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3.5 Numerical calculation to obtain k̄(pi)

Since Eq (3.8) is implicit in k̄(pi), I solve it for k̄(pi) by an iterative approximation method

as follows. First, I set k̄(0)(pi) = M for all pi as an initial condition (0-th step) of the iterative

method. Its n-th iteration counterpart is k̄(n)(pi). Here is the procedure to obtain k̄(n+1)(pi)

from k̄(n)(pi). By assuming that a randomly chosen reference link from the population is

directed to agent i with a probability of k̄(n)(pi)/(NM), the mean performance Π(n)
i of agent

i is obtained as explained in Section 3.2. Given the mean performance Π(n)
i of agent i, the

mean duration Ti
(n)

that the agent is kept linked by a follower is calculated as explained in

Section 3.3. Then k̄(n+1)(pi) is calculated as

k̄(n+1)(pi) =
Ti

(n)

∑N
j=1 Tj

(n)
NM, (3.9)

as explained in equation (3.7) in Section 3.4. In other words, I derive k̄(n+1)(pi) from k̄(n)(pi),

by

k̄(n+1)(pi) = κ ◦ τ ◦ π(· | k̄(n))(pi). (3.10)

I repeated this recurrence evaluation until when
∑N

j=1(k̄
(n+1)(pi)− k̄(n)(pi))2 became smaller

than 10−5 (Fig 3.5(a)). This predicted relationship (solid curves in Fig 3.5(b)) agrees well

with the simulation results (markers in Fig 3.5(b)).
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Figure 3.5: The derivation of the mean in-degree by the iterative approximation
method. (a) The procedure of the iterative approximation method for obtaining the rela-
tionship between the mean in-degree and ability. (b) Curves obtained from (a) are shown
against plots of simulation data.
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3.6 Group performance in the self-organized network

Studying the group performance,
∑N

i=1 I
i
t/N , in the self-organized networks is another ob-

jective of my paper. I defined group performance as the proportion of agents who give the

correct answer in a sequential decision-making as explained in Section 2.2. The group perfor-

mance fluctuates temporally (Fig(3.6)). The temporal mean (Fig 3.7(a)) and the temporal

standard deviation, SD (Fig 3.7(b)) of the group performance in the self-organized networks

were decreasing functions of the rewiring threshold. It is interesting that the stricter the

agent’s evaluation threshold is for kicking off referents, the worse the long-term group per-

formance is. For comparison, I showed in Figs 3.7(a) and (b) the mean and the SD when

all agents choose referents randomly (random reference), as in the initial network state prior

to adaptive rewiring (dashed lines in Figs 3.7(a), (b)). I also added those measures in the

case where all agents make their decision independently without constructing a network (in-

dependent decision; thick horizontal lines in Figs 3.7(a), (b)). The difference between the

thick line and the dashed line represents the effect of collective intelligence (decision-making

through majority-rule). The difference between the dashed line (random reference network)

and the dots (self-organized network after adaptive rewiring) represents the effect of adaptive

rewiring of the reference network on group performance, i.e., adaptive rewiring generates a

centralized network with preferred connections towards high performance agents. The mean

group performance was lowest when agents made decisions by themselves, which is improved

by collective intelligence with randomly assigned referents and further improved by adaptive
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rewiring based on the performance evaluation. Among adaptively rewired networks, those

with lower kick-off performance thresholds (i.e., with more generous kick-offs) had higher

group performance. I see that the SD of group performance also increased in the same order

as the mean group performance in this comparison, i.e., the group performance fluctuated

more when the mean group performance became higher.

The mean performance of each agent,
∑Tend

t=Tend−T+1 I
i
t/T , against his/her ability in the

self-organized networks was compared to both those in the cases of independent decision and

of random reference (Fig 3.8). As in the group performance, for a fixed ability value of an

agent, the mean performance was the lowest when the agent made decisions independently

of others (solid line in Fig 3.8), which is improved by collective intelligence with randomly

assigned referents (squares in Fig 3.8) and further improved by adaptive rewiring (circles,

triangles and + in Fig 3.8). The effect of the rewiring threshold on the mean performance of

each agent was similar to the effect of the threshold on the mean group performance: a looser

kick-off threshold led to a higher performance. Fig 3.8 illustrates that the difference between

independent decisions and majority voting, either adaptive or not, was reflected in both the

slope and the intercept of the performance–ability relationship. However, the differences

between the random and adaptive networks and those among different rewiring thresholds

were reflected only in their intercepts. This leads to an interesting observation: agents with

a lower ability were merited the most in their performance by collective intelligence, and the

performance of all agents was improved fairly well by the adaptive rewiring irrespective of

their ability.
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To summarize, performance in the self-organized network improved compared with the

initial random network or the case of independent decision-making. However, the group

performance fluctuated more in the self-organized networks, and even more in those networks

with higher mean group performance. This implies that a highly “intelligent” population with

improved performance, though biased with reference to high-ability agents, can be at risk of

a temporal crash in group performance.

Figure 3.6: A sample path of group performance. A sample path of group performance
in a period Tend − T + 1 ≤ t ≤ Tend, i.e. in the self-organized network.
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Figure 3.7: Mean and SD of group performance. (a) Mean group performance in the self-
organized network for each threshold. The dashed line represents the group performance in
the initial random network, and the thick horizontal line representss the group performance in
the case of independent decision-making. The mean group performance in the self-organized
network is higher than that in the random network for all thresholds, and it declines with
increasing threshold. (b) The standard deviation SD of group performance versus threshold.
The dashed line represents the SD in the random network, and the thick horizontal line
represents the SD in the case of independent decision-making. The SD of group performance
in the self-organized network is also higher than that in the random network for all thresholds,
and it gradually declines with increasing threshold.

43



Figure 3.8: Mean performance of each agent versus his/her ability. A circle, triangle,
and + mark the the mean performance versus ability for thresholds of θ = 0.5, 0.55 and 0.6
in the self-organized network. A black square represents the random network. The solid
diagonal line represents the case where performance is equal to ability. Even in the random
network, all agents improve their accuracy (the mean performance is higher than the ability
for each agent), and low-ability agents can particularly greatly improve it. The lower we set
the threshold, the higher the mean performance becomes for each agent.
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3.7 The effect of threshold on the unevenness in in-

degrees

The threshold θ used for rewiring, which stands for the severity of assessment, affected the

self-organized network in the following aspects. First, thresholds affected the strength of

heterogeneity in in-degrees among agents. I examined two heterogeneity measures of in-

degree distribution at time Tend, the Gini coefficient (G =
∑N

i,j=1 | ki − kj | /(2N2k̄), where

ki and kj are the in-degrees of agent i and j respectively, and k̄ is the mean in-degree of the

population (Cowell, 2011)), and the coefficient of variation of in-degrees (CV =
√

Var(k)/k̄).

They showed substantial dependence on the threshold θ (Fig 3.9). The Gini coefficient and

the CV are indices that are originally used to represent the inequality in the distribution of

wealth in a society. Here “the number of followers” (or “in-degree”) plays a role of “wealth”.

I measured the inequality in the number of followers by using these indices. Higher values of

these indices mean strong heterogeneity in in-degrees. In Fig 3.9, for both indices, the lower

is the threshold for rewiring, the higher are the values of these indices. Therefore, both of

these two indices show that a lower threshold for rewiring generates stronger inequality in

the self-organized in-degree distribution.

The threshold θ also affected the time needed for the system to reach the equilibrium

state (Fig 3.10). In Fig 3.10, the lighter colors represent a higher frequency of agents with

a given in-degree k (ordinate) against a threshold θ (abscissa) at time t. I can see that the

class of individuals with higher k grows faster for higher rewiring thresholds.
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The exponential increase of the mean in-degree k̄(p) against ability p is also affected

by the threshold θ (Fig 3.1). This nonlinearity in k̄(p) became stronger as the rewiring

threshold θ decreased. My analytical formula for the relationship between an agent’s mean

in-degree and ability (Eqs. (3.7), (3.8)) shows that the strongly biased links towards the

agents of high ability is due to the nonlinear dependence of the mean duration that an agent

keeps a follower on their performance. We have already seen that the extent to which the

mean duration increased with performance was stronger for lower thresholds (Figs 3.3(b)

and 3.4). These results can be also seen in Fig 3.11, which shows that the mean ability

of referents (averaged over those who are being referred), p∗ =
∑N

i=1 pik̄(pi)/(NM), was a

decreasing function of the rewiring threshold. This implies that the more the agents seek

better referents, the lower is the mean ability of referents. These apparently counterintuitive

results are discussed in Section 4.1.

The group performance and the performance of each agent also differed by the threshold.

The mean group performance and the performance of each agent became better as the thresh-

old θ decreased (Figs 3.7(a) and 3.8). The SD of the group performance, i.e., the fluctuation

of the group performance, also increased as the threshold θ decreased (Fig 3.7(b)).

Therefore, when we set the threshold lower, the heterogeneity in in-degrees became

stronger, and reference links were biased more toward higher ability agents. At the same

time, I also see that the group performance became better on average, though its tempo-

ral fluctuation became greater. I discuss the reason why these results hold in the following

Section 4.1.
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Figure 3.9: The Gini coefficient and the coefficient of variance (CV) of in-degree
distribution. The Gini coefficient (circle) and the coefficient of variance (triangle) (CV)
of in-degree distribution versus threshold. Both of these indices represent the strength of
heterogeneity in in-degrees, where higher values mean stronger heterogeneity. Both the Gini
coefficient and the CV decline with increasing threshold. Herein, the Gini coefficient G can
be calculated as G =

∑N
i,j=1 |ki − kj|/(2N2k̄), where ki is the in-degree of agent i and k̄ is

the mean in-degree (Cowell, 2011).
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Figure 3.10: The in-degree distributions for each threshold at the t = 0, 10, 1, 000
and 20, 000(Tend). The in-degree distributions for each threshold at the random network
(t = 0) and at times 10, 100, 1,000 and 20,000 (Tend) are shown in (a), (b), (c), (d), and
(e), respectively. For each panel, the horizontal axis corresponds to the threshold, and the
vertical axis represents the in-degree. The log10(frequency) is shown by the gray scale, so
when we see a vertical section at a threshold θ, we can see an in-degree distribution for the
threshold θ, such as the one shown in Fig 2.2(b).
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Figure 3.11: The mean ability of referents in the self-organized network versus
threshold. The lower we set the threshold, the more the mean ability of referents increases.
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Chapter 4

Discussion

4.1 Discussion on the self-organized reference struc-

ture

In this thesis, I have shown that the reference structure of agents who try to make correct

answers by referring to credible agents self-organized into a heterogeneous structure with an

exponential in-degree distribution (Albert and Barabási, 2002). The mean in-degree increased

exponentially with ability. Therefore small difference in ability can lead to large difference

in the number of followers in the self-organized network. My analytical calculation shows

that it was the mean duration of an agent to be kept linked by a follower that increased

exponentially with his/her performance. The performance-monitoring process in my model

generated this nonlinear relationship between performance and mean duration.
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I also looked at the performance of each agent and that of the group in the self-organized

network and compared them to those in the random network. The mean performance of

each agent and the mean group performance improved in the self-organized network through

adaptive rewiring compared with the random network. However, the fluctuation of the group

performance in the self-organized network was larger than the one in the random network. I

discuss this trade-off later in this section.

In addition, I found that the threshold for rewiring, that is the extent of severity, affected

the strength of heterogeneity in the in-degrees in the self-organized network. When we set

the threshold lower, the heterogeneity in the in-degrees became larger, and at the same time,

the dependence of an agent’s mean in-degree on his/her ability was more exaggerated, i.e.,

agents refer more to higher ability agents in the self-organized network, and the mean ability

of referents increases. This leads to a higher mean performance of each agent compared with

when the threshold was larger, i.e., when the mean ability of referents was lower. Actually, in

my derivation of the mean performance explained in Section 3.2 and Section A in Appendix,

which predicts the simulation result well, I can show that the mean performance of each

agent is an increasing function of the mean ability of referents (Section B in Appendix).

However, it is a little against our intuition that agents result in referring to higher ability

agents when we set the threshold lower (i.e., when they were more generous to their referents)

than when we set it higher (when they were stricter regarding their referents). I interpret

this counterintuitive phenomenon as follows. A lower rewiring threshold makes each agent

more patient and lowers the desire to kick-off low-ability referents. However, at the same
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time, a lower threshold contributes to keeping high-ability referents more securely, because

a lower rewiring threshold leads to a longer duration for referent-monitoring, leading to a

better overall sorting of referent’s quality. From my computer simulations, I find that the

later effect is stronger. Therefore, in my model, a lower rewiring threshold contributes to

generating a more biased reference toward high-ability agents. This result can be tested by an

empirical study comparing the generosity of societies and their accuracy in decision-making.

For example, we can compare a group in which rewiring occurs easily (that may correspond

to a high threshold in my model) such as a group of individuals connected by a social network

service, with a group in which rewiring is difficult (that may correspond to a low threshold

in my model) such as a group of individuals in a company who are connected tightly, to

examine which group can predict the next political leader more accurately.

As I showed so far, how long one can keep a follower greatly affects the structure of

the self-organized network. The extent to which people in the society attach importance to

the current result as compared to the referent’s past is measured by the parameter α. Its

reciprocal, 1/α, gives the mean time an individual remembers a success or a failure of its

referent. Indeed, the change in the evaluated performance of the referent, yijt , per each time

step is proportional to α: ∆yijt = yijt+1 − yijt = α(Ijt+1 − yijt ). In the numerical simulations

of this thesis, I set α = 0.1. As α becomes larger, the agent’s evaluation becomes less

dependent on the past and more heavily dependent on the immediate success or failure. This

makes the evaluation of followers’ performance less reliable. Therefore, a larger α makes it

difficult to sort subtle difference in performance between the referents, resulting in weaker
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centralization of links toward high ability agents and low performance. The effect of the

kick-off threshold θ on group performance would also become less pronounced because of the

less reliable performance evaluation. Conversely, if α becomes smaller, the evaluation for the

performance of referents would become more reliable. However, this raises another problem

for a society, because the time required for the referent network to reach an equilibrium, in

other words, to acquire high centralization, would become too long. In fact, I confirmed those

predictions on the effect of α by computer simulations for several values of α. The results

are shown in Section F in Appendix.

There are several trade-offs in my model that affect the understanding of the quality of

decision-making by agents who are interacting with one another. First, when we set a lower

rewiring threshold, we have to wait longer until the network reaches the equilibrium state

where agents have higher mean performance. Thus, we can see a kind of speed–accuracy

trade-off here. Second, along with stepwise rises of the group performance from independent

decision, to random references in the initial state, and then to the high-ability-agent-oriented

self-organized networks, the SD of the group performance also increased, i.e., the fluctuation

became larger in this order. When we set the threshold lower, we saw again an increase in

both the mean and the SD of the group performance in the self-organized network. Therefore,

an increase in both the mean and the “stability” (suppression of fluctuation) are difficult to

be compatible. High-ability agents collect more followers in the self-organized network than

in the initial network; the same is true for the self-organized network of a low threshold

compared with that with a high threshold. Adaptive rewiring and a lower kick-off threshold

53



level lead to higher mean performance. However, this is due to a more intense concentration

of reference links to high ability agents (Section B in Appendix). This centralization seems

to be the reason for the larger fluctuation of the group performance. The agents who attract

many followers tend to be the agents with high ability and high performance. However, there

are of course cases in which high-ability agents give wrong answers. In such an occasion of

failure by agents of high influence, the group performance results in a very low value, which

results in the group performance fluctuating wildly.

I have examined only a few types of distribution of agent’s ability in the population, which

gives the seeds for the generation of a heterogeneous in-degree distribution through adaptive

rewiring. Actually, I assumed two types of ability distributions—one is in the current study,

the uniform distribution, and the other is shown in Section E in Appendix. The density

distribution of ability shown in Section E in Appendix is a linear decreasing function on the

interval [0.5, 0.75]. Although both forms of ability distribution yielded exponential in-degree

distributions against varying ability, the robustness of the results for the other forms of ability

distributions should be tested in the future.

Lastly, I discuss possible modifications of my model. In my model, I assumed that a new

link comes randomly regardless of his/her ability value. This was based on the idea that one

cannot know the status of strangers —this may be true in some cases in our society. For

example, in a population of analysts where a lead-follow relationship (references) exists, a

financial analyst may not be able to evaluate the correctness of the analysts whom he/she

is not directly following. In such situations, the only thing that an agent can do to improve
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his/her own performance is to replace an already connected referent who did not give correct

answers, with a new referent randomly chosen from the population (Kossinets and Watts,

2006) as I assumed in my model. Actually, an empirical work on a social network in a

university (Kossinets and Watts, 2006) shows that such global rewiring is commonly found

in a group of individuals sharing the same interaction focus (in my case, making decisions

for the same problem). However, it may also be possible to introduce “reputation” into my

model; i.e., we may assume that the probability of being newly chosen as a referent depends

on one’s ability or performance, which is recognized by others in some way such as via

reputation. I predict that, under this assumption, we will obtain a scale-free network, which

represents strong heterogeneity. This prediction is supported by the following facts. There

are a number of studies that explain how scale-free networks are constructed. The “good get

richer” mechanism (or fitness model) is one such explanation (Garlaschelli et al., 2007; Zhou

et al., 2011; Caldarelli et al., 2002). In the models using the “good get richer” mechanism,

each agent is assigned a value, such as fitness, and the probability that one can obtain a link

is determined based on the fitness value. In these models, strong heterogeneity with a power-

law degree distribution emerges even if the fitness is not power-law distributed. The fitness

in such models corresponds to the ability component in my model. Thus, I can predict that

we will obtain a scale-free network if the probability of being newly chosen depends directly

on one’s ability or on one’s performance. It is not clear whether a population can achieve

high performance under a structure that self-organized in the presence of “reputation” and

whether it has high heterogeneity and/or a strong opinion correlation.
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In addition, I think that the following issue is worth considering in future. In my study,

I assumed that all agents follow the same strategy for decision-making and have the same

rewiring threshold. With these simple assumptions, I was able to reveal what the primarily

factor leading to the centralization of reference networks is, and to discuss the decision

accuracy in the self-organized reference structure. A possible next step would be to analyze

the model that allows ability-dependent strategy for each agent, as higher ability agents may

have less motivation for referring to others than lower ability agents. If so, the presence of

such independent decision makers would improve the efficiency of collective intelligence in

the population (Madirolas and de Polavieja, 2015).
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