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General Introduction 
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All organisms on earth are exposed to the fluctuating environment of the 

day-night cycle.  As a result, organisms including prokaryotes, plants and animals 

have evolved mechanisms to adjust their physiology, metabolism, and behavior to 

such environmental changes.  Such mechanisms are widely known as circadian 

clocks (circa = about, dies = a day) and involve endogenous oscillations with a 

period of about 24 h.  The clock allows organisms to anticipate daily changes and 

to prepare for the right activity at an appropriate timing.  This mechanism is 

energetically economical and remarkably advantageous for reproductive fitness 

and survival in nature (Lakin-Thomas and Brody, 2004; Young and Kay, 2001).  

Acquisition and development of the circadian clock has been much focused on as 

an adaptive strategy in the course of evolution.  Moreover, circadian rhythms are 

fundamental to photoperiodism events involving seasonal breeding, hibernation, 

and flowering regulation.  

In mammals, diverse vital functions such as sleeping, feeding, cardiac rate, 

blood pressure, hepatic function, body temperature, and hormonal production 

exhibit circadian rhythms (Foster and Kreitzman, 2004).  Especially for humans, 

the maintenance of the sleep-wake cycle is necessary to organize one's social life.  

The occurrences of health hazards such as insomnia or depression arising from 

sleep disorders have increased in recent years (Foster and Kreitzman, 2004).  An 

accurate internal clock is thus crucial in the struggle for survival in both nature and 

civilized society.   

The circadian clock that controls diverse and sophisticated phenomena at an 

individual level is cell autonomous, and persists in the absence of environmental 

cues.  Molecular biological studies have revealed that the essential mechanisms 

for these endogenous and self-sustaining rhythms are cyclic expressions of the 

responsible genes, so called clock genes.  In mammals, the rhythms in each 

neuron are synchronized and amplified in the suprachiasmatic nucleus where 
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photic entrainment occurs.  This master clock regulates endocrine output and 

orchestrates clocks in peripheral tissues.  From the perspective of systems biology, 

the hierarchical structure of the circadian clock appears an excellent model of the 

complex systems that result from intercellular interactions. 

Taken together, the mechanism of circadian rhythms is an interdisciplinary 

subject covering physiology, neuroscience, and cellular, molecular, and systems 

biology.  Indeed, its elucidation is driven by the growing social and medical 

demands.   

 

Another approach for circadian research that can be seen as indispensable is a 

mathematical one.  The earliest model predicting oscillations due to 

transcriptional negative feedback was proposed by Goodwin (Goodwin, 1965) at a 

time when the role of such a regulatory mechanism in the origin of circadian 

rhythms was not yet known.  One of the best characterized interactions of clock 

genes is that of Drosophila, in which the PER/TIM complex indirectly represses 

transcriptions of period and timeless, by binding to the transcription factor CLOCK 

protein (Dunlap, 1999).  This transcriptional feedback mechanism, together with 

phosphorylation of clock proteins, is remarkably well conserved in other animals, 

such as Neurospora, Arabidopsis and mouse, and seems to be a general 

requirement for self sustaining circadian oscillations (Hardin, 2006; Wijnen and 

Young, 2006; Young and Kay, 2001).  Theoretical studies have confirmed the 

importance of delayed negative feedback for rhythm generation (Goldbeter, 1995).  

This portrayal of the transcription-translation feedback oscillator (TTO) has indeed 

been a dogma in respect to circadian rhythm (Appendix I). 

As well as circadian rhythms, mathematical studies have also provided 

insights into the properties of other biological rhythms (Goldbeter, 2002).  The 

first such application was in ecology to study oscillations resulting from 
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interactions between prey and predators (Murray, 1989b).  In cellular physiology, 

Hodgkin and Huxley developed a model of neural rhythms, which remains at the 

core of most models related to oscillating membrane potentials (Keener and Sneyd, 

1998).  Structural perspectives obtained from mathematical analyses often relate 

to the general conditions for oscillations and can be applied to other rhythmic 

phenomena.  Investigations of biological rhythms often utilize the store of 

existing knowledge. Recently, tasks to which mathematical approaches have been 

applied are increasing.  Because of the substantial progress that has been made in 

molecular biology, the picture of the interacting networks of proteins, RNA and 

genes that go to make up a biological function is an increasingly exhaustive one.  

In circadian studies, investigations at the molecular level have revealed multiple 

coupling networks of feedback loops for which the total behavior is difficult to 

comprehend (Glossop et al., 1999).  In view of the complexity of the associated 

processes, mathematical analysis and numerical simulations are needed to present a 

global description of how the network might be organized.  As well, these 

investigations reveal possibilities of being able to suggest novel components or 

missing connections in the regulatory networks.  It is expected that theoretical 

predictions and experimental identifications will combine to give a clearer 

understanding of the global mechanism involved, and in return improve 

mathematical modeling and experimental designs.   

 

Cyanobacteria are thought to have been the first oxygen-evolving 

photosynthetic organisms on Earth (Ditty et al., 2003).  Oxygenic photosynthesis 

originating in these bacteria is thought to be responsible for changing the 

prehistoric environment to an oxygen-enriched atmosphere and for creating the 

ozone layer (Ditty et al., 2003).  Photosynthesis in cyanobacteria is repressed 

rhythmically by the clock, saving unnecessary energy expenditure at night.  This 
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is an adaptive mechanism, as co-culture competition experiments have 

demonstrated that there is a selective advantage for cells those internal timekeepers 

are in tune with the rhythms of their environment (Woelfle et al., 2004).  The 

discovery of cyanobacterial circadian rhythms overturned past dogmas that held: 

(1) that organisms with a cell division time of less than 24 h could not sustain a 

circadian rhythm, and (2) that prokaryotes could not sustain rhythmicity because 

cellular complexity and organelles, particularly a membrane-bound nucleus, were 

required (Kondo et al., 1997; Mori et al., 1996).  Moreover, the existence of 

prokaryotic circadian rhythms enabled simple investigations and observations of 

the circadian mechanism.  For this purpose, Synechococcus elongatus PCC 7942, 

a genetically tractable strain, was developed as a model organism where circadian 

rhythms could be visualized by introducing the luciferase reporter system (Kondo 

et al., 1993).   

In S. elongatus, the clock protein KaiC regulates genome-wide expressions 

including that of kai genes in continuous light conditions (Kondo et al., 1997; 

Nakahira et al., 2004).  This transcriptional autoregulation is consistent with the 

TTO model (Ishiura et al., 1998).  Phosphorylation of the clock protein is 

proposed to play a critical role in transcriptional regulation in the cyanobacterial 

clock system (Iwasaki et al., 2002; Nishiwaki et al., 2004; Xu et al., 2004).  In 

Chapter II: Transcriptional Autoregulation by KaiC, I predict how KaiC regulates 

transcriptional activity depending on its phosphorylated state.  I give a theoretical 

insight into how this mechanism contributes to robust oscillations.  The study has 

been published as “Transcriptional autoregulation by phosphorylated and 

non-phosphorylated KaiC in cyanobacterial circadian rhythms” in the Journal of 

Theoretical Biology.   

 

The finding of the circadian cycling of KaiC phosphorylation without 
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transcription has broken the last dogma regarding the TTO (Nakajima et al., 2005; 

Tomita et al., 2005).  In addition to its chronobiological importance, the non-TTO 

Kai oscillator is an inspiring theme for mathematical research in terms of 

oscillations derived from purely biochemical interaction in a closed system.  This 

minimal system seen in cyanobacteria cannot be reproduced by the two-variable 

framework that I used in Chapter II, which focused on the TTO mechanism.  Here, 

I focus on the significance of the variety of KaiC states.  I speculate that some 

processes among complex formations and possible variations of KaiC 

phosphorylation would be required for rhythm generation.  Indeed, theoretical 

study has demonstrated that a network comprised of a small number of elements 

cannot generate oscillations, and that multiple reaction steps allow periodicity 

(Goldbeter, 1995).  In Chapter III: KaiC Phosphorylation Cycle, I examine how 

non-TTO KaiC oscillations can result from the experimentally observed 

interactions among the Kai proteins and I predicte the structure of KaiC state 

transition.  I also determine what kind of feedback process controls oscillations in 

a general closed system.  This study has been published as “Predicting regulation 

of the phosphorylation cycle of KaiC clock protein using mathematical analysis,” 

in the Journal of Biological Rhythms.   
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Introduction 
 

Circadian rhythms maintain cyclic behavior even under constant conditions 

without environmental cues.  This is called free-run, and is primary evidence that 

circadian rhythmicity is intrinsic and includes self-sustained oscillators.  In model 

organisms such as Drosophila, Neurospora, and mouse, circadian rhythms have 

been shown to be based on cyclic oscillation at a transcriptional level of the clock 

genes (reviewed in Dunlap, 1999; Young and Kay, 2001).  Clock genes form 

networks of transcriptional interactions including feedback loops to generate 

autonomous oscillatory dynamics.  This TTO model was applied for 

understanding the cyanobacterial clock mechanism before the discovery of the 

non-TTO KaiC phosphorylation cycle.  In this chapter a study based on this old 

view that transcriptional autoregulation by KaiC is responsible for cyanobacterial 

circadian oscillation is demonstrated. 

 

In the cyanobacterium Synechococcus elongatus PCC 7942, clock genes kaiA, 

kaiB, and kaiC have been characterized as indispensable clock regulators (Ishiura 

et al., 1998).  The kai genes form a gene cluster, where kaiB and kaiC are 

co-transcribed as kaiBC mRNA.  KaiC plays a central role and exhibits rhythms 

in transcription, translation, and phosphorylation statuses under continuous light 

conditions (Iwasaki et al., 2002; Nishiwaki et al., 2000).  The other clock proteins 

KaiA and KaiB modulate KaiC autophosphorylation: KaiA enhances 

autophosphorylation of KaiC, and KaiB inhibits this action of KaiA (Iwasaki et al., 

2002; Kitayama et al., 2003; Williams et al., 2002; Xu et al., 2003).   

From the fact that KaiC overexpression consistently reduces the kaiBC 

promoter activity, it has been considered that KaiC negatively regulates kaiBC 
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transcription (Ishiura et al., 1998).  Contrarily, KaiA positively regulates 

transcription as KaiA overexpression induces kaiBC transcription in a wildtype 

strain.  KaiA overexpression in the kaiC- strain did not show transcriptional 

up-regulation, suggesting that KaiC, coupled with KaiA, is involved in the positive 

limb of transcriptional regulation (Iwasaki et al., 2002).  Moreover, KaiC 

overexpression in a kaiA-inactivated (kaiA-) strain did not repress and instead 

gradually induced kaiBC expression.  KaiA and KaiC appear to regulate kaiBC 

transcription in a cooperative, but unknown way.  Considering the fact that KaiA 

enhances KaiC phosphorylation, it is suggested that this cooperative regulation is 

realized by KaiC phosphorylation.  Indeed, it was observed that overexpression of 

the nonphosphorylatable KaiC mutant only transiently represses kaiBC 

transcription (Nishiwaki et al., 2004).  This result provides proof of the existence 

of the phosphorylation-dependent switch by KaiC.   

In this study, I investigated and predicted the possible mechanisms of 

transcriptional regulation by KaiC in its phosphorylated state to realize circadian 

oscillation using a mathematical model.  Considering the experimental results, 

phosphorylated and non-phosphorylated KaiC may have different roles in 

transcriptional regulation.  I developed a mathematical model that included 

concentrations of phosphorylated and non-phosphorylated KaiC, and kaiBC 

mRNA.  I used transcriptional regulation functions that switch their values 

depending on the amounts of phosphorylated and non-phosphorylated KaiC.  I 

examined all regulation patterns and determined the condition for oscillation by 

linear stability analysis.  First, I determined that there are only two possible 

patterns in transcriptional regulation that realize circadian oscillation.  Second, I 

verified if the determined conditions could explain the cyanobacterial circadian 

mechanism, comparing the behavior in computer simulation with the 

experimentally observed phenotypes.  It was suggested that transcriptional 
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oscillation driven by positive feedback of phosphorylated KaiC is suitable for 

coupling with the KaiC phosphorylation cycle. 
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Models 
 

I developed a model that describes interactions in continuous time and states 

between the clock gene products; kaiBC mRNA, KaiA, KaiB, and KaiC.  The 

kaiBC level and KaiC phosphorylation are known to exhibit oscillation in a 

circadian fashion; thus I used a three-variable model as follows, 

 

! 

dU

dt
= F(N,P) " quU

dN

dt
= pU " Phos N,P( ) " qnN

dP

dt
= Phos N,P( ) " qpP

 ,  (II-1) 

 

, where U, N, and P are the concentrations of kaiBC mRNA, of 

non-phosphorylated KaiC (NP-KaiC), and of phosphorylated KaiC (P-KaiC), 

respectively.  Since it has been observed that the amount of KaiA in the cytosol of 

a single cell remains constant at a low level, and that the amount of KaiB is always 

proportional to that of KaiC (Kitayama et al., 2003), the three-variable model is 

suitable to consider the oscillatory behavior of the three clock genes.   

In the framework used here, I assumed that kaiBC transcription is regulated 

by NP-KaiC and P-KaiC.  The transcription rate of kaiBC is F(N,P), a function 

depending on the levels of NP-KaiC and P-KaiC (described later in the subsection).  

NP-KaiC concentration increases with translation from kaiBC.  The rate is 

assumed to be proportional to the level of kaiBC, and the rate constant is p.  

Phosphorylation of NP-KaiC increases P-KaiC, and dephosphorylation of P-KaiC 

increases NP-KaiC.  The total change by these reactions is denoted by Phos(N,P), 

the phosphorylation/dephosphorylation function depending on the concentrations 
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of substrates NP-KaiC and P-KaiC (described later in the subsection).  The 

concentrations of KaiA and KaiB are assumed to enhance and attenuate 

phosphorylation, respectively, and are also included in Phos(N,P).  The 

degradation rates of kaiBC, NP-KaiC, and P-KaiC are assumed to be proportional 

to their concentrations, with their rate constants being qu, qn, and qp, respectively.   

 

F(N,P), The Transcription Function 

I assumed that the switching behavior of the transcription function F(N,P) 

takes a high or low value in a NP-KaiC- and P-KaiC-dependent manner.   

The function F(N,P) is based on the transcriptional regulation model 

developed by Mochizuki, a continuous form of a Boolean network (Mochizuki, 

2005).  For easier understanding, I show the one-dimensional form of the 

transcriptional regulation function as following, 

 

! 

F =
1

1+ exp " v #T( )[ ]
 (II-2) 

 

, where v is the concentration of the regulatory protein and T is the threshold for v.  

When λ is positive, F takes a value about 0 at the condition v>T, and one of about 

1 at v<T.  As v approaches T, F switches from 0 to 1 (or 1 to 0).  When λ is 

negative, the switching pattern is an inverse of the above.  λ also determines the 

steepness of the transition by its absolute value.  Here, I improved the function Eq. 

(II-2) as follows, 

 

! 

F(N,P) =
1

1+ exp " N cos# + Psin# $T( )[ ]
 (II-3) 
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Now F(N,P) switches when the sign of 

! 

N cos" + Psin" #T  changes.  Fig. II-2a 

shows the two-dimensional space of NP-KaiC and P-KaiC, which is divided in two 

areas by the straight line of 

! 

N cos" + Psin" #T = 0 .  Similarly to F in Eq. (II-2), 

F(N,P) continuously takes different values from 0 to 1 depending on the distance 

of (N,P) from the line as shown in Fig. II-2b, where 

! 

cos",sin"( ) is a normal vector 

of the threshold line and T is the distance of the line from the origin.  By choosing 

the value 

! 

cos",sin"( ) , the relative influences of NP-KaiC and P-KaiC on 

transcription can be changed.   

 

Phos(N,P), The Phosphorylation/Dephosphorylation Function 

KaiA is known to enhance KaiC autophosphorylation activity, which is very 

low without KaiA in vitro (Williams et al., 2002).  I assumed that KaiC 

phosphorylation is regulated positively by the concentration of KaiA, and that 

KaiC’s autophosphorylation rate without KaiA is very small and can be ignored.  

Using these assumptions, the Michaelis-Menten function can be used for KaiC 

phosphorylation.  It was observed that KaiC alone exhibited autophosphatase 

activity in vitro; thus, I assumed that P-KaiC is dephosphorylated in proportion to 

just its concentration. 

Although KaiB is known to attenuate KaiC autophosphorylation, the precise 

mechanism has not been examined.  To investigate all possible mechanisms of 

chemical reactions between Kai proteins, four types of the function Phos that 

specify the different activities of KaiB were used: (a) KaiB inhibits 

phosphorylation in a competitive manner, (b) KaiB inhibits phosphorylation in a 

non-competitive manner, (c) KaiB enhances dephosphorylation, (d) KaiB enhances 

dephosphorylation, but requires KaiA to do so.  KaiB is reported to change the 

equilibrium state of KaiC phosphorylation only when KaiA is present, in vitro as 

well as in vivo (Kitayama et al., 2003; Williams et al., 2002; Xu et al., 2003).  In 
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this regard, (a) and (b) seem more plausible than (c).  Type (d) is an improved 

function of (c).  All types contain KaiA-enhanced phosphorylation and 

spontaneous dephosphorylation of KaiC.  The details and the formulae are shown 

in Appendix II-A. 
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Results 
 

Analysis 
I investigated the conditions of gene regulation to generate oscillation using 

linear stability analysis of the model.  The equilibria of the model and the 

condition of the destabilization by Hopf bifurcation were determined numerically 

(Appendix II-B) changing parameters in the transcription function, the 

phosphorylation/dephosphorylation function and other parameters in Eq. (II-1).  I 

confirmed that the dynamic trajectory of this model shows oscillation for all the 

parameter sets satisfying the conditions for Hopf bifurcation.   

Fig. II-3 shows the conditions for generating oscillation on the 

two-dimensional parameter space, where the horizontal axis is the angle of the 

threshold line of transcriptional switching, and the vertical axis is the 

phosphorylation rate.  I used type (b) Phos in this analysis.  The figure shows 

that the instability causing the cyclic behavior is observed only in very restricted 

conditions on the two-dimensional space.  There are two regions separated along 

the horizontal axis of the transcriptional pattern, suggesting that there are two 

distinct mechanisms.   

In one region, P-KaiC induces transcription, and in the other, P-KaiC 

represses transcription.  Transcriptions in both the regions slightly depend on the 

NP-KaiC concentration.  Fig. II-4 illustrates the functional schemes of the two 

distinct regulation patterns derived from the conditions of the parameter sets in the 

two regions.  I call the former picture the Transcriptional Activation Model 

(TAM) and the latter the Transcriptional Repression Model (TRM).  TRM is easy 

to understand.  It follows the principles of self-repression typically used for 

understanding the circadian clocks of various species (Hardin et al., 1990).   
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On the other hand, TAM does not include self-repression of transcription and 

is regulated positively by KaiC.  This model may be contrary to intuition.  

However, the dynamics following this model can generate stable periodic 

oscillation in computer simulations, and show some rather favorable properties to 

explain the experimentally observed phenomena than the counterpart model.  In 

fact, it may be possible to understand this model by focusing on the 

dephosphorylation enhanced by KaiB, which is co-expressed with KaiC, and may 

act as the regulator of indirect negative feedback.  To realize this picture of 

"indirect negative feedback", the phosphorylation and dephosphorylation process 

should be far from equilibrium, and may show strong oscillations in the dynamics 

of circadian rhythms.   

 

Fig. II-5 shows dynamic changes in the net phosphorylation rate Phos, which 

includes both the phosphorylation and, its inverse, the dephosphorylation processes.  

In TAM, the amplitude of Phos is large and the value changes from positive to 

negative in dynamic oscillation.  The large dephosphorylation rate in TAM 

enables Phos to take a negative value depending on the KaiB level.  A positive 

Phos means that the phosphorylation rate is larger than the inverse process, while a 

negative Phos means the opposite situation.  The alternation of 

phosphorylation-dominant and dephosphorylation-dominant phases is observed 

only in TAM.  The period of this alternation synchronizes with oscillation of the 

whole dynamic system.  In TRM, Phos takes only a positive value and its 

amplitude is small.  This suggested that big changes in Phos are not necessary in 

TRM.   

Fig. II-3 also shows the difference in phosphorylation rates between the 

models.  The phosphorylation rate in TAM distributes higher values on average 

than TRM.  The same property in the phosphorylation rate was observed even 
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when I used different types of phosphorylation functions.  The exceptions were 

the case when I used type (a) or (d) (Table II-1), where I did not observe oscillation 

of TAM.   

Fig. II-6 shows examples of the dynamic trajectory of NP-KaiC and P-KaiC 

and the nullclines of dP/dt and F(N,P) in the space of NP-KaiC and P-KaiC in 

typical TAM (Fig. II-6a) and TRM (Fig. II-6b).  In TRM, 

anticlockwise-oscillation appears around the region where the nullcline of dP/dt 

increases with NP-KaiC.  In TAM, on the other hand, clockwise-oscillation 

appears around the region where the effect of substrate density on phosphorylation 

is saturated and the nullcline of dP/dt decreases with NP-KaiC from the 

dephosphorylation effect of KaiB (proportional to N+P).  The difference in the 

shape of the Phos nullcline corresponds to the difference in the rate of 

phosphorylation.  The phosphorylation rate in TRM needs to be low to generate 

oscillation.  The phosphorylation rate in TAM needs to be high.   

 

Computer Simulation 
I numerically analyzed the models by computer simulation to confirm the 

results of linear stability analysis.  The simple explicit difference method was 

used for calculations of differential equations Eq. (II-1).  Fig. II-7 shows typical 

dynamic changes of the gene products, where the same parameter values were used 

as in Fig. II-5.  The horizontal axis is time and the vertical axis is the 

concentrations of kaiBC, NP-KaiC and P-KaiC.  The dynamic changes obtained 

from type (c) Phos exhibited oscillation around the equilibrium shown in Fig. II-5.  

The kaiBC level, total amount, and the phosphorylation level of KaiC repeatedly 

rise and fall with periodicity (Fig. II-7), as in cyanobacteria.  All the dynamics 

showed periodic oscillations in the computer simulation when the parameter values 
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satisfied the condition of instability determined in the previous section.  The only 

exceptional weak result was the case when type (b) Phos was used.  In this case, 

dynamic changes calculated by simulation showed very low amplitude of the 

P-KaiC oscillation under conditions where oscillation was expected from the 

concept of TAM.  In TRM, similar oscillation patterns were obtained using any 

type of Phos.   

In TAM, the transcription phase is in phase with that of phosphorylation, 

contrary to the experimental result (Fig. II-7a).  On the other hand, TRM 

generates realistic oscillations in terms of the transcription phase pattern, 

phosphorylation and the total amount of KaiC protein (Fig. II-7b).   

It is known that KaiC phosphorylation is very slow process.  In vitro 

autokinase assay revealed that KaiC is autophosphorylated from 40 % to 80 % 

after 6 hours of incubation with KaiA (Tomita et al., 2005).  This low 

phosphorylation rate is a characteristic property of a kai oscillator.  In the 

computer simulation, the phosphorylation rate was shown to be low in both models, 

at least in all the parameter sets I used.  To keep the oscillation period to 24 h, 

both models can generate oscillations with very low phosphorylation rates (data 

not shown).   

Experimental studies such as overexpression and deletion of kai genes have 

been carried out to investigate their effects on the transcriptional regulation of 

kaiBC (Ishiura et al., 1998; Iwasaki et al., 2002).  Many period mutants showing 

longer or shorter periods have been observed and their mutated locus and 

functional differences identified (Xu et al., 2003).  I could simulate the metabolic 

changes of these mutations by controlling variables or parameter values in a 

computer simulation.  I compared behavior in TAM and TRM with these 

observed phenotypes, and tested which model could better explain the behaviors of 

mutants (Table II-2).  For each model, I used sets of parameter values for which 
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the model generated typical periodic oscillations.   

 

~KaiC disruption and overexpression~ 

It is reported that KaiC overexpression repressed kaiBC expression to a trough 

level of oscillation in an intact cell (Ishiura et al., 1998).  The effect of KaiC 

overexpression was simulated by substituting 

! 

U + u  for U  in dN/dt.  The 

differential equation then becomes;  

 

! 

dN

dt
= p(U + u) " Phos N,P( ) " qnN  (II-4) 

 

, where u is an increase of kaiC by overexpression.  I determined the u value so 

that it increased KaiC (N+P) to 10 ~ 100 times larger than the original in the 

computer simulation.  By overexpression, NP-KaiC greatly increased though 

P-KaiC increased only a little.  This was because the phosphorylation rate that is 

increasing with KaiC saturates and reaches a finite value, and KaiC’s turnover 

increases rather linearly with KaiC without saturation.  In TAM, the result 

depended on a small difference in transcription pattern.  When NP-KaiC induced 

transcription, the kaiBC level abolished oscillation and took a minimal value from 

kaiC overexpression.  In this case, the transcriptional threshold at the high 

NP-KaiC value was very high for P-KaiC, and transcriptional repression lasted 

continuously.  When NP-KaiC did not affect on transcription in TAM, the kaiBC 

level is kept oscillating in a large amplitude by kaiC overexpression.  In TRM, the 

kaiBC level took a minimal value from kaiC overexpression, regardless of the 

switching pattern of transcription.   

Next, I examined the kaiC- mutant, which can be simulated by fixing N and P to 

zero in a computer simulation.  It is reported that the kaiC- mutant reduces kaiBC 
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expression to ~20 % of the wildtype strain (Iwasaki et al., 2002).  The kaiBC 

level abolished oscillation and took small and maximal values in TAM and 

Transcriptional Repression Model, respectively.  These results suggested that 

TAM successfully explains the function of KaiC. 

 

~KaiA inactivation and overexpression~ 

The kaiA- mutant can be simulated by fixing the KaiA activity rate to zero in 

numerical calculation.  The result of TAM and TRM showed the minimal and the 

maximal level of kaiBC expression, respectively.  KaiA overexpression was 

simulated by increasing the KaiA activity rate ka during the dynamic change.  

Both models showed the maximal and minimal kaiBC levels, respectively.  These 

results indicated that KaiA-mediated induction of kaiBC can be explained by TAM, 

but cannot be explained by TRM.  Experimental studies have shown that 

KaiA-mediated activation of kaiBC is KaiC dependent (Iwasaki et al., 2002).  In 

TAM, KaiA overexpression in the kaiC- mutant did not induce kaiBC expression 

differently from KaiA overexpression in wildtype, showing that this model 

explained the KaiA effect depending on KaiC.   

KaiA-KaiC cooperation has also been investigated by examining KaiC 

overexpression in the kaiA- mutant (Iwasaki et al., 2002).  The phenotype of kaiA- 

showed severely repressed kaiBC expression, and KaiC overexpression in this 

mutant cells showed slow and slight increase of kaiBC expression.  This result is 

consistent with the fact that overexpression of the non-phosphorylatable KaiC 

mutant transiently represses and gradually increases transcription (Nishiwaki et al., 

2004).  In the computer simulation of TAM, both wildtype overexpression of the 

kaiA- strain and KaiC mutant overexpression resulted in a minimal level of 

transcription, indicating that this model does not perfectly explain cooperative 

KaiA-KaiC functions.  TRM failed to explain transcriptional repression by the 
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kaiA- mutant.   

 

~KaiB disruption~ 

The kaiB-disrupted (kaiB-) mutant was simulated by fixing the KaiB activity 

rate (kb in type (c) Phos and kn in type (b) Phos) to zero.  In TRM using type (b) 

or (c) Phos, KaiB disruption did not cease the oscillations.  Using type (a) or (d), 

the dynamics of kaiBC converged to a static state at an intermediate value when the 

KaiB activity rate was fixed to zero.  These results were inconsistent with the 

observed phenotype.  In TAM, on the other hand, kaiBC oscillation stopped and 

converged to a static state at the maximum value in the computer simulation of the 

kaiB- mutant.  This seemed e consistent with the actual phenotype of kaiB-, which 

exhibited a slow increase of kaiBC level.  The persistence of oscillation under the 

kaiB-disrupted condition observed in TRM suggested that KaiB is not essential in 

this model.   

 

~Period mutants~ 

I investigated the effect of increases or decreases in parameter values on the 

oscillating period (Fig. II-8).  It is reported that the kaiA2 mutation in kaiA (the 

A30a strain) shows a 70 % reduction of KaiC phosphorylation (Iwasaki et al., 

2002), and causes a longer period, to ~30 h (Ishiura et al., 1998). The kaiB2 

mutation in KaiB (the B22a strain) exhibits short period phenotype (Ishiura et al., 

1998), by decreasing the negative effect on KaiC phosphorylation (Xu et al., 2003). 

It is reported that in the C22a (kaiC1 mutation) and C55a strains, NP-KaiC is 

degraded quickly and slowly, and exhibits 22 h and 55 h period phenotypes, 

respectively (Ishiura et al., 1998). Half-lives of non-phosphorylated KaiC are 8.8 h, 

6.7 h and 13.9 h in wildtype, C22a and C55a, respectively; though P-KaiC stability 

was at a the similar level in all strains (Xu et al., 2003). 
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In TRM using type (a) Phos, all these period mutant phenotypes were realized 

by computer simulation. Fig. II-8b shows the effect of the KaiA activity rate ka that 

shortens the period as it increases.  Decreasing ka from 100 to 70, the period 

became 1.36 times longer.  This result seemed consistent with the A30a 

phenotype, exhibiting a period 1.25 times longer than the wildtype strain.  In this 

model, a decrease in the KaiA activity rate seemed to lead to a delay in the 

negative effect from P-KaiC, resulting in a longer period.  Fig. II-8d shows the 

effect of the KaiB activity rate kc that lengthens the period as it increases.  This 

result was consistent with the experimentally observed phenotype of the B22a 

strain.  A similar result was obtained using type (d) Phos, but not when using 

types (b) or (c), which do not have dynamic regulation by KaiB. Thus changing the 

KaiB activity rate had no effect on the period (data not shown).  Fig. II-8f shows 

the effect of the NP-KaiC degradation rate qn that shortens the period as it 

increases.  The degradation rate of NP-KaiC in the C22a and C55a strains can be 

calculated from the half-lives of NP-KaiC in these strains; rates were 131 % and 

63 %, respectively, of wildtype KaiC.  I examined the period in TRM using 

qn=0.131 and 0.063, and obtained a period 0.95 and 1.07 times, respectively, 

longer than in the model using qn=0.1.  In TRM, the effect of qn on the period can 

be explained qualitatively, but not quantitatively.   

In TAM, the effect of the activity rates of KaiA and KaiB, and that of the 

KaiC degradation rate cannot be realized with a wide range of parameter values; 

though they may be realized in limited parameter conditions.  Fig. II-8a shows the 

effect of ka that lengthens the period as it increases.  The period may become 

shorter as the KaiA activity rate increases, but only in limited conditions (Fig. 

II-8a).  Fig. II-8c shows the effect of the KaiB activity rate kb.  When NP-KaiC 

did not affect on transcription, kb shortened the period as it increases.  When the 

ratio of P-KaiC and NP-KaiC regulates transcription, decreasing the KaiB effect 
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shortens the period, thus explaining the effect of the KaiB mutation on the period.  

Fig. II-8e shows the effect of the NP-KaiC degradation rate qn that shortens the 

period as it increases.  I examined the period in TAM using qn=0.262 and 0.126, 

and obtained periods 0.91 and 1.21, respectively, times as long as the model using 

qn=0.2 (Fig. II-8e).  The effect of qn on the period can be explained better in TAM 

than in TRM.   

 

~Disruption by cell division or cell elongation~ 

It has been reported that rapid cell division and chromosome duplication 

occur within one circadian period in cyanobacteria, breaking the paradigm of 

biological clocks (Kondo et al., 1997).  I investigated if sustained oscillations in 

my models could continue when the amounts of KaiA, KaiB, and KaiC were 

reduced during oscillation in a computer simulation. It was observed in TAM that 

oscillations persisted after the reduction of Kai proteins (Fig. II-9a), shifting the 

orbit of the cycle within the variable space of the dynamics (Fig. II-9c).  When 

the same parameter set as used in Fig. II-5 was used, even 90 % reduction did not 

interrupt oscillations in TAM.  Moreover, a 50 % reduction barely affected on the 

oscillating period, resulting in >92 % of the original period, suggesting that TAM 

was robust against fluctuations of protein concentrations (Fig. II-9b).  On the 

other hand, oscillation in TRM was attenuated by a reduction of Kai >25 %, 

indicating that this model was less robust than the other model (Fig. II-9d).  

Furthermore, the oscillation period was vulnerable in this model, which was 

extended to 113 % by 20 % reduction (Fig. II-9b).  Similar results were observed 

for each model with the other parameter sets I tested (data not shown). 

These results can be explained considering the intersection of the line of the 

transcriptional threshold and that of the nullcline of dP/dt (Fig. II-9c and 9d).  The 

transcriptional threshold is not affected by the change in the concentrations of Kai 
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proteins.  The nullcline of dP/dt changed its shape mainly along the vertical axis 

with changes in the concentration of KaiA.  In TAM, where the transcriptional 

threshold increased with NP-KaiC concentration, the change in the shape of the 

dP/dt nullcline altered the position of the intersection.  However, the angle of the 

lines governing the dynamics at the intersection did not change even with a wide 

range of protein concentrations.  In TRM, however, where the transcriptional 

threshold was parallel to the NP-KaiC concentration, the angle of the nullclines at 

the intersections changed with changes in protein concentrations.  When the 

reduction of Kai proteins was large enough, the transcriptional threshold and the 

nullcline of dP/dt did not intersect in this model. 

The robustness of TAM against Kai concentrations suggested that this model 

was more likely to express the actual mechanism of the cyanobacterial circadian 

clock than TRM. 

 

In conclusion, it was revealed that TAM reproduced most phenotypes in 

cyanobacteria, suggesting that for the most part KaiA, KaiB, and KaiC work 

properly.  However, TRM reproduced only half of the phenotypes observed in the 

experimental studies. 
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Discussion  
 

In this study, I developed a dynamic model of the kai TTO mechanism and 

numerically examined its behavior.  It was demonstrated that there were only two 

possible transcriptional regulations generating oscillations of the kai genes: TAM 

and TRM.  The former provides a picture of the network generating circadian 

oscillations, where transcription is induced positively by the gene products and 

does not include direct negative feedback regulation.   

 

The mathematical framework in this chapter never explained the non-TTO 

KaiC phosphorylation cycle, which corresponds to the situation where the 

transcription and degradation rates (F(N,P), qn, and qp) equal zero (data not shown).  

Meanwhile, under natural conditions, cyanobacteria utilized Kai oscillators both in 

daylight and after dark, suggesting that the TTO and non-TTO cycles coexist in 

cyanobacteria.  Thus, transcriptional regulation should be compatible to the KaiC 

phosphorylation cycle in terms of phosphorylation dynamics.  Fig. II-5a shows 

that Phos oscillates in a large amplitude and takes positive and negative values in 

turn in TAM.  The negative value of Phos indicates the dephosphorylation phase.  

The P-KaiC/NP-KaiC ratio also oscillates in a large amplitude in this model (Fig. 

II-7a).  Accordingly, TAM is more likely to be involved in non-TTO KaiC 

phosphorylation.  In TRM, Phos always takes a positive value (Fig. II-5b) and 

P-KaiC stays at about the same level (Fig. II-7b).   

 

The inhibitor-activator oscillatory model gives us the simplest concept of 

oscillatory structures.  In TAM, P-KaiC and KaiB can be recognized as activator 

and inhibitor, respectively.  P-KaiC induced kaiBC transcription and consequently 
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increased KaiB and itself.  KaiB attenuated KaiC phosphorylation, resulting in 

transcriptional repression.  TRM can also be compared to the inhibitor-activator 

model by inversely interpreting the players.   

The presence and the function of positive feedback in circadian rhythms have 

been discussed in experimental studies and mathematical models (Allada, 2003; 

Preitner et al., 2002).  In Drosophila, Pdp-1 is activated by CLK, and PDP-1 in 

turn activates Clk.  This positive feedback loop is suggested to allow for multiple 

inputs and outputs at different phases (Allada, 2003).  In a mammalian circadian 

oscillator, the heterodimer BMAL1/CLOCK activates transcription of the Per, Cry, 

and Rev-erbα genes.  PER and CRY form a complex with CKIε/δ and inhibit 

REB-ERBα synthesis repressing Bmal1 transcription.  This process contributes to 

the robustness of the clock (Preitner et al., 2002).  In both cases, positive 

feedback regulation works in combination with some other mechanisms including 

negative feedbacks, suggesting that positive feedback may act as the supporting 

mechanism to stabilize periodic behavior.  On the other hand, TAM did not 

include direct negative regulations.  This result proved that positive feedback 

itself can be the responsible mechanism for generating periodic oscillation.   

 

Though type (d) Phos function is an improved version of type (c), there is a 

large difference in terms of the dephosphorylation dynamics.  In type (d), both 

phosphorylation and dephosphorylation processes require KaiA.  As NP-KaiC 

accumulated, the dephosphorylation rate decreased because NP-KaiC enhanced 

phosphorylation and depleted KaiA.  The oscillation in TAM required a high 

dephosphorylation rate when NP-KaiC concentration was high, and thus was 

impossible by type (d), but possible by type (c).   

 

In Neurospora and Drosophila, the stability of the clock proteins, Period and 
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Frequency, is modulated by their rhythmic phosphorylation to fit circadian rhythms 

(Young and Kay, 2001).  Though the effect of KaiC phosphorylation on its 

stability remains unclear, there are some reports on the correlation between 

phosphorylation status and KaiC stability (Imai et al., 2004; Xu et al., 2003).  Xu 

et al. suggested that the stability of P-KaiC is lower than that of NP-KaiC, using a 

transient KaiC overinducer in the kaiC- strain.  On the other hand, Imai et al. 

reported that KaiC degradation is suppressed during the mid-subjective night, 

when P-KaiC is highly accumulated.  I examined the importance of NP-KaiC and 

P-KaiC stability separately by determining the qn and qp values that can generate 

oscillation using type (c) Phos (data not shown).  It was revealed that oscillation 

in TAM depended on the stability of NP-KaiC, which is not important in TRM.  

As well, the stability of P-KaiC should be lower in TRM than in TAM.  In the 

latter, where P-KaiC-induced KaiB expression indirectly represses transcription, 

NP-KaiC and P-KaiC should be stable until they induce KaiB expression to 

generate oscillation.  Meanwhile in TRM, where P-KaiC directly repressed 

transcription, P-KaiC should be degraded quickly to avoid convergence to the 

attractor.  No tendency was observed in qn/qp in both models. 

 

TAM is expected to reflect the actual mechanism generating transcriptional 

oscillation.  At the same time, the limitations of this model were clearly shown. 

The difference in the phosphorylation level of KaiC was not sufficient to explain 

circadian oscillation in cyanobacteria; other unknown factors have to be included 

to explain all the observed behavior of transcriptional regulation.   

 



KaiC KaiC

KaiA

KaiB

kaiBC

P

Fig. II-1
Schematic view of transcription/translation-based autoregulatory loop of the kai

oscillator in cyanobacterial circadian rhythms. KaiC has autokinase and autophosphatase

activities. The genes of kaiB and kaiC form an operon, and kaiBC mRNA, KaiB and KaiC

protein accumulates in a circadian fashion in free-running conditions. KaiA enhances

KaiC phosphorylation, while KaiB antagonizes the actions of KaiA. KaiC phosphorylation

also shows circadian oscillation. KaiC had been thought as negative regulator of kaiBC

transcription. However, it has revealed recently that it may regulate transcription both

positively or negatively.
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Fig. II-2
Examples of transcriptional functions when transcription is controlled by

nonphosphorylated KaiC (NP-KaiC) and phosphorylated KaiC (P-KaiC). Transcription is

active (On) when NP-KaiC and P-KaiC are less abundant, and inactive (Off) when both are

abundant. (a) Threshold of transcriptional switching, which is determined by a line

Ncosθ +Psinθ -T=0, is plotted on the two-dimensional space of the NP-KaiC concentration

(N), the P-KaiC concentration (P). (b) The transcriptional level F(N,P) is plotted as a

function of the two-dimensional space. F(N,P) switches continuously near the threshold.
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switching pattern
NP-KaiC
P-KaiC

Fig. II-3
The result of linear stability analysis using type (c) Phos. The horizontal axis is θ, the

angle of the threshold line of transcriptional switching, and the vertical axis is ka, the

phosphorylation rate. The θ specifies patterns of the transcriptional regulation, which are

shown schematically below the horizontal axis. Along the horizontal axis, the regulation

changes continuously; effects of NP-KaiC and P-KaiC are positive or negative. Open

circles indicate conditions of the transcription and phosphorylation rates where oscillation

never occurs, and filled circles indicate where oscillation can occur. In this analysis, we

assumed that qn=qp. The result was obtained when λ=5, 0<θ<2π, -15<T<15, qu=1,

0.05<qn<.8, 5<p<80, 1<ka<10
3, 10-3<kb<1, km=0.1, kmb=0.1, kd=0.
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Fig. II-4
Functional schemes of two models corresponding to the parameter regions producing

the cyclic behaviors shown in Fig. II-3. (a) The Transcriptional Activation Model, where

P-KaiC induces kaiBC transcription. NP-KaiC does not affect on transcription, or has a

small effect of repressing transcription. The phosphorylation rate ka and the non-

competitive inhibition rate kn are high. (b) The Transcriptional Repression Model, where

P-KaiC represses kaiBC transcription. NP-KaiC induces transcription weakly, or does not

affect on transcription. The KaiA activity ka and the non-competitive inhibition rate kn are

low.
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Fig. II-5
Example of temporal changes in Phos. The horizontal axis is the time and the vertical

axis is the Phos value. (a) The Transcriptional Activation Model. The Phos changes

periodically. The amplitude is large and takes positive and negative values. The result was

obtained when qu=1, p=20, qn=0.2, qp=0.2, λ=-5, θ=3/4π, T=1, ka=50, km=0.14, kb=1.6,

kmb=0.14, kd=0. (b) The Transcriptional Repression Model. The Phos shows periodic

oscillation, though the amplitude is small and the value is always positive. The result was

obtained when qu=1, p=20, qn=0.2, qp=0.2, λ=5, θ=π/2, T=15, ka=6, km=5, kb=.01,

kmb=10, kd=0.
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NP-KaiC concentration (N)

NP-KaiC concentration (N)

Fig. II-6
Examples of dynamical changes of NP-KaiC and P-KaiC (dotted lines) using type (c)

Phos. The horizontal axis is the NP-KaiC concentration (N) and the vertical axis is the P-

KaiC concentration (P). Solid curves are the nullclines of dP/dt, dashed straight lines are

the transcriptional thresholds. The parameter values are shown in Fig. II-5. (a) In the

Transcriptional Activation Model, the dynamical trajectory shows clockwise cycle on the

NP-KaiC and P-KaiC space. Transcription is active (on) above the threshold and inactive

(off) below the threshold. (b) In the Transcriptional Repression Model, the dynamical

trajectory shows anticlockwise cycle on the NP-KaiC and P-KaiC space. Transcription is

inactive (off) above the threshold and active (on) below the threshold.
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Fig. II-7
Example of temporal changes of kaiBC, NP-KaiC and P-KaiC. The horizontal axis is

the time and the vertical axis their concentration. Dotted lines, kaiBC; dashed lines, NP-

KaiC; solid lines, P-KaiC. (a) The Transcriptional Activation Model. (b) The

Transcriptional Repression Model. The parameter values are shown in Fig. II-5.
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Fig. II-8
Effects of parameter values on period. The vertical axis is the relative length of

oscillation period compared to wildtype shown in Fig. II-7. The period 0 means that

oscillation does not occur using the parameter value. The horizontal axis is the changes in

KaiA activity ka ((a) and (b)), KaiB activity kb ((c) and (d)), and the KaiC degradation rate

qn ((e) and (f)). (a), (c), (e) The Transcriptional Activation Model of type (c) Phos. Filled

circle, parameter values shown in Fig. II-5; open circle, same as filled circle except for

θ=π/2, T=2; open triangle, same as filled circle except for λ=-5, θ=π/2, T=18. (b), (d), (f)

The Transcriptional Repression Model of type (a) Phos. The result was obtained when

qu=1, p=20, qn=0.2, qp=0.1, λ=5, θ=π/2, T=18, ka=100, km=1, kc=10, kd=0.1.
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Fig. II-9
Computer simulation of the disruption of protein concentration by cell division or cell

elongation in the Transcriptional Activation Model. The original parameter values are the

same as shown in Fig. II-5. (a) Example of temporal changes of kaiBC, NP-KaiC and P-

KaiC in the Transcription Activation Model. The horizontal axis is the time and the

vertical axis their concentration. Dotted lines, kaiBC; dashed lines, NP-KaiC; solid lines,

P-KaiC. The KaiA, KaiB and KaiC concentrations were reduced to 50 % (arrows). (b)

Effects of reduction of the Kai protein concentrations on period. The vertical axis is the

relative length of oscillation period compared to original condition. The period 0 means

that oscillation does not occur using the parameter value. The horizontal axis is the

reduction of the protein concentrations. Open circle, the Transcriptional Activation Model;

filled circle, the Transcriptional Repression Model. (c, d) Examples of dynamical changes

of NP-KaiC and P-KaiC (dotted lines). The horizontal axis is the NP-KaiC concentration

(N) and the vertical axis the P-KaiC concentration (P). Dashed straight line is the

transcriptional threshold and transcription is active (on) above the threshold and inactive

(off) below the threshold. The solid curve is the nullclines of dP/dt, and the dashed curve

the nullclines of dP/dt after 50 % reduction of the concentrations of the Kai proteins. (c)

The Transcriptional Activation Model. The dynamical trajectory shifts to the smaller circle

after reduction of the protein concentrations. (d) The Transcriptional Repression Model.

The nullclines of dP/dt no longer intersect the transcriptional threshold after the 50 %

reduction and the system converges to a steady state at (N,P)=(88.4, 11.5).
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Table II-1 
The dependency of periodic oscillations on the formulae of phosphorylation 

functions.  The results were obtained by linear stability analysis.  I used four 

types of Phos depending on the assumptions made for KaiB’s function, and 

analyzed if oscillations in the Transcriptional Activation Model (TAM) and the 

Transcriptional Repression Model (TRM) can occur.  ++, oscillation can occur; +, 

oscillation can occur, though the amplitude of P-KaiC is very small in the 

computer simulation; -, oscillation cannot occur.   

 

 

Phos KaiB’s function TAM TRM 

(a) 
competitive inhibition of KaiC 

phosphorylation - ++ 

(b) 
non-competitive inhibition of KaiC 

phosphorylation + ++ 

(c) KaiC dephosphorylation ++ ++ 

(d) 
KaiA-dependent KaiC 

dephosphorylation  - ++ 
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effectors observed effect TAM TRM 

kaiA- 
repress transcription 

and abort oscillation 
++ − 

kaiB- 
abort oscillation and 

induce transcription 
++ − 

kaiC- 
repress transcription 

and abort oscillation 
++ − 

OX-kaiA 
induce transcription 

and abort oscillation 
++ − 

OX-kaiA in kaiC- no effect on kaiC- 
phenotype 

+ − 

OX-kaiC 
repress transcription 

and abort oscillation 
+ ++ 

OX-kaiC in kaiA- 
slightly induce 

transcription 
− ND 

OX-nonphosphorylatable 

kaiC mutant 

transiently repress and 

gradually induce 

transcription 

− − 

KaiA activity rate shorten the period − ++ 

KaiB activity rate lengthen the period + ++ 

KaiC degradation rate lengthen the period ++ ++ 
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Table II-2 
Summary of the experimentally observed phenotypes, and the results of 

computer simulation of kai mutants, and overexpression studies.  kaiA-, 

kaiA-inactivated mutant; kaiB-, kaiB-disrupted mutant; kaiC-, kaiC-disrupted 

mutant; OX, overexpression.  ++, the phenotype is realized; +, the phenotype is 

realized depending on the parameter condition; −, the phenotype cannot be 

realized; ND, not determined; TAM, the Transcriptional Activation Model; TRM, 

the Transcriptional Repression Model.  The effect of OX-kaiC in kaiA- in TRM is 

not determined, because the phenotype of kaiA- cannot be explained in TRM.  
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Chapter III: 

KaiC Phosphorylation Cycle 
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Introduction 
 

It has been demonstrated that the KaiC phosphorylation cycle persists even 

under continuous dark conditions when transcription and translation have almost 

ceased (Tomita et al., 2005).  Since cyanobacteria are photosynthetic bacteria, 

their metabolic rate under dark conditions appears to be lowered severely.  Under 

such conditions, cyanobacteria maintain their clocks using the transcription-less 

KaiC phosphorylation cycle.  The KaiC phosphorylation cycle was reconstituted 

in vitro using a minimal cocktail of three recombinant proteins with ATP.  The 

period of the in vitro oscillation is temperature compensated, and the periods 

observed in vivo in KaiC mutant strains were consistent with those measured in 

vitro (Nakajima et al., 2005).  These results indicated that KaiC phosphorylation 

is the molecular timer for the circadian rhythms of cyanobacteria.  The in vitro 

oscillator is thus the best available system for providing insight into the molecular 

mechanisms of the circadian system with chemical resolution.   

The striking finding of in vitro KaiC phosphorylation cycle confirmed that the 

interaction between Kai proteins generates the cycle, although the specific 

mechanism that drives the clock remains unclear.  It is reported that KaiC exhibits 

the periodic interaction with KaiA and KaiB in vivo (Fig. III-1) (Kageyama et al., 

2003; Kitayama et al., 2003).  After phosphorylation, KaiC associates with KaiA, 

and subsequently with KaiB to form a larger complex.  As time progresses, the 

KaiA-KaiB-KaiC complex dissociates and KaiC is dephosphorylated.  These 

interactions would relate to the regulation of periodic KaiC phosphorylation. 

The aim of this chapter is to elucidate the mechanism of the KaiC 

phosphorylation cycle, where the total amount of KaiC is conserved; however, its 

status changes periodically.  I first present an observation-based model that I call 
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the basic model.  As this model did not show oscillations, I analyzed generalized 

models and determined conditions of the structure for generating oscillations in a 

closed system.  Based on the theoretical results, I improved the basic model and 

developed five-variable models, one of which successfully explains the KaiC 

phosphorylation cycle.  I realized the observed pattern of the KaiC 

phosphorylation cycle and predicted an unknown state that lies between KaiC 

phosphorylation and the formation of the KaiC/KaiA complex.   
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Models and Results 
 

Basic model 
Based on the possible KaiC behavior proposed by Kitayama et al. (Kitayama 

et al., 2003), I developed a mathematical model for the KaiC phosphorylation 

cycle in vitro (Fig. III-1).  KaiC phosphorylation is regulated by KaiA, which is 

suggested to form two types of complexes; P-KaiC/KaiA and P-KaiC/KaiA/KaiB.  

With increases in the concentrations of these complexes, the concentration of free 

KaiA molecules decreases.  Based on this fact, I hypothesized that negative 

feedback from the complex formations to KaiC phosphorylation, which is 

mediated by the decrease in free KaiA concentration, is responsible for the KaiC 

phosphorylation cycle.  I developed a four-variable model as follows, 
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! 

gi = a " [KaiA - containing complex]" s[P - KaiC/KaiA/KaiB complex]" ai

h = b " [P - KaiC/KaiA/KaiB complex]

 (III–1b), 

 

where V1, V2, V3, and V4 are the concentrations of non-phosphorylated KaiC 

(NP-KaiC), phosphorylated KaiC (P-KaiC), the P-KaiC/KaiA complex, and the 

P-KaiC/KaiA/KaiB complex, respectively.  km, kphos, kCpA, kCpAB and kdephos are the 
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Michaelis constant, the rate for KaiC phosphorylation, the P-KaiC/KaiA complex 

formation, the P-KaiC/KaiA/KaiB complex formation and 

dissociation/dephosphorylation, respectively.  gi and h denote the effects of free 

KaiA and KaiB molecules, respectively.  g1 represents the negative feedback from 

complex formation to KaiC phosphorylation via KaiA.   

 

~Details of the model and assumptions~ 

Based on the observation that the KaiC autophosphorylation rate is very low 

in the absence of KaiA (Williams et al., 2002), I assumed that KaiC 

phosphorylation requires KaiA and so used the Michaelis-Menten function for this 

reaction.  I assumed that KaiB does not affect KaiC phosphorylation; however, 

the effect of KaiB on the phosphorylation rate of KaiC is indirectly included via 

dephosphorylation.  Based on the observation that the KaiC dephosphorylation 

phase and the formation of P-KaiC/KaiA/KaiB start simultaneously (Kitayama et 

al., 2003), I ignored the rate for dephosphorylation of free P-KaiC (V2), and 

assumed that KaiC dephosphorylation occurs simultaneously with the dissociation 

of the P-KaiC/KaiA/KaiB complex.  In this model, an increase of KaiB 

accelerates the formation of the P-KaiC/KaiA/KaiB complex followed by KaiC 

dephosphorylation, which negates the phosphorylation rate.  At the same time, the 

effects of KaiA and KaiB on the dephosphorylation rate of KaiC are indirectly 

included; KaiB does not enhance dephosphorylation in the absence of KaiA in the 

model.  An increase of KaiA decreases KaiC dephosphorylation by accelerating 

KaiC phosphorylation of NP-KaiC.   

To avoid complexity in the model, I did not consider the process of KaiC 

homohexamer formation and KaiA and KaiB homodimer formations.  

The rates of phosphorylation and P-KaiC/KaiA complex formation mediated 

by free KaiA decreased with the concentration of the KaiA-containing complexes 
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(V3 and V4), and should not be negative.  This also applies to the rate of 

P-KaiC/KaiA/KaiB formation, which decreased with its concentration (V4).  

Therefore, I used piecewise defined functions for g1(V3,V4), g2(V3,V4), and h(V4), 

respectively, 
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 (III–2), 

 

where a and b are the total concentrations for KaiA and KaiB molecules, and 

a1 and a2 are the minimum densities of KaiA required to bring about 

phosphorylation and complex formation, respectively.  s is introduced (

! 

0 < s "1) to 

consider the possibility that the number of KaiA molecules may vary in the two 

types of complexes.  g1, g2, and h represent negative feedback processes.  

 

~Analyzing the model for instability~  

The dynamics of the system were analyzed by focusing on linear stability 

using the Routh-Hurwitz conditions (see Appendix III-A).  From the theory of 

dynamic systems, the equilibrium surrounded by orbits of cycle needs to be 

unstable to cause stable cyclic oscillations.  I ignored the equilibria that make the 

values of gi or h zero in Eq. (III-2), since periodic oscillations around such 

equilibria are clearly impossible.  The system is non-linear, and thus I solved the 

equilibrium not explicitly but numerically (see Appendix III-B). 

After scanning 177,147 parameter sets, the periodic oscillations in KaiC 

phosphorylation were not realized.  This result implied that the model was 
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inadequate to explain the KaiC phosphorylation cycle. 

 

Generalized models for generic stability conditions  
The previous model based on observed facts might not satisfy the necessary 

conditions of the dynamic structure for showing periodic oscillations in states.  To 

confirm this expectation and to theoretically determine necessary conditions for 

oscillation, I developed the general frameworks of the dynamic system and 

analyzed them.  In the following general models, I do not indicate the relationship 

between variables and the states of KaiC proteins.   

 

~Random transition model~ 

This model includes every possible transition from every state to any other.  

The transition from state i to state j is denoted by ri→j.  Since there is no influx to 

or outflux from the system, the total amount of the state remains constant.  Here, I 

explain my model using the case when the molecules take five different states (Fig. 

III-2a).  The linearized system around the equilibrium can be written in general as 

follows, 
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where V1, V2, V3, V4, and V5 are concentrations of states 1, 2, 3, 4, and 5, 

respectively, and kji is the rate constant of ri→j..  For example, the molecules in 

state 1 transform into states 2, 3, 4, and 5 at a rate of k21V1, k31V1, k41V1, and k51V1, 



 

-49- 

respectively.  Then, V1 decreases at a rate of (−k21−k31−k41−k51)V1.  

If all kij are positive, the system always holds the stable condition (see 

Appendix III-A).  To destabilize the system, at least one nondiagonal element 

should be negative.  The same result is obtained for systems where the number of 

variables is lesser or greater (N =3, 4, 5, 6, 7, 8). 

The analysis of this general model indicated that to generate a periodic cycle, 

repressing or promoting interactions are required between the states of this system. 

 

~Closed circuit model~ 

In this analysis, I identified the condition for generating oscillations in the 

state transition system.  I assumed a closed circuit for the directed transition 

between states (Fig. III-2b) and considered it to be the basic structure of the 

dynamics.  The linearized dynamics was as follows, 
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where Vi is a variable and ki is the rate constant for ri→i+1,.  According to the result 

obtained from the random transition model, the system was always stable.  I 

added an inhibitory or activating effect to a state transition and examined if such an 

effect destabilizes the system.   

First, I added a single inhibitory path into this system.  Let ki, j denote the 

element of ith column and jth row in the transition matrix of Eq. (III-4).  Eq. 

(III-4) can incorporate the inhibition of ri→i+1 by state j, by transforming two 

elements (ki, j → ki, j−p, and ki−1, j → ki−1, j+p).  p indicates the intensity of 
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inhibition by state j.  The inhibitory effect will produce negative nondiagonal 

elements in the transition matrix, and may cause instability in the system.  

Let us consider an example in the case when N = 5.  When the reaction r1→2 

is inhibited by state 4, the dynamics are expressed as, 
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Analysis revealed that this system can become unstable when p > k1.  The 

same result was obtained when either states 5 or 1 inhibited r1→2, although 

inhibition by any other state never destabilized the system.   

I confirmed this result with a computer simulation using the following 

formula, 
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The above formula indicates the special case where r1→2 is inhibited by state 4.  

Here, n indicates the intensity of the inhibitory effect.  The computer simulation 

(see Appendix III-B) demonstrated that oscillations can be generated from the 

inhibition caused by states 4 or 5, and not by any other state (n = 10, data not 

shown).  When state 1 inhibits r1→2, the system may become unstable, although 
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not periodic, for all the parameter sets tested in the computer simulation (data not 

shown). 

I examined all possible inhibitory paths in the cases where N = 3, 4, 5, 6, 7, 

and 8 (Table III-1).  In all cases, the system could be destabilized when the 

inhibiting state was more than two steps ahead of the inhibited reaction ri→i+1 and 

the reactant state i (Fig. III-3a).  If the inhibiting state was less than three steps 

ahead from the reactant state, the system was always stable.  I call inhibition by a 

state more than two steps ahead destabilizing inhibition, and inhibition by a state 

within two steps ahead stabilizing inhibition.  The distance between inhibiting and 

reactant states does not depend on the system size N.   

Next, I assessed the effect of activation.  I can incorporate the activation of 

ri→i+1 by state j, by transforming two elements (ki, j → ki, j+p, and ki−1, j → ki−1, j −p) 

into the dynamics in Eq. (III-4).  It was revealed that the system becomes unstable 

when ri→i+1 is activated by a state other than the reactant (Fig. III-3b) and p > k1.  

This result suggested that the activation of state transition was more likely to 

generate oscillations than inhibition.   

Consequently, in the closed circuit model, oscillations occur when the system 

includes either an inhibition or activation by the state that is far enough from the 

reactant. 

 

~Multiple inhibition in the closed circuit model~ 

At present, positive feedback in Kai protein interactions has not been 

identified.  Thus, I focused on the inhibitory effect and confirmed the significance 

of the relative distances between the recipient reaction and the inhibitor; thereby 

analyzing the case where more than one state inhibits a transition.  I assumed that 

a series of consecutive states denoted by I, inhibit the reaction r1→2.  The reaction 



 

-52- 

rate is expressed as, 

 

! 

k
1
(a " V j

I # j

$ )  (III-7), 

 

where a is the basal reaction rate in the absence of inhibition.  To simplify the 

analysis, I ignored the dependency of r1→2 on V1, the reactant concentration.  The 

dynamics of other variables are the same as Eq. (III-4).   

Table III-2 shows the results.  Among the 16 cases in which I analyzed 

stability, the system was always stable in 9 and may have become unstable in 7.  

For the 7 cases, I confirmed the occurrence of oscillations by computer simulations.  

The results can be intuitively understood based on the idea of destabilizing 

inhibition and stabilizing inhibition.  The systems that exhibit oscillations possess 

more destabilizing inhibitions than stabilizing inhibitions.  Meanwhile, stable 

systems possess more stabilizing inhibitions than destabilizing inhibitions. 

 

Revised model realizing the KaiC phosphorylation cycle 
Let us reconsider the basic model in terms of the concept of destabilizing 

inhibition and stabilizing inhibition.  Negative feedback from the 

KaiA-containing complexes to KaiC phosphorylation (g1) in the basic model was 

stabilizing inhibitions corresponding to the case where V3 and V4 inhibited r1→2 in 

the four-variable system in Table III-2.  Other negative feedback processes (g2 

and h) were stabilizing inhibitions as well.  That is why the basic model never 

showed periodic oscillations.  To realize the KaiC phosphorylation cycle, I 

increased the distance between the inhibitors and the inhibited transition by 

assuming a distinct, unknown state between P-KaiC and the P-KaiC/KaiA complex 

(Fig. III-4).  In the revised system, named the five-variable model #1, negative 
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feedback from the KaiA-containing complexes to KaiC phosphorylation was 

destabilizing inhibition.  The dynamics of the model can be expressed as follows, 
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where Vnew is the concentration of the unknown state and knew is the rate constant 

for transition from P-KaiC to the unknown state.  g1, g2, and h are the same 

functions as in the basic model shown in Eq. (III-2).  I also constructed three 

more systems comprising the five variables shown in Table III-3.  The dynamics 

of the models #2, #3, and #4 are shown in Appendix III-C.  In contrast to the 

five-variable model #1, the five-variable models #2, #3, and #4 contained only 

stabilizing inhibitions. 

I examined if these models realized the KaiC phosphorylation cycle by 

numerical analysis and computer simulation.  It was demonstrated that the KaiC 

phosphorylation cycle occurred only in model #1, as expected.  In the other 

systems, the periodic oscillations in KaiC phosphorylation were not realized after 

searching 531,441 parameter sets.  This result suggested that there should be 

sufficient length of retardation between the phosphorylation and the complex 

formation processes.   

Fig. III-5a shows the successfully realized pattern of the KaiC phosphorylation 

cycle.  The concentration of each state of KaiC rises and falls periodically (Fig. 
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III-5b).  In this numerical simulation, I chose parameter values for Kai protein 

concentrations, KaiC phosphorylation, and dephosphorylation rates based on 

experimental data.  In a reconstitution of the KaiC phosphorylation cycle in vitro 

(Nakajima et al., 2005), the concentrations of KaiA, KaiB, and KaiC are estimated 

at 0.85, 1.31, and 2.35 µM, respectively.  Therefore, the concentration of KaiC 

hexamer was chosen at 400 nM.  The stoichiometry of the complex formation of 

KaiA dimer, KaiB dimer, and KaiC hexamer is unknown.  I assumed functional 

units of KaiA and KaiB at 200 nM.  I used the KaiC phosphorylation and 

dephosphorylation rates at 2.4 /hr and 0.6 /hr, corresponding to 0.66 x 10-3 /sec and 

0.16 x 10-3 /sec, respectively.  They are the same order as the estimated values of 

10-3 to 10-4 /sec by Nakajima et al. (Nakajima et al., 2005; Tomita et al., 2005).   

I also investigated the significance of the unknown state for generating 

oscillations, by comparing the rate constants for phosphorylation (kphos) and for the 

transition from P-KaiC to the unknown state (knew).  Fig. III-6 shows the 

conditions for instability, revealing that knew is required not to exceed four times the 

value of kphos for instability.  If the knew value was very large compared to the kphos 

value, it would become possible to integrate the unknown state into the P-KaiC 

state. Then, the dynamics would become a four-variable model-like system.  The 

result here showed that retardation of the cyclic dynamics could not be achieved 

only by delaying the direct transition from P-KaiC to the P-KaiC/KaiA complex.  

It was also suggested that KaiC-KaiA complex formation required more than one 

step of posttranslational modification including phosphorylation or conformational 

change of KaiC. 
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Discussion 
 

The theoretical conclusion and biological feedback 

In this report, I investigated the conditions for realizing the state transition 

oscillator, where the concentration of each state exhibits oscillations with the total 

mass of all states remaining constant.  From analyses of the generalized models, I 

demonstrated that at least one state transition process should be inhibited by other 

states at more than two steps ahead or activated by a state other than the reactant 

state.  Based on the results, I constructed models for the transcription-less KaiC 

phosphorylation cycle.  Using computer simulation, I demonstrated that the KaiC 

phosphorylation cycle can be generated by two functions of KaiA: enhancing KaiC 

phosphorylation and forming complexes with KaiC.  The complex formation 

reduces free KaiA molecules, thereby exerting a negative feedback effect toward 

KaiC phosphorylation.  I also predicted that KaiC exists in more than four states, 

and that an unknown state of KaiC should exist between P-KaiC and the 

P-KaiC/KaiA complex (Fig. III-4).  This result suggested that there should be 

sufficient length of retardation between the phosphorylation and the complex 

formation processes.  It was also suggested that KaiC-KaiA complex formation 

requires more than one step of posttranslational modification including 

phosphorylation or conformational change of KaiC. 

In this study, the model did not incorporate positive feedback, though 

theoretical analysis showed that the condition for generating oscillations by 

positive feedback was less strict than that by negative feedback.  Therefore, other 

mechanisms for oscillation are also possible.  However, if the currently known 

information on Kai proteins includes most of their essential functions, the results 

showing that the mechanism responsible for driving the KaiC phosphorylation 
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cycle is the regulation of KaiC phosphorylation by destabilizing negative feedback 

via KaiA, it seem plausible.  

 

The minimum number of states for oscillation 

In a dynamic system of ordinary differential equations, generally a minimum 

of two variables is required for generating periodic behavior, e.g., Lotka-Volterra 

equations for prey-predator system (Britton, 2003).  In the case of gene 

expression level systems, the system of a single autoregulatory gene that includes 

two variables (mRNA and protein) never exhibits stable periodic oscillations.  

The self-repression system of the gene requires at least three distinct states, such as 

mRNA, protein, and its phosphorylation for generating oscillations (Goodwin, 

1965; Kurosawa et al., 2002).  In this study, it was revealed that oscillations 

driven by the inhibition of state transition require more than four states in a closed 

state transition system.  The conservation law, where the total number of different 

states is conserved, is considered to be a stricter condition than the formula of gene 

regulation.  

 

The unknown state 

Our results suggested that KaiC-KaiA complex formation requires more than 

one step of posttranslational modification, including phosphorylation or 

conformational change of KaiC.  In fact, it was observed that accumulation of 

P-KaiC increases prior to accumulation of the KaiC-KaiA complex (Kitayama et 

al., 2003).  This observation suggested that KaiA does not form a stable complex 

with KaiC when it is phosphorylated with the aid of KaiA.  The theoretical results 

supported the fact that tight binding of KaiC and KaiA does not occur promptly 

after KaiC phosphorylation.  It is reported that KaiC forms hexamers containing 

many phosphorylation sites (Mori et al., 2002; Nishiwaki et al., 2004; Xu et al., 
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2004), and that KaiC is likely to exist in a variety of different combinations of 

phosphorylation on its various sites (Wang, 2005).  These results explained the 

significance of the multiple phosphorylation states responsible for generating 

oscillation.   

Wang proposed that dimeric KaiA interacts with only two subunits in the 

KaiC hexamer (Wang, 2005).  In this regard, it is suggested that only a few 

residues on two subunits are phosphorylated at a time.  Phosphorylation at a few 

sites might trigger subsequent phosphorylation in a KaiC hexamer by, for example, 

conformational changes.  This hypothetical event is thus a candidate for the 

transition of a state to an unknown state or retardation in the computer simulation.   

 

Amplitude of the P-KaiC/KaiA/KaiB complex 

In the computer simulation shown in Fig. III-5b, the concentration of the 

P-KaiC/KaiA/KaiB complex oscillates with a very small amplitude, although it 

appears to oscillate with a large amplitude in a cell under continuous light 

conditions (Kageyama et al., 2003; Kitayama et al., 2003).  In cells, KaiB is 

located in both the membrane and cytosol, and is released later from the membrane 

into the cytosol during late subjective night (Kitayama et al., 2003).  This 

translocation periodically changes the KaiB concentration in the cytosol and may 

result in the large amplitude of the P-KaiC/KaiA/KaiB accumulation.  Indeed, the 

amplitude of KaiC phosphorylation in vitro was not as large as in vivo.  The 

amplitude of the concentration of the complex in vitro is yet to be examined; 

however, the computer simulation in this study implied that the amplitude was 

small in vitro. 

 



Fig. III-1
The schematic description of the basic model based on the report by Kitayama and

colleagues (Kitayama et al., 2003). In the early morning, the phosphorylation level of

KaiC is relatively low. During the subjective day, the phosphorylated KaiC level gradually

accumulates. The P-KaiC/KaiA complex and P-KaiC/KaiA/KaiB accumulate in turn

during the late subjective night, and finally the complex dissociates. At the same time, the

phosphorylation level of KaiC is reduced. In the basic model, V1, V2, V3, and V4 denote

NP-KaiC, P-KaiC, the P-KaiC/KaiA, and P-KaiC/KaiA/KaiB complexes, respectively.

The phosphorylation rate depends on the concentration of free KaiA molecules (designated

as g1) and the rate constant is kphos. The P-KaiC/KaiA complex formation also depends on

KaiA (designated as g2) and the rate constant is kCpA. g1 and g2 are reduced with increase

of the KaiA-containing complexes. The P-KaiC/KaiA/KaiB complex formation depends

on the free KaiB concentration (designated as h) and the rate constant is kCpAB. h is

reduced with the increase of the P-KaiC/KaiA/KaiB complex. The rate constant for

dissociation of the complex and the KaiC dephosphorylation is designated as kdephos.
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Fig. III-2
Generalized models for state transition in a closed system. These are cases when the

system contains five distinct states for each of the oscillating molecules. (a) Random

transition model. This general system includes every possible transition from every state to

any other state. The circles indicate states of the oscillating molecules and arrows indicate

transitions. (b) Closed circuit model. This is a specific form of the random transition

model, where the order and direction of transition are determined.
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Fig. III-3
The relative distance between the recipient reaction and the effector state that

destabilizes the system. These are cases when the system contains eight distinct states for

each of the oscillating molecules. (A) Destabilization by inhibition of r12. Closed circles

(states 1, 4 - 8) indicate the states that can destabilize the system. Inhibition by the state

indicated by open circles (states 2, 3) never destabilizes the system. (B) Destabilization by

activation of r12. Closed circles (states 2 - 8) indicate states that can destabilize the

system. Activation by the state indicated by open circles (state 1) never destabilizes the

system.

a

b
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Fig. III-4
The schematic description of the five-variables model #1. This is a possible model for

the dynamic regulation of KaiC phosphorylation and Kai protein complex formation. The

KaiC phosphorylation rate is regulated by KaiA. P-KaiC is further modified and becomes

the unknown state, which might be another phosphorylation status. Accumulation of the

unknown state of KaiC accelerates its tight binding to KaiA. The P-KaiC/KaiA complex

formation reduces free KaiA molecules, thereby exerting a negative feedback effect toward

KaiC phosphorylation. KaiB binds to the stable P-KaiC/KaiA complex and forms the P-

KaiC/KaiA/KaiB complex. This final complex formation triggers KaiC dephosphorylation,

and dephosphorylated KaiC loses affinity to KaiA and KaiB.
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Fig. III-5
Example of temporal changes in the states of KaiC. The horizontal axis represents time.

The result was obtained when kphos = 2.4 /hr, knew = 0.24 /hr, kCpA = 0.015 nM/hr, kCpAB =

0.0008 nM/hr, kdephos = 0.6 /hr, km = 0.07 nM, a = 200 nM, a1 = 66 nM, a2 = 0 nM, b =

200nM, s = 0.8, and ΣVi = 400 nM. (A) Ratio of P-KaiC to total KaiC. (V2
+Vnew+V3 + V4) / ΣVi is plotted. (B) Ratios of non-phosphorylated KaiC (dotted line),
phosphorylated KaiC (P-KaiC, black dashed lines), unknown state (black solid line), the

P-KaiC/KaiA complex (gray solid line), and the P-KaiC/KaiA/KaiB complex (gray dashed

line) to total KaiC.

a

b
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Fig. III-6
The conditions of kphos and knew values for instability. The horizontal and vertical

axes are log10(kphos) and log10(knew), respectively. Open circles indicate conditions where

the system is stable, and filled circles indicate conditions where instability occurs. The

equilibria of the model and the condition for instability are determined by numerically

changing parameters: 10-2 < kphos<10
6; 10-2 < knew<10

6; kCpA= 0.00015, 0.015, 1.5 nM/hr;

kCpAB = 0.000008, 0.0008, 0.08 nM/hr; kdephos = 0.006, 0.6, 60 /hr; km = 0.0007, 0.07, 7 nM.

The values of following parameters are fixed: a = 200 nM; a1 = 66 nM; a2 = 0 nM; b = 200

nM; s = 0.8; ΣVi = 400 nM.
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inhibitor number of states 

in the system V1 V2 V3 V4 V5 V6 V7 V8 

3 Ο × × − − − − − 

4 Ο × × Ο − − − − 

5 Ο × × Ο Ο − − − 

6 Ο × × Ο Ο Ο − − 

7 Ο × × Ο Ο Ο Ο − 

8 Ο × × Ο Ο Ο Ο Ο 

 

 

 

 

 

 

 

Table III-1 
Destabilization by single inhibition in the closed circuit model.  The 

reaction r1→2 is inhibited by a single state.  The stability of the system was 

determined using the Routh-Hurwitz conditions.  ×, the system is always 

stable; Ο, can be unstable; −, states that does not exist in the system.  The 

closed circuit model is symmetric for a shift transformation along the 

circuit pathway. 
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inhibitor number of states 

in the system V2 V3 V4 V5 V6 
stability 

4    − − × 

    − − × 

5     − × 

     − × 

     − Ο 

     − × 

     − Ο 

6      × 

      × 

      Ο 

      Ο 

      × 

      Ο 

      Ο 

      × 

      Ο 

 

Table III-2 
Destabilization by multiple inhibitions in the closed circuit model.  

The reaction r1→2 is inhibited by several inhibitors, as 

! 

k
1
(a " V j

j#I

$ ) .  , 

states included in I ; −, states that do not exist in the system; ×, the system 

is always stable; Ο, the system can be unstable. 
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order in the circuit pathway 
model 1 2 3 4 5 

sustained 

oscillation 

4-val C Cp CpA CpAB − × 

5-val #1 C Cp unknown CpA CpAB Ο 

5-val #2 C Cp CpA unknown CpAB × 

5-val #3 C Cp CpA CpAB unknown × 

5-val #4 C unknown Cp CpA CpAB × 

 

 

 

 

 

Table III-3 
Results of numerical analysis and computer simulation in the basic 

(4-val) and five-variable (5-val) models.  C, non-phosphorylated KaiC; Cp, 

phosphorylated KaiC (P-KaiC); CpA, the P-KaiC/KaiA complex; CpAB, 

the P-KaiC/KaiA/KaiB complex; −, a state that does not exist in the 

system; unknown, the unknown state of KaiC; ×, no oscillatory solutions; 

Ο, sustained oscillations were observed in the computer simulation.  Bold 

face, the KaiA-containing complexes, which exert negative feedback effect 

to KaiC phosphorylation 
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Chapter IV: 

General Discussion 
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Mathematical models are usually constructed based on experimental 

facts and incorporate a theoretical vision.  In most computational analyses 

seen today, observed events are simulated using a model composed of 

many factors, reactions, and finely tuned parameters.  However, such 

methods can only tell that the proposed model is a candidate to mimic 

known biological behaviors.  Therefore, it cannot be assured if the results 

obtained with the model reflect actual biology.  Moreover, the plausibility 

of such computational strategies and their results naturally depend on the 

volume of information inputted.  It is possible that a model based on a 

reaction scheme proposed in the past no longer reflects currently updated 

facts.  What I presented in my thesis are novel strategies that can avoid 

these problems and so predict unknown biological mechanisms ahead of 

their experimental elucidation.   

To begin with, I focused on structural conditions that do not depend 

on parameter values.  I considered that investigating the structure was 

fundamental, and that considering what can be provided from theoretical 

studies, this was informative.  In fact, in the current stage of Kai oscillator 

research, not all the chemical reactions between Kai proteins have been 

identified or examined.  Physiological plausibility, therefore, can be 

properly assessed only for a few parameters.  Conversely, in a system 

where detailed reaction rates can be assessed by experimental results, the 

part that theoretical studies can play might not have much meaning.   

Based on this idea, I adopted two strategies; an exhaustive analysis of 

a simple framework, and the determination of a regulatory structure, set out 

in Chapter II and Chapter III, respectively.  I abstracted known biological 

information into a simple structure and identified indispensable interactions 

between components to generate oscillations.  By this method, I 
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successfully determined the structure of the reaction network of the 

cyanobacterial circadian system.   

 

For mathematical determinations of the oscillatory conditions, I 

devised a method based on experimental facts.  In the usual understanding 

of dynamic theories, conditions for oscillations are determined by 

examining conditions for the presence of limit cycles.  However, if an 

experimental study certified that any initial states will promptly follow the 

identical orbit of a periodic behavior, it is considered that there is only one 

stable solution orbit and that the nonlinearity of the dynamic system is not 

high.  The Kai oscillator is largely insensitive to fluctuations of protein 

concentrations and ratios (Kageyama et al., 2006).  In this case, the 

conditions for the presence of an unstable point at the center of an orbit can 

be approximately substituted for the conditions for the presence of an 

oscillation orbit.  Therefore, I adopted linear stability analysis, which is a 

universal method conventionally used to examine instability in the sense 

that an analysis is applicable to any form of reaction functions.  It is 

expected that in future studies this simple method can be applied to models 

composed of many variables.   

 

The results in Chapter III included general conditions for oscillations 

in a closed system.  Though the definitions of stabilizing inhibition and 

destabilizing inhibition were based on the restraint that the total mass is 

conserved, this result indicated the general regulative role of negative 

feedback.  Negative feedback may stabilize or destabilize the system 

depending on the length of the time lag in the feedback.  I strictly proved 

this property mathematically.   
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An unresolved problem is the cooperation of the two mechanisms of 

the TTO and non-TTO cycles that are studied in this thesis.  The crucial 

factor is the transcriptional role of phosphorylated KaiC.  It has been 

demonstrated that KaiC phosphorylation is necessary for transcriptional 

repression activity using an unphosphorylatable KaiC mutant (Nishiwaki et 

al., 2004).  This result is contradictory to the Transcriptional Activation 

Model, which is seen as being more plausible than the alternative model 

(Chapter II).  In Chapter III, it was predicted that to exert KaiA-mediated 

destabilizing inhibition there should be at least three distinct states for 

phosphorylated KaiC; an initially phosphorylated state, an unknown state, 

and the KaiA containing complex.  Recent observations reveal that KaiB 

binds to KaiC before KaiA binds to it in vitro, raising the possibility that 

the unknown state that I predicted corresponds to the KaiB-KaiC complex 

(Clodong et al., 2007; Kageyama et al., 2006).  Further studies on how 

phosphorylated KaiC changes its role for transcriptional regulation 

depending on phosphorylation sites or binding statuses remain to be 

undertaken.  The elucidation of this should help determine the phase 

resetting of the clock, which is indeed one of the major properties defining 

the circadian clock  

 

The mechanism seen in the most antiquated of organisms indicates the 

fundamental differences that have arisen in timekeeping mechanisms in the 

course of evolution.  However, it is also considered that the circadian 

oscillator appears to be generally composed of two coupling loops, the 

TTO and phosphorylation cycles.  Accordingly, it is presumed that, in the 

course of evolution, clock-evolving organisms chose one of these cycles as 
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the core loop for their circadian system (Fukada, 2006).  For 

cyanobacteria, photosynthetic organisms where metabolic activity 

including gene expression is severely lowered in darkness, the low-cost 

phosphorylation cycle would favorable.  Old data also implies a link 

between photosynthesis and the non-TTO cycle, as photosynthesis in the 

alga Acetabularia can freerun independently of transcription (reviewed in 

Ditty et al., 2003; Lakin-Thomas and Brody, 2004).  Given that the 

circadian clock and photosynthesis inevitably correlate with the photic 

signal, the acquisition of the photosynthesis ability possibly was the turning 

point in the development of the circadian mechanism.  This putative 

evolutionary process implies that phosphorylation also greatly contributes 

to temperature compensation of the clock in animals.   

 

The in vitro reconstitution of the Kai oscillator, a very rare example of 

a functional biochemical circuit, has motivated many theoretical works.  

Each model has focused on a distinct aspect of clock dynamics, resulting in 

a divergence of models of an identical phenomenon. The present models 

can be categorized into three responsible processes, in accord with the 

mathematical understandings of those models.   

The first mechanism is the “hourglass” circuit for the behavior of the 

KaiC hexamer.  It is assumed that individual hexamers tend to be fully 

phosphorylated and then fully dephosphorylated in turn (Clodong et al., 

2007; Emberly and Wingreen, 2006; van Zon et al., 2007).  This 

phenomenological assumption based on an observation (Kageyama et al., 

2006) cannot answer the question of what mechanism allows the 

appearance of the separation of the phosphorylation- and 

dephosphorylation-biased phases.   
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The second is positive feedback, where a state in effect promotes its 

own production.  Especially in a closed system, positive feedback can 

easily generate oscillations, as I have demonstrated (Chapter III).  The 

regulation by positive feedback is incorporated in models by proposing 

unidentified function of Kai proteins (Kurosawa et al., 2006; Mehra et al., 

2006).   

The third is negative feedback.  As I proposed (Chapter III), the fact 

that KaiA binds to phosphorylated KaiC is explained as negative feedback 

toward phosphorylation by free KaiA depletion (Clodong et al., 2007; 

Miyoshi et al., 2007).  My study is the first to suggest this process, and 

this type of model supports my results.  Miyoshi et al. demonstrated 

simulation-based functional screening and predicted regulation in 

completely and partially phosphorylated (CP and PP) KaiC promotes and 

suppresses transcription, respectively (Miyoshi et al., 2007).  The 

difference in transcriptional regulation between CP and PP KaiC enabled 

simulation of oscillatory behaviors under light and dark conditions, 

supporting the significance of the unknown state that I predicted (Chapter 

III) and resolving the discrepancy in the Transcriptional Activation Model 

(Chapter II).  Clodong et al. also demonstrated simulation-based screening 

by using the hourglass design (Clodong et al., 2007).  They screened 224 

networks involving either positive or negative feedback by reference to 

robustness, and finally determined just one network with negative feedback 

via KaiA.  Their result strongly supports the notion that the KaiC 

phosphorylation cycle, as I predicted, relies on negative feedback.   

As described, various forms of mathematical models for the Kai 

oscillator have proposed putative mechanisms mediating circadian 

oscillations.  Among them, my studies, ahead of other theoretical ones, 
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have successfully determined the essential platform for the Kai clock 

oscillator.  It is expected that experimental studies will verify the 

propositions, and that mathematical models will interpret new data.  This 

should lead to clearer understandings of the cyanobacterial clock system 

and its great potential.    
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Chapter V: 

Appendices 
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Appendix I 
 

Here, I explain the concept of the orthodox model of the molecular 

mechanism of circadian rhythmicity, recently named a 

transcription/translation feedback oscillator, or TTO (Lakin-Thomas and 

Brody, 2004; Tomita et al., 2005).   

This model proposes that circadian rhythmicity at the cellular level is 

driven by rhythmic transcription of clock genes (Fig. V-1).  Rhythmic 

transcription generates rhythmic levels of mRNA, which in turn generates 

rhythmic levels of clock proteins.  Clock proteins negatively feed back on 

their own transcription to reduce their own expression levels.  This 

negative feedback may occur indirectly through interference with positive 

elements, that is, proteins that turn on transcription of the clock genes.  

There are additional complications in the various models, such as 

posttranslational modifications of clock proteins, requirements for entry of 

proteins into the nucleus, and several interdependent feedback loops 

mutually influencing each other.  Rhythmic phosphorylation of clock 

proteins was thought to mediate oscillations, by inducing the destruction of 

proteins or altering transcriptional activity.   

The discovery of the KaiC phosphorylation cycle under 

transcription-less conditions is the first evidence of the existence of a 

non-TTO biological rhythm mechanism, and sheds light on the importance 

of phosphorylation of clock proteins. 
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Appendix II-A 
 

As described in Mathematical Model, I used the Michaelis-Menten 

function for KaiA-mediated KaiC autophosphorylation as follows, 

 

! 

k[KaiA]N

k
m

+ N
 (II-A-1) 

 

, where [KaiA], km and k are the KaiA concentration, the Michaelis constant 

and the phosphorylation rate per KaiA concentration, respectively.  It is 

known that the KaiA level in cells is almost constant throughout the entire 

circadian cycle (Kitayama et al., 2003).  Here, I assumed [KaiA] to be 

constant, and then Eq. (II-4) can be replaced simply as follows, 
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 (II-A-2) 

 

, where ka is k[KaiA] and indicates the maximum phosphorylation rate 

including KaiA activity.   

KaiC has autophosphatase activity, and the dephosphorylation rate can 

be denoted as kdP, where kd is the dephosphorylation rate per P-KaiC 

concentration.  When KaiB is not expressed, the total change of 

phosphorylation and dephosphorylation is as follows, 
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The formula is the basic concept behind my models; however, it does 
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not include the effect of KaiB.  Based on Eq. (II-A-3), I constructed four 

types of Phos function depending on the expected mechanisms of the KaiB 

function.   

 

(a) KaiB inhibits phosphorylation in a competitive manner 

This formula is based on the assumption that KaiB interacts with KaiA.  

This interaction is expected to decrease the amount of KaiA that can 

interact with KaiC.  Then Phos is as follows, 
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, where kc’ is the efficiency of inhibition per KaiB concentration.  As 

[KaiB] is always proportional to the total amount of KaiC, using a constant 

kc defined by 
  

! 

k
c

=
k
c
'[KaiB]

N + P
, Eq. (II-A-4) can be written as, 
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, where kc is the KaiB activity rate. 

 

(b) KaiB inhibits phosphorylation in a non-competitive manner 

This formula is based on the assumption that KaiB interacts with the 

KaiA-KaiC intermediate product.  I assumed that the interactive binding 

between KaiB and the intermediate product represses kinase activity.  The 

type (b) Phos is as follows, 
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 (II-A-6) 

 

, where kn’ is effect of inhibition per KaiB concentration, and kn is the 

product of kn’ and the KaiB/KaiC ratio and indicates KaiB activity.   

 

(c) KaiB enhances dephosphorylation 

Here the formula is based on the assumption that KaiB regulates the 

phosphatase activity of KaiC, as KaiA regulates the kinase activity of KaiC.  

I assumed that KaiC can dephosphorylated by itself, as in (a) and (b).  The 

type (c) Phos is as follows, 
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 (II-A-7) 

 

, where kb’ and kmb are the dephosphorylation constant and the Michaelis 

constant for dephosphorylation, respectively.  The constant kb is the 

product of kb’ and the KaiB/KaiC ratio and indicates KaiB activity.   

 

(d) KaiB enhances dephosphorylation depending on KaiA 

This formula is based on the assumption that KaiC dephosphorylation is 

accelerated when both KaiA and KaiB interact to KaiC.  In this case, I 

have to consider the competition for KaiA between phosphorylation and 

dephosphorylation.  The total amount of KaiA satisfies,  
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! 

[KaiA] = [KaiAf ]+ [KaiAC]+ [KaiABC] (II-A-8) 

 

, where [KaiAf], [KaiAC] and [KaiABC] are the concentrations of free KaiA 

molecules, KaiA-KaiC intermediate product in phosphorylation, and the 

KaiA-KaiB-KaiC intermediates product in dephosphorylation, respectively.  

Phosphorylation and dephosphorylation occur in proportion to [KaiAC] and 

[KaiABC], respectively.  Assuming spontaneous dephosphorylation also 

occurs in proportion to P-KaiC, Phos is as follows, 
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d
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, where k1’ and k2’ are the rate constants for phosphorylation and for 

dephosphorylation, respectively.  Using the quasi-steady-state hypothesis, 

the concentrations of the intermediates can be written using stability 

constants k3’ and k4’ as follows, 
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 (II-A-10) 

 

, where [KaiBf] is the concentration of the free KaiB molecules.  It is 

known that KaiB is abundant comparing to KaiA and KaiC, so I assumed 

that [KaiBf] equals the total amount of KaiB.  Substituting Eqs. (II-A-8) 

and (II-A-9) for Eq. (II-A-10), the type (d) Phos was obtained,  
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, where k1, k2, k3 and k4 are constants.  The parameter k1 is the 

maximum phosphorylation rate including KaiA activity, k2 is the maximum 

dephosphorylation rate including KaiA and KaiB activities, k3 is the 

stability constant for phosphorylation, and k4 is the stability constant for 

dephosphorylation including KaiB activity. 

This function corresponds with a simplified reaction scheme based on 

the fact that KaiC forms complexes with KaiA and KaiB (Kageyama et al., 

2003). 
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Appendix II-B 
 

Basically, I investigated the conditions needed for gene regulation to 

generate oscillation by numerical methods, where the equilibrium value 

and stability were determined based on given parameters.  However, in 

cases where type (b) Phos or the simplified formula of (c) Phos was used, it 

was possible to obtain an equilibrium of the dynamics though it was not in 

explicit but an implicit form.  Here I explain the latter case.  An analysis 

in the case of type (b) Phos is possible by a similar method.   

 

From Eq. (II-1), I assume that there is an equilibrium (U*, N* ,P*) 

satisfying the following, 
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Now I introduce µ, satisfying 

! 

µ = pU
*.  By giving a fixed value for µ, 

N* and P* can be formally determined using the second and third equations 

in Eq. (II-B-1).  Assuming that in type (c) Phos, km and kmb are very small 

and qn=qp=q, equilibria can be obtained as follows, 
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The above assumption may not be appropriate when I search for the 

conditions for the Transcriptional Repression Model.  In that case, a 

numerical method should be used for determining the stability condition.  

Using the first equation of Eq. (II-B-1) and the determined form of N* and 

P*, U* is also determined as a function of N*, P* and µ.  The Jacobian 

matrix of the model is as follows, 
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The characteristic equation of three-dimensional dynamics in the 

general form is as follows, 
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, where the roots x are the eigenvalues, and the coefficients a1, a2 and a3 of 

this model are as follows;  
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The condition for Hopf bifurcation is that Eq. (II-B-5) has roots of a pair 

of complex conjugates and that the real part of the roots go from negative 

to positive.  Assuming the other negative real root is α, the cubic equation 

Eq. (II-B-5) is written as, 
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, where α, is the following, 
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Now the condition for the Hopf bifurcation is as follows, 
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These inequalities can be written in terms of parameters using Eqs. 

(II-B-5) and (II-B-7).  By substituting parameter values (including µ), I 

numerically determined the instability condition of the equilibrium based 

on Hopf bifurcation.  The parameter µ (

! 

= pU
*) includes *

U .  However, I 

interpret the numerical change of µ as the change of p in the analysis.   
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Appendix III-A 
 

Here, I show the analytical form for the random transition model when 

the system contains four distinct states.  The dynamics and characteristic 

polynomial are as follows, 
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 (III-A-1), 

 

where a~l are the rate constants of the transitions and λ is the eigenvalue.  

The model here maintains A4 = 0 since the sum of the variables 

! 

V
i

i

"  is 

conserved.  AN = 0 for any system of N variables in the closed system.  In 

Eq. (III-A-1), the Routh-Hurwitz conditions for stability are expressed as 

follows (Murray, 1989a), 
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A1, A2 and A3 for Eqs. (III-A-1) and (III-A-2) are given as, 
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When all a~l are positive, the right hand side of Eq. (III-A-3) contains 

only positive terms.  Thus, A1, A2, A3, and A1 A2−A3 are always positive, 

indicating that the system is always stable and V1, V2, V3, and V4 will 

converge to equilibrium. 

In the same way, I can show the stability of higher dimensional 

systems.  
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Appendix III-B 
 

Analysis for instability  

The equilibria of the model were determined numerically. The 

condition for instability of each equilibrium was then examined based on 

Appendix III-A.  These procedures were done by Mathematica (Wolfram) 

changing all parameters: kphos = 0.024, 2.4, 240 /hr; kCpA = 0.00015, 0.015, 

1.5 nM/hr; kCpAB = 0.000008, 0.0008, 0.08 nM/hr; kdephos = 0.006, 0.6, 60 

/hr; km = 0.0007, 0.07, 7 nM; a = 2, 200, 20000 nM; a1 = 0, a/3, a/10 nM; 

a2 = 0, a/3, a/10 nM; b = 2, 200, 20000 nM; s = 0.04, 0.2, 1; V1+V2+V3+V4 

= 4, 400, 40000 nM (in the basic model); knew = 0.0024, 0.24, 24 /hr; 

V1+V2+V3+V4+Vnew = 4, 400, 40000 nM (in the five-variable models).  I 

scanned 311 = 177,147 and 312 = 531,441 parameter sets in the basic and 

five-variable models, respectively.   

In the basic model, and the five-variable models #2, #3, and #4, the 

equilibria of the system were not determined numerically in 328, 54, 629, 

and 670 sets, respectively, and the other cases satisfy the condition for 

stability.  For the cases in which equilibria were not determined, I 

confirmed by computer simulation that the dynamics do not generate 

oscillations.  

In the five-variable model #1, 33,577 sets do not satisfy the stability 

condition.  They are candidates for showing periodic oscillations.  I 

sampled some of them and confirmed that these parameter sets show 

oscillations of state transition in a computer simulation. 

 

Computer simulation 

In a computer simulation, I used the simple explicit difference method 
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with 

! 

"t = 0.0000001  for the basic model, closed circuit model, and 

five-variable models.  I calculated the changes in the concentrations of 

each state with time.  The computer program was written in C and was 

calculated on a Linux operating system. 
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Appendix III-C 
 

In the five-variable models, the property of the unknown state was 

assigned according to its position in the circuit pathway (Table III-3).  The 

dynamics of the models #2 (Eq. (III-C-1)), #3 (Eq. (III-C-2)), and #4 (Eq. 

(III-C-3)) are as follows, 
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h in the model #2, and gi and h in the model #4 are the same as in the 

model #1 shown in Eq. (III-2). 

 



Fig. V-1
Oscillatory networks. Biosynthetic pathways are shown as thin lines with arrowheads.

Positive and negative influences are shown as heavy lines with large arrowheads and

crossbars, respectively. (a) The mathematical model of oscillatory behavior in enzymatic

control processes (Goodwin, 1965). It is assumed that Z, produced from Y, inhibits

production of X that produces Y. It was demonstrated that this minimal network can

generate sustaining oscillation. The variables here can be interpreted as mRNA (X),

protein in cytoplasm (Y), and protein in nucleus (Z). (b) The generic model of

transcription-translation feedback oscillator (TTO) for circadian clocks. Clock genes are

transcribed into mRNA and translated into proteins, which are positive and negative

elements. Here, protein 2 positively regulates the transcription of Gene 1. Protein 1

negatively regulates its own transcription by interfering with the positive effect of Protein 2.

Protein 1 also positively regulates the production of Protein 2. The positive loop via the

positive element contributes to increasing the amplitude. Positive and negative elements

are CYC/CLK and PER/TIM in Drosophila, CLOCK/BMAL1 and PER/CRY in mammal,

FRQ and WC-1/WC-2 in Neurospora, respectively.
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