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Abstract

The Antarctic Ice Sheet (AIS) is the largest water and thermal energy storage on the

Earth. It has been losing mass over recent decades, with potential of accelerating melting.

However, the complex spatial and temporal patterns of these changes have yet to be fully

understood. The mass changes in AIS results from multiple physical processes such as

surface mass balance, ice dynamics, and the response of solid Earth. In order to provide

new insights into the changing Antarctica, a statistical-based method named Independent

Component Analysis (ICA) is applied as an analytical framework in this study.

This study qualitatively analyzes the spatial and temporal characteristics of Antarctica

over the past two decades. The ICA method is used to extract independent compo-

nents from complex datasets, in an attempt to separate signals from different physical

sources and improve understanding of AIS mass balance. The study primarily based

on satellite gravimetric observations from Gravity Recovery and Climate Experiment

(GRACE) and GRACE Follow-On (GRACE-FO) missions, supplemented by satellite al-

timetry data from multiple missions. It also incorporates numerical models, such as the

Glacial Isostatic Adjustment (GIA) and Surface Mass Balance (SMB), for examination.

Firstly, six leading independent components are extracted from gravimetric data ac-

quired during the GRACE and GRACE-FO missions. The results indicate that observed

continental-scale mass changes can be effectively separated into several spatial patterns,

which may be dominated by different physical processes. The overall mass changes in AIS

are primarily linked to long-term mass decrease in regions such as Amundsen Sea Sector

and Wikes Land in Western Antarctica, mass increase of Dronning Maud Land and Marie

Byrd Land in Eastern Antarctica, as well as other periodic components. While some hid-

den physical processes cannot be completely isolated, significant signals like glacier melt,

ix



snow accumulation, periodic climatic signals, and GIA effects can be determined without

introducing any external information.

The altimetry data corroborates the results mentioned above. The same ICA analysis

used on the GRACE/GRACE-FO data is applied to resolution-reduced altimetry data.

The results reveal the remarkable influence of glaciers and snow accumulation as well,

but with more complexity in high-frequency and periodic components. Comparable ICA

results from both datasets demonstrate the physical significance of ICA components.

Additionally, GIA models are used to examine the separation results. A high spatial

correlation is obtained by comparing the spatial distribution between models. For each

AIS drainage basin, the total mass change from GRACE/GRACE-FO observations, the

surface mass change derived from the SMB model, and elevation changes from altimetry

are compared. Substantial differences in the time series of the basins divided them into

three groups that may be dominated by different physical processes.

ICA results can be impacted by various factors, including the structure of the input data,

pre-processing techniques, choice of algorithm, and number of independent components

(IC). The information contained in the input data is found to impact results signifi-

cantly, while the structure of the data has minimal effect. Pre-processing can enhance

the separation of the object of interest when employing datasets with varying spatial

resolutions. Operations such as filtering, resampling, and masking will affect the out-

comes. Additionally, different ICA algorithms may be suitable for different data types.

For geophysical data, particularly when the number of spatial samples is notably higher

than temporal samples, sICA is recommended. The three main components of glacier

change pattern, snow accumulation pattern and GIA pattern are demonstrated to be

stable when adjusting the number of ICs.

Overall, ICA presents a distinctive and valuable approach to gain insights into the mass

changes both at AIS-scale and further specific regional-scale. While only the linear

components have been adequately interpreted and verified by this study, the remaining

periodic components potentially linked to oceanic and meteorological circulation, still

require further investigation.
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Chapter 1

Introduction

The AIS mass migrates to the ocean through a network of glaciers that basically de-

termined by the topography. Fluctuations in AIS mass result from differences between

net snow accumulation at the surface, runoff, and ice flux to the ocean. The AIS had

maintained a dynamic equilibrium until recent decades. A series of satellite missions

have been launched since the late 20th century, providing favorable conditions for the

continuous monitoring of Antarctic mass changes. The accumulation of different types of

data not only facilitates the estimation of the AIS mass balance but also enables further

analysis of the spatiotemporal characteristics of Antarctic variability.

Many studies have reported the accelerated melting of the AIS in recent years (e.g.,

Shepherd et al., 2012; Velicogna and Wahr, 2013; The IMBIE team, 2018). The accurate

calculation of the AIS mass/volume changes is important not only for sea-level changes

(van den Broeke et al., 2009) but also for many aspects of the Earth’s environmental

system. For example, the melting of the ice shelf affects the thermohaline circulation,

sea ice coverage affects the albedo (Massom and Stammerjohn, 2010). With the current

critical situation in Antarctica, monitoring of the AIS changes has become particularly

important.

AIS is a complex system. The interactions among its sub-components, such as atmo-

sphere, snow/ice, and solid Earth, have not been well understood. The heterogeneous

spatiotemporal variability in Antarctica changes can be attributed to the varying sensi-

tivity of different physical processes.
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Figure 1.1: Trend of Antarctic mass change between April 2002 and June 2020 derived
from GRACE/GRACE-FO.

As shown in Fig. 1.1, the trend of mass changes in Antarctica has been determined

through satellite gravimetric observations using a simple linear regression model (consid-

ering only the linear term). The mass changes are expressed in equivalent water height

(E.W.H.). It can be observed that the mass changes are primarily concentrated in several

areas:

1. Significant mass loss in the Amundsen Sea Sector (AMS), West Antarctica (WA),

and Bellingshausen Sea Sector, Antarctic Peninsula (AP);

2. Significant mass gain across Dronning Maud Land (DML) and Enderby Land (EL),

East Antarctica (EA);

3. Mass loss across Totten Glacier in Wilkes Land (WL) and Ninnis Glacier in George

V Land (GVL), EA;

4. Mass gain across the Ross Ice Shelf (RIS), Filchner-Ronne Ice Shelf (FRIS) and a

portion of Marie Byrd Land (MBL), WA.
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It can be observed that the mass variation is more concentrated in the coastal zone of

Antarctica than in the vast interior area. Moreover, significant discrepancies in trends are

observed between EA and WA. For instance, a strong long-term mass reduction trend is

observed in the AMS, which contributes to more than 60% of the total mass loss (Rignot

et al., 2019). This trend is three times larger than that from EA, where a remarkable

trend of decreasing is not observed, except for some glacial areas (e.g., WL).

Regarding the specific situation of each sub-basin, it varies depending on the dominant

physical mechanism. For example, the deceleration of glaciers of the RIF could be de-

termined by submarine topography. In some coastal regions like AP, dramatic seasonal

fluctuations can be observed, which may be due to frequent sea-ice-atmosphere interac-

tions.

Beneath the thick layer of ice sheet, differences in the rheological properties of EA and WA

are another important factor that contributes to the spatial heterogeneity of Antarctica’s

long-term trend. In particular, the response of the solid Earth to the ice-ocean loading

following the Last Glacial Maximum (LGM), known as glacial isostatic adjustment (GIA),

has a direct impact on satellite measurements. Therefore, in addition to estimating mass

loss in Antarctica, it is equally important to study the spatial and temporal characteristics

of the Antarctic changes to better understand its response to global climate change.

1.1 Motivation and Research Aim

1. Regarding the recent changes in AIS mass, extensive investigation has been fa-

cilitated by recent developments in satellite observations. As mentioned above,

previous studies focused on the mass balance of AIS and have revealed its accel-

erating melting. However, due to the complexity and heterogeneity of the AIS

changes both temporally and spatially, despite these efforts, there still exist con-

siderable gaps in our understanding of specific temporal and spatial characteristics

of AIS variability that require further exploration. In particular, the characteristics

of the various physical components of AIS lack investigation from the perspective

of geodetic observation.
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2. Satellite geodetic observations usually contain the superposition of multiple physi-

cal signals. Physical models such as GIA and meteorological models are commonly

used to determine the corresponding sub-components. However, it will inevitably

introduce human bias in estimating AIS mass changes and will further interfere

with the understanding of the physical mechanisms of the AIS system. For in-

stance, GIA plays a vital role in understanding the interaction between the solid

Earth and ice sheet changes. However, the harsh conditions in Antarctica make

it impossible to rely on Global Navigation Satellite System (GNSS) observations

to constrain GIA models on a continental scale, leading to significant uncertainty

in estimating AIS mass balance. Therefore, it is worth reconsidering fully utiliz-

ing the accumulated multi-satellite data to explore physical processes further from

observational data.

3. For each drainage basin in AIS, there is significant variation in the dominant phys-

ical processes. For instance, coastal regions tend to experience higher snowfall

compared to inland areas; areas with intense melting are typically dominated by

glacier discharge. Unlike the AIS as a whole, these physical processes are more

distinguishable and readily apparent in each basin. Additionally, different observa-

tions have varying sensitivities in detecting specific physical processes (refer to Sec.

2.1). Therefore, the regional study could be a crucial entry point for understanding

the spatial characteristics of AIS.

Therefore, this study aims to focus on two topics. Firstly, exploring the spatiotemporal

characteristics of Antarctic mass changes, with a particular focus on variability within

various physical processes, such as snowfall and glaciers. Secondly, investigating the

underlying physical mechanisms behind these changes by tracing variations in physical

sources, and attempting to improve the modeling using satellite data.

By analyzing the changing characteristics of each component, it is possible to deepen

the understanding of the spatiotemporal characteristics of the Antarctic ice sheet (AIS)

changes. Moreover, investigating the interaction within sub-components and identifying

common drivers could further facilitate the possibility of revealing the response of the
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AIS to oceanic/atmospheric circulation and global climate changes.

To achieve these objectives, combined satellite observation data will be used. Making full

use of the statistical information of datasets of the AIS changes could be a worthwhile

approach. A statistical-based method named independent component analysis (ICA)

is applied as an analytical framework in this work to provide a new perspective for

understanding the changing Antarctica.

1.2 Structure of Dissertation

Chapter 1 includes basic information about Antarctica, the purpose of the study, and

the structure of this dissertation.

Chapter 2 provides a detailed introduction of main compositions of the Antarctic mass

changes and possible physical processes. The second part describes some common satel-

lite geodetic methods that can be used for Antarctic observations, as well as their ad-

vantages and limitations, and the research progress achieved so far using these methods.

Chapter 3 presents the main method used in this study, namely independent compo-

nent analysis (ICA), and provides a brief review of the application of ICA in extracting

geophysical signal.

Chapter 4 presents the results of ICA, which is mainly derived from satellite gravity data

supplemented by satellite altimetry data. Additionally, this chapter discusses suitable

methods for merging two different datasets that vary widely in spatial resolution and

spatial coverage.

Chapter 5 interprets the results of ICA in combination with numerical models, mainly

introducing the GIA models and Regional Climate Model (RCM). It also analyzes sub-

regions of Antarctica and presents changes characteristic in each drainage basin.

Chapter 6 discusses better ways to apply ICA to achieve more reasonable results and

avoid treating ICA as a black box. This chapter covers factors that can affect ICA results,

such as the period of input data, filters, and suitable scenarios of different algorithms.

The chapter also describes a series of pre-processing steps and evaluates the stability in

extracting the required information.
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Chapter 7, the conclusion and outlook. This chapter reviews the overall research concept

and content of this dissertation. Finally, the weaknesses of current work and future

research directions are discussed.



Chapter 2

Background

2.1 Physical Processes in Antarctica

The physical processes that occur in Antarctica can be roughly categorized into three

sources: the atmosphere, the ice-sheet surface, and the solid Earth. This section in-

troduces the primary physical processes in each layer from the perspective of satellite

observations. The mass input and output processes across the AIS system can assist in

interpreting the physical processes.

2.1.1 Surface Mass Balance

Surface mass balance (SMB) analysis can be employed to estimate the atmospheric vari-

ations across the AIS surface, with a particular focus on snowfall, rainfall, surface sub-

limation, drifting snow sublimation and other sources (Van Den Broeke et al., 2004). It

can be expressed as:

S = P +R− Us − Uds − Eds −M, (2.1)

where S is SMB, P is precipitation, R is rainfall, Us and Uds are surface sublimation and

drifting snow sublimation, Eds is erosion of snow and M is melting runoff.

The input of the AIS system is mainly contributed by precipitation, especially from

snowfall. In areas where SMB is negative (S < 0), it is the ablation zone and where it is

positive (S > 0), it is accumulation zone. In the accumulation zone, snow will accumulate

year by year and gradually be compressed into firn/ice under its own weight, with density

7



8 2.1. Physical Processes in Antarctica

increasing with depth. This process varies largely from area to area depending on the

local climate and the precipitation rate.

SMB generates about 2500 Gt/year mass input in Antarctica (Agosta et al., 2019). It

reflects directly on the gravitational field, and the accumulated mass will disturb the

gravitational potential field above the surface correspondingly. The SMB also causes

fluctuations in the volume of the AIS. In the accumulation zone, the surface elevation is

in a continuous trend of rising. At the same time, firn compaction causes decreasing of

surface elevation, the rate can be empirically estimated according to annually-averaged

temperature, precipitation, and wind speeds. Generally, firn compaction affects only the

surface elevation changes and has negligible impact on gravity field.

However, the conversion from elevation change to mass change requires an external Firn

Densification Model (FDM) or a proper density model which is highly limited by the

sparse observation networks of surface SMB. It is difficult to accurately estimate the

snow-firn-ice density over the whole Antarctic continent, which makes the conversion

process contain a huge error (Zwally et al., 2011).

As a meteorologic dominant component, there are seasonal variations at the annual scale,

such as the strongest melting occurring during the austral summer (Liston et al., 1999).

Glacier melting may be ocean-driven at medium- to long-term scales (Pritchard et al.,

2012; Hirano et al., 2020), whereas it may be determined by topography and ice shelf

stability at the long-term scale.

In summary, SMB causes changes in both gravity field and elevation. There are significant

seasonal variations in SMB and a distinctive coast-inland decrease in the precipitation

gradient owing to the moisture air masses decreasing as they migrate onto the Antarctic

Plateau. Firn compaction is the main uncertainty source for SMB observation.

2.1.2 Ice Dynamics

As mentioned in Sec.2.1.1, mass (mostly snow) accumulates in the accumulation zone and

transformed into glacier ice over a long period of time. The mass loss through erosion

of snow Eds and melting runoff M is less than 100 Gt/yr according to some regional

climate models (RCM), like RACMO and MAR (van Wessem et al., 2018; Agosta et al.,
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Figure 2.1: Mass balance and basic physical processes in the Antarctic.

2019), which means the regressing of AIS is attributed mainly to the ice dynamics process

through melting glaciers.

Ice dynamics describes the continuous motion of glaciers caused by gravity from upstream

to downstream, where they melt into the ocean. This process may be accompanied by

glacier thinning, resulting in a simultaneous decrease in elevation and geopotential.

Ice dynamics is another long-term process that is determined mainly by temperature

and the pressure on bases. Thus, it can be considered as a relatively constant trend in

mass and elevation change. Ice velocity varies greatly from basin to basin, depending on

topography and other conditions. Quantifying it’s contribution to AIS changes requires

measurements of thickness and ice velocity of glaciers, which can be obtained using

altimeters and interferometric synthetic aperture radar (InSAR). However, unlike the

SMB, some ice discharge processes are not directly reflected in surface elevation since

the melting occurs on the bottom of the ice shelf. Consequently, this portion of mass

discharge through the bottom melting at the grounding line uncertainty still remains.

2.1.3 Solid Earth

The loading on the Earth’s surface causes deformation of the solid Earth. GIA, the on-

going response of the solid Earth due to changes in the ice/ocean loading following the
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Last Glacial Maximum (LGM), is also an essential contributor to current AIS changes.

Strictly, the GIA effect is not a part of AIS, but as the basis of AIS, a proper un-

derstanding of GIA is the key to understanding interactions among each component in

Antarctica.

The ice/ocean loading is directly supported by the lithosphere and upper-most mantle.

The effect of GIA under the same loading history depends on the material properties

of these two spheres; i.e. the rheology of the solid Earth. Besides that, there is large

uncertainty in loading history itself as well.

In addition to the direct deformation of bedrock, the accompanying redistribution of

near-surface solid Earth also affects the geopotential. It can be found that the factors

that determine GIA can all be considered as constant on the time scale of current satellite

observations (a few decades). Therefore, GIA can be regarded as another linear trend

in mass and elevation changes and is far more stable and long lasting compared to ice

dynamics described in Sec.2.1.2.

However, sparse in-situ observation networks across Antarctica have led to the inability to

effectively constrain the GIA effect, with this effect possessing the dominant uncertainty

in AIS mass balance estimations. Numerous approaches have been proposed to constrain

the GIA effect, such as joint analyses of GRACE/GRACE-FO data and either global

positioning system (GPS) (Wang et al., 2013; Hattori et al., 2021) or Satellite altimeter

data (Wahr et al., 2000; Riva et al., 2009).

The detailed modeling is beyond the scope of this work, but instead, some current GIA

models will be introduced in Chapter 5 as references for ICA analysis.

2.2 Geodetic Observation for Antarctica Mass Changes

The AIS changing signals described above can be obtained from different geodetic meth-

ods, mainly through elevation and geopotential changes (Fig. 2.2).

2.2.1 Gravity

Satellite gravity method, in particular, Gravity Recovery and Climate Experiment Mis-

sion (GRACE) launched in 2002 and it’s successor GRACE-Follow on (GRACE-FO)
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Figure 2.2: The effect of physical processes in the Antarctic and geodetic observations.

launched in 2018 have provided the conditions for direct observation of mass changes

over the Antarctic continental scale.

The GRACE/GRACE-FO consists of two separate identical satellites that run in tan-

dem on the same orbit about 500 km above the ground. The K-band ranging system

(KBR) is equipped on the satellites to enable precise inter-satellite ranging. In addi-

tion, the satellites are equipped with GPS receivers to observe precise satellite position

and accelerometers to eliminate the effects of non-conservative forces before gravity field

modeling. The time-varying Earth’s gravity field model can be obtained by continuously

measuring the change of the distance between two satellites. GRACE/GRACE-FO orbits

can completely cover Antarctica with a native spatial resolution of about 300 km and a

temporal resolution of about one month.

GRACE/GRACE-FO observe the superposition of gravity changes caused by different

physical processes along the radius, including changes from atmospheric, oceanic and the

solid Earth. It is difficult to extract specific signals from the total mass changes. In

order to use GRACE/GRACE-FO observation data to study specific physical processes,

some post-processing methods for time series analysis are necessary to separate different

physical signals from each other.

In recent years, AIS mass changes have been extensively studied using the GRACE/GRACE-

FO data. For example, Velicogna and Wahr (2006) estimated the melting rate of Antarc-
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Table 2.1: Geodetic Observations for Antarctica

Observation Type Physical Processes Coverage

GRACE/GRACE-FO Gravity Field GIA, SMB, Ice 90°S-N

Altimeter

Seasat

Surface elevation GIA, SMB, Firn, Ice

72°N-S

ERS-1/ERS-2 81.5°N-S

ICESat 86°N-S

CryoSat 88°N-S

GNSS Bedrock elevation GIA Regional

tic ice sheets to be −152 ± 80 Gt/yr using CSR RL01 data from April 2002 to August

2005, by subtracting the GIA effects with IJ05 model (Ivins and James, 2005), that most

of the ice sheet melting occurred in West Antarctica. Similarly, Chen (2006) studied the

AIS mass changes using CSR RL01 data from April 2002 to November 2005. A 500−km

Gaussian filter was applied to suppress the model noise, and the same GIA model (IJ05)

was used to deduct the GIA effects. The results showed that the melting of West AIS

is mainly concentrated near the coastline, and the mass increase of East Antarctica is

mainly concentrated in the Enderby Land area.

King et al. (2012) estimated the melting rate of the AIS to be −69 ± 18 Gt/yr, and its

contribution to sea-level rise to be 0.19±0.05 mm/yr using CSR RL04 data from August

2002 to December 2010 and deducted the GIA effects from W12a model.

Luthcke et al. (2013/ed) determined the ice mass evolution of the AIS, Greenland ice

sheets (GIS) and Gulf of Alaska (GoA) from a new GRACE solution of Mass concentra-

tion (mascons). For the time period December 2003 to December 2010, the total melting

rate was estimated to be −380 ± 31 Gt/yr with an acceleration of −41 ± 27 Gt/yr2.

Its contribution to sea-level rise to be 1.05 ± 0.09 mm/yr with acceleration of 0.11 ±

0.08 mm/yr2.

A note is that the Earth’s internal material redistribution accompany with GIA has a

direct impact on satellite gravity measurements (Wahr et al., 2000). All of the above

studies indicated that GIA is the dominant uncertainty in the AIS mass estimation.
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Figure 2.3: Data coverage of satellite altimeter missions. ((Schröder et al., 2019))

GRACE/GRACE-FO missions provide direct observations of AIS masses including the

basal melting of glaciers while not being affected by Firn compaction, but it is also more

sensitive to material redistribution caused by GIA. Some regionally important processes,

such as drifting snow sublimation, might have a negligible impact on the SMB at the

GRACE/GRACE-FO spatial resolution (van Wessem et al., 2018).

2.2.2 Elevation

The earliest monitoring of the Antarctic based on satellite altimetry technology can be

traced back to the late 1970s, when an Earth-orbiting satellite, Seasat was launched

which was designed for remote sensing of the Earth’s ocean. After a gap of about seven

years, Geosat with a similar 108°inclination orbit was launched in 1985. However, the

spatial coverage of Seasat and Geosat was limited to 72°N-S, which could only cover the

northern tip of the Antarctic Peninsula and the coastal regions of the EA (Fig. 2.3).

Since 1992, European Remote-Sensing Satellite-1 (ERS)-1, ERS-2, and Environmental

Satellite (Envisat) have been launched that widen spatial coverage to cover 81.5°N-S

latitude, and largely enhanced the capability to monitor polar regions. But their spatial

resolution is relatively coarse, especially when performing in ice mode for the purpose of

capturing the radar return from rough topographic surfaces.

Spatial coverage continues to expand with Ice, Cloud, and land Elevation Satellite (ICE-

Sat) (86°N-S) and CryoSat-2 (88°N-S), leading to nearly complete coverage of the AIS in

recent epochs and providing higher spatial resolution and intensive repeat observations.

Altimeter observations include the signals from SMB, ice dynamics and GIA. While con-

sidering the observation coverage history and the rate of ice dynamics up to (0.5 m/yr),
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the bedrock deformation caused by GIA (few cm/yr) is not as significant as that in

GRACE/GRACE-FO.

Wouters et al. (2015) combined ICESat, Envisat, and CryoSat-2 altimeter data to esti-

mate the mass balance of the Antarctic Peninsula from 2003-2009 and 2010-2014, and

compared the glacier mass changes between the two time periods, finding the accelerated

melting glaciers on the Antarctic Peninsula.

The mass balance of all Antarctic basins was estimated by Shepherd et al. (2019). The

elevation change of AIS is measured based on multiple satellite altimeter data (including

ERS-1, ERS-2, Envisat, and CryoSat-2) and is converted to mass balance using surface

density model.

Furthermore, there are also geodetic observations such as Global Navigation Satellite

System (GNSS), InSAR as mentioned above and other remote sensing methods. GNSS

can provide continuous vertical displacement records with extremely high precision of

bedrock and can effectively constrain GIA process. GRACE/GRACE-FO and altimeter

datasets are mainly used for analysis. The utilization of GNSS and remote sensing data

is not in the scope of this work.

In summary, The altimetry method can directly measure the surface elevation change

that simultaneously derived from SMB, firn compaction and bedrock deformation of

GIA. The volume changes can be converted to mass changes by a specific density. The

density estimating for surface density contains considerable uncertainty, especially for

firn compaction.

The satellite gravimetric method can obtain AIS mass changes directly from gravity field

data. However, the wildly applied satellite missions GRACE/GRACE-FO capture the

vertical integration of all components. Its products lack vertical resolution and have low

spatial resolution relative to the altimeter and GNSS data.



Chapter 3

Statistics Based Signal Separation
Methods

3.1 Method

3.1.1 Principal Component Analysis (PCA)

Due to the sampling of time-varying geophysical field, a huge amount of data will be

produced. The purpose of Principal Component Analysis (PCA) method is to reduce

the dimensionality of the data and determine the most important temporal and spatial

characteristics of gravity changes. PCA is widely used to extract principal modes of

data while also suppressing weak signals and noises. The modes obtained by PCA are

uncorrelated rather than independent, which means the principal components are a series

of mixtures of physical processes. PCA is usually used as a pretreatment for ICA.

Here take GRACE/GRACE-FO gravity field as an example, GRACE observations build

on a data matrix X with n grids and p epochs, as

X = (x1, x2, x3, · · · , xp)
T =


x1,1 x1,2 · · · x1,p

x2,1 x2,2 · · · x2,p
...

...
. . .

...
xn,1 xn,2 · · · xn,p

 (3.1)

Then the covariance matrix C of the data can be calculated, and the covariance matrix

15
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contains the variance and covariance information for each grid point and epoch.

C =
1

p
XXT =

1

p


∑p

i=1 x
2
1,i

∑p
i=1 x1,ix2,i · · ·

∑p
i=1 x1,ixn,i∑p

i=1 x2,ix1,i
∑p

i=1 x
2
2,i · · ·

∑p
i=1 x2,ixn,i

...
...

. . .
...∑p

i=1 xn,ix1,i
∑p

i=1 xn,ix2,i · · ·
∑p

i=1 x
2
n,i

 (3.2)

The total variance can be obtained by summing the independent variances in the covari-

ance matrix, the total variance is equal to the trace of the covariance matrix:

∆2 =
1

p

n∑
j=1

(
p∑

i=1

x2
j,i

)
= trace (C) (3.3)

The purpose of PCA is to find a set of vectors e = (e1, e2, e3, · · · , ep)T in the original

data X and maximizes the projection variance of X on eigenvector e. These e are

known as Empirical Orthogonal Functions (EOF). The variance of the projection can be

expressed as:

V ar (Xe) = eTCe (3.4)

The eigenvalue decomposition of the covariance matrix can solve the problem of projec-

tion maximization:

Ce = λ2
i e (3.5)

C = EAET (3.6)

Where λ is an eigenvalue of matrix C, A is a diagonal matrix contains n eigenvalues λi,

the column of the orthogonal matrix E contains the corresponding eigenvector ei. Since

the sum of all eigenvalues is equal to the trace of the covariance matrix C and the total

variance is equal to the trace of the covariance matrix, the sum of the eigenvalues is also

equal to the total variance:

n∑
j=1

λj = ∆2 (3.7)
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Arrange the eigenvalues and corresponding eigenvectors according to the eigenvalues in

descending order. Make each eigenvalue on the diagonal of matrix A to be λ1 ≥ λ2 ≥

· · · ≥ λn. The amount of information "interpreted" by each eigenvector can be expressed

as:

nj = 100% ×
λj

∆2
(3.8)

PCA uses the eigenvectors of matrix C as the basis vectors to express the original obser-

vation data X. Moreover, the eigenvectors need to be normalized to make eTj ej = 1.

The first mode of the empirical orthogonal function contains the main features of the

spatial domain.

xi = d1,ie1 + d2,ie2 + · · · + dn,ien =
n∑

j=1

dj,iej = Edi (3.9)

Since ETE = I, eq.3.9 can also be written as di = (ETE)−1ETxi.

In addition, the ordinary PCA method can be extended by rotating EOF (Richman,

1986).

3.1.2 Independent Component Analysis

ICA is a method for decomposing mixtures of source signals into statistically independent

components (ICs), which can utilize the statistical characteristics of observation data

like GRACE to explore the potential signals without any prior information. ICA uses

higher-order statistics information (usually forth-order moment (kurtosis) or entropy) to

find independent components. While the observations of GRACE exhibit non-Gaussian

properties, the high-order statistical information derived from them is not accounted for

by PCA (Forootan and Kusche, 2012).

Based on Bell and Sejnowski (1995), ICA can contrive to find ICs even if the underlying

sources are not statistically independent. Therefore, ICA can find the independent signals

which are not the underlying sources. The data matrix X with the same building as 3.1,

can be considered as a linear combination of a series of independent signals. This process

can be expressed as:

X = AS, (3.10)
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where A is an unknown mixing matrix. To recover the original signals S, let unmixing

matrix W = A−1 thus,

S = WX. (3.11)

The purpose of any ICA algorithm is to find the unmixing matrix W . Here, maximum

likelihood estimation is used to explain the algorithm. In the original paper of Bell

and Sejnowski (ibid.), a complicated idea called the infomax principle was introduced to

explain the algorithm. But that is no longer necessary because the infomax principle is

considered equivalent to maximum likelihood estimation (Cardoso, 1997).

Suppose that the probability density distribution for each source signal si is pi and the

joint distribution of source S is:

S =
n∏

i=1

ps(si). (3.12)

The joint distribution is modeled as the marginal and the source signals are assumed to be

independent according to Eq.3.11, we can find the probability density of the observation

variable X as:

p(X) =
n∏

i=1

ps(w
T
i ) · |W| . (3.13)

To specify the density of si, we need to specify a monotonically increasing Cumulative

Distribution Function (CDF) for it. A CDF has to be non-Gaussian, as ICA doesn’t

work on Gaussian data. A reasonable function that can slowly increase from 0 to 1, such

as the sigmoid function g(s) = 1/(1+ e−s) will be chosen. There is p(s) = g′(s). W

is the parameter matrix of the model. Given a training set {xi|i = 1, ...,m}, of which

log-likelihood is:

ℓ(W ) =
m∑
i=1

(

n∑
j=1

log g′(wT
j xi) + log|W |). (3.14)

We can easily derive a stochastic gradient descent learning rule to maximize the likelihood

with W based on the fact ▽W |W | = |W |(W−1)T . There are two extension forms

for ICA called spatial ICA (sICA), temporal ICA (tICA), and their combination, spatio-

temporal ICA (stICA). ICA can be considered as a rotation extension of PCA or singular
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value decomposition (SVD) (Comon, 1994). Usually, X can be decomposed by SVD to

reduce its rank:

X ≈ UDV t. (3.15)

Where U is a n × k matrix that contains all eigenimages, V is a p × k matrix that

contains all eigensequences, D is a k×k diagonal matrix of singular values. Eq.3.15 can

be written as follows:

X ≈ UDV t = Ũ Ṽ t = UD1/2D1/2V t, (3.16)

where Ũ = UD1/2 and Ṽ = V D1/2.

Considering that S = (s1, s2, . . . , sk) contains the spatial independent vectors, k is

the number of eigenvectors. T = (t1, t2, . . . , tk) contains the temporal independent

vectors. The linear combinations of spatial independent signals S are in the column

vectors of Ũ , analogously, temporal independent signals T are in Ṽ . Thus, X̃ can be

decomposed as:

X̃ = SΛT t. (3.17)

where Λ is a diagonal matrix of scaling parameters.

Spatial ICA (sICA) can find a series of spatial independent components and correspond-

ing time series. sICA assumes that Ũ can be decomposed as Ũ = SAS , As is a

k× k mixing matrix, S is a statistical independent matrix of spatial vectors. Thus, the

scaled original signal ysi = ŨWs can be recovered by the unmixing matrix Ws, where

Ws = A−1
s .

Temporal ICA (tICA) can find a series of temporally independent components and corre-

sponding spatial vectors. tICA assumes that Ṽ = TAT , AT is a k × k mixing matrix,

T is a statistical independent matrix of time series. Thus, the scaled original signal

ysi = ŨWT , can be recovered by the unmixing matrix WT , where WT = A−1
T .

Spatiotemporal (stICA) can simultaneously maximize the degree of independence of

components over time and space. stICA assumes that X̃ can be decomposed into
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X̃ = SΛT t, considering X̃ = Ũ Ṽ t then there are two unmixing matrices Ws and

WT , and Ũ = SAS , Ṽ = TAT , thus X̃ can be written as:

X̃ = SΛT t = ŨWS(Ṽ wT )
t = ŨWSW

t
T Ṽ

t (3.18)

In Antarctica, the mass change is highly related to the spatial distribution of glaciers,

and the impact of GIA is uncertain in spatial distribution and quantity. Therefore, we

first decided to use spatial ICA in this study. The algorithm applied is provided by Stone

and Porrill (1999).

3.2 Previous Research for Extraction Geophysical Signals

Various statistical methods have been introduced to analyze GRACE-derived signals, in-

cluding PCA and ICA. (Schmidt et al., 2008; Schmeer et al., 2012; Talpe et al., 2017; Fo-

rootan and Kusche, 2012). ICA is known to effectively separate spatiotemporal GRACE-

derived mass changes into independent components (Forootan and Kusche, 2012).

One disadvantage of PCA is that PCA extracts the primary components according to

the variance distribution of a measured geophysical field, which always leads to the

extraction of the stronger signals and the potential dismissal of relatively weak but highly

independent signals. PCA-extracted features are statistically uncorrelated to each other,

which means that signal mixing remains a problem (Cardoso, 1992). ICA takes a different

approach to PCA in exploring a dataset by treating all of the components equally. The

goal of ICA is to find a linear transformation that can decompose the observations into

independent components using high-order statistics.

Forootan and Kusche (2012) were the first to employ ICA for GRACE data analysis.

They conducted both PCA and ICA to analyze the simulated synthetic data, compared

the results with real GRACE products, and found that the ICA results were closer to

“optimal decomposition“, which indicated that ICA may be a more suitable approach for

solving the problem of unknown source signal decomposition. ICA has been successfully

applied to various studies, including the separation of independent water storage patterns

in the Nile sub-basins and their relationship to climate indices, such as El Niño South-

ern Oscillation (ENSO) and Indian Ocean Dipole (Awange et al., 2014). ICA was also
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used to analyze the variations in various components of an Indian hydrological system

(Banerjee and Kumar, 2018), derive the relationship between land water storage changes

in Africa and global climate indices (Anyah et al., 2018), and determine the ICA-derived

Glacial Isostatic Adjustment (GIA) uplift in Fennoscandia and Laurentia using GRACE

data, which obtained comparable results to regional Global Positioning System (GPS)

observations (Shafiei Joud et al., 2019).

Shi et al. (2022) also demonstrated that the GIA signal in the Antarctic can be extracted

using ICA. The GIA-related pattern was qualitatively extracted and compared with

existing GIA models, showing a high level of correlation in spatial distribution. The

results highlight the utility of the ICA method for analyzing Antarctica mass changes

and suggest that ICA may be a suitable approach for solving the uncertainty in the source

signals and constraining the mixing pattern in Antarctica. This study builds upon the

finding of Shi et al. (2022) in exploring further applications of the ICA method.
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Chapter 4

ICA Analysis for
GRACE/GRACE-FO and Satellite
Altimeter

4.1 GRACE/GRACE-FO

4.1.1 Data

The GRACE/GRACE-FO Level-2 products are mainly provided by the three official data

centers: the Jet Propulsion Laboratory (JPL), the Center for Space Research (CSR),

and the German Research center for Geosciences (GFZ). This work used Release 06

productions of spherical harmonic (SH) coefficient, which includes all of the available

GRACE/GRACE-FO data between April 2002 and June 2020 except for a data gap

from July 2017 to June 2018.

Discrepancies exist among the datasets offered by the different data centers. These may

be consequences of distinct processing applied by each center. To prevent any dataset

bias, the SH coefficients were averaged from the three datasets to generate our input

data. A detailed discussion of these discrepancies is present in Chapter.6.1.2.

Standard post-processing techniques were utilized for all SH coefficients included in this

work. C20 replacement was used for both GRACE and GRACE-FO solutions, while

C30 replacement was implemented only for the GRACE-FO solutions by employing co-

efficients obtained from satellite laser ranging suggested by the Goddard Space Flight

Center(Loomis et al., 2020). The SH coefficients were truncated up to 60 order and

23
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degree to decrease high-frequency noise. Additionally, a DDK4 filter was employed for

smoothing (Kusche et al., 2009). Although there is an approximately one-year gap be-

tween the two missions, Velicogna et al. (2020) have demonstrated that the GRACE and

GRACE-FO time series can line up well across the data gap in Antarctica. The final year

of data obtained before the end of the GRACE mission (July 2016-July 2017) was not

used due to deteriorating observations. Since ICA analysis can deal with data continuity

issues, there is no need to fill the missing months and two-year gap (July 2016–May 2018)

in the time series. Notably, as an important original signal, GIA was not given special

treatment by any model in this study.

4.1.2 Results

PCA is used as a pretreatment for centering and dimension reduction. The first six

principal components, which account for over 70% of the total variance, are selected

as the inputs for ICA in this study. sICA will produce spatially independent modes

over the study region, and their corresponding time series should exhibit the temporal

characteristics of separate sub-regions. Fig. 4.1 shows the results of the first six ICA-

extracted spatial modes, with their corresponding time series (IC1, IC2, IC3,..., IC6)

given in Fig. 4.2. All of the temporal modes are normalized in this study.

Long-term Trend

There are three long-term components, Mode-1, Mode-2, and Mode-3, among the six

ICs. Mode-1 spatial pattern (Fig. 4.1a) is very similar to the regression trend (Fig. 1.1),

and its corresponding time series (IC1) shows a clear linear trend. Mode-1 mass changes

are primarily distributed across the well-known glacier regions such as the large mass

loss in the AMS and Bellingshausen Sea Sector, West Antarctica, mass loss in WL, and

mass gain across DML and EL, East Antarctica.

However, some subtle differences may suggest potentially different meanings of the Mode-

1 signal. The mass loss signal in the WL region is significantly spatially wider than the

regression signal, which may be an indicator of basal melting along the Totten glaciers

in this region. A comparison with the Bedmap2 bed topography (Fretwell et al., 2013)
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Figure 4.1: The first six ICA-extracted spatial modes for the entire study period.

Figure 4.2: Time series of the decomposed spatial modes in Fig. 4.1. The shaded areas
indicate the data gaps during the study period. The GRACE/GRACE-FO gap (July
2017–May 2018) is shown in dark gray, while the discarded period (July 2016–July 2017)
is shown in light gray.
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Figure 4.3: Rate maps of the trend components (Mode-1, Mode-2 and Mode-3) in Fig.
4.1. The corresponding time series are first simplified into linear trends. Then, the scale
factors of the spatial vector are estimated by normalizing the resulting time series.

revealed that the mass-reducing area coincided with the deepest bed topography in this

region. Hirano et al. (2021) indicated that the potential basal melting along Totten

Glacier was caused by relatively warm Circumpolar Deep Water transport. Despite the

risk of instability due to the regional bed topography, this sector remains in a stable

state (Morlighem et al., 2020). Therefore, it may reveal a possible connection between

the observed mass loss and the bed topography. Furthermore, the northern tip of the

AP, which is dominated by strong seasonal changes, is not included in the Mode-1 signal.

The RIS also shows a negative trend where the AIS mass loss is overwhelmed by GIA

and a positive trend in the regression trend with no GIA correction. The above details

suggest that the Mode-1 signal can be largely attributed to glacier changes.

The Mode-2 captures information on the glaciers that are not captured by the Mode-1.

This signal, in combination with its corresponding time series, IC2, indicates that these

regions are in a relatively balanced state between 2002 and 2006, and then experience

mass loss after 2006. The same temporal evolution of AIS mass change has been observed

in recent satellite altimetry studies (e.g., basin J”–K and D–D’ in Schröder et al. (2019)).

The Mode-3 signal is the other long-term component, and its mass gain region is primarily

localized across the interior ice plateau of MBL and also the RIS, where it is greatly

affected by GIA. The Mode-3 spatial distribution is very similar to many GIA models.

The long-term trend can still be clearly obtained, even though the mixing of some periodic
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signals, such as the northern tip of the AP, leads to jaggedness in the IC3 time series.

Periodic Components

ICA also effectively separates the periodic components from the long-term components.

Time series IC4 and IC6 show periodic signals on different time scales. Mode-4 signal

captures the mass loss along the west coast of the AP, which is concentrated along the

larger glaciers (e.g., George VI). The corresponding IC4 time series shows periodic signals

at the 3–4-yr scale, which is probably related to periodic atmospheric and oceanic changes

around Antarctica. Mode-6 signal shows mass gain that is distributed across the entire

AIS, with the corresponding IC6 time series possessing a cyclical signal with a period of

one year. Mode-6 signal may be related to seasonal changes across Antarctica. Mode-4

and Mode-6 signals demonstrate that ICA can effectively separate periodic meteorological

signals and long-term signals.

Independent Events

ICA can also identify accidental independent events. In Mode-5 it can be found that

there were two significant mass gain signals in East Antarctica, with the largest mass gain

occurring in 2009 and the other in 2011. The temporal coincidence of these signals with

the two extreme snowfall events in 2009 and 2011 that were reported by Boening et al.

(2012) suggest a direct connection between the Mode-5 signal and snowfall events. The

influence of anomalous snowfall events can also be found in other cyclical IC4 components.

The strange variations around 2009 are considered to be driven by snowfall events.

4.2 Altimeter

The altimeter dataset from Schröder et al. (2019) is used in this section, which con-

tains multi-satellite data including Seasat, Geosat, ERS-1, ERS-2, Envisat, ICESat and

CryoSat2. Bias and other errors have been well-treated after a series of post-processing.

It is provided in the form of consistent monthly grid data. Time period from 2000 to

2019 is selected here for comparing with GRACE/GRACE-FO.
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Figure 4.4: (a) Distribution of correlation coefficients as distance increases; (b) Time
series of the ten grids with the highest correlation coefficients to the reference point; (c)
Correlation coefficients map with a star marking the location of the reference point.

4.2.1 Re-sampling and Error Estimating

This section presents an analysis of the spatial autocorrelation of the altimeter data

and attempts to determine an appropriate re-sampling method for generating a dataset

with a spatial resolution comparable to GRACE/GRACE-FO for the purpose of direct

comparison.

Each grid in the geophysical field is not always independent, sometimes it is artificially

segmented in the generation of the dataset (as in the case of GRACE Mascon products).

On the other hand, the variation of a given point within a certain spatial extent always

has a higher correlation with neighboring points compared to distant points since the

nearby area are always controlled by similar physical processes. Therefore, this kind of

spatial auto-correlation is analyzed here to evaluate an appropriate resampling strategy.

As an example, a point in EA is selected here. Its time series is compared with all other

points in Antarctica by calculating correlation coefficients, the result can be presented

in Fig. 4.4. Based on the results presented in Figure 4.4, it is clear that (a) within the

range of < 700; km, the reference point exhibits a high correlation with the surrounding
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points, and the correlation coefficient decreases as the distance increases, and (b) the

points with the highest correlation coefficients are nearly identical.

In addition to traditional re-sampling, another strategy for reducing spatial resolution

is to expand grid data into a SH basis and truncate it to a specific degree to eliminate

high-frequency signals. This approach offers several advantages: first, using the same

representation as the gravity field data makes the two datasets more comparable; second,

given the study’s focus on the entire AIS, using SH expansion can more effective in

continental scale. The altimeter data have a very high spatial resolution, and considering

the native resolution of GRACE/GRACE-FO, at least 60 orders (300 km) is required to

ensure the consistency of two different datasets. In this study, a conventional 1 spatial

grid is used, which requires a higher truncation degree. The coefficients obtained after

expansion are then transformed into a spatial grid.

The elevation data is expanded using SH functions and truncated to 90 and 120 degrees,

respectively. For each grid, the root mean square (RMS) of the time series obtained by

traditional resampling and SH expansion is calculated. The test is performed on a 1

spatial grid, which is higher than the native resolution of 90 and 120-degree expansions.

Therefore, the coefficients are not truncated to the same 60-degree as the gravity field.

As shown in Figure 4.5, the elevation data derived from the 90-degree expansion exhibits

significantly larger RMS errors than the 120-degree expansion, particularly in coastal

regions. As ICA is recommended to be performed on spatial grid (see Sec.6.2.2)ï1
4
due to

the truncation errors, SH expansion did not exhibit significant advantages over traditional

resampling. Consequently, traditional resampling is used conservatively for the next step

of the ICA analysis in this study. However, properly integrating the altimetric data

requires further investigation of truncation errors, signal leakage, and observation errors

in coastal regions.

4.2.2 Results

In this section, the exact same analysis as Sec.4.1.2 is applied to the re-sampled altimeter

data obtained in Sec. 4.2.1. In this study, both altimetry data and GRACE/GRACE-

FO data are unified into a one-degree grid. For GRACE/GRACE-FO it requires an
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Figure 4.5: Comparison of traditional resampling and SH expansion of altimetry data.
The RMS of SH expansion and traditional resampling time series is calculated for each
grid. RMS1 and RMS2 correspond to 90-degree and 120-degree expansions, respectively.

interpolation through which no information will be lost. But for altimetry data, it is

a different case. Reducing the native resolution will inevitably lead to the loss of high

frequency information that can affect ICA results directly. Another result of the high

native resolution is a lower variance contribution ratio for the same principal component

number. The accumulated eigenvalue spectrum for altimetry and GRACE/GRACE-FO

is plotted in Fig. 4.6. In the pretreatment of PCA, when using the same truncation

number of 6 as GRACE/GRACE-FO the accumulated eigenvalue of altimetry is less

than 0.5 much less than the value of 0.75 for GRACE/GRACE-FO.

Compared to GRACE/GRACE-FO, the ICA analysis of altimetry data is more complex.

On the one hand, high-frequency signals require more components to describe detailed

information. On the other hand, altimetry data is more sensitive to surface physical

processes and less sensitive to changes in the solid Earth, making it impossible to establish

one-to-one correspondence with the modes of GRACE/GRACE-FO data. The results

of the first six spatial modes extracted using sICA, along with their corresponding time

series, are shown in Fig. 4.7 and Fig. 4.8, respectively. All of the temporal modes are

normalized in this section.

Long-term Trend

IC1 and IC3 can be recognized as two long-term components among the six ICs. The

spatial distribution of Mode-1 is highly consistent with that of GRACE/GRACE-FO
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Figure 4.6: Accumulated eigenvalue spectrum for altimetry and GRACE/GRACE-FO.

(Fig. 4.1a). A similar region with decreasing trend can be found in glacier regions such

as AMS and Bellingshausen Sea Sector. Increasing regions across DML and EL, are also

in good agreement. The differences can be found primarily in some areas like MBL,

where the surface elevation is decreasing, but the GRACE results reveal an increasing

trend in the interior part of this region. In addition, the elevation of GVL is decreasing,

but there is no significant decreasing trend in mass changes. These differences may be

caused by non-surface processes.

IC3 represents another long-term trend, but it is not a constant trend, and a turning

point can be found around 2011. The increasing region in Mode-3 is localized across

the MBL and GVL, while the decreasing region is concentrated in AMS and WL. An

important difference is that IC3 is not a constant linear trend, which distinguishes it

from the altimetry component of GRACE/GRACE-FO.

Consistent with expectation, no significant GIA signal is separated using altimetry data,

as GIA will exhibit another long-term component. This may be attributed to the low

signal-to-noise ratio of GIA. The maximum of GIA uplift is typically on the order of

a few millimeters per year, which is two orders of magnitude smaller than the annual

glacier thinning of several meters.
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Periodic Components

The high-frequency information contained in altimetry data may lead to more periodic

components in ICA results. Time series IC2, IC3, and IC6 show periodic signals on

different time scales, which may be related to the interannual variability of the SMB.

Similar evidence can be found in some studies of SMB, for example, Kim et al. (2020)

used PCA to extract three principle modes of SMB, showing the periodicity of SMB at

three different time scales. It can be found that the IC2 and Mode-2 are highly similar

to second mode of SMB. Therefore, it can be speculated that the periodicity in altimetry

data is more closely related to the SMB process.

Independent Events

Coincidentally, the snow accumulation due to extreme snowfall events is also separated

in altimetry results. The time series IC5 increases rapidly around 2010, its corresponding

spatial distribution Mode-5 shows that not only the snowfall area of East Antarctica is

contained but also other coastal regions are included. This could be largely attributed

to incomplete decomposition.

In general, the ICA results from altimetry data are not as clear and straightforward

as those from GRACE/GRACE-FO. This difference is to be expected, considering two

reasons: the first is the low contribution ratio of the input data to the total variance, and

the second is that the high-frequency information contained in altimetry data reflects

very local physical processes which may be difficult to separate. However, the ICA

results from altimetry data still provide us with valuable information as a complement to

GRACE/GRACE-FO results. The spatial distribution is comparable in some common

modes that reflect signals such as glacier melting and snowfall. This indicates that

the ICA results are not only statistically but also physically meaningful, as comparable

results were obtained even with completely different types of observations.
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Figure 4.7: The first six spatial modes extracted by sICA for altimeter data.

Figure 4.8: Corresponding time-series of the decomposed spatial modes in Fig. 4.7.
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Chapter 5

Model and Regional Study

5.1 GIA Model

To better understand the ICA results, it is necessary to investigate their physical meaning

further. In this chapter, we examine the GIA-related modes separated by ICA using for-

ward GIA models. Additionally, we conduct a detailed investigation of the AIS drainage

basins, primarily introducing an SMB model to analyze the physical processes in each

basin. This approach provides further insight into the physical interpretation of each

mode.

This section estimates rate maps for the three trend components mentioned above, as

shown in Fig. 4.3. Mode-1 possesses the same order of magnitude as the regression trend,

and Mode-2 and Mode-3 are one order of magnitude smaller in comparison.

Furthermore, the spatial correlation coefficient (SCC) is used as a measure of the agree-

ment between two spatial signals, as in Boergens et al. (2014):

SCC =

∑N
j=1 refs(j) · ress(j)√∑N
j=1 refs(j)

2 · ress(j)2
, (5.1)

where refs is the reference signal and refs is the separated signal, which consists of N

grid points. The SCCs between the Mode-3, and four GIA models: A (2013), ICE-6G,

W12 and IJ05_R2 are calculated (Geruo et al., 2013; Peltier et al., 2018; Whitehouse

et al., 2012; Ivins et al., 2013) (Fig. 5.1). The results are shown in Table 5.1. Mode-3

has the highest SCC with ICE-6G and the lowest SCC with IJ05_R2, which implies

a moderate-to-strong correlation between the Mode-3 signal and the GIA effect. Com-

35
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Figure 5.1: Comparison of GIA models and ICA-extracted GIA. a)–d) are annual rate of
GIA effects in E.W.H.(cm) derived from four GIA forward models, e) is Mode-3 extracted
from GRACE/GRACE-FO in Fig. 4.1.

paring the SCC of 0.7023 between the ICE-5G and ICE-6G, it is reasonable to infer

that Mode-3 may reflect the GIA signal. The variance ratios ( V ar(Model)
V ar(Mode−3)

) are also

calculated for quantitative comparison, Mode-3 is quantitatively several times smaller

than forward models. It can also be found that the strongest GIA effect is derived by A

(2013), which suggests up to 5.64 times larger than Mode-3 in quantity, while the weakest

IJ05_R2 suggests a comparable uplift with Mode-3. The results implied a relatively low

upper-mantle viscosity as suggested by IJ05_R2 (0.2 × 1021 Pa s). Another possible

explanation is the incomplete decomposition of the ICA method as some portion of the

GIA effect still remains in other linear components resulting in small amplitude values

for the separated GIA mode. Nonetheless, the spatial distribution of the separated GIA

mode appears stable, and this observation can further contribute towards constraining

the ice history.
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Table 5.1: Spatial correlation coefficients and amplitude ratios between the GIA models
and ICA spatial modes (95 percent confidence level).

Correlation
coefficient

Variance Ratio
(Model/ICA mode)

A et al. (GeruoA et al., 2013) 0.710 5.640
ICE-6G (Peltier et al., 2018) 0.720 2.487
W12 (Whitehouse et al., 2012) 0.620 3.366
IJ05_R2 (Ivins E.R. et al., 2005) 0.544 1.007

5.2 Mass Balance for Regional Drainage Basin

AIS is divided into Western Antarctica Ice Sheet (WAIS), Eastern Antarctica Ice Sheet

(EAIS), and Antarctica Peninsula (AP) based on historical definitions, and can be further

separated into multiple drainage basins based on modern Digital Elevation Model (DEM)

information and ice velocity data. The conventional basins from Rignot et al. (2013) is

used in this study (Fig. 5.2.1). This chapter will investigate the mass and volume

changes of each Antarctic basin. A SMB model SMB–NHM (庭野匡思 et al., 2021)

will be introduced, plus the observation data from GRACE/GRACE-FO and satellite

altimeters, and combined with ICA results for further understanding the physical sources

of AIS changes.

5.2.1 Classification of Antarctica Drainage Basins

The mass changes in each basin may have a more distinct dominant physical signal when

compared to the whole AIS. Some basins may be dominated by ice dynamics, some others

may be strongly affected by seasonal meteorological processes. The different sensitivi-

ties of the elevation and gravity fields to the same physical process are fundamental to

distinguish these processes. The average mass variation of each basin is estimated by

the SMB model and GRACE/GRACE-FO, respectively, and the average surface eleva-

tion variation is estimated by the altimeter observation. Dimensionless time series was

obtained by taking the average of all points within the basin and standardizing the time

series, and for SMB time series, its trend was specially removed. The results are shown

in Fig. 5.2.1.
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Figure 5.2: Boundary and definitions of Antarctica drainage basin from Rignot et al.
(2013). The blue-colored region is EAIS, the pink-colored region is WAIS, and the green-
colored region is AP.
(http://imbie.org/imbie-2016/drainage-basins/))

All basins can be classified into four groups based on the movements of three kinds of

data (see Fig. 5.2.1 and Table.5.2.1). Type-I, the time series of all three are reconciled

with each other. Type-II, one of three kinds of data is inconsistent with others, which can

be further divided into 3 sub-types. Type-II-a, discrepancy in altimeter, II-b discrepancy

in SMB, and II-c discrepancy in GRACE/GEACE-FO. Type-III is that all time series

are not consistent with each other or hard to be classified.

Type I

In Type-I basins, the mass variations estimated by the SMB model coincide with the

observed total mass change. The volume change is synchronized with mass change,

suggesting that almost all mass changes within the basin result from SMB processes and

mainly occur on the surface of the AIS. The stability of the long-term trend indicates

that the glaciers within the basin tend to be stable, with no noticeable acceleration or

deceleration in flow speed.

Basins Cp-D, Dp-E, and Hp-I are considered to be Type-I basins. All Type-I basins

show a good agreement in trend for three time series. But there are still some subtle

http://imbie.org/imbie-2016/drainage-basins/
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Figure 5.4: Classification of the Antarctic drainage basins.
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Table 5.2: Classification of Antarctic basins based on GRACE/GRACE-FO mass change,
surface elevation, and SMB change characteristics.
Type Basin Region Description

I

Cp-D East

GRACE/GRACE-FO = SMB = altimetryDp-E East

Hp-I Peninsula

II

a Ipp-J Peninsula GRACE/GRACE-FO = SMB ̸= altimetry

b

A-Ap East

GRACE/GRACE-FO ̸= SMB = altimetry

Ap-B East

F-G West

G-H West

K-A East

c
E-Ep East

GRACE/GRACE-FO ̸= SMB = altimetry
I-Ipp Peninsula

III

B-C East

GRACE/GRACE-FO ̸= SMB ̸=altimetry

C-Cp East

D-Dp East

Ep-F West

H-Hp West

J-Jpp West

Jpp-K East
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Figure 5.5: Bed elevation for Antarctica (Fretwell et al., 2013)

differences, in Hp-I the periodic variations are more pronounced in the SMB and altimetry

time series.

Combining with subglacial bed elevation information, for example comparing with Bedmap2

as shown in Fig. 5.2.1 (Fretwell et al., 2013), it can be found that the coastal area of Type

I basins is localized in high elevations and lacks potential for further access to the ocean,

excpet for Cp-D. Totten Glacier in Cp-D is localized in deep ground that possible for

direct contact with warm ocean. A longer period of data is still needed for confirmation.

Type II

Type II-a

In Type-II-a basins where the mass changes can be well estimated with the SMB model

but are not consistent with surface elevation changes, which suggests that mass changes
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may largely be attributed to SMB, while the change in ice sheet volume barely affects

the mass changes.

II-a is not a very common type of basin in Antarctica, Ipp-J is the only basin that can

be classified, whereas the most negative SMB can be found. Models simulation also

suggests that this basin is dominated by meteorological factors. This phenomenon is

quite unusual, as it is difficult to imagine the SMB process deviates that much from

the altimetry changes. One possible explanation for the phenomenon is the error in the

altimetry observation. Schröder et al. (2019) also reported the significant uncertainty in

this basin.

Type II-b

In Type-II-b basins, the GRACE mass changes have the same trend with elevation

changes but have discrepancies with SMB. The gap between SMB and observations could

be caused by the ice dynamics because the changing in glaciers contribute to total mass

changes that are not included in SMB model. It could also be caused by inappropriate

model estimation.

Type-II-b is the most common type of basin in Antarctica. A-Ap and Ap-B are two

typical II-b basins. They are characterized by the scissor-shaped difference that appeared

around 2010 when time series of altimeter and GRACE mass is increasing rapidly, but

SMB shows no significant increase. The mass increase is contributed by snowfall events as

mentioned in Section.4.1.2, there are two extreme events in these two basins were reported

by Boening et al. (2012). This could be due to the lack of capability in simulating extreme

events or inappropriate removal of the trend term in the SMB time series.

In some basins with long-term mass reduction, the situation will be different. For exam-

ple, basins F-G and G-H, a clear long-term mass loss is observed by GRACE, accompanied

by an elevation decrease. However, the SMB model suggests that there is no clear trend

in the these basins and shows periodic fluctuations. The discrepancy indicates the strong

ice discharge from glaciers in the region.
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Type II-c

In Type-II-c basin, the SMB changes have a similar movement with elevation changes but

have discrepancies with GRACE observations. This suggests almost elevation changes

are contributed by SMB processes and imply no significant surface glacier acceleration.

And the gap between altimetry and mass could be linked to some processes that do not

occur on the AIS surface such as basal melting.

Long-term mass loss has been observed by GRACE for basin I-Ipp, which is located

on the west coast of the AP. However, the surface elevation and SMB are primarily

dominated by periodic signal, with no clear trend. This suggests the possibility of basal

melting in I-Ipp.

Type III

Type-III basins are more complex, because each basin behaves differently. Some basins

could show a pair of time series with opposite trends and the other takes the average of

these two, while some could show a certain phase delay between the periodic time series.

For H-Hp, the SMB does not show a clear trend while GRACE indicates a long-term

mass reduction, unlike both above, altimetry time series presents a fluctuation of several

year cycles which can be assumed that the altimeter periodicity is closely related to ocean

circulation. The mass reduction trend in this basin cannot be fully explained by surface

glacier thinning, so the gap suggests potential bottom melting.

For Jpp-K, both SMB and altimetry present distinct annual cycles, but in opposite

phases. GRACE is just the average of the two, balancing out this difference. The

reasons for the opposite phases is not clear and cloud be related to mass redistribution

within the basin.

5.2.2 Comparing with ICA Results

This section will revisit the ICA results from GRACE/GRACE-FO (Fig. 4.1 and Fig.

4.2) to make further interpretations for each mode, based on the classification informa-

tion. This section mainly focuses on the differences in altimeter and GRACE/GRACE-

FO results, and long periods that are not well understood.
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Firstly, it is clear to see that the shaded area of Mode-1 in both GRACE/GRACE-FO

and altimetry is highly similar to the spatial distribution of Type II-b, except for Cp-D

(the blank area in Fig. 5.2.1). This demonstrated indicates that Mode-1 is closely related

to the dominant signal of glacier changes and snow accumulation.

Mode-4 of GRACE/GRACE-FO exhibits periodic changes at a 3- to 4-year scale, mainly

concentrated in the J-Jpp basin. By comparing the SMB time series of J-Jpp, it can

be observed that IC4 shows a consistent periodicity with it. Additionally, weaker sig-

nals of Mode-4 can also be found in Ap-B, D-D-Dp, and A-Ap basins. By comparing

the SMB time series of these basins, it can be found that they exhibit similar periodic

characteristics, which explains why ICA classifies these regions into the same compo-

nent. Therefore, it could be confirmed that Mode-4 is related to the multi-year periodic

component of SMB.
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Chapter 6

Better Way to Drive ICA

The result obtained by ICA is the optimal result in statistics, but it may not necessarily

reflect physical processes. Therefore, it is particularly important to use ICA appropriately

for understanding the real. In this chapter, we will mainly discuss the impact of different

factors on the results of ICA, including the time period of the input dataset, discrepancies

caused by different data centers, and different ICA algorithms. And the stability of the

results of ICA will be discussed based on these.

6.1 Factors related to ICA Results

6.1.1 Time Period

In this section, the impact of input time period is discussed. Here, the period of extreme

snowfall events is removed to eliminate the impact of these events, and verify whether the

remaining long-term ICA components, which should be temporally insensitive, can still

be obtained. For this, we first removed January 2009–June 2010 period, then divided the

remaining dataset into two sections, and finally repeat the ICA analysis for each section.

The order of the ICA results may vary due to the different subintervals. We reordered

the ICA results to align the components with similar information to those for the entire

dataset since the order of the ICA results does not represent the significance of each

component. Furthermore, the fact that the different subintervals contain different infor-

mation inevitably means the results from different subintervals may not be well aligned.

The results of the former period (2002–2009) are shown in Fig. 6.1, with the correspond-
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Figure 6.1: The first six ICA-extracted spatial modes for the former period (2002–2009).

Figure 6.2: Corresponding time series of the decomposed spatial modes in Fig. 6.1.
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Figure 6.3: The first six ICA-extracted spatial modes for the latter period (2010–2020).

Figure 6.4: Corresponding time-series of the decomposed spatial modes in Fig. 6.3. The
grey shading denotes the data gap in the study period, with the GRACE/GRACE-FO
gap (July 2017-May 2018) in dark grey and the discarded period (July 2016-July 2017)
in light grey.
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ing time series presented in Fig. 6.2, and the results of the latter period (2010–2020) are

shown in Fig. 6.3, with the corresponding time series presented in Fig. 6.4.

The mass gain component in East Antarctica (Mode-5 in Fig. 4.1), which is related to

snowfall events, is no longer detectable in the results for the two periods after excluding

the period of detected snowfall events, as expected.

A comparison of the results from the different time periods indicates that most of the basic

spatial patterns of the long-term components (Mode-1 and Mode-3) have remained. The

differences in their spatial distributions reflect the development of the same components

at different periods.

Many interesting local differences are observed in Mode-1 glacial component. Some

notable glacial changes that have occurred since 2009, such as the expansion of the

West Antarctica mass loss area, the onset of significant mass loss along Totten Glacier,

East Antarctica, and the onset of mass gain along Ice Stream C, West Antarctica, are

identifiable (Fig. 6.3a).

The GIA-related modes for two time periods (Mode-3 in Figs 6.1 and 6.3) show significant

spatial differences between the former and latter periods (Figs 6.1c and 6.3c), even though

the GIA-related mode is still detectable across both time periods. The former is primarily

concentrated across MBL, whereas the latter is primarily distributed across the RIS and

FRIS. One potential explanation is the alteration of long-term trends for some glaciers

associated with RIS around 2010, which makes it more difficult for ICA to separate the

long-term changes of glaciers and GIA, and the shorter time span worsens the challenge.

We examine the SCCs between the ICA modes and GIA models (see Table 5.1) to

determine the ability to extract the GIA signal via ICA. The results show that the SCCs

for the GIA-related modes and ICE-6G is 0.624 for the former period, and 0.664 for the

latter period, respectively. Considering that the SCC between the ICE-5G and ICE-6G

GIA models is 0.7023, it is reasonable to infer that the two spatial patterns (single-peak

and two-peak) may both reflect the GIA signal.
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Figure 6.5: Accumulated eigenvalue spectrum derived from implementing PCA method
on different datasets. Green, blue, red, and black curves are for the CSR, GFZ, JPL, and
AVG (the average coefficients of the above three datasets) datasets, respectively. The
red cutoff line indicates the first six eigenvalues that were selected.
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Figure 6.6: The first six spatial modes extracted via sICA from the AVG (average of
three datasets), CSR, GFZ, and JPL datasets.

Figure 6.7: Corresponding time series of the decomposed spatial modes extracted via
sICA from the AVG, CSR, GFZ and JPL in Fig. 6.6. The gray shading denotes the
data gap in the study period, with the GRACE/GRACE-FO gap (July 2017-May 2018)
in dark gray and the discarded period (July 2016-July 2017) in light gray.
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6.1.2 Discrepancies between datasets

This study also tested the different spherical harmonic coefficients provided by three

data centers (CSR, GFZ, and JPL) and their average. Firstly, calculate the eigenvector

spectrum for each dataset via PCA (Fig. 6.5), which yielded accumulated variance ratio

curves of the three individual datasets that were very similar. Each of the three datasets

possess ratios above 0.7 for the first six components, with the JPL ratio being slightly

higher than the other two, and the average (AVG) shows the highest ratios (even higher

than that for each individual dataset), with a ratio of about 0.75.

Then employ sICA separately for the different datasets, with the results shown in Figs

6.6 and 6.7. We find that the results for the dominated ice/snow signals in Mode-1 are

identical across the datasets. There is also a good agreement among the datasets for

the periodic variations of the Antarctic Peninsula in Mode-4 and the snowfall events

in Mode-5. However, there are different biases among each of the datasets for some of

the weaker signals. For example, although the additional linear trends associated with

the GIA signal have been successfully separated for all of the datasets (Figs 6.7 c1–

c4), the corresponding spatial distributions differ widely (Figs 6.6 c1–c4). Among these,

the AVG and CSR results show a two-peaked spatial feature across FRIS and MBL,

respectively, whereas GFZ and JPL show a single-peaked spatial feature. Furthermore,

the spatial distributions of the remaining high-frequency meteorological signals also differ

significantly (Figs 6.6 f1–f4). This is potentially due to the large discrepancy in the

minor signals after the PCA implementation in the first step. However, this could also

be attributed to the signal mixing owing to incomplete decomposition. We therefore used

the average solution of the three datasets, as mentioned in Sec.2, to avoid any bias in

the results.

6.1.3 Comparison of Different ICA Methods and PCA

Different ICA methods can achieve different aspects of independence, as mentioned in

Sec.3. sICA maximizes the independence in the spatial domain, while tICA maximizes

the independence in the temporal domain. Different ICA methods may be suitable for
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Figure 6.8: The first six spatial modes extracted via sICA, stICA, tICA, and PCA. Note
the different color scales for the ICA and PCA results.

Figure 6.9: Corresponding time series of the decomposed spatial modes extracted via
sICA, stICA, tICA and PCA in Fig. 6.8. The gray shading denotes the data gap in the
study period, with the GRACE/GRACE-FO gap (July 2017-May 2018) in dark gray and
the discarded period (July 2016-July 2017) in light gray.
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Figure 6.10: tICA time-series IC6 and Southern Oscillation Index. The gray shading
denotes the data gap in the study period, with the GRACE/GRACE-FO gap (July
2017-May 2018) in dark gray and the discarded period (July 2016-July 2017) in light
gray.

different scenarios; therefore, we tested three ICA methods, sICA, tICA, and stICA, and

compared their results with those of the classical PCA method to determine the most

appropriate method for AIS studies. The results are shown in Figs 6.8 and 6.9.

We processed the data in the same way, with the first six components selected for each of

the methods. Contrast to the sICA results in the Sec.4.1.2, the six tICA spatial modes

(Figs 6.8 a3-f3) are extremely similar, while the corresponding time series (Figs 6.9 a3–

f3) exhibit diverse periodicities at different time scales. The tICA results may represent

AIS-scale characteristics over different periods. For example, IC1 shows a dramatic shift

in the trend from 2003 to 2007, IC2 and IC3 clearly reflect annual AIS variations, and

IC4, IC5, and IC6 exhibit potential periodic variations at 10+-, 3–4-, and 5–6-year time

scales, respectively.

We particularly found that IC6 may be correlated with the Southern Oscillation Index

(SOI) (Fig. 6.10), which responds to the intensity of the possible ENSO and La Ni

thicksimna activities. The overall trend and periodicity are well matched between SOI
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and IC6, with the exception of some degree of divergence in 2006 and 2016, which may

demonstrate the tele-coupling of the AIS with ocean activity.

The stICA results can be considered a trade-off between sICA and tICA (Figs 6.8 a2-

f2 and 6.9 a2-f2). stICA can effectively extract independent features in the temporal

domain, such as IC2, IC5, and IC6, which are closer to the periodic signals that were

separated via tICA than those that were separated via sICA. At the same time, more

spatial details can also be obtained via stICA compared with tICA, such as the separation

of the spatial features of the abnormal snowfall events across East Antarctica in Mode-5.

We also compared the ICA with the classic PCA method (Figs 6.8 a4-f4 and 6.9 a4-f4).

The first six principal components of PCA accounted for 58%, 5.5%, 4.7%, 3.3%, 2.2%,

and 2.0% of the total variation, respectively. The first component shows the dominant

long-term trend of the AIS, whose spatial Mode-1 is almost identical to the regressed

linear trend (Fig. 1.1). The second component exhibits long-period variations, with East

and West Antarctica in an opposite phase. The third component shows mixed signals

from the Antarctic Peninsula and Wilkes Land. The fourth component shows annual

variations, while the fifth and sixth components show periodic variations at medium-

term time scales. The PCA results are somewhat similar to the tICA results, in that

they largely represent AIS-scale characteristics, which leads to a concise and clear time

series, whereas the spatial features are ambiguous and difficult to identify.

The most important difference between PCA and the three ICA methods is that PCA

does not capture physical processes, such that each PCA component is a superposition of

multiple physical processes. Therefore, it is impossible to extract independent physical

processes of interest for a specialized study via PCA.

The GIA-related signal, which possesses the most significant uncertainty across the AIS,

can only be effectively separated via sICA. We are also more familiar with some spatially

distinct regions than the periodic time series, such as the intense ice melting in the AMS

and the snow accumulation in East Antarctica. Identifying these spatial features will

help us more easily relate the ICA results to specific physical processes. Therefore, we

prefer to use ICA by maximizing the independence on the spatial domain in this study,

and will also consider the combination of other ICA methods for further comparisons
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with atmospheric models and reanalysis data in the future.

6.2 Stability of ICA Results

In Sec.6.1, the factors that can affect the results of ICA are discussed, including different

time periods, data centers, and ICA algorithms. It is clear that the results of ICA

are variable and can be influenced by many factors. But the statistical independence

components in ICA results are expected to be related to physically independent processes.

The variability of the ICA result will obviously weaken its credibility. This section will

discuss the stability of ICA, using the analysis of GRACE/GRACE-FO as an example,

to demonstrate the reliability of ICA analysis for AIS mass change.

6.2.1 Determination of Independent Component numbers

Determining the number of ICs is very important in the application of ICA. An excess

number of components can make the results difficult to interpret, while insufficient com-

ponents may lead to independent signals can not be effectively separated. The selection

of an appropriate number of independent components requires further discussion. In this

section, the number of components is adjusted to test the changes. The number of inde-

pendent components will be adjusted to determine the differences in separation results

for different given values and to evaluate their stability.

Here, GRACE/GRACE-FO data and sICA is used as an example, keeping the same

data processing and algorithm, only the number of independent components (N) will be

changed. In the previous sections, N is determined to be 6 based on the cumulative

variance contribution ratio suggested by PCA (Fig. 6.5) that possesses above 70% of

the total variance. Here, the value of N is reduced from 6 to 3 by step, and the sICA

separation results for each given value of N are shown in Fig. 6.11 and Fig. 6.12. Fig.

6.11 represents the spatial modes and Fig. 6.12 represents the corresponding time series

of decomposed spatial modes with the same arrangement.

The first column on the left is the results for N=6, which is the rearrangement of Fig.

4.1 and Fig. 4.2 (see Sec.4.1.2). The second column is the result for N=5. Most of

the components are similar to those when N=6. Mode-1, Mode-3, Mode-4, and Mode-5
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Figure 6.11: The spatial modes extracted via sICA with different independent component
numbers (N). From left to right, each column is the separated spatial modes when N is
6,5,4,3, respectively
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Figure 6.12: Corresponding time series of the decomposed spatial modes extracted via
sICA with different independent component numbers (N) in Fig. 6.11. From left to right,
each column is the spatial mode when N is 6,5,4,3, respectively. The gray shading denotes
the data gap in the study period, with the GRACE/GRACE-FO gap (July 2017-May
2018) in dark gray and the discarded period (July 2016-July 2017) in light gray.
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can be found to be completely consistent in the results of N=6. Specifically, (b1)–(a1),

(b3)–(a3), (b4)–(a5) and (b5)–(a6) can be paired with each other. It is worth noting

that (b2) appears as a combination of (a2) and (a4).

The situation is similar when N=4. (c1)–(b1), (c2)–(b3), (c3)–(b5) and (c4)–(b4) can

be considered as corresponding pairs. It is very interesting to note that (b1) and (b2)

could be further combined into one component (c1). It can be confirmed by comparing

the spatial distribution of (c1) in Fig. 6.11 with (b1) and (c1). The mass loss signal

especially in the north tip of AP and GVL areas suggested by (b2) that is not included

in (b1) can be found in (c1).

As N is further reduced to 3, (d1)–(c1), (d2)–(c2), and (d3)–(c4) can be considered as

corresponding pairs. The periodic mass increase of overall AIS suggested by (c3) cannot

be found when N=3. (c1) and (c3) could be further combined into one component (d1).

Compared to (c1), the spatial distribution of (d1) in Fig. 6.11 does not show a clear trend

of mass loss over the inland area of Antarctica which could be due to the superposition

of (c1) and (c3).

Overall, the decomposition results of sICA with different IC numbers show very good

stability. No conflicting results are obtained. Components that are associated with

glacier/snow changes ((a1), (b1), (c1) and (d1)), extreme snowfall events ((a5), (b4),

(c4) and (d3)) and GIA ((a3), (b3), (c2) and (d2)) can be found in all situations. It can

be concluded that as N decreases, the decomposition becomes more incomplete and the

integration of signals becomes more significant.

Furthermore, decreasing N reveals the processes signal mixing, and their order implies the

strength of independence of each component. From the results of N=3, it can be found

that glacier/snow change, GIA, and extreme snowfall events may have the strongest

independence. In phase N = 4 ∼ 3, a periodic variation with annual cycle can be

separated from the glacier/snow changes, and this annual signal has relatively strong

independence. In phase N = 5 ∼ 4, glacier changes in the AP and GVL areas can be

separated from the remaining glaciers like AMS, implying the different dominant physical

processes for these areas. The time series of (b2) in Fig. 6.12 exhibits a more complex

periodicity when compared with (b1). In phase N = 6 ∼ 5, it can be found that AP
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exhibits a different multi-year periodic pattern with regions such as GVL that could be

controlled by different climate factors.

This inverse process also shows how the independent components are decomposed and

effectively helps to understand the signal mixing process in Antarctica and the relation-

ships between different components.

6.2.2 Representation of Spatial Field

Commonly, the time-varying gravity field can be represented by the geoid N . The geoid

height can be calculated using a series of fully normalized SH Coefficients provided by

GRACE level-2 products as follows Wahr et al. (1998):

N(θ, λ) = a
∞∑
l=0

l∑
m=0

Plm(cosθ)[Clmcos(mλ) + Slmsin(mλ)] (6.1)

Where a is the average radius of the Earth, θ and λ represent latitude and longitude,

Plm(cosθ) is the normalized associated Legendre function, Clm and Slm are the fully

normalized SH coefficients of the Earth’s gravity field, l and m are the degree and order

of SH coefficients respectively.

The mass transfer and redistribution on the Earth’s surface will cause the change of geoid.

This change can be expressed by the changes of SH coefficients ∆Clm and ∆Slm:

∆N(θ, λ) = a
∞∑
l=0

l∑
m=0

Plm (cosθ)
(
∆Clmcos(mλ

)
+ ∆Slmsin(mλ)) (6.2)

Where ∆Clm, ∆Slm can be expressed as follows (Chao and Gross, 1987):{
∆Clm

∆Slm

}
=

3

4πaρE (2l + 1)

∫
∆ρ(r, θ, λ)Plm(cosθ)(

r

a
)l+2

{
cos(mλ)
sin(mλ)

}
sinθdθdλdr

(6.3)

ρE represents the average density of the Earth.

SH is completely defined basis on the sphere, it allows for the representation of functions

on the surface of a sphere with high accuracy. The series expansion of a function in

spherical harmonics is often more computationally efficient. This makes it particularly

useful for large-scale problems.
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Generally, the SH coefficients published by the data center need to be transformed into

spatial field before ICA. Therefore, the input data for ICA is in the form of spatial grid.

All the previous results obtained above are calculated in this way. The alternative way is

to directly analyze with SH coefficients, which will generate the results in SH expansion,

and then to inverse the results to a spatial field. Although there are two different ways

(as shown in Fig. 6.13), they are expected to be completely equivalent because the input

data contains exactly the same information only differ in the representation formation.

Here, GRACE/GRACE-FO data will be used as an example, keeping the same data

processing and algorithm to compare the results through the two ways. The comparison

of the two ways are shown in Fig. 6.14. The sICA results based on the SH expansion

and the spatial grid input are presented on the left and right sides, respectively. For ease

of comparison, the right panel presents a reorganized version of Fig. 4.1 and Fig. 4.2.

The results of ICA analysis based on SH expansion and grid are highly comparable in

some of their time series, among them IC4, IC5 and IC6 can be considered equivalent.

However, noticeable differences can also be observed in the spatial distribution, particu-

larly in Mode-1, Mode-2, and Mode-3. For SH-based results, Mode-1 exhibits a long-term

mass decrease in WA, while EA shows a spatially simple long-term mass increase. Dif-

ferent from grid-based results, the areas like Totten do not have mass decrease trend, in

contrast, Mode-3 exhibits the mass decrease trend in DML and Totten, as well as AMS

in WA, which suggests that the results of the analysis with SH-based input can not dis-

tinguish the two linear components very well. Mode-2 is mainly differs in AP, SH-based

Mode-2 does not separate the AP from the rest of the region as another independent

component which approximates to the grid-based decomposition with independent com-

ponent of N=5 ( (b2) in Fig. 6.11 and Fig. 6.12).

Furthermore, discrepancies are noticeable in the ocean region. Stripe-like signals persist

in the SH results due to the application of the ocean/land mask. Since the focus of

this study is solely on terrestrial mass changes, a mask is employed to eliminate signals

originating from the ocean. However, the truncation of SH expansion induces signal

leakage at the ocean/land boundary.

Similar comparisons were also performed using stICA and tICA, the results of which are
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Figure 6.13: Two different ICA input data processing flows.
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Figure 6.14: Comparison of sICA results of GRACE/GRACE-FO with different repre-
sentation formation. The left and right are the input represented by SH and spatial gird,
respectively.



Chapter 6. Better Way to Drive ICA 65

presented in Fig. 6.15 and Fig. 6.16. In comparison to sICA, these two algorithms are

focused more on the temporal independence, thus the differences caused by the expression

of spatial data should be weaker. It can be seen that apart from a change in the ordering

of the components, the ICA results from SH and Grid are almost identical.

Similar comparisons are also been repeated using stICA and tICA. The results are shown

in Fig. 6.15 and Fig. 6.16, respectively. Compared to sICA, these two algorithms more

focus on independence in temporal domain, thus the differences caused by the expression

of spatial data should be even more subtle. It can be seen that apart from a change in

the ordering of the components, the ICA results from SH and Grid are almost identical.

Therefore, it can be concluded that, theoretically, the organization format of data will

not affect the results of ICA as long as the data contains the same information. However,

the use of Ocean/Land mask will leads to significant errors in the spatial domain due to

truncation errors, which can severely interfere with the results. Overall, the performance

of the decomposition using spatial grid as input is superior to that using SH expansion

as input.
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Figure 6.15: Comparison of stICA results of GRACE/GRACE-FO with different repre-
sentation formation. The left and right are the input represented by SH and spatial gird,
respectively.
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Figure 6.16: Comparison of tICA results of GRACE/GRACE-FO with different repre-
sentation formation. The left and right are the input represented by SH and spatial gird,
respectively.
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Chapter 7

Conclusion and Future Work

7.1 Conclusion

This dissertation revisited the main physical processes of AIS from a satellite geodetic

perspective. When reviewing the available data just realized that we have a decades-long

record of observations for the AIS study. This dissertation focused on the utilization of

statistical information of satellite data, using ICA method as a framework to achieve a

different perspective to analyze the changes in AIS. The main conclusions obtained are

as follows:

1. The spatio-temporal properties of AIS variations were extracted using ICA. Typ-

ical long-term trends (e.g., mass loss in WA) were clearly extracted and linked to

physical processes that can be easily recognized, such as glacier and snowfall such

as ice dynamics, snowfall and GIA. For time series with complex periodic signals,

such as those observed in AP, which are presumed to originate from the ocean

current, further investigation is required.

2. The results of GRACE/GRACE-FO are corroborated with the altimeter data. For

comparison purposes, suitable approaches of unifying resolutions were discussed.

Notable common signals in both gravity field and elevation changes like snow/ice

trend, snowfall were confirmed by mutual comparison. Which proved that the ICA

results are reliable and directed to trustworthy physical processes.

3. The separation results were examined using physical models. GIA signal from

69
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GRACE/GRACE-FO observations has been achieved for the first time. This is

further confirmed by four forward GIA models. However, due to the limitations

of the ICA method, this study did not effectively constrain the GIA modeling and

quantitatively evaluate the GIA model based on the separation results.

4. An Antarctica SMB model (NHM) was introduced to study AIS drainage basins. A

Classification of basins was proposed based on the behaviors of total mass changes,

SMB mass changes and surface elevation changes. Dominant physical processes in

each region could be identified by combining the results of the ICA analysis and

SMB model.

5. The robustness of ICA results was also examined. Some of the factors affecting

ICA results were discussed and summarized. The time period of the input data was

found to have a direct effect on the results. By adjusting the number of independent

components, it has been demonstrated that the glacier changes, snowfall pattern,

and GIA pattern separated exhibit strong stability. This demonstrated the clear

association of the ICA results and specific physical processes. In addition, regarding

the ICA algorithm, it is concluded that for most geophysical signals using sICA to

separate independent sub-regions is more straightforward and comprehensible.

7.2 Future work

Investigating of periodic components

Further work is also needed to focus more on the periodic components, since these

components are much possible to connect with meteorological factors that are glob-

ally correlated. This helps understand the response of AIS to current–near future

global climate change as well as possible teleconnection.

Constraining ice history for GIA modeling

The GIA signal separated using ICA is hard to be quantified, while its spatial

distribution is demonstrated to be stable. The viscoelastic parameters of the Earth

is less sensitive to spatial distribution compared to that of ice history. Therefore,
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it is worth considering the use of ICA results to constrain the ice history in future

studies.

Involving the ocean effect

The ocean is an important driver affecting AIS, but the role of the ocean is not

considered much in this stage because of the lack of relevant knowledge. The

influence of the ocean needs to be incorporated in the future.

Limited spatial resolution

Gravity satellite-GRACE has a natural advantage for studying mass changes but

is limited by its spatial resolution (about 300km). Higher spatial resolution is im-

portant for understanding processes such as frequently occurring coastal sea-ice

interactions and mass redistribution within glacier basins. Several studies indi-

cate the possibility of further enhancing its resolution in Antarctica, such as using

mascon solution. This needs to be further considered in the future.
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