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Simultaneous estimation of a high-dimensional

parameter through a Pythagorean relationship
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Simultaneous estimation of a high-dimensional parameter is and will be a very important
subject of research. The recent rapid progress in computational environment has made it easy to
collect a complex dataset. The role of a statistical model containing a high-dimensional
parameter, which is suited for such a complex dataset, is getting more and more significant n
accordance with this progress.

The aim of this dissertation is investigate simultaneous estimation of a high-dimensional
parameter from a view point of a Pythagorean relationship both theoretically and practically.
Theoretical researches on estimation in such complex models are needed from the viewpoint of
application. Also actual estimation procedures with nice properties are in high demand. The
James-Stein estimator (James and Stein, 1961) is a breakthrough estimator in this area. A number
of works have been devoted to elucidating the reason why the James-Stein estimator or its
modifiers perform well. There seems to be the following two approaches to casting light to the
reason. One is a Pythagorean relationship holding among the maximum likelihood estimator
(MLE), the James-Stein estimator and the true parameter, which was pointed out first by Stein
(1981). The other approach is the interpretation of the James-Stein estimator as an empirical
Bayes estimator, as proposed in Efron and Morris (1973).

The theoretical aspect of the motivation of this dissertation is as follows. A Pythagorean
relationship is one of the most natural and fundamental notions by which we can improve upon
something or show a certain inequality. For example, the Pythagorean relationship pointed out by
Stein (1981) makes it clear how the James-Stein estimator dominates the MLE. It is expected
that such a Pythagorean relationship will lead to better estimation in a unified way. Yanagimoto
(1994, 2000) discussed Stein-type estimation from this point of view. We show in Chapter 3 that
a Pythagorean relationship holds in the field of estimating functions, although the original
PythaAgorean relationship by Stein (1981) does in the field of estimators.

Further, in Chapters 4 and 5 which investigate the Bayesian analysis, a Pythagorean
relationship plays another importént role. The optimality of the Bayes estimator is understood
quite easily through the Pythagorean relationship. The three points, the Bayes estimator, an
arbitrary estimator and the true parameter value, constitute on the average a modified right
triangle. The modified triangle makes it clear how the Bayes estimator is superior to an arbitrary
estimator.

Here we state the practical aspect of the motivation of this dissertation. As indicated by the
fact that the James-Stein estimator is regarded as an empirical Bayes estimator (Efron and Morris,

1973), the Bayesian approach seems to be promising in the estimation of a high-dimensional



parameter. Although Chapter 3 investigates the problem from the frequentists' viewpoint, some
of the obtained estimating functions can be interpreted from the Bayesian point of view. The
empirical Bayesian method provides us with practical inferential procedures for a vector
parameter. A difficulty in constructing an empirical Bayes estimator lies in that there are a
restricted number of families of prior densities. This is why some useful families of prior
densities are necessary.

Conjugate priors, originally introduced by Raiffa and Schlaifer (1961, p. 43-58), are of great
use for their desirable properties and was assumed by Efron and Morris (1973) in deriving the
empirical Bayes estimator. To extend the notion of conjugate priors is of great si gniﬁcance’ in this
respect. A recent and extensive review of the conjugate priors is found in Gutierrez-Pena and
Smith (1997). Chapters 4 and 6 present two methods for eliciting prior densities. ’

The organization of this dissertation is as follows. In Chapter 2, some basic canepts and
tools are presented, which lead to better understanding of the subsequent chapters.

In Chapter 3, which is based on Ohnishi and Yanagimoto (2003), a unified approach using a
Pythagorean relationship reveals the mechanism through which the maximum likelihood
estimation can be improved upon. A Stein-type estimation of location vectors is discussed in
terms of estimating functions. We assess the superiority of an estimating equation by its mean
squared norm. The Coulomb potential function in electrostatics leads to a Pythagorean
relationship with respect to this norm. By making full use of the Pythagorean relationship, we
improve upon the likelihood estimating function. A further improvement is shown to be feasible
under a certain condition. We pursue possible strong relationships between the superiority over
the likelihood estimating function and physical quantities appearing in the theory of
electrostatics.

In Chapter 4, we enrich the notion of conjugate prior distributions in two directions and
investigate the Bayesian analysis assuming the introduced prior densities. A conjugate prior for
the exponential family, referred to also as the natural conjugate prior, is represented in terms of
the Kullback-Leibler separator. This representation permits us to extend the conjugate prior to
that for a general family of sampling distributions. Further, by replacing the Kullback-Leibler
separator with its dual form, we define another form of a prior, which is called the mean
conjugate prior. Various results on duality between the two conjugate priors are shown.
Implications of this approach include richer families of prior distributions induced by a sampling
distribution and the empirical Bayes estimation of a high-dimensional mean parameter. A
Pythagorean relationship with respect to the Kullback-Leibler separator is used both to show the
optimality of the Bayes estimator and to construct an empirical Bayes estimator. This chapter is
due to Yanagimoto and Ohnishi (2002, 2003).

In Chapter 5, we introduce specific location-dispersion models and discuss a conjugate



analysis by assuming some prior density. The models are called the l-additive location-dispersion
models, and we apply one of the prior elicitation procedures in Chapter 4. The l-additive
location-dispersion model is generated by the density function whose logarithm satisfies a
certain addition identity, an extension of the addition formula for the (hyperbolic) cosine
function. The addition identity can be interpreted in the light of statistical mechanics. We show
that 1-additive location-dispersion models consist of the familiar five models. The assumed prior
density is proved to be closed under sampling. We also calculate the Bayes estimator under a
Kullback-Leibler loss function. A unified approach proves that the posterior mode, which has an
analytical form, is optimal. Empirical Bayes estimators of location vectors are constructed
explicitly in the five l-additive location-dispersion models. This chapter is based on Ohnishi and
Yanagimoto (2002)

In Chapter 6, we propose a prior elicitation method other than the one in Chapter 5. The key
feature is the use of the likelihood of the distribution of the MLE. The derived prior density is
proved to be an extension of a conjugate prior density. Three examples including the l-additive
location-dispersion model in Chapter 5 are presented in order to clarify our idea. The
applicability of our method is discussed with the use of the Barndorff-Nielsen's p*-formula
(1983).
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EERELIRAEORICDVWTEEIIRIT L., RNERXHEELEZEELEEZTT
ST, BB BRTEEE2EODETIIVICB IS HERES (1)EYY I3 X%, (2)Bayes
HEROQEZNERE VD 3 DOBANLRENICH U, B L BHET HHEHIF
FIZBWTEODNOBEELRER LB DEKS 2HRZ2EL, ZNHSOEBRICED. FH
BEORXIIBLEBEREICTHMET Z2NEZRA TS &HB Lz,

DB E R NEERA -

WXL 6ENSRO TR, TOXEHETERIL, BI3IRLFEI4ETHEDONTNS, L
TOZDODEERENORDMEALETORRER >TZ I EITH 5,

—DHEIZ. location family I BT B BEANT NIV OHEEREZ, #ERER OIS
MEFHLUIEIETH D, HEFIREORTNENE EXELHEDRENLTLHE
<IBNEWSEEOEBWRAEZ, HEEOKE—MWREA-—ES IS ABER-P5H
SN UTz. #EEBEROER T, HERBKORIZFHMET 2—D0HEMEL L THERH
BOFEH 2NV LEANEEND L —AEERFOSNT NS, i, LEHEREK
WWZOREEDO T TARAHEEEBEOHF TRETHL ZEbIHALNTNS, HEFER.
CDEENNA T ZADDHBWEEBITH L THENTH DI EITEEL, N T AED
DNEEHEEREZERT S Stein BHERREZROES T ABBROMILERT &
WEDBHRICEH L, 22 TOEY IS AR LT, LEHEEKZZRALEL T,
Stein BT E T OMO—L ETHEENREA=ARORILEERT 5. ZOE MR
ZE LEICRENZEEZRLZLTWDEOR, STIAFBRNOERE, §4H5 1
RERWTHMRBER TH S, HEBILEIHIZ, HE5—EOFHENHIZINTNDELE
17, Stein BIHEFRIS 2 ER T HHEHEBDIBRTE S ZEE2RLE, IS OHERRK
LYBB2O—DHTHIHBELKFIRITILIMEELOBEBEIIDNWTH RBIZEDEK
o7z,

ZDHIE. Kullback-Leibler (K-L) EHMEICER LR EBMSHAOLETH S, &
RICBEETT IV Tld Bayes HEEN R WIREZ T 5 Z EMNAS BRI N TS, HEEE,
B - DHOMENSEKROH S, TIN5 BEMICERISMEZEHTHAF—AIT
WROMATNS, IERESHRICBITIEEERNIHZEZ KLEREZANVWTERERET S &,
ZODOHMBNOIIRVPERETH 5, —DI, BEESABEUNNLBREZRISHAOBSZE
HETHIETHD, I T, BRNHMEEBRDHNFA—DOOABRITET S LN D EKk
TOHBERFT I NR<L5, BFEEEL. JORREIIEEESHBEICNET SES
TTABMREESELRDNTNS I EZ@BFA L. HIOIELE LT, HFEITHEEF
DHHBNIFDOIFRICBNTHWE KL BHRE &2 EEH W TERIS R 2B
Ul BFICETNDEREDGEOES. N PR RERSHEMAT, HILNWE
B DBENERETEA I EDHLSNIIL TS,
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