氏名 奥田正彦

学位（専攻分野） 博士（工学）
学位認定番号 総研大甲第115号
学位授与の日付 平成7年3月23日
学位授与の要件 数物科学研究科 加速器科学専攻
学位規則第4条第1項該当
学位論文題目 Nb/Cu超伝導加速空洞のためのNbスパッタリング成膜に関する研究

論文審査委員 主査 教授 絵面栄二
教授 黒川真一
助教授 光延信二
助教授 齊藤芳男
助教授 野口修一
助教授 講川秀
（高エネルギー物理学研究所）

主任研究官 福富勝夫
（金属材料研究所）
博士論文の要旨

本研究は高周波接続マグネトロンスパッタ法により作製したNb膜の特性（特に高周波残留抵抗の発生の原因となるNb膜の柱状結晶組織）と成膜条件の関係を明らかにしたものである。さらには、電解法を用いたシームレスCu空洞の開発により、電解銅空洞にNbをスパッタ成膜したLバンド（1.5 GHz、3 GHz）Nb/Cu超伝導空洞が有効であることを実証した。

高周波空洞内に大きな電界をつくろうとすると、空洞壁をながる高周波電流による損失が電界の2乗に比例して大きく、空洞壁を冷却することが難しくなるので、大きな高周波電力を供給できない。このために、常伝導空洞を用いたシンクロトロンでは最大加速電圧が1.5 MV/m程度に制限されており、リニアックでパルス運転を余儀なくされている。この問題を解決するために超伝導空洞が開発され、KEKでは1980年代後半にトリスタン主リング用508 MHz超伝導空洞が世界にさきがけて実用化された。この超伝導空洞は、高加速電界が要求されるリニアコライダー、大電流のビーム加速が要求されるBファクトリー、ニュートロンスパッターション用陽子リニアックなどに応用できる。また、高電界（大きな蓄積エネルギー）での運転により質の良いビームを得られることから、自由電子レーザーにも適用されている。

しかし、理論から予測されるNb空洞の最大加速電界は、50～60 MV/mであるのに対して、現状では10～30 MV/mにとどまっている。この原因は、フィードバックシステムや空洞壁での局部的な常伝導転移による空洞のケンチである。もう一つの問題点は製作コストが大きいことであり、製作コストそのものの削減に加えて、運転電界を上げることにより転位加速電界当たりのコストを下げることが要求されている。その対策として、表面処理の工夫により常伝導転移の発生原因となる空洞表面の欠陥を少なくし、残留抵抗比が大きいNb材の使用により空洞壁の熱伝導度を大きくして発熱の放散を促す努力がなされている。もう一つの方法は熱伝導度が大きい銅を持ちいて空洞を作り、内面のスパッタ法を用いてNbを成膜する方法である。このNb/Cu空洞の利点は、以下のようまとめることができる。

a）空洞内熱の伝導率が大きいために局部的な発熱に対して安定である。
b）パイプ冷却が可能であるのでクライオスタットの構造が簡単になる。
c）他の高Tc材料（NbTi, NbN, Nb₃Sn, YBa₂Cu₃O₇）にも応用が可能である。

しかしながら、現状では残留抵抗が大きいためにQ値が低下するという問題がある。本論文では、これらの原因は膜中の不純物、ミクロな剥離、スパッタ膜特有の柱状結晶組織にあると考え、スパッタ法により作製したNb膜の特性と成膜条件の関係を把握することを主な目的とした。この試みは残留抵抗の発生原因の究明につながり、Nb/Cu空洞の問題点の解決あるいは限界を見極める上で意義のあることである。

まず初めに、スパッタ法の基礎に立ち返り、Nb/Cu空洞の成膜方法と成膜条件について基礎的な検討を行った。スパッタ法の特徴は（蒸発法に比べて）、スパッタ原子が数～数100 eVの比較的大きなエネルギーを持っていること、膜が数～数100 eVのイオンや電子の衝撃を受けること、雰囲気に0.1から10 Paの比較的高い圧力の

—48—
ガス分子が存在することである。この特徴を活かして高純度Nb膜を製作するには、高周波マグネトロンスパッタ法が有利であり、バックグラウンド圧、Arガス圧、成膜速度、基板温度が膜質に影響を与えると判断した。またスパッタ膜の形態ゾーンモデルから、Nb膜では低Arガス圧基板温度（0.1〜1Pa、300〜500℃）で柱状結晶組織が著明なゾーン1から緻密なゾーンTに遷移すると予想した。

つぎに、上述の検討に基づき、高周波回転マグネトロンスパッタ法を用いたNb/Cu空洞専用成膜装置を開発した。この成膜装置の特徴は、Lバンドシングル空洞に対して、低バックグラウンド圧（\(1 \times 10^{-5} \text{〜} 3 \times 10^{-5} \text{Pa} \), 300℃)、高成膜速度（\(1 \text{mm/s} \)）で、広範囲の基板温度（100〜450℃以上）、Arガス圧（0.1〜15Pa）を設定できることにある。

つぎに、空洞内面に厚さが一様で高い密着性を持つNb膜を作製する方法について検討した。高Arガス圧では一様なNb膜を作製することができるが、低Arガス圧ではビームバイブ部のグロー放電が不安定になり成膜ができない。そこで高Arガス圧でビームバイブ部の成膜を行った地低Arガス圧で空洞部の成膜を行う方法と、磁石を移動させながら低Arガス圧で成膜する方法をとることで問題を回避できることを示した。また、成膜前に200から300℃で空洞を加熱することにより、液体窒素温度と室温間のヒートサイクルに対しても剥離のない高密着性のNb膜を得ることができる。しかし、温度が高すぎると膜表面にCuが拡散することが明らかになった。

つぎに、Nb膜の特性について調べた。到達圧力を10^{-4} Pa以下にすると、Nb膜中の不純ガス成分量はNbバルクと同程度まで減少し、臨界温度はバルク以上の値を示した。この結果は、開発した成膜装置により不純物の少ないNb膜を作製できることを示している。高Arガス圧（1〜10Pa）では膜の柱状結晶組織が著しくなりボイドが見られるのに対して、低Arガス圧では膜が緻密になり、予想通り膜の形態がゾーン1からゾーンTに遷移することを確認した。柱状結晶組織の柱の大きさが大きいゾーン1のNb膜ほど直流電気抵抗特性に優れており、柱が小さいゾーンTでは低下した。高周波特性は緻密で結晶粒界の結合が強いゾーンTの方が優れていると考えられるが、直流電気抵抗特性の測定結果は逆の傾向を示した。この結果から、直流残留抵抗と高周波残留抵抗の相関点に着目して、高周波残留抵抗の発生原因について考察した。ゾーン1では基板のCu成分の表面拡散が多く、膜表面のCuが高周波残留抵抗の発生の原因になる。そこで、基板温度を上げることなしに電気特性に優れた緻密な膜を得る方法としてバイアススパッタを試み、空洞成膜への適用の可能性について検討した。

最後に、Lバンド（1.5GHz、1.3GHz）Cu空洞にNb成膜を行い、Nb／Cu空洞の高周波超伝導特性を調べた。Cu空洞の製作では電鍍法を用いることで空洞部の溶接縫き目をなくし、電界研磨により鏡面仕上げを行った。この電鍍鋼空洞の適用により、表面の欠陥による特性劣化の因子を無視できるようになった。Q測定値の結果、残留抵抗は大きい（〜120nΩ）ながらも、フィールドエミッションなしに最大1.0.4MV/m以上の加速電界を選択し、電鍍鋼空洞にNb／Cu超伝導空洞が有用であることを実証した。
論文審査結果の要旨

超伝導加速空洞をリニア・コライダーのような将来の大規模加速器に応用するためには、電界強度をさらに上げること、空洞製作価格を下げることが必要である。Nb も熱伝導率が大きく、かつ安価な Cu の空洞の表面に Nb 膜を作製することにより、全 Nb 超伝導空洞よりも電界強度の大きい空洞をより低価格で製作できる可能性がある。この Nb/Cu 超伝導空洞については世界の 1 、 2 の研究所で研究が進められているが、空洞製作の基礎である Cu 基盤上の Nb の成膜に関する系統的な研究成果は報告されていないのが現状である。奥田君は良質の膜を速達速度で作製することができる高周波マグネトロン・スパッター法に着目し、世界で初めてこの成膜法を Cu 基盤上の Nb 膜作製に応用した。成膜条件を変えて多数のサンプル及び実物大の空洞を作製し、その膜質を多面的に測定することにより、成膜条件と膜質の関係を明らかにした。

まず従来の正逆装置を Nb/Cu 成膜に応用する際の問題を洗い出し、真空槽と空洞真空を別にする等の数多いの改良を施し、幅広い成膜条件（Ar ガス圧、成膜速度等）を選択できる高周波同軸マグネトロン・スパッター装置を設計・製作した。この装置の設計が適切であったことは、研究目的のためには、どのような形状が必要であるかを把握するという、研究者として必要な能力を有していることを示している。

加速空洞は空洞部とビーム・パイプ部の直径が著しく異なっているため、両部に亘り一样な厚さの膜を付けるのは難しい。オーディト君はこの問題を根本の方法で解決した。（1）ターゲット内の磁石を空洞中央部に固定し、Ar ガス圧を時間とともに変化させる方法、（2）Ar ガス圧を一定に固定し、磁石の位置を時間とともに移動させる方法。これらの方法は、今後直径に大きな変化がある空洞の内部に厚さ一定の膜をスパッター成膜する場合の標準となり得るものと評価ができる。Cu 基板と Nb 膜との密着性も重要な問題である。

オーディト君の膜の剥離の問題を付加力と膜の内部応力の大小関係より論じている。成膜した Nb 膜の残留応力を X 線回折法により測定し、Nb 膜の圧縮応力と成膜条件、特に Ar ガス圧との関係を明らかにした。これにより剝離の問題に関しては、基板の清浄化、加熱脱ガス等による付加力の向上に付力が注がれてきた。一方の原因である膜の内部応力に影響を及ぼすオーディト君の研究はユニットであり、膜の剝離に関して新しい知見を加えたものと評価できる。

Nb 膜の膜質に関しては以下のような成果を上げている。（1）SEM を用いて Nb 膜の表面及び断面を観察し、Ar ガス圧が低いほど、また基板温度が高いほど、膜が緻密になることを示した。これはThorntonにより提案されたスパッター膜の形態ゾーン・モデルが Nb 膜にも適用できる事を世界ではじめて実証したものである。（2）Nb 膜の残留抵抗比（300K と1K での直流抵抗比）を測定し、柱状結晶組織との関係を調べた。Cu 基板上の Nb 膜の場合、柱の径が大きくなるほど残留抵抗比が大きくなることを実験的に示し、この結果を結晶粒界の強結合の数で説明できることを示した。これまですのNb 膜の抵抗と柱状結晶組織の関係を組織的に研究した例はなく、オーディト君の研究は、今後 Nb の高周波抵抗の発生原因を研究する上での基板となり得るものであり、高く評価できる。（3）Nb 膜中の Cu は高周波損失の原因となる。SIMS を用いて Nb 膜中の Cu の深さ方向のプロファイルを測定し、Cu 基板からの Cu の拡散を抑えるには、Ar ガス圧が低いこと
基板温度が高すぎないことが必要であることを実験的に示した。またCuの拡散の程度は膜の柱状構造によって説明できることを示した。この結果は今後高周波損失の小さい膜を作製する際の指針となる知見であると評価できる。

実際の加速空洞において到達電界強度の限界を与えるのはフィールド・エミッションである。従来の加速空洞はNbの板を分割加工し、空洞中央部及び空洞ビーム・パイプ部で電子ビームを用い接合している。従って接合部がフィールド・エミッションの原因になりやすい。奥田君は電鍍法を用いれば絶対目のかかる空洞ができることに着目し、実際に1.3GHzのCu加速空洞を電鍍法で製作し、その内部にNb膜を成膜した。電鍍法によるNb/Cu加速空洞の製作は世界初の試みである。空洞に高周波を印加し、フィールド・エミッションなしに10.4MV/m以上の電界強度が得られることを確認した。この結果はCu空洞製作法としての電鍍法を有用性を実証したといえる。

以上のように奥田君はCu基板上へのNbスパッタリング成膜に関する基礎的な研究を行って、成膜条件とNb膜の種々の性質との関係を明らかにし、Nb/Cu超伝導加速空洞製作のための基礎を固めた。実験計画と実験の進め方、限られた期間内に行った膨大な実験量、実験結果の的確な総数、得られていつもの知見等により、同論の研究者としての資質に疑いはなく、今後有能な研究者として成長していくことが十分期待できる。よって数物科学研究か加速幾何学専攻として博士の学位を授与するに相応しいと判断した。