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Abstract 

Despite the fact that human Brodmann area 6 (BA6), a traditional “motor” area, is 

active during higher motor control involving various cognitive operations, the 

functional specialization within BA6 in the cognitive domain is largely unknown.  

Furthermore, its functional relevance in cognition has been questioned because brain 

activity in BA6 during cognitive tasks has often been explained away as a concomitant, 

latent motor process.  Therefore, we examined the structural-functional relationship of 

human BA6 in non-motor cognitive functions and its functional relevance using both 

functional magnetic resonance imaging (fMRI) and repetitive transcranial magnetic 

stimulation (rTMS).  Subjects performed mental-operation tasks in which they serially 

updated verbal and spatial mental representations (MO-v and MO-s).  In the fMRI 

experiments, the activity in the medial BA6 was more increased in MO-v, while the 

activity in the lateral BA6 in the both hemispheres was more in MO-s.  Low-frequency 

rTMS to the medial BA6 disrupted only the performance of MO-v, whereas rTMS to the 

lateral BA6 in both hemispheres disrupted only MO-s.  Hence the converging results 

demonstrate a functional double-dissociation in which medial BA6 has a critical role in 

updating verbal information and lateral BA6 in updating spatial information.  The 

present study provides direct physiological evidence of modality-specific cognitive 

function within human BA6. 
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Introduction 

Increasing evidence indicates that some classically designated “motor” areas have roles 

in both motor and non-motor cognitive functions (Ito, 1993; Leiner et al., 1993; 

Middleton and Strick, 1994; Doya, 2000; Imamizu et al., 2000; Picard and Strick, 2001).  

Brodmann area 6 (BA6), which bridges prefrontal and primary motor cortices, is likely 

one such cortical area.  BA6 has long been recognized as a higher-order motor area 

(Fulton, 1935; Wise, 1985; Freund, 1990), and its motor functions in relation to 

anatomical subdivisions have been investigated extensively (Tanji and Shima, 1994; 

Picard and Strick, 1996; Tanji, 1996).   

Recent neuroanatomical evidence has revealed that while the caudal parts of 

BA6 have a close relationship with primary motor cortex and send massive 

corticospinal projections, the rostral parts of BA6 have a close connectional relationship 

with prefrontal cortex rather than with primary motor cortex (Barbas and Pandya, 1987; 

Luppino et al., 1993; Lu et al., 1994) and lack a direct projection to the spinal cord.  

These data suggest that the function of the rostral part of BA6 is related more to the 

functions of prefrontal cortex than primary motor cortex.  Neuroimaging studies in 

humans have demonstrated that BA6 is active not only during demanding motor tasks 

(e.g., Roland et al., 1980; Deiber et al., 1991, 1997; Catalan et al., 1998; Grafton et al., 

1998), but also during various cognitive tasks (e.g., Jonides et al., 1993; Paulesu et al., 
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1993; Dehaene et al., 1996; Mellet et al., 1996; Lamm et al., 2001; Simon et al., 2002; 

Hanakawa et al., 2003a,b).  Results vary among the studies, however, and the 

structural-functional relationships within BA6 for cognition are poorly understood 

compared to those for motor control (Picard and Strick, 2001; Schubotz and von 

Cramon, 2003).  Furthermore, activity in BA6 during cognitive tasks revealed using 

neuroimaging has often been explained as a concomitant, latent motor process such as 

eye movement or preparation for button pressing, and thus the functional relevance of 

BA6 activity in cognition has always been questioned (Courtney et al., 1998; Haxby et 

al., 2000).  

The aim of the current study is to clarify the structural-functional relationship 

within human BA6 for cognition and examine the functional relevance of activity in 

BA6 during cognitive tasks.  Toward this aim, we used a combined approach of 

functional magnetic resonance imaging (fMRI) and subsequent repetitive transcranial 

magnetic stimulation (rTMS) to image activity and then transiently inhibit that activity 

in the same set of subjects performing the same behavioral tasks.  This approach 

enabled the investigation of the functional relevance of brain activity using transient 

rTMS-induced “virtual lesions” (Hallett, 2000; Pascual-Leone et al., 2000; Sack and 

Linden, 2003).  In the present study, we used the verbal and spatial mental-operation 

tasks (MO-v and MO-s) in which subjects were required to sequentially update verbal 
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or spatial representations in memory.  It has been reported that broad areas of BA6 are 

active during such mental operations, even when strictly excluding motor control 

(Hanakawa et al., 2002, 2003a).   

 

Materials and Methods 

Subjects: 

Fourteen subjects (10 male and 4 female, mean age 25.4 ± 3.8 years) participated in 

both fMRI and rTMS studies.  All subjects were right-handed as assessed using the 

Oldfield handedness questionnaire (Oldfield, 1971).  None of the subjects had a 

history of psychiatric or neurological illness.  All subjects gave written, informed 

consent before the experiments.  The experiments were approved by the local ethics 

committee of the National Institute for Physiological Sciences.  

 

Mental-Operation Tasks: 

Subjects performed MO-v and MO-s requiring the sequential update of verbal or spatial 

representations in memory according to instruction stimuli (Fig. 1).  Trials began with 

the visual presentation of a prime stimulus for 1.0 second.  For MO-v, the prime 

stimulus was a Japanese kanji character indicating a day of the week, and for MO-s, the 

prime stimulus was a marker in one of 9 small subdivisions of a square grid.  
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Subsequently, a random series of 5 to 7 instruction stimuli consisting of numerals from 

1 to 4 were presented for 0.5 seconds each at a rate of 1.0 Hz for both tasks.  For MO-v, 

subjects mentally advanced the day of the week according to instruction stimuli (e.g., 

the day was advanced from Sunday to Wednesday with an instruction stimulus of 3), 

and for MO-s, subjects mentally moved the marker clockwise on an imagined grid 

according to the instruction stimuli (e.g., the marker was moved from the upper left 

corner to the upper right corner with an instruction stimulus of 2).  After presentation 

of all the instruction stimuli, an answer stimulus was presented for 1.5 seconds.  The 

subjects were asked to judge whether the final internal representation from the mental 

operation matched the presented answer stimulus by pressing one of two response 

buttons with their right hand.  All stimuli subtended a visual angle of 2.0 degrees.  

The two tasks were identical in that the advancement of each representation was guided 

by numbers and there was a two-choice response, but differed in the modality of the 

updated representation. 

 

fMRI Experiment: 

The fMRI experiment was conducted using a 3.0 Tesla MRI scanner (MAGNETOM 

Allegra, Siemens, Erlangen, Germany).  Functional images were acquired using a 

T2*-weighted echo planar imaging sequence (TR / TE / FA / FOV / voxel size / slice 
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number = 2000 ms / 30 ms / 75° / 192 mm / 3.0×3.0×4.0 mm / 34 axial slices).  A 

high-resolution structural image was acquired using a Magnetization Prepared Rapid 

Acquisition in Gradient Echo (MPRAGE) sequence.  Presentation software 

(Neurobehavioral Systems Inc., California, USA) was used for the visual stimulus 

presentation and to record the responses of the subjects.  Stimuli were presented on a 

screen using a liquid crystal display projector, and subjects viewed the screen though a 

mirror.   

Each experimental session consisted of 5 trials for each task in a randomized 

order.  The inter-trial interval (ITI) ranged from 21 to 23 seconds, which allowed the 

fMRI signal to return to baseline.  Each subject completed two experimental sessions 

with scanning.  A total of 155 functional images were collected during each session 

and the first 5 images were discarded from data analysis to allow for the stabilization of 

the magnetization.  Before the fMRI experiment, subjects performed 5 experimental 

sessions outside the scanner to become familiar with the tasks.  

SPM99 software (Wellcome Department of Cognitive Neurology, London, 

UK) was used for image processing and analysis.  To reduce head-motion artifacts, the 

functional images were realigned to the first functional image (Friston et al., 1995b).  

For individual analysis, the images were smoothed spatially using an isotropic Gaussian 

kernel of 8-mm full-width half maximum (FWHM) to increase the signal-to-noise ratio.  
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A general linear model was used to identify voxels with task-related signal changes 

(Friston et al., 1995a).  The task period was modeled using a boxcar function 

convolved with a hemodynamic response function, and significant correlations between 

the observed response and the modeled response were estimated, yielding t-value maps. 

Group analysis was performed using anatomical normalization (Friston et al., 

1995b) and a random effect model (Friston et al., 1999).  The magnitude of the 

increase in activity in BA6 during the two tasks was compared.  The resulting voxels 

were thresholded at a P-value of 0.001 without correction for multiple comparisons 

(corresponding to t = 3.79). 

 

rTMS Experiment: 

The rTMS experiment was conducted approximately 1 week after the fMRI experiment.  

The tasks used for the rTMS experiment were essentially the same as those for the fMRI 

experiment except that the ITI was fixed at 1.5 seconds.  Subjects were seated on a 

chair approximately 110 cm away from the viewing screen and performed the 

experimental sessions at 3 different time points (before, immediately after, and 30 

minutes after rTMS).  Each experimental session consisted of 15 trials of each task 

(i.e., 30 trials in total) performed in a random order.  

The three locations (medial and left and right lateral BA6) functionally 
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defined by fMRI for each subject were stimulated during separate sessions, with at least 

1 week between each rTMS session.  The order in which the locations were stimulated 

was pseudorandomized and counterbalanced across subjects.  Medial BA6 was defined 

as the activated clusters during MO-v versus MO-s that straddled or were anterior to the 

vertical anterior commissure line (VAC) (Talairach and Tournoux, 1988; Picard and 

Strick, 1996), whereas lateral BA6 was defined as the activated clusters during MO-s 

versus MO-v at the conjunction of the superior frontal and superior precentral sulci 

(Rizzolatti et al., 1998; Hanakawa et al., 2002).  Mean coordinates for the center of the 

targeted three locations across subjects were shown in Table 1.  The resulting clusters 

were rendered on the structural image and then co-registered with the subject’s head 

using a frameless stereotaxy system (Evans software, Tomiki Medical Instruments 

Corporation, Ishikawa, Japan).  The coil was fixed on the scalp just above the target 

location using a mechanical holder (Point Setter, Mitaka Koki Corporation, Tokyo, 

Japan).  The position was monitored continuously during rTMS using the above 

stereotaxy system.  

rTMS was applied using a Magstim 220 (Magstim Company Ltd, Whitland, 

UK) and figure-8 coils with each wing measuring 70 mm in diameter.  During rTMS, 

subjects received 0.9 Hz biphasic 420 magnetic pulses at 70% of the maximum output 

of the stimulator.  It is known that low-frequency rTMS inhibits cortical excitability 
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for several minutes and temporarily impairs task performance (Chen et al., 1997; Maeda 

et al., 2000; Robertson et al., 2003).  According to methods described previously 

(Beckers and Zeki, 1995; Corthout et al., 1999; Lewald et al., 2002), we used a fixed 

intensity defined by the stimulator output, not motor threshold, because previous studies 

indicated no intra-individual correlation between the excitability of different cortical 

areas, such as motor and visual cortices (Stewart et al., 2001).  By the omission of the 

measurement of motor threshold, subjects have the advantage of the reduction of both 

the number of magnetic pulses received and total experimental time.  

The transient inhibitory effect of rTMS was observable as an increase in 

reaction time, rather than an increase in errors in the present experiments.  Reaction 

time has proven to be a sensitive index of behavioral performance (Shapiro et al., 2001; 

Rushworth et al., 2002; Devlin et al., 2003; Kennerley et al., 2004).   

 

Results 

fMRI experiment: 

In the fMRI experiment, the subjects correctly performed the both tasks (task accuracy, 

MO-v 92%, MO-s 88%; reaction time, MO-v 984 msec, MO-s 763 msec).   

During MO-v task, the left medial BA6, ventral BA6, Broca area, parietal 

cortex and bilateral cerebellum were more active compared to the visual fixation 
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condition (Fig. 2A).  In contrast, during MO-s task, the bilateral lateral BA6, parietal 

cortex, the left medial BA6 and ventral BA6 were more active compared to the visual 

fixation condition (Fig. 2B).   

To measure task-specific BA6 activity, the differences in activity between the 

two tasks were compared.  Activity in medial BA6 increased more during MO-v than 

MO-s, conversely, activity in lateral BA6 increased more during MO-s than MO-v (Fig. 

3A).  The increase in activity in medial BA6 during MO-v straddled or was anterior to 

the VAC, whereas that in lateral BA6 during MO-s was at the conjunction of the 

superior frontal and precentral sulci.  These regions correspond to the 

pre-supplementary motor area (pre-SMA) (Deiber et al., 1991; Luppino et al., 1993; 

Picard and Strick, 1996; Tanji, 1996), and the rostral division of dorsal premotor cortex 

(PMDR) (Preuss et al., 1996) or pre-PMd termed by Picard and Strick (2001).  The 

onset and peak in brain activity in both medial and lateral BA6 preceded the answer 

stimuli and the subsequent motor responses (Fig. 3B), thus the activity was likely 

related to mental manipulation rather than motor preparation or execution.  Actually, 

when we analyzed brain activity related with button press, we found significant brain 

activity in the left primary motor cortex, but not any BA6 regions (Fig. 4A, B).  

Prefrontal cortex did not exhibit any significant differences in activity between the two 

tasks (Table 2). 
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rTMS experiment: 

For each subject, the accuracy and the median reaction time for the correct responses 

were calculated.  Correlation between the accuracy and reaction time for each task was 

not significant (both tasks p >.10).  Thus, there was no indication of a speed-accuracy 

trade-off. 

The behavioral effect of rTMS was measured as a change in reaction time, 

which was calculated as the change in median reaction time immediately or 30 minutes 

after rTMS relative to that before rTMS (Fig. 5B).  There was an increase in reaction 

time during MO-v immediately after rTMS, only when medial BA6 was stimulated, 

whereas there was an increase in reaction time during MO-s only when left or right 

lateral BA6 was stimulated (p < .05, one-sample t-test).  There was no change in 

reaction time 30 minutes after rTMS in any brain region.  Analysis of variance 

revealed a significant three-way interaction (F(1,13) = 3.70, p < .05) among the factors 

of task, time, and stimulation site.  This indicates that the effect of rTMS on the 

performance of the two tasks was different for each brain region.   

The baseline reaction time during MO-v was longer than during MO-s (MO-v: 

703 msec, MO-s: 608 msec, p < .01) even though task accuracy was comparable 

(MO-v: 95%, MO-s: 93%, n.s.), thus, the possibility exists that the task-specific rTMS 
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effect in medial BA6 was due to an increase in attentional load related to task difficulty 

(Pardo et al., 1990).  To exclude this possibility, we examined the correlation of the 

difference in baseline reaction time between the two tasks (reaction time during MO-v 

minus reaction time during MO-s before rTMS, as a parameter for the difference in 

attentional load) with the difference in rTMS-evoked change in reaction time between 

the two tasks (change in reaction time during MO-v minus change in reaction time 

during MO-s, as a parameter for the rTMS effect).  There was no significant 

correlation between these parameters (Fig. 6A, B). 

 

Discussion  

The results of the present study provide converging physiological evidence that the 

subdivisions of human BA6 have a critical role in cognitive processing in a 

modality-specific manner:  medial and lateral BA6 are preferentially involved in 

cognitive update of verbal and spatial representations, respectively.  This suggests that 

the function of at least a part of this “motor” area is not restricted to motor control but 

relevant to non-motor cognition.  This is similar to the idea that subdivisions of the 

basal ganglia and cerebellum, previously regarded as pure motor areas, have cognitive 

functions (Ito, 1993; Leiner et al., 1993; Middleton and Strick, 1994; Schmahmann, 

1997; Doya, 2000). 
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One advantage of the present study using both fMRI-identification of activity 

and rTMS-inhibition of that activity is that the functional relevance of brain activity in 

BA6 was directly demonstrated.  In the fMRI experiments, region-specific brain 

activity was measured while subjects performed different cognitive tasks.  Then, in the 

rTMS experiments, task performance was evaluated while magnetic stimulation 

interfered with region-specific brain activity.  Thus, the dependent and independent 

variables were counterchanged between the two experiments, and the bi-directional 

investigation yielded more reliable information about the brain-behavior relationship 

than a single modality approach.  Another advantage is that the ‘virtual lesion’ effect 

induced by rTMS in normal subjects enabled us to test the structural-functional 

relationship in a more experimentally controlled way (Walsh and Rushworth, 1999) than 

clinical case studies on patients with specific pathological lesions (Sawamoto et al., 

2002).   

The double-dissociation observed in the same group of subjects provides 

evidence against the possibility that the results are due to artifactual effects of rTMS, 

such as the spreading of effects to neighboring regions or individual differences in 

cortical excitability.  This data also speaks against the idea that rTMS inhibited motor 

responses, because the required judgment, preparation, and motor response were 

identical in both tasks.  Regarding task difficulty, there was no significant correlation 
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between difference in attentional load for the two tasks and in the degree of rTMS effect 

on the performance of the two tasks.  Thus, it is unlikely that the task-specific effect of 

rTMS in medial BA6 during MO-v was related simply to an increase in general 

attentional load.   

Medial BA6 has been known to be involved in the motor expression of language 

process (Brickner, 1940; Penfield and Welch, 1951; Fried et al., 1991).  Recent 

neuroimaging studies have suggested that medial BA6 is also involved in temporal 

maintenance or update of verbal information that is not used for speech but for solving 

non-motor cognitive tasks (e.g., Paulesu et al., 1993; Fiez et al., 1996; Smith et al., 

1998).  Lateral BA6 has also long been known to be involved in higher-order motor 

processes, especially those related to the visuo-motor control (e.g., Moll and Kuypers, 

1977; Weinrich and Wise, 1982; Wise et al., 1983; Halsband and Passingham, 1985).  

Wise and his colleague showed that the activity in some neurons in the rostral part of 

dorsal premotor cortex reflects the orientation of selective spatial attention as opposed 

to the target of a reaching movement, eye position, and saccade direction (Boussaoud 

and Wise, 1993; Boussaoud, 2001; Lebedev and Wise, 2001).  In addition to these 

neurophysiological studies, some human neuroimaging studies have also suggested that 

lateral BA6 is involved in cognitive processes:  spatial working memory or spatial 

attention, although such activity in BA6 during cognitive tasks is often dismissed 
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because it is located within the premotor cortex or frontal eye field and thus considered 

to be related to hand or eye movements (Jonides et al., 1993; Mellet et al., 1996; 

Courtney et al., 1998; Simon et al., 2002).  The present results, which are consistent 

with these previous observations, provide systematic, strong evidence that activity in 

lateral and medial BA6 was functionally relevant for different cognitive processing and 

such differential roles originated from a difference in the cognitive representations 

subjected to mental update, namely verbal and spatial representations. 

The present results fit well within the structural-functional framework that has 

been proposed for the motor domain of BA6:  internally-generated and 

externally-guided motor control involves the medial and lateral regions of BA6, 

respectively (Goldberg, 1985; Wessel et al., 1997; Crosson et al., 2001).  The innate 

properties of verbal and spatial representations are consistent with the concepts of 

“internal” and “external”, respectively, in that verbal representations are more abstract 

and decoupled from the physical world, while spatial representations are more concrete 

and directly connected to the physical world.  Such a difference in the relationship 

between the inner brain and the outer physical world may be reflected not only in motor 

control but also in cognitive operations, and thus may be processed in different areas of 

BA6.   

An alternative or additional interpretation for the double dissociation observed 
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in the present study is the difference in the types of sequences in which the two 

representations were arranged.  In the present study, subjects had to monitor the 

current position in verbal sequence or spatial alignment and to update its position 

according to a number instruction and a predetermined rule in both tasks.  The verbal 

representation of “week” is organized in a temporal and serial sequence, whereas the 

representation of “location” is organized in spatial and parallel alignment.  Thus, the 

medial and lateral dissociation may be due to the difference between temporal sequence 

and spatial alignment to be updated in the two tasks.  This idea is partly supported by 

previous findings that control of serial ordered movements, including speech, involve 

medial BA6 (Penfield and Welch, 1951; Shima et al., 1996; Kennerley et al., 2004) and 

some neurons in the rostral part of dorsal premotor cortex are involved in processing the 

sequence of spatial cues and motor sequences (Ohbayashi et al., 2003).  

During MO-v, left ventral premotor cortex was preferentially active in addition 

to medial BA6 (Table 2).  Some previous experiments have reported brain activation 

and an effect of TMS inhibition in this region during verbal tasks (Herwig et al., 2003; 

Longcamp et al., 2003; McDermott et al., 2003; Wilson et al., 2004).  This region was 

clearly distinct from the left rostral part of dorsal premotor cortex, which exhibited 

selective activity during MO-s and effect of TMS inhibition on MO-s in the present 

study.  Thus, lateral BA6 may be divided into further subdivisions according to 
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cognitive functions as well as motor control (Muakkassa and Strick, 1979; He et al., 

1993; Godschalk et al., 1995; Preuss et al., 1996; Hoshi and Tanji, 2002). 

In summary, the present study demonstrates that medial BA6 has a critical role 

in the update of verbal representations and lateral BA6 has a role in the update of spatial 

representations.  These results provide direct physiological evidence of 

modality-specific cognitive function within human BA6.  One methodological 

problem of low-frequency rTMS (1 Hz or below) experiments is that there is 

considerable individual variability of the effect (Maeda et al., 2000) and the results may 

underestimate the function of a stimulated area.  Thus, the possibility remains that the 

cognitive function of BA6 may be even more extensive than that demonstrated here.  
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Table 1. Mean coordinates for the center of the targeted three locations across subjects 

for rTMS experiment. 

 

Stimulation locations Mean coordinates (mm) ± SD 

 x y z 

Medial BA6 -4 ± 4 8 ± 8 65 ± 4 

Left lateral BA6 -25 ± 4 3 ± 12 56 ± 8 

Right lateral BA6 23 ± 4 4 ± 10 56 ± 8 

 

Coordinate [x, y, z] was based on the stereotaxic coordinate system by Talairach and 

Tournoux (1988).  Note that the actual stimulation locations were determined 

according to individually defined fMRI activation rather than the group mean 

coordinates.  

BA: Cytoarchitectonic fields designated by Brodmann. 
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Table 2. Brain regions exhibiting a significant increase in BOLD signal during MO-v 

versus MO-s and vice versa. 

 

Regions Coordinates (mm) t-value 

 x y z  

MO-v > MO-s 

Medial BA6 -- 0 0 66 5.42 

Ventral BA6 L –51 -8 41 6.21 

MO-s > MO-v 

Lateral BA6 L 

R 

–17

22 

-2 

5 

68 

55 

6.16 

7.38 

BA7 (Superior parietal lobule) L 

R 

-20

32 

-65 

-57 

48 

49 

9.40 

11.00 

 

Coordinate [x, y, z] indicates the voxel of maximal significance in each brain region 

according to the stereotaxic coordinate system by Talairach and Tournoux (1988). 

BA: Cytoarchitectonic fields designated by Brodmann. 
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Figure Legends 

 

Figure 1. 

Experimental paradigms for fMRI and rTMS experiments.  For both tasks, a trial 

started with the presentation of a prime stimulus, followed by the presentation of 

instruction stimuli.  Subjects updated a mental representation according to the 

instruction stimuli, and were asked to judge whether the final internal representation 

from the mental operation matched the presented answer stimulus by pressing one of 

two response buttons.  

 

Figure 2. 

Brain activity during MO-v and MO-s compared to visual fixation. Group 

activation superimposed on a standardized anatomical image.  The statistical threshold 

was set to a p-value of 0.001.  (A) Activity during the MO-v task minus that during 

visual fixation (red). (B) Activity during the MO-s task minus that during visual fixation 

(blue). 

 

Figure 3. 

Differences in fMRI activity between MO-v and MO-s tasks.  A: Group activation 
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superimposed on a standardized anatomical image.  The statistical threshold was set to 

a p-value of 0.001.  Medial BA6 (red) was more active during MO-v than MO-s 

(maximal difference at [x, y, z] = [0, 0, 66] with t = 5.42).  Left and right lateral BA6 

(blue) were more active during MO-s than MO-v (left, t = 6.16 at [-17, -2, 68]; right, t = 

7.38 at [22, 5, 55]).  VAC = vertical anterior commissure.  B: The time series of the 

fMRI signal in the voxel with the maximal difference in BA6 across subjects.  The 

horizontal axis represents the time from the presentation of the prime stimulus and the 

green shading indicates the time window within which answer stimuli were presented 

and the motor responses occurred.  

 

Figure 4. 

Brain activity related with button press.  A: Group activation superimposed on a 

standardized anatomical image.  The statistical threshold was set to a p-value of 0.001.  

The left primary motor cortex and bilateral parietal cortex were significantly active.  B: 

The time series of the fMRI signal in the voxel in the left primary motor cortex and 

three BA6 regions across subjects.  The horizontal axis represents the time from the 

occurrence of button press.  We did not observe any significant activities in BA6 

associated with button press. 
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Figure 5. 

Results of the rTMS experiment.  A: Coil position and activity in BA6 in a 

representative subject.  The green bar indicates the position of the coil tangential to the 

scalp.  The white bar indicates the direction of the magnetic pulse from the coil.  B: 

The grand mean change in reaction time (∆RT) across subjects (± SEM).  Asterisks 

indicate a significant (p < .05) increase in reaction time as compared with the baseline 

reaction time before rTMS. 

 

Figure 6.  

Correlation analysis (A) between the difference in baseline reaction time and in the 

change in reaction time after rTMS between the tasks; and (B) between the difference in 

medial BA6 activity and the reaction time between tasks.  Each circle represents the 

data from one subject (n = 14). 
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