method based on smooth overlap of atomic positions 
(SOAP). Rupp et al. [39] proposed the Coulomb matrix, which represents nuclear coulombic interaction. Pham et al. [40] 
proposed the orbital field matrix, a representation based on the valence shell electrons of neighboring atoms. Schutt et al. 
proposed a novel crystal structure representation based on the averaged partial radial distribution function of pairwise distances 
between atoms. Representation methods based on connectivity constitute another category of effective methods. Application of 
N-grams, which are histograms of unique coordination environments and edge sequences, as a descriptor has been reported as 
being effective in predicting formation energies and electronic band gaps [41]. Furthermore, Xie et al. [42] proposed a crystal 
graph convolutional neural network framework to directly learn material properties from the connection of atoms in the crystal, 
providing a universal and interpretable representation of crystalline materials. In some recent studies [43, 44], 3D image-based 
representations of crystal structure have been used for learning of generative neural network-based models such as variational 
autoencoder (VAE) [45] and generative adversarial network (GAN) [46]. For example, Noh et al. [43] proposed the first 
generative model (VAE-based method) for inorganic solid-state materials using a 3D atomic image representation. In this study, 
complex 3D atomic image representations were encoded to the highly simplified continuous latent space with VAE, enabling 
optimization of materials on the latent space. Various representation methods are implemented in Python libraries for materials 
analysis such as pymatgen [47] and matminer [48, 49]. 
  
2.4 Property prediction  
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Property prediction involves the prediction of properties of materials using compositional features or structures of materials as 
input. This forward mapping with machine learning corresponds to the forward arrow, denoted as “ML (Machine Learning)” in 
Fig. 2.1. Such an ML-aided method provides fast prediction of materials, enabling computational screening of large-scale 
materials data. ML-aided property prediction is achieved by combining representation methods (as described in previous 
section) and supervised ML models such as kernel ridge regression, random forest, boosting methods, and neural network 
frameworks [50]. 
 
2.5 Inverse design strategies 
Inverse design of materials is defined as the task to search and output materials with a predefined set of target properties. This 
inverse mapping task corresponds to the reverse arrow (“inverse design of materials”) in Fig. 2.1. The inverse design strategies 
can be categorized into three types [2]: (1) high-throughput virtual screening (HTVS), (2) global optimization (GO), and (3) 
generative ML models.  

HTVS screens a predefined set of candidate materials using a property evaluation scheme. For property evaluation, DFT 
calculations are often used. However, since the computational cost of DFT calculations is considerably high, ML surrogate 
models have been applied for exploring a large materials space. Finally, the candidate materials proposed by such computational 
workflows are verified in real experiments. 

The inverse design of materials with GO aims to find the target materials by optimizing a forwardly predicted property 
surface with respect to input materials with an optimization algorithm such as the evolutionary algorithm. The property surface 
to be optimized is evaluated using first-principles calculations or ML models. For example, Podryabinkin et al. [51] proposed a 
crystal structure prediction algorithm that is based on the evolutionary algorithm and the machine learning interatomic potentials 
actively learning on-the-fly, which is implemented using the USPEX software [52]. The method aims to find the stable crystal 
structure by optimizing ML-predicted interatomic potentials using the evolutionary algorithm. The ML models for interatomic 
potentials are actively learned on-the-fly with the aid of DFT calculations for adaptive data acquisition. 

The inverse design of materials with generative ML models is another promising strategy. The generative ML models 
have been utilized to generate virtual materials data from the lower-dimensional continuous latent space learned from the prior 
knowledge on materials data distribution [53]. This strategy has the potential to generate new materials with target properties 
not present in existing databases. Furthermore, materials representation in the lower-dimensional continuous latent space largely 
facilitates exploration of materials. For example, Hoffmann et al. [44] proposed a general-purpose encoding-decoding 
framework for 3D atomic density under VAE formalism. The study by Noh et al. [43] is another example of using generative 
ML models, which was briefly discussed in Section 2.3. 
 
2.6 Crystal structure prediction 
In the entire workflow of discovering new materials, the process of predicting the stable crystal structure of a particular chemical 
compound (crystal structure prediction; CSP) is a critical and inevitable part, as shown in Fig. 2.1. In recent years, various 
methods for computational CSP have been proposed. The major approach to computational CSP relies on the repeated 
calculation of first-principles potential energy surfaces, such as DFT calculations [8, 9]. As optimization methods, random 
search [54, 55, 56], simulated annealing [57, 58], Basin-hopping [59], minima hopping [60, 61], evolutionary algorithm (EA) 
[52, 62, 63], particle-swarm optimization (PSO) [64, 65], Bayesian optimization (BO) [66], and look ahead based on quadratic 
approximation (LAQA) [67] have been applied so far. More recently, as a promising alternative, machine learning interatomic 
potentials have attracted considerable attention for substantially speeding-up the optimization process by bypassing the time-
consuming ab initio calculations [68, 69]. These existing methods can be classified into two types: sequential search and batch 
selection. The former set of methods, such as EA and PSO, explores the global or local minimum of the potential energy surface 
by iteratively modifying a current set of candidate crystalline forms with a predefined set of genetic manipulations in which ab 
initio structural optimization is repeatedly applied to the currently obtained candidates. The batch selection methods, such as 
BO and LAQA, utilize surrogate models learned with a training set of DFT energies and crystal structures for narrowing down 
to more promising candidates with lower predicted energies from a predefined set of candidate crystals. In both cases, a 
reasonable set of initial structures needs to be created by using a crystal structure generator. In this regard, the random symmetric 
structure generator [52, 70] and the topology-based structure generator [71] have been proposed so far. Nonetheless, the existing 
methods rely on the iterative use of computationally expensive ab initio energy calculations. 

Another type of computational CSP is based on element substitution [72, 73]. Historically, most crystals synthesized so 
far have been discovered by element substitution of previously discovered ones. Substitution-based CSP mimics such traditional 
protocols computationally; it aims to predict the stable crystal structure by replacing elements in an already known template 
crystal that possesses high chemical replaceability to the target structure to be predicted. The chemical replaceability can be 
statistically estimated by learning the co-occurrence pattern of element pairs in a crystal structure database [73]. Such 
substitution-based methods do not require time-consuming potential energy calculations except in the process of locally 
optimizing replaced crystals. However, unlike the ab initio energy-based methods, the template-based methods lack the ability 
to predict completely new crystal structures. However, in spite of this limitation, the template-based methods are far less 
computationally expensive than the ab initio energy-based methods, and are known to be sufficiently useful for the prediction 
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of many crystal structures [72]. 
In Chapter 4, we propose a new CSP framework that conducts the prediction task by selecting crystal structures that are 

predicted to be similar to the stable structure of a given chemical composition from the existing crystal structures in a database. 
The method is classified under element substitution-based methods, in which the replaceability of two chemical elements is 
statistically estimated based on the observed frequency of their occurrence in two similar crystal structures. The great potential 
of the present method is demonstrated through the prediction of a wide variety of crystalline systems in Chapter 4. 

 
2.7 Dimension reduction and visualization of materials data 
Visualization of high-dimensional materials data is very important in various aspects of materials informatics. The data 
visualization methods differ depending on whether a material is represented in a graph or vector. For the graph-based descriptor, 
visualization methods such as the scaffold tree [74] or scaffold network [75] are often used. For the vector-based descriptor, 
various dimensionality reduction techniques [4] are available, such as principal component analysis (PCA), kernel PCA [76], 
isometric feature mapping (ISOMAP) [77], local linear embedding (LLE) [78], and t-distributed stochastic neighbor embedding 
(t-SNE) [79]. 

Among such various methods for dimensionality reduction techniques, PCA is the most popular, traditional method, 
widely used for the visualization of materials data. For example, Cender et al. [80] used PCA to data mine missing information 
in ab initio libraries of alloys versus structure prototypes. Suh and Rajan [81] used PCA to show that structure maps representing 
structure–property relationships (electronic features and crystal structure parameters) can be reproduced via data mining. As a 
nonlinear dimensionality reduction technique, t-SNE is frequently used for visualizing materials data. For example, Zhong et 
al. [82] used t-SNE to show the distribution of the CO adsorption energies over adsorption sites on Cu-containing alloys with 
different local atomic environments and compositional features. Using t-SNE, they also revealed that Cu-Al exhibits the highest 
abundance of adsorption sites and site types with near-optimal CO adsorption energy values. 

When the number of data is large, some dimensionality reduction methods become difficult to apply due to 
computational cost constraints [83]. For instance, multidimensional scaling [84] and t-SNE do not scale with the amount of data 
because of their high memory requirements. To visualize large databases onto a low-dimensional space, PCA is widely used. 
For example, Singh et al. [85], Le Guilloux et al. [86], and Reymond [87], used PCA for large-scale chemical space analysis. 
While PCA is a powerful method even for large data, if the data is distributed in a lower-dimensional nonlinear manifold, its 
features may not be fully captured with PCA since it takes into account only on linear projections. As a nonlinear dimensionality 
reduction technique that is applicable to large data, self-organizing map (SOM) [88] is a widely used effective method. For 
example, Horvath et al. [89] used SOM to analyze a large database of approximately 200,000 molecules. SOM has the potential 
to generate more information-rich plots than PCA. However, SOM is a rule-based naive algorithm where the objective function 
to be optimized may not be defined, which hampers its application in certain cases [90]. Bishop et al. [7] developed generative 
topographic mapping (GTM) as a probabilistic extension of SOM, which strictly follows the framework of Bayesian inference. 
Gaspar et al. [83] successfully visualized large-scale chemical data with an incremental version of GTM [91]. They also 
performed a statistical analysis on this data, taking advantage of the fact that GTM is a well-defined generative model.  
 
2.8 Visualization of chemical elements as a periodic table 
Elements are the most important building blocks in physical chemistry. The representation and visualization of elemental 
features is a fundamental problem in physical chemistry that has already been studied for more than 150 years, long before the 
birth of modern data science. The present periodic table is considered as a product of data analysis from 150 years ago. The 
periodic table is a tabular arrangement of elements that is designed such that the periodic patterns of their physical and chemical 
properties are clearly understood. The prototype of the current periodic table was first presented by Mendeleev in 1869 [6]. At 
that time, approximately 60 elements (and a few of their chemical properties) were known. When the elements were arranged 
according to their atomic weight, Mendeleev noticed an apparent periodicity and an increasing regularity. Inspired by this 
discovery, he constructed the first periodic table. Despite the subsequent emergence of significant discoveries [92, 93], including 
the modern quantum mechanical theory of the atomic structure, Mendeleev’s achievement is still the de facto standard. 
Regardless, the design of the periodic table continues to evolve, and hundreds of periodic tables have been proposed in the last 
150 years [94, 95]. The structures of these proposed tables have not been limited to the two-dimensional tabular form, but have 
also included spiral, loop, and three-dimensional pyramid forms [96, 97, 98]. 

The periodic tables proposed so far have been products of human intelligence. However, a recent study has attempted to 
redesign the periodic table using computer intelligence, that is, machine learning [99]. Through this approach, building a 
periodic table can be viewed as an unsupervised learning task. Precisely, the observed physicochemical properties of elements 
are mapped onto regular grid points in a two-dimensional latent space such that the configured chemical symbols adequately 
capture the underlying periodicity and similarity of the elements. Lemes and Pino [99] used SOM [88] to place five-dimensional 
features of elements (i.e., atomic weight, radius of connection, atomic radius, melting point, and reaction with oxygen) into two-
dimensional rectangular grids. This method successfully placed similarly behaving elements into neighboring sub-regions in 
the lower-dimensional spaces. Zhou et al. [100] suggested the machine-learned properties of atoms from the extensive database 
of known compounds and materials themselves. Although this study did not aim to recreate the periodic table directly, it is 
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noteworthy as an applied study of machine learning on information about chemical elements. The machine-learned properties 
suggested in this study are represented in terms of high-dimensional vectors, and their PCA projections showed clustering of 
atoms into meaningful groups consistent with human knowledge. However, the machine learning algorithms never reached 
Mendeleev’s achievement as they missed important features such as between-group and between-family similarities. 

In Chapter 3, in order to reproduce the visualization results as closely as possible to Mendeleev's achievements by machine 
learning, we propose a periodic table generator (PTG). The PTG is an unsupervised machine learning algorithm based on the 
GTM that can automate the translation of high-dimensional data into a tabular form with varying layouts on-demand. The PTG 
can autonomously produce various arrangements of chemical symbols, which organize a two-dimensional array such as 
Mendeleev’s periodic table or three-dimensional spiral table according to the underlying periodicity in the given data. Since 
PTG can be considered as an extension of GTM, details regarding GTM are discussed in the next section. 
 
2.9 GTM 
GTM is a latent variable model that represents the probability density of data using a nonlinear function of lower-dimensional 
latent variables. It can be regarded as a probabilistic variant of SOM.  

In GTM, 𝐾 grid points (called “nodes” hereafter) 𝒖+,⋯ ,𝒖0 regularly arranged in the 𝐿-dimensional latent space are 
prepared for data visualization, and consider a nonlinear function 𝒇(𝒖B;𝜽) that maps the nodes 𝒖B to a point 𝒚B on the 𝐷-
dimensional feature space. The dimension of the latent space 𝐿 is set to be less than 3 for visualization. 𝜽 is a parameter set 
that determines 𝒇(𝒖B;𝜽). It is assumed that the 𝐷-dimensional feature vector 𝒙\ is generated independently by a restricted 
mixture of K Gaussian distributions, where all mixing coefficients are 1/𝐾, the mean of the Gaussian distribution is 𝒚B, and 
the covariance matrix is all 𝛽_+𝑰. Then, the distribution is given by 

𝑝(𝒙\|𝜽, 𝛽) =
1
𝐾
D𝑝(𝒙\|𝒖B, 𝜽, 𝛽)
0

BC+

, 

𝑝(𝒙\|𝒖B, 𝜽, 𝛽) = 𝑁(𝒙\|𝒚B,𝛽_+𝑰),     𝒚B = 𝒇(𝒖B;𝜽), 

where 𝑁(∙ |𝝁, 𝚺) denotes the Gaussian density function with mean 𝝁 and covariance matrix 𝚺. Here, we introduce a vector 
of 𝐾 latent variables, 𝒛\ = (𝑧+\,⋯ , 𝑧0\)i. The 𝑘th entry 𝑧B\ takes the value 1 if 𝒙\ is generated by the 𝑘th component 
distribution, and 0 otherwise. Here, let 𝑿 denote a matrix of 𝒙+,⋯ , 𝒙l elements and 𝒁 be a matrix of 𝒛+,⋯ , 𝒛l. Then, their 
joint distribution is given by  

𝑝(𝑿,𝒁|𝜽, 𝛽) = 𝐾_lnn𝑁(𝒙\|𝒚B, 𝛽_+𝑰	)o/p.
0

BC+

l

\C+

(2.1) 

If the function 𝒇(𝒖B;𝜽) is a smooth nonlinear function, then nodes 𝒖B	are mapped onto 𝒚B while maintaining the topological 
relationship in the latent space. GTM is seen as a mixture of Gaussian distributions, which means 𝒚B are restricted to the lower-
dimensional manifold.  

In GTM, the function 𝒇(𝒖B;𝜽) is constructed by a Gaussian process (GP). The nature of the GP is determined by the 
choice of covariance function. The conventional GTM model uses a covariance function with a constant length-scale throughout 
the latent space. This model cannot locally change the smoothness of the nonlinear function representing the distribution of the 
observed data according to the value of the latent variable. The underlying patterns of the element data are considered nonlinear 
and highly complex; thus, we require a GTM model that can represent more flexible functions. Therefore, we focused on GTM-
LDLV [11], which is a recently proposed GTM model that can control the smoothness of the nonlinear function locally 
according to the value of the latent variable. Details regarding GTM-LDLV are described in the next section. 
 
2.10 GTM-LDLV 
In GTM-LDLV, it is assumed that the 𝐷-dimensional feature vector 𝒙\ is generated independently by a restricted mixture of 
K Gaussian distributions defined in equation (2.1), and the nonlinear function 𝒇(𝒖B) is modeled to be the product of two 
functions: a 𝐷-dimensional vector-valued function 𝒉(𝒖B) and a positive scalar function 𝑔(𝒖B). Then, their joint distribution 
is given by 

𝑝(𝑿,𝒁|𝒈,𝑯, 𝛽) = 𝐾_l ∏ ∏ 𝑁(𝒙\|𝒚B,𝛽_+𝑰	)o/p0
BC+

l
\C+ ,    𝒚B = 𝒇(𝒖B) = 	𝑔(𝒖B)𝒉(𝒖B), 

where 𝒈 is a vector 𝑔(𝒖B)	(𝑘 = 1,⋯ ,𝐾) and 𝑯 is a matrix 𝒉(𝒖B)	(𝑘 = 1,⋯ , 𝐾). The prior distribution of 𝑔(𝒖) is given 
as a truncated GP with mean 0 and covariance function 𝑐2(𝒖w, 𝒖x; 𝝃2), which handles positive-bounded random functions. 
The prior distribution of the 𝑑th entry ℎ|(𝒖) of 𝒉(𝒖) is given as a GP with mean 0 and covariance function 𝑐}(𝒖w, 𝒖x). 
The prior distributions of the parameters 𝑔 and 𝑯 are given by 

𝑝(𝒈) = 𝑁~ F𝒈�𝟎, 𝑪26𝝃2:H , (2.2) 
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𝑝(𝑯|𝑟) =n𝑁6𝒉(|)�𝟎, 𝑪}:,
�

|C+

(2.3) 

where 𝑁~ is a truncated normal distribution that handles positive-bounded random functions, 𝒉(|) is a vector of the 𝑑th entry 
of the matrix 𝑯i, and 𝑪} is a matrix that consists of covariance function 𝑐}6𝒖w,𝒖x: as an element. Specifically, the covariance 
functions 𝑐2(𝒖w, 𝒖x; 𝝃2) and 𝑐}(𝒖w, 𝒖x) are given by 

𝑐26𝒖w, 𝒖x; 𝝃2: = 𝜈2 ∙ exp�−
�𝒖w − 𝒖x�

-

2𝑙2
� , (2.4) 

𝑐}6𝒖w, 𝒖x: = �
2𝑙(𝒖w)𝑙6𝒖x:

𝑙-(𝒖w) + 𝑙-6𝒖x:
�

�
-
exp �−

�𝒖w − 𝒖x�
-

𝑙-(𝒖w) + 𝑙-6𝒖x:
� . (2.5) 

In equation (2.4), the hyperparameter 𝝃2 consists of 𝜈2 and 𝑙2, referred to as the variance and the length-scale respectively, 
which control the magnitude of variances and smoothness of a positive-valued function 𝑔(𝒖) generated from the GP. In 
equation (2.5), the length-scale parameter 𝑙(𝒖)	is a function of 𝒖 and parameterized as 𝑙(𝒖) = exp6𝑟(𝒖): with the function 
𝑟(𝒖)  following GP with mean 0 and covariance function 𝑐�(𝒖w, 𝒖x; 𝝃�) . 	Finally, the prior distribution of the precision 
parameter 𝛽 is given by 

𝑝(𝛽) = Gam6𝛽�𝑑��, 𝑠��:, (2.6) 

where Gam(∙ |𝑑, 𝑠) denotes the gamma distribution, and its density function is defined by 

Gam(𝑥|𝑑, 𝑠) =
𝑠|

Γ(𝑑) 𝑥
|_+exp(−𝑠𝑥), 

where Γ is the gamma function Γ(𝑥) = ∫ 𝑒_�𝑡�_+ 𝑑𝑡 
� . 

The probability model of GTM-LDLV is defined as mentioned above. Here, the prior distribution of the non-liner function 
𝑓|(𝒖) (the 𝑑th entry of 𝒇(𝒖)) is derived as a GP with mean 0 and covariance function 𝑐¡(𝒖w, 𝒖x) = 𝑔(𝒖w)𝑔6𝒖x:𝑐}6𝒖w,𝒖x:. 
This covariance function shows that the GTM-LDLV model can control the variance and smoothness of the nonlinear function 
locally according to the value of the latent variable. 

The unknown parameter to be estimated is 𝜽 = {𝒁, 𝛽,𝒈,𝑯, 𝒓}. In GTM-LDLV, the posterior distribution 𝑝(𝜽|𝑿) is 
approximately evaluated using a Markov Chain Monte Carlo (MCMC) method [101]. Iteratively sampling from the full 
conditional posterior distribution for each member of {𝒁, 𝛽,𝒈, 𝑯, 𝒓}, we obtain a set of ensembles that follow the posterior 
distribution approximately. By taking the ensemble average over the samples from 𝑝(𝜽|𝑿), the parameters of GTM-LDLV are 
estimated. The simultaneous distribution of data 𝑿 and parameters 𝜽 is given by 

𝑝(𝑿,𝜽) = 𝑝(𝑿,𝒁|𝒈,𝑯, 𝛽)𝑝(𝛽)𝑝(𝒈)𝑝(𝑯|𝒓)𝑝(𝒓). (2.7) 

From equation (2.7) and Bayesian theorem, the posterior distribution of the latent variable 𝒁 is given by  

𝑝(𝒁|𝑿, 𝜽_𝒁) ∝ 𝑝(𝑿, 𝜽) ∝ 𝑝(𝑿, 𝒁|𝒈, 𝑯, 𝛽) ∝nn exp¥−
𝛽
2
‖𝒙\ − 𝒚B‖-§

o¨p
,

0

BC+

l

\C+

	 (2.8) 

where 𝜽_𝑨 represents a set of the parameters obtained by removing 𝑨 from 𝜽. Since summation over 𝑘 of 𝒁 for each 𝑛 
is equal to 1, equation (2.8) can be written as 

𝑝(𝒁|𝑿, 𝜽_𝒁) =nn𝛾B(𝒙\;𝒈,𝑯, 𝛽)o¨p,
0

BC+

l

\C+

(2.9) 

where 𝛾B(𝒙\) is the probability that 𝒙\ is generated by the 𝑘th mixing element given 𝑿 and 𝜽_𝒁. 𝛾B(𝒙\) is given by 

𝛾B(𝒙\;𝒈, 𝑯, 𝛽) =
exp ¥−𝛽2 ‖𝒙\ − 𝒚B‖

-§

∑ exp0
B®C+ ¥−𝛽2 ‖𝒙\ − 𝒚B®‖

-§
. (2.10) 

Next, from equation (2.10) and Bayesian theorem, the conditional posterior distribution for parameters 𝛽, 𝒈,𝑯, is given by 

𝑝6𝛽|𝑿, 𝜽_�: = Gam6𝛽�𝑑�, 𝑠�:, (2.11) 
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𝑝6𝒈|𝑿, 𝜽_𝒈: = 𝑁~6𝒈�𝝁2,𝚺2:, (2.12) 

𝑝(𝑯|𝑿,𝜽_𝑯) =n𝑁6𝒉(|)�𝝁},|, 𝚺}:
�

|C+

. (2.13) 

The parameters of the conditional posterior distribution for parameters 𝛽,𝒈,𝑯 are given by 

𝑑� = 𝑑�� +
𝑁𝐷
2 , 

𝑠� = 𝑠�� +
1
2
DD𝑧B\‖𝒙\ − 𝒚B‖-

0

BC+

l

\C+

, 

𝝁2 = 𝛽𝚺2diag(𝒁𝑿i𝑯), 

𝚺2 = (𝛽𝑮𝚲2 + 𝑪2(𝝃2)_+)_+, 

𝝁},| = 𝛽𝚺}𝚲2𝒁𝒙(|),								𝚺} = (𝛽𝑮𝚲2- + 𝑪}_+)_+. 

Here, diag(𝑨) represents a column vector that contains the diagonal elements of matrix 𝑨, 𝑮 is a diagonal matrix that 
contains ∑ 𝑧B\l

\C+  as diagonal element, 𝚲2 is a diagonal matrix that contains 𝑔(𝒖B)	- as diagonal element, and 𝒙(|) is a 
vector of the 𝑑th entry of matrix 𝑿i. 

The posterior distribution of 𝒓 is given by 

𝑝(𝒓|𝑿, 𝜽_𝒓) ∝ 𝑝(𝑿, 𝜽) ∝ 𝑝(𝑯|𝒓)𝑝(𝒓) ∝ exp6𝑠(𝒓):, 

𝑠(𝒓) = −
𝐷
2 ln

|𝑪}| −
1
2
D𝒉(|)i 𝑪}_+𝒉(|) −

1
2𝒓

i𝑪�(𝝃�)_+𝒓.
�

|C+

(2.14) 

Since	 𝑪}	 is	a	matrix	that	depends	on 𝒓, a sampling of 𝒓 is performed as follows using Metropolis-Hasting method [101]. 
First, find the local maximum point 𝒓» of the log-likelihood function 𝑠(𝒓); then, generate the candidate point 𝒓∗ from the 
proposed distribution 𝑁(𝒓|𝒎�, 𝑽�). Here, 𝒎�,𝑽� are given by 

𝒎� = 𝒓» + 𝑽�
𝜕𝑠(𝒓)
𝜕𝒓

¿
𝒓C𝒓»

,								𝑽� = �−
𝜕-𝑠(𝒓)
𝜕𝒓𝜕𝒓i

�
𝒓C𝒓»

_+

. 

When the current point is 𝒓�_+, the candidate point 𝒓∗ is accepted with the next probability.  

min�
exp6𝑠(𝒓∗):𝑁(𝒓�_+|𝒎À, 𝑽À)
exp6𝑠(𝒓�_+):𝑁(𝒓∗|𝒎À, 𝑽À)

, 1� . (2.15) 

 
A summary of the learning algorithm of GTM-LDLV for parameter estimation is shown in Algorithm 2.1. In the next section, 
we introduce periodic table generator (PTG) as an extension of GTM-LDLV and show the result of application of PTG to the 
element data. 
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Algorithm 2.1 GTM-LDLV 
1: Prepare initial value 𝜽� = {𝒁�, 𝛽�, 𝒈�, 𝑯�,𝒓�}. 
for 𝑡 = 1	to	𝑇	do 
	Sample	𝒁�	from	𝑝(𝒁|𝑿, 𝛽�_+, 𝒈�_+,𝑯�_+, 𝒓�_+).	 
	Sample	𝛽�	from	𝑝(𝛽|𝑿, 𝒁�, 𝒈�_+,𝑯�_+, 𝒓�_+). 
	Sample	𝒈�	from	𝑝(𝒈|𝑿,𝒁�,𝛽�, 𝑯�_+, 𝒓�_+). 
	Sample	𝑯�	from	𝑝(𝑯|𝑿,𝒁�,𝛽�, 𝒈�, 𝒓�_+). 
	Sample	𝒓�	from	𝑝(𝒓|𝑿, 𝒁�, 𝛽�, 𝒈�,𝑯�). 
end for 
For a sufficiently large number 𝑇Â, record 𝜽� = {𝒁�, 𝛽�, 𝒈�,𝑯�, 𝒓�}, 𝑡 = 𝑇Â, 𝑇Â + 1,⋯ , 𝑇. 
 
The model parameters of GTM-LDLV 𝜽À|ÀÃ = {𝒁À|ÀÃ, 𝛽À|ÀÃ , 𝒈À|ÀÃ ,𝑯À|ÀÃ, 𝒓À|ÀÃ} are estimated by taking the average of 𝜽� =
{𝒁�,𝛽�, 𝒈�,𝑯�, 𝒓�} for 𝑡 = 𝑇Â, 𝑇Â + 1,⋯ , 𝑇. 
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3 Recreation of the periodic table using an unsupervised machine learning algorithm 
As briefly explained earlier, herein, we seek to answer whether machine learning can reproduce or recreate the periodic table 
by using observed physicochemical properties of the elements. Thus, we developed a periodic table generator (PTG), which is 
an unsupervised machine learning algorithm based on GTM that can automate the translation of high-dimensional data into a 
tabular form with varying layouts on-demand. PTG can autonomously produce various arrangements of chemical symbols, 
which organize a two-dimensional array such as Mendeleev’s periodic table or three-dimensional spiral table according to the 
underlying periodicity in the given data. We further show what the PTG learned from the element data and how the element 
features, such as melting point and electronegativity, are compressed to the lower-dimensional latent spaces. 
 
3.1 Introduction 
In this study, we created various periodic tables using a machine learning algorithm. The dataset that we used consisted of 39 
features (melting points, electronegativity, and so on) of 54 elements with the atomic numbers 1-54, corresponding to hydrogen 
to xenon (Fig. 3.1 for the heatmap display). A wide variety of dimensionality reduction methods have been proposed so far, 
such as principal component analysis (PCA), kernel PCA [76], isometric feature mapping (ISOMAP) [77], local linear 
embedding (LLE) [78], and t-distributed stochastic neighbor embedding (t-SNE) [79]. However, none of these methods can 
adequately visualize the underlying periodic laws (Fig. 3.2). To begin with, none of these methods offer a tabular representation. 
The task of building a periodic table can be regarded as dimension reduction of the element data to arbitrary given “discrete” 
points rather than a continuous space. Kernelized sorting [102] has been proposed as a method that can provide a tabular 
representation of data. It achieves data visualization by maximizing the dependency between matched pairs of high-dimensional 
data points and low-dimensional lattice points by means of the Hilbert Schmidt Independence Criterion [102]. A visualization 
result of the element data on the 2-dimensional 6×9 rectangular lattice using kernelized sorting is shown in Fig. 3.3. As shown 
in Fig. 3.3, elements in each period of the standard periodic table are nearly configured in a fan shape from the bottom left to 
the top right, but the table fails to capture the discontinuity from group 18 to group 1 as in the original table. Therefore, we 
developed a new unsupervised machine learning algorithm called the periodic table generator (PTG), which relies on GTM [7] 
with latent variable dependent length-scale and variance (GTM-LDLV) [11]. One of the advantages of using GTM-LDLV arises 
from its ability to represent complex response surfaces. Elemental data shows a complex response surface on the feature space. 
Controlling the two hyperparameters, the GTM-LDLV can flexibly represent functions whose smoothness and amplitude vary 
locally in the feature space. With this model, we automate the process of translating patterns of high-dimensional feature vectors 
to an arbitrary given layout of lower-dimensional point clouds.  

PTG produces various arrangements of chemical symbols, which organize, for example, a two-dimensional array such as 
Mendeleev’s table or three-dimensional spiral table according to the underlying periodicity in the given data. We will show 
what the machine intelligence learned from the given data and how the element features were compressed to the reduced 
dimensionality representations. The periodic tables can also be regarded as the most primitive descriptor of chemical elements. 
Hence, we will highlight the representation capability of such element-level descriptors in the description of materials that are 
used in machine learning tasks of materials property prediction. 
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Figure 3.1. Heatmap of the element data used in this study. The data matrix is clustered for each column (features). 
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Figure 3.2. Visualization results of the element data on the two-dimensional space using PCA (top-left), t-SNE (top-right), 
ISOMAP with neighbors = 3 (middle-left), LLE with neighbors = 9 (middle-right), kernel PCA with ANOVA kernel and 
sigma = 0.2 (bottom-left), and GTM with 𝐾 = 9 × 9 grid points and 16 basis functions (bottom-right). The elements are 
color-coded by periods and numbered by atomic numbers. A line passing through the elements is drawn in the order of atomic 
numbers. 

  

PCA t-SNE

ISOMAP LLE

kernel PCA GTM
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Figure 3.3. Layout of the 54 elements on the 6×9 rectangular lattice using kernelized sorting. The elements are color-coded 
by periods and numbered by atomic numbers.  

 
3.2 Methods 
3.2.1 Computational workflow 
The workflow of the PTG begins by specifying a set of point clouds, called “nodes” hereafter, in a low-dimensional latent space 
to which chemical elements with observed physicochemical features are assigned. The nodes can take any positional structure 
such as equally spaced grid points on a rectangular for an ordinal table, spiral, cuboid, cylinder, cone, and so on. A Gaussian 
process (GP) model [14] is used to map the predefined nodes to the higher-dimensional feature space in which the element data 
are distributed. A trained GP defines a manifold in the feature space to be fitted with respect to the observed element data. The 
smoothness of the manifold is governed by a specified covariance function called the kernel function, which associates the 
similarity of nodes in the latent space with that in the feature space. The estimated GP defines a posterior probability or 
responsibility of each chemical element belonging to one of the nodes. An element is assigned to one node with the highest 
posterior probability. 

As indicated by the failure of some existing methods of statistical dimension reduction, such as PCA, t-SNE, and LLE, 
the manifold surface of the mapping from chemical elements to their physiochemical properties is highly complex. Therefore, 
we adopted GTM-LDLV as a model of PTG, which is a GTM that can model locally varying smoothness in the manifold. To 
ensure non-overlapping assignments such that no multiple elements share the same node, we operated the GTM-LDLV with 
the constraint of one-to-one matching between nodes and elements. To satisfy this, the number of nodes 𝐾 has to be larger 
than the number of elements 𝑁. However, direct learning with	𝐾 > 𝑁 suffers from high computational costs and unstable 
estimation performance. Specifically, the use of redundant nodes leads to many suboptimal solutions corresponding to 
undesirable matchings to the chemical elements. To alleviate this problem, PTG was designed to take a three-step procedure 
(Fig. 3.4) that relies on a coarse-to-fine strategy. In the first step, we operated the training of GTM-LDLV with a small set of 
nodes such that 𝐾 < 𝑁. In the following step, we generated additional nodes such that 𝐾 > 𝑁, and the expanded node-set was 
transferred to the feature space by performing the interpolative prediction made by the given GTM-LDLV. Finally, the 
pretrained model was fine-tuned subject to the one-to-one matching between the 𝑁 elements and the 𝐾 nodes for tabular 
construction. The procedure for each step is detailed below. 
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Figure 3.4. Workflow of PTG that relies on a three-step coarse-to-fine strategy to reduce the occurrence of undesirable 
matching between chemical elements and redundant nodes. 

 

Step 1 (GTM-LDLV): The first step of the PTG is the same as the original GTM-LDLV. In GTM-LDLV, 𝐾 nodes, 𝒖+,⋯ ,𝒖0, 
arbitrarily arranged in the 𝐿-dimensional latent space are first prepared. Then, we build a nonlinear function 𝒇(𝒖B) that maps 
the predefined nodes to the 𝐷-dimensional feature space. The model 𝒇(𝒖B) defines an 𝐿-dimensional manifold in the 𝐷-
dimensional feature space, which is fitted with respect to the 𝑁 data points of element features. The dimension of the latent 
space is set to 𝐿 ≤ 3 for visualization. 

It is assumed that the	𝐷-dimensional feature vector 𝒙\ of element 𝑛 is generated independently from a mixture of K 
Gaussian distributions, where the mixing rates are all equal to 1/𝐾, and the mean and the covariance matrix of each distribution 
are 𝒚B = 𝒇(𝒖B) and 𝛽_+𝑰, respectively (𝑰 denotes the identity matrix). According to GTM-LDLV, the mean 𝒇(𝒖B) is 
modeled to be the product of two functions, a 𝐷-dimensional vector-valued function 𝒉(𝒖B) and a positive scalar function 
𝑔(𝒖B). Here, we introduce a vector of 𝐾 latent variables 𝒛\ = (𝑧+\,⋯ , 𝑧0\)i, which indicates the assignment of element 𝑛 
to one of the given 𝐾 nodes. The 𝑘th entry 𝑧B\ takes the value of 1 if 𝒙\ is generated by the 𝑘th component distribution, 
and 0 otherwise. Here, let 𝑿 denote a matrix of 𝒙+,⋯ , 𝒙l of the elements and 𝒁 be a matrix of 𝒛+,⋯ , 𝒛l. Then, their joint 
distribution is given by 

𝑝(𝑿, 𝒁|𝒈, 𝑯, 𝛽) = 𝐾_lnn𝑁(𝒙\|𝒚B, 𝛽_+𝑰	)o¨p
0

BC+

l

\C+

, (3.1) 

𝒚B = 𝒇(𝒖B) = 	𝑔(𝒖B)𝒉(𝒖B), (3.2) 

where 𝑁(∙ |𝝁, 𝚺)  denotes the Gaussian density function with mean 𝝁  and covariance matrix 𝚺 , 𝒈  is a vector of 
𝑔(𝒖B)	(𝑘 = 1,⋯ ,𝐾), and 𝑯 is a matrix of 𝒉(𝒖B)	(𝑘 = 1,⋯ , 𝐾).  

The prior distribution of 𝑔(𝒖) is given as a truncated GP with mean 0 and covariance function 𝑐2(𝒖w, 𝒖x; 𝝃2), which 
handles positive-bounded random functions. The prior distribution of the 𝑑th entry ℎ|(𝒖) of 𝒉(𝒖) is given as a GP with 
mean 0 and covariance function 𝑐}(𝒖w, 𝒖x). To be specific, the covariance functions, 𝑐2(𝒖w, 𝒖x; 𝝃2) and 𝑐}(𝒖w, 𝒖x), are given 
by 

𝑐26𝒖w, 𝒖x; 𝝃2: = 𝜈2 ∙ exp�−
�𝒖w − 𝒖x�

-

2𝑙2
� , (3.3) 

𝑐}6𝒖w, 𝒖x: = �
2𝑙(𝒖w)𝑙6𝒖x:

𝑙-(𝒖w) + 𝑙-6𝒖x:
�

�
-
exp �−

�𝒖w − 𝒖x�
-

𝑙-(𝒖w) + 𝑙-6𝒖x:
� . (3.4) 

In equation (3.3), the hyperparameter 𝝃2  consists of 𝜈2  and 𝑙2 , referred to as the variance and the length-scale, which 
respectively control the magnitude of variances and smoothness of a positive-valued function 𝑔(𝒖) generated from the GP. In 
equation (3.4), the length-scale parameter 𝑙(𝒖)	is a function of 𝒖 and parameterized as 𝑙(𝒖) = exp6𝑟(𝒖): with the function 
𝑟(𝒖) following the GP with mean 0 and covariance function 𝑐�(𝒖w, 𝒖x; 𝝃�). Finally, a gamma prior is placed on the precision 
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parameter 𝛽 in equation (3.1). 

The covariance function in equation (3.4) is the key in GTM-LDLV. In general, a covariance function in a GP governs a 
degree of preservation between the similarity of any inputs, for example, 𝒖w and 𝒖x , and the similarity of their outputs. The 
heterogeneous variance over the latent space in equation (3.4) can bring locally varying smoothness in resulting manifolds in 
the feature space. In addition, the variance function is statistically estimated with the hierarchically specified GP prior based on 
the covariance function 𝑐�(𝒖w, 𝒖x; 𝝃�). 

The unknown parameter to be estimated is 𝜽 = {𝒁, 𝛽,𝒈, 𝑯, 𝒓}. In GTM-LDLV, the posterior distribution 𝑝(𝜽|𝑿) is 
approximately evaluated using a Markov Chain Monte Carlo (MCMC) method. Iteratively sampling from the full conditional 
posterior distribution for each {𝒁, 𝛽, 𝒈, 𝑯, 𝒓} , we obtained a set of ensembles that follow the posterior distribution 
approximately. By taking the ensemble average over the samples from 𝑝(𝜽|𝑿), the parameters of the GTM-LDLV are 
estimated. A detailed description of the GTM-LDLV is already described in Section 2.10. 

 

Step 2 (node expansion): To avoid the occurrence of improper assignments of the 𝑁 elements to a redundant set of nodes, we 
adopt a coarse-to-fine strategy. Starting from an initially trained GP model of 𝐾 < 𝑁 at step 1, we refine the model with an 
increased number of nodes 𝐾 ≥ 𝑁. For example, 5 × 5 nodes evenly arranged on the area [−1, 1] × [−1, 1] at step 1 are 
incremented to 𝐾 = 9 × 9 by placing additional nodes at middle points of the line segments connecting between each node. 
With the currently given parameters, we can infer the values of 𝑟(𝒖) of the covariance function in equation (3.4) at the 
expanded nodes, 𝒖+,⋯ ,𝒖0. Likewise, the values of 𝑔(𝒖) and 𝒉(𝒖) are interpolated. By performing such initialization, we 
proceed to the next round of GTM-LDLV. 

 

Step 3 (GTM-LDLV subject to one-to-one assignments): Finally, the resulting GTM-LDLV is fine-tuned to obtain a tabular 
display by running the above procedure subject to a one-to-one matching between the 𝑁 elements and the 𝐾 nodes. By 
definition, the conditional posterior distribution of the assignment variables is represented as 

𝑝(𝒁|𝑿, 𝜽_𝒁) ∝nn exp¥−
𝛽
2
‖𝒙\ − 𝒚B‖-§

o¨p0

BC+

l

\C+

= exp ¥−
𝛽
2
D D 𝑧B\‖𝒙\ − 𝒚B‖-

0

BC+

l

\C+
§,				 

where	 𝜽_𝑨 represents a set of the parameters obtained by removing 𝑨 from 𝜽. In the MCMC calculation in step 1, we 
iteratively draw a sample of	𝒁 from this distribution. Here, instead of performing the random sampling, we conduct the 
maximization of the logarithmic posterior with respect to 𝒁 subject to the constraint of one-to-one assignments. The problem 
amounts to finding the solution of  

max
𝒁∈Í

−D D 𝑧B\‖𝒙\ − 𝒚B‖-
0

BC+

l

\C+
, 

𝐴 = Ï𝒁 ¿D 𝑧B\
0

BC+
= 1	(𝑛 = 1,⋯ ,𝑁), D 𝑧B\ ≤ 1	(𝑘 = 1,⋯ , 𝐾)

l

\C+
Ð .  

This is regarded as a transportation problem where the sum of the squared Euclidean distance between an element feature 𝒙\ 
and a node 𝒚B embedded in the feature space is the cost of transporting one item from source 𝑘 to destination 𝑛 under 
constraint 𝐴. We used the lpSolve package [103] in R [104] to solve the transportation problem. 

This partially modified MCMC was iterated few times (e.g., 𝑇 = 10) to make a fine-tuning of the currently given 
parameters. The assignment variables and the other parameters that exhibited the highest likelihood were chosen to form the 
final estimate of the PTG. A summary of the PTG algorithm is shown in Algorithm 3.1. 
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Algorithm 3.1 Periodic Table Generator (PTG) 
1: Prepare initial value 𝜽� = {𝒁�, 𝛽�, 𝒈�, 𝑯�,𝒓�}. 
for 𝑡 = 1	to	𝑇	do 
	Sample	𝒁�	from	𝑝(𝒁|𝑿, 𝛽�_+, 𝒈�_+,𝑯�_+, 𝒓�_+).	 
	Sample	𝛽�	from	𝑝(𝛽|𝑿, 𝒁�, 𝒈�_+,𝑯�_+, 𝒓�_+). 
	Sample	𝒈�	from	𝑝(𝒈|𝑿,𝒁�,𝛽�, 𝑯�_+, 𝒓�_+). 
	Sample	𝑯�	from	𝑝(𝑯|𝑿,𝒁�,𝛽�, 𝒈�, 𝒓�_+). 
	Sample	𝒓�	from	𝑝(𝒓|𝑿, 𝒁�, 𝛽�, 𝒈�,𝑯�). 
end for 
For a sufficiently large number 𝑇Â, record 𝜽� = {𝒁�, 𝛽�, 𝒈�,𝑯�, 𝒓�}, 𝑡 = 𝑇Â, 𝑇Â + 1,⋯ , 𝑇. 
 
2: The model parameters of GTM-LDLV 𝜽À|ÀÃ = {𝒁À|ÀÃ, 𝛽À|ÀÃ , 𝒈À|ÀÃ, 𝑯À|ÀÃ, 𝒓À|ÀÃ} are estimated by taking the average of 𝜽� =
{𝒁�,𝛽�, 𝒈�,𝑯�, 𝒓�} for 𝑡 = 𝑇Â, 𝑇Â + 1,⋯ , 𝑇. Increase the number of nodes on the latent space so that 𝐾 ≥ 𝑁 is satisfied. 
Considering the parameters estimated by GTM-LDLV (the first step of PTG) as observation values, interpolate the parameters 
corresponding to the newly generated nodes using GP regression. 
 
3: The parameters 𝜽w�Ñ = {𝒁w�Ñ, 𝛽w�Ñ, 𝒈w�Ñ, 𝑯w�Ñ, 𝒓w�Ñ} obtained as above are used as initial values for the next procedure.  
for 𝑡 = 1	to	𝑇i	do 
	𝒁� ← argmax

𝒁∈Í
𝑝(𝒁|𝑿, 𝛽�_+, 𝒈�_+,𝑯�_+, 𝒓�_+), 𝐴 = {𝒁|∑ 𝑧B\ ≤ 1	(𝑘 = 1,⋯ , 𝐾)}l

\C+ . 

	𝛽� ← argmax
�

𝑝(𝛽|𝑿,𝒁�, 𝒈�_+,𝑯�_+, 𝒓�_+). 

	𝒈� ← argmax
𝒈

𝑝(𝒈|𝑿, 𝒁�,𝛽�,𝑯�_+, 𝒓�_+). 

	𝑯� ← argmax
𝑯

𝑝(𝑯|𝑿,𝒁�,𝛽�, 𝒈�, 𝒓�_+). 

	𝒓� ← argmax
𝒓

𝑝(𝒓|𝑿, 𝒁�,𝛽�, 𝒈�,𝑯�). 

end for 
 
 

 
 
3.2.2 Interpretation 
PTG autonomously creates a tabular display of the chemical elements according to the estimated 𝒁. To understand how element 
features such as melting point and electronegativity are compressed on the low-dimensional tabular display, each of feature is 
mapped onto the resulting table. Specifically, we overlay a smoothed heatmap of each feature on the table. With this PTG 
property landscape [83], we can visually understand the distribution of the topographical mapping that indicates how the element 
features are embedded in the latent space. 
 
3.2.3 Periodic table as an element descriptor 
We considered an evaluation basis for the quality of a designed periodic table in terms of a novel view from data science. A 
periodic table, including Mendeleev’s classic table, can be considered as one of the most primitive descriptors that encodes 
known element features into the coordinate system of a low-dimensional latent space. Neighboring elements on a table should 
behave similarly and possess similar physicochemical properties. Inspired by such an idea, we considered the use of a periodic 
table as a descriptor of chemical elements in a task of predicting materials properties based on machine learning [100]. The 
periodic table was then evaluated quantitatively based on the predictive performance of the descriptor. 

For a given table, its coordinates 𝒖B(+), ⋯ , 𝒖B(l) of the nodes to which the 𝑁 elements are assigned were used as a set 
of element descriptors. For a compound 𝑆, its fraction of the 𝑁  elements was denoted by 𝑤+(𝑆),⋯ ,𝑤l(𝑆) where 0 ≤
𝑤\(𝑆) ≤ 1 and ∑ 𝑤\(𝑆)l

\C+ = 1. The compositional descriptor of 𝑆 was calculated by 𝝓(𝑆) = ∑ 𝑤\(𝑆)l
\C+ 𝒖B(\). With this 

descriptor, we derived a prediction model 𝑌 = 𝑓6𝝓(𝑆):, which is trained in 𝑚 training instances {𝑌w, 𝑆w}wC+×  and describes a 
physicochemical property 𝑌 as a function of the descriptor 𝝓(𝑆) for any given compound 𝑆. Descriptors exhibiting higher 
predictability should be recognized as providing more efficient compression performances on the 𝑁	elements. For comparison, 
the same analysis was performed using two-dimensional coordinates of the standard periodic table, PCA and t-SNE, respectively. 
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3.2.4 Data: element features 
The element feature set was extracted from XenonPy [32, 33], which is a Python library for materials informatics, by using an 
application programming interface (API) (see the XenonPy website [33]). The original dataset consisted of 74 features of 118 
elements. Since elements with large atomic numbers contained many missing values, we selected 54 elements with the atomic 
numbers 1–54 corresponding to hydrogen to xenon, which we considered sufficient to retain the periodic rule. After removing 
features that contained one or more missing values, the dataset was reduced to 39 features of 54 elements. For the 54×39 data 
matrix, each feature (column) was standardized to have mean 0 and variance 1. A heatmap of the data matrix and detailed 
description of the 39 features are provided in Fig 3.1 and Table 3.1, respectively. 
 
Table 3.1. Detailed description of the 39 element-level features used in this analysis. 

 

 

Feature Description
atomic_number Number of protons found in the nucleus of an atom
atomic_radius_rahm Atomic radius by Rahm et al
atomic_volume Atomic volume
atomic_weight The mass of an atom
boiling_point Boiling temperature
c6_gb C_6 dispersion coefficient in a.u
covalent_radius_cordero Covalent radius by Cerdero et al
covalent_radius_pyykko Single bond covalent radius by Pyykko et al
density Density at 295K
dipole_polarizability Dipole polarizability
electron_negativity Tendency of an atom to attract a shared pair of electrons
en_allen Allen’s scale of electronegativity
en_ghosh Ghosh’s scale of electronegativity
first_ion_en First ionisation energy
gs_bandgap DFT bandgap energy of T=0K ground state
gs_energy DFT energy per atom (raw VASP value) of T=0K ground state
gs_est_bcc_latcnt Estimated BCC lattice parameter based on the DFT volume
gs_est_fcc_latcnt Estimated FCC lattice parameter based on the DFT volume
gs_mag_moment DFT magnetic momenet of T=0K ground state
gs_volume_per DFT volume per atom of T=0K ground state
icsd_volume Atom volume in ICSD database
mendeleev_number Atom number in mendeleev’s periodic table
melting_point Melting point
molar_volume Molar volume
num_unfilled Total unfilled electron
num_valence Total valence electron
num_d_unfilled Unfilled electron in d shell
num_d_valence Valence electron in d shell
num_p_unfilled Unfilled electron in p shell
num_p_valence Valence electron in p shell
num_s_unfilled Unfilled electron in s shell
num_s_valence Valence electron in s shell
period Period in the periodic table
thermal_conductivity Thermal conductivity at 25 C
vdw_radius Van der Waals radius
vdw_radius_alvarez Van der Waals radius according to Alvarez
vdw_radius_mm3 Van der Waals radius from the MM3 FF
vdw_radius_uff Van der Waals radius from the UFF
Polarizability Ability to form instantaneous dipoles

Element-level properties used for analysis
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3.2.5 Analysis procedure 
We performed the PTG on two different layouts of nodes, square, and three-dimensional conical layouts. In the square layout 
of 𝐿 = 2 , we set 𝐾 = 25  in the first step of PTG in which the 5 × 5  nodes were evenly arranged on the area 
[−1, 1] × [−1, 1]. In the second step, we increased the number of nodes to 9 × 9 by placing new nodes at the middle points 
of the line segments connecting between each node. In the conical layout of 𝐿 = 3, we first used a set of nodes with 𝐾 = 25, 
which were arranged uniformly on the surface of the cone placed in the area [−1, 1] × [−1, 1] × [−1, 1]. The cone was sliced 
into 4 sections in the same height along the vertical axis. Then, 1 (vertex), 4, 8, and 12 (bottom) nodes were uniformly placed 
on the outer part of the 4 cut surfaces. In the next step, the number of slices was increased by 7, and 1 (vertex), 4, 8, 12, 16, 20, 
and 24 (bottom) nodes were uniformly arranged in the same way. In both the cases, we set 𝝃2 = 𝝃� = (1/3, 3), the number of 
iterations in MCMC was set to 𝑇 = 10,000 with the burn-in step 𝑇Â = 5,000, and the number of iterations in the third step 
of fine-tuning was set to 𝑇 = 10. See Section 3.5 for further details on the hyperparameter settings and analysis procedure. 

The PTG algorithm was implemented using R codes, which are available at [105] with the element dataset. Readers can 
run the PTG algorithm with the element data used herein. As a demonstration, the PTG was performed on three other layouts: 
a rectangular table with 5 × 18 equally spaced grids, which is same as the layout of the standard periodic table, and two 
cylinder and cubic three-dimensional layouts. The results are shown in Fig. 3.17. 

 
 
3.3 Results 
3.3.1 Results of PTG 
 
Square table  
Fig. 3.5 shows the PTG-created layout of the 54 elements on the 9 × 9 square lattice. Elements in each period of the standard 
periodic table are configured in a fan shape from the top left to the bottom right. The elements in the square table are clearly 
separated into metals and non-metals by the red dashed line shown in Fig. 3.5. The 3d and 4d transition elements are separated 
and both clustered in the lower right. In addition, the elements are clearly clustered by groups such as alkali metals, alkaline 
earth metals, halogens, and noble gases. This looks like a variant of the original periodic table: the original table is folded around 
the center on which transition elements are positioned, the two separated blocks of groups 1-2 and 13-18 in the first to third 
periods are brought nearer to each other while keeping away from the area of transition elements, and they are stored in a square 
table. Notably, the square table exhibits the discontinuity from group 18 to group 1, as in the original table. Though results are 
not shown, the same discontinuity appears frequently in most square tables created in the experiments under different conditions.  

 

Conical table  
Fig. 3.6 shows the PTG-created layout on three-dimensional conical nodes. The elements are arranged in a spiral structure 
starting from the top of the cone according to increasing atomic numbers. Viewed from the top, the elements are stratified 
concentrically by the periods of the standard periodic table. This view is slightly similar to the circular periodic table that was 
constructed in a different study [97]. One block corresponded to a set of elements divided according to the orbital type of the 
electrons of the highest energy levels. In the standard periodic table, helium (He: circled by the red line in Fig. 3.7) is located 
away from the other s-block elements (a set of elements colored red in Fig. 3.7), but in the conical table, it is located close to 
them. It was also seen that the elements in the conical table are clearly classified into typical elements and transition elements 
by the red line shown in Fig. 3.7. A blank space was observed between groups 1 and 18 on the conical table implying that there 
is a gap of properties between them in the feature space. 

In the spiral structure viewed from above, the atomic numbers are monotonically arranged from top to bottom except for 
a few elements. The disorder appears in group 6 to 7: manganese (Cr: atomic number = 24) and iron (Mn: 25) in period 4 or 
molybdenum (Mo: 42) and technetium (Tc: 43) in period 5. In the conical table, the elements are arranged radially according to 
groups, and elements of groups 1 and 2 are located a little away from group 3. 
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Figure 3.5. (a) The currently most common periodic table of the elements. (b) Square PTG table created from the training data 
of 39 features of the 54 elements. The elements are color-coded by periods and numbered as per their atomic number. The 
number shown in blue below each element symbol represents the group number (the column in the standard periodic table). 

 

 
Figure 3.6. PTG-created conical table of 54 chemical elements. The elements are color-coded according to five periods and 
numbered as per their atomic number. A line passing through the elements is drawn in the order of atomic numbers. The number 
shown in blue below each element symbol represents the group number (the column in the standard periodic table). The left 
and right figures show the same table viewed from top and side, respectively. 

 

Top view Side view
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Figure 3.7. The left panel shows a conical table viewed from above. The elements are color-coded according to three blocks 
in the standard periodic table that are indicated in the right panel. The red line on the left indicates the segment between transition 
elements and typical elements.  

 
3.3.2 Interpretation 
To understand how the element features have been embedded on the created tables, each feature was mapped on the lower-
dimensional latent space (Fig. 3.8). In the property landscape of the conical table, atomic radius increases gradually and 
concentrically from the top of the cone, electron negativity decreases gradually and concentrically from the top of the cone, and 
melting point gradually increases from right to left. The distribution of thermal conductivity is a little more complicated than 
the former three, but continuity and unimodality is still held on the surface of the three-dimensional conical table. On the 
contrary, in the square table, the landscapes of some element features, e.g., atomic radius and thermal conductivity, exhibit 
multimodality. This discontinuity arises from the unnatural layout of the elements in the two-dimensional tabular representation, 
as in the standard periodic table. The PTG property landscapes of the 39 features are shown in Figs. 3.9 and 3.10, respectively. 
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Figure 3.8. Property landscapes of atomic radius (Rahm et al. [106]), electron negativity, melting point, and thermal 
conductivity at 25℃ that are embedded in the latent spaces. The heatmaps are laid on (a) the square table in Fig. 3.5 and (b) the 
conical table (top view) in Fig. 3.6. 
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Figure 3.9. PTG property landscape of all 39 features for the square PTG table shown in Fig. 3.5. 
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Figure 3.10. PTG property landscapes of all 39 features for the conical PTG table shown in Fig. 3.6. 
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3.3.3 Quantitative comparison of periodic tables 
To evaluate the validity of a periodic table and uncover the information gain and loss in the reduced representation, we 
considered the use of a table as an element descriptor in machine learning tasks. The task to be addressed was the prediction of 
formation energies of inorganic compounds. The dataset that we used for the training of random forest regressors (RF) [107] 
was obtained from the Materials Project [15]. Among all inorganic compounds in the Materials Project, we selected compounds 
that are stable and consist of elements with the atomic number 1-54 (H to Xe). The dataset consisted of the formation energies 
per atom of 12,373 inorganic compounds. 

The objective here was to train an RF that describes the formation energy as a function of the conical descriptor 𝝓(𝑆) 
obtained by composing 𝑆 and the three-dimensional coordinates of the elements in the conical table. This is described in 
Section 3.2. For comparison, we built four different models using the descriptors based on the two-dimensional coordinates in 
the created square table, the standard periodic table, PCA, and t-SNE, respectively. 

We performed five-fold cross-validation on the 12,373 samples for the six types of descriptors. As shown in Fig. 3.11, 
the conical PTG achieved a mean absolute error (MAE) of 0.464 eV/atom and a root mean square error (RMSE) of 0.643 
eV/atom, whereas the MAE and RMSE of the square PTG and the standard periodic table were 0.533 eV/atom and 0.719 
eV/atom, and 0.549 eV/atom and 0.734 eV/atom, respectively. The models based on PCA and t-SNE showed MAE of 0.631 
eV/atom and 0.667 eV/atom, respectively, and RMSE of 0.830 eV/atom and 0.859 eV/atom, respectively, which clearly shows 
that they were less accurate in their predictions. Finally, the model based on the complete set of the 39-dimensional feature 
showed MAE of 0.197 eV/atom and RMSE of 0.311 eV/atom (this shows how the overall information is being retained by the 
tables). In summary, the square PTG is slightly superior to the standard periodic table, but the conical PTG table outperforms 
the standard periodic table, the square PTG, PCA, and t-SNE, respectively. 

A detailed investigation of the prediction results provided some insights into the difference in information compression 
between the three-dimensional conical table and the standard periodic table. We focused on a subset of the compounds used in 
the validation, hereafter denoted by 𝐷ÙÚQ?  (i.e., the conical descriptor dominant set), that had MAE values less than 0.3 
eV/atom for the conical descriptor but 1.0 eV/atom greater than the conical descriptor for the standard periodic table. Likewise, 
we identified 𝐷ÛÜ=QÝ=EÝ with MAE values less than 0.3 eV/atom for the standard periodic table but 1.0 eV/atom greater than 
the standard periodic table for the conical table. We counted the frequency of a chemical element in 𝐷ÙÚQ? and 𝐷ÛÜ=QÝ=EÝ, and 
evaluated the enrichment of the element by comparing its expected frequency calculated with the background, i.e., the number 
of occurrences in the overall population (12,373 compounds in Materials Project). As shown in Fig. 3.12, a significantly 
enriched group in 𝐷ÙÚQ? comprises transition elements in the fourth period that correspond to atomic number 21-29. Aluminum 
(Al) is also enriched in 𝐷ÙÚQ? (Fig. 3.12: set of elements circled by a blue line). Notably, these over-represented elements form 
a cluster in the created conical table (Fig. 3.7: set of elements circled by a blue line). On the contrary, hydrogen (H) is 
significantly enriched in 𝐷ÛÜ=QÝ=EÝ (Fig. 3.12: element circled by green line). H is located just above lithium (Li) in the standard 
periodic table (Fig. 3.7: element circled by a green line), while it is located between fluorine (F) and Li in the conical periodic 
table.  
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Figure 3.11. Prediction performance of the formation energy per atom for the models using six different descriptors. The 
vertical axis indicates cross-validated MAE and RMSE of RF regressors trained with the six different descriptors obtained from 
the coordinates of elements in the representation made by t-SNE and PCA (corresponding to top-left and top-right in Fig. 3.2, 
respectively), the standard periodic table, the square PTG table, the conical PTG table, and the complete set of the 39-
dimensional feature that were used to build the PTG table, respectively. The error bars denote the standard deviations in five 
independent trials of the cross-validation (they are invisible because of substantially small scales). 

 

 
Figure 3.12. Comparison of the frequencies of chemical elements in 𝐷ÙÚQ? (top: black bar chart) and 𝐷ÛÜ=QÝ=EÝ (bottom: 
black bar chart). White bar charts show the expected frequency calculated with the number of occurrences in the overall 
population. 

 
3.4 Estimation of the intrinsic dimension of element data 
When visualizing data by dimension reduction methods, it is important to know the intrinsic dimension of the data. Thus, at 
first, the intrinsic dimension was estimated for the entire elemental data (assuming the entire data set has the same intrinsic 
dimension), using the maximum likelihood (MLE) method [108], the 𝑘-nearest neighbor (kNN) method [109], and DANCo 
(dimensionality from angle and norm concentration) method [110]. The result of the dimension estimators 𝑚B	by these three 
methods with varying number of neighbors 𝑘 ∈ {3, … ,25} is shown in Fig. 3.13. From the results of Fig. 3.13, if the entire 
dataset has the same intrinsic dimension, it is estimated that the intrinsic dimension of the element data will be 3 or 4. 
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Figure 3.13. Dimension estimators 𝑚B as a function of 𝑘 by DANCo, MLE, and kNN methods. 

 
Next, we estimated the local intrinsic dimension for each data point of the element data (i.e., each element) using OTPM 
(optimally topology preserving feature map) method [111]. In OTPM, estimation of the intrinsic dimension is based on local 
PCA of the pointers of the nodes in the OTPM and their direct neighbors. Since the dimension estimator for each data point 
𝑚B
\ varies depending on the number of nodes 𝑘, the final dimension estimator for each data point 𝑚Þ\ is estimated as follows: 

𝑚Þ\ = +
ß
∑ 𝑚B

\+�
BCà . 

The distributions of the dimension estimator through the standard periodic table, the square PTG table shown in Fig. 3.5, and 
the conical PTG table shown in Fig. 3.6 (top view and side view) are shown in Fig. 3.14. According to Fig. 3.14, the dimension 
estimator for each data point, that is, for each element, varies from approximately 1.0 to 3.5, suggesting that the entire element 
data do not have the same intrinsic dimension. Furthermore, according to Fig. 3.14, it can be seen that a group of elements with 
high dimension estimators (consisting of Li, Be, B, C, Mg, Al, Si, P, and S) are separated in the standard periodic table but 
clustered in the square PTG table. From Fig. 3.14, it can be seen that the tables produced by PTG are clustering the elements 
according to their local intrinsic dimensions. 
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Figure 3.14. Distribution of the dimension estimator 𝑚Þ\ through (a) the standard periodic table, (b) the square PTG table 
shown in Fig. 3.5, and the conical PTG table shown in Fig. 3.6. The bottom left and bottom right figures show the same conical 
PTG table viewed from the top and side, respectively.  

 

 
 
3.5 Notes on the PTG Algorithm 
It should be noted that PTG may produce different visualization results for each trial even under the same hyperparameter 
settings. Indeed, PTG with element data produced different tables for each trial of the algorithm. This implies that PTG reached 
a different local maxima on the likelihood surface for each trial. PTG tries to fit lower-dimensional manifolds to the shape of 
data cloud, and there are multiple solutions to this. Therefore, it is expected that there are many local maxima that are separated 
from one other on the likelihood surface of PTG. This is not counterintuitive as there should not be a unique optimal solution 
for arranging elements in the new periodic table. One way to deal with this problem is to run the algorithm multiple times under 
the same hyperparameter settings and enumerate multiple visualization results. The final result should then be selected from the 
list of obtained tables based on some selection criterion. 

In step 1 of PTG with the element data, it was observed that the learning of the model became unstable and was terminated 
when the non-information prior distribution was used as prior distribution of the precision 𝛽. To address the problem, a prior 
distribution of 𝛽 with a small scale and a sufficiently large rate was used. This prior distribution keeps the variance	𝛽_+ 
estimated from the posterior distribution larger than a certain value, and it made the learning stable. In the next section, we 
introduce details of the analysis procedure and hyperparameter settings used in this study. 

 
3.6 Details of analysis procedure  
We performed PTG on two different node layouts namely, square and three-dimensional conical layouts. In the square layout 
of 𝐿 = 2 , we set 𝐾 = 25  in the first step of PTG in which the 5 × 5  nodes were evenly arranged on the area 
[−1, 1] × [−1, 1]. In the second step, we increased the number of nodes to 9 × 9 by placing new nodes at middle points on 
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the line segments connecting between each node. In the conical layout of 𝐿 = 3, we first used a set of nodes with 𝐾 = 25 that 
were arranged uniformly on the surface of the cone placed in the area [−1, 1] × [−1, 1] × [−1, 1]. The cone was sliced into 4 
sections of the same height along the vertical axis. Then, 1 (vertex), 4, 8, and 12 (bottom) nodes were uniformly placed on the 
outer part of the 4 cut surfaces. In the following step, the number of slices was increased by 7, and 1 (vertex), 4, 8, 12, 16, 20, 
and 24 (bottom) nodes were uniformly arranged in the same way. In both cases, we set 𝝃2 = 𝝃� = (1/3,3), the number of 
iterations in MCMC was set to 𝑇 = 10,000 with the burn-in step 𝑇Â = 5,000, the number of iterations in the third step of 
fine-tuning was set to 𝑇 = 10, and PTG was run 10 times under the same hyperparameter settings mentioned above.  

To quantitatively evaluate the quality of the periodic tables obtained by PTG with the same hyperparameter settings and 
different trials, we considered using a table as an element descriptor in machine learning tasks. The modeling procedure and the 
data set that was used is the same as the one mentioned in Section 3.3.3. We performed five-fold cross-validation on the 12,373 
samples for the obtained 10 periodic tables. The prediction errors for the 10 periodic tables are shown in Fig. 3.15 for the square 
table and Fig. 3.16 for the conical table. As shown in Fig. 3.15, the 10th square periodic table gave the lowest MAE (0.533 
eV/atom) out of 10 tables. Therefore, this table was chosen as the final visualization result of the square PTG table, and it 
corresponds to that shown in Fig. 3.5. Similarly, as shown in Fig. 3.16, the 4th conical periodic table giving the lowest MAE 
(0.464 eV/atom) was chosen as the final visualization result of the conical PTG table, and it corresponds to that shown in Fig. 
3.6. 

 
Figure 3.15. Mean absolute errors (MAE) of the prediction of the formation energy per atom for the 10 square periodic tables 
used as element descriptors. The vertical axis indicates cross-validated MAE of random forest regressors (RF) trained with the 
10 descriptors obtained from the coordinates of elements in the square periodic tables produced by PTG, with the same 
hyperparameters and different trials. The error bars denote the standard deviations in 5 independent trials of the cross-validation. 
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Figure 3.16. Mean absolute errors (MAE) of the prediction of the formation energy per atom for the 10 conical periodic tables 
used as element descriptors. The vertical axis indicates cross-validated MAE of random forest regressors (RF) trained with the 
10 descriptors obtained from the coordinates of elements in the conical periodic tables produced by PTG, with the same 
hyperparameters and different trials. The error bars denote the standard deviations in 5 independent trials of the cross-validation. 

 
3.7 Other examples 
Additionally, we performed PTG on three other node layouts: rectangle, three-dimensional cylinder, and cubic layouts. In the 
rectangle layout of 𝐿 = 2, we set 𝐾 = 27 in the first step in which the 3 × 9 nodes were evenly arranged on the area 
[−1, 1] × [−1, 1]. In the second step, we increased the number of nodes to 5 × 17 by placing new nodes at the middle points 
of the line segments connecting between each node. Then, finally, in order to have the same layout as the standard periodic 
table (5 × 18), we added a column of 5 nodes in the positive direction of the x-axis. In the cylinder layout of 𝐿 = 3, we first 
used a set of nodes with 𝐾 = 24 that were arranged uniformly on the surface of the cylinder placed in the area 
[−1, 1] × [−1, 1] × [−1, 1]. The cylinder was sliced into 3 sections at the same height along the vertical axis. Then, 8 nodes 
were uniformly placed on the outer part of the 3 cut surfaces. In the next step, the number of slices was increased by 5, and 16 
nodes were uniformly arranged in the same way. In the cubic layout of 𝐿 = 3, we set 𝐾 = 27 in the first step in which the 
3 × 3 × 3 nodes were evenly arranged on the area [−1, 1] × [−1, 1] × [−1, 1]. In the second step, we increased the number 
of nodes to 5 × 5 × 5 by placing new nodes at the middle points of the line segments connecting between each node. In all 
the three cases, the element data, the conditions of hyperparameters, and the analysis procedure are completely the same as in 
the square and conical cases. The results are shown in Fig. 3.17. 
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Figure 3.17. Examples of the PTG tables with three different layouts: rectangular grids (top), three-dimensional cylinder type 
(middle), and cubic (bottom). The elements are color-coded according to the five periods and numbered by atomic numbers. A 
line passing through the elements is drawn in the order of the atomic numbers. For the cylinder and the cubic tables, the left and 
right figures show the views from the stop and side, respectively. 
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3.8 Concluding remarks 
Since the emergence of Mendeleev’s periodic table, hundreds of redesigned tables have been created. In terms of machine 
learning, the tabular construction can be considered a task of reducing the dimensionality of high-dimensional data. A previous 
study first attempted to yield the periodic table using machine learning by applying SOM to five element features available in 
Mendeleev’s time [99]. Although SOM successfully placed similarly behaved elements in neighboring sub-regions on the table, 
the reported results still never reached Mendeleev’s achievement as it obviously failed to capture the underlying periodicity of 
the elements. With this in mind, we attempted to develop PTG as an unsupervised machine learning algorithm that can automate 
the translation of high-dimensional data into a tabular form with varying layouts on-demand. The proposed method is applicable 
as long as a feature set and a template of the table are given. The task of compiling data into tabular displays is the most basic 
task in data analysis. Nonetheless, there has been considerably less research of this kind in data science so far. 

In the previous study based on SOM, some chemical elements with similar properties occupied the same cell in the table 
due to SOM’s inability to guarantee non-overlapping assignments of elements. When we began this study, there were no existing 
machine learning methods for tabular construction. To the best of our knowledge, the PTG algorithm that we presented is the 
first tabular constructor based on machine learning, yet this is a secondary contribution of this study. 

In this study, we created two types of periodic tables with three additional layouts. The square table was considerably 
similar to the currently most common periodic table but some outstanding differences were observed; for example, in the 
arrangement of H and He. These elements were placed far away in the standard periodic table but their physicochemical 
properties were similar. PTG suggested that these elements should be put closer according to the observed data. The three-
dimensional layout on the cone also provided some insight into how the transition elements in the fourth period, including 
aluminum (Al), should be arranged. In addition, the created conical table provided a re-ordering from Cr to Mn in period 4 and 
from Mo to Tc in period 5 in the standard table. The results of the intrinsic dimension estimation on the element data showed 
that the intrinsic dimension of the data is larger than two dimensions (it was estimated as 3–4), at least locally. This result 
suggests that the element features cannot be fully captured by a two-dimensional representation such as the standard periodic 
table. Furthermore, the analysis on the point-wise intrinsic dimension of the element data suggested that the tables produced by 
PTG are clustering the elements according to their local intrinsic dimensions. 

A periodic table is the most basic descriptor of chemical elements. Historically, the primary design objective has focused 
on the understandability and interpretability to humans even at the expense of reducing some key detailed features. Here, we 
provided a new way of looking at periodic tables. The coordinates of elements put on a table can be considered as an element 
descriptor, which can also be converted to a descriptor of materials. The quality of designed tables should be assessed on the 
performance of predicting physicochemical properties of resulting machine learning models. This study focused only on the 
prediction of formation energies but more diverse properties should be incorporated into the design objective. In addition, we 
focused only on two types of layouts but there are many more potentially promising options available. Our algorithm would 
contribute to the creation of more sophisticated tabular displays of chemical elements. 
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4 Crystal structure prediction using machine learning-based element substitution 
The prediction of energetically stable crystal structures formed by a given chemical composition is a central problem in solid-
state physics. In principle, the crystalline state of assembled atoms can be determined by optimizing the energy surface, which 
in turn can be evaluated using first-principles calculations. However, the iterative gradient descent on the potential energy 
surface using first-principles calculations is prohibitively expensive for complex systems, such as those with many atoms per 
unit cell. Here, we present a unique methodology for crystal structure prediction (CSP) that relies on a machine learning 
algorithm called metric learning. It is shown that a binary classifier, trained on a large number of already identified crystal 
structures, can determine the isomorphism of crystal structures formed by two given chemical compositions with an accuracy 
of approximately 96.4%. For a given query composition with an unknown crystal structure, the model is used to automatically 
select from a crystal structure database a set of template crystals with nearly identical stable structures to which element 
substitution is to be applied. Apart from the local relaxation calculation of the identified templates, the proposed method does 
not use ab initio calculations. The potential of this substation-based CSP is demonstrated for a wide variety of crystal systems. 
 
4.1 Introduction 

Here, we present a powerful CSP method based on machine-learned element substitution. As explained earlier, the method 
relies on a machine learning algorithm referred to as metric learning [10]. This algorithm is used to automate the selection of 
template structures from a crystal structure database with high chemical replaceability to the unknown stable structure for a 
given chemical composition. In metric learning, a binary classifier is constructed to determine whether the crystal structures of 
two given chemical compositions are identical or not. Crystals with sufficiently high structural similarity are treated as identical, 
and the labeled dataset is extracted from the crystal structure database. The prediction accuracy of the trained model exceeds 
96.4%. Solving the inverse problem of the trained classifier by performing a thorough screening over a large number of known 
crystals, a set of compositions—as well as their crystal structures that are highly replaceable to a given query composition—
can be identified. Then, a template structure is created by assigning the constituent elements in the query composition to the 
selected template, and a stable crystalline form is obtained by relaxing the created template structure to reach the local minimum 
energy using DFT calculations. The existing substitution-based methods described earlier statistically estimate the replaceability 
of two chemical elements based on the observed frequency of their occurrence in two similar crystal structures. As a result, co-
occurrence patterns with other elements are completely ignored. Another problem is that, in principle, the model cannot 
recognize what is dissimilar because previous methods do not use any data on non-identical structures during model training. 
The proposed method improves the prediction accuracy and extends the applicability domain of the model by learning the 
replaceability of the overall context of chemical compositions, rather than a pair of elements, with training instances from both 
similar and dissimilar structures. We show that, in estimation, our substitution-based approach can predict stable structures of 
approximately 50% of all crystals discovered so far with high confidence. The code for the CSP method is available at [112]. 

 
4.2 Method 
4.2.1 Outline 
Let 𝐶w  be a chemical composition and 𝑆w  be the corresponding stable crystal structure. The chemical composition 𝐶w  is 
characterized by a descriptor vector 𝝓(𝐶w) ∈ ℝ| that encodes 𝑑 features of the constituent elements in 𝐶w	, as detailed below. 
For a given pair of chemical compositions 𝐶w and 𝐶x , we assign a binary class label 𝑦wx , which takes the value 1 if the 
corresponding stable structures 𝑆w and 𝑆w are significantly close, and 0 otherwise. Here, we construct a model 𝑓 that predicts 
the structural similarity label 𝑦wx for any given pair of 𝐶w and 𝐶x. The model learns via the supervision of known crystals and 
their compositions in a crystal structure database. The model takes 𝝓(𝐶w) and 𝝓(𝐶x) as inputs and it outputs a classification 
probability 𝑓 representing their structural identity, which serves as a metric for structural similarity or replaceability between 
𝐶w and 𝐶x. The problem thus reduces to the task of metric learning [10].  

The trained model (metric) 𝑓 was used for CSP. For a query composition 𝐶ä, our goal is to predict the stable structure 
(denoted by 𝑆ä ). Let us assume that the database records 𝑁  chemical compositions 𝐶+,… , 𝐶land their stable structures 
𝑆+,… , 𝑆l. If the database contains crystal structures that are sufficiently close to 𝑆ä, CSP can be performed by screening out 
those crystals. We can then evaluate the structural similarity between 𝑆ä  and 𝑆w 	(𝑖 = 1,… ,𝑁) by assigning 𝝓(𝐶ä) and 
𝝓(𝐶w) to 𝑓, and selecting the top--K structures as templates. The element species in 𝐶ä are assigned to the atoms in each of 
the top-K selected structures, which are assigned to the DFT calculations to fine-tune the atomic configuration to decrease the 
free energy. The workflow is summarized in Fig. 4.1.   
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Figure 4.1. Schematic depiction of the substitution-based CSP using metric learning.  

 
4.2.2 Learning to predict structural identity from compositional features 
From the given candidate compounds, we select the crystal structures that are predicted to be similar to 𝑆ä using a metric 𝑓 
that represents structural similarity. 
The model 𝑓 is constructed using a metric learning algorithm. A training dataset is prepared by taking compound pairs 
æ6𝐶w, 𝐶x, 𝑦wx:|𝑖 = 1, … ,𝑀è from the crystal structure database. A structural similarity label is assigned to each 6𝐶w, 𝐶x:	by 
applying a threshold value 𝜏 = 0.3  to the crystal structure similarity measure calculated using the local structure order 
parameters [37] (see Section 4.2.5 for details). The model describes the probability of classifying the structural identity as a 
function of {𝝓(𝐶w),𝝓(𝐶x)}. Of the various metric learning methods proposed so far [113, 114], we applied the Siamese network 
[115] and KISS (keep it simple and straightforward!) metric learning [116], a na ̈ıve binary classifier, and a regression model 
that regresses the structural similarity value instead of 𝑦wx . The binary classifier and the regressor were modeled as a 
conventional multi-layer perceptron (MLP) wherein the input variable is given by the absolute difference between two 
compositional descriptors, �𝝓(𝐶w) − 𝝓(𝐶x)�. By comparing the generalization performance of the four metric learning methods 
mentioned above, we found that binary classification using MLP outperformed others, as shown in Fig. 4.2. Therefore, hereafter, 
we report only the results of the CSP using a binary classification neural network. 
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Figure 4.2. Schema receiver operator characteristic (ROC) curves for NN-binary, Siamese network, NN-regression, KISSME, 
and L2 with mean area under the curve (AUC) and standard deviation of AUC. L2 shows the result of using the Euclidean 
distance �𝜙(𝐶w) − 𝜙6𝐶x:�- as a metric for comparison. 

 

 
4.2.3 Overall prediction scheme of the CSP method 
The overall scheme of the CSP method consists of three steps, as shown in Fig. 4.3. The details of each step are described below.  

 

 
Figure 4.3. Overall scheme of the CSP method.  

 
Step 1: High-throughput screening of template crystal structures 
For the CSP of a query composition 𝐶ä, the screened candidates are limited to crystals with the same compositional ratio. For 
example, if Li3PS4 is given as the 𝐶ä, only crystal structures with a composition ratio of 3:1:4 (the order does not matter) are 
used as the candidate templates. In the applications shown below, the number of structures to be screened varies from 1 to 3,895 
(see Fig. 4.6). The stable structures with the top-K chemical compositions judged to have the highest output probability or 
structural similarity are selected as the template structure for the query composition. 

 
Step 2: Generation of candidate crystal structures 
A crystal structure is created by assigning the constituent elements of the query composition to the atomic coordinates of each 
selected template. Elements with the same composition ratio between the template and the query are assigned. It is important 
to note that when one or more elements have the same content ratio, the assignment is not uniquely determined. For example, 
there are two possible combinations in the assignment of A1B1 to C1D1 as {A→C & B→D} and {A→D & B→C}. In such 
cases, a pair of elements with the most similar physicochemical properties should be replaced. Specifically, the element 
similarity is defined as the Euclidean distance of the 19 elemental descriptors (Table 4.1). The crystal structure generated 
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inherits the lattice parameters and atomic coordinates of the template structure. 

 

Table 4.1. Detailed description of the 19 elemental descriptors used in step 2. 

 

 
 

Step 3: Geometry optimization using the DFT calculation 

Finally, the K candidate structures of 𝐶ä  are locally optimized by performing DFT calculations. The calculations were 
performed using the Vienna ab initio Simulation Package (VASP, version 6.1.2) [117], combined with the projector augmented 
wave pseudopotentials [118]. The exchange-correlation functional was considered with the generalized gradient approximation 
based on the Perdew-Burke-Ernzerhof method [119]. The Brillouin zone integration for unit cells was automatically determined 
using the Γ-centered Monkhorst-Pack meshes function implemented in the VASP code. To generate the inputs of VASP 
calculations, the “MPStaticSet” and “MPRelaxSet” pre-sets implemented in pymatgen [47] were used. 

 
 
4.2.4 Chemical composition descriptor 
We calculated the compositional descriptor, 𝝓(𝐶w) ∈ ℝ|, using XenonPy [35, 36]. As described earlier, XenonPy is an open-
source Python library for materials informatics that we developed, and it provides 58 physicochemical features for each element 
(Table 4.2). For each element-level feature, the compositional descriptor is calculated by taking summary statistics of constituent 
elements with the composition ratios such as the weighted mean, weighted sum, weighted variance, and min- and max-pooling. 
Thus, for a given chemical composition, a 290-dimensional (58 × 5) descriptor vector is defined. 
 
 
 

  
Table 4.2. Detailed description of the 58 elemental descriptors used in the XenonPy [32, 33] descriptor. 

Feature Description
atomic_number Number of protons found in the nucleus of an atom
atomic_weight The mass of an atom
covalent_radius_pyykko Single bond covalent radius by Pyykko et al
electron_negativity Tendency of an atom to attract a shared pair of electrons
en_ghosh Ghosh’s scale of electronegativity
num_unfilled Total unfilled electron
num_valence Total valence electron
num_d_unfilled Unfilled electron in d shell
num_d_valence Valence electron in d shell
num_f_unfilled Unfilled electron in f shell
num_f_valence Valence electron in f shell
num_p_unfilled Unfilled electron in p shell
num_p_valence Valence electron in p shell
num_s_unfilled Unfilled electron in s shell
num_s_valence Valence electron in s shell
period Period in the periodic table
group Group in the periodic table
vdw_radius Van der Waals radius
vdw_radius_uff Van der Waals radius from the UFF
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Feature Description
atomic_number Number of protons found in the nucleus of an atom
atomic_radius Atomic radius 
atomic_radius_rahm Atomic radius by Rahm et al
atomic_volume Atomic volume
atomic_weight The mass of an atom
boiling_point Boiling temperature
bulk_modulus Bulk modulus
c6_gb C_6 dispersion coefficient in a.u
covalent_radius_cordero Covalent radius by Cerdero et al
covalent_radius_pyykko Single bond covalent radius by Pyykko et al
covalent_radius_pyykko_double Double bond covalent radius by Pyykko et al
covalent_radius_pyykko_triple Triple bond covalent radius by Pyykko et al
covalent_radius_slater Covalent radius by Slater
density Density at 295K
dipole_polarizability Dipole polarizability
electron_negativity Tendency of an atom to attract a shared pair of electrons
electron_affinity Electron affinity
en_allen Allen’s scale of electronegativity
en_ghosh Ghosh’s scale of electronegativity
en_pauling Pauling’s scale of electronegativity
first_ion_en First ionisation energy
fusion_enthalpy Fusion heat
gs_bandgap DFT bandgap energy of T=0K ground state
gs_energy DFT energy per atom (raw VASP value) of T=0K ground state
gs_est_bcc_latcnt Estimated BCC lattice parameter based on the DFT volume
gs_est_fcc_latcnt Estimated FCC lattice parameter based on the DFT volume
gs_mag_moment DFT magnetic momenet of T=0K ground state
gs_volume_per DFT volume per atom of T=0K ground state
hhi_p Herfindahl−Hirschman Index (HHI) production values
hhi_r Herfindahl−Hirschman Index (HHI) reserves values
heat_capacity_mass Mass specific heat capacity
heat_capacity_molar Molar specific heat capacity
icsd_volume Atom volume in ICSD database
evaporation_heat Evaporation heat
heat_of_formation Heat of formation
lattice_constant Physical dimension of unit cells in a crystal lattice
mendeleev_number Atom number in mendeleev’s periodic table
melting_point Melting point
molar_volume Molar volume
num_unfilled Total unfilled electron
num_valence Total valence electron
num_d_unfilled Unfilled electron in d shell
num_d_valence Valence electron in d shell
num_f_unfilled Unfilled electron in f shell
num_f_valence Valance electron in f shell
num_p_unfilled Unfilled electron in p shell
num_p_valence Valence electron in p shell
num_s_unfilled Unfilled electron in s shell
num_s_valence Valence electron in s shell
period Period in the periodic table
specific_heat Specific heat at 20oC
thermal_conductivity Thermal conductivity at 25 C
vdw_radius Van der Waals radius
vdw_radius_alvarez Van der Waals radius according to Alvarez
vdw_radius_mm3 Van der Waals radius from the MM3 FF
vdw_radius_uff Van der Waals radius from the UFF
sound_velociy Speed of sound
Polarizability Ability to form instantaneous dipoles

Element-level properties used for XenonPy-descriptor
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4.2.5 Preparation of structural similarity labels 
Metric learning relies on the supervision of the binary class label 𝑦wx, which indicates whether a pair of crystal structures are 
similar or dissimilar. The class label is calculated as follows: (1) quantify the crystal structure similarities of all compound pairs, 
and (2) binarize the similarity measures by applying a prescribed threshold 𝜏. 
To calculate the structural similarity, we encoded a given structure using the site fingerprint with local structure order parameters 
[37] (implemented in matminer [48, 49], an open-source toolkit for materials data mining). By evaluating the degree of 
resemblance of the coordination environment of an atomic site to the preset-coordination motifs, we obtained a vector-type 
descriptor (site fingerprint) for each atomic site in the crystal structure. Then, a crystal structure descriptor was calculated by 
taking the summary statistics of the site fingerprints across all atomic sites in the crystal structure. We used the mean, standard 
deviation, minimum, and maximum as the summary statistics. Finally, the structural similarity was calculated as the Euclidean 
distance between the crystal structure descriptors. The similarity measure uses only the topological features of the atomic 
coordinates and does not use any information about the elemental composition. 

Following the procedure described above, we calculated 549,544,128 crystal structure dissimilarities between all pairs of 
the 33,153 stable compounds in the Materials Project database [15, 26] (version released on 11/21/2020). A histogram of 
dissimilarities is shown in Fig. 4.4. We considered an appropriate threshold for the binarization of similarity measures. The 
trade-off in the occurrence of false positives and false negatives should be considered when choosing the threshold value: a 
large threshold value increases the number of false negative cases where structurally similar structures are judged to be 
dissimilar; a small threshold increases the number of false positives. If the threshold is too small, the number of positive 
instances (structurally similar pairs) becomes very small, making the treatment of imbalanced data difficult. 

To determine the value of 𝜏  that appropriately balances the trade-off, we tested the binarization by varying 	𝜏 ∈
{0.01, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7} . For each 𝜏 , we examined the number of instances classified as “similar” and the 
proportion of compounds that appeared at least once in the class “similar” (Table 4.3). At 𝜏 = 0.3, approximately 80% of all 
the compounds appeared at least once in the class “similar”. The remaining 20% were judged to have no similar pairs. This 
means that the structures of these 20% cannot be predicted using the substitution-based method. In contrast, stable structures of 
80% of the crystals can be determined using the substitution-based method. Based on these considerations, we set the threshold 
to 𝜏 = 0.3. 

 
Figure 4.4. Histogram of the structural dissimilarities (the Euclidian distance of the structure fingerprint calculated with local 
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structure order parameters [37]) of 549,544,128 pairs (all pairs for the 33,153 compounds). 

 

 

Table 4.3. Results of binarization with varying τ. The first column denotes threshold τ for the structure dissimilarity. The 
second column denotes the number of compounds that have at least one similar pair in the all candidates (for each compound, 
the all candidates equal the remaining 33,152 compounds). Here, the definition of the similarity is determined by τ (i.e., similar 
pair is the pair in which the structure dissimilarity is less than τ). The third column denotes number of similar pairs in the all 
pairs of the 33,153 stable compounds for each τ.  

 
𝜏 Number of compounds that have similar pairs  Number of similar pairs           

0.01 5,889/ 33,153 (17.76%) 3,886,505/ 549,544,128 (0.71%) 
0.1 17,413/ 33,153 (52.52%) 4,077,592/ 549,544,128 (0.74%) 
0.2 23,169/ 33,153 (69.89%) 4,320,784/ 549,544,128 (0.79%) 
0.3 26,106/ 33,153 (78.74%) 4,628,444/ 549,544,128 (0.84%) 
0.4 27,810/ 33,153 (83.88%) 4,912,232/ 549,544,128 (0.89%) 
0.5 29,355/ 33,153 (88.54%) 5,178,214/ 549,544,128 (0.94%) 
0.6 30,871/ 33,153 (93.12%) 5,518,144/ 549,544,128 (1.0%) 
0.7 31,947/ 33,153 (96.36%) 5,967,201/ 549,544,128 (1.09%) 

 
 

 

 
 
 
4.2.6 Experimental procedure 
From the 126,335 inorganic compounds in the Materials Project database, we obtained 33,153 stable compounds with an energy 
above the hull equal to zero. To benchmark the predictive performance of the proposed CSP, 38 crystals were selected, taking 
into account the diversity of space groups, structures, constituent elements, the number of atoms per unit cell, and their 
application domains; the number of atoms per unit cell was distributed in the range of 2 to 104.  
The remaining 33,115 compounds, which were not used for the benchmark, were randomly divided into 10,000 for training, 
2,000 for validation, and 21,115 for testing in the process of metric learning. Of the 10,000 training compounds (49,995,000 
pairs, 10000C2), 421,000 pairs were categorized as similar at 𝜏 = 0.3. To eliminate the imbalance between the number of positive 
and negative instances in the training of the classifier, 421,000 negative instances were randomly selected from the 49,574,000 
dissimilar groups. Following the same procedure, the validation and test sets were selected so that the number of positive and 
negative instances was equal, resulting in a total of 32,050 and 3,782,728 pairs, respectively.  

The model input was defined as the absolute difference between the 290-dimensional compositional descriptors, 
�𝝓(𝐶w) − 𝝓(𝐶x)�, and the output was given by the similarity label 𝑦wx. The binary classifier was independently trained five 
times using randomly selected training and validation datasets. During each training, the hyperparameters were adjusted to 
provide the highest prediction accuracy for the validation set (see Section 4.5 for details). The ensemble of these five models, 
𝑓+, … , 𝑓à, was used to produce the predicted class label. The class probability of being classified into similar pairs is given by 
𝑓ê6�𝝓(𝐶w) − 𝝓(𝐶x)�: =

+
à
∑ 𝑓Âà
ÂC+ 6�𝝓(𝐶w) − 𝝓(𝐶x)�:. For the set of candidate templates, we used all 33,115 stable structures 

except the 38 benchmark query compositions. 
For a given query composition, according to the magnitude of the class probability of being classified into similar pairs 

in which the 33,115 candidate compounds with known crystal structures were screened out, we identified the top five template 
structures with a probability greater than 0.5. We then constructed candidate crystal structures as described above, which were 
optimized using the full structural relaxation in DFT. 

 
 
4.3 Result 
The performance of the ensemble prediction that used five different neural networks was measured based on the dataset 
consisting of the similar and dissimilar pairs of the test 21,115 compounds. The receiver operator characteristic (ROC) curve 
[120] according to the varying thresholds of the classification probability is shown in Fig. 4.5. The area under the curve (AUC) 
[120] and the prediction accuracies were 0.991 and 96.4%, respectively. 
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According to the performance tests shown above, the similarity of the stable structures of the two given chemical 
compositions can be predicted with a considerably high accuracy. We applied this similarity prediction model to identify the 
known stable structures of the 38 benchmark crystals. The results are summarized in Table 4.4. The proposed method was 
applied to select a maximum of five template structures, which were then subjected to element substitution to produce a set of 
candidate crystal structures. Hereafter, this set is denoted as 𝒞à . As mentioned above, only the structures with the same 
composition ratio as the query among the total 33,115 stable structures in the Materials Project were considered as candidates 
during the screening. We denote this set as 𝒞. The number of candidate structures selected here varies greatly depending on the 
query compositions: for all the stable structures in the Materials Project, the mean and median numbers of structures with the 
same composition ratio were 322.0 and 952.0, respectively, and the maximum and minimum numbers were 3,895 and 0, 
respectively. By definition, a crystal structure with the absence of matching structures is unpredictable (1,051/33,153) by the 
proposed method. The distribution of the number of matches is shown in Fig. 4.6. It can be seen that the number of candidate 
structures is considerably reduced after composition ratio matching. 
 

 
Figure 4.5. ROC curve and performance metrics (accuracy and AUC) in the prediction of the structural identity using fully 
connected neural networks. 
 
 

 
Figure 4.6. Distribution of the number of matches of the composition ratio matching for the 33,153 compounds. The maximum 
and minimum numbers were 3895 and 0. Here, the number of matches = 0 mean the absence of matching structures (in 1,051 
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out of 33,153 compounds, the number of matches = 0). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Table 4.4. Results of the CSP for the 38 benchmark systems. The first column lists the 35 query compositions that were 
predictable. The second column lists the minimum dissimilarities of all candidate structures that have the same composition 
ratio as the query. The third column presents the minimum structural dissimilarities for the top five identified structures with 
respect to the true stable structure. The fourth column lists the rank of the minimum dissimilarity of the top five candidates in 
all candidates. For example, the top five candidates of Al2O3 are ranked 2nd out of 297 candidates; thus, the cell is marked 
2/297. The fifth column indicates whether the true structure is included in the top five predicted structures relaxed by DFT (✓ 
and − indicate success and failure, respectively). 
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The CSP method could not propose any template for 3 out of the 38 query compositions, NaCaAlPHO5F2, MgB7, and 
Ba2CaSi4(BO7)2: none of the candidates had the same composition ratio as NaCaAlPHO5F2 in the 33,115 candidates; for MgB7 
and Ba2CaSi4(BO7)2, none of the candidates had class probabilities greater than 0.5. Table 4.4 summarizes the prediction results 
for the remaining 35 query compositions. We investigated the dissimilarity value of the closest structure in 𝒞à to the known 
stable structure (the third column), which was compared with the minimum dissimilarity value of the best template among all 
candidates in 𝒞 (the second column). The structural dissimilarities were calculated with the local structure order parameter 
presented in [37]. This measure was defined only on atomic coordinates, ignoring the information of element types. For 
quantitative evaluation, the rank of the minimum dissimilarity value of the top 5 candidates was calculated with respect to the 
dissimilarities of 𝒞 (the fourth column). The model could select the best template, which is the closest to the true stable 
structure in 𝒞, with an accuracy of approximately 51.4% (=18/35) by screening out the top 5 candidates. Only 2 cases, Li3PS4 
and BN, had ranks higher than 30. With the top 5 candidates, the proposed method succeeded in identifying templates that are 
almost equivalent to the best template. 

After the element substitution, the candidate crystal structures were locally optimized using DFT calculations. The 
predicted and true crystal structures for 12 arbitrarily selected queries are shown in Fig. 4.7. Of the top five, the predicted 
structure closest to the true structure is illustrated. The predicted crystal structures for all the 35 queries are shown in Fig. 4.8. 
It can be seen that highly complex crystal structures consisting of a large number of atoms per unit cell could be successfully 
predicted, thereby demonstrating a definitive improvement over ordinary CSP programs. We determined whether the true 
structure was included in the top five relaxed predicted structures by performing a visual inspection. As summarized in Table 
4.4 (the fifth column), in 21 out of the 35 queries (60%), the top five predicted structures contained the true stable structure. 
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Furthermore, we examined the key factors that determine success or failure. First, for the failed and successful query 
compositions, the median, mean, and standard deviation of the number of elements were calculated. The respective values of 
the statistics were 3.0, 2.57, 0.58 (for success) and 2.0, 2.21, 0.67 (for failure). Thus, there was no significant difference between 
the successful and unsuccessful cases. For the number of atomic sites per unit cell, the three statistics also showed no significant 
difference: 20.0, 42.5, 56.3 (for successful queries) and 19.0, 29.1, 23.5 (for unsuccessful queries). In contrast, when the 
dissimilarity between the top five template structures and the true structure was compared between success and failure, the 
median, mean, and variance showed remarkable differences: 0.096, 0.148, 0.145 (template structures) and 0.615, 1.0416, 0.954 
(true structure). Therefore, in the proposed CSP, the selection of a template structure sufficiently close to the true structure is 
the dominant factor that determines the success or failure. 

 

 
Figure 4.7. 12 examples of the predicted and true crystal structures. The closest predicted structure to the true structure among 
the top 5 candidates (depicted with VESTA [121]) is shown. For all the results of the 35 test cases, see Fig. 4.8. 

 

 

Finally, we estimated the extent to which elemental substitution could cover the entire crystal system in predicting stable crystal 
structures. Although only 38 benchmark compositions were tested, we investigated the ability to identify the best templates for 
the 21,115 stable crystals selected randomly from the Materials Project. Each of the 21,115 crystals was used as a query to select 
a candidate template from the known stable structures. Here, we predicted the stable structure of the query composition without 
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performing DFT structural relaxation (Table 4.5). For the top 50 identified templates, 10,829 out of 21,115 (=51.3%) stable 
crystals were found to have true stable structures within a radius of 0.1 of the structural dissimilarity. This corresponds to a 
prediction accuracy of 99.2% (= 10, 829/10, 914). Table 4.5 also summarizes the performance of detecting the best templates 
with the top 𝐾 predicted templates when the number of identified templates (𝐾) was varied from 1 to 50, and the radius 
threshold was varied from 0.1 to 0.3. As shown in Table 4.4, when a template structure with a structural dissimilarity less than 
0.1 could be selected, the proposed method could identify the true stable structures with 100% accuracy (= 11/11) by performing 
structural relaxation with DFT. Therefore, we estimate that approximately 51.3% (51.3 × 1.0) of the entire crystal system can 
be predicted using the proposed method. Moreover, if, for example, the threshold of the radius was set to 0.2, the proportion of 
the best templates falling within the given radius of the top 50 candidates was 66.8%, and the structural relaxation using DFT 
converged to the true stable structures for approximately 94.1% (= 16/17) of the crystals. Therefore, it is estimated that 
approximately 62.8% (66.8 × 0.94) of the entire crystal system can be predicted by our method. 

 

Table 4.5. Results of the best template prediction for 21,115 unique crystal systems in the Materials Project. The first column 
lists the threshold 𝜏 for the dissimilarities. The second column denotes the proportions of systems that had at least one candidate 
with a dissimilarity of less than τ in all candidates. The rest of the columns denote the proportions of the systems that had at 
least one candidate with a dissimilarity of less than 𝜏 in the top 1, 5, 10, 20, 30, and 50 suggested candidates, respectively.  
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Fig. 4.8. Results of the structure prediction for the 35 query compositions (the order in which they are displayed is the same as 
the first column of Table 4.4). The crystal structure diagrams of the true structures, and the predicted structures (the closest one 
to the true structure in top 5 structures) for each query are shown here (depicted with VESTA [121]). The dissimilarity values 
between the true structure and the predicted structure, which were calculated with local structure order parameters [37], are 
shown. The formula and material-ids (which are allocated to the compounds in the Materials Project database [15, 26]) of the 
template structure that were used as a template for structure prediction with element substitution are also shown. Fig. 4.7 is 
same as the first 12 examples of this figure. Because the DFT calculation environment of the Materials Project and the 
environment described in step 3 (Section 4.2) are not fully identical, the true structures shown in this figure are the ones that 
were locally optimized using the DFT calculations with the environment described in step 3.  

 

 
4.4 Analysis procedure for model comparison 
For comparison of the metric learning models, we randomly selected 3,000 compounds for training, 1,000 compounds for 
validation, and 3,000 compounds for testing from the 33,153 compounds (all the stable structures in the Materials Project [15, 
26], as on 11/21/2020). Then, similar to the method described in the Experimental Procedure section, 76,104, 8,234, and 80,550 
pairs were obtained as training data, validation data, and test data (the ratio of similar pairs to dissimilar pairs is 1:1). Neural 
network binary classifier (NN-binary), neural network binary classifier (NN-regression), and Siamese network were trained five 
times independently, and the mean AUC and standard deviation of the AUC were calculated. The KISSME model was trained 
only once, as this method is not affected by random numbers. The result is shown in Fig. 4.2. 

 

 

 

4.5 Detail of the models 
The structure of the neural network models for NN-binary is shown in Table 4.6. The structure of the neural network models 
for NN-regression and Siamese network (precisely, each of the paired networks with shared weights) is the same as the one 
shown in Table 4.6, except for the top layer. The soft-max function with loss of categorical cross-entropy, the linear combination 
with loss of MAE, and the linear combination with contrastive loss [115] are used for NN-binary, NN-regression, and Siamese 
networks, respectively. In all cases, Adam [122] was used as the optimizer. In each model training, the parameters that 
minimized the loss in the validation data were adopted as the final parameters of the trained model. The models were trained 
on the training data with a batch size of 128 and number of epochs = 100.  
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Table 4.6. The structure of the neural network models for NN-binary. The 3 layers (unit number =50) of the fully connected 
network with dropout (rate = 0.2) and the rectified linear unit as activation function. 

 

 
 

The structure, hyperparameters, and training procedure of the neural network models for NN- binary are identical to those used 
for model comparison and those used as final models in the CSP method. 

 

 
4.6 Concluding remarks 
We proposed a CSP method based on metric learning of crystal structure similarity. The prediction is made by selecting crystal 
structures that are predicted to be similar to the stable structure of a given query composition from the existing crystal structures 
in the database. In materials science, most crystals have been discovered by element substitution of previously discovered 
crystals. The proposed method can be considered as a machine learning alternative to traditional protocols in the discovery of 
new materials. Compared to existing methods, the most significant difference is that the proposed method does not involve any 
first-principles calculations, except in the final step of locally optimizing the proposed structure. Thus, the computational cost 
of the proposed method is significantly lower than existing methods. 

Finally, we summarize the extensibility and limitations of the proposed method. Although we have focused on the 
prediction of stable structures, the current method may also be applicable to the prediction of metastable structures. In principle, 
the present method can be used to predict the identity of metastable structures in the same framework if the training instances 
including the metastable structures are created. The method relies on element substitution; therefore, it cannot be applied unless 
there is a template available for substitution. For example, as reported here, the crystal structures of approximately 3.2% 
(1,051/33,153) in the Materials Project have no template with the same composition ratio. Nevertheless, the present method is 
highly capable of identifying the template closest to the true structure present in a crystal structure database. Furthermore, as 
discussed in Section 4.3, at least 50–60% of all crystal systems, including unique crystals without template structures, can be 
predicted using the substitution-based CSP. If the crystal structure database expands monotonically in the future, the application 
range of the substitution-based CSP method will also expand. 
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5 Conclusion 
In 2011, the Materials Genome Initiative (MGI) launched by the United States with the goal of halving the time required 

for materials development from the approximately 10–20 years taken from the discovery of a new material to its 
commercialization. . In its white paper, it has been declared that the development of digitalized data infrastructures and the 
utilization of data science techniques will be key to achieving this goal. This has brought the interdisciplinary field of materials 
informatics into the limelight. In Japan, the Material Research by Information Integration Initiative (MI2I) was launched in 2015 
through the support by the Japan Science and Technology Agency (JST). With the launch of this project, the National Institute 
for Materials Science (NIMS) has become a hub for the development of an academic infrastructure for materials informatics, 
the creation of human resources, and commercialization in Japan. In 2017, the Data Science Center for Creative Design and 
Manufacturing was established at the Institute of Statistical Mathematics (ISM). Researchers at the ISM have been working to 
find unique approaches to scientific problems in materials science from the unique perspective of data science, and have created 
and implemented new scientific methods. The present thesis is in line with this research trend. 
This doctoral thesis described two of the author's scientific contributions to materials informatics, the emerging new 
interdisciplinary field of materials science and data science. We considered forward and inverse problems as the basic workflow 
of materials informatics. The objective of the forward problem is to predict the output of a system with respect to its input. On 
the contrary, the inverse problem predicts the input variable with the desired output by finding the inverse map of the forward 
prediction model. In addition, this thesis discusses the form of forward and inverse problems along the concept of representation, 
learning and generation of materials. The input and output variables of interest in materials science are very diverse. Because 
of this diversity, it is necessary to establish a data science methodology for each problem. Input variables such as chemical 
composition, molecule, crystal structure, etc. are numerically “represented” by descriptors, and a mathematical mapping from 
the input to the output is “learned” using given data. The inverse mapping of the model is then explored to “generate” materials 
with the desired properties in order to identify promising hypothetical materials. In this thesis, we focused on inorganic materials 
and address two problems related to the tasks of representation and learning. 

Herein, we have tackled two fundamental problems in physical chemistry, using machine learning as a key driver. In the 
two studies, we discovered new problem settings in materials science from a unique perspective of data science. The task of 
periodic table design was formulated as a statistical visualization problem. Furthermore, the task of crystal structure prediction 
was formulated in the form of a metric learning problem. 

The Russian chemist Mendeleev noticed that the properties of the 50 or so elements found at the time exhibited a certain 
periodic behavior, and he summarized the patterns in tabular form, thus inventing the prototype of the current periodic table. 
Interpreting the process leading to this invention from the viewpoint of data science, it can be said that Mendeleev performed 
"dimensionality reduction and visualization of data" by arranging the patterns of multidimensional data of elements into grid 
points (tables) on two-dimensional coordinates. This research aimed to answer whether machine learning can automatically 
design a periodic table from element data. The problem comes down to "dimensionality reduction of tabular form" of high-
dimensional data. We developed an unsupervised learning method based on generative topographic mapping to reduce the data 
to a tabular form, and succeeded in obtaining a representation that is almost equivalent to Mendeleev's periodic table. In addition, 
a three-dimensional conical spiral periodic table was constructed using the proposed method. From this periodic table, we found 
some interesting rules that may suggest new classification criteria of elements. 

In the second study, the aim was to answer whether the crystal structure can be predicted from the chemical composition 
of the material. Conventional approaches to crystal structure prediction are based on first-principles calculations of many-body 
electron systems, and the crystal structure is predicted by solving an energy minimization problem, resulting in a large 
computational time. We developed the crystal structure prediction algorithm based on metric learning of crystal structure 
similarly; the prediction is made by selecting crystal structures that are predicted to be similar to the stable structure of a given 
query composition from the existing crystal structures in database. In materials science, most crystals have been discovered by 
element substitution of previously discovered crystals, and the present method can be regarded as a machine learning alternative 
to such traditional protocols. The most significant difference compared to existing methods is that the present method does not 
involve any first-principles calculations except for the final step of locally optimizing the proposed structure, which makes it 
significantly less computationally expensive than the previous methods. In conclusion, the present method is highly capable of 
identifying the closest template to the true structure present in a crystal structure database. Furthermore, as discussed, it is 
estimated that 50–60% of all crystal systems, including unique crystals without template structures, can be predicted using the 
substitution-based crystal structure prediction. If the crystal structure database expands monotonically in the future, the 
application range of the substitution-based method will also expand. 
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