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“The one born in the wild knew how to give counsel,

Enkidu spoke to his friend, gave his dream meaning:....”

“O Gilgamesh, where are you wandering?

The life that you seek you never will find.”

“He came a far road, was weary but at peace;

all his labours were set on a tablet of stone.”

From The Epic of Gilgamesh, translated by Andrew George

“Whatever phenomena arise from a cause:

Their cause

& their cessation.

Such is the teaching of the Tathagata,

the Great Contemplative.”

From Mv I.23.5, translated by Thanissaro Bhikkhu
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THE GRADUATE UNIVERSITY FOR ADVANCED STUDIES, SOKENDAI

Abstract
Department of Statistical Science

Doctor of Philosophy

Treatment Effect Estimation and Bivariate Causal Discovery via Nonlinear ICA

by Pengzhou WU

Causality–i.e., asking and answering “Why?”–is fundamental in fields of science.
In this era of big data and artificial intelligence, scientists are enthusiastic about ex-
ploiting machine learning systems in the causal analysis of scientific datasets at scale.
On the other hand, main stream machine learning systems are based on plain statis-
tical associations and focus on prediction and pattern recognition. Thus, causality
and machine learning should go hand-in-hand for scientific discovery and decision-
making. In this thesis, we develop new machine learning methods for causal effect
estimation and causal discovery, the two major problems in causality.

First, we discuss the identification and estimation of treatment effects under lim-
ited overlap; that is, when subjects with certain features belong to a single treatment
group. We use a latent variable to model a prognostic score which is widely used
in biostatistics and sufficient for treatment effects; i.e., we build a generative prog-
nostic model. We prove that the latent variable recovers a prognostic score, and
the model identifies individualized treatment effects. The model is then learned as
Intact-VAE––a new type of variational autoencoder (VAE). We derive the treatment
effect error bounds that enable representations balanced for treatment groups con-
ditioned on individualized features. The proposed method is compared with recent
methods using (semi-)synthetic datasets. Moreover, experiments show state-of-the-
art performance under diverse settings, including unobserved confounding. We also
discuss (possible) theoretical extensions to unobserved confounding.

Second, we address the problem of bivariate causal discovery. Based on recent
developments in nonlinear independent component analysis (ICA), we train general
nonlinear causal models that are implemented by neural networks and allow non-
additive noise. Further, we build an ensemble framework, namely Causal Mosaic,
which models a causal pair by a mixture of nonlinear models. We compare this
method with other recent methods on artificial and real world benchmark datasets,
and our method shows state-of-the-art performance.

HTTPS://WWW.SOKEN.AC.JP/EN/
https://www.ism.ac.jp/senkou_eng/
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Chapter 1

Introduction

1.1 Causality and Machine Learning

Human knowledge begins with the observation and study of nature. In Ancient

Greece, some philosophers, including Aristotle, were also the earliest scientists in-

trigued by the search for causes of natural phenomena. Even Plato, who was at times

very mystical, had enough interest in “inquiry into Nature” and, in his Phaedo, stated

that it consisted of a quest for “the causes of each thing; why each thing comes into

existence, why it goes out of existence, why it exists”1. Perhaps due to the eminence

of Plato in philosophy, nowadays, the study of causality still focuses on “Why?”

questions, as indicated by the title of Judea Pearl’s widely-received book (Pearl and

Mackenzie, 2018).

The difference between statistical correlation and causation can not be too much

stressed. Indeed, a well-known mantra is that “correlation does not imply causa-

tion”. It is a fallacy to conclude causation from correlation because the correlation

might be due to omitted data or unobserved links. For example2, in summer, the

owner of an ice cream shop may observe high electricity usage and also high sales.

Thus, the owner would observe a strong correlation between the electricity usage

and the sales, but the former did not cause the latter–surely, leaving the lights on in

the shop over night would have no impact on the sales. In fact, the hot weather is

the common cause of both the high electricity usage and the high sales, and we say

1I got to know this quote from Nogueira et al., 2022, and this beginning paragraph is also largely
inspired by theirs.

2This example is taken from Guo et al., 2020.
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the weather here is a confounder of the relationship between the electricity usage and

the ice cream sales.

Perhaps, the less well-known is that causation does not imply correlation, ei-

ther. There are cases in which, although there is a clear causal relationship between

variables, there is no correlation observed. Of course, this might be because of the

limited information in a specific sample. However, even if infinite sample size is as-

sumed, a correlation coefficient (e.g., Pearson’s) would not capture all kinds of statis-

tical associations between the cause and effect. This is why statistical (in)dependence

is far more important than simple correlation. It is commonly agreed that, with infi-

nite sample, association (dependence) does imply causation, and this is often known

as Reichenbach Principle (Schölkopf et al., 2021). Moreover, as we will see later in the

thesis, under certain assumptions, statistical independence can be exploited to an-

swer causal questions. Roughly speaking, the study of causality concerns what causal

questions can be reduced to statistical ones, and how (e.g., under what assumptions).

Given its inherent multi-disciplinary nature, the study of causality is historically

fragmented into several different domains, including epidemiology (biostatistics),

economics, statistics, computer science. Due to the scarcity of prior causal knowl-

edge, it is usually hard to making convincing causal assumptions and testing plau-

sibility of them. This is why randomized controlled trials (RCTs) becomes the golden

standard of studies in causality. For example, to study the efficacy of a new drug,

a patient would be randomly assigned to take the drug or not, which would guar-

antee that, on average, the treated group and the non-treated (control) groups are

equivalent in all relevant respects, ruling out the influence of any factors except the

treatment. Then, the effect of the drug on a certain health outcome can be measured

by comparing the average outcome of the two groups.

While RCTs control biases through randomization, they often have ethical and

practical issues, or suffer from expensive costs. Thus, solving causal problems from

observational data is important. Recent advance in information collection and stor-

age have made a huge amount of observational data available for researchers and

policy makers in those different fields, for example, in the form of electronic health

records (Evans, 2016). The scientific communities have considerable interests to ex-

ploit the so-called big data to solve causal problems, while they face new challenges
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at the same time. Public databases or data collected from the web are unprecedent-

edly large, people have little intuition about what types of bias a dataset can suf-

fer from–the more plentiful data makes it harder to understand and, consequently,

harder to come up and validate causal assumptions.

On the other hand, empowered by the increasing collection of big data and

growth in computing power (mainly GPU), machine learning and artificial intelli-

gence (AI), particularly deep learning, have made remarkable progress, surpassing

human performance in many tasks such as object recognition, machine translation,

and reading comprehension (LeCun, Bengio, and Hinton, 2015). Given its origin in

nonparametric statistics (Vapnik, 1999) and connectionism (Rumelhart, McClelland,

Group, et al., 1988), main stream machine learning systems are based on plain sta-

tistical associations. However, the ability of causal reasoning and learning is consid-

ered as a significant ingredient of human-level intelligence and, as argued by some,

can serve as the foundation of AI (Pearl, 2018) or help to solve several challenge

problems in machine learning such as robustness, reusability, and interpretability

(Schölkopf et al., 2021).

The above trends motivate the work contained in this thesis. Specifically, we

study the two major problems in causality: first, causal effect estimation (Imbens and

Rubin, 2015; Pearl, 2009), i.e., quantifying the strength of influence of the cause on

the effect, if the cause is intervened; second, causal discovery (Spirtes et al., 2000), i.e.,

finding the causal relationships (which ones are the causes of which ones?) across

the a set of variables. These two tasks are complementary: the former is quantitative

while the latter is qualitative; the former assumes a causal relationship (which is

cause and which is effect) while the latter discovers causal relationships.

Organization of the thesis The organization is rather standard. An exception is

that a rather formal Preliminaries chapter is put before Literature Review, because

the Preliminaries chapter contains the precise definitions of some concepts used in

Literature Review. Nevertheless, Literature Review could be read and understood

to a large extent of one prefers. We note that Chapter 4, 5, 6 contains the main con-

tributions of this thesis, with Chapter 4 & 5 addressing treatment effect estimation,

and Chapter 6 addressing bivariate causal discovery. Expect these three chapters,



4 Chapter 1. Introduction

the other chapters/sections usually have two parts discussing the two problems re-

spectively. For example, Sec. 2.2.1 is the a preliminary to Chapter 4 & 5 because

iVAE is a basis of our work on treatment effect estimation. Similarly, Sec. 2.2.2 is a

preliminary to Chapter 6. These two threads of the thesis are relatively standalone

and could be read independently. Finally, sections with titles as “Details/Detailed...”

could be omitted on first reading.

Notes on terminology In this section, we have used causality to refer to all the

studies on causal problems, including causal effect estimation and causal discovery.

This also accords with the title of Pearl’s encyclopedic book (Pearl, 2009). Tradition-

ally, causal inference refers to the studies on causal effect, including both identification

and estimation, as in the titles of Rubin, 2005; Hernan and Robins, 2020. However, in

recent years, particularly in machine learning and other interdisciplinary contexts,

“causal inference” has been extended to refer all causal studies, similar to “causal-

ity”. This can be seen in the name “Journal of Causal Inference”3 and in the title of

Peters, Janzing, and Schölkopf, 2017 who mainly discuss (bivariate) causal discov-

ery. In the following, we will use the term “causal inference” in the former sense,

particularly when we want to include the study of causal effect identification, but

avoid the latter usage because it would confuse some readers. Finally, we note that

bivariate causal discovery is sometimes referred to as cause-effect inference, because it

aims to distinguish cause and effect.

1.2 Research Problems

The following subsections specify the two important causal problems studied in this

thesis and bring up the focuses of our research. Detailed review of previous works

can be found in Chapter 3.

1.2.1 Treatment Effect Estimation

In this thesis, we focus on treatment effects based on a set of observations comprising

binary labels T for treatment/control (non-treated), outcome Y, and other covariates

3https://www.degruyter.com/journal/key/jci/html?lang=en



1.2. Research Problems 5

X. This is arguably the most important situation in causal inference, particularly

widely studied in epidemiology and biostatistics. Typical examples include estimat-

ing the effects of public policies or new drugs based on the personal records of the

subjects.

The fundamental difficulty of causal inference is that we never observe counter-

factual outcomes that would have been if we had made the other decision (treatment

or control). While randomized controlled trials (RCTs) control biases through ran-

domization and are ideal protocols for causal inference, they often have ethical and

practical issues, or suffer from expensive costs. Thus, causal inference from obser-

vational data is important.

Causal inference from observational data has other challenges as well. One is

confounding: there may be variables, called confounders, that causally affect both the

treatment and the outcome, and spurious correlation/bias follows. The other is the

systematic imbalance (difference) of the distributions of the covariates between the

treatment and control groups––that is, X depends on T, which introduces bias in

estimation. A majority of studies on causal inference, including our work contained

in Chapter 4, have relied on unconfoundedness; this means that the confounding

can be controlled by conditioning on the covariates. The more covariates are col-

lected the more likely unconfoundedness holds; however, more covariates tends to

introduce a stronger imbalance between treatment and control.

Chapter 4 studies the issue of imbalance in estimating individualized treatment

effects conditioned on X. Classical approaches aim for covariate balance, X inde-

pendent of T, by matching and re-weighting (Stuart, 2010; Rosenbaum, 2020). Ma-

chine learning methods have also been exploited; there are semi-parametric meth-

ods––e.g., Laan and Rose (2018, TMLE)––which improve finite sample performance,

as well as non-parametric methods––e.g., Wager and Athey (2018, CF). Notably,

from Johansson, Shalit, and Sontag (2016), there has been a recent increase in interest

in balanced representation learning (BRL) to learn representations Z of the covariates,

such that Z independent of T.

The most serious form of imbalance is the limited (or weak) overlap of covariates,

which means that sample points with certain covariate values belong to a single

treatment group. In this case, a straightforward estimation of treatment effects is not
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possible at non-overlapping covariate values due to lack of data. There are works

that provide robustness to limited overlap (Armstrong and Kolesár, 2021), trim non-

overlapping data points (Yang and Ding, 2018), weight data points by overlap (Li

and Li, 2019), or study convergence rates depending on overlap (Hong, Leung, and

Li, 2020). Limited overlap is particularly relevant to machine learning methods that

exploit high-dimensional covariates. This is because, with higher-dimensional co-

variates, overlap is harder to satisfy and verify (D’Amour et al., 2020).

To address imbalance and limited overlap, we use a prognostic score (Hansen,

2008); it is a sufficient statistic of outcome predictors and is among the key concepts

of sufficient scores for treatment effect estimation. As a function of covariates, it

can map some non-overlapping values to an overlapping value in a space of lower-

dimensions. For individualized treatment effects, we consider conditionally balanced

representation Z, such that Z is independent of T given X––which, as we will see, is

a necessary condition for a balanced prognostic score. Moreover, prognostic score

modeling can benefit from methods in predictive analytics and exploit rich litera-

ture, particularly in medicine and health (Hajage et al., 2017). Thus, it is promising

to combine the predictive power of prognostic modeling and machine learning. With

this idea, our method builds on a generative prognostic model that models the prog-

nostic score as a latent variable and factorizes to the score distribution and outcome

distribution.

As we consider latent variables and causal inference, identification is an issue that

must be discussed before estimation is considered. “Identification” means that the

parameters of interest (in our case, representation function and treatment effects) are

uniquely determined and expressed using the true observational distribution. With-

out identification, a consistent estimator is impossible to obtain, and a model would

fail silently; in other words, the model may fit perfectly but will return an estimator

that converges to a wrong one, or does not converge at all (Lewbel, 2019, particularly

Sec. 8). Identification is even more important for causal inference; because, unlike

usual (non-causal) model misspecification, causal assumptions are often unverifi-

able through observables (White and Chalak, 2013). Thus, it is critical to specify the

theoretical conditions for identification, and then the applicability of the methods

can be judged by knowledge of an application domain.
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A major strength of our generative model is that the latent variable is identifi-

able. This is because the factorization of our model is naturally realized as a com-

bination of identifiable VAE (Khemakhem et al., 2020b, iVAE) and conditional VAE

(Sohn, Lee, and Yan, 2015, CVAE). Based on model identifiability, we develop two

identification results for individualized treatment effects under limited overlap. The

current study further provides bounds on individualized treatment effect error, and

the bounds justify a conditionally balancing term controlled by hyperparameter β,

as an interpolation between the two identifications. This VAE architecture was first

proposed by us in Wu and Fukumizu (2020b).

There are a few lines of works that address the difficult but important problem

of unobserved confounding. Without covariates to adjust for, the naive regression with

observed variables introduces bias, if the decision of treatment and the outcome

are confounded, as explained in Sec. 2.1.1. Instead, many methods assume special

structures among the variables, such as instrumental variables (IVs) (Angrist, Im-

bens, and Rubin, 1996), proxy variables (Tchetgen et al., 2020), network structure

(Veitch, Wang, and Blei, 2019), and multiple causes (Wang and Blei, 2019b). Among

them, instrumental and proxy variables are most commonly exploited. Instrumental

variables are not affected by unobserved confounders, influencing the outcome only

through the treatment. On the other hand, proxy variables are causally connected

to unobserved confounders, but are not confounding the treatment and outcome

by themselves. Other methods use restrictive parametric models (Allman, Matias,

Rhodes, et al., 2009), or only give interval estimation (Manski, 2009; Kallus, Mao,

and Zhou, 2019).

In Chapter 5, we challenge the problem of estimating treatment effects under

unobserved confounding. We highlight the promising experimental results of Intact-

VAE, under unconfounded, IV, proxy, and networked confounding settings. We also

discuss some theoretical ideas under unobserved confounding.

The hallmark of deep neural networks (NNs) is that they can learn representa-

tions of data. It is desirable that the learned representations are interpretable, that is,

in approximately the same relationship to true latent sources for each down-stream

task. A principled approach to interpretable representations is identifiability, that

is, when optimizing our learning objective w.r.t. the representation function, only a
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unique optimum, which represents the true latent structure, will be returned. Our

method provides the stronger identifiability that gives balanced representation. VAEs

(Kingma, Welling, et al., 2019) are suitable for causal estimation thanks to its proba-

bilistic nature. However, most VAE methods for treatment effects, e.g., Louizos et al.,

2017; Zhang, Liu, and Li, 2020, are ad hoc and thus not identifiable. Instead, our goal

is to build a VAE that can identify and recover from observational data a sufficient

score via the latent variable, which can be seen as a causal representation (Schölkopf

et al., 2021); recovering the true confounder is not necessary.

1.2.2 Bivariate Causal Discovery

Causal discovery (Spirtes and Zhang, 2016; Peters, Janzing, and Schölkopf, 2017)

is a fundamental problem which attracts increasing attention recently. Tradition-

ally, causal discovery algorithms learn the causal structure in the form of a directed

acyclic graphical (DAG) model, by searching in the space of possible DAGs. Constraint-

based search methods, such as FCI (Spirtes, Meek, and Richardson, 1999), use con-

ditional independence tests to determine the causal structure. Score-based search

methods, such as GES (Chickering, 2002), typically search for a graph that optimizes

a penalized likelihood score. However, the above methods are not applicable to bi-

variate case and unable to fully determine edge directions in a DAG.

In recent years, a line of research emerges that is particularly motivated to solve

the problem of distinguishing cause from effect in bivariate case, i.e. cause-effect

inference. All these methods exploit cause-effect asymmetry to identify causal di-

rection (Mooij et al., 2016). One major approach is to restrict causal mechanism to

a certain class of “functional causal models” (FCMs) (Hyvärinen and Zhang, 2016),

and the causal direction between C and E is identifiable if p(E|C) can be fitted by

this class, while the opposite direction, p(C|E), cannot. Many FCMs are additive

noise models, with different types of noises and mean functions. There is another

line of work loosely exploit the idea that the process generating cause distribution

p(C) is in some way “independent” to the causal mechanism generating conditional

distribution p(E|C) (Janzing and Scholkopf, 2010).

We can observe the following limitations in the existing methods. First, FCMs

put too strong restrictions on the functional form of causal mechanism. Second,
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other works tend to propose simple “principles” that actually reflect the authors’

own intuitions on causality. Thus, most methods fail to achieve high accuracy on real

world data. Third, there are a few methods–e.g., CGNN (Goudet et al., 2018)–that

use more flexible models and achieve better performance, but without theoretical

justifications. Fourth, they assume there exist no hidden confounders.

Chapter 6 studies cause-effect inference and address the first three4 limitations

respectively as follows. First, we train nonlinear causal models on cause-effect pairs

with (maybe partial) direction information, based on a recent nonlinear ICA method

implemented by neural network, without strong restriction on the functional rela-

tionship among the variables or the noise structure. Second, the fact that each of

the many approaches to causality works to some limited extent suggests us to take a

“mosaic” view: causal systems are diverse and heterogeneous, so we should not fit

all the different systems at once; instead, study at a time a small number of causal

systems that share common aspects, and then build a whole picture. Specifically, we

build an ensemble of nonlinear models, which amounts to a Causal Mosaic: a causal

pair’s mechanism is treated as a mixture of similar mechanisms. It is analogous to

constructing a large piece of mosaic from tesserae, which are small blocks of material

used in creating a mosaic. Finally, we provide theoretical results on the conditions

under which our method will work.

1.3 Contributions

In Chapter 4, we study the identification (Sec. 4.2) and estimation (Sec. 4.3) of indi-

vidualized treatment effects under limited overlap. Our approach is based on recov-

ering prognostic scores from observed variables. To this end, our method exploits

recent advances in identifiable representation––particularly iVAE. The main contri-

butions of this chapter are:

1. treatment effect identification under limited overlap of X, via prognostic scores

and an identifiable model;

2. Bounds on individualized treatment effect error, which justify our conditional

BRL;
4To deal with confounders, we can combine our method with graphical search methods.
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3. A new regularized VAE, β-Intact-VAE, realizing the identification and condi-

tional balance;

4. Experimental comparison to the state-of-the-art methods on (semi-)synthetic

datasets.

In Chapter 5, we challenge the problem of estimating treatment effects under un-

observed confounding. We highlight the promising experimental results of Intact-

VAE, under unconfounded, IV, proxy, and networked confounding settings. We also

discuss some theoretical ideas under unobserved confounding. The main contribu-

tions of this chapter are:

1. Experimental comparison to state-of-the-art methods under diverse settings;

2. Discussions of further theoretical developments and principled treatment ef-

fect estimation using VAEs.

In Chapter 6, we study the problem of cause-effect inference and address the

three limitations in previous work mentioned above. The main contributions of this

chapter are:

1. Two novel cause-effect inference rules with identifiability proofs;

2. An ensemble framework that works for real world datasets with only limited

labeled pairs;

3. A neural network structure designed for causal-effect inference;

4. State-of-the-art performance on a real-world benchmark dataset.
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Chapter 2

Preliminaries

2.1 Notations, Formulations, and Definitions

2.1.1 Treatment Effect Estimation

Counterfactuals, Treatment Effects, and Identification

Following Imbens and Rubin (2015), we assume there exist potential outcomes Y(t) ∈

Rd, t ∈ {0, 1}. Y(t) is the outcome that would have been observed if the treatment

value T = t was applied. We see Y(t) as the hidden variables that give the factual

outcome Y under factual assignment T = t. Formally, Y(t) is defined by the consistency

of counterfactuals: Y = Y(t) if T = t; or simply Y = Y(T). The fundamental prob-

lem of causal inference is that, for a unit under research, we can observe only one of

Y(0) or Y(1)––w.r.t. the treatment value applied. That is, “factual” refers to Y or T,

which is observable; or estimators built on the observables. We also observe relevant

covariate(s) X ∈ X ⊆ Rm, which is associated with individuals, with distribution

D := (X, Y, T) ∼ p(x, y, t). We use upper-case (e.g. T) to denote random variables,

and lower-case (e.g. t) for realizations.

The expected potential outcome is denoted by µt(x) = E(Y(t)|X = x) condi-

tioned on X = x. The estimands in our work in Chapter 4 & 5 are the conditional

ATE (CATE) and average treatment effect (ATE), defined, respectively, by:

τ(x) = µ1(x)− µ0(x), ν = E(τ(X)). (2.1)

CATE is seen as an individual-level, personalized, treatment effect, given highly dis-

criminative X.
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Standard results (Rubin, 2005)(Hernan and Robins, 2020, Ch. 3) show sufficient

conditions for treatment effect identification in general settings. They are Exchange-

ability: Y(t) |= T|X, and Overlap: p(t|x) > 0 for any x ∈ X . Both are required for

t ∈ {0, 1}. When t appears in statements without quantification, we always mean

“for both t”. Often, Consistency is also listed; however, as mentioned, it is better

known as the well-definedness of counterfactuals. Exchangeability means, just as in

RCTs, but additionally given X, that there is no correlation between factual T and

potential Y(t). Note that the popular assumption Y(0), Y(1) |= T|X is stronger than

Y(t) |= T|X and is not necessary for identification (Hernan and Robins, 2020, pp. 15).

Overlap means that the supports of p(x|t = 0) and p(x|t = 1) should be the same,

and this ensures that there are data for µt(x) on any (x, t).

We rely on consistency and exchangeability, but in Sec. 4.2.3, will relax the con-

dition of the overlapping covariate to allow some non-overlapping values x––that

is, covariate X is limited-overlapping. In this thesis, we also discuss overlapping vari-

ables other than X (e.g., prognostic scores), and provide a definition for any random

variable V with support V as follows:

Definition 1. V is Overlapping if p(t|V = v) > 0 for any t ∈ {0, 1}, v ∈ V . If

the condition is violated at some value v, then v is non-overlapping and V is limited-

overlapping.

Prognostic Score

Our method aims to recover a prognostic score (Hansen, 2008), adapted to account

for both t as in Definition 2. On the other hand, balancing scores (Rosenbaum and

Rubin, 1983) b(X) are defined by T |= X|b(X), of which the propensity score p(t =

1|X) is a special case. See Sec. 2.1.1 for detail.

Definition 2. A prognostic score is {p(X, t)}t∈{0,1} such that Y(t) |= X|p(X, t), where

p(x, t) (pt(x) hereafter) is a function defined on X × {0, 1}. A prognostic score is

called balanced (and a balanced prognostic score) if p0 = p1.
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We say a prognostic score is overlapping, if both p0(X) and p1(X) are overlap-

ping. Obviously, a balanced prognostic score p(X) is a conditionally balanced repre-

sentation (defined as Z |= T|X in Introduction) and is thus named. We often write t

of the function argument in subscripts.

Details and Relationship to Balancing Score In the fundamental work of (Hansen,

2008), prognostic score is defined equivalently to our p0, but it in addition requires

no effect modification to work for Y(1). Thus, a useful prognostic score corresponds

to our Definition 2.

First, we quote the following three properties of conditional independence (see

standard textbooks, e.g., Pearl, 2009, Sec. 1.1.55 for a proof) which will be used re-

peatedly in the proof of Proposition 2.

Proposition 1 (Properties of conditional independence). For random variables W, X, Y, Z.

We have:

X |= Y|Z ∧ X |= W|Y, Z =⇒ X |= W, Y|Z (Contraction).

X |= W, Y|Z =⇒ X |= Y|W, Z (Weak union).

X |= W, Y|Z =⇒ X |= Y|Z (Decomposition).

We give main properties of prognostic score as following.

Proposition 2. If V gives exchangeability, and pt(V) is a prognostic score, then Y(t) |= V, T|pt.

Proof of Proposition 2. From Y(t) |= T|V (exchangeability of V), and since pt is a function

of V, we have Y(t) |= T|pt, V (1).

From (1) and Y(t) |= V|pt(V) (definition), using contraction rule, we have Y(t) |= T, V|pt

for both t.

Prognostic scores are closely related to the important concept of balancing score

(Rosenbaum and Rubin, 1983). Note particularly, the proposition implies Y(t) |= T|pt

(using decomposition rule). Thus, if p(V) is a balanced prognostic score, then p

also gives weak ignorability (exchangeability and overlap), which is a nice property

shared with balancing score, as we will see immediately.
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Definition 3 (Balancing score). b(V), a function of random variable V, is a balancing

score if T |= V|b(V).

Proposition 3 (Rosenbaum and Rubin, 1983). Let b(V) be a function of random variable

V. b(V) is a balancing score if and only if f (b(V)) = p(T = 1|V) := e(V) for some

function f (or more formally, e(V) is b(V)-measurable). Assume further that V gives weak

ignorability, then so does b(V).

Obviously, the propensity score e(V) := p(T = 1|V), the propensity of assigning

the treatment given V, is a balancing score (with f be the identity function). Also,

given any invertible function v, the composition v ◦ b is also a balancing score since

f ◦ v−1(v ◦ b(V)) = f (b(V)) = e(V).

Compare the definition of balancing score and prognostic score, we can say bal-

ancing score is sufficient for the treatment T (T |= V|b(V)), while prognostic score (Pt-

score as in Sec. 5.1.2) is sufficient for the potential outcomes Y(t) (Y(t) |= V|pt(V)).

They complement each other; conditioning on either deconfounds the potential out-

comes from treatment, with the former focuses on the treatment side, the latter on

the outcomes side.

2.1.2 Bivariate Causal Discovery

In the following, we first formally introduce our problem setting. In Sec. 2.2.2, we

show its connection to nonlinear ICA.

Generally, causal relationships can be formalized by Structural Causal Models

(SCMs) (Pearl, 2009), also known as Structural Equation Models (SEMs) (Bollen,

1989). Let G = (V , E) denote a causal DAG, where V is the vertex set and E is the

edge set. Then, the SCM of observed variables X = (Xv)v∈V and independent hidden

variables E = (Ev)v∈V is given by the set of equations 1:

Xv = fv(XpaG (v), Ev), v ∈ V (2.2)

1As typical definition of SCM, we rule out feedback loops (two-way causal influences) and con-
founders (hidden common causes) here.
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fv represents the causal mechanism between effect Xv and its direct causes (parents

in the graph) XpaG (v). And Ev models exogenous (external) influences on Xv and is

often treated as an unobserved noise.

E1 E2

X1 X2

E1 E2

X1 X2

FIGURE 2.1: Causal graphs of bivariate SCMs

In our work in Chapter 6, we focus on bivariate cases, where there are only two

possibilities: either X1 or X2 is the direct cause of the other, as shown in Figure 2.

Their SCMs are the following (2.3) for X1 → X2, and (2.4) for X2 → X1. In cause-

effect inference, our goal is to distinguish between these two possibilities, that is, tell

cause from effect.

X1 = f1(E1), X2 = f2(X1, E2) (2.3)

X1 = f1(X2, E1), X2 = f2(E2) (2.4)

2.2 Nonlinear ICA

Nonlinear ICA provides a general framework to recover independent components

from observed data. Unlike many other representation learning methods, e.g. deep

generative networks, it starts from a generative model which is well-defined in the

sense that the hidden variables is recoverable.

A straightforward definition of the generative model for nonlinear ICA is that in-

dependent hidden variables Z = (Z1, ..., Zn) are mixed by a differentiable and invert-

ible nonlinear function f, and produce observed variables X = (X1, ..., Xn) = f(Z).

The goal is to recover the independent components Zi and the unmixing function

g = f−1, only using observations of X.
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2.2.1 VAE from the Viewpoint of Nonlinear ICA

VAEs (Kingma, Welling, et al., 2019) are a class of latent variable models with latent

variable Z, and observable Y is generated by the decoder pθ(y|z). In the standard

formulation (Kingma and Welling, 2013), the variational lower bound L(y; θ, ϕ) of

the log-likelihood is derived as:

log p(y) ≥ log p(y)− DKL(q(z|y)∥p(z|y))

= Ez∼q log pθ(y|z)− DKL(qϕ(z|y)∥p(z)),
(2.5)

where DKL denotes KL divergence and the encoder qϕ(z|y) is introduced to ap-

proximate the true posterior p(z|y). The decoder pθ and encoder qϕ are usually

parametrized by NNs. We will omit the parameters θ, ϕ in notations when appro-

priate.

The parameters of the VAE can be learned with stochastic gradient variational

Bayes. With Gaussian latent variables, the KL term of L has closed form, while the

first term can be evaluated by drawing samples from the approximate posterior qϕ

using the reparameterization trick (Kingma and Welling, 2013), then, optimizing the

evidence lower bound (ELBO) Ey∼D(L(y)) with data D, we train the VAE efficiently.

Conditional VAE (CVAE) (Sohn, Lee, and Yan, 2015; Kingma et al., 2014) adds a

conditioning variable C, usually a class label, to standard VAE (See Figure 4.1). With

the conditioning variable, CVAE can give better reconstruction of each class. The

variational lower bound is

log p(y|c) ≥ Ez∼q log p(y|z, c)− DKL(q(z|y, c)∥p(z|c)). (2.6)

The conditioning on C in the prior is usually omitted (Doersch, 2016), i.e., the prior

becomes Z ∼ N (0, I) as in standard VAE, since the dependence between C and

the latent representation is also modeled in the encoder q. Moreover, unconditional

prior in fact gives better reconstruction because it encourages learning representa-

tion independent of class, similarly to the idea of beta-VAE (Higgins et al., 2017).

As mentioned, identifiable VAE (iVAE) (Khemakhem et al., 2020b) provides the

first identifiability result for VAE, using auxiliary variable X. It assumes Y |= X|Z,
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that is, p(y|z, x) = p(y|z). The variational lower bound is

log p(y|x) ≥ log p(y|x)− DKL(q(z|y, x)∥p(z|y, x))

= Ez∼q log p f (y|z)− DKL(q(z|y, x)∥pT ,λ(z|x)),
(2.7)

where Y = f (Z) + ϵ, ϵ is additive noise, and Z has exponential family distribution

with sufficient statistics T and parameter λ(X). Note that, unlike CVAE, the decoder

does not depend on X due to the independence assumption.

Here, identifiability of the model means that the functional parameters ( f , T , λ) can

be identified (learned) up to certain simple transformation. Further, in the limit of

ϵ → 0, iVAE solves the nonlinear ICA problem of recovering Z = f−1(Y).

2.2.2 Nonlinear ICA and Causal Discovery

The following definition formally states the connection between SCM and nonlinear

ICA:

Definition 4. An SCM (2.2) is analyzable if there exists a differentiable and invert-

ible2 function f : Rn → Rn, such that X = f(E).

Obviously, an analyzable SCM is a special case of nonlinear ICA’s generative

model, with particular structure between the variables. For example, in bivariate

SCM (2.3), let f3(E1, E2) = f2( f1(E1), E2) and f = ( f1, f3), the SCM can be written

as (X1, X2) = f(E1, E2). Now if f is differentiable and invertible on R2, the SCM is

analyzable.

For analyzable SCM, if we can solve the corresponding nonlinear ICA problem,

we obtain the hidden variables E = g(X). In bivariate case, given E1 and E2, un-

der causal Markov and faithfulness assumptions (Spirtes and Zhang, 2016), we can

conclude:

X1 → X2 if X1 |= E2,

X2 → X1 if X2 |= E1

(2.8)

This criteria was exploited by many classical methods, e.g. LiNGAM and ANM, and

can be easily understood as the independence of noise and cause.
2This does not imply such a strong restriction as it would seem. See Sec. 6.8.2
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Nonlinear ICA violates causal faithfulness assumption Causal Markov and faith-

fulness assumptions are common in causal discovery literature, and we also require

them in our theorem. However, we should note that causal faithfulness assumption

is violated for a realized bivariate nonlinear ICA, because X1 ̸ |= X2 and the nonlin-

ear ICA procedure necessarily has one of the following graphical models:

X1 X2

C1 C2

X1 X2

C1 C2

X1 X2

C1 C2

FIGURE 2.2: Graphs of nonlinear ICA procedure.

None of them induce C1 |= C2 under causal faithfulness assumption.
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Chapter 3

Literature Review

The broadness of causality studies is well represented by Pearl (2009)’s encyclopedic

monograph, which spans causal discovery, causal identification, interventional anal-

ysis, and counterfactual reasoning. Given the importance and broadness of Pearl’s

work, a brief review is given here as a general starting point for this section. Read-

ers of historical interest are referred to Geffner, Dechter, and Halpern, 2022, with an

annotated bibliography and four introductions by Pearl himself.

Pearl’s interests in causality started from his work on Bayesian networks (Pearl,

1988) which later found applications in causality (Verma and Pearl, 1988; Pearl and

Verma, 1991). His work started from causal discovery (Verma and Pearl, 1990) and

was influenced by the work of some computational-oriented philosophers (Gly-

mour, Scheines, and Spirtes, 1987). Later, his work touched identification of causal

effects, i.e., the famous back-door criterion (Pearl, 1993), semantics of counterfactu-

als (Balke and Pearl, 1994), and mediation analysis (Pearl, 2001), all of which are

based on a graphical language. By far, his work has influenced statistics (Drton

and Maathuis, 2017), biostatistics (Greenland, Pearl, and Robins, 1999), econometrics

(Imbens, 2020), and, of course, machine learning (Schölkopf et al., 2021; Kaddour et

al., 2022).

Below, works on the two problems tackled in this thesis are reviewed specifically.
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3.1 Treatment Effect Estimation

Under unconfoundedness assumption, the problem of covariate imbalance is tradi-

tionally addressed by balancing methods, including matching and re-weighting (Stu-

art, 2010; Rosenbaum, 2020), because adjusting for imbalance in treatment assign-

ment controls bias in treatment effect estimation. In matching methods, similar sub-

jects in the control (treatment) group are found–that is “matched to”–a subject in

the treatment (control) group and used as a sample to infer the treated (controlled)

subject’s potential outcome. There are, to name a few, Mahalanobis matching (Ru-

bin, 1979), propensity score matching (Rosenbaum and Rubin, 1983), full match-

ing (Rosenbaum, 1991), fine balancing (Rosenbaum, Ross, and Silber, 2007), and

adaptive hyper-box matching (Morucci et al., 2020). Re-weighting methods balance

treatment and control groups by weighting subjects of both groups. The seminal

method is inverse propensity weighting (IPW) (Rosenbaum, 1987). To avoid extreme

weight values, there are also stabilized weighting (Cole and Hernán, 2008), trimmed

weighting (Lee, Lessler, and Stuart, 2011), and overlap weighting (Li, Morgan, and

Zaslavsky, 2018).

With the nonparametric statistics and machine learning, there comes regression

methods. Recall the motivation behind balancing methods is that, in an RCT, or if

the propensity score is properly estimated, we can avoid, or relax the assumptions

on, modeling the response surfaces µt(X) which might be arbitrary nonlinear and

multivariate functions. Conversely, regression methods aim to model the response

surfaces precisely, using flexible regression models, without propensity score esti-

mation. This is why nonparametric or machine learning models are considered, e.g.,

regression trees (Hill, 2011; Athey and Imbens, 2016) and random forests (Wager and

Athey, 2018).

Mixed (double) methods combine balancing and regression, because, as we have

seen, both are useful for controlling the bias in treatment effect estimation. While

many machine learning methods, including ours, fall into this category because

they have flexible outcome regressions, the line of work exists in fact long before
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the coming of machine learning, for example, in the form of regression with propen-

sity adjustment (Rosenbaum and Rubin, 1983). Also, doubly robust estimators (Cas-

sel, Särndal, and Wretman, 1976; Robins, Rotnitzky, and Zhao, 1994) are consistent

if either the propensity estimation or the outcome estimation is consistent and can

possibly use machine learning for both estimators (Chernozhukov et al., 2018). An-

other benefit of the combination is to debias machine learning regressions and get
√

N-consistency, possibly without propensity estimation (Athey, Imbens, and Wa-

ger, 2018). Further, double/debiased machine learning (DML) (Chernozhukov et al.,

2018) provides a semi-parametric framework, not limited to causal effects as target

parameters, exploiting machine learning in estimating nuisance parameters while

obtaining
√

N-consistency. We note that, for machine learning methods, balancing

is often achieved by a regularization term penalizing the imbalance, and this is true

for most of the BRL methods mentioned below, including ours.

Below, we focus on several lines of work that are particularly related to aspects

of our method.

Limited overlap. Under limited overlap, Luo, Zhu, and Ghosh (2017) estimate

the ATE by reducing covariates to a linear prognostic score. Farrell (2015) estimates

a constant treatment effect under a partial linear outcome model. D’Amour and

Franks (2021) study the identification of ATE by a general class of scores, given the

(linear) propensity score and prognostic score. Machine learning studies on this

topic have focused on finding overlapping regions (Oberst et al., 2020; Dai and

Stultz, 2020), or indicating possible failure under limited overlap (Jesson et al., 2020),

but not remedies. An exception is Johansson et al. (2020), which provides bounds

under limited overlap. To the best of our knowledge, our method is the first machine

learning method that provides identification under limited overlap.

Prognostic scores have been recently combined with machine learning approaches,

mainly in the biostatistics community. For example, Huang and Chan (2017) esti-

mate individualized treatment effect by reducing covariates to a linear score which

is a joint propensity-prognostic score. Tarr and Imai (2021) use SVM to minimize the

worst-case bias due to prognostic score imbalance. However, in the machine learn-

ing community, few methods consider prognostic scores; Zhang, Liu, and Li (2020)

and Hassanpour and Greiner (2019) learn outcome predictors, without mentioning
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prognostic score––while Johansson et al. (2020) conceptually, but not formally, con-

nects BRL to prognostic score. Our work is the first to formally connect generative

learning and prognostic scores for treatment effect estimation.

Identifiable representation. Recently, independent component analysis (ICA)

and representation learning––both ill-posed inverse problems––meet together to yield

nonlinear ICA and identifiable representation; for example, using VAEs (Khemakhem

et al., 2020b), and energy models (Khemakhem et al., 2020a). The results are ex-

ploited in causal discovery (Wu and Fukumizu, 2020a) and out-of-distribution (OOD)

generalization (Sun et al., 2020). This study is the first to explore identifiable repre-

sentations in treatment effect identification.

BRL and related methods amount to a major direction. Early BRL methods

include BLR/BNN (Johansson, Shalit, and Sontag, 2016) and TARnet/CFR (Shalit,

Johansson, and Sontag, 2017). In addition, Yao et al., 2018 exploit the local similarity

between data points. Shi, Blei, and Veitch, 2019 use similar architecture to TARnet,

considering the importance of treatment probability. There are also methods that use

GAN (Yoon, Jordon, and Schaar, 2018, GANITE) and Gaussian processes (Alaa and

Schaar, 2017). Our method shares the idea of BRL, and further extends to conditional

balance––which is natural for individualized treatment effect.

Causal inference with auxiliary structures. CEVAE (Louizos et al., 2017) relies

on the strong assumption that the true confounder distribution can be recovered

from proxies. Our method is quite different in motivation, applicability, architecture.

Detailed comparisons are given in Sec. 3.1.1. Also with proxies, Kallus, Mao, and

Udell, 2018 use matrix factorization to infer the confounders, and Mastouri et al.,

2021 use kernel methods to solve the underlying Fredholm integral equation. IVs

are also exploited in machine learning, there are methods using deep NNs (Hartford

et al., 2017) and kernels (Singh, Sahani, and Gretton, 2019; Muandet et al., 2019).

Our work lays conceptual and theoretical foundations of VAE methods for treat-

ment effects (e.g., CEVAE Louizos et al., 2017; Lu et al., 2020), see Section 5.3. In

Section 3.1.1, we also make detailed comparisons to CFR and CEVAE, which are

well-known machine learning methods. In addition, some studies consider mono-

tonicity, which is injectivity on R, together with overlap, and this is discussed in

detail below.
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3.1.1 Detailed Comparisons

Comparisons with and Criticisms of CEVAE

Motivation CEVAE is motivated by exploiting proxy variables, and its intuition is

that the hidden confounder U can be recovered by VAE from proxy variables.

Our method is motivated by prognostic scores (Hansen, 2008), and our model is

directly based on equations (5.3) which identifies CATE. There is no need to recover

the hidden confounder in our framework.

Architecture Our model is naturally based on (5.3), particularly the independence

properties of prognostic score. And as a consequence, our VAE architecture is a

natural combination of iVAE and CVAE (see Figure 4.1). Our ELBO (4.3) is derived

by the standard variational lower bound.

On the other hand, the architecture of CEVAE is more ad hoc and complex. Its de-

coder follows the graphical model of descendant proxy mentioned above, but adds

an ad hoc component to mimic TARnet (Shalit, Johansson, and Sontag, 2017): it

uses separated NNs for the two potential outcomes. We tried this idea on the IHDP

dataset, and, as we show in Sec. 4.4.2, it has basically no merits for our method,

because we have a principled way for balancing.

The encoder of CEVAE is even more complex. To have post-treatment estimation,

q(T|X) and q(Y|X, T) are added into the encoder. As a result, the ELBO of CEVAE

has two additional likelihood terms corresponding to the two distributions. How-

ever, in our Intact-VAE, post-treatment estimation is given naturally by our standard

encoder, thanks to the correspondence between our model and (5.3).

Justification We have given the identifications and bounds of our method in Chap-

ter 4. Moreover, we carefully distinguish assumptions on the DGP and assumptions

on our model, and identify the assumptions that are important for causality. There

are few theoretical justifications for CEVAE. Their Theorem 1 directly assumes the

joint distribution p(x, y, t, u) including hidden confounder U is recovered, then iden-

tification is trivial by using the standard adjustment equation.

However, the challenge is exactly that the confounder is hidden, unobserved.

Many years of work have been done in causal inference to derive conditions under
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which hidden confounder can be (partially) recovered (Greenland, 1980; Kuroki and

Pearl, 2014; Miao, Geng, and Tchetgen Tchetgen, 2018). In particular, Miao, Geng,

and Tchetgen Tchetgen, 2018 gives the most recent identification result for proxy

setting, which requires very specific two proxies structure, and other completeness

assumptions on distributions. Thus, it is unreasonable to believe that VAE, with

simple descendant proxies, can recover the hidden confounder. Indeed, Rissanen

and Marttinen, 2021 recently give evidence that the method often fails.

Moreover, the identifiability of VAE itself is a challenging problem. As men-

tioned in Introduction, Khemakhem et al., 2020b is the first identifiability result for

VAE, but it only identifies an equivalence class, not a unique representation func-

tion. Thus, it is also unconvincing that VAE can learn a unique latent distribution,

without certain assumptions. As we show in Sec. 4.4.1, for relatively simple syn-

thetic datasets, CEVAE can not robustly recover the hidden confounder, even only

up to transformation, while our method can (though, again, this is not needed for

our method).

Comparisons with CFR

Our method is related to CFR in two ways. Theoretically, our bounds in Sec. 4.3.2

resemble those in Shalit, Johansson, and Sontag, 2017. But we bound CATE error,

while CFR bounds PEHE; thus, our bounds give conditional balancing while CFR

only has unconditional balancing. See Sec. 4.7.5 for more on the bounds. Conceptu-

ally, CFR is loosely related to our method because it also learns a representation as

an outcome predictor, as mentioned in the follow-up Johansson et al., 2020. How-

ever, CFR does not have a generative model, so their representation is not formally

related to prognostic scores. Moreover, CFR does not account the outcome noise,

while the uncertainty due to the noise is accounted by our VAE.

3.1.2 Injectivity, Invertibility, Monotonicity, and Overlap

Let us note that any injective mapping defines an invertible mapping, by restrict the do-

main of the inverse function to the range of the injective mapping. Also note that

injectivity is weaker than monotonicity; a monotone mapping can be defined by an
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injective and order-preserving mapping between ordered sets. Particularly, an injec-

tive and continuous mapping on R is monotone, and many works in econometrics give

examples of this case.

Many classical and recent works (with many real world applications, see C.1) in

econometrics are based on monotonicity. Particularly, there is a long line of work

based on monotonicity of treatment (Huber and Wüthrich, 2018). More related to our

method is another line of work based on monotonicity of outcome, see (Chernozhukov

and Hansen, 2013) and references therein for early results. Some recent works apply

monotonicity of outcome to nonparametric IV regression (NPIV) (Freyberger and

Horowitz, 2015; Li, Liu, and Li, 2017; Chetverikov and Wilhelm, 2017), where the

structural equation of the outcome is assumed to be Y = f (T) + ϵ, and f is mono-

tone and T (the treatment) is often continuous. Particularly, (Chetverikov and Wil-

helm, 2017) combines monotonicity of both treatment and outcome, and (Freyberger

and Horowitz, 2015) considers discrete treatment (note continuity or differentiability

is not necessary for monotonicity). NPIV with monotone f is closely related to our

method, but the difference is that T is replaced by a prognostic score in our method,

and the prognostic score is recovered from observables. Finally, as we mentioned in

Sec. 4.2.3, monotonicity is a kind of shape restriction which also includes, e.g., con-

cavity and symmetry and attracts recent interests (Chetverikov, Santos, and Shaikh,

2018). However, most of NPIV works focus on identifying f but not directly on

treatment effects, and we do not know any works that use monotonicity to address

limited overlap.

Recently in machine learning, (Johansson, Sontag, and Ranganath, 2019; Zhang,

Bellot, and Schaar, 2020; Johansson et al., 2020) note the relationship between in-

vertibility and overlap. As mentioned, (Johansson et al., 2020) gives bounds without

overlap, but the relationship between invertibility and overlap is not explicit in their

theory. (Johansson, Sontag, and Ranganath, 2019) explicitly discuss overlap and in-

vertibility, but does not focus on treatment effects. (Zhang, Bellot, and Schaar, 2020)

assumes overlap so that identification is given, and then focuses on learning over-

lapping representation that preserves the overlapping the covariate. However, it

does not relate invertibility and overlap, but uses invertible representation function

to preserve exchangeability given the covariate, and linear outcome regression to simply
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the model. Related, our identifications required (M2), of which linearity of prog-

nostic score and representation function is a sufficient condition, and our outcome

model is injective, to preserve the exchangeability given the prognostic score. Thus, our

method works under more general setting, and arguably under weaker conditions.

3.2 Causal Discovery

3.2.1 Causal Structure Learning

Traditionally, causal discovery algorithms learn causal structure of a directed acyclic

graphical (DAG) model, by searching in the space of possible DAGs (Spirtes et al.,

2000). Constraint-based search methods, under causal Markov assumption (Spirtes

and Zhang, 2016), use conditional independence test to determine causal structure.

Among them, IC (Verma and Pearl, 1990) and PC (Spirtes and Glymour, 1991) algo-

rithms are early examples. Later, FCI (Spirtes, Meek, and Richardson, 1999) and its

improvements–e.g. RFCI (Colombo et al., 2012), RCI+ (Claassen, Mooij, and Hes-

kes, 2013)–work under the presence of confounders, but can only output Markov

equivalent class of DAGs, in which some causal directions are undetermined. Score-

based search methods, such as GES (Chickering, 2002), search, usually greedily, for

a graph that optimizes a penalized likelihood score. They are fast and robust on

small samples and low-dimensional case, but assume no confounder. Hybrid meth-

ods, which combine constraint- based and score-based methods, could deal with

confounders and be more accurate than constraint-based methods in certain case

(Ogarrio, Spirtes, and Ramsey, 2016). However, none of score-based or hybrid meth-

ods are able to fully determine causal directions since they assign same scores to all

DAGs within the same Markov equivalence class.

3.2.2 Bivariate Causal Discovery

In recent years, a line of research emerges that is particularly motivated to solve

the problem of distinguishing cause from effect. Intuitively, cause-effect relation-

ship is asymmetric in the sense that recovering the cause from effect is more com-

plex than modeling the physical process that generates effect from cause. All the

methods exploit this asymmetry to identify causal direction (Mooij et al., 2016). For
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example, many methods define certain simple, restricted class of functional forms

(sometimes referred to as "functional causal models" (FCMs) (Hyvärinen and Zhang,

2016)). Typical FCMs are LiNGAM (Shimizu et al., 2006), ANM (Hoyer et al., 2009)

and PNL (Zhang and Hyvärinen, 2009); each has more general functional form than

the former, and, thus, is more widely applicable. In particular, ANM is the first to

use nonlinear additive noise model in this problem. These methods advance to deal

with some harder cases, such as cyclic (Mooij et al., 2011), multivariate (Peters et al.,

2014), and discrete (Peters, Janzing, and Scholkopf, 2011).

Other methods exist, and most of them exploits the asymmetry in another way:

the so-called "principle of independent causal mechanism (ICM)", which postulates

that the process generating cause distribution is in some way "independent" to the

causal mechanism generating conditional distribution of the effect given the cause.

For example, Janzing et al., 2012, (IGCI) use orthogonality in information space to ex-

press the independence between two distributions. It is applicable when the causal

relation is deterministic (noise-free). Blöbaum et al., 2018, (RECI) extend IGCI to the

setting with small noise, and proceeds by comparing the regression errors in both

possible directions. Stegle et al., 2010 do not restrict the class of causal models, and

particularly, the noise need not be additive. It explicitly models the “noise” as a

latent variable that summarizes unobserved causes, but still assumes the indepen-

dence of the noise and the observed cause. Both Mitrovic, Sejdinovic, and Teh, 2018,

(KCDC) and Budhathoki and Vreeken, 2017 base on the invariance of Kolmogorov

complexity on the value of the cause. As computing the Kolmogorov complexity

is intractable, Mitrovic, Sejdinovic, and Teh, 2018 use, after kernel mean embed-

ding (KME), the variability in RKHS norm as a proxy for it, while Budhathoki and

Vreeken, 2017 leverage stochastic complexity as an approximation. Unfortunately,

all these methods assume no confounder, since the asymmetry may become invalid

under hidden common causes. Identifiability in the presence of confounders using

purely observational data is only well studied in the linear, non-Gaussian noise case

(Shimizu, 2014; Hoyer et al., 2008).

The most related to our work in Chapter 6 might be the following. RCC (Lopez-

Paz et al., 2015) and its follow-up NCC (Lopez-Paz et al., 2017) also use training data,

but they require large numbers of labeled pairs and thus rely on synthetic pairs for
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training. There is work which takes related viewpoints: KCDC uses majority voting,

the simplest ensemble method; ANM-MM treats mechanism as a mixture. NonSENS

(Monti, Zhang, and Hyvärinen, 2019) also employs the same nonlinear ICA method

as ours, but needs samples of a causal system available over different environments,

which requires interventions or even experiments. We should note that all the above

methods neither take a mosaic view explicitly nor use ensemble method as a main

building block.

Advances regarding Hidden Confounding

Until recently, there is few work that achieves identifiability under confounders, and

this paragraph provides a brief review. Goudet et al., 2018 use deep generative neu-

ral networks to learn multivariate causal models, minimizing a maximum mean dis-

crepancy (MMD) loss based on KME. And it models confounders by adding cor-

related noise between adjacent observed variables. But the loss is to some extent

ad-hoc and has a hyperparameter. Zhang, Zhang, and Schölkopf, 2015 test for exo-

geneity with bootstrap and infers the causal direction, or the existence of confounder

if exogeneity holds for neither directions. But it gives non-identifiable result if exo-

geneity holds for both directions. Moreover, exogeneity is at best a necessary con-

dition of direct causal relation. Chalupka, Eberhardt, and Perona, 2016 work in the

discrete bivariate case. In the presence of confounder, it trains a neural network by

synthesized data drawn from uninformative Dirichlet prior. Both Rothenhäusler,

Bühlmann, and Meinshausen, 2019 and Rothenhäusler et al., 2015 exploit the in-

variance of causal mechanism under specific type of additive intervention and need

data from multiple environments with distinct, but maybe unknown, interventions.

And the causal models are both assumed to be linear, with additive noise. They

allow non-diagonal covariance matrix of the noise, which indicates possible latent

variables (including confounders). Lopez-Paz et al., 2015 do not use common as-

sumptions from causal inference. Instead, it casts causal inference as classification

of probability distributions, in RKHS after KME. The train data are samples from

joint distributions of pairs of variables, labeled by their true causal relations (which

may include “confounded”). Each of these methods is based on at least one of the

following: ad-hoc devices, rather than, preferably theoretical, justification by general
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principles; too strong or dubious assumptions that limit its application; additional

information other than observational data, such as labels of true causal relations, or

data from multiple environments involving interventions. In Section 7.2.1 we dis-

cuss some ideas to avoid these weaknesses.
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Chapter 4

Intact-VAE: Treatment Effect

Estimation under Limited Overlap

4.1 Intuition and Data Generating Process

We use balanced prognostic score or prognostic score to construct representations

for CATE estimation. Why not balancing scores? While balancing scores b(X)

have been widely used in causal inference, prognostic scores are more suitable for

discussing overlap. Our purpose is to recover an overlapping score for limited-

overlapping X. It is known that overlapping b(X) implies overlapping X (D’Amour

et al., 2020), which counters our purpose. In contrast, overlapping balanced prog-

nostic score does not imply overlapping b(X). Example. Let T = I(X + ϵ > 0)

and Y = f (|X|, T) + e, where I is the indicator function, ϵ and e are exogenous

zero-mean noises, and the support of X is on the entire real line while ϵ is bounded.

Now, X itself is a balancing score and |X| is a balanced prognostic score; and |X| is

overlapping but X is not. Moreover, with theoretical and experimental evidence, it is

recently conjectured that prognostic scores maximize overlap among a class of suffi-

cient scores, including b(X) (D’Amour and Franks, 2021). In general, Hajage et al.,

2017 show that prognostic score methods perform better––or as well as––propensity

score methods.

Below is a corollary of Proposition 5 in Hansen, 2008; note that pt(X) satisfies

exchangeability.

Proposition 4 (Identification via prognostic score). If pt(X) is a prognostic score and

Y|pt̂(X), T ∼ pY|pt̂,T(y|P, t) where t̂ ∈ {0, 1} is a counterfactual assignment, then CATE
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and ATE are identified, using (2.1) and

µt̂(x) = E(Y(t̂)|pt̂(X), X = x) = E(Y|pt̂(x), T = t̂) =
∫

pY|pt̂,T(y|pt̂(x), t̂)ydy (4.1)

With the knowledge of pt and pY|pt̂,T, we choose one of p0, p1 and set t = t̂ in the

density function, w.r.t the µt̂ of interest. This counterfactual assignment resolves the

problem of non-overlap at x. Note that a sample point with X = x may not have

T = t̂.

We consider additive noise models for Y(t), which ensures the existence of prog-

nostic scores.

(G1)1 (Additive noise model) the data generating process (DGP) for Y is Y = f ∗(m(X, T), T)+

e where f ∗,m are functions and e is a zero-mean exogenous (external) noise.

The DGP is causal and defines potential outcomes by Y(t) := f ∗t (mt(X)) + e, and

specifies m(X, T), T, and e as the only direct causes of Y. Particularly, mt(X) is a

sufficient statistics of X for Y(t). For example, 1) mt(X) can be the component(s) of

X that affect Y(t) directly, or 2) if Y(t)|X follows a generalized linear model, then

mt(X) can be the linear predictor of Y(t).

Under (G1), 1) mt(X) is a prognostic score; 2) µt(X) = f ∗t (mt(X)) is a prognostic

score; 3) X is a (trivial) balanced prognostic score; and 4) u(X) := (µ0(X), µ1(X)) is

a balanced prognostic score. The essence of our method is to recover the prognostic

score mt(X) as a representation, assuming mt(X) is not higher-dimensional than Y

and approximately balanced. Note that µt(X), our final target, is a low-dimensional

prognostic score but not balanced, and we estimate it conditioning on the approxi-

mate balanced prognostic score mt(X).

4.2 Identification under Generative Prognostic Model

In Sec. 4.2.1, we specify the generative prognostic model p(y, z|x, t), and show its

identifiability. In Sec. 4.2.3, we prove the identification of CATEs, which is one of

our main contributions. The theoretical analysis involves only our generative model

1The labels G, M, or D mean Generating process (of Y), probabilistic Model, or Distribution (of X).
We introduce assumptions when appropriate but compile them in one place in Sec. 4.7.1.
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FIGURE 4.1: CVAE, iVAE, and Intact-VAE: Graphical models of the
decoders.

(i.e., prior and decoder), but not the encoder. The encoder is not part of the genera-

tive model and is involved as an approximate posterior in the estimation, which is

studied in Sec. 4.3.

4.2.1 Model, Architecture, and Identifiability

Our goal is to build a model that can be learned by VAE from observational data to

obtain a prognostic score, or better, a balanced prognostic score, via the latent vari-

able Z. The generative prognostic model of the proposed method is in (4.2), where

θ := ( f , h, k) contains the functional parameters. The first factor p f (y|z, t), our de-

coder, models pY|pt,T(y|P, t) in (5.3) and is an additive noise model, with ϵ ∼ pϵ

as the exogenous noise. The second factor pλ(z|x, t), our conditional prior, models

pT(X) and is a factorized Gaussian, with λT(X) := diag−1(kT(X))(hT(X),− 1
2 )

T as

its natural parameter in the exponential family, where diag() gives a diagonal matrix

from a vector.

pθ(y, z|x, t) = p f (y|z, t)pλ(z|x, t),

p f (y|z, t) = pϵ(y − ft(z)), pλ(z|x, t) ∼ N (z; ht(x), diag(kt(x))).
(4.2)
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We denote n := dim(Z). For inference, the ELBO is given by the standard variational

lower bound

log p(y|x, t) ≥ Ez∼q log p f (y|z, t)− DKL(q(z|x, y, t)∥pλ(z|x, t)). (4.3)

Note that the encoder q conditions on all the observables (X, Y, T); this fact plays

an important role in Sec. 4.3.1. Full parameterization of the encoder and decoder is

also given in Sec. 4.3.1. This architecture is called Intact-VAE (Identifiable treatment-

conditional VAE). See Figure 4.1 for comparison in terms of graphical models (which

have not causal implications here). See Sec. 4.2.2 for more expositions and Sec. 2.2.1

for basics of VAEs.

Our model identifiability extends the theory of iVAE, and the following condi-

tions are inherited.

(M1) i) ft is injective, and ii) ft is differentiable.

(D1) λt(X) is non-degenerate, i.e., the linear hull of its support is 2n-dimensional.

Under (M1) and (D1), we obtain the following identifiability of the parameters in

the model: if pθ(y|x, t) = pθ′(y|x, t), we have, for any yt in the image of ft:

f−1
t (yt) = diag(a) f ′t

−1
(yt) + b =: At( f ′t

−1
(yt)) (4.4)

where diag(a) is an invertible n-diagonal matrix and b is an n-vector, both of which

depend on λt(x) and λ′
t(x). The essence of the result is that f ′t = ft ◦ At; that is,

ft can be identified (learned) up to an affine transformation At. See Sec. 4.6 for the

proof and a relaxation of (D1). In Chapter 4 & 5, symbol ′ (prime) always indicates

another parameter (variable, etc.): θ′ = ( f ′, λ′).

4.2.2 Details and Explanations on Intact-VAE

Our goal is to build a model that can be learned by VAE from observational data to

obtain a prognostic score, or more ideally balanced prognostic score, via the latent

variable Z. That is, a generative prognostic model. Generative models are useful to

solve the inverse problem of recovering prognostic scores.
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With the above goal, the generative model of our VAE is built as (4.2). Condition-

ing on X in the joint model p(y, z|x, t) reflects that our estimand is CATE given X.

Modeling the score by a conditional distribution rather than a deterministic function

is more flexible.

The ELBO of our model can be derived from standard variational lower bound

as following:

log p(y|x, t) ≥ log p(y|x, t)− DKL(q(z|x, y, t)∥p(z|x, y, t))

= Ez∼q log p(y|z, t)− DKL(q(z|x, y, t)∥p(z|x, t)).
(4.5)

We naturally have an identifiable conditional VAE (CVAE), as the name sug-

gests. Note that (4.2) has a similar factorization with the generative model of iVAE

(Khemakhem et al., 2020b), that is p(y, z|x) = p(y|z)p(z|x); the first factor does not

depend on X. Further, since we have the conditioning on T in both the factors of

(4.2), our VAE architecture is a combination of iVAE and CVAE (Sohn, Lee, and Yan,

2015; Kingma et al., 2014), with T as the conditioning variable. See Figure 4.1 for the

comparison in terms of graphical models. The core idea of iVAE is reflected in our

model identifiability (see Lemma 1).

Please do not confuse the DGP (G1) and the generative model (4.2) of Intact-

VAE. The former is the causal model, but the latter is not (at least before we show

the treatment effect identifications in Sec. 4.2.3). In our case, the generative model is

built as a way to learn the scores through the correspondence to (5.3).

In particular, note that conditionally balanced representation Z |= T|X is possible

under the generative model. This requires a violation of causal faithfulness, so that

there are other conditional independence relations, which are not generally implied

by the graphical model. Our method, based on iVAE, which achieves ICA, performs

nonlinear ICA to recover the scores. In fact, ICA procedures often violate causal

faithfulness, because it requires finding causes from effects. Also, the violation of

causal faithfulness is not caused by the generative model (which is shown in Figure

4.1), because the representation is learned by the encoder, and Z |= T|X is enforced

by β.
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4.2.3 Identifications under Limited-overlapping Covariate

In this subsection, we present two results of CATE identification based on the re-

covery of equivalent balanced prognostic score and prognostic score, respectively.

Since prognostic scores are functions of X, the theory assumes a noiseless prior for

simplicity, i.e., k(X) = 0; the prior Zλ,t ∼ pλ(z|x, t) degenerates to function ht(X).

prognostic scores with dimensionality lower than or equal to d = dim(Y) are

essential to address limited overlapping, as shown below. We set n = d because µt is

a prognostic score of the same dimension as Y under (G1). In practice, n = d means

that we seek a low-dimensional representation of X. We introduce

(G1’) (Low-dimensional prognostic score) (G1) is true, and µt = jt ◦ pt for some pt

and injective jt,

which is equivalent to (G1) because µt = jt ◦ pt is trivially satisfied with jt is iden-

tity and pt = µt. (G1’) is used instead in this subsection. First, it explicitly restricts

dim(pt) via injectivity, which ensures that n = dim(Y) ≥ dim(pt). Second, it re-

minds us that, possibly, the decomposition is not unique; and, clearly, all pt that

satisfy (G1’) are prognostic scores. For example, if f ∗t is injective, then jt = f ∗t and

pt = mt satisfies µt = jt ◦ pt. Finally, it is then natural to introduce

(G2) (Low-dimensional balanced prognostic score) (G1) is true, and µt = jt ◦ p for

some p and injective jt,

which is stronger than (G1), gives balanced prognostic score p(X), and ensures that

n ≥ dim(p). (G2) is satisfied if f ∗t is injective and m0 = m1. (G2) implies µ1 = i ◦ µ0

where i := j1 ◦ j−1
0 ; in words, CATEs are given by µ0 and an invertible function. See

Sec. 4.7.2 for real-world examples and more discussions.

With (G1’) or (G2), overlapping X can be relaxed to overlapping balanced prog-

nostic score or prognostic score plus the following:

(M2) (Score partition preserving) For any x, x′ ∈ X , if pt(x) = pt(x′), then ht(x) = ht(x′).

Note that (M2) is only required for the optimal h specified in Proposition 5 or Theo-

rem 1. The intuition is that pt maps each non-overlapping x to an overlapping value,

and ht preserves this property through learning. This is non-trivial because, for a
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given t, some values of X are unobserved due to limited overlap. Thus, (M2) can be

seen as a weak form of OOD generalization: the NNs for h can learn the OOD score

partition. While unnecessary for us, linear pt and ht trivially imply (M2) and are of-

ten assumed, e.g., in Huang and Chan, 2017; Luo, Zhu, and Ghosh, 2017; D’Amour

and Franks, 2021.

Our first identification, Proposition 5, relies on (G2) and our generative model,

without model identifiability (so differentiable ft is not needed).

Proposition 5 (Identification via recovery of balanced prognostic score). Suppose we

have DGP (G2) and model (4.2) with n = d. Assume (M1)-i) and (M3) (PS matching) let

h0(X) = h1(X) and k(X) = 0. Then, if Epθ
(Y|X, T) = E(Y|X, T), we have

1) (Recovery of balanced prognostic score) zλ,t = ht(x) = v(p(x)) on overlapping x,

where v : P → Rn is an injective function, and P := {p(x)|overlapping x};

2) (CATE identification) if p(X) in (G2) is overlapping, and (M2) is satisfied, then

µt(x) = µ̂t(x) := Epλ(Z|x,t)Ep f (Y|Z, t) = ft(ht(x)), for any t ∈ {0, 1} and x ∈ X .

In essence, i) the true DGP is identified up to an invertible mapping v, such that

ft = jt ◦ v−1 and h = v ◦ p; and ii) pt is recovered up to v, and Y(t) |= X|pt(X) is

preserved––with same v for both t. Theorem 1 below also achieves the essence i) and

ii), under p0 ̸= p1.

The existence of balanced prognostic score is preferred, because it satisfies over-

lap and (M2) more easily than prognostic score which requires the conditions for

each of the two functions of prognostic score. However, the existence of low-dimensional

balanced prognostic score is uncertain in practice when our knowledge of the DGP

is limited. Thus, we depend on Theorem 1 based on the model identifiability to work

under prognostic score which generally exists.

Theorem 1 (Identification via recovery of prognostic score). Suppose we have DGP

(G1’) and model (4.2) with n = d. For the model, assume (M1) and (M3’) (Noise match-

ing) let pe = pϵ and k(X) = kk′(X), k → 0. Assume further that (D1) and (D2) (Bal-

ance from data) A0 = A1 in (4.4). Then, if pθ(y|x, t) = p(y|x, t); conclusions 1) and

2) in Proposition 5 hold with p replaced with pt in (G1’); and the domain of v becomes

P := {pt(x)|p(t, x) > 0}.
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Theorem 1 implies that, without balanced prognostic score, we need to know or

learn the distribution of hidden noise ϵ to have pe = pϵ. Proposition 5 and Theorem

1 achieve recovery and identification in a complementary manner; the former starts

from the prior by p0 = p1 and h0 = h1, while the latter starts from the decoder by

A0 = A1 and pe = pϵ. We see that A0 = A1 acts as a kind of balance because it

replaces p0 = p1 in Proposition 5. We show in Sec. 4.6 a sufficient and necessary

condition (D2’) on data that ensures A0 = A1. Note that the singularities due to

k → 0 (e.g., λ → 0) cancel out in (4.4). See Sec. 4.7.3 for more on the complementarity

between the two identifications.

4.3 Estimation by β-Intact-VAE

4.3.1 Prior as balanced prognostic score, Posterior as prognostic score,

and β as Regularization Strength

In Sec. 4.2.3, we see that the existence of balanced prognostic score (Proposition 5) is

preferable in identifying the true DGP up to an equivalent expression––while Theo-

rem 1 allows us to deal with prognostic score by adding other conditions. In learning

our model with data, we formally require (G1) and further expect that (G2) holds

approximately; the latter is true when f ∗t is injective and m0 ≈ m1 (mt(X) is an

approximate balanced prognostic score). Instead of the trivial regression µt(X) =

E(Y|X, T = t), we want to recover the approximate balanced prognostic score mt(X).

This idea is common in practice. For example, in a real-world nutrition study (Huang

and Chan, 2017), a reduction of 11 covariates recovers a 1-dimensional linear bal-

anced prognostic score.

We consider two ways to recover an approximate balanced prognostic score by

a VAE. One is to use a prior which does not depend on t, indicating a preference for

balanced prognostic score. Namely, we set λ0 = λ1, denote Λ(X) := λ(X) and have

pΛ(z|x) as the prior in (4.2). The decoder and encoder are factorized Gaussians:

p f ,g(y|z, t) = N (y; ft(z), diag(gt(z))), qϕ(z|x, y, t) = N (z; rt(x, y), diag(st(x, y))),

(4.6)
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where ϕ = (r, s). The other is to introduce a hyperparameter β in the ELBO as in

β-VAE (Higgins et al., 2017). The modified ELBO with β, up to the additive constant,

is derived as:

ED{−βDKL(qϕ∥pΛ)− Ez∼qϕ [(y − ft(z))2/2gt(z)]− Ez∼qϕ log |gt(z)|}. (4.7)

For convenience, here and in L f in Sec. 4.3.2, we omit the summation as if Y is uni-

variate. The encoder qϕ depends on t and can realize a prognostic score. With β,

we control the trade-off between the first and second terms: the former is the diver-

gence of the posterior from the balanced prior, and the latter is the reconstruction of

the outcome. Note that a larger β encourages the conditional balance Z |= T|X on the

posterior. By choosing β appropriately, e.g., by validation, the ELBO can recover an

approximate balanced prognostic score while fitting the outcome well. In summary,

we base the estimation on Proposition 5 and balanced prognostic score as much as

possible, but step into Theorem 1 and noise modeling required by pe = pϵ when

necessary.

Note also that the parameters g and k, which model the outcome noise and ex-

press the uncertainty of the prior, respectively, are both learned by the ELBO. This

deviates from the theoretical conditions described in Sec. 4.2.3, but it is more prac-

tical and yields better results in our experiments. See Sec. 4.7.4 for more ideas and

connections behind the ELBO.

Once the VAE is learned2 by the ELBO, the estimate of the expected potential

outcomes is given by:

µ̂t̂(x) = Eq(z|x) f t̂(z) = ED|x∼p(y,t|x)Ez∼qϕ f t̂(z), t̂ ∈ {0, 1}, (4.8)

where q(z|x) := Ep(y,t|x)qϕ(z|x, y, t) is the aggregated posterior. We mainly consider

the case where x is observed in the data, and the sample of (Y, T) is taken from the

data given X = x. When x is not in the data, we replace qϕ with pΛ in (4.8) (see

Sec. 4.3.1 for details and 4.5 for results). Note that t̂ in (4.8) indicates a counterfactual

2As usual, we expect the variational inference and optimization procedure to be (near) optimal; that
is, consistency of VAE. Consistent estimation using the prior is a direct corollary of the consistent VAE.
See Sec. 4.3.3 for formal statements and proofs. Under Gaussian models, it is possible to prove the
consistency of the posterior estimation, as shown in Bonhomme and Weidner (2021).
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assignment that may not be the same as the factual T = t in the data. That is,

we set T = t̂ in the decoder. The assignment is not applied to the encoder which

is learned from factual X, Y, T (see also the explanation of ϵCF,t in Sec. 4.3.2). The

overall algorithm steps are i) train the VAE using (4.7), and ii) infer CATE τ̂(x) =

µ̂1(x)− µ̂0(x) by (4.8).

Pre/Post-treatment Prediction

Sampling posterior requires post-treatment observation (y, t). Often, it is desirable

that we can also have pre-treatment prediction for a new subject, with only the ob-

servation of its covariate X = x. To this end, we use the prior as a pre-treatment

predictor for Z: replace qϕ with pΛ in (4.8) and get rid of the outer average taken

on D; all the others remain the same. We also have sensible pre-treatment predic-

tion even without true low-dimensional prognostic scores, because pΛ gives the best

balanced approximation of the target prognostic score. The results of pre-treatment

prediction are given in the experimental section 4.5.

4.3.2 Conditionally Balanced Representation Learning

We formally justify our ELBO (4.7) from the BRL viewpoint. We show that the condi-

tional BRL via the KL (first) term of the ELBO results from bounding a CATE error;

particularly, the error due to the imprecise recovery of jt in (G1’) is controlled by

the ELBO. Previous works (Shalit, Johansson, and Sontag, 2017; Lu et al., 2020) in-

stead focus on unconditional balance and bound PEHE which is marginalized on X.

Sec. 4.4.2 experimentally shows the advantage of our bounds and ELBO. Further, we

connect the bounds to identification and consider noise modeling through gt(z). Sec

Sec. 4.7.5 for detailed comparisons to previous works. In Sec. 4.5.3, we empirically

validate our bounds, and, particularly, the bounds are more useful under weaker

overlap.

We introduce the objective that we bound. Using (4.8) to estimate CATE, τ̂f (z) :=

f1(z)− f0(z) is marginalized on q(z|x). On the other hand, the true CATE, given the

covariate x or score z, is:

τ(x) = j1(p1(x))− j0(p0(x)), τj(z) = j1(z)− j0(z), (4.9)
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where jt is associated with an approximate balanced prognostic score pt (say, mt) as

the target of recovery by our VAE. Accordingly, given x, the error of posterior CATE,

with or without knowing pt, is defined as

ϵ∗f (x) := Eq(z|x)(τ̂f (z)− τ(x))2; ϵ f (x) := Eq(z|x)(τ̂f (z)− τj(z))2. (4.10)

We bound ϵ f instead of ϵ∗f because the error between τ(X) and τj(Z) is small––if the

score recovery works well, then z ≈ p0(x) ≈ p1(x) in (4.9). We consider the error

between τ̂f and τj below. We define the risks of outcome regression, into which ϵ f is

decomposed.

Definition 5 (CATE risks). Let Y(t̂)|pt̂(X) ∼ pY(t̂)|pt̂
(y|P) and qt(z|x) := q(z|x, t) =

Ep(y|x,t)qϕ. The potential outcome loss at (z, t), factual risk, and counterfactual risk are:

L f (z, t̂) := EpY(t̂)|pt̂
(y|P=z)(y − f t̂(z))

2/gt̂(z) = gt̂(z)
−1 ∫ (y − f t̂(z))

2 pY(t̂)|pt̂
(y|z)dy;

ϵF,t(x) := Eqt(z|x)L f (z, t); ϵCF,t(x) := Eq1−t(z|x)L f (z, t).

With Y(t) involved, L f is a potential outcome loss on f , weighted by g. The

factual and counterfactual counterparts, ϵF,t and ϵCF,t, are defined accordingly. In

ϵF,t, unit u = (x, y, t) is involved in the learning of qt(z|x), as well as in L f (z, t)

since Y(t) = y for the unit. In ϵCF,t, however, unit u′ = (x, y′, 1 − t) is involved in

q1−t(z|x), but not in L f (z, t) since Y(t) ̸= y′ = Y(1 − t).

Thus, the regression error (second) term in ELBO (4.7) controls ϵF,t via factual data.

On the other hand, ϵCF,t is not estimable due to the unobservable Y(1 − T), but is

bounded by ϵF,t plus MD(x) in Theorem 2 below––which, in turn, bounds ϵ f by

decomposing it to ϵF,t, ϵCF,t, and VY.

Theorem 2 (CATE error bound). Assume |L f (z, t)| ≤ M and |gt(z)| ≤ G, then:

ϵ f (x) ≤ 2[G(ϵF,0(x) + ϵF,1(x) + MD(x))− VY(x)] (4.11)

where D(x) := ∑t
√

DKL(qt∥q1−t)/2, and VY(x) := Eq(z|x) ∑t EpY(t)|pt
(y|z)(y − jt(z))2.
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D(x) measures the imbalance between qt(z|x) and is symmetric for t. Corre-

spondingly, the KL term in ELBO (4.7) is symmetric for t and balances qt(z|x) by en-

couraging Z |= T|X for the posterior. VY(x) reflects the intrinsic variance in the DGP

and can not be controlled. Estimating G, M is nontrivial. Instead, we rely on β in

the ELBO (4.7) to weight the terms. We do not need two hyperparameters since G is

implicitly controlled by the third term, a norm constraint, in ELBO.

4.3.3 Consistency of VAE and Prior Estimation

The following is a refined version of Theorem 4 in Khemakhem et al., 2020b. The

result is proved by assuming: i) our VAE is flexible enough to ensure the ELBO is

tight (equals to the true log likelihood) for some parameters; ii) the optimization

algorithm can achieve the global maximum of ELBO (again equals to the log likeli-

hood).

Proposition 6 (Consistency of Intact-VAE). Given model (4.2)&(4.6), and let p∗(x, y, t)

be the true observational distribution, assume

i) there exists (θ̄, ϕ̄) such that pθ̄(y|x, t) = p∗(y|x, t) and pθ̄(z|x, y, t) = qϕ̄(z|x, y, t);

ii) the ELBO ED∼p∗(L(x, y, t; θ, ϕ)) (4.3) can be optimized to its global maximum at

(θ′, ϕ′);

Then, in the limit of infinite data, pθ′(y|x, t) = p∗(y|x, t) and pθ′(z|x, y, t) = qϕ′(z|x, y, t).

Proof. From i), we have L(x, y, t; θ̄, ϕ̄) = log p∗(y|x, t). But we know L is upper-

bounded by log p∗(y|x, t). So, ED∼p∗(log p∗(y|x, t)) should be the global maximum

of the ELBO (even if the data is finite).

Moreover, note that, for any (θ, ϕ), we have DKL(pθ(z|x, y, t)∥qϕ(z|x, y, t) ≥ 0

and, in the limit of infinite data, ED∼p∗(log pθ(y|x, t)) ≤ ED∼p∗(log p∗(y|x, t)). Thus,

the global maximum of ELBO is achieved only when pθ(y|x, t) = p∗(y|x, t) and

pθ(z|x, y, t) = qϕ(z|x, y, t).

Consistent prior estimation of CATE follows directly from the identifications.

The following is a corollary of Theorem 1.
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Corollary 1. Under the conditions of Theorem 1, further require the consistency of Intact-

VAE. Then, in the limit of infinite data, we have µt(X) = ft(ht(X)) where f , h are the

optimal parameters learned by the VAE.

4.4 Experiments

We compare our method with existing methods on three types of datasets. Here,

we present two experiments; the remaining one on the Pokec dataset is deferred to

Sec. 5.2.2. As in previous works (Shalit, Johansson, and Sontag, 2017; Louizos et

al., 2017), we report the absolute error of ATE ϵate := |ED(y(1) − y(0)) − ED τ̂(x)|

and, as a surrogate of square CATE error ϵcate(x) = ED|x[(y(1)− y(0))− τ̂(x)]2, the

empirical PEHE ϵpehe := EDϵcate(x) (Hill, 2011), which is the average square CATE

error.

Unless otherwise indicated, for each function f , g, h, k, r, s in ELBO (4.7), we use

a multilayer perceptron, with 200 ∗ 3 hidden units (width 200, 3 layers), and ELU

activations (Clevert, Unterthiner, and Hochreiter, 2015). Λ = (h, k) depends only

on X. The Adam optimizer with initial learning rate 10−4 and batch size 100 is em-

ployed. All experiments use early-stopping of training by evaluating the ELBO on

a validation set. More details on hyper-parameters and settings are given in each

experiment.

4.4.1 Synthetic Dataset

We generate synthetic datasets following (5.4).

W|X ∼ N (h(X), k(X)); T|X ∼ Bern(Logi(ωl(X))); Y|W, T ∼ N ( fT(W), gT(W)).

(4.12)

Both X ∼ N (µ, σ) and W are factorized Gaussians. µ, σ are randomly sampled.

The functions h, k, l are linear. Outcome models f0, f1 are built by NNs with invert-

ible activations. Y is univariate, dim(X) = 30, and dim(W) ranges from 1 to 5. W is

a balanced prognostic score, but the dimensionality is not low enough to satisfy the

injectivity in (G2), when dim(W) > 1. We have 5 different overlap levels controlled
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by ω that multiplies the logit value. See Sec. 4.5.1 for details and more results on

synthetic datasets.

With the same (dim(W), ω), we evaluate our method and CFR on 10 random

DGPs, with different sets of functions f , g, h, k, l in (5.4). For each DGP, we sample

1500 data points, and split them into 3 equal sets for training, validation, and test-

ing. We show our results for different hyperparameter β. For CFR, we try different

balancing parameters and present the best results (see Sec. 4.5.1 for detail).

In each panel of Figure 4.2, we adjust one of ω, dim(W), with the other fixed to

the lowest. As implied by our theory, our method, with only 1-dimensional Z, per-

forms much better in the left panel (where dim(W) = 1 satisfies (G2)) than in the
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right panel (when dim(W) > 1). Although CFR uses 200-dimensional representa-

tion, in the left panel our method performs much better than CFR; moreover, in the

right panel CFR is not much better than ours. Further, our method is much more ro-

bust against different DGPs than CFR (see the error bars). Thus, the results indicate

the power of identification and recovery of scores. (see Figure 4.3 also).

Under the lowest overlap level (ω = 22), large β(= 2.5, 3) shows the best results,

which accords with the intuition and bounds in Sec. 4.3. When dim(W) > 1, ft in

(4.12) is non-injecitve and learning of prognostic score is necessary, and thus, larger β

has a negative effect. In fact, β = 1 is significantly better than β = 3 when dim(W) >

2. We note that our method, with a higher-dimensional Z, outperforms or matches

CFR also under dim(W) > 1 (see Figure 4.7). Thus, the performance gap under

dim(W) > 1 in Figure 4.2 should be due to the capacity of NNs in β-Intact-VAE.

In Figure 4.9 for ATE error, CFR drops performance w.r.t overlap levels. This is

evidence that CFR and its unconditional balance overly focus on PEHE (see Sec. 4.4.2

for more explicit comparison).

Experiments for the score recovery When dim(W) = 1, there are no better prog-

nostic scores than W, because ft is invertible and no information can be dropped

from W. Thus, our method stably learns Z as an approximate affine transformation

of the true W, showing identification. An example is shown in Figure 4.3, and more

plots are in Figure A.1. For comparison, we run CEVAE, which is also based on

VAE but without identification; CEVAE shows much lower quality of recovery. As

expected, both recovery and estimation are better with the balanced prior pΛ(z|x),

and we can see examples of bad recovery using pλ(z|x, t) in Figure A.7.

To show quantitative evidence for the score recovery, we first fit a simple linear

regression W = aZ between the standardized true and learned score. Then we ex-

amine the linear regression in two ways–by goodness of fit through the coefficient of

determination R2 and model specification through the Ramsey regression equation speci-

fication error test (RESET) (Ramsey, 1969). Specifically, R2 = 1−Σi(wi − ŵi)
2/Σi(wi −

w̄)2 measures how much variation of W is explained by Z in the regression, and the

nearer to 1 the R2 is, the tighter the linear fit is. Moreover, Ramsey RESET tests

the null hypothesis of linearity by examine whether the combinations of Ŵ2, ..., Ŵk
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where Ŵ = âZ help explain the response variable W (We set k = 5). Linearity is

rejected if the p-value of the test is lower than a significant level α.

The Ramsey RESET test can catch the cases where the R2 is near 1 but a small

portion of data causes notable non-linearity, see Figure 4.4 left for an example. In

fact, we observe that the RESET test is too sensitive to non-linearity when the R2 is

high. An example is shown in Figure 4.4 right where the non-linearity is barely no-

table and is possibly due to the several outliers on both sides. However, the RESET

test gives a rather low p-values as 0.004. Thus, we decide that α = 0.01 is reasonable

for our purpose.

FIGURE 4.4: Examples of low p-values of RESET. Left: a notable
non-linearity, and the p-value is practically 0. Right: tiny to no non-

linearity, but the p-value is very low.

The histograms of the R2 values and the RESET p-values on the 100 synthetic

datasets are shown in Figure 4.5. We see linear regression often gives good fits and

is not misspecified. Specifically, R2 is higher than 0.75 on 83 datasets and higher

than 0.8 on 76 datasets, and RESET p-value is higher than α = 0.01 on 82 datasets

and higher than 0.05 on 72 datasets. Finally, the two criteria taken together, there

are 66 datasets where R2 is higher than 0.75 and RESET p-value is higher than α =

0.01–an impressive result because the two conditions tend to be mutually exclusive

and many cases like those in Figure 4.4 are excluded. Thus, we conclude that the

experiment quantitatively confirms the theoretical result that Intact-VAE recovers

the true score up to an affine transformation.
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FIGURE 4.5: The histograms of R2 (left) and RESET p-values (right)
for linear regressions between the true and learned score.

4.4.2 IHDP Benchmark Dataset

This experiment shows our conditional BRL matches state-of-the-art BRL methods

and does not overly focus on PEHE. The IHDP (Hill, 2011) is a widely used bench-

mark dataset; while it is less known, its covariates are limited-overlapping, and thus

it is used in Johansson et al. (2020) which considers limited overlap. The dataset is

based on an RCT, but Race is artificially introduced as a confounder by removing all

treated babies with nonwhite mothers in the data. Thus, Race is highly limited-

overlapping, and other covariates that have high correlation to Race, e.g, Birth

weight (Kelly et al., 2009), are also limited-overlapping. See Sec. 4.5.2 for detail and

more results.

There is a linear balanced prognostic score (linear combination of the covariates).

However, most of the covariates are binary, so the support of the balanced prognos-

tic score is often on small and separated intervals. Thus, the Gaussian latent Z in

our model is misspecified. We use higher-dimensional Z to address this, similar to

Louizos et al. (2017). Specifically, we set dim(Z) = 50, together with NNs of 50 ∗ 2

hidden units in the prior and encoder. We set β = 1 since it works well on synthetic

datasets with limited overlap.

As shown in Table 4.1, β-Intact-VAE outperforms or matches the state-of-the-art

methods; it has the best performance measured by both ϵate and ϵpehe and matches

CF and CFR respectively. Also notably, our method outperforms other generative

models (CEVAE and GANITE) by large margins.

To show our conditional balance is preferable, we also modify our method and

add two components for unconditional balance from CFR (see the Sec. 4.5.1), which
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is based on bounding PEHE and is controlled by another hyperparameter γ. In

the modified version, the over-focus on PEHE of the unconditional balance is seen

clearly–with different γ, it significantly affects PEHE, but barely affects ATE error.

In fact, the unconditional balance, with larger γ, only worsens the performance. See

also Figure 4.9 where CFR gives larger ATE errors with less overlap.

TABLE 4.1: Errors on IHDP over 1000 random DGPs. “Mod. *” in-
dicates the modified version with unconditional balance of strength
γ = ∗. Italic indicates where the modified version is significantly
worse than the original. Bold indicates method(s) which is signifi-
cantly better than others. The results of other methods are taken from
Shalit, Johansson, and Sontag, 2017, except for GANITE and CEVAE,

the results of which are taken from original works.

Method TMLE BNN CFR CF CEVAE GANITE Ours Mod. 1 Mod. 0.2 Mod. 0.1 Mod. 0.05 Mod. 0.01

ϵate .30±.01 .37±.03 .25±.01 .18±.01 .34±.01 .43±.05 .180±.007 .185±.008 .185±.008 .186±.009 .183±.008 .181±.008√
ϵpehe 5.0±.2 2.2±.1 .71±.02 3.8±.2 2.7±.1 1.9±.4 .709±.024 1.175±.046 .797±.030 .748±.028 .732±.028 .719±.027

4.5 Details and Additions of Experiments

We evaluate the post-treatment performance on training and validation set jointly

(This is non-trivial. Recall the fundamental problem of causal inference). The treat-

ment and (factual) outcome should not be observed for pre-treatment predictions,

so we report them on a testing set. See also Sec. 4.3.1 the pre/post-treatment distinc-

tion.

4.5.1 Synthetic Data

We detail how the random parameters in the DGPs are sampled. µi and σi are uni-

formly sampled in range (−0.2, 0.2) and (0, 0.2), respectively. The weights of linear

functions h, k, l are sampled from standard normal distributions. The NNs f0, f1

use leaky ReLU activation with α = 0.5 and are of 3 to 8 layers randomly, and the

weights of each layer are sampled from (−1.1,−0.9). To have a large but still reason-

able outcome variance, the output of ft is divided by Ct := Var{D|T=t}( ft(Z)). When

generating DGPs with dependent noise, the variance parameter gt for the outcome

is generated by adding a softplus layer after respective ft, and then normalized to

range (0, 2).
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FIGURE 4.6: Degree of limited overlap w.r.t ω.

We use the original implementation of CFR3. Very possibly due to bugs in imple-

mentation, the CFR version using Wasserstein distance has error of TensorFlow type

mismatch on our synthetic dataset, and the CFR version using MMD diverges with

very large loss value on one or two of the 10 random DGPs. We use MMD version,

and, when the divergence of training happens, report the results from trained mod-

els before divergence, which still give reasonable results. We search the balancing

parameter alpha in [0.16, 0.32, 0.64, 0.8, 1.28], and fix other hyperparameters as they

were in the default config file.

We characterize the degree of limited overlap by examining the percentage of ob-

served values x that give probability less than 0.001 for one of p(t|x). The threshold

is chosen so that all sample points near those values x almost certainly belong to a

single group since we have 500 sample point in total. If we regard a DGP as very

limited-overlapping when the above percentage is larger than 50%, then, as shown

in Figure 4.6, non (all) of the 10 DGPs are very limited-overlapping with ω = 6

(ω = 22).

3https://github.com/clinicalml/cfrnet

https://github.com/clinicalml/cfrnet
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For diversity of the datasets, we set gt(W) = 1 in DGPs in Figure 4.7. It shows,

with dim(Z) = 200, our method works better than CFR under dim(W) = 1 and as

well as CFR under dim(W) > 1. As mentioned in Conclusion, this indicates that the

theoretical requirement of injective ft in our model might be relaxed. Interestingly,

larger β seems to give better results here, this is understandable because β controls

the trade-off between fitting and balancing, and the fitting capacity of our decoder

is much increased with dim(Z) = 200. Note that the above observations on dim(Z)

are not caused by fixing gt(W) = 1 (compare Figure 4.7 with Figure 5.3 below).

Figure 5.3 shows the importance of noise modeling. Compared to Figure 4.2 in

the main text, where gt(W) in DGPs is not fixed, our method works worse here,

particularly for large β, because now noise modeling (g, k in the ELBO) only adds

unnecessary complexity. The changes of performance w.r.t different ω should be un-

related to overlap levels, but to the complexity of random DGPs; compare to Figure

4.7, with larger NNs in our VAE, the changes become much insignificant. The drop

of error for dim(W) > 3 is due to the randomness of f in (4.12). In Sec. 2.1.1, we saw

that the 2-dimsensional balanced prognostic score p := (µ0(X), µ1(X)) always exists

under additive noise models. Thus, when dim(W) > 2, our method tries to recover

that p, and generally performs not worse than under dim(W) = 2, but still not better

than under dim(W) = 1.

Figure 4.9 shows results of ATE estimation. Notably, CFR drops performance

w.r.t degree of limited overlap. Our method does not show this tendency except for

very large β (β = 3). This might be another evidence that CFR and its uncondi-

tional balancing overfit to PEHE (see Sec. 4.4.2). Also note that, under dim(W) = 1,

β = 3 gives the best results for ATE although it does not work well for PEHE, and

we do not know if this generalizes to the conclusion that large β gives better ATE

estimation under the existence of balanced prognostic score, but leave this for future

investigation.

Figure 4.10 shows results of pre-treatment prediction. In left panel, both our

method and CFR perform only slightly worse than post-treatment. This is reason-

able because here we have balanced prognostic score W with dim(W) = 1, there is

no need to learn prognostic score. In the right panel, we also do not see significant

drop of performance compared to post-treatment. This might be due to the hardness
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FIGURE 4.9: ϵate on synthetic dataset, with gt(W) = 1 in DGPs. Error
bar on 10 random DGPs.

of learning approximate balanced prognostic score in this dataset, and posterior es-

timation does not give much improvements.

You can find more plots for latent recovery in Appendix A.1.

4.5.2 IHDP

IHDP is based on an RCT where each data point represents a baby with 25 features

(6 continuous, 19 binary) about their birth and mothers. Race is introduced as a con-

founder by artificially removing all treated children with nonwhite mothers. There

are 747 subjects left in the dataset. The outcome is synthesized by taking the co-

variates (features excluding Race) as input, hence unconfoundedness holds given the

covariates. Following previous work, we split the dataset by 63:27:10 for training,

validation, and testing. Note, there is no ethical concerns here, because the treatment

assignment mechanism is artificial by processing the data. Also our results are only

quantitative and we make no ethical conclusions.

The generating process is as following (Hill, 2011, Sec. 4.1).

Y(0) ∼ N (eaT(X+b), 1), Y(1) ∼ N (aTX − c, 1), (4.13)
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FIGURE 4.10: Pre-treatment √ϵpehe on synthetic dataset. Error bar on
10 random DGPs.

where a is a random coefficient, b is a constant bias with all elements equal to 0.5,

and c is a random parameter adjusting degree of overlapping between the treatment

groups. As we can see, aTX is a true balanced prognostic score. As mentioned in the

main text, the balanced prognostic score might be discrete. Thus, this experiment

also shows the importance of VAE, even if an apparent balanced prognostic score

exists. Under discreteprognostic scores, training an regression based on Proposition

5 is hard, but our VAE works well.

The two added components in the modified version of our method are as follow-

ing. First, we build the two outcome functions ft(Z), t = 0, 1 in our learning model

(4.2), using two separate NNs. Second, we add to our ELBO (4.3) a regularization

term, which is the Wasserstein distance (Cuturi, 2013) between ED∼p(X|T=t)pΛ(Z|X), t ∈

{0, 1}. As shown in Table 4.2, best unconditional balancing parameter is 0.1. Larger

parameters gives much worse PEHE and does not improve ATE estimation. Smaller

parameters are more reasonable but still do not improve the results. The overall ten-

dency is clear. Compared to ours, CFR with its unconditional balancing does not

improve ATE estimation, it may improve PEHE results with fine tuned parameter,

but possibly at the price of worse ATE estimation.

Table 4.3 shows pre-treatment results, All methods gives reasonable results.
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TABLE 4.2: Performance of modified version with different uncon-
ditional balancing parameter, the values of which are shown after

“Mod.”.

Method Ours Mod. 1 Mod.
0.2

Mod.
0.1

Mod.
0.05

Mod.
0.01

CFR

ϵate .177±.007 .196±.008 .177±.007 .167±.005 .177±.006 .179±.006 .25±.01√
ϵpehe .843±.030 1.979±.082 1.116±.046 .777±.026 .894±.039 .841±.029 .71±.02

TABLE 4.3: Pre-treatment Errors on IHDP over 1000 random DGPs.
We report results with dim(Z) = 10. Bold indicates method(s) which
is significantly better. The results are taken from Shalit, Johansson,
and Sontag, 2017, except GANITE (Yoon, Jordon, and Schaar, 2018)

and CEVAE (Louizos et al., 2017).

Method TMLE BNN CFR CF CEVAE GANITE Ours

pre-ϵate NA .42±.03 .27±.01 .40±.03 .46±.02 .49±.05 .211±.011

pre-√
ϵpehe

NA 2.1±.1 .76±.02 3.8±.2 2.6±.1 2.4±.4 .946±.048

4.5.3 Empirical Validation of the Bounds in Sec. 4.3.2

Here we focus on the D(X) term in Theorem 2 because it is directly related to condi-

tional balance.

In Figure A.9, the rows correspond to 3 overlap levels from strong to weak

(ω = 6, 14, 22 respectively). The first column shows the histograms of correlation

coefficients between D(X) and ϵ f (X) on 100 random DGPs. The vertical bars in the

histograms are 5, 25, 50, 75, 95 percentiles (the values are shown in the table below).

The other 10 columns show the plots of distributions of (D(X), ϵ f (X)) for the first 10

DGPs. The correlation coefficient for each DGP is shown as corrcoef=* above each

histogram. The plots are in log-log scale, because both D and ϵ f are single-sided,

and most data points concentrate near (0, 0), making the plots bad-looking.

We have two important observations from the histograms: 1) on the majority of

DGPs, there are positive correlations between D and ϵ f ; 2) the positive correlation

is stronger with weaker overlap (the portion of large correlation increases, and the

mean corrcoef are 0.100, 0.110, and 0.121, respectively).

Thus, our bounds and conditional balance have significance. Not all DGPs have

positive correlations, and this is reasonable because our bound (4.11) has three other

terms which can obscure the relation between D and ϵ f . The DGPs 1, 3, 6, 8, 10 show

typical situations when there are positive correlations.
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TABLE 4.4: Percentiles of correlation coefficients between D(X) and
ϵ f (X) on 100 random DGPs.

Percentile 5 25 50 75 95

ω = 6 -0.289 -0.086 0.069 0.299 0.609

ω = 14 -0.328 -0.124 0.055 0.337 0.636

ω = 22 -0.274 -0.128 0.067 0.341 0.634

4.6 Proofs

We restate our model identifiability formally.

Lemma 1 (Model identifiability). Given model (4.2) under (M1), for T = t, assume

(D1’) (Non-degenerated data for λ) there exist 2n + 1 points x0, ..., x2n ∈ X such that

the 2n-square matrix Lt := [γt,1, ..., γt,2n] is invertible, where γt,k := λt(xk) −

λt(x0).

Then, given T = t, the family is identifiable up to an equivalence class. That is, if

pθ(y|x, t) = pθ′(y|x, t), we have the relation between parameters: for any yt in the image

of ft,

f−1
t (yt) = diag(a) f ′t

−1
(yt) + b =: At( f ′t

−1
(yt)) (4.14)

where diag(a) is an invertible n-diagonal matrix and b is a n-vector, both depend on λt and

λ′
t.

Note, (D1) in the main text implies (D1’), see Sec. B.2.3 in Khemakhem et al.,

2020b. The main part of our model identifiability is essentially the same as that of

Theorem 1 in Khemakhem et al., 2020b, but now adapted to include the dependency

on t. Here we give an outline of the proof, and the details can be easily filled by

referring to Khemakhem et al., 2020b. In the proof, subscripts t are omitted for con-

venience.

Proof of Lemma 1. Using (M1) i) and ii) , we transform p f ,λ(y|x, t) = p f ′,λ′(y|x, t) into

equality of noiseless distributions, that is,

q f ′,λ′(y) = q f ,λ(y) := pλ( f−1(y)|x, t)vol(J f−1(y))IY (y) (4.15)
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where pλ is the Gaussian density function of the conditional prior defined in (4.2)

and vol(A) :=
√

det AAT. q f ′,λ′ is defined similarly to q f ,λ.

Then, apply model (4.2) to (4.15), plug the 2n + 1 points from (D1’) into it, and

re-arrange the resulting 2n + 1 equations in matrix form, we have

F ′(Y) = F (Y) := LTt( f−1(Y))− β (4.16)

where t(Z) := (Z, Z2)T is the sufficient statistics of factorized Gaussian, and βt :=

(αt(x1)− αt(x0), ..., αt(x2n)− αt(x0))T where αt(X; λt) is the log-partition function of

the conditional prior in (4.2). F ′ is defined similarly to F , but with f ′, λ′, α′

Since L is invertible, we have

t( f−1(Y)) = At( f ′−1(Y)) + c (4.17)

where A = L−T L′T and c = L−T(β − β′).

The final part of the proof is to show, by following the same reasoning as in

Appendix B of Sorrenson, Rother, and Köthe, 2019, that A is a sparse matrix such

that

A =

diag(a) O

diag(u) diag(a2)

 (4.18)

where A is partitioned into four n-square matrices. Thus

f−1(Y) = diag(a) f ′−1(Y) + b (4.19)

where b is the first half of c.

Proof of Proposition 5. Under (G2), and (M3), we have

Epθ
(Y|X, T) = E(Y|X, T) =⇒ ft ◦ h(x) = jt ◦ p(x) on (x, t) such that p(t, x) > 0.

(4.20)

We show the solution set of (4.20) on overlapping x is

{( f , h)| ft = jt ◦ ∆−1, h = ∆ ◦ p, ∆ : P → Rn is injective}. (4.21)
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By (G2)(M1), and with injective ft, jt and dim(Z) = dim(Y) ≥ dim(p), for any ∆

above, there exists a functional parameter ft such that jt = ft ◦ ∆. Thus, set (4.21) is

non-empty, and any element is indeed a solution because ft ◦ h = jt ◦ ∆−1 ◦ ∆ ◦ p =

jt ◦ p.

Any solution of (4.20) should be in (4.21). A solution should satisfy h(x) = f−1
t ◦

jt ◦ p(x) for both t since x is overlapping. This means the injective function f−1
t ◦ jt

should not depend on t, thus it is one of the ∆ in (4.21).

We proved conclusion 1) with v := ∆. And, on overlapping x, conclusion 2) is

quickly seen from

µ̂t(x) = ft(h(x)) = jt ◦ v−1(v ◦ p(x)) = jt(p(x)) = µt(x). (4.22)

We rely on overlapping p to work for non-overlapping x. For any xt with p(1 −

t|xt) = 0, to ensure p(1 − t|p(xt)) > 0, there should exist x1−t such that p(x1−t) =

p(xt) and p(1 − t|x1−t) > 0. And we also have h(x1−t) = h(xt) due to (M2). Then,

we have

µ̂1−t(xt) = f1−t(h(xt)) = f1−t(h(x1−t)) = j1−t(p(x1−t)) = j1−t(p(xt)) = µ1−t(xt).

(4.23)

The third equality uses (4.20) on (x1−t, 1 − t).

Below we prove Theorem 1 with (D2) replaced by

(D2’) (Spontaneous balance) there exist 2n + 1 points x0, ..., x2n ∈ X , 2n-square matrix C,

and 2n-vector d, such that L−1
0 L1 = C and β0 − C−T β1 = d/k for optimal λt (see

below), where Lt is defined in (D1’), βt := (αt(x1)− αt(x0), ..., αt(x2n)− αt(x0))T,

and αt(X; λt) is the log-partition function of the prior in (4.2).

(D2’) restricts the discrepancy between λ0, λ1 on 2n+ 1 values of X, thus is relatively

easy to satisfy with high-dimensional X. (D2’) is general despite (or thanks to) the

involved formulation. Let us see its generality even under a highly special case:

C = cI and d = 0. Then, L−1
0 L1 = cI requires that, h1(xk)− ch0(xk) is the same for

2n + 1 points xk. This is easily satisfied except for n ≫ m where m is the dimension

of X, which rarely happens in practice. And, β0 −C−T β1 = d becomes just β1 = cβ0.
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This is equivalent to α1(xk)− cα0(xk) same for 2n + 1 points, again fine in practice.

However, the high generality comes with price. Verifying (D2’) using data is chal-

lenging, particularly with high-dimensional covariate and latent variable. Although

we believe fast algorithms for this purpose could be developed, the effort would be

nontrivial. This is another motivation to use the extreme case λ0 = λ1 in Sec. 4.3.1,

which corresponds to C = I and d = 0.

Proof of Theorem 1. By (M1) and (G1’), for any injective function ∆ : P → Rn, there

exists a functional parameter f ∗t such that jt = f ∗t ◦ ∆. Let h∗
t = ∆ ◦ pt, then, clearly

from (M3’), such parameters θ∗ = ( f ∗, h∗) are optimal: pθ∗(y|x, t) = p(y|x, t).

Since have all assumptions for Lemma 1, we have

∆ ◦ j−1(y) = f ∗−1(y) = A ◦ f−1(y)|t, on (y, t) ∈ {(jt ◦ pt(x), t)|p(t, x) > 0}, (4.24)

where f is any optimal parameter, and “|t” collects all subscripts t. Note, except for

∆, all the symbols should have subscript t.

Nevertheless, using (D2’), we can further prove A0 = A1.

We repeat the core quantities from Lemma 1 here: At = L−T
t L′T

t and ct =

L−T
t (βt − β′

t).

From (D2’), we immediately have

L−1
0 L1 = L′−1

0 L′
1 = C ⇐⇒ A0 = A1 (4.25)

And also,

L−1
0 L1 = C ⇐⇒ L−T

0 C−T = L−T
1

β0 − C−T β1 = β′
0 − C−T β′

1 = d/k ⇐⇒ CT(β0 − β′
0) = β1 − β′

1

(4.26)

Multiply right hand sides of the two lines, we have c0 = c1. Now we have A0 =

A1 := A. Apply this to (4.24), we have

ft = jt ◦ v−1, v := A−1 ◦ ∆ (4.27)
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for any optimal parameters θ = ( f , h). Again, from (M3’), we have

pθ(y|x, t) = p(y|x, t) =⇒ pϵ(y − ft(ht(x))) = pe(y − jt(pt(x))) (4.28)

where pϵ = pe. And the above is only possible when ft ◦ ht = jt ◦ pt. Combined

with ft = jt ◦ v−1, we have conclusion 1).

And conclusion 2) follows from the same reasoning as Proposition 5, applied to

both p0 and p1.

Note, when multiplying the two lines of (4.26), the effects of k → 0 cancel out,

and ct is finite and well-defined. Also, it is apparent from above proof that (D2’) is a

necessary and sufficient condition for A0 = A1, if other conditions of Theorem 1 are

given.

Below, we prove the results in Sec. 4.3.2. The definitions and results work for the

prior; simply replace qt(x|x) with pt(z|x) := pλ(z|x, t) in definitions and statements, and

the proofs below hold as the same. The dependence on f prevail, and the superscripts

are omitted. The arguments x are sometimes also omitted.

Lemma 2 (Counterfactual risk bound). Assume |L f (z, t)| ≤ M, we have

ϵCF(x) ≤ ∑t q(1 − t|x)ϵF,t(x) + MD(x) (4.29)

where ϵCF(x) := ∑t p(1 − t|x)ϵCF,t(x), and D(x) := ∑t
√

DKL(qt∥q1−t)/2.

Proof of Lemma 2.

ϵCF − ∑
t

p(1 − t|x)ϵF,t

= p(0|x)(ϵCF,1 − ϵF,1) + p(1|x)(ϵCF,0 − ϵF,0)

= p(0|x)
∫

L f (z, 1)(q0(z|x)− q1(z|x))dz + p(1|x)
∫

L f (z, 0)(q1(z|x)− q0(z|x))dz

≤ 2MTV(q1, q0) ≤ MD.
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TV(p, q) := 1
2 E|p(z) − q(z)| is the total variance distance between probability

density p, q. The last inequality uses Pinsker’s inequality TV(p, q) ≤
√

DKL(p∥q)/2

twice, to get the symmetric D.

Theorem 2 is a direct corollary of Lemma 2 and the following.

Lemma 3. Define ϵF = ∑t p(t|x)ϵF,t. We have

ϵ f ≤ 2(G(ϵF + ϵCF)− VY). (4.30)

Simply bound ϵCF in (4.30) by Lemma 2, we have Theorem 2. To prove Lemma 3, we

first examine a bias-variance decomposition of ϵF and ϵCF.

ϵCF,t = Eq1−t(z|x)gt(z)EpY(t)|pt
(y|z)(y − ft(z))2

≥ GEq1−t(z|x)EpY(t)|pt
(y|z)(y − ft(z))2

= GEq1−t(z|x)EpY(t)|pt
(y|z)((y − jt(z))2 + (jt(z)− ft(z))2)

(4.31)

The second line uses |gt(z)| ≤ G, and the third line is a bias-variance decomposi-

tion. Now we can define VCF,t(x) := Eq1−t(z|x)EpY(t)|pt
(y|z)(y − jt(z))2 and BCF,t(x) :=

Eq1−t(z|x)(jt(z)− ft(z))2, and we have

ϵCF,t ≥ G(VCF,t(x) + BCF,t(x)) =⇒ ϵCF ≥ G(VCF(x) + BCF(x)) (4.32)

where VCF := ∑t p(1− t|x)VCF,t = ∑t Eq(z,1−t|x)EpY(t)|pt
(y|z)(y − jt(z))2 and similarly

BCF = ∑t Eq(z,1−t|x)(jt(z)− ft(z))2. Repeat the above derivation for ϵF, we have

ϵF ≥ G(VF(x) + BF(x)) (4.33)

where VF = ∑t Eq(z,t|x)EpY(t)|pt
(y|z)(y − jt(z))2 and BF = ∑t Eq(z,t|x)(jt(z)− ft(z))2.

Now, we are ready to prove Lemma 3.
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Proof of Lemma 3.

ϵ f = Eq(z|x)(( f1 − f0)− (j1 − j0))
2

= Eq(( f1 − j1) + (j0 − f0))
2

≤ 2Eq(( f1 − j1)
2 + (j0 − f0)

2)

= 2
∫
[( f1 − j1)

2q(z, 1|x) + (j0 − f0)
2q(z, 0|x)+

( f1 − j1)
2q(z, 0|x) + (j0 − f0)

2q(z, 1|x)]dz

= 2(BF + BCF) ≤ 2(G(ϵF + ϵCF)− VY)

The first inequality uses (a+ b)2 ≤ 2(a2 + b2). The next equality splits q(z|x) into

q(z, 0|x) and q(z, 1|x) and rearranges to get BF and BCF. The last inequality uses the

two bias-variance decompositions, and VY = VF + VCF.

4.7 Detailed Explanations and Discussions

The order of subsections below follows that they are referred in the previous chap-

ters.

4.7.1 List of Assumptions

The following is a list of assumptions required by our identification theory, with

comments on their roles and subtleties.

(G1) additive noise model is needed to ensure the existence of PtSs. (G1’) is

equivalent to (G1), and is introduced for better presentation, e.g., it connects to (G2)

and (M1) through injectivity.

(M1) and (D1) are inherited from iVAE and are required for model (parameter)

identifiability (identifying ft up to affine mapping), which does not imply CATE

identification in general. Arguably here the most important is that the mapping ft

from latent Z to outcome Y is injective, or else some information of Z is in principle

unrecoverable. These two conditions are not required by Proposition 5 which does

not need model identifiability.
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(M2), together with overlapping PtSs, is important to address limited overlap of

X and can be seen as a weak form of OOD generalization.

(M3’) means 1) we need to know or learn the distribution of hidden noise e and

2) noiseless prior. This simplifies the proof of identification, but when implementing

the VAE as an estimation method, both noises are learned.

(D2), or in fact (D2’), strengthens the model identifiability to determine both f0

and f1 up to the same affine mapping, which replaces the balance ofprognostic score.

(G2) is required by Proposition 5 but not Theorem 1. It is no less important than

(G1’), because the core intuition of our method is that (G2) should hold approxi-

mately. Sec. 4.7.2 contains several detailed real-world examples on (G2).

4.7.2 Discussions and Examples of (G2)

We focus on univariate outcome on R which is the most practical case and the in-

tuitions apply to more general types of outcomes. Then, i, the mapping between µ0

and µ1, is monotone, i.e, either increasing or decreasing. The increasing i means,

if a change of the value of X increases (decreases) the outcome in the treatment

group, then it is also the case for the controlled group. This is often true because the

treatment does not change the mechanism how the covariates affect the outcome,

under the principle of “independence of causal mechanisms (ICM)” (Janzing and

Scholkopf, 2010). The decreasing i corresponds to another common interpretation

when ICM does not hold. Now, the treatment does change the way covariates affect

Y, but in a global manner: it acts like a “switch” on the mechanism: the same change

of X always has opposite effects on the two treatment groups.

We support the above reasoning by real world examples. First we give two ex-

amples where µ0 and µ1 are both monotone increasing. This, and also that both

µt are monotone decreasing, are natural and sufficient conditions for increasing i,

though not necessary. The first example is form Health. (Starling et al., 2019) men-

tions that gestational age (length of pregnancy) has a monotone increasing effect

on babies’ birth weight, regardless of many other covariates. Thus, if we intervene

on one of the other binary covariates (say, t = receive healthcare program or not),

both µt should be monotone increasing in gestational age. The next example is from

economics. (Gan and Li, 2016) shows that job-matching probability is monotone
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increasing in market size. Then, we can imagine that, with t = receive training in

job finding or not, the monotonicity is not changed. Intuitively, the examples cor-

responds to two common scenarios: the causal effects are accumulated though time

(the first example), or the link between a covariate and the outcome is direct and/or

strong (the second example).

Examples for decreasing i are rarer and the following is a bit deliberate. This ex-

ample is also about babies’ birth weight as the outcome. (Abrevaya, Hsu, and Lieli,

2015) shows that, with t = mother smokes or not and X = mother’s age, the CATE

τ(x) is monotone decreasing for 20 < x < 26 (smoking decreases birth weight, and

the absolute causal effect is larger for older mother). On the other hand, it is shown

that birth weight slightly increases (by about 100g) in the same age range in a sur-

veyed population (Wang et al., 2020). Thus, it is convince that, smoking changes the

the tendency of birth weight w.r.t mother’s age from increasing to decreasing, and

gives the large decreasing of birth weight (by about 300g) as its causal effect. This

could be understood: the negative effects of smoking on mother’s heath and in turn

on birth weight are accumulated during the many years of smoking.

4.7.3 Complementarity between the two Identifications

We examine the complementarity between the two identifications more closely. The

conditions (M3)/(M3’) and (G2)/(D2’) form two pairs, and are complementary in-

side each pair. The first pair matches model and truth, while the second pair restricts

the discrepancy between the treatment groups. In Theorem 1, (G2) (p0 = p1) is re-

placed by (D2’) which instead makes A0 = A1 := A in (4.4). And (D2’) is easily

satisfied with high-dimensional X, even if the possible values of C, d are restricted

to C = cI and d = 0 (see below). On the other hand, pϵ = pe in (M3’) is impractical,

but it ensures that pθ(y|x, t) = p(y|x, t) so that (4.4) can be used. In Sec. 4.3.1, we

consider practical estimation method and introduce the regularization that encour-

ages learning a prognostic score similar to balanced prognostic score so that pϵ = pe

can be relaxed.
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4.7.4 Ideas and Connections behind the ELBO (4.7)

Bayesian approach is favorable to express the prior belief that balanced prognos-

tic scores exist and the preference for them, and to still have reasonable posterior

estimation when the belief fails and learning general prognostic score is necessary.

This is the causal importance of VAE as an estimation method for us. By the un-

conditional but still flexible Λ, and also the identifications, the ELBO encourages

the recovery of an approximate balanced prognostic score as the posterior, which

still learns the dependence on T if necessary. Moreover, β expresses our additional

knowledge (or, inductive bias) about whether or not there exist approximate bal-

anced prognostic scores (e.g., from domain expertise).

In fact, β connects our VAE to β-VAE (Higgins et al., 2017), which is closely re-

lated to noise and variance control (Doersch, 2016, Sec. 2.4)(Mathieu et al., 2019).

Considerations on noise modeling. In Theorem 1, with large and mismatched

noises (then (M3’) is easily violated), the identification of outcome model ft = jt ◦ v−1

would fail, and, in turn, the prior would learn confounding bias, by confusing the

causal effect of T on pT and the correlation between T and X. This is another reason

to prefer λ0 = λ1, besides balancing. On the other hand, the posterior conditioning

on Y provides information of noise e, and it is shown in (Bonhomme and Weidner,

2021) that posterior effect estimation has minimum worst-case error under model mis-

specification (of the noise and prior, in our case).

Under large e, a relatively small β implicitly encourages g smaller than the scale

of e, through stressing the third term in ELBO (4.7). And the the model as a whole

would still learn p(y|x, t) well, because the uncertainty of e can be moved to and

modeled by the prior. This is why k is not set to zero because learnable prior noise

(variance) allows us to implicitly control g via β. Intuitively, smaller g strengthens

the correlation between Y and Z in our model, and this naturally reflects that poste-

rior conditioning on Y is more important under larger e. Hopefully, precise learning

of outcome noise (M3’) is not required, as in Proposition 5.

Now, it is clear that β naturally controls at the same time noise scale and bal-

ancing. And the regularization can also be understood as an interpolation between

Proposition 5 and Theorem 1: relying on balanced prognostic score, or on model
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identifiability; learning loosely, or precisely, the outcome regression. When the noise

scale is different from truth, there would be error due to imperfect recovery of j.

Sec. 4.3.2 shows that this error and balancing form a trade-off, which is adjusted by

β.

Importance of balancing from misspecification view. If we must learn an un-

approximate balanced prognostic score, we have larger misspecification under a bal-

anced prior and rely more on Y in the posterior. Both are bad because it is shown

in (Bonhomme and Weidner, 2021) that posterior only helps under bounded (small)

misspecification, and posterior estimator has higher variance than prior estimator

(see below for an extreme case). Again, we want a regularizer to encourage learn-

ing of balanced prognostic score, so that we can explore the middle ground: relatively

low-dimensional p, or relatively small e.

Example. Assume the true outcome noise is (near) zero. By setting ϵ → 0

in our model, the posterior pθ(z|x, y, t) = pθ(y, z|x, t)/pθ(y|x, t) degenerates to

f−1
T (Y) = f−1

T (jT(pT)) = v−1(pT), a factual prognostic score. However, f−1
1−T(Y) =

f−1
1−T(jT(pT)) = v−1(j−1

1−T ◦ jT(pT)) ̸= v−1(p1−T), the score recovered by posterior does

not work for counterfactual assignment! The problem is, unlike X, the outcome Y =

Y(T) is affected by T, and, the degenerated posterior disregards the information of

X from the prior and depends exclusively on factual (Y, T).

4.7.5 Additional Notes on Novelties of the Bounds in Sec. 4.3.2

We give details and additional points regarding the novelties. Lu et al., 2020 also

use a VAE and derive bounds most related to ours. Still, our method strengthens

Lu et al., 2020, in a simpler and principled way: we distinguish true score and la-

tent Z and show that identification is the link; considering both prior and posterior,

we show the symmetric nature of the balancing term and relate it to our KL term in

(4.7), without ad hoc regularization; moreover, we consider outcome noise modeling

which is a strength of VAE and relate it to hyperparameter β. Particularly, in (Lu et

al., 2020), latent variable Z is confused with the true representation (pt up to invert-

ible mapping in our case). Without identification, the method in fact has unbounded

error. Note that Shalit, Johansson, and Sontag, 2017 do not consider connection to

identification and noise modeling as well. The error between τ̂f and τj, which we
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bound, is due to the unknown outcome noise that is not accounted by our Theorem

1; thus, the theory in Sec. 4.3.2 is complementary to that in Sec. 4.2.3. Finally, β is

a trade-off between the conditional balance of learned prognostic score (affected by

ft), and precision/effective sample size of outcome regression––and can be seen as

the probabilistic counterpart of Tarr and Imai (2021) and Kallus, Pennicooke, and

Santacatterina (2018).
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Chapter 5

Intact-VAE: Theoretical Ideas and

Experiments under Unobserved

Confounding

5.1 Unobserved Confounding

In this section, we extend the framework in Section 2.1.1 to include unobserved con-

founding. Although there are mostly no original results in this section, we put it

here because the formulation is not standard.

5.1.1 Identification

Adapting standard identification results (Rubin, 2005)(Hernan and Robins, 2020,

Ch. 3), we start with the following conditions, denoted by (A): there exists a (possibly

unobserved) variable U ∈ Rn such that together with X, it gives (i) (Exchangeability)

Y(t) |= T|U, X and (ii) (Overlap, or Positivity) p(T|U, X) > 0; and (iii) (Consistency

of counterfactuals) Y = Y(t) if T = t. All of them are satisfied for both t, which is

our convention when t appears in a statement without quantification. Intuitively,

exchangeability means all confounders are in essence contained in (U, X), and over-

lap means each possible value of (U, X) is observed for both treatment groups. Note

that, joint exchangeability Y(0), Y(1) |= T|X, U is stronger than exchangeability and

is not necessary for identification (Hernan and Robins, 2020, pp. 15).
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FIGURE 5.1: A possible causal graph of unobserved confounding.

A general example of causal structure that satisfies the three conditions is shown

in Figure 5.1, although further structural constraints might be necessary for theo-

retical developments (see Sec. 5.4). Here, Xc,Xiv,Xpa ,Xpd ,Xy are covariates that are:

(observed) confounder, IV, antecedent proxy (that is antecedent of Z), descendant

proxy, and antecedent of Y, respectively. The covariate(s) X may not have subsets in

any categories in the graph. e is unobserved exogenous noise on Y. Assumption (A)

may hold otherwise, e.g., X is a child of T.

CATE can be given by (5.1), using assumption (A) in the second equality.

µt(x) = E(E(Y(t)|U, x)) = E(E(Y|U, x, T = t)) =
∫
(
∫

p(y|u, x, t)ydy)p(u|x)du.

(5.1)

If the variable U is observed, then (5.1) identifies CATE. However, if U is an un-

observed confounder, the naive regression E[Y|X = x, T = t] based on observable

variables is not equal to µt(x). In fact, if an unknown factor correlates with T posi-

tively and tends to give higher value for Y, the naive regression E[Y|X = x, T = 1]

should be higher than E[Y(1)|X = x].

5.1.2 Prognostic Score with U

Our method models prognostic scores (Hansen, 2008), adapted as Pt-scores in this

chapter, closely related to the important concept of balancing score (Rosenbaum and
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Rubin, 1983). Both are sufficient scores for identification; prognostic scores are suffi-

cient statistics of outcome predictors and balancing score is for the treatment.

Definition 6. A Pt-score (PtS) is two functions pt(U, X) (t = 0, 1) such that Y(t) |= U, X|pt(U, X).

A PtS is called a P-score (PS) if p0 = p1.

The identity function is a trivial PS. If the true data generating process (DGP)

satisfies additive noise model, i.e., Y = f ∗(U, X, T) + e, then f ∗t is a PtS (Hansen,

2008); and it is a causal representation (Schölkopf et al., 2021) of the direct cause on

Y, summarizing the effects of (U, X). The independence property of PtS (Proposition

2 in Sec. 2.1.1),

Y(t) |= T, U, X|pt(U, X), (5.2)

is used in second equality of (5.3) in Theorem 3 which extends Proposition 5 in

Hansen, 2008.

Theorem 3 (CATE by PtS). If pt is a PtS, then CATE can be given by

µt(x) = E(E(Y(t)|pt(U, x), x)) = E(E(Y|pt(U, x), t))

=
∫
(
∫

pY|pt,T(y|P, t)ydy)ppt|X(P|x)dP,
(5.3)

where Y|pt(U, X), T ∼ pY|pt,T(y|P, t) and pt(U, X)|X ∼ ppt|X(P|x).

Compared to (5.1), P = pt(u, x) plays the role of u, and pY|pt,T conditions on

P instead of (u, x). In general, information from U is needed to determine pY|pt,T

and ppt|X. In Sec. 5.4, we discuss how our model is connected to and might learn

relaxations of PtS when U is unobserved.

5.2 Experiments

We use the proposed Intact-VAE for three types of data, and compare it with existing

methods.

Unless otherwise indicated, for each function f , g, h, k, r, s in our VAE, we use

a multilayer perceptron (MLP) that has 3*200 hidden units with ReLU activation,

and λ = (h, k) depends only on X. The Adam optimizer with initial learning rate
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10−4 and batch size 100 is employed. All experiments use early-stopping of train-

ing by evaluating the ELBO on a validation set. We test post-treatment results on

training and validation set jointly. The treatment and (factual) outcome should not

be observed for pre-treatment predictions, so we report them on a testing set. More

details on hyper-parameters and settings are given in each experiment.

As in previous works (Shalit, Johansson, and Sontag, 2017; Louizos et al., 2017),

we report the absolute error of ATE ϵate := |ED(y(1) − y(0)) − ED τ̂(x)|, and the

square root of empirical PEHE (Hill, 2011) ϵpehe := ED((y(1) − y(0)) − τ̂(x))2 for

individual-level treatment effects.

5.2.1 Synthetic Dataset

FIGURE 5.2: Graphical models for generating synthetic datasets.
From left: IV X, ignorability given X, and proxy X. Note that in the
latter two cases, reversing the arrow between X, Z does not change
any independence relationships, and causal interpretations of the

graphs remain the same.

X ∼ N (µ, σ); Z|X ∼ N (h(X), βk(X)); T|X, Z ∼ Bern(Logi(l(X, Z))); Y|Z, T ∼ N ( f (Z, T), α).

(5.4)

We generate synthetic datasets by (5.4). The parameters are different between

DGPs: µi and σi are randomly generated; the functions h, k, l are linear with random

coefficients; and f0, f1 is built by separated randomly initialized (then fixed) NNs.

We generate two kinds of outcome models, depending on the type of f : linear and

nonlinear outcome models use random linear functions and NNs with invertible

activations and random weights, respectively. We set the outcome and proxy noise

level by α, β respectively.

We experiment on three different causal structures as shown in graphical models

of Figure 5.2, by variation on (5.4). Instead of taking inputs X, Z in l, we consider

two special cases: l := l(X), then X fully adjusts for confounding, we are in fact
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FIGURE 5.3: Pre-treatment √ϵpehe on nonlinear synthetic dataset. Er-
ror bar on 100 random DGPs. We adjust one of the noise levels α, β in

each panel, with another fixed to 0.2.

unconfounded; and l := l(Z), then we have unobserved confounder Z and proxy X

of Z. To introduce X as instrumental variable, we generate another 1-dimensional

random source W in the same way as X, and use W instead of X to generate Z|W ∼

N (h(W), βk(W)); except indicated above, other aspects of the models are specified

by (5.4).

For each causal structure, and with the same kind of outcome models, and the

same noise levels (α, β), we evaluate Intact-VAE and CEVAE on 100 random DGPs,

with different sets of parameters in (5.4). For each DGP, we sample 1500 data points,

and split them into 3 equal sets for training, validation, and testing. Both the meth-

ods use 1-dimensional latent variable in VAE. For fair comparison, all the hyper-

parameters, including type and size of NNs, learning rate, and batch size, are the

same for both the methods.

Figure 5.3 shows our method significantly outperforms CEVAE on all cases Both

methods work the best under unconfoundedness (“ig.”), as expected. The perfor-

mances of our method on IV (“inst.”) and proxy (“conf.”) settings match that of

CEVAE under unconfoundedness, showing the effective deconfounding. Results

for ATE and post-treatment are similar.
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FIGURE 5.4: Plots of recovered - true latent on the nonlinear outcome.
Blue: t = 0, Orange: t = 1. α, β = 0.4. “no.” indicates index among

the 100 random models.

Here, the true latent Z is a PS, and there are no better candidate PSs than Z, be-

cause ft is invertible and no information can be dropped from Z. Thus, as shown

in Figure 5.4, our method learns representation as an approximate affine transfor-

mation of the true latent value, as a result of our model identifiability. More latent

plots are in Appendix A.1. As expected, both recovery and estimation are better

with unconditional prior p(Z|X), and we see examples of bad recovery using con-

ditional p(Z|X, T) in Appendix Figure A.7. CEVAE shows much lower quality of

recovery, particularly with large noises. Under the IV setting, while treatment ef-

fects are estimated as well as for the proxy setting, the relationship to the true latent

is significantly obscured, because the true latent is correlated to IV X only given

T, while we model it by p(Z|X). This confirms that our method does not need to

recover the true confounder distribution.

We see our method is robust to the unknown noise level. This indicates that

noises are learned by our VAE. Appendix A.1 shows that the noise level affects how

well we recover the latent variable.

5.2.2 Pokec Social Network Dataset

We show our method is the best compared with the methods specialized for net-

worked deconfounding, a challenging problem in its own right. Pokec (Leskovec

and Krevl, 2014) is a real world social network dataset. We experiment on a semi-

synthetic dataset based on Pokec, introduced in Veitch, Wang, and Blei, 2019, and



5.2. Experiments 73

use exactly the same pre-processing and generating procedure. The pre-processed

network has about 79,000 vertexes (users) connected by 1.3 ×106 undirected edges.

The subset of users used here are restricted to three living districts that are within

the same region. The network structure is expressed by binary adjacency matrix G.

Each user has 12 attributes, among which district, age, or join date is used

as a confounder Z to build 3 different datasets, with remaining 11 attributes used as

covariate X. Treatment T and outcome Y are synthesised as following:

T ∼ Bern(g(Z)), Y = T + 10(g(Z)− 0.5) + ϵ, where ϵ is standard normal. (5.5)

Note that district is of 3 categories; age and join date are also discretized into

three bins. There is a PS that is g(Z), which maps the three categories and values to

{0.15, 0.5, 0.85}.

As in Veitch, Wang, and Blei, 2019, we split the users into 10 folds, test on each

fold and report the mean and std of pre-treatment ATE predictions. We further sepa-

rate the rest of users (in the other 9 folds) by 6:3, for training and validation. Table 5.1

shows the results. In addition, the pre-treatment √ϵpehe for Age, District, and Join

date confounders are 1.085, 0.686, and 0.699 respectively, practically the same as the

ATE errors. Veitch, Wang, and Blei, 2019 do not give individual-level prediction.
TABLE 5.1: Pre-treatment ATE on Pokec. Ground truth ATE is 1, as
we can see in (5.5). “Unadjusted” estimates ATE by ED(y1)−ED(y0).
“Parametric” is a stochastic block model for networked data (Gopalan
and Blei, 2013). “Embed-” denotes the best alternatives given by
(Veitch, Wang, and Blei, 2019). Bold indicates method(s) that are sig-
nificantly better than all the others. 20-dimensional latent variable in
Intact-VAE works better, and its result is reported. The results of the

other methods are taken from (Veitch, Wang, and Blei, 2019).

Unadjusted Parametric Embed-Reg. Embed-IPW Ours

Age 4.34 ± 0.05 4.06 ± 0.01 2.77 ± 0.35 3.12 ± 0.06 2.08 ± 0.32
District 4.51 ± 0.05 3.22 ± 0.01 1.75 ± 0.20 1.66 ± 0.07 1.68 ± 0.10
Join Date 4.03 ± 0.06 3.73 ± 0.01 2.41 ± 0.45 3.10 ± 0.07 1.70 ± 0.13

Intact-VAE is expected to learn a PS from G, X, if we can exploit the network

structure effectively. Given the huge network structure, most users can practically

be identified by their attributes and neighborhood structure, which means Z can be

roughly seen as a deterministic function of G, X. This idea is comparable to As-

sumptions 2 and 4 in Veitch, Wang, and Blei, 2019, which postulate directly that a

balancing score can be learned in the limit of infinite large network.
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To extract information from the network structure, we use Graph Convolutional

Network (GCN) (Kipf and Welling, 2017) in the prior and encoder of Intact-VAE.

Note that GCN cannot be trained by mini-batch, instead, we perform batch gradi-

ent decent using all data for each iteration, with initial learning rate 10−2. We use

dropout (Srivastava et al., 2014) with rate 0.1 to prevent overfitting.

GCN need to take as inputs the network matrix G and the covariates matrix

X := (xT
1 , . . . , xT

M)T of all users, where M is user number, regardless of whether it is in

training, validation, or testing phase; and it outputs a representation matrix R, again

for all users. To enable sample separation, we need to make sure the treatment and

outcome are used only in the respective phase, e.g., (ym, tm) of a testing user m is only

used in testing. During training, we select the rows in R that correspond to users

in training set. Then, treat this training representation matrix as if it is the covariate

matrix for a non-networked dataset, that is, the downstream networks in conditional

prior and encoder are the same as in the other two experiments, except that they

take (Rm,:)T where xm was expected as input. And we have respective selection

operations for validation and testing. We can still train Intact-VAE including GCN

by Adam, simply setting the gradients of non-seleted rows of R to 0.

5.3 VAEs for Treatment Effect Estimation: a Critical Exami-

nation

Most VAE methods for treatment effects, e.g., Louizos et al., 2017; Zhang, Liu, and

Li, 2020; Vowels, Camgoz, and Bowden, 2020; Lu et al., 2020, add ad hoc heuristics

into the VAEs, and thus break down probabilistic modeling, not to mention model

identifiability. Moreover, the methods learn representations from proxy variables,

leading to either impractical assumptions or conceptual inconsistency, in treatment

effect identification. As a case study, you can find detailed comparisons and criti-

cisms of CEVAE in Section 3.1.1.

On identification. First, as to treatment effect identification, CEVAE assumes

unobserved confounder can be recovered, which is rarely possible even under fur-

ther structural assumptions (Tchetgen et al., 2020). Indeed, Rissanen and Marttinen,

2021 recently give evidence that the method often fails. Other methods (Zhang, Liu,
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and Li, 2020; Vowels, Camgoz, and Bowden, 2020; Lu et al., 2020) assume uncon-

foundedness but still rely on proxy at least intuitively; for example, Lu et al., 2020

factorize the decoder as if in the proxy setting. However, unconfoundedness and proxy

should not be put together. The conceptual inconsistency is that, by definition, uncon-

foundedness means covariates fully control confounding, while the motivation for

proxy is that unconfoundedness is often not satisfied in practice and covariates are

at best proxies of confounding, which are non-confounders causally connected to

confounders (Tchetgen et al., 2020). Second, without model identifiability, the em-

pirical results of the methods lack solid ground; under settings not covered by their

experiments, the methods would silently fail to learn proper representations, as we

show in Sec. 4.4.1.

On ad hoc heuristics. Ad hoc heuristics break down probabilistic modeling

and/or give ELBOs that do not optimally estimate the models. For example, in

CEVAE, q(T|X) and q(Y|X, T) are added into the encoder to have pre-treatment es-

timation, and the ELBO has two additional likelihood terms respectively. The VAE

in Zhang, Liu, and Li, 2020 is even more ad hoc; it splits the latent variable Z into

three components, and applies the ad hoc tricks of CEVAE to each of the compo-

nent. Particularly, when constructing the encoder, they implicitly assume the three

components of Z are conditional independent give X, which violates the intended

graphical model.

Compared to the above methods, our Intact-VAE is simpler and more princi-

pled, and often has better performance. It models a prognostic score as the latent

variable and is based on the identification equation (5.3), while not compromised by

ad hoc heuristics. Our ELBO is derived by standard variational lower bound (4.3).

Moreover, our pre-treatment prediction is given naturally by the prior, thanks to the

correspondence between our model and (5.3). We show in the following subsections

how our model and its identifiability inspire theoretical developments in treatment

effect identification.
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5.4 Theoretical Ideas under Unobserved Confounding

The positive experimental results motivate us to consider the theory under unob-

served confounding. Moreover, the prior in (4.2) is even more natural with U unob-

served, since ppT |X is not degenerated due to the uncertainty of U. Thus, we conjec-

ture that, in our VAE framework, unobserved confounding is treated as a source of

uncertainty of scores and is handled in a Bayesian way. We give more considerations

for future theoretical work below.

Identification. Auxiliary structures (e.g., IVs) can give treatment effect identi-

fications via control functions C(T, X), conditioning on which the treatment becomes

exogenous, that is, Y(t) |= T|C(t, X) (Matzkin, 2007; Wooldridge, 2015). Control

functions can be stochastic, as in Puli and Ranganath, 2020. Consistent treatment

effect estimation can be given by a regression of outcome on the treatment and a con-

trol function. Our model (4.2) can be seen as a two-stage procedure: first, pλ(z|x, t)

gives a stochastic control function; second, p f (y|z, t) regresses the outcome. We need

to specify the control function learned by Intact-VAE and the required structural con-

straints. Control functions are recently found under the proxy setting (Nagasawa,

2021), or in the presence of both proxies and IVs (Tien, 2021).

Estimation. In causal inference, many models, including nonparametric IV re-

gression (NPIV), are stated as conditional moment restrictions (CMRs) (Newey, 1993).

Optimizing the ELBO of our VAE, given by (4.3), can be seen as finding functions

f and C, subject to the CMR Epθ
(Y|X, T) = E(Y|X, T). We believe our Intact-VAE

framework, possibly with modifications, can be shown to give optimal estimation

under the CMR. There are formal connections between CMRs and quasi-Bayesian

analysis using KL divergence (Zhang, 2006; Jiang and Tanner, 2008; Kim, 2002).

For example, Kato, 2013 uses a quasi-likelihood from the CMR of NPIV to set the

prior, and the Gibbs posterior (Zhang, 2006; Jiang and Tanner, 2008) is a minimizer

of an information complexity which has a variational characterization similar to an

ELBO. For general CMR models, Liao and Jiang, 2011 extend Kim, 2002 and give the

best approximation to the true likelihood function under the CMR by minimizing a

KL divergence. Very recently, Wang et al., 2021 employ quasi-Bayesian analysis to

kernel-based IV methods, but only consider unconditional moments.
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Chapter 6

Causal Mosaic: Bivariate Causal

Discovery via Nonlinear ICA and

Ensemble Method

6.1 Intuition of Shared Mechanisms

As mentioned in the Introduction, we encounter a large diversity of causal relation-

ships in nature. And causality might only be studied and learned piecemeal. Our

idea is to extract the common mechanism shared by a small number of causal sys-

tems. We should note that, systems that seem to have different mechanisms can

actually share the same mechanism. When all we have at hand is observational

data, the sample, it would be true that two systems sharing the same mechanism,

but by looking at the samples, they seem very different, to the extent that we would

be tempted to model them by different functional forms. As an example, we give

some pairs we used in experiment.
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FIGURE 6.1: Artificial causal pairs sharing same mechanism. The
pairs have significant diversity though still show some regularity.
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6.2 Learning the Shared Mechanism by TCL

We review the nonlinear ICA method which we exploit to learn shared mechanism.

This section is not placed in Preliminaries because we change the original use case

and adapt it to our own setting.

Lately, Time-Contrastive Learning (TCL) (Hyvärinen and Morioka, 2016) pro-

vided the first general identifiability result for nonlinear ICA. The method depends

on learning the different distributions of time series through time, and hence the

name. After artificially dividing time series into segments, it trains a classification

task to tell which segment each sample point belongs to. In fact, we can go a step

further as indicated in Hyvärinen, Sasaki, and Turner, 2019: we only need the so-

called auxiliary variable, conditioned on which the hidden components Z are jointly

independent. The segment index is an example of the auxiliary variable because the

two hidden variables are independent if there are no hidden confounders.

With the intuition that different causal pairs in real world could share similar

mechanisms, we can develop a method to learn and invert the mechanisms by TCL.

We feed the pairs into TCL as if they are the time segments and replace the segment

index with the pair index as auxiliary variable. For now, let us assume the causal

pairs share exactly the same mechanism and restate the theory of TCL under our

own setting:

Theorem 4 (Hyvärinen and Morioka, 2016). Assume the following:

A1. We observe causal pairs X (P) := {Xp}P
p=1 which satisfy the same analyzable SCM

Xp = f(Ep), and the hidden variables Ei,p, i = 1, 2 are of exponential family distribution

pEi,p(e) = exp[Ti(e)ηi(p)− A(ηi(p))] where Ti(e) is the sufficient statistic.

A2. The matrix L, with elements [L]p,i = ηi(p)− ηi(1), p = 1, ..., P, i = 1, 2, has full

column rank 2.

A3. We train a feature extractor h : R2 → R2 with universal approximation capability,

followed by a final softmax layer to classify all sample points of the pairs, with pair index

used as class label.

Then, in the limit of infinite data, for each p, T(Ep) := (T1(E1,p), T2(E2,p))T = Ah(Xp; θ)+

b where A, b are unknown constants, and A is invertible.
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Unlike the time contrast exploited in the original TCL, the contrast here is among

the pairs. But, by convention, we will still use the word “TCL” when referring to the

method trained on causal pairs. By a slight abuse of terminology, the produced h is

also called TCL in this thesis.

In practice, a multilayer perceptron (MLP) is used as the feature extractor. The

theorem implies that the identification (recovery) of T(Ep) can be achieved by first

performing TCL, and then linear ICA on h(Xp). Denoting the composition of h and

linear ICA as hICA, we have T(Ep) = hICA(Xp). In this sense, we say that h is

successfully learned and the nonlinear ICA of Xp is realized by hICA. Here we learn

the shared mechanism f (or precisely its inverse) as part of h, along with T.

While we can recover only the sufficient statistics Ti(Ei,p), not Ei,p, they are suf-

ficient for building a method for cause-effect inference; Ti(Ei,p) generally has the

same independence relationships with other variables as Ei,p. In practice, under the

assumption that there exist direct causal effects, we can just compare values of an

independence measure, as we will detail in Sec. 6.3.

Now, thoughtful readers would counter that we cannot expect many causal pairs

satisfy A1 and A2 of Theorem 4. However, it is reasonable that there are small sets

of (say, a handful) pairs among the many pairs on which the theoretical conditions

are at least loosely satisfied. It is particularly the case for the real-world dataset

we will consider in the experiments, where there are sets of pairs from the same

causal scenario, e.g., {altitude, temperature} and {altitude, rainfall} could share

similar mechanisms.

In Sec. 6.3, the theoretical results are derived when the assumptions of TCL are

satisfied. In Sec. 6.4, we use ensemble method to exploit the imperfect TCLs trained

on those loosely satisfactory sets mentioned in the previous paragraph.

6.3 Theoretical Results

6.3.1 Separation of Training and Testing

It should be clear from the above that we want to learn causal mechanism via TCL.

However, to successfully learn TCL, we at least need to know that the pairs indeed

share causal mechanism! To address the above dilemma, our idea is to learn causal
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mechanism from some training pairs that we have good causal knowledge (e.g. we

might know their SCMs and causal directions), and then predict the causal direc-

tions for unseen pairs. The following corollary of Theorem 4 makes this separation

possible:

Corollary 2 (Transferability of TCL). Assume:

A1. Pairs X tr(P) satisfy A1 and A2 of Theorem 4.

A2. A pair Xte satisfy A1 of Theorem 4, with the same f and T as X tr(P), but different

parameter ηi.

A3. Let RX denote the support of a random variable X. We have REte
i
⊆ ∪P

p=1REtr
i,p

, i =

1, 2.

A4. We learn a feature extractor h on X tr(P) as in A3 of Theorem 4 and have T(Etr
p ) = Ah(Xtr

p ) + b.

Then, we have T(Ete) = Ah(Xte) + b = hICA(Xte).

Intuitively, after we successfully learned TCL h, we can re-use it to analyze other

unseen pairs that have the same SCM and sufficient statistics as the training pairs.

We should note that, as in transfer learning, training and testing pairs do not have the

same distribution, and hence the name of this corollary. From now on, we will also

refer to the learning of TCL and analysis of new pairs on it as training and testing,

respectively.

6.3.2 Inference Methods and Identifiability

We first present a general procedure (Algorithm 1) as the common basis, before de-

tailing the two inference rules (inferule) with their identifiability results (and also

Directiontr and align). In the following, α0 = (1, 2) and α1 = (2, 1) denotes the two

permutations on {1, 2}, and αi(X) := (Xαi(1), Xαi(2)).
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Algorithm 1: Inferring causal direction

input : X tr(P), Xte, Directiontr, align, inferule

output: Causete

1 Align training set, exploiting Directiontr:

X al(P) = align(X tr(P), Directiontr)

2 Learn TCL h on X al(P)

3 foreach α = α0, α1 do

4 (C1, C2)T
α = hICA(αi(Xte))

5 Run inference rule: Causete = inferule(Cff0 , Cff1 , Xte)

With T(Ete) recovered, we can find ways to infer a causal direction for Xte. To

find the asymmetry between the two possible causal directions, we use the fact that,

when testing, if we flip input direction to hICA and try nonlinear ICA for each (line

3,4 Algorithm 1), there will be one and only one trial that is realized by the hICA.

This information will be exploited in inferule (line 5 Algorithm 1).

A remaining issue is that, to apply Theorem 4 and in turn Corollary 2, we need to

at least partially know the directions of training pairs. More precisely, X tr(P) must

be aligned, as in the following definition. (This is implied by ∀p (Xp = f(Ep)) in A1

of Theorem 4.)

Definition 7. Causal pairs X al(P) := {Xp}P
p=1 are aligned if ∀p (X1,p → X2,p) or

∀p (X2,p → X1,p).

In the first inference rule, it is assumed that we know the causal direction for

each of the training pairs so that they can be trivially aligned. For a test pair, a

realized (successful) nonlinear ICA among the two trials should output independent

components, and this in turn tells us the direction of the pair, because we know

which input of h corresponds to the cause. This leads to the following theorem:

Theorem 5 (Identifiability by independence of hidden components). In Algorithm

1, let:

Directiontr = {cp}P
p=1 where cp ∈ {1, 2} is the cause index: Xtr

cp,p → Xtr
3−cp,p,

align = {Xtr
cp,p, Xtr

3−cp,p}P
p=1,

inferule = α∗(1), α∗ = arg maxα∈{α0,α1} dindep(Cα) where dindep measures de-

gree of independence.
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And assume:

A1. Causal Markov assumption and causal faithfulness assumption hold for data gener-

ating SCMs and analysis procedure except1 for a realized nonlinear ICA.

A2. X tr(P) and Xte satisfy A1–A3 of Corollary 2.

Then, the inferule defined above (inferule1 afterwards) identifies the true cause vari-

able.

The second inference rule only assumes we know how to align the training pairs.

In fact, under certain practical scenarios, we know the training pairs are aligned;

for example, 1) pairs from multiple environments (per environment per pair), as in

many domain adaptation problems and in Monti, Zhang, and Hyvärinen, 2019, and

2) pairs from stratified sampling (per sample per pair).

The inferule determines the realized trial and identifies causal directions, with-

out the directions of training pairs. We examine the independence of the pair {Tj(Ete
j ),

Xte
i }, as in the relation (2.8). Note, however, that as described in Monti, Zhang, and

Hyvärinen, 2019, the outputs of a realized nonlinear ICA are equivalent to hidden

variables only up to a permutation, i.e. T(Ete) = (Cα(1), Cα(2))
T, with α unknown.

This requires us to evaluate the degree of independence for four pairs at each trial,

as in the following theorem:

Theorem 6 (Identifiability by independence of noise and cause). In Algorithm 1, let:

Directiontr = {ip}P
p=1 where ip ∈ {1, 2} such that ∀p (Xip,p → X3−ip,p) or ∀p (X3−ip,p →

Xip,p)

align = {Xtr
ip,p, Xtr

3−ip,p}P
p=1,

inferule = i∗, (i∗, ., .) = arg maxi,j,α dindep(Xte
i , Cj,α).

And assume the same as Theorem 5.

Then, the inferule defined above (inferule2 afterwards) identifies true cause variable.

Since we can use the causal directions to recover an aligned training set, so in

Theorem 5, letting inferule = inferule2, the true causal index can also be iden-

tified. However, as we will see in the experiments, inferule1 will outperform

inferule2 if the former is applicable in practice.

1See Sec. 2.2.2 on this.



6.3. Theoretical Results 83

Finally, we will employ distance correlation (dCor) (Székely, Rizzo, Bakirov, et

al., 2007) as our main choice of dindep.

6.3.3 Choice of Independence Test

HSIC is a widely used independence test in causal discovery literature, but it has

several drawbacks. First, its test statistic is not normalized for different testing pairs,

and thus not comparable2. Second, although p-value of the test is comparable, it

does not directly measure the degree of independence. Most importantly, as men-

tioned in Mooij et al. (2016, sec. 2.2), standard threshold of the test would be too

tight for our purpose. This is because in causal discovery we often want to test the

independence between an observed variable and an estimation from observed data,

and there always exists small dependence with finite sample and other real world

limitations. For the same reason, the flexibility of HSIC to detect dependence can do

harm, not benefit, to causal discovery.

Unlike HSIC3, dCor value is always in [0, 1], and equals to 0 if and only if the

pair under test are independent. Thus, the value 1 - dCor works as a comparable

degree of independence. As a bonus, dCor is much faster than HSIC when testing

independence between univariate real-valued variables, particularly when sample

size is large 4.

Hence, we suggest dCor rather than HSIC as the default choice to measure de-

gree of independence for cause-effect inference, and try HSIC when you can afford

the time, both for tuning and running.

6.3.4 Structural MLP

We discuss an MLP structure to improve TCL’s performance on bivariate analyzable

SCMs. We first study the form of the inverse SCM, since this is what the MLP should

learn.

2If we use the default Gaussian kernel and median heuristic for kernel bandwidth (Gretton et al.,
2005). And this is also the most common way it is used in bivariate causal discovery (Mooij et al., 2016;
Hu et al., 2018)

3We noticed that distance covariance is an instance of HSIC for certain choice of kernels (Sejdinovic
et al., 2013). But again, this is not default for HSIC.

4We use Huo and Székely, 2016 for dCor and Zhang et al., 2018 for HSIC, the implementation can
be found at https://github.com/vnmabus/dcor and https://github.com/oxmlcs/kerpy, respectively.
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Proposition 7 (Inverse of bivariate analyzable SCM). For any analyzable SCM as shown

in (2.3), denote the whole system X = f(E), if the Jacobian matrix of f is invertible, then f1

is invertible.

Denote g1 = f−1
1 , then E1 = g1(X1). And we have E2 = g2(X1, X2) in general.

This implies the inverse SCM has the graph as shown in Figure 6.2 (left):

g2g1

X1 X2

E1 E2

MLP2MLP1

i1 i2

o1 o2

FIGURE 6.2: Inverse bivariate analyzable SCM (left) and the indicated
MLP structure (right).

Building an MLP for TCL with this asymmetric structure will help TCL learn

the inverse SCM. This can be easily implemented as shown in Figure 6.2 (right): we

build an MLP with one output node for g1 and g2 respectively, and then concatenate

the outputs together.

Caveats on Structural MLP

1) While one might think that we need to make MLP1 invertible since g1 is invertible,

we should not impose it; the sufficient statistics T are also learned as part of MLP,

and they are in general non-invertible. 2) The structural MLP works only when there

is a direct causal effect, as required by SCM (2). 3) Since node i1 corresponds to the

cause, we need to input the cause variable to i1 for training the asymmetric MLP

properly. This requires knowledge on the causal directions of training pairs, and

thus, we can only apply it with inferule1.

6.4 Assembling Causal Mosaic

In the following, we will refer to training pairs that satisfy A1 (same SCM and ex-

ponential family) and A2 (enough variability among parameters) of Theorem 4 as

tessera pairs, because they form the small portion of causal pairs that can be easily



6.4. Assembling Causal Mosaic 85

modeled together, and thus a small block of the whole mosaic. Also, we will refer to

a TCL learned on tessera pairs as a tessera.

We have so far assumed that we have tessera pairs, under the ideal situation

that we have well-studied systems. However, for many real world applications,

it is unlikely that most training pairs amount to tessera pairs. Our idea for han-

dling real world problems is to train many TCLs on random selections of pairs, and

then choose from these TCLs the (imperfect) tesserae that are trained on approximate

tessera pairs, in the sense that they have similar SCMs and are approximately in the

same family. We further develop an ensemble method to effectively exploit imper-

fect tesserae.

In this section, Let S be the set of all labeled causal pairs we have at hand, and cs

be the true cause index for s ∈ S.

6.4.1 Preparing Materials

As in Algorithm 2, by training a large number (N) of TCLs on randomly chosen

pairs, we hope some of these TCLs amount to tesserae. To ensure TCL is trained

properly on each set of pairs, we train MLP M times with different hyperparameters

(See experiment for details).

Algorithm 2: Random training of TCLs
input : S, M, N

output: {(hn, Tn)}N
n=1

1 foreach n in 1,...,N do

2 Randomly choose training pairs Tn ⊂ S

3 Split the sample points of each training pair by half, and build training

set Tr and testing set Te

4 foreach m in 1,...,M do

5 Randomly choose a set of hyperparameters and train TCL on Tr

6 Evaluate classification accuracy (Caccm) for pair index on Te.

7 Use the trained TCL with the highest Caccm for this set of training pair,

denote it hn
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6.4.2 Choosing Tesserae

Because our goal is to infer causal directions, we choose TCLs that perform well on

this task. First, we can use each TCL to infer the causal directions of its own training

pairs (Algorithm 3, line 2,3), and choose TCLs that produce accuracy higher than a

threshold ThreT. Second, for each TCL, we also input unseen validation pairs and

infer their directions, and we choose TCLs that produce accuracy higher than ThreV.

The good training accuracy indicates the success of training and TCL indeed learned

to infer causal directions. The good validation accuracy shows that the learning

generalizes to unseen pairs.

To efficiently use S for training and validation, and still be able to test on all the

pairs in S, we use the idea of leave-one-out cross validation (LOOCV). That is, each

pair l not used in training a TCL is left out once when validating that TCL (line 5,6).

As we can see, every pair in S is not used as a training pair or validating pair for its

tessera (line 10,11). On the other hand, in training (Tn) and validation ((S \ Tn) \ {l}),

every trained TCL exploits all the pairs except the left out one l.
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Algorithm 3: Selecting TCLs

input : S, ThreT, ThreV, {(hn, Tn)}N
n=1

output: {TSRs : s ∈ S}

1 foreach n in 1,...,N do

// Training accuracy Taccn for hn on Tn

2 foreach t in Tn do

3 Use hICAn, run line 3–5 of Algorithm 1 on t, get inferred direction ĉt

4 Taccn = |{t : ĉt = ct}|/|Tn|

// LOOCV

5 foreach l in S \ Tn do

6 As line 2–4, get validation accuracy for hn on (S \ Tn) \ {l}, denote it

as Vaccn(l)

// Select TCLs by accuracy thresholds

7 foreach s in S do

8 Initialize tessera index set for s: TSRs = ∅

9 foreach n in 1,...,N do

10 if s ̸∈ Tn and Taccn > ThreT and Vaccn(s) > ThreV then

11 Add n to TSRs

By the identifiability theorems, if TCL hn has high training accuracy, it is likely

that the training pairs Tn are approximate tessera pairs (required by A1 & A2 of

Theorem 4). Similarly, if hn gives high validation accuracy, the evidence for tessera

pairs Tn is strengthened (required by A1 of Corollary 2), and further it is likely that

pairs Tn are similar to many of pairs in S \ Tn (required by A2 of Corollary 2).

6.4.3 From Tesserae to Causal Mosaic

We employ an ensemble method for making effective use of each imperfect tessera,

and construct a whole piece of mosaic, in the same way as we will obtain a strong

classifier from weaker ones by ensemble methods. Put simply, for each testing pair,

ensemble method will take the causal direction predicted by tesserae, and produce

a final, weighted average. We introduce two levels of weighting as follows.

First, as Algorithm 4, line 3, we weight a TCL hn by the average dindep(hICAn(.))

for the training pairs Tn. This is to address the problem that, even if we have selected
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TCLs as in Algorithm 3, it is very possible that the chosen tesserae would not be per-

fect, e.g., the mechanisms of training pairs are not exactly the same. Thus, we use

this weight to measure how well Tn fit together (by Theorem 4, if we get more inde-

pendent components, A1 & A2 are more likely to hold), and in turn how likely the

causal direction will be correctly inferred if we use this hn.

Second, we weight by the dindep(hICAn(.)) for a particular testing pair s. Again,

even if wn is large, it is possible that s and Tn do not satisfy A2 of Corollary 2, so we

need to weight each tessera for each testing pair. Similarly to the reasoning for wn, if

we get independent components for s, A2 of Corollary 2 is likely to hold. Note that,

as in Algorithm 1, in theory only realized nonlinear ICA outputs independent com-

ponents, so we weight by the larger dindep of the two trials (line 4–7). We multiply

the two weights as the final pair-specified weight.

Algorithm 4: Ensemble method

input : S, {TSRs : s ∈ S}, {(hn, Tn)}N
n=1

output: {Directions : s ∈ S}

1 foreach s in S do

2 foreach n in TSRs do

3 wn = ∑t∈Tn
(dindep(hICAn(t)))/|Tn|

4 foreach i = 0, 1 do

5 Cαi = hICAn(αi(s))

6 wns,i+1 = dindep(Cαi)

7 wns = max(wns,1, wns,2)

8 ĉs = inferule(Cff0 , Cff1 ,s)

9 Directionns = 1 if ĉs = 1, −1 if ĉs = 2

10 Calculate weighted prediction Scores = ∑n∈TSRs
wnwnsDirectionns

11 Directions =


X1 → X2 Scores > 0

X2 → X1 Scores < 0

? Scores = 0
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6.4.4 Alternative Ensemble Scorings

Without loss of generality, assume X1 is input to the same node when calculating

wns,1, as cause variable is when training. Then we have Directionns = I(wns,1 >

wns,2)− I(wns,1 < wns,2) where indicator function I maps true/ f alse to 1/0.

Now the ensemble score in Algorithm 4 line 10 becomes:

Scores = ∑
n∈TSRs

wns,1wnI(wns,1 > wns,2)

− ∑
n∈TSRs

wns,2wnI(wns,1 < wns,2)

(6.1)

But since I(wns,1 > wns,2) and I(wns,1 < wns,2) just reflect the relative value of wns,1

and wns,2, the following simplification is reasonable:

Scores = ∑
n∈TSRs

wn(wns,1 − wns,2) (6.2)

And on the same line of reasoning, we can alternatively disregard wns,1, wns,2 and

have:

Scores = ∑
n∈TSRs

wnI(wns,1 > wns,2)

− ∑
n∈TSRs

wnI(wns,1 < wns,2)

= ∑
n∈TSRs

wnDirectionns

(6.3)

This is just the weighted average of prediction by each hn. And finally, since hn with

small wn is unlikely to produce large wns,i, we can further disregard wn in (6.2). This

gives:

Scores = ∑
n∈TSRs

(wns,1 − wns,2) (6.4)

We compared these scoring equations and found the last one is stably the best.

6.5 Experiments

None of the methods compared in this section use an ensemble. Among them, Non-

SENS is the most related because it is also based on TCL, but it does not exploit the
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known direction of training pairs in the multi-pair setting detailed below, related

to our Theorem 5. NCC also uses labeled pairs as training data but requires very

large numbers of training pairs because it does not split and re-use the pair for each

testing pair, as in our Sec. 6.4.2. ANM uses an additive noise model, but our model

does not assume an additive noise. IGCI and RECI propose simple but somewhat

ad-hoc criteria and thus limit their performance; please refer to Literature Review

for details.

6.5.1 Artificial Data

We compare NonSENS to variations of our method with different inference rules, in-

dependence measures, and MLP types on artificial data. To see the comparisons with

other recent methods on similar artificial data, we refer readers to Monti, Zhang, and

Hyvärinen, 2019.

Multi-environment setting This is the setting under which NonSENS works. Math-

ematically, our tessera pairs {Xtr
p } are equivalent to the samples X en := {Xen

p } of a

same causal system under P different “environments” in their interpretation. That

is, they define different environments by different parameter η of hidden variables,

and ∀p(Xen
p = f(Een

p )) is by definition satisfied. Moreover, there is no separate test-

ing pairs here. Our goal is to distinguish between two possibilities, ∀p (Xen
1,p → Xen

2,p)

or ∀p (Xen
2,p → Xen

1,p), for X en themselves (note the pairs (environments) are aligned),

rather than 2P possibilities for individual pairs X (P).

Our Algorithm 1 can reduce to this setting, as shown in Algorithm 5. Both train-

ing and testing pairs are X en themselves. Note that Directiontr, align and the input

permutation (Algorithm 1, line 3,4) are not needed, since X en is already aligned.

We apply a simplified version of inferule2 to infer direction for each environment

without input permutation, but still need to deal with the output permutation.

Finally, we use majority voting to combine the results of all environments and

give the final decision, and this is an important difference between our method

and NonSENS under this setting. NonSENS treats the samples of environments

as coming from a mixture, runs dindep on pooled sample and output, and gives
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cen = i∗, (i∗, j∗) = argmaxi,j dindep({Xen
i,p}, {Cj,p})5. In practice, as we will see, ma-

jority voting often outperforms NonSENS since it uses information from each envi-

ronment and thus is more robust.
Algorithm 5: Algorithm 1 on multi-env. setting

input : X en

output: cen

1 Learn TCL h on X en

2 C = hICA(X en)

3 foreach Xen
p in X en, Cp in C do

4 cp = i∗, (i∗, j∗) = arg maxi,j dindep(Xen
i,p, Cj,p)

// Majority voting

5 cen = arg maxi |{cp : cp = i}|

Multi-pair setting If we know the directions of training pairs, we separate training

and testing, and both Theorem 5(inferule1) and Theorem 6 (inferule2) can apply.

Here, we infer the direction for each individual testing pair. NonSENS cannot apply

here, so we compare different variations of our method. We name this multi-pair

setting, to contrast the multi-environment setting, although the main difference is

the direction information of training pairs (our method can also infer for each envi-

ronment as in Algorithm 5, line 3,4).

Data generation As in Hyvärinen and Morioka, 2016 and Monti, Zhang, and Hyväri-

nen, 2019, we use 5-layer randomly initialized MLPs as mixing functions, with leaky

ReLU activation and 2 units in each layer to ensure invertibility. To simulate the in-

dependent relationships of a direct causal graph, we use a lower-triangle weight

matrix for each layer of the MLP. We use Laplace distribution for both hidden com-

ponents, and their variance parameters are i.i.d. generated across different pairs.

Multi-environment setting can be easily simulated by aligning all the pairs and then

perform nonlinear ICA.

5Originally, NonSENS uses independence tests with a threshold. We write it here using dindep for
easy comparison, because we will use this modified rule for NonSENS in experiment.
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We generate 100 mixing functions and same number of training/testing pairs

for each mixing function. To observe how the pair number affect results, we try 5

different number ranging from 10 to 50. Please see Sec. 6.6 for more details.

Hyperparameters To make fair comparisons, for both our method and NonSENS,

we keep all the hyperparameters the same, including the parameters for training

and independent tests. Please see Sec. 6.6 for details.

Assuming direct causal effect Our method and NonSENS6 formally requires di-

rect causal effects exist between pairs, and this is our main experiment setting. Please

see Sec. 5 for the experiment without this assumption.
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FIGURE 6.3: Performance assuming direct causal effect. “width”
means MLP width. In the legend, “dCor/pHSIC” indicates the in-
dependence measure, and “asym.” means asymmetric MLP in TCL.
Dashed lines are intended to show transferability of TCL, see Sec. 6.6.

As shown in Figure 4, in multi-environment setting, our method outperforms

NonSENS, particularly when the pair number is large. The decreasing performance

of NonSENS is consistent with the results when not assuming pure causal effects

and is due to the unwanted dependence between estimated noise and the cause, as

explained in detail in Sec. 6.6.

6We cannot reproduce the likelihood ratio based NonSENS proposed for this setting. Instead, we
use a slightly modified version of NonSENS originally proposed for may-not-direct-causal setting, see
the previous footnote.
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In multi-pair setting, inferule1 is applicable and performs much better than

inferule2. The main reason is that the independence between two output com-

ponents is much easier to realize than the independence between estimated noise

and observed cause. And this is in turn because of the direct dependence between

observed variables and outputs (see Figure 1 in Sec. 6.6). Note that Theorem 5re-

quired known causal directions of training pairs, and thus cannot be used in multi-

environment setting.

Moreover, when the MLP width is 40, inferule1 achieves near-optimal results

when applied with asymmetry MLP. This is also the best result we have obtained

with artificial data. While the asymmetry MLP with width 4 performs worse than

the fully-connected one, this is due to the limited fitting capacity (see Sec. 6.6 for

details).

When inferring by Theorem 6, we try both dCor and the p-value of HSIC (Gret-

ton et al., 2005) as dindep. dCor constantly outperforms HSIC (See Sec. 6.6 for

details).

Experiments without Assuming Direct Causal Effect

We also experiment without assuming direct causal effect necessarily exists, and al-

low “inconclusive” outputs when the assumption is possibly violated. The purpose

here is mainly to conform the problem mentioned in S.3 above, and to show how

our method can address it to a large extent. When applying the inference rules, now

we need to set a threshold or alpha value for the independence tests. For clearer

comparisons, we apply Theorem 6 and also use HSIC, though Theorem 5or other in-

dependence tests can also be applied. Then our method only differs with NonSENS

by inferring for each environment and then majority voting.

Similarly to Monti, Zhang, and Hyvärinen, 2019, we evaluate on two datasets:

1) all pairs are direct causal (1st row). 2) all pairs are purely confounded (simply

use a fully connected MLP) (2nd row). On direct causal pairs, we can see NonSENS’

accuracy decreases drastically w.r.t pair number and is nearly always below 10%

when MLP width is 4. On the other hand, on purely confounded pairs, it always

reports 100% inconclusive.
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FIGURE 6.4: Performance without assuming direct causal effect.
1st/2nd row is results on direct causal data/purely confounded data

respectively.

Here the results conform that the default alpha value (0.05) for independence

test is way too tight. Specifically, the problem here is that, with more pairs (which

means more sample points for NonSENS), HSIC is more sensitive to small depen-

dence between estimated noise and observed cause. This means we must train TCL

very optimally to avoid the unwanted dependence.

Our method performs much better than NonSENS, especially with large pair

number. The reason is that, it is easier to get rid of unwanted dependence by looking

at each environment, since if any one of the environments shows dependence, then

the pooled data tested in NonSENS will be dependent.

6.5.2 Real World Dataset

Tuebingen cause-effect pairs (TCEP) dataset (Mooij et al., 2016, dataset version De-

cember 2017) is a commonly used benchmark for cause-effect inference tasks. Causal

Mosaic can be suitably applied here because of the very diverse scenarios of the

pairs. Each pair is assigned a weight in order to account for the possible correlation

with other pairs that are selected from the same multivariate scenario. Currently, the

dataset contains 108 real-world cause-effect pairs with true causal directions labeled

by human experts. We exclude 6 multivariate pairs in our evaluation.

Implementation We use Theorem 5 with asymmetric MLP since it already shows

much better results on artificial data. Unlike on artificial data with Laplace hidden

variables, we use maxout activation for the output layer. Since the sample sizes of
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TCEP pairs range wildly from a hundred to several thousands, we fix this imbal-

ance in classification by under-sampling using imbalanced-learn package (Lemaître,

Nogueira, and Aridas, 2017). When implementing Algorithm 4 line 10, we use a

simplified version Scores = ∑n∈TSRs
(wns,1 − wns,2), since this works the best. See

Sec. 6.4.4.

Hyperparameters We train TCL on 300 (N) sets of randomly picked pairs, which

are of size ranging from 4 to 32. For selecting TCLs, we randomly search 100 pairs of

accuracy thresholds (ThreT, ThreV) in [65%, 75%]2 and rule out too large thresholds

that give 0 or only 1 tessera for more than 10 TCEP pairs. We train 10 (M) TCLs on

each pair set and choose the best, and the following hyperparameters are randomly

searched from uniform distributions: depth and width of MLP, learning rate, decay

factor, max step (decay step is 10% of max step), momentum, and batch size. Among

them, the depth of MLP larger than 10 might lead to divergence in training, but the

ranges of other parameters seem to have few impacts if we do not use some extreme

values. To save training time, we change the ranges of MLP width and max. step

according to training pair number (small width and step for small pair number).
TABLE 6.1: Accuracy (%) on TCEP. “A/B” means with/without ap-

plying pair weight.

ANM IGCI RECI NCC OURS

52.5/52.0 60.4/60.8 70.5/62.8 51.8/56.9 81.5±4.1/83.3±5.2

We compare our method to ANM, IGCI, RECI and NCC, using implementations

from CDT package (Kalainathan and Goudet, 2019). The results are shown in Table

1. We report the median and std-error of accuracies of our method calculated on all

the 83 pairs of thresholds. And this already shows state-of-the-art performance. The

best result on all thresholds is 86.3% without pair weight and might overfit TCEP

dataset. For NCC, we infer each pair by training the method on rest of the pairs. The

accuracy is much worse than the reported 79% in Lopez-Paz et al., 2017, the most

possible reason is that NCC requires much more training data (320,000 artificial pairs

in the original paper). The performance of ANM is worse than reported in Mooij et

al., 2016, possibly because of the different implementation of independence test.



96
Chapter 6. Causal Mosaic: Bivariate Causal Discovery via Nonlinear ICA and

Ensemble Method

6.6 Details and Notes for Artificial Experiments

Training and testing data As mentioned, under multi-environment setting, the

pairs are for both training and testing. Under multi-pair setting, these same pairs

are again used for testing. But for training, we generate another set of pairs with

random parameters, while the mixing functions and pair number for each mixing

function are the same as testing pairs. For each pair, we always generate 512 data

points.

Hyperparameters For the MLP in TCL, we use the same number of layers as data-

generating MLP, and each hidden layer has same number of units (4 or 40 in the

experiments) with the maxout activation. The two output units have the absolute

value function as activation. For the asymmetric MLP (Figure 3, right), we use

same width for both sub-MLPs, and keep the sum of the widths the same as fully-

connected MLP. Note that the asymmetric MLP has much less parameters than the

fully-connected one, since the sub-MLPs are disconnected. We use Momentum op-

timizer with momentum 0.9 and initial learning rate 0.01, and the batch size is 32.

MLP width The experimental results show that we need large enough MLP to

fit more pairs. Note in particular that the MLP of width 4 performs almost always

worse than that of width 40. If we use asymmetric MLP, this tendency is more drastic

since it has much less parameters. When the MLP width is 4, the accuracy often

decreases w.r.t the number of training pairs. When the MLP width is 40, the accuracy

usually increases w.r.t the number of training pairs, but when the pair size is larger

than 30, it increases slowly or even slightly drops.

Training pair number We observe better performance as the pair size grows (un-

der the MLP width 40). Under the multi-pair setting, this implies that TCL learns

more thoroughly the shared mechanism. Under multi-environment setting, we have

one more reason: majority voting performs better with more voters (pairs).

Transferability To confirm the transferability of TCL, we also try inferring direc-

tions for individual pairs without voting under multi-environment setting (Figure
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4, dashed lines). The results from the two settings are similar, meaning the transfer-

ability. The slight drop of performance under multi-pair setting should come from

the two input trials needed.

6.7 Proofs

Corollary 2

Proof. From A4, and substitute Xtr
p = f(Etr

p ), we have T(Etr
p )

T = Ah(f(Etr
p )) + b.

From A3, we know each Xte’s support is contained in the support of h. Thus, we

can replace Etr
p with Ete and the equality still holds, we get: T(Ete) = Ah(f(Ete)) + b = Ah(Xte) + b.

Theorem 5

Proof. Without loss of generality, assume after alignment cause variable for each

training pair is input to h as the first argument. By A2 and Theorem 4, we will

successfully learn h (Algorithm 1, line 1,2).

By A2 and Corollary 2, if the cause variable of Xte is input to hICA as the first

argument, then its nonlinear ICA is realized (Algorithm 1, line 3,4). Denote the

respective input permutation as αr, then Cαr(1) |= Cαr(2). While for the other input

direction α1−r, by A1, Cα1−r(1) ̸ |= Cα1−r(2)

Thus, we have dindep(Cαr) > dindep(Cα1−r), and α∗ = αr.

Theorem 6

Proof. Similarly to the proof of Theorem 5, we know there is one and only one input

direction αr where nonlinear ICA is realized. We have T(Ete) = (Cα(1), Cα(2))
T
αr

where

α is the unknown output permutation.

By A1 (which also implies rule (4)), we have Xte
c |= C3−c,αr where c is the cause

index, but Xte
i ̸ |= Cj,α for all other i, j, α. Thus, (i∗, j∗, α∗) = (c, 3 − c, αr)

Proposition 7
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Proof. From Definition 4, we write X = f(E) and denote g = f-1. And we have the

relation of Jacobians Jg = J-1
f , and:

J-1
f =

 d f1
dE1

0
∂ f2
∂X1

∂ f1
∂E1

∂ f2
∂E2


−1

=

 ( d f1
dE1

)−1 0

−( ∂ f2
∂E2

)−1 ∂ f2
∂X1

d f1
dE1

( d f1
dE1

)−1 ( ∂ f2
∂E2

)−1


By comparing the 1st row of Jg and J-1

f , we have ∂g1
∂X2

= 0 which indicates g1 is not a

function of X2, and dg1
dX1

= ( d f1
dE1

)−1 which, by inverse function theorem, implies f1 is

invertible and g1 = f−1
1 .

6.8 Discussions

6.8.1 Combining Graphical Search Methods

There are already some studies that successfully combine cause-effect inference meth-

ods with graphical search methods; for example, cause-effect inference methods

can be directly employed to infer the undirected edges output by search methods

(Monti, Zhang, and Hyvärinen, 2019; Zhang and Hyvärinen, 2009), and overlapping

datasets can be integrated using bivariate causal discovery to give more precise out-

put class (Dhir and Lee, 2020). Our method can easily be applied in the same way to

help multivariate causal discovery under confounding.

6.8.2 Invertibility Requirement in Definition 4

Our method is still valid if there exists a transformation τ(E) := (τ1(E1), τ2(E2))

such that the transformed SCM satisfies the assumptions of Theorem 1 (e.g., X =

F (τ(E)) and F is invertible). By Theorem 1, the TCL followed by linear ICA can

successfully output the sufficient statistics of τi(Ei), which plays the same role as Ei

when testing independence. Note that now the mixing function f = F ◦ τ can be

non-invertible. We believe that the existence of such τ should prevail in practice, and

the results on real world benchmark datasets suggest this. We can go a step further
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to say τ(E) are the exogenous variables, since, by definition, exogenous variables are

unknown and the only requirement is that they are independent of each other.

Another note is that, Definition 1 does not mean that the function relating X1 and

X2 should be invertible. Quite oppositely, take analyzable SCM (1), f2 is a function

from R2 to R, which is always non-invertible. Moreover, even if E2 = e2 is given, the

deterministic relation X2 = f e2
2 (X1) := f2(X1, e2) could still be non-invertible.
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Conclusion

Our work in this thesis shows promising adaptations and applications of recent ad-

vances in nonlinear ICA and more generally probabilistic generative learning, a sub-

field of machine learning which is arguably most relevant to causality (see Section

7.3 below). However, before going into larger perspectives, the summaries of the

two lines of our work are given first.

7.1 On Intact-VAE

We proposed a method for CATE estimation under limited overlap. Our method

exploits identifiable VAE, a recent advance in generative models, and is fully moti-

vated and theoretically justified by causal considerations: identification, prognostic

score, and balance. Experiments show evidence that the injectivity of ft in our model

is possibly unnecessary because dim(Z) > dim(Y) yields better results. A theoreti-

cal study of this is an interesting future direction. We have evidence that Intact-VAE

works under unobserved confounding and believe that VAEs are suitable for princi-

pled causal inference owing to their probabilistic nature, if not compromised by ad

hoc heuristics (Wu and Fukumizu, 2021).

The advantage of VAE approach can also be related to the fact that posterior

effect estimation has minimum worst-case error under model misspecification (Bon-

homme and Weidner, 2021). in our case, of the outcome noise and prior are possibly

misspecified. We believe it is possible to extend the bounds in Sec. 4.3.2 to lim-

ited overlap, just as (Johansson et al., 2020) extends (Shalit, Johansson, and Sontag,

2017) to limited overlap, and leave this for future. To avoid potential negative soci-

etal impact (e.g, bad prescriptions), practitioners should judge the conditions of the
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proposed method by their domain expertise, and careful trials are always recom-

mended.

Our method outperforms or matches state-of-the-art methods under diverse set-

tings including unobserved confounding. In Sec. 5.3, we explained why the current

VAE methods are unsatisfactory from a more “causal” viewpoint. We discussed

future theoretical work–approaches to identification and optimal estimation under

unobserved confounding. We believe this series of work will also pave the way

towards principled causal effect estimation by other deep architectures, given the

fast advances in deep identifiable models. For example, recently, Khemakhem et al.,

2020a provide identifiability to deep energy models, and Roeder, Metz, and Kingma,

2020 extend the result to a wide class of state-of-the-art deep discriminative models.

We hope this work will inspire other methods based on deep identifiable models.

7.1.1 Future Work

As we see in the estimator (4.8), our representation Z is in fact capable of counter-

factual inference: t̂ can be different to factual T = t. Experiments on counterfactual

generation, like those in (Kocaoglu et al., 2018, CausalGAN) and (Yang et al., 2020,

CausalVAE), are on the way.

Since our method works without the recovery of either hidden confounder or

true score distribution, we often cannot see apparent relationships between recov-

ered latent representation and the true hidden confounder/scores. It would be nice

to directly see the learned representation preserves causal properties, for example,

by some causally-specialized metrics, e.g. Suter et al., 2019.

Despite the formal requirement in Theorem 1 of fixed distribution of noise on Y,

inherited from Khemakhem et al., 2020b, the experiments show evidence that our

method can learn the outcome noise. We observed that, in most cases, allowing the

noise distribution to be learned depending on Z, T improves performance. Theoret-

ical analysis of this phenomenon is an interesting direction for future work.

We conjecture that, it is possible to extend model identifiability to conditional

noise models gt(Z). And we expect that the noise on Y can also be identified up to

some eq. class (or joint eq. class together with f ). In that case, the model identifiabil-

ity may also be sufficient for causal inference, under some respective assumptions
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on true generating process and our current assumptions in Theorem 1 can be relaxed

to large extent. Similarly to current f , we may have identification for a general class

of noises.

Also, our causal theory does not in principle require continuous latent distri-

butions, though in Theorem 1, differentiability of f is inherited from iVAE. Given

the fact that currently all nonlinear ICA based identifiability requires differentiable

mapping between the latent and observables, directly based on it, theoretical exten-

sions to discrete latent variable would be challenging. However, what is essential

for CATE identification is the same transformation between true and recovered score

distribution for both t, but the transformation needs not to be affine, and, possibly,

neither injective. This opens directions for future extensions, based not necessarily

on nonlinear ICA.

7.2 On Causal Mosaic

In this work, we proposed a highly flexible cause-effect inference method that learns

a mixture of general nonlinear causal models, with proof of identifiability. We ex-

ploited TCL to extract the common mechanism shared by different causal pairs, and

transferred the causal knowledge to unseen pairs. More specifically, our method

learns how to distinguish cause from effect, from some training pairs, and predicts

the causal direction on testing pairs. We gave two inference rules with identifiability

proofs and an ensemble framework that works on real world cause-effect pairs with

limited labeled causal directions. We compared our method to recent methods on

artificial and real world benchmark datasets, and it showed state-of-the-art results.

Hence, we justified the “mosaic" perspective of causal discovery, which proposes

to learn causality piecemeal, and then build a whole picture by the pieces. Here,

shared mechanism learned by TCL forms a tessera of the whole causal mosaic, and

many tesserae are learned and further combined into a whole picture by ensemble

method. We believe this new perspective would promote other novel methods for

bivariate and also more general causal discovery problems.
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7.2.1 Future Work on Hidden Confounding

Tell Exactly Where the Correlations Come From

Generally, the relationship between two variables can be categorized into one of the

four cases: 1) purely causal (no confounder between them), 2) totally confounded

(none of them causes another), 3) causal relation and confounder both exist, 4) nei-

ther causal nor confounded. By the existence of statistical dependence, we can elim-

inate the last case. Before we could determine the causal direction, the question nat-

urally arises: which case we are confronting? However, to the author’s knowledge,

no work has addressed this question explicitly. Most research only asks whether it

is purely causal or not and, consequentially, cannot distinguish between 2) and 3).

For example, as mentioned before, Zhang, Zhang, and Schölkopf, 2015 infer the ex-

istence of confounder if exogeneity holds for neither directions. While this is reason-

able, exogeneity might be invalidated because of the confounder, and causal relation

might exist at the same time. On the other hand, it is noteworthy that some, though

much less, work assumes dependence is purely due to confounders, and derives

necessary condition (Chaves et al., 2014) or infers the latent causal structure (Kela

et al., 2019). Under similar lines of reasoning, they would mistake the above case

1) and 3). Therefore, a possible solution would be to combine the two approaches,

and we might know it is the mixed case if test for purely causal relation and test for

purely confounding both fail.

Extend FCMs to Confounded Case

Perhaps this is the most obvious approach pointed out by current research. Ideally,

it would be a remarkable contribution to make ANMs work under confounders.

However, over the years, there is still only LiNGAM that can handle confounders.

This fact possibly suggests that we should take an entirely different path from FCMs,

which would be a great endeavor. Other types of constraint that work under con-

founders (see Peters, Janzing, and Schölkopf, 2017, Chapter 9) could be explored and

possibly exploited. A more achievable goal might be to work mainly under linear

SEM. First, we could relax the assumptions on noise. Some special cases of Gaus-

sian noise could be considered (see e.g. Peters and Bühlmann, 2014, but without
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confounders). And we might also consider non-additive noise. Second, we might

extend the functional class to some extent, such as allowing GLMs with deliberately

defined basis functions.

Follow the Path of Distribution Classification

The main difficulty is how to extend the method (e.g., Lopez-Paz et al., 2015) to

multivariate case since the class number grows super-exponentially w.r.t variable

number. A possible approach is to embed graph into RKHS (e.g. using graph ker-

nel (Ghosh et al., 2018)), then exploit distribution regression methods (Szabó et al.,

2016). Training data is another problem, since human labelling of causal structure

involving hundreds of variables will be too expensive, if not impossible. To address

it, we could resort to some data synthesis method. Another, perhaps more prac-

tical, research direction might be to introduce some recent advance of distribution

learning into causal discovery and improve accuracy, efficiency and scalability. For

example, it would be interesting to see if Bayesian learning (Law et al., 2018) could

bring up something new, e.g. the integration of prior knowledge.

Leverage Implicit Generative Models

Confounders could be treated as hidden variables from which the observed distri-

bution is generated. In Goudet et al., 2018, we have already seen that 1) the loss

does not really penalize anti-causal learning, and 2) the hill-climbing-like procedure

is separated into artificial phases and has no guarantee to reach the global optimum.

For the former, we ask the question: how to design a loss from first principles re-

garding causality? For example, can we define a discrepancy metric, that could also

take into account the complexity of conditional distributions? Using KME, we might

combine distance of distributions (such as MMD) with a complexity metric (like in

Chen et al., 2014). Another possible way is to explicitly penalize anti-causal learning,

by integrate the result of causal detection, like in the ’Causal Regularization’ (Janz-

ing, 2019; Bahadori et al., 2017). For the latter, a research question would be how

to design a coherent training procedure driving the discovery of underlying causal

structure? Here we may try hierarchical implicit models Tran and Blei, 2018; Tran,

Ranganath, and Blei, 2017, which is more powerful than deep generative models,
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in that they are more scalable, and can place prior on parameters and quantify the

uncertainty of causal relations. Combining graph structure learning into generative

models is also a possible solution.

7.3 Prospects at the Intersection of Causality and Machine

Learning

Here, we focus on the causality side of the intersection, that is, “machine learning for

causality”. Arguably, the current thesis lies more on this side, because the problems

that we aim to solve are causal but not plainly predictive, although we rely heavily

on recent advances in machine learning models.

Causal (effect) inference has been studied heavily in economy and particularly

econometrics as the identification and estimation of causal effects. Here, we com-

ment on the future of machine learning for causal inference from the econometrics

angle, while we touch on a bit of history first.

At the beginning of this century, Leo Breiman, a statistician and pioneer machine

learner, wrote his famous “two cultures” paper, stating that “[t]he statistical commu-

nity has been committed to the almost exclusive use of data [generating] models”.

Things changed largely in less than 10 years, as indicated by the seminal machine

learning textbook (Hastie et al., 2009) written from a statistical perspective, and, even

taken for granted by most people of my generation, the statistics community had ac-

cepted the algorithmic modeling culture as named by Breiman, referring to machine

learning.

Now, after another 10 years, around 2020, two leading econometricians claim the

further merge of the two cultures in their field (Athey and Imbens, 2019; Imbens and

Athey, 2021). The slower acceptance of machine learning in econometrics is again

due to the more prevalence of data modeling culture. This is not without good rea-

son: the goal of many econometrics studies is parameter estimation, and often struc-

tural and causal parameters, while machine learning often focuses on prediction of

an output variable (Mullainathan and Spiess, 2017). For example, economists are

interested in the evaluation of the impact of interventions on a covariate, thus they
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dig into the causal structure, say Y = µ(X) + ϵ, and try to understand the parameter

µ, with interest in its identification, consistency, and uncertainty quantification. On

the other hand, machine learning methods, especially in supervised learning, would

focus on predicting Y and are evaluated by the performance on this task. Although

machine learning at times fits a function f , it is often not treated as the target of

statistical parameter estimation. Instead, the strengths of machine learning, besides

prediction accuracy, are mainly flexible models (e.g., NNs) and data-driven model

selection (e.g., regularization and cross-validation).

Thus, the challenge for econometricians is to 1) find the right places in their mod-

els, where economic theories are silent (regarding the requirements for identification

etc.), so that machine learning can help in selecting the correct functional forms, and

2) tame the bias introduced by machine learning (often due to both overfitting and

regularization). Athey, Imbens, and Wager, 2018 and Chernozhukov et al., 2018,

(DML) provide recent examples in this line. From the machine learning side, we no-

tice that there are sub-fields that are less known to outsiders but in fact more relevant

to causal inference; for example, probabilistic (Bayesian) learning (Murphy, 2022) ex-

cels at uncertainty quantification, and generative learning (Murphy, 2023, Part IV)

focuses on data generating models. Our Intact-VAE lies exactly here–that is, proba-

bilistic generative learning. Indeed, in machine learning community, this sub-field has

attracted much attention to both identifiability (Roeder, Metz, and Kingma, 2021;

Wang, Blei, and Cunningham, 2021; Reizinger et al., 2022) and uncertainty (Jesson

et al., 2021; Seitzer et al., 2022).

A future direction is to combine the techniques from econometrics literature to

analyze the consistency and convergence of probabilistic generative learning for

causal inference. Take VAEs for example, due to their incorporation of NNs, general

consistency and convergence analysis cannot be expected in the recent future. Al-

though there are results on variational Bayes at large (Wang and Blei, 2019a; Zhang

and Gao, 2020), it would be hard to apply them to VAEs because there are no explicit

ways to separate the NNs as nuisance parameters. Nevertheless, econometrics liter-

ature, e.g., DML, provides the wanted separation. We would need to specify a causal

setting where 1) (a certain type of) VAEs could invert the mechanism and identify
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the true latent variables, and 2) the functional parameters in the encoder and de-

coder could be treated as nuisance parameters in the econometric models. The idea

in Reizinger et al., 2022 would be a possible bridge; it roughly states that the ELBO

of a plain VAE can be seen as encouraging a certain kind of orthogonalization that

indicates the latent components influence the observations “independently”. Many

econometric methods obtain balancing weights by encouraging a variety of orthog-

onal properties, and this is the case for DML. A related direction is to obtain double

robustness; Intact-VAE does not model the propensity score, and we need to design

a new VAE architecture.

Causal discovery as a field is special; it is intrinsically causal while could be seen

as a sub-field of machine learning due to its origin in Bayesian networks (Verma

and Pearl, 1988) and the work of some computational-oriented philosophers (Gly-

mour, Scheines, and Spirtes, 1987). However, if we approach it from a methodolog-

ical instead of historical perspective, we would see it as an early effort on machine

learning for causality–using machine learning techniques, mainly Bayesian struc-

ture learning, to find the causal structure among variables, and focusing much on

identification. Indeed, there are recent trends in re-labeling “causal discovery” as,

or merge it into, “causal inference”, as mentioned in the Notes on terminology in

Introduction.

In the technical side, the challenges of the problem is at two levels: 1) some learn-

ing problems required by causal discovery is hard; for example, see the nonexistence

of general purpose conditional independence tests (Shah and Peters, 2020); and 2)

the combinatorial nature itself makes score-based causal discovery HP-hard, even if

we are given oracles of independence, inference, and information (Chickering, Heck-

erman, and Meek, 2004). This is why there come advances in new machine learning

based approaches, other than the searching methods based on conditional indepen-

dence constraints or penalized likelihood scores. For example, score1 matching is

an important method in machine learning to workaround intractable normalizing

constants, and Rolland et al., 2022 recently use it for a novel purpose–to determine

1Note that, the “score” in “score matching” is ∇ log p(x), i.e., the gradient of the log density func-
tion, and do not confuse it with the “score” in “score-based searching methods”, which is a penalized
likelihood function encouraging the simplest causal structure.
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the topological ordering of nodes in a causal graph. The method outperforms or

matches state-of-the-art methods and is much faster, sometimes by 10 times. Re-

garding the combinatorial hardness, there is a line of work that casts the problem to

a continuous optimization problem by providing a continuous constraint for acyclic-

ity (Zheng et al., 2018) and theoretical properties such as convergence of this contin-

uous optimization are also studied (Ng et al., 2022).

Broader perspective. Finally, we take a step back and look briefly at the intersec-

tion of causality and machine learning as a whole. First, in the above review and

prospects, the “causality for machine learning” side is basically omitted. At least in

Pearl’s eyes, the data-centric thinking and data-fitting culture in machine learning

are still too strong (Pearl, 2021). A symptom is a heavy reliance on (usually a few)

benchmark datasets for performance evaluation, and this has caused some problems

for causal inference applications. For example, on the IHDP dataset for evaluation

of CATE estimation, certain kinds of algorithms could easily achieve good perfor-

mance, but by exploiting artificial properties in the dataset that is not quite relevant

in the real-world (Curth et al., 2021). While Pearl is certainly right in encouraging

the machine learning community to have more patience to learn lessons from causal-

ity research, there is a bright prospect of intensive incorporation of causal ideas into

machine learning, indicated by the manifesto by two prominent machine learning

researchers (Schölkopf et al., 2021). Now, we even have an emerging sub-field called

“causal machine learning” (Kaddour et al., 2022). In summary, for research at the in-

tersection, from both machine learning and causality sides, Mullainathan and Spiess,

2017 state succinctly that the challenge is to “make sense of the estimated prediction

function without making strong assumptions about the underlying true world.” For

scientists interested in understanding cause and effect, this opens the way from pre-

dictive power to a model of “the underlying true world.” For machine learners, this

gives good properties such as robustness, reusability, and interpretability (Schölkopf

et al., 2021) and perhaps the way to artificial general intelligence (Pearl, 2018).
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Appendix A

Full-page Figures

This Appendix contains full-page figures that would be hard to fit into the main text.

A.1 Additional Plots of Latent Recovery by Intact-VAE

See the next pages for full-page figures. Please refer to Sec. 4.4.1 for detailed expla-

nations.
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FIGURE A.1: Plots of recovered-true latent. Rows: first 10 nonlinear
random models, columns: outcome noise level.
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FIGURE A.2: Plots of recovered-true latent. Conditional prior depends
on t. Rows: first 10 nonlinear random models, columns: outcome
noise level. Compare to the previous figure, we can see the transfor-
mations for t = 0, 1 are not the same, confirming the importance of

balanced prior.
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FIGURE A.3: Plots of recovered-true latent under unobserved confound-
ing. Rows: first 10 nonlinear random models, columns: proxy noise

level.
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FIGURE A.4: Plots of recovered-true latent under unobserved confound-
ing. Rows: first 10 nonlinear random models, columns: outcome noise

level.
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FIGURE A.5: Plots of recovered-true latent when ignorability holds.
Rows: first 10 nonlinear random models, columns: proxy noise level.
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FIGURE A.6: Plots of recovered-true latent when ignorability holds.
Rows: first 10 nonlinear random models, columns: outcome noise

level.
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FIGURE A.7: Plots of recovered-true latent when ignorability holds.
Conditional prior depends on t. Rows: first 10 nonlinear random mod-
els, columns: outcome noise level. Compare to the previous figure, we

can see the transformations for t = 0, 1 are not the same.
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FIGURE A.8: Plots of recovered-true latent on IVs. Rows: first 10
nonlinear random models, columns: outcome noise level.
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A.2 Empirical Validation of the Error Bound of Intact-VAE

See the next page for a full-page figure. Please refer to Sec. 4.5.3 for detailed expla-

nations.
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Appendix B

Old Lessons on Intact-VAE

Nowhere in the main text refers this section, so you can omit it if not interested.

However, if reading, you may gain insight of how we came to our final theoretical

formulation.

B.1 Identifiability of Representation (Is Not Enough)

Here we explain that the model identifiability given in Theorem 1 alone is, albeit

interesting, not enough for estimation of TEs.

The importance of model identifiability can be seen clearly in the following corol-

lary. That is, given T = t, the latent representation can be identified up to an invert-

ible element-wise affine transformation. It can be easily understood by noting that,

with the small noise and the injective f , the decoder degenerates to deterministic

function and the latent representation Z = f−1(Y).

Corollary 3. In Theorem 1, let σY,t = 0, then Z = At(Z′).

The good news is that, all the possible latent representations in our model are

equivalent if we consider their independence relationships with any random vari-

ables, because any two of them are related by an invertible mapping. However, the

bad news is that, this holds only given T = t, while the definition of B/P-score

involves both t.

Consider how the recovered Z′ would be used. For a control group (t = 0) data

point (x, y, 0), the real challenge under finite sample is to predict the counterfactual

outcome y(1). Taking the observation, the encoder will output a posterior sample

point z′0 = f ′−1
0 (y) = A−1

0 (z0) (with zero outcome noise, the encoder degenerates to
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a delta function: q(Z|x, y, 0) = δ(Z − f ′−1
0 (y))). Then, we should do counterfactual

inference, using decoder with counterfactual assignment t = 1: y′1 = f ′1(z
′
0) = f1 ◦

A1(A−1
0 (z0)). This prediction can be arbitrary far from the truth y(1) = f1(z0), due

to the difference between A1 and A0. More concretely, this is because when learning

the decoder, only the posterior sample of the treatment group (t = 1) is fed to f ′1,

and the posterior sample is different to the true value by the affine transformation

A1, while it is A0 for z′0.

Now we know what we need: A0 = A1 so that the equivalence of independence

holds unconditionally; and, there exists at least one representation that is indeed a

B-score. Then, any representation in our model will be a B-score. These indeed are

what we have in Anonymous, 2021.

Proof of Corollary 1. In this proof, all equations and variables should condition on t,

and we omit the conditioning in notation for convenience.

When σY = 0, the decoder degenerates to a delta function: p(Y|Z) = δ(Y −

f (Z)), we have Y = f (Z) and Y′ = f ′(Z′). For any y in the common support of

Y, Y′, there exist a unique z and a unique z′ satisfy y = f (z) = f ′(z′) (use injectivity).

Substitute y = f (z) into the l.h.s of (4.4), and y = f ′(z′) into the r.h.s, so we get

Z = A(Z′). The result for f follows.

A technical detail is that, z, z′ might not always be related by A, because we used

the common support of Y, Y′ in the proof. Thus, the relation holds for partial supports

of Z, Z′ correspond to the common support of Y, Y′. This problem disappears if we

have the a consistent learning method (see Proposition 6).

B.2 Balancing Covariate and its Two Special Cases

Here we demonstrate part of our old, limited, theoretical formulation, and extract

some insights from it.

The following definition was used in the old theory. The importance of this def-

inition is immediate from the definition of balancing score, that is, if a balancing

covariate is also a function of V, then it is a balancing score.
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Definition 8 (Balancing covariate). Random variable X is a balancing covariate of ran-

dom variable V if T |= V|X. We also simply say X is balancing (or non-balancing if it

does not satisfy this definition).

Given that a balancing score of the true (hidden or not) confounder is sufficient

for weak ignorability, a natural and interesting question is that, does a balancing

covariate of the true confounder also satisfies weak ignorability? The answer is no.

To see why, we give the next Proposition indicating that a balancing covariate of the

true confounder might not satisfy exchangeability.

Proposition 8. Let X be a balancing covariate of V. If V satisfies exchangeability and

Y(t) |= X|V, T, then so does X.

The proof will use the properties of conditional independence (Proposition 1).

Proof. Let W := Y(t) for convenience. We first write our assumptions in conditional

independence, as A1. T |= V|X (balancing covariate), A2. W |= T|V (exchangeability

given V), and A3. W |= X|V, T.

Now, from A2 and A3, using contraction, we have W |= X, T|V, then using weak

union, we have W |= T|X, V. From this last independence and A1, using contraction,

we have T |= V, W|X. Then T |= W|X follows by decomposition.

Given this proposition, we know assumptions

i) Y(t) |= T|V (exchangeability given V),

ii) T |= V|X (X is a balancing covariate of V), and

iii) Y |= X|V, T

(B.1)

do not imply exchangeability given X, thus seem to be reasonable. Note the inde-

pendence Y(t) |= X|V, T assumed in the above proposition implies, but is not implied

by, Y |= X|V, T. This is because, in general, Y(0) |= X|V, T = 1 and Y(1) |= X|V, T = 0

do not hold.

The assumptions in (B.1) were assumed by our old theory, with V is hidden con-

founder U plus observed confounder Xc. And also note that, iii) is the independence

shared by PGS.
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We examine two important special cases of balancing covariate, which provide

further evidence that balancing covariate does not make the problem trivial.

Definition 9 (Noiseless proxy). Random variable X is a noiseless proxy of random

variable V if V is a function of X (V = ω(X)).

Noiseless proxy is a special case of balancing covariate because if X = x is given,

we know v = ω(x) and ω is a deterministic function, then p(V|X = x) = p(V|X =

x, T) = δ(V − ω(x)). Also note that, a noiseless proxy always has higher dimen-

sionality than V, or at least the same.

Intuitively, if the value of X is given, there is no further uncertainty about v, so

the observation of x may work equally well to adjust for confounding. But, as we

will see soon, a noiseless proxy of the true confounder does not satisfy positivity.

Definition 10 (Injective proxy). Random variable X is an injective proxy of random

variable V if X is an injective function of V (X = χ(V), χ is injective).

Injective proxy is again a special case of noiseless proxy, since, by injectivity,

V = χ−1(X), i.e. V is also a function of X.

Under this very special case, that is, if X is an injective proxy of the true con-

founder V, we finally have X is a balancing score and satisfies weak ignorability,

since X is a balancing covariate and a function of V. To see this in another way, let

f = e ◦ χ−1 and β = χ in Proposition 3, then f (X) = f (β(V)) = e(V). By weak ig-

norability of X, (5.1) has a simpler counterpart µt(x) = E(Y(t)|X = x) = E(Y|X =

x, T = t). Thus, a naive regression of Y on (X, T) will give a valid estimator of CATE

and ATE.

However, a noiseless but non-injective proxy is not a balancing score, in partic-

ular, positivity might not hold. Here, a naive regression will not do. This is exactly

because ω is non-injective, hence multiple values of X that cause non-overlapped

supports of p(T = t|X = x), t = 0, 1 might be mapped to the same value of V. An

extreme example would be T = I(X > 0), Z = |X|. We can see p(T = t|X) are

totally non-overlapped, but ∀t, z ̸= 0 : p(T = t|Z = z) = 1/2.

So far, so good. In the end, what is the problem of balancing covariate? Here it

is. If the we have the positivity of X (p(T|X) > 0 always), then, using the positivity
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and balancing to get p(u|x) = p(u|x, T = t) for all x, we follow (5.1),

µt(x) =
∫
(
∫

p(y|u, x, t)ydy)p(u|x)du

=
∫
(
∫

p(y|u, x, t)ydy)p(u|x, T = t)du

=
∫
(
∫

p(y, u|x, t)du)ydy = E(Y|x, t).

(B.2)

Naive estimator just works! Thus, if X indeed was a balancing covariate of true

confounder, we gave a better method than naive estimator only in the sense that it

works without positivity of X. It seems what our old theory really addressed was

lack of positivity, another important issue in causal inference (D’Amour et al., 2020),

but not confounding.

There are several lessons learned from the old formulation. First, there may ex-

ist cases that exchangeability given X fails to hold even when positivity of X holds,

but the naive estimator still works. This is related to the fact that the conditional in-

dependence based on which balancing score/covariate are defined is not necessary

for identification. And we should be able to find weaker but still sufficient condi-

tions for identification. Second, balancing covariate assumption in (B.1) is strong,

though may not make a trivial problem. It basically means that X, only one of the

observables, gives sufficient information for treatment assignment. This inspires us

to consider both X, Y, as in the latent variables given by our posterior and encoder.
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