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Abstract

Imprinted genes in mammals show monoallelic expression dependent
on parental origin and are often associated with differentially methylated regions
(DMRs). There are two classes of DMR: germline DMRs acquire gamete-specific
methylation in either spermatogenesis or oogenesis and maintain the allelic
methylation differences throughout development; secondary DMRs establish
differential methylation patterns after fertilization. Targeted disruption of some
germline DMRs showed that they dictate the allelic expression of nearby
imprinted genes and the establishment of the allelic methylation of secondary
DMRs. However, how the imprinting machinery recognizes germline DMRs is
unknown. As a step toward elucidating the sequence features of the germline
DMRs, | have determined the extents and boundaries of 15 germline mouse
DMRs (including 12 maternally methylated and 3 paternally methylated ones) in
12.5-dpc embryos and sperm by bisulfite sequencing. | found that the average
size of the DMRs was 2.7 kb and that their average G+C content was 54.2%.
Oligonucleotide content analysis of the DMR sequences revealed that, although
they are generally CpG rich, the paternally methylated DMRs contain less CpGs
than the maternally methylated ones. Furthermore, based on the SOM analysis,
| found that most germline DMRs have features distinct from typical mouse

sequences. My findings provide a basis for the further characterization of DMRs.
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Abbeviations

bp: base pair

CAT: chloramphenicol acetyltransferase
DDT: dithiothreitol

DDW: distilled deionaized water

DMR: differentially methylated region
EDTA: ethylenediaminetetraacetic acid
ICR: imprint control region

kb: kilo base pair

PCR: polymerase chain reaction

SDS: sodium dodecyl sulfate

SNPs: single nucleotide polymorphisms

SOM: self-organizing map



Gene symbols

Dnmt. DNA methyltransferase

DIk1: Delta like 1

Gnas: G protein alpha-subunit

Gnasxl. extra large G protein alpha-subunit

Gtl2: gene trap locus 2

Igf2r. insulin-like growth factor 2 receptor

Impact. the gene is imprinted and encodes a protein with an ancient conversed
region

Kenq1/KvLQTT: potassium voltage-gated channel, KQT-like subfamily, member
1

Lit1/ Kengiot1: long QT intronic transcript 1/Kecnq1 overlapping transcript 1
Meg1/Grb10: maternally expressed gene 1/growth factor receptor bound protein
10

Mkrn1-p1: markorin1 pseudogene

Mkrn3: markorin 3

Nap1/5: nucleosome assembly protein 1-like 5

Nesp: neuroendocrine secretory protein

Nespas: Nesp antisense

Peg1/Mest. paternally expressed gene 1/Mesoderm-specific transcript

Peg3: paternally expressed gene 3

Peg10: paternally expressed gene 10



Peg12: paternally expressed gene 12

Rasgrf1: Ras protein-specific guanine nucleotide-releasing factor 1

Rt/1: retrotransposon-like gene 1

Sgce: epsilon-sarcoglycan

Snrpn: small nuclear ribonucleoprotein N

TCEBS3C; transcription elongation factor B polypeptide 3C

UZ2af1-rs1: U2 small nuclear ribonucleoprotein auxiliary factor 1 related
sequence 1

Zac1: zinc-finger protein that regulates both apoptosis and cell cycle arrest



1. Introduction

In early 1980s, McGrath and Solter (1984) and Surani et al. (1984)
performed pronuclear transfer experiments with fertilized mouse eggs and
showed that diploid conceptuses with genomes from only one parent never
develop to term. The results indicated that both the maternal and paternal
genomes are required for normal development (McGrath and Solter 1984; Surani
et al. 1984). In humans, it is known that parthenogenetic activation of unfertilized
oocytes results in ovarian teratomas, while conceptuses with no maternal
genome (androgenones) results in complete hydatidiform moles. Uniparental
disomies, which inherit a pair of particular chromosomes from only one parent,
show abnormal phenotypes in mice (Cattanach et al. 2004) and develop disease
conditions in humans. The diseases include Prader-Willi syndrome, Angelman
syndrome and Beckwith-Wiedemann syndrome (Reik and Walter 2001). The
functional non-equivalance between the parental genomes or parental
chromosomes is caused by parent-of-origin-dependent monoallelic expression
of certain genes. These genes are called “imprinted” genes. Over 80 imprinted
genes have thus far been identified in humans and mice, and they play important
roles in fetal growth, development of particular somatic lineages, and maternal
behavior. Most of them form clusters in the particular genomic regions, and
these regions are responsible for the abnormal phenotypes of uniparental
disomies. It is estimated that a few to several hundred imprinted genes exist in

the placental mammals (Hayashizaki et al. 1994).



The imprinted genes are marked or imprinted in a parent-of-origin
dependent way in the parental germline. This marking is called genomic
imprinting. Because the parental genomes are essentially identical in sequence,
epigenetic mechanisms should be involved in imprinting. One candidate for such
epigenetic mark is DNA methylation. In mammals and other vertebrates, DNA
methylation occurs exclusively at the cytosine of symmetrical CpG dinucleotides,
and it plays important roles in normal development (Li et al. 1992). In fact, within
or near the imprinted genes, differentially methylated regions (DMRs), which
show parent-of-origin-dependent DNA methylation patterns, are identified (Reik
and Walter 2001). Subsequent studies revealed that there are two classes of
DMR; the germline DMR (primary DMRs) acquire methylation during
gametogenesis and show differential methylation between sperm and oocytes;
the secondary DMRs establish their allelic methylation patterns after fertilization,
most probably through the influence of the germline DMRs (Lopes et al. 2003).

Direct evidence that DNA methylation is involved in genomic imprinting
came from gene knockout experiments in mice. The maintenance
methyltransferase Dnmt1 is required to maintain the differential methylation
patterns at the DMRs and also the monoallelic expression patterns of the
imprinted genes in the embryo proper, at least after implantation (Li et al. 1993).
Furthermore, targeted deletion of some germline DMRs in mice have
demonstrated that they result in aberrant expression of the associated imprinted

genes and loss of allelic methylation of the secondary DMRs. Such germline



DMRs are called imprint control regions (ICRs)(Fitzpatrick et al. 2002; Lin et al.
2003; Liu et al. 2005; Thorvaldsen et al. 1998; Williamson et al. 2004; Wutz et al.
1997; Yoon et al. 2002). Recent studies demonstrated that a de novo DNA
methyltransferase related protein, Dnmt3L, and a de novo DNA
methyltransferase Dnmt3a, are required for the establishment of the primary
methylation imprints in both the paternal and maternal germlines (Bourc'his et al.
2001; Hata et al. 2002; Kaneda et al. 2004). However, features of the germline
DMRs that attract Dnmt3L and Dnmt3a in the germline remain an enigma (see
below).

A number of studies have suggested that imprinted genes may have
characteristic structural features. For example, it was reported that imprinted
genes tend to have few and small introns (Hurst et al. 1996). Other reports
described that human and mouse imprinted gene regions contain a relatively low
density of short interspersed transposable elements (SINEs) compared with
non-imprinted regions (Greally 2002; Ke et al. 2002). Regarding the germline
DMRs, other than their relative CpG richness, the only potential feature identified
so far is the presence of direct repeats near or within the DMRs (Neumann et al.
1995). However, these features do not hold true for all imprinted genes or
regions, and their functional relevance is controversial.

In order to elucidate the structural characteristics of the DMRs, | wanted
to obtain their nucleotide sequences. However, | realized that the precise extents

of most DMRs are unknown. The lack of accurate information on the extents of



the DMRs is a barrier to the studies on their structural features. | therefore
decided to analyze the methylation patterns of all 15 known germline DMRs in
their entirety by bisulfite sequencing. In this thesis, | report the results of such
studies performed with embryo DNA and sperm DNA. Based on the data
obtained, | determined the extents and boundaries of these germline DMRs,
although the final decision awaits data from oocyte DNA. As an initial attempt to
characterize the DMR sequences, | also carried out oligonucleotide content
analysis. The results revealed that the paternally methylated DMRs contain less
CpGs than the maternally methylated DMRs. Furthermore, to explore the
features of the DMRs concerning the oligonucleotide contents, | used
self-organizing maps (SOMs), which were constructed by an unsupervised
neural network algorithm. The SOM analysis can classify DNA sequences from
various sources into subgroups that generally correspond to species or
biological categories based on oligonucleotide frequencies (Abe et al. 2003). In
this study, | found that most germline DMRs have features distinct from typical
mouse sequences. Based on all these results, | discuss the possible features of
the germline DMRs that are recognized by the imprinting machinery containing

both Dnmt3L and Dnmt3a.



2. Bisulfite sequencing analysis
2-1. Introduction

Many imprinted genes are associated with DMRs, which show
parent-of-origin-dependent DNA methylation patterns. Based on the difference in
timing of de novo methylation, the DMRs are classified into two classes: the
germline DMRs (primary DMRs) acquire methylation during gametogenesis and
show differential methylation between sperm and oocytes; the secondary DMRs
establish their allelic methylation patterns after fertilization, most probably
through the influence of the germline DMRs (Lopes et al. 2003). Recent studies
showed that Dnmt3L and Dnmt3a are necessary for the establishment of the
methylation imprints at the germline DMRs (Bourc'his et al. 2001; Hata et al.
2002; Kaneda et al. 2004).

So far, 15 germline DMRs have been identified in mice (Tables 1 and 2).
They include 12 maternally methylated DMRs (the Nespas-Gnasxl, Gnas 1A,
Peg10, Peg1, Peg3 DMR, Snrpn, Lit1/Kenq1ot1 (KWDMR), Zac1, Meg1/Grb10,
U2af1-rs1, Igf2r, and Impact DMRs), and 3 paternally methylated DMRs (the
H19, Rasgrf1 and DIk1-Gtl2 DMRs (IG-DMR)). Deletion mutations in mice have
demonstrated that at least six of the germline DMRs act as ICRs and are
essential for imprinting (Fitzpatrick et al. 2002; Lin et al. 2003; Liu et al. 2005;
Thorvaldsen et al. 1998; Williamson et al. 2004; Wutz et al. 1997; Yoon et al.
2002). Although previous studies identified the location of each DMR (Table 2),

the accurate extent of the DMR has not been determined in many cases.
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To elucidate the structural characteristics of the germline DMRs, |
decided to analyze the extent of these DMRs by bisulfite sequencing. The
principle of bisulfite sequencing is depicted in Figure 1. Treatment of the
genomic DNA with sodium bisulfite converts unmethylated cytosine to uracil
residues (Frommer et al. 1992). As a consequence, the converted DNA is no
longer self-complementary, and amplification of either the top or bottom is
possible using strand-specific PCR primers. PCR amplification results in
conversion of uracil (previously cytosine) to thymine, and of methyl-cytosine to
cytosine, and these change can be easily detected by sequencing the PCR
products. The main advantage of this method is that the methylation status of
individual CpGs is detectable in the short genomic region amplified by PCR.

In this chapter, | report the results of my bisulfite sequencing analysis
on the allelic methylation patterns of all 15 germline DMRs in whole embryos
(12.5 day postcoitum) DNA and in sperm DNA. Based on these results, |

determined the DMR boundaries and the extents of the germline DMRs.
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2-2. Materials and methods
Animals

C57BL/6 (Mus musculus domesticus) mice were purchased from Clea
Japan, Inc., and JF1 (Mus musculus molossinus) mice (Koide et al. 1998) were
obtained from the Genetic Strains Research Center of our institute. To isolate F,
hybrid embryos at 12.5 dpc and sperm from F, hybrid adult (10-week-old) mouse,

C57BL/6 females were crossed with JF1 males.

Genome sequences
Mouse (C57BL/6) genome sequences (containing the DMRs) were

obtained from the UCSC Genome Bioinformatics Site (http://genome.ucsc.edu/).

| checked the positions of the DMRs based on previous reports (all these papers
were listed in Table 1.). These sequences were used for designing PCR primers
for bisulfite sequencing. Sequernce data were analyzed by Genetyx version 7
(Genetyx, Tokyo, Japan). Student’s two-tailed t-test was used to show significant

differences between values.

DNA isolation

Genomic DNA was prepared from whole 12.5-dpc F, hybrid embryos
and spermatozoon. The embryos were homogenized using an all-glass Dounce
homogenizer (20 strokes) in 5 ml of extraction buffer (20 mM Tris-HCI [pH 7.5],

10 mM EDTA, 150 nM NaCl, 10 mM KCI). The homogenate was digested by 200
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pg/ml Proteinase K with 1% sodium dodecyl sulfate (SDS) overnight at 5000.
Genomic DNA from embryos was extracted with phenol, and phenol/chloroform
(1:1), and precipitated with sodium acetate and isopropanol. DNA pellets were
washed in 70% ethanol, and dissolved in distilled deionized water. Sperm was
released from ductus deferens of F, hybrid adult mouse and lysed in 500 pul of
extraction buffer with 10 mM dithiothreitol (DDT). Sperm DNA was isolated as

descrived above.

Bisulfite sequencing

Genomic DNA (5 pg) isolated from mouse embryos or sperm was
treated with sodium bisulfite (Frommer et al. 1992) using an EZ DNA Methylation
Kit (Zymo Research, Orange). The bisulfite-treated DNA was dissolved in 100 pl
of distilled deionaized water (DDW). Aliquots of bisulfite-treated DNA solution,
equivalent of 5 ng genomic DNA, were used for PCR. One hundred and three
oligonucleotide primer pairs were used to study the 15 DMRs. All primer
sequences and PCR conditions are shown in Table 3. The PCR products
(amplicons) were subcloned into pGEM-T vector (Promega, Medison) and
transformed into JM109. Colonies were picked up (about 24 colonies for each
PCR product) and transferred into 96-well plates, and DNA was amplified by
rolling circle amplification (Neumann et al. 1995) using a TempliPhi DNA
Amplification Kit (GE Healthcare Bio-Sciences, Little Chalfont, UK). DNA

sequencing was done using a BigDye Terminator version 3.1 Cycle Sequencing
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Kit (Applied Biosystems, Foster city) with standard primers (M13 For;
5-GTTTTCCCAGTCACG-3' and M13 Rev; 5-CAGGAAACAGCTATG-3)).
Sequences were analyzed on an ABI Prism 3700 and 3130x| Genetic Analyzer
(Applied Biosystems, Foster city). Sequence data analysis was done using

ATGC version 4 (Genetyx, Tokyo, Japan).
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2-3. Results
Bisulfite sequencing analysis

To accurately determine the extents of the 15 mouse germline DMRs, |
retrieved the genomic sequences containing the DMRs from public databases. |
then determined which portions of the respective sequences had been examined
for allelic methylation and which portions had been judged as DMRs in previous
reports (references listed in Table 1). Bisulfite PCR primer pairs were designed
to close the gaps and also to extend the analysis to the DMR boundaries. To
distinguish between the parental alleles using SNPs, a cross was made between
C57BL/6 females and JF1 males. Genomic DNA was isolated from F, embryos
at 12.5 dpc and F, epididymal sperm subjected to sodium bisulfite treatment. |
simultaneously identified SNPs and determined the allelic methylation status by
cloning and sequencing of the PCR products (amplicons).

Primer design was done according to the following rules. (1) Primers
should be approximately 30-40 bp in length to increase primer specificity and
complexity because bisulfite-treated DNA is very AT-rich and basically devoid of
cytosines. (2) Primers should not contain any CpG sites within their sequences.
(8) Primers should contain thymines converted from cytosines of non-CpG sites,
to amplify only bisulfite-treated DNA.

In this study, | prepared 127 primer pairs, of which 103 worked fine and
24 failed (most of the failed primer pairs were designed within repetitive

elements). Among the 103 amplicons that | obtained, 89 contained one or more
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SNPs and thus could be analyzed in an allele-specific way. The average size of
the amplicons was 551 bp (minimum size, 227 bp; maximum size, 785 bp). The
total length of DNA covered by these amplicons was 56,769 bp. Twenty-four
clones were picked up for each amplicon and sequenced. Because | had to
handle a large number of samples, a large-scale bisulfite sequencing protocol
was devised. A rolling circle amplification of plasmid DNA (Nelson et al. 2002)
was introduced, and this greatly simplified the protocol by avoiding bacterial
culture and plasmid preparation. About 6200 sequencing runs (including those
for both 12.5-dpc embryo and sperm) were carried out, and total sequencing
output in this study was about 2.8 MB. The scale of the experiment and some
useful parameters obtained from the bisulfite sequencing results are

summarized in Table 4.

Extents and boundaries of the DMRs

| adopted the following criterion to determine the extent of a DMR. As
for 12.5-dpc embryos, if none or only one of four consecutive CpGs shows a
methylation level below 70% on the more-methylated allele or over 30% on the
less-methylated allele, these four CpGs are judged to be a part of the DMR. Any
four consecutive CpGs that do not meet the criterion are at least partially
excluded from the DMR: the CpGs that do not meet the criterion and CpGs
located between them are disqualified as part of the DMR. As for sperm DNA, if

none or only one of four consecutive CpGs associated with paternally

16



methylated DMRs shows a methylation level below 70%, these four CpGs are
judged to be a part of the DMR. If none or only one of four consecutive CpGs
associated with maternally methylated DMRs shows a methylation level over
30%, these four CpGs are judged to be a part of the DMR. Any four consecutive
CpGs that do not meet the criterion are at least partially excluded from the DMR:
the CpGs that do not meet the criterion and CpGs located between them are
disqualified as part of the DMR.

The results obtained by the bisulfite sequencing studies are shown in
Figure 2 (a-0). For example, | prepared 4 primer pairs to study the maternally
methylated Gnas 1A DMR (Figure 2 (b)). In the region A, no SNP was available
for allele discrimination, but all CpGs were highly methylated, most likely on both
parental alleles in 12.5-dpc embryo. In the region B, most CpGs were maternally
methylated, but 5 CpGs near the 5’ end were also partially methylated on the
paternal allele. Thus, the 5’ boundary in 12.5-dpc embryo was identified between
the 5™ and the 6™ CpG in the region B. All CpGs in the region C were maternally
methylated. In the region D, no SNP was available, but we presumed that 10
clones were from the maternal allele and the remaining 12 from the paternal
allele, based on the known allelic methylation pattern. Interestingly, the maternal
allele started to lose methylation at the 35" CpG and became completely
unmethylated after the 47™ CpG, consistent with the previous report by Lin et al.
(2000). According to the described criterion, | judged that these 20 (13 partially

methylated and 7 unmethylated) CpGs near the 3’ end of the region H were
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outside of the DMR, and the 3’ boundary in 12.5-dpc embryo was identified
between the 34" and the 35" CpG in the region D. The bisulfite analysis of
sperm DNA showed hypomethylation in all regions and thus did not change the
boundaries. Based on these results, the size of the Gnas 1A DMR was
determined to be 2.2 kb.

Another example is shown in Figure 2 (n). | prepared 14 primer pairs to
study the paternally methylated Rasgrfi DMR. The regions A and B was highly
methylated on the paternal allele and partially methylated on the maternal allele
in 12.5-dpc embryos. The regions D-H were methylated only on the paternal
allele. In the region C, no SNP was available for allele discrimination, but |
presumed that this region is paternally methylated based on the allelic
methylation pattern of the region D. The 1% CpG in the region C showed a
methylation level below 70 % on the paternal allele, so | judged that the 5’
boundary is located between the 1°* and 2™ CpG in the region C. The regions
A-H were highly methylated on both parental alleles in sperm. | was unable to
prepare primers specific to the tandem repeat region (1.7 kb) between the
regions H and |. The regions I-L were highly methylated only on the paternal
allele in 12.5-dpc embryos, however, they showed hypomethylation on both
parental alleles in sperm. The region M was partially methylated only on the
paternal allele, and the region N was partially methylated on both parental alleles.
Thus, | judged that the 3’ boundary was located between the regions H and |.

Based on these results, the size of the Rasgrfif DMR was determined to be 3.2

18



kb.

The boundaries and extents of all 15 germline DMRs were thus
determined. | found that several methylation patterns are observed at the DMR
boundaries. In the 12.5-dpc embryos, some DMRs had sharp boundaries (for
example, Impact DMR; Figure 2 (I)) and others had transition zones (for example,
Gnas 1A DMR; Figure 2 (b), and Peg1/Mest DMR; Figure 2 (d)). The largest
transition zone that | identified so far had a size of over 1.4 kb (the 5’ transition
zone of the Peg1/Mest DMR), but in most cases the exact size of the transition
zone is unknown. In most cases, the region beyond the boundary was highly
methylated on both parental alleles, but there were exceptions such as the Gnas
1A DMR, whose 3’ flanking region was unmethylated (Figure 2 (b)), and the
Lit1/Keng1ot1 DMR, whose 3’ flanking region was partially methylated (Figure 2
(f)).

The gene organizations, CpG distributions, and extents of all 15 DMRs
are shown schematically in Figure 3. The sizes and G+C contents of the DMRs
determined from the data are summarized in Table 5. The results showed that
the size of the germline-DMRs ranged from 1.5 kb (/gf2r DMR2) to 4.8 kb
(Peg1/Mest DMR), with an average size of 2.7 kb. Interestingly, | found that the
average G+C content of the paternally methylated DMRs (47.7%) was
significantly smaller than that of the maternally methylated DMRs (55.8%).
Interestingly, it also appeared that CpG is less densely distributed in the

paternally methylated DMRs than in the maternally methylated DMRs (Figure 3).
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2-4. Discussion

In order to collect the accurate sequence information on the germline
DMRs, | determined the site-by-site allelic methylation patterns of 15 germline
DMRs in 12.5-dpc mouse embryos and sperm by bisulfite sequencing. To do this,
| developed a pipeline for large-scale bisulfite sequencing data production in Prof.
Sasaki’s Laboratory. The introduction of the rolling circle amplification of plasmid
DNA (Nelson et al. 2002) greatly simplified the protocol and contributed to the
high-throughput analysis. By integrating both the methylation data from embryos
and those from sperm, | tried to determine the extent of the 15 germline DMRs.

The criteria that | devised to determine the extent of the DMRs are strict
because | wanted to know the extent of the “core” regions of the germline DMRs
rather than the entire regions showing both clear and biased allelic differences in
methylation. Therefore, transitions zones were excluded from the DMRs (also
see the discussions below). The size of the germline-DMRs determined
according to the criteria ranged from 1.5 kb (/gf2r DMR2) to 4.8 kb (Peg1/Mest
DMR), with an average size of 2.7 kb (Table 5). It was also revealed that the
average G+C content of the germline DMRs (54.2%) is higher than that of the
whole mouse genome (41.7%), which is consistent with the fact that almost all
imprinted gene clusters are located in the G+C-rich chromosome regions
(isochors) (Neumann et al. 1995). Interestingly, | found that the average G+C
content of the paternally methylated DMRs (47.7%) was significantly smaller

than that of the maternally methylated DMRs (55.8%). Furthermore, it also
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appeared that CpG is less densely distributed in the paternally methylated DMRs
than in the maternally methylated DMRs (Figure 3). Such sequence features of
the DMRs are further pursued in the next chapters.

One thing one has to keep in mind is that the bisulfite methylation
analysis was done in 12.5-dpc embryos and sperm, but not in oocytes. Because
the primary methylation imprints and methylation of the surrounding regions can
change during embryonic development (Yoder et al. 1997), the final decision on
the precise extent of the germline DMRs awaits the methylation analysis in the
oocytes. Although challenging, such a study is not impossible if one could collect
enough number of oocytes. My next goal is to determine the methylation status
of the germline-DMRs in oocytes.

During this work, | also found that the DMRs had several different
methylation patterns at the boundaries. For example, some DMRs had sharp
boundaries and others had transition zones. The largest transition zone that we
identified so far had a size of over 1.4 kb (the 5’ transition zone of the Peg1
DMR), but in most cases the exact size of the transition zone is unknown.
Usually, the region beyond the boundary was highly methylated on both parental
alleles, but there were exceptions such as the Gnas 1A DMR, whose 3’ flanking
region was unmethylated, and the Lit1/Kcnq1ot1 DMR, whose 3’ flanking region
was partially methylated. One interesting observation made in the study was that
the 3’ flanking region of the Rasgrf1 DMR is initially unmethylated in sperm DNA

but has become methylated on the paternal allele in 12.5-dpc embryos (Figure
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2(n)). This is a clear example of an expansion of methylation form the germline
DMR to the adjacent regions during embryonic development.

In summary, this is the first comprehensive description of the extents
and boundaries of the germline DMRs and the information obtained should be
useful to the studies on the mechanisms of genomic imprinting. | will describe my
initial studies to identify the structural features of the DMRs in the following

chapters.
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3. Oligonucleotide frequencies
3-1. Introduction

The germline DMRs associated with the imprinted genes are
recognized in the germline by the methylation machinery containing Dnmt3a and
Dnmt3L (Bourc'his et al. 2001; Hata et al. 2002; Kaneda et al. 2004). The
oocyte- or sperm-specific methylation patterns established at the DMRs are then
passed onto the zygote and maintained and propagated throughout embryonic
development (Reik and Walter 2001). However, no consensus sequence has
been identified for the germline DMRs. In the previous chapter, | determined the
extents of 15 germline DMRs by bisulfite sequence analysis of the DNA from
12.5-dpc mouse embryos and sperm. Based on the data, | derived a collection of
nucleotide sequences spanning the core region of all these DMRs. | therefore
wanted to use these sequences to identify the structural features specific to the
germline DMRs.

Oligonucleotide frequency is a fundamental characteristic of individual
genomes and used for a long period as a basic phylogenetic parameter to
characterize individual genomes and genomic portions (Gentles and Karlin
2001; Karlin et al. 1998; Nussinov 1984; Phillips et al. 1987; Rocha et al. 1998).
Furthermore, specific oligonucletides contribute to higher order structure of DNA,
such as bending (Bolshoy 1995), and local oligonucleotide biases appear to
reflect the properties of DNA such as stacking energies, modification, replication

and repair mechanisms (Karlin 1998). Profound flanking sequence preference of
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Dnmt3a and Dnmt3b has also been noted (Handa and Jeltsch 2005) suggesting
that CpGs contained in specific oligonucleotides may be prone to methylation.
As described in the previous chapter, the germline DMR sequences that |
determined are more G+C-rich than the whole genome, and the average G+C
content of the paternally methylated DMRs was significantly smaller than that of
the maternally methylated DMRs (Table 5). Furthermore, it appeared that CpG
dinucleotide is less densely distributed in the paternally methylated DMRs than
in the maternally methylated DMRs (Figure 3). | therefore performed
oligonucleotide content analyses on the germline DMRs to identify their possible
features.

In this chapter, | describe the results of di-, tri-, and tetranucleotide
content analyses on the core region sequences of the 15 germline DMRs. This
study indicated, for example, that the paternally methylated DMRs contain less
CpGs than the maternally methylated DMRs. The significance and functional
relationship of these findings with genomic imprinting and methylation will be

discussed.
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3-2. Materials and methods
Genome sequences

Mouse (C57BL/6) genome sequences (containing the DMRs) were
obtained from the UCSC Genome Bioinformatics Site (http://genome.ucsc.edu/).
Non-imprinted mouse CpG islands were collected from Gardiner-Garden and
Frommer (1987) (16 islands) or from GenBank by a keyword (CpG island)
search (33 islands). The exact sequence of each island was determined by the
criteria proposed by Gardiner-Garden and Frommer (1987). All collected CpG

islands are shown in Table 6.

Data analysis
Oligonucleotide content calculation was done using Genome1
(UNTROD, Kyoto, Japan). Student’s two-tailed #test was used to show

significant differences between values.
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3-3. Results
Dinucleotide content analysis

As an initial attempt to elucidate the sequence features of the germline
DMRs, | examined the contents of dinucleotides in the 15 DMRs according to the
determined sequences (Table 7). The whole mouse genome and 49 randomly
selected non-imprinted CpG islands (fulfilling the criteria by Gardiner-Garden
and Frommer, 1987; see Materials and methods for details) were also analyzed
as references. We found that the contents of some dinucleotides (such as
ApC+GpT, ApG+CpA, and GpA+TpC; complementary dinucleotides are
grouped) were not much different among the DMRs, CpG islands and whole
genome (Table 7). By contrast, the contents of the remaining dinucleotides
showed significant differences among the three groups. Among these
dinucleotides, CpG showed the greatest difference: its content in the DMRs
(4.92%) was 5.9-times higher than that in the whole mouse genome (0.84%) and
1.6-times lower than that in the 49 non-imprinted CpG islands (7.80%)(Table 7).
Thus, the DMRs showed a CpG content intermediate between the whole
genome and CpG islands. For dinucleotides whose contents showed differences
among the three groups, the DMRs always showed a value intermediate
between those of the whole genome and CpG islands (Table 7).

| also compared the dinucleotide contents between the paternally
methylated DMRs and maternally methylated DMRs. Statistical analysis using

Student’s t-test revealed that the maternally methylated DMRs have significantly
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lower CpA+TpG, ApT and TpA contents and significantly higher CpG and GpC
contents than the paternally methylated DMRs. The fact that the smallest P
value was obtained for the CpG content clearly indicates that the paternally
methylated DMRs contain less CpGs than the maternally methylated DMRs

(Table 7).

Trinucleotide content analysis

Next, | examined the contents of trinucleotides in the 15 DMRs (Table
8). | found that the contents of TpCpA+TpGpA, TpGpG+CpCpA, ApApG+CpTpT,
CpApG+CpTpG, ApGpG+CpCpT, GpTpG+CpApC, GpGpT+ApCpC and
GpApC+GpTpC, were not much different among the DMRs, CpG islands and
whole genome. By contrast, the contents of the remaining trinucleotides showed
differences among the three groups. For these remaining trinucleotides, the
DMRs almost always showed a content value intermediate between that of the
whole genome and CpG islands. | found that trinucleotides containing CpG
showed large differences among the DMRs, whole mouse genome and CpG
islands. The greatest difference was observed for CpGpC+GpCpG: its content in
the DMRs (3.40%) was 16.2-times higher than that in the whole genome (0.21%)
and 1.7-times lower than that in the 49 non-imprinted CpG islands (5.87%)(Table
8). Only the content of TpGpC+GpCpA was higher in the DMRs (4.33%) than in
the CpG islands (3.53%) and whole genome (2.47%).

| also compared the trinucleotide contents between the paternally
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methylated DMRs and maternally methylated DMRs. Statistical analysis using
Student’s t-test revealed that the maternally methylated DMRs have significantly
lower TpCpA+TpGpA, TpApT+ApTpA, TpGpT+ApCpA and ApApT+ApTpT
contents and significantly higher TpCpG+CpGpA, GpApG+CpTpC,
CpCpG+CpGpG, GpCpG+CpGpC and GpGpC+GpCpC contents than the

paternally methylated DMRs (Table 8).

Tetranucleotide content analysis

Finally, | examined the contents of tetranucleotides in the 15 germline
DMRs (Table 9). | found that the contents of many tetranucleoide showed
differences among the DMRs, CpG islands and whole genome. For these
tetranucleotide, the DMRs almost always showed a content value intermediate
between that of the whole genome and CpG islands. | found that almost all
tetranucleotides containing CpG dinucleotide (for example, CpGpCpG,
GpCpGpC, GpCpGpG+CpCpGpC, GpGpCpG+CpGpCpC, and
GpCpCpG+CpGpGpC) show great difference among the DMRs, CpG islands
and whole genome. The contents of GpCpApA+TpTpGpC and TpGpCpA were
higher in the DMRs (0.93% and 0.54% respectively) than in the CpG islands
(0.57% and 0.37% respectively) and whole genome (0.70% and 0.37%
respectively).

| also compared the tetranucleotide contents between the paternally

methylated DMRs and maternally methylated DMRs. Statistical analysis using
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Student’s t-test revealed that the maternally methylated DMRs have significantly
lower contents for 11 tetranucleotides (for example, GpApApT+ApTpTpC,
ApTpGpG+CpCpApT, TpGpApA+TpTpCpA, GpCpTpA+TpApGpC and
ApApGpT+ApCpTpT) and significantly higher contents for 16 tetranucleotides
(most of them involved CpG dinucleotide: for example, GpTpCpG+CpGpApC,
CpGpGpG+CpCpCpG, CpGpCpA+TpGpCpG, GpCpGpG+CpCpGpC and

GpGpCpG+CpGpCpC) than the paternally methylated DMRs (Table 9).
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3-4. Discussion

My ultimate goal is to identify the structural features specific to the
germline DMRs. As an initial step, | used the germline DMR sequences
determined in the previous chapter to calculate their di-, tri-, and tetranucleotide
contents. Regarding dinucleotides, | found that the DMRs have more CpGs than
the whole mouse genome, but in general less CpGs than the non-imprinted CpG
islands. Furthermore, we found that the paternally methylated DMRs contain
less CpGs than the maternally methylated DMRs (Figure 3 and Table 7).

The notion that the germline DMRs contain less CpGs than
non-imprinted CpG islands was previously suggested by the observations that
some DMRs (such as the H79 DMR) do not have a CpG island. Indeed, based
on the sequences collected here, and according to the criteria proposed by
Gardiner-Garden and Frommer (1987), three (Peg3, Snrpn and H19) out of the
15 DMRs had no CpG islands. Also, three others (Nespas-Gnasxl, Rasgrf1 and
DIk1-Gtl2 1G-DMR) had only weak and small (<400 bp) CpG islands.

Why are the DMRs less CpG rich than non-imprinted CpG islands?
One possible explanation is that the DMRs were initially more CpG rich but,
because CpG dinucleotides are mutation hotspots, they gradually lost CpGs
during evolution. It is well known that methylated cytosine is mutable to thymine
(C/T transition) by spontaneous deamination (Holliday and Grigg 1993). The
germline DMRs inevitably accumulate C/T transitions and lose CpGs in

successive generations. This idea is supported by the fact that the DMRs have a
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higher CpA+TpG content than the non-imprinted CpG islands (Table 7).
Furthermore, the mutability may also explain the difference in CpG content
between the paternally and maternally methylated DMRs. It has been shown that
the paternal methylation imprints are established in gonocytes (or
prospermatogonia) in the fetal testis and persist in the germline throughout the
reproductive life of the male (Davis et al. 1999; Li et al. 2004; Ueda et al. 2000).
By contrast, the maternal methylation imprints are imposed in growing oocytes
after birth (Li et al. 2004; Lucifero et al. 2004). Thus, methylation imprints persist
longer in the male germline than in the female germline. In addition, male germ
cells divide many times after methylation imprints are established, but female
germ cells do not. Therefore, the paternally methylated DMRs have more chance
to accumulate C/T mutations than the maternally methylated DMRs.

It is also possible, however, that the CpG content is one of the features
recognized by the de novo methylation machinery. CpG islands are generally
free of methylation, but weak or small CpG islands may lose protection from
methylation in one of the germlines and could behave as DMRs. At present, we
do not know why the DMRs with higher CpG contents (maternally methylated
DMRs) can be recognized preferentially by the de novo methylation machinery in
the female germline compared with those having lower CpG contents (paternally
methylated DMRSs).

In the tri- and tetranucleotide content analyses, | found that

oligonucleotides containing CpG shows very different content values among the
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DMRs, CpG islands and whole mouse genome. For the CpG-containing
oligonucleotides, the DMRs almost always showed a content value intermediate
between that of the CpG islands and whole mouse genome. However,
trinucleotides TpGpC+GpCpA and tetranucleotides containing these
trinucleotides (GpCpApA+TpTpGpC and TpGpCpA) showed higher contents in
the DMRs than in the CpG islands and whole genome. The significance of these
ologonucleotide is currently unknown.

Recently, methylation kinetic experiments revealed that there is a clear
relationship between the tendency of a CpG site to undergo methylation and its
flanking sequence (Handa and Jeltsch 2005). It was observed that CpG with
purine bases at the 5’ end and pyrimidine bases at the 3’ end (YpCpGpR) were
preferred by the activity of Dnmt3a and Dnmt3b. | therefore examined whether
YpCpGpR tetranucleotides are preferred in the DMRs, CpG islands, or the
mouse genome. However, no discrete positive or negative correlation was
observed in any of the three categories. Further studies are needed identify the

features and significance in oligonucleotide frequencies of the germline DMRs.
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4. SOM analysis
4-1. Introduction

In the previous chapter, the oligonucleotide content analysis revealed
that the 15 germline DMRs have some unique oligonucleotide frequency
patterns among the mouse genome sequences. It is known that oligonucleotide
frequency is a fundamental characteristic of individual genomes and used for a
long period as a basic phylogenetic parameter to characterize individual
genomes and genomic portions. Many groups have reported that oligonucleotide
frequency, which is an example of high-dimensional data, varies significantly
among genomes and can be used to study genome diversity (Gentles and Karlin
2001; Karlin 1998; Karlin et al. 1998; Nussinov 1984; Phillips et al. 1987; Rocha
et al. 1998).

Unsupervised neural network algorithm, Kohonen's Self-Organizing
Map (SOM), is a powerful tool for clustering and visualizing high-dimensional
complex data on a two-dimensional map. On the basis of batch learning SOM,
Abe et al. have developed a modification of the conventional SOM for genome
sequence analyses, which makes the learning process and resulting map
independent of the order of data input (Abe et al. 2002; Abe et al. 2003; Kanaya
et al. 2001). They previously constructed the SOMs for di-, tri-, and
tetranucleotide frequencies in genomic sequences (fragments) from 65 bacteria
and 6 eukaryotes. In the resulting SOMs, the sequences were clustered (i.e.,

self-organized) according to species without any information regarding the
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species, and increasing the length of the oligonucleotides from di- to
tetranucleotides increased the clustering power (Abe et al. 2003). They also
used the SOM analysis to identify horizontally transferred “alien” sequences in a
prokaryotic genome (Kanaya et al. 2001).

A possible link between epigenetic modifications of parasitic DNA and
imprinting has been postulated (Barlow 1993; Yoder et al. 1997). Several lines of
evidence support this hypothesis. For example, at least 8 of the imprinted genes
appear to have arisen by retrotransposition events (Walter and Paulsen 2003).
Among these, 6 genes (Nap1/5, Mkrmn3, Mkrn1-ps1, Pegi12, TCEB3C and
U2af1-rs1) are derived by retrotransposition events from multi-exonic precursor
genes and 2 (Peg10 and Rt/1) are retrotransposon-derived genes. Furthermore,
it has been suggested that transgenes possessing prokaryotic sequences, such
as plasmid vector DNA, are prone to methylation imprinting (Barlow 1993).

In this study, | used di-, tri- and tetranucleotide SOMs, constructed
using 2-kb genomic sequences derived from 10 eukaryotes, including the mouse,
and 143 prokaryotes, to investigate the genomic characteristics of the germline
DMRs. Mapping of the germline DMRs on the SOMs revealed that they have
features distinct from typical mouse sequences. Implications of the findings will

be discussed.
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4-2. Materials and methods
Genome sequences

The genome sequences of 10 eukaryotes (including the mouse) and
143 prokaryotes (Table 10) were obtained from the UCSC Genome

Bioinformatics Site (http://genome.ucsc.edu/). When the number of

undetermined nucleotides (Ns) in a sequence exceeded 10% of the window size
(2-kb), the sequence was omitted from the analysis. When the number of Ns was
less than 10%, the oligonucleotide frequencies were normalized to the length
without Ns and included in the analysis. The 15 germline DMR sequences were
obtained as described in Chapter 2 and are listed in Table 5. Fifty-nine
non-imprinted mouse CpG islands were collected as described in Chapter 3 and

are shown in Table 6.

SOM analysis

The di-, tri- and tetanucleotide SOMs were constructed by Dr. Takashi
Abe (Laboratory of Research and Development of Biological Databases, NIG)
from the genome sequences of 10 eukaryotes and 143 prokaryotes (Table 10)
as following. SOM implements nonlinear projection of multi-dimensional data
onto a two-dimensional array of weight vectors, and this effectively preserves the
topology of the high-dimensional data space (Kohonen, 1982 and 1990;
Kohonen et al.,, 1996). On the basis of batch learning SOM, conventional

Kohonen’s SOM was modified for genome informatics to make the learning
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process and resulting map independent of the order of data input (Kanaya et al.,
1998 and 2001; Abe et al.,, 2002 and 2003). The initial weight vectors were
defined by Principal Component Analysis (PCA) instead of random values.
Weight vectors (w;) were arranged in the two-dimensional lattice denoted by i (=
0,1,.,1-1)andj(=0,1, .., J-1). The j was defined by the nearest integer greater
than (o,/0,) x I. 0,and o, were the standard deviations of the first and second
principal components, respectively. Weight vectors (w;) were set and updated as
described previously (Abe et al. 2003). Di-, tri- and tetranucleotide frequencies in
each sequence was calculated, and the frequency for the complimentary di-, tri,
and tetranucleotide pairs (degenerated oligonucleotide pairs) was mapped to the
lattice point with the shortest distance in the multidimensional frequency space
represented by the 2-kb DegeDi-, DegeTri- and DegeTetra- SOMs, after
normalization for the sequence. All germline DMRs and non-imprinted CpG

islands were mapped on the SOMs based on their oligoncleotide frequencies.
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4-3. Results

The DegeDi-, DegeTri- and DegeTetra-SOM were constructed by Dr.
Takashi Abe using 2,538,037 2-kb sequences derived from the genomes of 10
eukaryotes containing the mouse and 143 prokaryotes. In the DegeTri- and
DegeTetra-SOM, most of the 2-kb segments from each organism are distributed
to form species-specific territories (Figure 4(a)). In contast, the classification
efficiency of the DegeDi-SOM is a little lower than the others. In the
DegeTri-SOM, a cluster of mouse genome sequences was located in a small
area near the right edge of the SOM, away from the main mouse territory.
Forty-nine non-imprinted CpG islands were mapped in the rightmost quarter of
the SOMs, mainly in this small area in the DegeTri-SOM (Figure 4 (c)).

To assess the characteristics of the 15 germline DMRs, they were
mapped on these SOMs (Figure 4 (b)). Coordinates of the lattice point of each
DMR segment and origins of the comapped genome segments are shown in
Table 11. The results demonstrated that all DMRs are located in the right half,
notably near the right edge, of the SOMs. In the DegeDi-SOM and DegeTri-SOM,
all DMR were mapped to lattice points that include sequences from more than
one species. In fact, many of the DMRs were located on the borders of the
mouse territories, and a few of them were even in other species’ territories.
Interestingly, the 12 maternally methylated DMRs were located in the rightmost
quarter of the SOMs, specifically in the CpG island area (Figure 4 (c)), while the

paternally methylated DMRs were more centrally located. In the Dege Tetra-SOM,
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most of the DMRs were again mapped to lattice points that include sequences
from more than one species, but the H79 DMR was mapped to a lattice point that
includes only mouse sequences. Surprisingly, the Meg1/Grb10 and UZ2af1-rs1
DMRs were mapped to lattice points to which only prokaryote sequences were
clustered.

To reveal which oligonucleotide frequencies contribute to the sequence
distribution on the SOMs, the frequency of each oligonucleotide obtained from
the weight vector for each lattice point in the SOMs was calculated and
normalized with the level expected from the mononucleotide composition for
each lattice point. This normalization allowed oligonucleotide frequencies in each
lattice point to be studied independently of mononucleotide compositions. | found
that some oligonucleotide frequencies for each weight vector were reflected in
the horizontal or vertical axis. For example, oligonucleotide frequencies
containing CpG dinucleotide were reflected in vertical axis and increased from
top to bottom, and ApT, TpA, TpApT+ApTpA and GpCpApA+TpTpGpC
frequencies were reflected in horizontal axis and decreased from left to right in
each SOM (Figure 5).

Based on these data, it was estimated that the distribution of the
DMRs in the right side on each SOM is caused by the frequencies of ApT, TpA,
TpApT+ApTpA and GpCpApA+TpTpGpC, which were reflected in horizontal
axis on the SOMs. However, it was unidentified which oligonucleotide

frequency contributes the difference in distribution of paternally methylated
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DMRs, maternally methylated DMRs and non-imprinted CpG islands.
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4-4, Discussion

The SOM was recently used to analyze oligonucleotide frequencies in a
wide variety of prokaryotic and eukaryotic genomes. The SOM analysis can
classify DNA sequences from various sources into subgroups that generally
correspond to species or biological categories (Abe et al. 2003). In this study, the
15 germline DMR sequences of mouse imprinted genes were mapped on the
SOMs, which were constructed using 2-kb genome sequences from 10
eukaryotes and 143 prokaryotes, to reveal characteristics of the germline DMRs.

| found that many DMRs are located at lattice points that are on the
borders of the mouse territories and include sequences from more than one
species. This indicates that these DMRs have features distinct from typical
mouse sequences. In fact, Meg1/Grb10 and U2af1-rs1 DMRs were mapped to
prokaryote territory in the DegeTetra-SOM. | also found that the distribution of
the 3 paternally methylated DMRs (located rather centrally in the main mouse
territory) differs from that of the 12 maternally methylated DMRs (clustered in the
rightmost quarter of the SOM). The results indicate the SOM analysis may have
the power to separate the maternally methylated DMRs from the paternally
methylated DMRs. The distribution of the DMRs on the SOMs appeared to be
dependant at least partly on the frequencies of CpG, ApT, TpA, TpApT+ApTpA,
GpCpApA+TpTpGpC and other oligonucleotides containing CpG.

A possible link between epigenetic modifications of parasitic DNA and

imprinting has been previously postulated (Barlow 1993; Yoder et al. 1997). One
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piece of evidence comes from the fact that many mouse transgenes are
imprinted by DNA methylation. Transgenes with prokaryotic sequences such as
chloramphenicol acetyltransferase (CAT) (Reik et al. 1987), pBR322 (Hadchouel
et al. 1987; Sapienza et al. 1987; Swain et al. 1987), and pUC18 (Sasaki et al.
1991) sequences, show methylation imprinting upon maternal transmission.
Furthermore, such methylation is established in growing oocytes (Ueda et al.
1992), just like that of the endogenous DMRs (Lucifero et al. 2004). Endogenous
DMRs may look like foreign DNA and, because of this, they may become
methylated in the germline by the host defense machinery. The fact that the
Meg1/Grb10 and UZ2af1-rs1 DMRs are mapped to the prokaryote territory in the
DegeTetra-SOM provides a new piece of evidence for this interesting
hypothesis.

It is also known that many imprinted genes (at least 8 genes) are
derived by transposition events (Walter and Paulsen 2003). Two of them (Peg10
and Rtl7) are in fact derived from retrotransposons. Because the SOM analysis
can identify horizontally transferred “alien” sequences (Kanaya et al. 2001), |
thought that it may be possible to identify the retrotransposon-derived DMRs.
However, among the three, only Peg10 is known to have a germline DMR (Ono
et al. 2003) and this DMR was mapped in the CpG island area of the mouse
territory. This is most probably consistent with the fact that this DMR is located
6.5 kb away from the retrotransposon-derived exon. Therefore, whether the

DMRs associated with the retrotransposon-derived imprinted genes have
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features distinct from the mouse genome sequences remains an open question.

In conclusion, the SOM analyses revealed that the germline DMRs on
the whole have similar oligonucleotide patterns, which overlap with those of the
genomes from other species. Specifically, some germline DMRs had a feature
specific to prokaryotic DNA on the DegeTetra-SOM. Further studies are needed
to establish whether the parasitic DNA-like sequences and the host defense

mechanism are indeed involved in genomic imprinting.
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Conclusions

In this thesis, | determined the boundaries and extents of the 15 mouse
germline DMRs by bisulfite sequencing in 12.5-dpc embryos and sperm. The
results showed that the average size of the DMRs is 2.7 kb and that their
average G+C content is 54.2%. | also found that the DMRs have several
different methylation patterns at the boundaries.

Then, oligonucleotide content analyses of the determined DMR
sequences revealed that the DMRs show a content value intermediate between
that of the whole genome and CpG islands for most oligonucleotides. | also
found that the paternally methylated DMRs contain less CpGs than the
maternally methylated DMRs. One possible explanation for this sexual
dimorphism is that the paternally methylated DMRs are more mutable than the
maternally methylated DMRs. However, it is also possible that the differential
CpG content is one of the features recognized by the de novo methylation
machinery in the germline. Some oligonucleotides such as TpGpC+GpCpA,
GpCpApA+TpTpGpC and TpGpCpA were overrepresented in the DMRs, but
their biological significance is currently unknown.

Using the germline DMR sequences, | also carried out SOM analyses
and found that many germline DMRs have features distinct from typical mouse
sequences. For example, some DMRs such as the Meg1/Grb10 and U2af1-rs1
DMRs had prokaryote-like sequence features.

Altogether, these results provide a basis to identify the structural
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characteristics specific to the germline DMRs. My next goal is to determine the
methylation status of the germline DMRs in oocytes and study the characteristics
of the germline DMRs in more detail. Further studies on for the DMRs should
give us clues to the understanding of the molecular mechanisms of genomic

imprinting.
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Figure 2 (a) Bisulfite methylation analysis of the Nespas-Gnasxl DMR
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Figure 2 (b) Bisulfite methylation analysis of the Gnas 1A DMR
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Figure 2 (c) Bisulfite methylation analysis of the Peg10 DMR
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Figure 2 (d) Bisulfite methylation analysis of the Pegl/Mest DMR
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Figure 2 (e) Bisulfite methylation analysis of the Peg3 DMR
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Figure 2 (f) Bisulfite methylation analysis of the Snrpn DMR1
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Figure 2 (g) Bisulfite methylation analysis of the Litl/Kcnglotl DMR
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Figure 2 (h) Bisulfite methylation analysis of the Zacl DMR
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Figure 2 (i) Bisulfite methylation analysis of the Meg1/Grb10 DMR
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Figure 2 (j) Bisulfite methylation analysis of the U2afl-rs1 DMR
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Figure 2 (k) Bisulfite methylation analysis of the Igf2r DMR2



1 kb

Telomere

Impact

Centromere

AT N T

CpG site |

|

<

11T T T ¥-1-1-0

eCOO8800000

cooopoooo sCceeCODDDDD
O#00DDOODD OOSDDDDODODD

COODDOOOD CoCDooDDDDCs

COCODDODDD COCLOOODDoDD

coCODDDDDD CODDDDDOOODD

COCODDODDDD DODDDDDDDDCD

COCODDDDDD OOOODDDOODOD

SOOOOOOODDDOD E CeO000000000 CODDDDDOOOC
DODDDDDDDDDDD CCOOE0DDDDDD DOCDEDDDDDE
DDDDDDDDDDDDD C#0000DDDDDD DDDDDDDODDD
SO0OOoOoDDDDD CCODOOOOOO00 COODDDDDOOOC
CODDDDDDDDDDD COOCOODDDDDD DODDDDDDDDD
DODOOOODDDDDD cCcoOOOODDDDDD COODDDDOOOD
DOODDDDDDDDDD CCOOOODDDDDD DDDDDDDODDE
CODDDDDDDDDDD #COCCODDDDDD WDDDDODODDD
DODOOOODDDDDD cCOOOODDDDDD CDODDDDOOOD
DODDDDDDDDDDD #C88C00OODDD SE88DDD000E

DDDODDDDDD

B

1elN / Yed
soAiqwa 2dp-g'ZzT wJiads

1|\ / Yed

Figure 2 () Bisulfite methylation analysis of the Impact DMR



1 kb

Telomere

[ .
.
| | -
= -
L |
cooooooo
CoOCODOOD
DOCODOOG
cooooooo
COGOOOOG
— [el=laleleluTele]
] CoOoODDOD
™ COGOOOOG
m cooooooo
v I I CcoCoDooC
DOCODCOG
COCODOO0
COGOOOOG
— cooooooo
— COOOOOO®
DOCOOOOG
- coooooow
— CoOCoODCOC
DOCCoCOe
COCODDOC
COCOOOe0
— CODCOBOOON
cocooosesce sasnne . .
i Cessss
cocosesesce . .
COODDOGG
— CODDDOCeOD
— CODDOORODO0S cecooRes
— COODOOOOoeOS SCOSSECE DOOBSOOOCOOCECE
cocooooooRce COCECCCS COODDDODCCRCRES
COCDOOoOD
— - CODDDODOOGD
COCODOOORDON e
COODOOOOOCes Cesaense COODOOOOCOCOoNE
cocooooooCes Ccossemss coocooooooooDDe
COCOCC DODDDODDOCOE
cooocosoooooe
CcoODDCDOCODOS
0DOODDODCOCE
COODDDOODDOS
COODDOOOCOOe
cooopooDoD!
CoOODDCODOD!
0DOODDODCOCE
COODODOODDON
cooocoooooece
COODDDODOD!
= 0DOODDODCOOS
cooocooooecoe
I
— [eYalal=e] 1=
COOCOCeDOO0D
_— U COODODOODDDOCDDO0D0DD
— CODCOCODGCD0D00DD0DOD
— CoDCOCCDOCDODDOe
COCOOCODOCDCNDDODODNS
1 .
L ]

CODDOSSCOSCOOoSNN0RN

e\ / Yed e\ / red
sofAiquia 2dp-G'ZT wJiads

Centromere
CpG site |

Figure 2 (m) Bisulfite methylation analysis of the H19 DMR
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Figure 2 (n) Bisulfite methylation analysis of the Rasgrfl DMR
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Figure 2. Bisulfite methylation analysis of the 15 germline DMRs in 12.5-dpc
mouse embryos and sperm: (a) Nespas-Gnasxl locus; (b) Gnas 1A locus; (c)
Peg10; (d) Pegi1/Mest locus; (e) Peg3 locus; (f) Snrpn locus; (g) Lit1/Keng1ot1
locus; (h) Zacft locus; (i), Meg1/Grb10 locus; (j) U2af1-rs1 locus; (k) lgf2r locus;
() /Impact locus; (m) H19 locus; (n) Rasgrf1 locus; (0) DIk1-Gtl2 locus. Open
boxes represent the gene exons. Arrows indicate the transcription start sites and
directions of transcription. Filled triangles represent tandem repeats. Red vertical
lines below the exon-intron organization indicate the positions of CpGs. Open
horizontal bars represent the previously confirmed regions of the DMRs. Filled
horizontal bars indicate the PCR amplicons, and gray horizontal bars represent
the extent of the DMR determined in this study. Results of bisulfite sequencing
are shown below the map (top, 12.5 dpc-embryos; bottom, sperm). Filled circles
indicate methylated CpGs and open circles unmethylated CpGs. Hyphens
indicate that these particular CpGs are missing due to an SNP or could not be
analyzed due to a technical problem. The maternal and paternal alleles were
distinguished by SNPs, if available, between C57BL/6 and JF1. Mat, the

maternal (C57BL/6) allele; Pat, the paternal (JF1) allele.
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Figure 3. Schematic representation of the extents of the 15 germline DMRs. CpG
positions are shown by vertical lines. Closed boxes represent the exons. Arrows
indicate the transcription start sites and directions of transcription. Gray boxes

represent the extents of the DMRs determined in this study.
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Figure 4. SOM mapping of the germline DMRs. (a) SOMs for 2-kb sequences of
10 eukaryotes genome and 143 prokaryotes genome. Top, DegeDi-SOM; middle,
DegeTri-SOM; bottom, DegeTetra-SOM. Lattice points that include sequences
from more than one species are indicated in black, those that contain no
genomic sequences are indicated in white, and those containing sequences from
a single species are indicated in color as follows: mouse Mus musculus
domesticus (m), the remaining 9 eukaryotes (m), 143 prokaryotes (m). (b)
Mapping of the 15 germline DMRs on the SOMs. 12 maternally methylated
DMRs (m); 3 paternally methylated DMRs (m). (c) Mapping of 49 non-imprinted

mouse CpG islands (m).
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Figure 5. Levels of individual oligonucleotides in the SOMs. Top, DegeDi-SOM;
middle, DegeTri-SOM; bottom, DegeTetra-SOM. Levels of some
oligonucleotides and of some complimentary oligonucleotide pairs for each
lattice point in the SOMS in Figure 4 are shown as examples of component
planes. The observed/expected ratio is indicated in colors presented at the
bottom. of the figure. Data of all component planes are presented by our URL
(DegeDi-SOM, http://lavender.genes.nig.ac.jp/takaabe/KO/DS/GIF/DS.html;
DegeTri-SOM, http://lavender.genes.nig.ac.jp/takaabe/KO/TRS/GIF/TRS.html;
DegeTetra-SOM, http://lavender.genes.nig.ac.jp/takaabe/KO/TS/GIF/TS.html).

Lattice points mapped for the 15 germline DMRs were indicated by black dots.
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Table 5. Size and GC contents of fifteen germline DMRs

Data from this study
Size (kb) GC content (%)

Gene/DMR Chromosome

Maternally methylated DMRs

Nespas-Gnasx| 2 3.5 52.2
Gnas 1A 2 2.2 61.3
Pegl0 6 3.6 55.9
Pegl/Mest 6 4.8 50.7
Peg3 7 4.2 534
Snrpn DMR1 7 1.7 55.6
Litl /Kenglotl (KvDMR1) 7 21 53.6
Zacl 10 20 53.4
Megl/Grb10 11 1.6 63.6
U2afl-rsl 11 2.3 54.0
Igf2r DMR2 17 15 60.7
Impact 18 2.7 554
Average 2.7 55.8*
Paternally methylated DMRs

H19 7 2.1 50.3
Rasgrfl 9 3.0 43.6
DIk1-Gtl2 (IG-DMR) 12 3.3 49.3
Average 2.8 47.7*
Average of DMRs 2.7 54.2
Whole mouse genome 41.7

Significant differences between the values of the maternally and paternally
methylated DMRs are shown as *P < 0.05



Table 6. Randomly selected 49 non-imprinted mouse CpG islands.

Reference Gene Accession number ~ Chromosome Length
(bp)
Gardiner-Garden Hist2h4 V00753 3 698
& Frommer Car2 - 3 683
Rpl32 K02060 6 1,168
Rps16 M11408 7 1,218
Mtl JO0605 8 957
Mt2 K02236 8 1020
Aprt M11310 8 786
Actal M12347 8 1,877
Pomc AHO005319 12 1,168
c-fos V00727 12 1992
Dhfr M10071 13 1235
Wntl K02593 15 3,158
Rpl30 K02928 15 897
c-myc L0O0038 15 3,306
MHC class Il H2-1A-beta K00008 17 1163
Hprt K01507 X 490
GenBank Ncl M22089 1 1785
alpha-2 adrenergic receptor  M94583 2 1462
Bc10, nn2 AF303656 2 2961
Fix1 AJ009634 2 1823
Gclm AF246994 3 811
Rps3a 783368 3 1365
Thioredoxin D21855 4 850
Mac25 AB042198 5 1,462
Cenpc AF012708 5 700
CyIn2 AJ228864 5 687
Spr u78076 6 720
Vasp X98475 7 535
Dmahp X84814 7 1795
Nktr u63544 9 2054
Bsg D82019 10 1257
Itgae, Gsg2 AF289866 11 1005
Azl D88497 11 955
Sez6 Y09922 11 1529
Nfh 731012 11 1482
Sp4 AB019147 12 2037
Apex D38077 14 1069
Krt7 AF509890 15 1035
cytokeratin endo A D90360 15 1165
dTP2 X95711 16 1067
Tcpl D10606 17 803
Rxrb D21830 17 1272
gMCK2-beta X80685 17 1863
Ring3 AL009226 17 1558
Tcte2 U46150 17 845
Lmnb1 D50070 18 1300
Dpl/Th2 D55682 18 788
Zfx L19715 X 2071
G6pd X53617 X 1692
Average of CpG islands 1,339




Table 7. Dinucleotide content of the germline DMRs

Dinucleotide content (%)

ApA ApC ApG CpA CpC GpA
+ + + + + + ApT  CpG GpC TpA
TpT GpT CpT TpG GpG TpC

Maternally methylated DMRs

Nespas-Gnasx| 1433 10.01 14.44 14.07 16.12 12.13 4.46 3.85 7.00 3.59
Gnas 1A 10.52 8.65 1453 1199 18.89 1145 250 798 11.14 2.36
Pegl0 13.10 9.74 13.16 13.90 1810 11.20 4.06 5.38 8.41 295
Pegl/Mest 16.02 10.34 13.58 1397 1553 11.03 4.66 3.83 6.90 4.13
Peg3 12.58 9.26 1492 1525 16.30 1222 4.94 3.46 7.78 3.29
Snrpn DMR1 10.20 11.24 1533 16.95 16.95 10.78 3.80 3.23 8.30 3.23
Litl /Kcnglotl (KvDMR1) 11.67 12.05 14.27 1437 1490 13.11 4.19 5.06 6.75 3.62
Zacl 14.62 9.78 1345 1257 16.33 1154 4.35 5.57 787 3.91
Megl/Grb10 7.86 10.64 12.13 13.80 18.75 9.72 285 9.53 1225 248
U2afl-rsl 11.80 11.36 13.61 13.74 1586 10.34 4.64 5.39 8.17 5.08
Igf2r DMR2 10.18 8.68 14.09 12.07 21.00 12.39 3.20 6.78 9.26 2.35
Impact 11.11 9.33 1585 16.85 12.00 10.85 4.15 537 1159 2.89
Average 12.00 10.09 14.11 14.13* 16.73 11.40 3.98* 5.45% 879** 3.32*
Paternally methylated DMRs

H19 12.67 1144 12.72 1656 14.67 1149 6.41 3.23 6.36 4.46
Rasgrfl 18.06 10.12 14.44 15.21 9.41 11.69 6.87 2.31 6.20 5.70
DIk1-Gtl2 (IG-DMR) 1297 1262 14.67 1521 1390 11.01 5.19 2.80 591 5.73
Average 1457 11.39 13.94 15.66* 12.66 11.39 6.15* 2.78** 6.15** 5.29*
Average of DMRs 1251 1035 14.08 14.43 1591 1140 4.42 4.92 8.26 3.71
Average of CpG islands® 8.68 9.68 14.26 12.08 20.26 1230 2.56 7.80 9.96 2.34
Whole mouse genome 18.19 10.67 14.69 1492 1044 1239 7.36 0.84 411 6.38
Prokaryotic sequences from imprinted transgenes

CAT 18.06 10.93 8.65 14.72 11.68 11.23 8.80 4.86 5.46 5.61
pBR322 11.77 1069 12.06 13.35 13.26 12.43 5.85 7.55 8.69 4.36
puC18 14.23 1110 1251 1292 12.33 1199 5.74 6.44 7.64 5.10
Average 14.68 10.90 11.08 1366 1242 11.88 6.80 6.28 7.26 5.02

*The values were obtained from randomly selected 49 non-imprinted mouse CpG islands.
Significant differences between the values of the maternally and paternally methylated DMRs are shown as

*P < 0.05 and **P < 0.01.
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Table 10. Genome sequeces used for SOM analysis

Species

Sequence lengths

(MB)
Mus musculus (Mouse) 2,638
Danio rero (Zeblafish) 1,169
Fugu rubripes (Fugu) 309
Drosophila melanogaster (Fruit fly) 115
Caenorhabditis elegans (Nematode) 100
Arabidopsis thaliana (Thale cress) 116
Oryza sativa japonica (Japanese rice) 359
Saccharomyces cerevisiae 12
Schizosaccharomyces pombe 12
Plasmodium falciparum 20
143 Prokaryotes 402
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