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Abstract. Stochastic models have played important roles in population genetics. They
have given understanding on evolutionary mechanism of maintaining genetic diversity
within and between species. In this dissertation, the author will present several analyti-
cal results on stochastic models in population genetics, which have been obtained by the
author and coworkers. The models cover various aspects, but with special reference to
multi-locus models (Chapters 2, 3, 5) and the models with natural selection (Chapters
3, 4, 5). They are central issues under development in the current population genetics
theory. With respect to random genetic drift for the one-locus problem, the state of
steady decay was first obtained correctly by Wright (1931). Kimura (1955) obtained the
complete expression of the transient probability density, which shows how the process
leads to the state of steady decay. For two-locus problems, however, how the process
eventually leads to the state of steady decay had not been studied. Two-locus prob-
lems are uniquely characterized by gamete frequencies. In Chapter 2, the conditional
expectation of the transient gamete frequency, given that one of the two loci remains seg-
regating, is obtained in terms of a neutral two-locus diffusion model. The sizes of natural
populations change often. We are often interested in what population of constant size
would have the same decrease in heterozygosity. This size is referred to as the effective
size of the population. Wright (1938) pointed out that the effective size is approximately
the harmonic mean of the individual sizes over the time period involved. For two-locus
problems, Slatkin (1994) conjectured that, if a rapidly growing population is founded by
a small size in which there is already linkage disequilibrium between a particular pair of
loci, then closely linked loci will remain in significant linkage disequilibrium for a long
time. However, no definite conclusions had been obtained, since there was no analyti-
cal framework for considering the effect. In Chapter 2, an asymptotic formula for the
squared standard linkage deviation after a large number of generations is obtained in
terms of a time-inhomogeneous stochastic model. According to the formula, in exponen-
tially growing populations linkage disequilibrium will be asymptotically the same as that
in a constant size population, the size of which is the current size. The evolutionary rate
of a gene is defined as the rate of nucleotide substitutions. The rate is given by the prod-
uct of the mutation rate and the fixation probability. Fixations of mutations also occur
in genes that belong to a multigene family. It is possible that a mutation spreads over
all member of a multigene family when they undergo concerted evolution, a phenomenon
that the members evolve in a concerted manner by exchanging their DNA sequences. In
Chapter 3, the rate of nucleotide substitutions in duplicated genes or a small multigene
family, that are currently undergoing concerted evolution by gene conversion is investi-
gated. A directional selection model, in which selection operates on the copy number of
the mutant in a diploid, is investigated. The fixation probability is obtained in terms of
a two-locus diffusion model. When no dominance exists among the selection coefficients,
the formula can be extended to the n-locus model. According to the formula, the rate of
molecular evolution is proportional to the size of the multigene family. It is known that
GC-rich regions include many genes in mammalian genomes. A possible evolutionary
force that might explain the pattern is biased gene conversion. Since biased mismatch
DNA repair toward GC has been observed experimentally, gene conversion could favor
particular alleles over others, or GC over AT base pairs. In fact, among multigene fami-
lies undergoing concerted evolution, ribosomal operons, transfer RNAs, and histones are
all GC-rich. In Chapter 3, a model of biased gene conversion is investigated. The fixation
probability is obtained in terms of a neutral n-locus diffusion model. According to the
formula, when the conversion rate is high, the acceleration of the rate of molecular evolu-
tion is proportional to square of the size of the multigene family. An ancestral genealogy
of a sample of genes plays an important role in a probabilistic description of the sample.
The size process, which is the the number of ancestors backward in time of a sample, is
referred to as the ancestral process. The ancestral selection graph introduced by Krone
and Neuhauser (1997) is an analogue of the coalescent genealogy. Few properties were
known about the ancestral process, which is the total number of ancestral particles in a
cross section of an ancestral selection graph backward in time of a sample. In Chapter
4, properties of the ancestral process are investigated. The probability distribution is
obtained by using a moment dual relationship between the ancestral process and a diffu-
sion model investigated by Kimura (1955). Bounds for the probability that the ancestral
process is at the state one are obtained by an elementary martingale argument, which
is an extension of the bounds obtained by Kingman (1982) for the neutral process. It
is shown that the process of fixation of the allele in the diffusion model corresponds to
convergence of the ancestral process to its stationary measure. Developing statistical
methods to detect adaptive evolution with DNA sequence data has been an important
issue. The methods using within species polymorphism data can be loosely classified into
two categories: site frequency methods and haplotype frequency methods. The site fre-
quency methods require only frequencies of variants at polymorphic nucleotide sites. In
contrast, the haplotype frequency methods require additional information on the linkage
phases among variant sites. Recently, the author and coworkers (2007) found that the
Watterson’s homozygosity test (1978) is usually robust against intra-haplotype recombi-
nation and the most powerful test during the sweep phase. However, the test is based
on a summary statistic and gives few insights how a selection operates. In Chapter 5,
a new likelihood based test to detect recent sweeps with utilizing haplotype frequency
data is presented. The test provides maximum likelihood estimates of the position and
intensity of the target of a selection.
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CHAPTER 1

Introduction

Stochastic models have played important roles in population genetics. They have

given theoretical understanding on evolutionary mechanism of maintaining genetic diver-

sity within and between species. Following in a line of Fisher (1930) and Wright (1945),

in 1950-1980s Kimura and his coworkers had given foundations of theories of molecular

evolution by developing stochastic models based on the diffusion process. By applying

their theoretical predictions to emerging molecular data at that time, various important

aspects of molecular evolution have been revealed. The most significant prediction is

probably the neutral hypothesis of molecular evolution, which was advocated by Kimura

(1968). In 1982-1983, a stochastic model, which is now called the coalescent model, was

introduced (Kingman, 1982b; Tajima, 1983; Hudson, 1983b). The coalescent process is a

stochastic process of ancestors of a sample of genes, which are taken from a population

evolving under the diffusion model. The coalescent model has given a useful framework of

statistical analysis of a sample taken from a population.

In this dissertation, the author will present several analytical results on stochastic

models in population genetics, which have been obtained by the author and coworkers. The

models cover various aspects, but with special reference to multi-locus models (Chapters

2, 3, 5) and the models with natural selection (Chapters 3, 4, 5). They are central issues

under development in the current population genetics theory.

With respect to random genetic drift for the one-locus problem, the state of steady

decay was first obtained correctly by Wright (1931). By calculating moments of the

distribution, Kimura (1955a) obtained the complete expression of the transient probability

density for the unfixed class, which shows how the process leads to the state of steady

decay. For two-locus problems, however, how the process eventually leads to the state

of steady decay had not been studied, with the exception of several functions (Ohta and

Kimura, 1969a). Two-locus problems are uniquely characterized by gamete frequencies.

In Chapter 2, an analytic expression of conditional expectation of the transient gamete

frequency, given that one of the two loci remains segregating, is obtained in terms of a

two-locus diffusion model. Using this expression, a model where linkage disequilibrium is

1



1. INTRODUCTION 2

introduced by a single mutation is discussed. The behavior of the conditional expectation

of gamete frequency is significantly different from the monotonic decrease observed in the

deterministic model without random genetic drift. The results were published in Mano

(2005).

The sizes of natural populations change often. We are often interested in what popula-

tion of constant size would have the same decrease in heterozygosity. This size is referred

to as the effective size of the population. Wright (1938) pointed out that the effective size

is approximately the harmonic mean of the individual sizes over the time period involved.

This means that a single period of small population size, called a bottleneck, can result in

a significant decrease in heterozygosity (Nei et al., 1975). For two-locus problems, Slatkin

(1994a) conjectured that, if a rapidly growing population is founded by a small size in

which there is already linkage disequilibrium between a particular pair of loci, then closely

linked loci will remain in significant linkage disequilibrium for a long time. The fate of

linkage disequilibrium which already exists in the founder population has practical im-

portance for designing association analyses for mapping complex traits genes (Lander and

Botstein, 1986; Laan and Pääbo, 1997). Nevertheless, no definite conclusions had been

obtained, since there was no analytical framework for considering effects of change of pop-

ulation sizes on linkage disequilibrium. In Chapter 2, evolution of linkage disequilibrium

of the founders in exponentially growing populations is investigated in terms of a time-

inhomogeneous stochastic model. As a measure of linkage disequilibrium, the squared

standard linkage deviation is considered. By a perturbative series expansion in a growth

parameter, an asymptotic formula for the squared standard linkage deviation after a large

number of generations is obtained. According to the formula, in exponentially growing

populations, linkage disequilibrium will be asymptotically the same as that in a constant

size population, the effective size of which is the current size. The results were published

in Mano (2007).

The evolutionary rate of a gene is defined as the rate of nucleotide substitutions (Zuck-

erkandl and Pauling, 1965; Jukes and Canter, 1969). The rate is given by the product of

the mutation rate and the fixation probability. Fixations of mutations also occur in genes

that belong to a multigene family. It is possible that a mutation spreads over all member

genes of a multigene family when they undergo concerted evolution, a phenomenon that

the members evolve in a concerted manner by exchanging their DNA sequences (Ohta,

1980; Dover, 1982). In Chapter 3, the rate of nucleotide substitutions in duplicated genes

or a small multigene family, that are currently undergoing concerted evolution by gene
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conversion is investigated. Gene conversion between copy members should be the major

mechanism to cause concerted evolution of small multigene families (Ohta, 1983a). A

directional selection model, in which selection operates on the copy number of the mutant

in a diploid, is investigated. An analytic expression of the fixation probability is obtained

in terms of a two-locus diffusion model. When no dominance exists among the selection

coefficients, the formula for the fixation probability can be extended to the n-locus model.

Interestingly, the formula is identical to the formula for the fixation probability of a mu-

tant with genic selection in a subdivided population (Maruyama, 1972). According to

the formula, selection will operate more efficiently in a large multigene family; the rate

of molecular evolution is roughly proportional to the size of the multigene family. The

results were published in Mano and Innan (2008).

It is known that GC-rich regions include many genes in mammalian genomes (Dur-

ret et al., 1995). A possible evolutionary force that might explain the pattern is biased

gene conversion. Since biased mismatch DNA repair toward GC has been observed exper-

imentally (Brown and Jiricny, 1987), gene conversion could favor particular alleles over

others, or GC over AT base pairs. If biased gene conversion were major determinant of

GC content evolution, one would expect sequences undergoing frequent gene conversion

to become GC-rich. In fact, among multigene families undergoing concerted evolution

in mammals, ribosomal operons, transfer RNAs, and histones are all GC-rich, consistent

with the prediction (Galtier, et al. 2001). In Chapter 3, a model of biased gene conversion

is investigated. An analytic expression of the fixation probability is obtained in terms of

an n-locus diffusion model. According to the formula, the bias in gene conversion will

have significant effect upon a large multigene family; when the conversion rate is large,

the acceleration of the rate of molecular evolution is proportional to square of the size of

the gene family.

An ancestral genealogy of a sample of genes plays an important role in a probabilistic

description of the sample. Let an(t) be the number of ancestors at time t backward of a

sample of n neutral genes. The size process is referred to as the ancestral process. The

distribution of an(t) is known (Griffiths (1979), Tavaré (1984)). The ancestral selection

graph introduced by Krone and Neuhauser (1997) is an analogue of the coalescent ge-

nealogy. The elements are referred to as particles. Let bn(t) be the number of edges, or

ancestral particles, in a cross section of an ancestral selection graph at time t backward

of a sample of n genes. In the case of no mutation, the real genealogy of a sample is

the same as in the neutral process (Theorem 3.12 in Krone and Neuhauser (1997)). In
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contrast, few properties of the ancestral process {bn(t); t ≥ 0}, which is the size process of

the total number of the real and virtual particles, were known. In Chapter 4, properties of

the ancestral process are investigated. An explicit form of the probability distribution is

obtained, by using a dual relationship between the ancestral process and a diffusion model

investigated by Kimura (1955c) in a context by Tavaré (1984). The ancestral process con-

verges to the stationary measure, which is the truncated Poisson distribution. In contrast

to the neutral process, the final rates of convergence are given by the largest eigenvalue

for all the states. Bounds for the probability that the ancestral process is at the state one

are obtained by an elementary martingale argument, which is an extension of the bounds

obtained by Kingman (1982a) for the neutral process. By killing the modified process,

the formal form of the joint probability generating function of the ancestral process and

the number of branching events is obtained. It is shown that the process of fixation of the

allele in the diffusion model corresponds to convergence of the ancestral process to its sta-

tionary measure. Especially, the density of time to fixation of a single mutant conditional

on fixation is given by the probability of the whole population being descended from a

single real ancestral particle, regardless of the allelic type. The results were presented in

Mano (2008).

Developing statistical methods to detect adaptive evolution with DNA sequence data

has been an important issue. The methods using within species polymorphism data can

be loosely classified into two categories: site frequency and haplotype frequency methods.

The site frequency methods require only frequencies of variants at polymorphic nucleotide

sites. Linkage phase of these variants is not used. The methods are based on the com-

pletely linked infinite site model and utilize the simple summary statistics of site frequency

spectrum (e.g., Tajima (1989a); Fu and Li (1993); Fay and Wu (2000)). The haplotype

frequency methods require additional information on the linkage phase among variant

sites. A haplotype is scored as an allele and conditional haplotype frequency spectrum are

used for detection. One sub-category of the method is based on the infinite allele model

and utilize allele frequency spectrum conditional on the number of different haplotypes

(Ewens, 1973b; Watterson, 1978; Slatkin, 1994b). The other sub-category of the meth-

ods is based on the infinite sites model and utilize allele frequency spectrum conditional

on the number of segregating sites (Depaulis and Veuille, 1998; Innan et al., 2005). Re-

cently, the author and coworkers assessed the power and robustness of these haplotype

and site frequency methods to detect positive selection by extensive simulations (Zeng et

al., 2007). In their study, intra-haplotype recombination were incorporated. They found
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that although the haplotype frequency methods conditional on the number of haplotypes

were constructed based on the infinite allele model without recombination, these tests are

insensitive to intra-haplotype recombination. It means that the number of haplotypes

has information of both of mutation and recombination. In addition, they found that

the Watterson’s homozygosity test (Watterson, 1978) is usually the most powerful test

during the sweep phase, especially when the local recombination rate is high. However,

since the Watterson’s homozygosity test is based on a summary statistic, it gives few in-

sights how the selection operates. In contrast, likelihood based tests which utilize the site

frequency spectrum at unlinked segregating sites (e.g., Kim and Stephan (2002); Nielsen

et al. (2006)) can provide maximum likelihood estimates of the position of the target of

selection and the selection intensity. In Chapter 5, a new likelihood based test to detect a

recent sweep which utilizes haplotype frequency data is presented. The likelihood for the

model at the end of the selective sweep, a sampling formula, was presented by the author

(Mano, 2006).



CHAPTER 2

Linkage Disequilibrium

2.1. Introduction

With respect to random genetic drift for the one-locus problem, the state of steady

decay was first obtained correctly by Wright (1931). However, in this study it was assumed

that the state of steady decay had already been attained. By calculating moments of the

distribution, Kimura (1955a) obtained the complete expression of the transient probability

density for the unfixed class, which shows how the process leads to the state of steady

decay. It was found that after 2N generations the distribution becomes almost flat, where

N is the effective population size.

Since each mutant ultimately becomes either fixed or lost, the stationary state will be

attained only if evolutionary pressures, such as mutation, operate. For two-locus problems,

the stationary state has been discussed in terms of the diffusion process (Ohta and Kimura,

1969b; Griffiths, 1981; Ethier and Nagylaki, 1989; Ethier and Griffiths, 1990) and the

genealogical process (Hudson, 1983a; Golding, 1984; Hudson, 1985). In contrast, situations

without evolutionary pressures, how the process eventually leads to the state of steady

decay has not been studied, with the exception of several functions which vanish at the

absorbing boundaries (Hill and Robertson, 1968; Ohta and Kimura, 1969a; Litter, 1973).

Despite the fact that two-locus problems are uniquely characterized by gamete frequencies,

the transient behavior of them has not been examined.

In this chapter, an analytic expression of conditional expectation of the transient

gamete frequency, given that one of the two loci remains segregating, in terms of the

diffusion process is presented. The expression was obtained by the author (Mano, 2005).

This expression shows how the process leads to the state of steady decay. Using this

expression, a model where linkage disequilibrium is introduced by a single mutation is

discussed.

The sizes of natural populations change often. These changes play important roles in

population genetics. We are often interested in what population of constant size would

have the same decrease in heterozygosity. This size is referred to as the effective size of

6
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the population. Wright (1938) pointed out that the effective size is approximately the

harmonic mean of the individual effective sizes over the time period involved. This means

that a single period of small population size, called a bottleneck, can result in a significant

decrease in heterozygosity (Nei et al., 1975).

Recently, to infer change of population sizes from polymorphism data, effects of change

of population sizes on various statistics, such as nucleotide site differences in pairwise com-

parisons of DNA sequences (Li, 1977; Tajima, 1989b; Slatkin and Hudson, 1991; Rogers

and Harpending, 1992), and microsatellite repeat variability (Kimmel et al., 1998; Reich

and Goldstein, 1998; Thomson et al., 2000) were studied. By simulations, Slatkin (1994a)

showed that in a rapidly growing population there is little chance of detecting linkage

disequilibrium between completely linked loci. However, in his simulations all of the poly-

morphisms were assumed to have arisen by mutations after the population was founded.

He did not consider the evolution of linkage disequilibrium which already existed in the

founder population. It was conjectured that, if a population is founded by a small size in

which there is already linkage disequilibrium between a particular pair of loci, then very

closely linked loci will remain in significant linkage disequilibrium for a long time. In addi-

tion, the fate of linkage disequilibrium which already exists in the founder population has

practical importance for designing association mapping methods for complex traits genes

(Lander and Botstein, 1986; Laan and Pääbo, 1997). Several studies based on simulations

were conducted so far (Terwilliger et al., 1998; Kruglyak, 1999). Nevertheless, no definite

conclusions have been obtained, since there is no analytical framework for considering the

effects of change of population sizes on linkage disequilibrium.

In this chapter, evolution of linkage disequilibrium which already exists in the founders

of exponentially growing populations is studied, which was presented by the author (Mano,

2007). The properties of the squared standard linkage deviation, which is defined by the

ratio of the moments, are considered, analytically, numerically and by simulations. By us-

ing the diffusion approximation of the Wright-Fisher model, Ohta and Kimura (1969a,b)

studied evolution of the squared standard linkage deviation in constant size populations.

Here, the squared standard linkage deviation in exponentially growing populations is stud-

ied by using a time-inhomogeneous diffusion model, which is an approximation of the

time-inhomogeneous Wright-Fisher model, where the population size grows exponentially

in a deterministic way.
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2.2. A two-locus diffusion model

Consider a random mating population with an effective population size of N . We will

measure time t in units of 2N generations. Let A1 and A2 be a pair of alleles with initial

frequencies are p and 1 − p, respectively, and the allele frequencies at time t are x and

1 − x, respectively. A diffusion time scaling is to let 2N → ∞. The Wright-Fisher model

converges to a diffusion process. Kimura (1955a) obtained an analytic expression of the

transient probability density for the unfixed class. Let φ(p, x; t) be the probability density.

The probability that the locus remains segregating was also given;

P[x ∈ (0, 1)] =

∫ 1

0
φ(p, x; t)dx = 1 − lim

n→∞
E[xn] − lim

n→∞
E[(1 − x)n]

=

∞
∑

m=0

{P2m(1 − 2p) − P2m+2(1 − 2p)} e−
(2m+1)(2m+2)

2
t,(2.1)

where Pm(z) represents the Legendre polynomial. In general, since we cannot observe

polymorphisms that have been lost, we have interest in the conditional expectation of the

frequencies given that the locus remains segregating. By using the expression of the tran-

sient fixation probability given by Kimura (1955a), we have the conditional expectation

of the allele frequency for the unfixed class

(2.2) E[x|x ∈ (0, 1)] =
E[x, x ∈ (0, 1)]

P[x ∈ (0, 1)]
,

where

E[x, x ∈ (0, 1)] =

∫ 1

0
xφ(p, x; t)dx = E[x] − f(1; t)

=
∞
∑

m=1

(−1)m

2
{Pm+1(1 − 2p) − Pm−1(1 − 2p)} e−

m(m+1)
2

t,

where f(1; t) represents the transient fixation probability of the allele A1. The asymptotic

value of the conditional expectation of the allele frequency is

(2.3) E[x|x ∈ (0, 1)] →
1

2
, t → ∞,

which agrees with the fact that the conditional distribution becomes to uniform asymp-

totically.

Let us assume two loci A and B in which pair of alleles A1, A2 and B1, B2 are segregat-

ing, and let the initial frequencies of gametes A1B1, A1B2, A2B1, and A2B2 be respectively

g1, g2, g3, and 1 − (g1 + g2 + g3), and let the frequencies of them at time t be respectively

x1, x2, x3, and 1− (x1 +x2 +x3). Let the initial frequencies of alleles B1 and B2 be respec-

tively q and 1 − q, and the frequencies of them at time t be respectively y and 1 − y. Let
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D = g1(1− g1 − g2 − g3)− g2g3 be the initial value of the linkage disequilibrium coefficient

and z = x1(1 − x1 − x2 − x3) − x2x3 be the value of the linkage disequilibrium coefficient

at time t. We have

(2.4) x1 = xy + z, x2 = x(1 − y) − z, x3 = (1 − x)y − z.

Let r be the recombination rate between the loci. We will not discuss where r = 0, since

the problem reduces to the multi-allelic one-locus problem which has previously been

discussed by Kimura (1955b). For the deterministic model without random genetic drift,

we have x = p, y = q, and z = De−2Nrt.

A diffusion time scaling is to measure time in units of 2N generations and let 2N → ∞,

while ρ = 4Nr is held constant. The Wright-Fisher model converges to a diffusion process.

The probability density for the gamete frequencies φ(g1, g2, g3;x1, x2, x3; t) satisfies the

following Kolmogorov backward equation (Ohta and Kimura, 1969a),

∂φ

∂t
=

3
∑

i,j=1

gi(δij − gj)

2

∂2φ

∂gi∂gj
−

ρD

2

(

∂φ

∂g1
−

∂φ

∂g2
−

∂φ

∂g3

)

,(2.5)

where δij represents the Kronecker’s delta. The forward equation of the process was firstly

obtained by Hill and Robertson (1966). Although the probability density is unknown, Ohta

and Kimura (1969a) obtained expectations of functions

x(1 − x)y(1 − y), (1 − 2x)(1 − 2y)z, z2,(2.6)

which were discussed by Hill and Robertson (1968). The process is defined in a simplex

(2.7) K : 0 ≤ x1 ≤ x1 + x2 ≤ x1 + x2 + x3 ≤ 1.

When we define a map Φ by Φ(x1, x2, x3) = (x, y, z) and letting H = Φ(K), Φ is a C∞-

diffeomorphism of K onto H. The upper part of ∂H is depicted in Figure 2.1. On the

peripheral edges, which is the periphery of the square 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, either of the

two loci is not segregating. At the points (1, 1, 0), (1, 0, 0), (0, 1, 0), and (0, 0, 0), either of

the gametes A1B1, A1B2, A2B1, and A2B2 fixes respectively. The generator of the diffusion

process {x(t), y(t), z(t); t ≥ 0}, which is defined by (x(t), y(t), z(t)) = Φ(x1(t), x2(t), x3(t))

in H, is (Ohta and Kimura, 1969a)

L =
x(1 − x)

2

∂2

∂x2
+

y(1 − y)

2

∂2

∂y2
+ z

∂2

∂x∂y
+ z(1 − 2x)

∂2

∂x∂z
+ z(1 − 2y)

∂2

∂y∂z

−z
(

1 +
ρ

2

) ∂

∂z
+

1

2

{

xy(1 − x)(1 − y) + z(1 − 2x)(1 − 2y) − z2
} ∂2

∂z2
.(2.8)
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Figure 2.1. The upper surface of the boundary of the region in which the

diffusion process {x(t), y(t), z(t); t ≥ 0} is defined.

The expectation of the linkage disequilibrium coefficient is (Hill and Robertson, 1968)

(2.9) E[z] = De−(1+ ρ

2
)t,

and the squared standard linkage deviation asymptotically tends to (Ohta and Kimura,

1969a)

(2.10) σ2
d :=

E[z2]

E[x(1 − x)y(1 − y)]
→

1

ρ
+ O(ρ−2), t → ∞,

when ρ is large.

Let us discuss expectation of the gamete frequencies. In the same manner as for the

functions (2.6) and the linkage disequilibrium measures, we obtain the expectation of the

gamete frequency

(2.11) E[x1] = g1 +
ρD

2 + ρ

{

e−(1+ ρ

2
)t − 1

}

.

However, in contrast to the functions (2.6) and the linkage disequilibrium measures, the

gamete frequencies do not vanish at the peripheral edges. The expectation takes over not

only the inside of the region, but also the boundaries ∂H. Thus, the expectation of the

gamete frequency can be rewritten formally as

(2.12) E[X1] =

∫ ∫ ∫

H−∂H
x1φdxdydz +

∫ 1

0
x1φx=1dy +

∫ 1

0
x1φy=1dx + f(1, 0, 0; t),
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where φx=1 and φy=1 represent the probability density for the open intervals x = 1, 0 <

y < 1, z = 0 and 0 < x < 1, y = 1, z = 0, respectively. f(1, 0, 0; t) represents the transient

fixation probability of the gamete A1B1 at time t. Here, it is implicitly assumed that

there are no probability at ∂H other than the peripheral edges, in which either of the four

possible gametes are lost. We have no rigorous justification for the assumption, however,

in biological point of view, the assumption seems to be natural; Because of recombination

there are no possibility that a population stays at ∂H other than the peripheral edges.

2.3. Conditional expectation of gamete frequency

Suppose linkage disequilibrium is introduced by a single mutation, as considered by Nei

and Li (1980) regarding the association between electromorphs and inversion chromosomes

in Drosophila. We assume the locus A is not segregating and the wild type allele A2, and

the locus B, in which a pair of alleles B1 and B2 (electromorphs) are segregating with the

allele frequencies q and 1−q, respectively. Then, the mutation introduces the mutant allele

(inversion chromosome) A1 to the locus A of one of the allele B1 bearing chromosomes.

In this setting, the polymorphism at the locus A is critical since the allele A1 is prone to

be lost by random genetic drift. The locus B may be regarded as a marker polymorphism

to detect the mutant.

Motivated by the example introduced above, we will consider the conditional expec-

tation given that the locus A remains segregating. It might seem that this condition is

similar to that described by Kaplan and Weir (1992). They discussed conditional expec-

tation of a linkage disequilibrium measure, which was defined by Nei and Li (1980), given

that polymorphism is observed at the locus B. They assumed that the allele frequency of

A1 is constant, and the locus B follows the infinite allele model. Moreover, they considered

the stationary state. Thus, their model differs from that described here considerably, and

the condition that the locus A remains segregating is critical for our discussion. Note that

this condition nearly equates to a condition that both of the two loci remain segregating,

since the probability that a fixation occurs at the locus A earlier than the locus B is given

by (Karlin and McGregor, 1968) q(1 − q)/{q(1 − q) + p(1 − p)}, which is almost unity

unless q is very small.
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By expression (2.12), we have

E[x1, x ∈ (0, 1)] =

∫ ∫ ∫

D
x1φdxdydz +

∫ 1

0
x1φy=1dx

= E[x1] − f(1, 0, 0; t) −

∫ 1

0
x1φx=1dy

= E[x1] − lim
n→∞

E[xnx1] = E[x1] − lim
n→∞

E[xny].(2.13)

The expressions for the other gamete frequencies can be obtained in the same manner. To

calculate the limit of the expectation limn→∞ E[xny], we will consider some moments. Let

(2.14) µl,m,n = E[xlymzn], l,m, n = 0, 1, ...

Making use of the Itô formula with the generator (2.5) (See, Appendix), we have a differ-

ential equation for the moments

dµl,m,n

dt
= −

l(l − 1) + m(m − 1) + n(n − 1) + n{4(l + m) + 2 + ρ}

2
µl,m,n

+
l(l − 1 + 2n)

2
µl−1,m,n +

m(m − 1 + 2n)

2
µl,m−1,n + lmµl−1,m−1,n+1

+
n(n − 1)

2
{µl,m,n−1 + µl+1,m+1,n−2 − 2(µl+1,m,n−1 + µl,m+1,n−1)

−µl+1,m+2,n−2 − µl+2,m+1,n−2 + 4µl+1,m+1,n−1 + µl+2,m+2,n−2} .(2.15)

It is worthwhile to note that E[xlymxn
1 ] satisfies a recurrence relation which is the same as

the recurrence relation for the two-locus sampling distribution (Golding, 1984; Ethier and

Griffiths, 1990), which has a genealogical interpretation in terms of the two-locus ancestral

recombination graph (Griffiths, 1991). Namely, for ξl,m,n = E[xlymxn
1 ] = E[paqbgc

1],

dξl,m,n

dt
= −

(l + m + n)(l + m + n − 1) + nρ

2
ξl,m,n +

nρ

2
ξl+1,m+1,n−1

+
l(l − 1 + 2n)

2
ξl−1,m,n +

m(m − 1 + 2n)

2
ξl,m−1,n + lmξl−1,m−1,n+1

+
n(n − 1)

2
ξl,m,n−1,(2.16)

where {a(t), b(t), c(t); t ≥ 0} is a Markov process of the number of edges ancestral to a

sample with a(0) = l, b(0) = m, c(0) = n. a(t) is in the number of edges which are ancestral

to the sample in the locus A only, b(t) is the number of edges which are ancestral to the

sample in the locus B only, and c(t) is the number of edges which are ancestral to the

sample in both of the loci.

The moments µn,0,1 satisfy a system of differential equations

(2.17)
dµn−1,0,1

dt
= −

{

n(n + 1) + ρ

2

}

µn−1,0,1 +
n(n − 1)

2
µn−2,0,1, n = 2, 3, ...
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with the initial condition µn−1,0,1(0) = pn−1D,n = 1, 2, .... It is straightforward to show

that the solution has a form

(2.18) µn−1,0,1(t) =
n
∑

m=1

C
(m)
n−1(p)De−

m(m+1)+ρ

2
t, n = 1, 2, ...

with

C
(m)
n−1(p) =

n(n − 1)

(n + m + 1)(n − m)
C

(m)
n−2(p) = · · ·

=
n!(n − 1)!(2m + 1)!

(n + m + 1)!(n − m)!m!(m − 1)!
C

(m)
m−1(p).(2.19)

The explicit form of C
(m)
m−1(p) is given by the following lemma.

Lemma 2.3.1.

(2.20) C
(m)
m−1(p) =

m!(m − 1)!

(2m)!
2(−1)m+1T 1

m−1(1 − 2p), m = 1, 2, ...,

where T 1
m(z) represents the Gegenbauer polynomial, which is also represented as C

3
2
m(z).

Proof. The initial condition is

(2.21) pn−1 =

n
∑

m=1

n!(n − 1)!(2m + 1)!

(n + m + 1)!(n − m)!m!(m − 1)!
C

(m)
m−1(p), n = 1, 2, ...

Since the Gegenbauer polynomial T 1
m(z) is an orthogonal polynomial on the interval [−1, 1],

pn should be represented in terms of the Gegenbauer polynomials whose degrees are up

to n − 1, it is possible to set that

(2.22) C
(m)
m−1(p) = CmT 1

m−1(r), r = 1 − 2p.

By multiplying (1− r2)T 1
m−1(r) on both sides of (2.21) and using the orthogonal property

∫ 1

−1
(1 − z2)T 1

k−1(z)T 1
l−1(z)dz = δkl

2l(l + 1)

2l + 1
, k, l = 1, 2, ...(2.23)

we have

Cm =
(−1)m+1(n + m + 1)!(n − m)!{(m − 1)!}2

2n+1n!(n − 1)!(2m − 1)!m(m + 1)

∫ 1

−1
(1 − r)(1 + r)nT 1

m−1(r)dr

=
{(m − 1)!}2

(2m − 1)!
(−1)m+1,(2.24)

where an integral transform by the Gegenbauer polynomial for n = 0, 1, ...;m = 1, 2, ...

(Erdélyi, 1954)

(2.25)

∫ 1

−1
(1 − z)(1 + z)nT 1

m−1(z)dz =
2n+1{(n − 1)!}2nm(m + 1)

(n + m + 1)!(n − m)!

is employed. �
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The moments µn,1,0 satisfy a system of differential equations

(2.26)
dµn,1,0

dt
= −

n(n − 1)

2
(µn,1,0 − µn−1,1,0) + nµn−1,0,1, n = 1, 2, ...

and the differential equation has the solution of the form for n = 1, 2, ...

(2.27) µn,1,0(t) = pq +
D

1 + ρ
2

+

n−1
∑

m=1

E(m)
n (p, q,D)e−

m(m+1)
2

t +

n
∑

m=1

F (m)
n (p)De−

ρ+m(m+1)
2

t,

where

(2.28) E(m)
n (p, q,D) =

n!(n − 1)!(2m + 1)!

(n + m)!(n − m − 1)!(m + 1)!m!
E

(m)
m+1(p, q,D)

and

(2.29) {(n + m)(n − m − 1) − ρ}F (m)
n (p) = n(n − 1)F

(m)
n−1(p) + 2nC

(m)
n−1(p),

with the initial condition

(2.30) pnq = pq +
D

1 + ρ
2

+
n−1
∑

m=1

E(m)
n (p, q,D) +

n
∑

m=1

F (m)
n (p)D, n = 1, 2, ...

The recurrence relation (2.29) can be expressed by using a matrix Af = c, where fk =

F
(m)
k , ck = 2kC

(m)
k−1, k = m,m + 1, ..., n. The determinant of the matrix A is

(2.31) detA =
n
∏

k=m

{k(k − 1) − m(m + 1) − ρ} ,

which has zeros at ρ = 2 + 2l, l = 1, 2, 3, .... These zeros are due to degeneracy of the

eigenvalues. Since we are not interested in the specific points of ρ, we will discuss the case

that the inverse matrix exists in the following, although the calculation with these zeros

is straightforward. By applying the inverse matrix, we obtain

F (m)
n (p) =

n−m+1
∑

k=1

2n!(n − 1)!

{(n − k)!}2

Γ
(

n − k + 1
2 + ρm

)

Γ
(

n − k + 1
2 − ρm

)

Γ
(

n + 1
2 + ρm)Γ(n + 1

2 − ρm

) C
(m)
n−k(p)

=

{

n−m+1
∑

k=1

n!(n − 1)!(k + m − 1)

(k − 1)!(k + 2m)!

Γ
(

k + m − 3
2 + ρm

)

Γ
(

k + m − 3
2 − ρm

)

Γ
(

n + 1
2 + ρm)Γ(n + 1

2 − ρm

)

}

×4(2m + 1)(−1)m+1T 1
m−1(1 − 2p),(2.32)

where ρm =
√

m(m + 1) + ρ + 1/4.
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Lemma 2.3.2. For n = 1, 2, ...;m = 1, 2, ..., n,

n−m+1
∑

k=1

n!(n − 1)!(k + m − 1)

(k − 1)!(k + 2m)!

Γ
(

k + m − 3
2 + ρm

)

Γ
(

k + m − 3
2 − ρm

)

Γ
(

n + 1
2 + ρm)Γ(n + 1

2 − ρm

)

=
n!(n − 1)!

(n + m − 1)!(n − m)!

−1

2(2m + 1)

{

1

2m + ρ
+

1

2(m + 1) − ρ

(n − m)(n − m − 1)

(n + m)(n + m + 1)

}

.

(2.33)

Proof. It is straightforward to check the identity for m = n. For m = 1, 2, ..., n − 1,

the finite series can be expressed as

n−m+1
∑

k=1

n!(n − 1)!(k + m − 1)

(k − 1)!(k + 2m)!

Γ
(

k + m − 3
2 + ρm

)

Γ
(

k + m − 3
2 − ρm

)

Γ
(

n + 1
2 + ρm)Γ(n + 1

2 − ρm

)

=
n!(n − 1)!

Γ
(

n + 1
2 + ρm

)

Γ
(

n + 1
2 − ρm

)

×

[

mΓ
(

m − 1
2 + ρm

)

Γ
(

m − 1
2 − ρm

)

(2m + 1)!
yn−m

(

m −
1

2
+ ρm,m −

1

2
− ρm, 2m + 2, 1

)

+
Γ
(

m + 1
2 + ρm

)

Γ
(

m + 1
2 − ρm

)

(2m + 2)!
yn−m−1

(

m +
1

2
+ ρm,m +

1

2
− ρm, 2m + 3, 1

)

]

,(2.34)

where yn(a, b, c, z) is the truncated hypergeometric series (Erdélyi, 1953). The truncated

hypergeometric series can be expressed as

(2.35) yi(a, b, c, 1) =
Γ(a + i + 1)Γ(b + i + 1)

i!Γ(a + b + i + 1)
3F2





a, b, c + i; 1

c, a + b + i + 1



 ,

where

(2.36) 3F2





a, b, c; z

d, e





is the generalized hypergeometric series (Erdélyi, 1953). Thus, we have an identity for the

truncated hypergeometric series:

yi(a, b, a + b + j, 1) =
Γ(a + i + 1)Γ(b + i + 1)

i!Γ(a + b + i + 1)
3F2





a, b, a + b + i + j; 1

a + b + j, a + b + i + 1





=
Γ(a + i + 1)Γ(b + i + 1)

i!Γ(a + b + i + 1)
3F2





a, b, a + b + i + j; 1

a + b + i + 1, a + b + j





=
Γ(a + i + 1)Γ(b + i + 1)

i!Γ(a + b + i + 1)

(j − 1)!Γ(a + b + j)

Γ(a + j)Γ(b + j)

×yj−1(a, b, a + b + i + 1, 1).(2.37)
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By using the identity, we obtain

n−m+1
∑

k=1

n!(n − 1)!(k + m − 1)

(k − 1)!(k + 2m)!

Γ
(

k + m − 3
2 + ρm

)

Γ
(

k + m − 3
2 − ρm

)

Γ
(

n + 1
2 + ρm)Γ(n + 1

2 − ρm

)

=
n!(n − 1)!Γ

(

m − 1
2 + ρm

)

Γ
(

m − 1
2 − ρm

)

(n + m − 1)!(n − m)!Γ
(

m + 5
2 + ρm

)

Γ
(

m + 5
2 − ρm

)

×

{

2my2

(

m −
1

2
+ ρm,m −

1

2
− ρm, n + m, 1

)

+
(n − m)

(

m − 1
2 + ρm

) (

m − 1
2 − ρm

)

n + m
y1

(

m +
1

2
+ ρm,m +

1

2
− ρm, n + m + 1, 1

)

}

=
n!(n − 1)!

(n + m − 1)!(n − m)!

−1

2(2m + 1)

{

1

2m + ρ
+

1

2(m + 1) − ρ

(n − m)(n − m − 1)

(n + m)(n + m + 1)

}

.

(2.38)

�

By using Lemma 2.3.2, we have

F (m)
n (p) =

n!(n − 1)!

(n + m − 1)!(n − m)!

{

1

2m + ρ
+

1

2(m + 1) − ρ

(n − m)(n − m − 1)

(n + m)(n + m + 1)

}

×2(−1)mT 1
m−1(1 − 2p).(2.39)

By using (2.39) and the orthogonal property of the Gegenbauer polynomial, we have for

m = 2, 3, ...

E(m)
n (p, q,D) = (−1)m

n!(n − 1)!

(n + m)!(n − m − 1)!

×

[

2(2m + 1)

m(m + 1)
p(1 − p)qT 1

m−1(1 − 2p) + 2

{

T 1
m(1 − 2p)

2(m + 1) + ρ
+

T 1
m−2(1 − 2p)

2m − ρ

}

D

]

,(2.40)

and

(2.41) E(1)
n (p, q,D) = −3

n − 1

n + 1

{

p(1 − p)q +
2(1 − 2p)

4 + ρ
D

}

.

It is worthwhile to note that

(2.42) µn,1,0(t) → µn,0,0(t) × q, ρ → ∞.

The property agrees with the limit theorem given by Ethier (1979), where the three-

dimensional diffusion process discussed here converges to the process which is the direct

product of the one-dimensional processes for each locus.

By taking the limit n → ∞, we have an expression for µ∞,1,0(t) = limn→∞ E[xny] with

(2.43) F (m)
∞ (p) =

4(2m + 1)(−1)m

(2m + ρ) {2(m + 1) − ρ}
T 1

m−1(1 − 2p)
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and

(2.44) E(m)
∞ (p, q,D) =

(2m + 1)!

m!(m + 1)!
E

(m)
m+1(p, q,D),

and we arrive at an expression for (2.13):

E[x1, x ∈ (0, 1)] =
ρD

2 + ρ
e−(1+ ρ

2)t + 3

{

p(1 − p)q +
2(1 − 2p)

4 + ρ
D

}

e−t

−

∞
∑

m=2

2(−1)m
[

2m + 1

m(m + 1)
pq(1 − p)T 1

m−1(1 − 2p)

+

{

T 1
m(1 − 2p)

2(m + 1) + ρ
+

T 1
m−2(1 − 2p)

2m − ρ

}

D

]

e−
m(m+1)

2
t

−

∞
∑

m=1

4(2m + 1)(−1)m

(2m + ρ) [2(m + 1) − ρ]
DT 1

m−1(1 − 2p)e−
ρ+m(m+1)

2
t.(2.45)

As N → ∞, we observe E[x1, x ∈ (0, 1)] → pq + De−ct, which shows the deterministic

behavior of the gamete frequency x1 without random genetic drift, as expected. We have

the asymptotic form

(2.46) E[x1, x ∈ (0, 1)] → 3

{

p(1 − p)q +
2(1 − 2p)

4 + ρ
D

}

e−t, t → ∞.

The conditional expectation of the gamete frequency x1 given that the locus A remains

segregating is

(2.47) E[x1|x ∈ (0, 1)] =
E[x1, x ∈ (0, 1)]

P[x ∈ (0, 1)]
,

where the denominator is given by (2.1). The asymptotic form is

(2.48) E[x1|x ∈ (0, 1)] →
q

2
+

(1 − 2p)D

p(1 − p)(4 + ρ)
, t → ∞.

In contrast to the deterministic model without random genetic drift, the value is higher

than pq, to which the deterministic model tends. The conditional covariance between the

frequencies of the alleles A1 and B1 is

(2.49) Cov[x, y|x ∈ (0, 1)] →
(1 − 2p)(1 − q)

(1 − p)(4 + ρ)
, t → ∞.

In contrast to the deterministic model without random genetic drift, the finite value re-

mains asymptotically. Moreover, the asymptotic value vanishes at ρ → ∞, as is expected

by the limit theorem by Ethier (1979).

The process of the change in the conditional expectation of the gamete frequency x1

when the linkage disequilibrium is introduced into a population as p = 1/2N = 0.05 and

q = 0.2 is illustrated in Figure 2.2. It can be seen that after 4N generations (t = 2.0) the

conditional expectation of the gamete frequency x1 almost reaches the asymptotic value
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Figure 2.2. The conditional expectation of the gamete frequency x1 given

that the locus A remains segregating. p = 0.05 and q = 0.2.

for large ρ, although 4N generations is still not enough to reach the asymptotic value for

small ρ. It can also be seen that the conditional expectation of the gamete frequency x1

does not show monotonic behavior for small ρ. It increases rapidly and then decreases to

the asymptotic value. For comparison, the counter part in the deterministic model is also

illustrated in Figure 2.3.

2.4. Linkage disequilibrium in exponentially growing populations

The process generated by the generator (2.8) can be represented by a system of sto-

chastic differential equations (Maruyama and Takahata, 1981; Maruyama, 1982). Let

B = (B1, B2, B3)
′ be a vector of independent Brownian motions. Here and subsequently

a′ denotes the transpose of matrix a. The system of stochastic differential equations is

(2.50) dx = σdB + vdt,

where

(2.51) x = (x, y, z)′, v =
(

0, 0,−z
(

1 +
ρ

2

))′
.

σ is the square root of the covariance matrix of x, whose explicit expression is given in

Appendix. By using the Itô formula, we obtain a system of differential equations

(2.52)
dµ

dt
= Aµ,
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Figure 2.3. The gamete frequency x1 in the deterministic model without

random genetic drift. p = 0.05 and q = 0.2.

where

(2.53) µ(t) =
(

E[xy(1 − x)(1 − y)], E[z(1 − 2x)(1 − 2y)], E[z2]
)′

,

and

(2.54) A =











−2 1 0

0 −
(

5 + ρ
2

)

4

1 1 − (3 + ρ)











.

The initial condition is

(2.55) µ(0) =
(

pq(1 − p)(1 − q),D(1 − 2p)(1 − 2q),D2
)′

.

The derivation is given in Appendix. The solution of the differential equation (2.52) is

µ(t) = etAµ(0),(2.56)

which reproduces the solution which was obtained by Ohta and Kimura (1969a). The

elements of the matrix etA are given in Mano (2007). They involves three eigenvalues of

the matrix A. Denote them as λi, i = 1, 2, 3 with 0 > λ1 > λ2 > λ3. These eigenvalues

satisfy a cubic equation

(2.57) λ3 +

(

10 +
3

2
ρ

)

λ2 +

(

ρ2

2
+

19

2
ρ + 27

)

λ + ρ2 + 13ρ + 18 = 0,
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and

λ1 = −
ρ

2
−

10

3
+

1

3

√

76 + 6ρ + 3ρ2 cos
ϕ

3
,

λ2 = −
ρ

2
−

10

3
+

1

3

√

76 + 6ρ + 3ρ2 cos
ϕ + 4π

3
,

λ3 = −
ρ

2
−

10

3
+

1

3

√

76 + 6ρ + 3ρ2 cos
ϕ + 2π

3
,

where ϕ (0 < ϕ < π) satisfies

(2.58) cos ϕ = −
224 + 126ρ − 45ρ2

(76 + 6ρ + 3ρ2)
3
2

.

They are

(2.59)

λ1 = −2 +
8

ρ2
+ O(ρ−3), λ2 = −

ρ

2
− 5 +

8

ρ
+ O(ρ−2), λ3 = −ρ − 3 −

8

ρ
+ O(ρ−2).

Note that λi here are twice of those in Ohta and Kimura (1969a). Figure 1 in Ohta and

Kimura (1969a) plots the halves of these eigenvalues as functions of ρ.

Next, consider a random mating diploid population with an initial effective size of N

and where the effective size changes from generation to generation in a deterministic way.

The Wright-Fisher model is time-inhomogeneous, since the effective size depends on time.

Assume that, as for the diffusion model, the effective size is sufficiently large in the time

period such that the gamete frequencies can be regarded as continuous variables. Also,

assume that the effective size grows continuously such that it can be represented as a

continuous function of time s (measured in units of one generation). To this end, define

the relative function λ(s) by

(2.60) λN (s) =
N

N(⌈s⌉)
=

N

N(j)
, j − 1 < s ≤ j, j = 1, 2, ...,

and N(0) = N,λN (0) = 1. We are interested in the behavior of the process limN→∞ λN (s) =

λ(s). To avoid confusions, we will show time dependence of N(s).

(2.61) τ =

∫ s

0

du

2N(u)
=

Λ(s) − Λ(0)

2N
,

where Λ(s) is a primitive function of λ(s). Note that τ is a time measured in units of

harmonic mean of twice of the population sizes between 0 and s. This model is the

time-inhomogeneous diffusion process {x(τ), y(τ), z(τ) : τ∞ ≥ τ ≥ 0}, where

(2.62) τ∞ =

∫ ∞

0

du

2N(u)
,

in the same three dimensional domain as the diffusion model for constant size popula-

tions. The time-inhomogeneous diffusion process is represented by a system of stochastic
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differential equations by replacing N with N(s) in the system of stochastic differential

equations (2.50), and we have

(2.63) dx = σdB + v(τ)dτ,

where

(2.64) v(τ) = (0, 0,−z(1 + ρ(τ)/2)′

and ρ(τ) = 4N(s)r. For a population exponentially growing at a rate eb (b > 0) times per

generation, we have λ(s) = e−bs, and

(2.65) τ =
1 − e−βt

β
, τ∞ =

1

β
,

where β = 2Nb. A diffusion time scaling is to let 2N → ∞, while β and ρ are hold

constant. By applying the Itô formula, we obtain a system of differential equations:

(2.66)
dµ

dτ
= Aµ −

ρ

2

βτ

1 − βτ
Cµ, C =











0 0 0

0 1 0

0 0 2











.

This differential equation can be solved numerically, although it is difficult to solve explic-

itly. The Maclaurin expansion of the second term of the right hand side of (2.66) around

βτ = 0, which converges βτ < 1, gives

dµ

dτ
= Aµ −

ρ

2

∞
∑

n=1

(βτ)nCµ.(2.67)

When the growth rate is not large such that the solution can be well expressed by a

perturbative series in β with few terms, we have

µ(τ) =
∞
∑

n=0

βnµ(n)(τ),(2.68)

where µ(0)(τ) is given by (2.56), and

µ(n)(τ) = −
ρ0

2

n−1
∑

i=0

∫ τ

0
ζn−ie(τ−ζ)ACµ(i)(ζ)dζ =

2n
∑

i=0

3
∑

j=1

µ
(n)
j,i τ ieλjτ ,(2.69)

for n ≥ 1. The perturbative series is parametric in τ (Hinch, 1991). A system of recur-

rence relations for µ
(n)
j,i are given in Mano (2007). The exact convergence radius of the

perturbative series is not known. Convergence of a perturbative series is not necessary,

since we will always use a truncated series of finite terms; What we have to know is how a

truncated series approximates the exact solution for each fixed parameter (Hinch, 1991).

The error of the truncated perturbative series was examined by using the exact solutions
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obtained by numerical integration of (2.66) and the perturbative series truncated at the

10th order term. The error |µ10(τ)/µ(τ) − 1|, where µ10(τ) is the truncated series, was

less than 0.01 when β < 0.85/τ and β < 20. When the growth rate is very large the

perturbative analysis above is useless. However, rapid size growth never continue for a

long period in natural populations. The rapid size growth can be modeled by a stepwise

growth (Slatkin, 1994a). It is straightforward to obtain the solution by connecting two

solutions to the periods before and after the size growth.

Let us consider the asymptotic behavior of the squared standard linkage deviation for

exponentially growing populations after a large number of generations. For a constant

size population with an effective size of N , we have (2.10). Assume the growth rate is not

large. Let us consider the asymptotic behavior of the squared standard linkage deviation

for large t (< ∞). In fact, t = ∞ cannot be considered here, because the infinite series in

(2.67) does not converge. Note that

(2.70) τ = −
1

β

∞
∑

i=1

(−βt)i

i!
= t − 2βt2 + O(β2).

Suppose τ is sufficiently large such that the asymptotic rates of decrease of the three

moments (2.53) are given by λ1 (< 0), which is the largest eigenvalue of the matrix A.

Here, λ1 − λ2 and λ1 − λ3 are O(ρ). (2.68) is approximated as

(2.71) µ(τ) ≈

∞
∑

n=0

2n
∑

i=0

βnµ
(n)
1,i τ ieλ1τ , t → ∞,

and up to the first order perturbation, we have

(2.72) µ(τ) ≈
{

µ
(0)
1,0 +

(

µ
(1)
1,0 + µ

(1)
1,1τ + µ

(1)
1,2τ

2
)

β
}

eλ1τ , t → ∞,

where explicit expressions for µ
(0)
1,0 and µ

(1)
1,i are given in Mano (2007). The standard

linkage deviation tends to be

σ2
d(τ) ≈

µ
(0)
3,1,0

µ
(0)
1,1,0

+

{(

µ
(1)
3,1,0

µ
(0)
1,1,0

−
µ

(0)
3,1,0µ

(1)
1,1,0

µ
(0) 2
1,1,0

)

+

(

µ
(1)
3,1,1

µ
(0)
1,1,0

−
µ

(0)
3,1,0µ

(1)
1,1,1

µ
(0) 2
1,1,0

)

τ

+

(

µ
(1)
3,1,2

µ
(0)
1,1,0

−
µ

(0)
3,1,0µ

(1)
1,1,2

µ
(0) 2
1,1,0

)

τ2

}

β, t → ∞.(2.73)

For large ρ, we obtain the asymptotic formula

σ2
d(τ) ≈

1

ρ
−

τ

ρ
β + O

(

ρ−2
)

=
1

ρ(s)
+ O

(

ρ−2
)

, t → ∞.(2.74)
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The asymptotic value is determined by the current (at s-th generation) effective size of

the population and the recombination rate. It is dependent neither the initial condition

for the moments, the initial effective size, nor the growth rate.

2.5. Stationary state with mutations

For constant size populations, the asymptotic formula for the squared standard link-

age deviation (2.10) is universal; it holds for various types of models with mutations and

natural selections (Kimura and Ohta, 1971). It holds irrespective of whether a state is

in steady decay without mutations or in equilibrium with mutation. Let us investigate

whether the universality holds in exponentially growing populations. The recurrent mu-

tation model is assumed, whereby mutations occur between two types of alleles (Ohta and

Kimura, 1969b). For simplicity, let the mutation rate per generation per locus between

the alleles A1 and A2 and that between the alleles B1 and B2 be u,which is usually smaller

than c. As noted above, for a constant size population with an effective size of N , it was

shown that the asymptotic formula (2.10) holds in the mutation-drift equilibrium (Ohta

and Kimura, 1969b).

For the model, the system of stochastic differential equation is

(2.75) dx = σdB + vm(τ)dτ,

where

(2.76) vm(τ) = ((1 − 2x)θ(τ)/2, (1 − 2y)θ(τ)/2,−z(1 + 2θ(τ) + ρ(τ)/2))′

and θ(τ) = 4N(τ)u. A diffusion time scaling is to measure time in units of 2N generations

and let 2N → ∞, while θ = 4Nu, β and ρ are hold constant. By applying the Itô formula,

we obtain a system of differential equations

(2.77)
dµ

dτ
= (A − 4θE)µ −

βτ

1 − βτ

(ρ

2
C + 4θE

)

µ +

(

θ(τ)

2
µ4(τ), 0, 0

)′

,

where µ4(τ) = E[x(1 − x) + y(1 − y)], E is the identity matrix. The moment µ4 satisfies

the differential equation

(2.78)
dµ4

dτ
= θ(τ) − {1 + 2θ(τ)}µ4

and it is straightforward to solve it and

µ4(τ) = [p(1 − p) + q(1 − q)](1 − βτ)2θ/βe−τ

+
θ(1− βτ)2θ/β

β1+2θ/β

{

Ψ

(

1 +
2θ

β
, 1 +

2θ

β
;
1

β
− τ

)

− e−τΨ

(

1 +
2θ

β
, 1 +

2θ

β
;
1

β

)}

,(2.79)
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where Ψ(a, b; z) represents a confluent hypergeometric function (Erdélyi, 1953). The sys-

tem of differential equations (2.77) can be solved numerically, although it is difficult to

solve explicitly. Assume the growth rate is not large such that the solution can be well

expressed by a perturbative series in β with few terms. Up to the first order perturbation,

we have

µ4(τ) ≈
θ

1 + 2θ
+

{

p(1 − p) + q(1 − q) −
θ

1 + 2θ

}

e−(1+2θ)τ

+

[{

θτ

(1 + 2θ)2
+

θ(e−(1+2θ)τ − 1)

(1 + 2θ)3

}

− 2θ2τ
2e−(1+2θ)τ

]

β,(2.80)

where

(2.81) θ1 =
θ2

2(1 + 2θ)
, θ2 =

θ

2
{p(1 − p) + q(1 − q)} − θ1.

By substituting the expression into the system of differential equations (2.77), we obtain

the zeroth order solution

µ(0)(τ) = eτ(A−4θE)µ(0) +

∫ τ

0
e(τ−ζ)(A−4θE)

(

θ

2
µ

(0)
4 (ζ), 0, 0

)′

dζ

=
3
∑

j=1

µ
(0)
j,0e(λj−4θ)τ −

3
∑

j=1

η
(0)
j

[

θ1

λj − 4θ
+

θ2

λj + 1 − 2θ

{

e−(1+2θ)τ − e(λj−4θ)τ
}

]

,(2.82)

where explicit expressions for µ
(0)
j,0 are given in Mano (2007), and (etA)i1 =

∑3
j=1(η

(0)
j )ie

λjt.

The asymptotic values

µ(0)(∞) = −

3
∑

j=1

η
(0)
j θ1

λj − 4θ
(2.83)

give the values where a constant size population with an effective size of N is in the

mutation-drift equilibrium. This is the same as Equations 17 of Ohta and Kimura (1969b),

where they computed

µ(0)(∞) = −(A − 4θ0E)−1 (θ1, 0, 0)
′(2.84)

in our notations. It can be shown that these two expressions (2.83) and (2.84) are equiv-

alent by noting that η
(0)
j are eigenvectors of λj . In the first order, we have

µ(1)(τ) = −

∫ τ

0
ζe(τ−ζ)(A−4θE)

(ρ

2
C + 4θE

)

µ(0)(ζ)dζ

+

∫ τ

0
e(τ−ζ)(A−4θ0E)

(

θ0

2
(µ

(1)
4 (ζ) + ζµ

(0)
4 (ζ)), 0, 0

)′

dζ

=
3
∑

j=1

[

η
(1)
j

{

τ

λj − 4θ
+

1

(λj − 4θ)2

}

+ η
(0)
j

{

θ3 − θ4τ

λj − 4θ
−

θ4

(λj − 4θ)2

}]

+ ξ(τ),(2.85)
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where

(2.86) θ3 =
θ1

(1 + 2θ)2
, θ4 = θ1 +

θ1

1 + 2θ
.

The explicit expressions for η(1) are given in Mano (2007). The vector of functions ξ(τ)

represents terms that decay exponentially in τ .

Contrasting with the model without mutations, the three moments (2.53) do not vanish

asymptotically after a large number of generations. The asymptotic values are given by

terms which do not decay exponentially in τ . Up to the first order perturbation, we have

(2.87)

µ(τ) ≈ µ(0)(∞) +

3
∑

j=1

[

η
(1)
j

{

τ

λj − 4θ
+

1

(λj − 4θ)2

}

+ η
(0)
j

{

θ3 − θ4τ

λj − 4θ
−

θ4

(λj − 4θ)2

}]

β.

The standard linkage deviation tends to be

σ2
d(τ) ≈

µ
(0)
3 (∞)

µ
(0)
1 (∞)

+

3
∑

j=1

[{

η
(1)
3,j

µ
(0)
1 (∞)

−
η

(1)
1,j µ

(0)
3 (∞)

µ
(0) 2
1 (∞)

}

{

τ

λj − 4θ
+

1

(λj − 4θ)2

}

+

{

η
(0)
3,j

µ
(0)
1 (∞)

−
η

(0)
1,j µ

(0)
3 (∞)

µ
(0) 2
1 (∞)

}

{

θ3 − θ4τ

λj − 4θ
−

θ4

(λj − 4θ)2

}

]

β, t → ∞.(2.88)

For large ρ, we obtain an asymptotic formula which is exactly the same as the formula

(2.74). Thus, the asymptotic formula holds regardless of the mutations.

2.6. Numerical examples and simulation results

Let us discuss the effects of population size growth on the squared standard link-

age deviations by numerical examples. The differential equations (2.66,2.77) were solved

numerically with the MATHEMATICA program (Wolfram Research, Inc. 2004). Two

models without mutations after populations were founded were assumed, whereby link-

age disequilibrium was introduced in the founder populations with an effective size of N .

One model is the admixture model (Chakraborty and Weiss, 1988), whereby linkage dise-

quilibrium is introduced by an admixture of the two equally sized populations where one

population has the gamete A1B1 only and the other population has the gamete A2B2 only.

This model specifies p = q = 1/2,D = 1/4. The other model is the single mutation model

(Nei and Li, 1980), whereby linkage disequilibrium is introduced by a single mutation, as

was discussed in Section 2.3. We assume that the locus A is not segregating and the wild

type allele A2, and the locus B, in which a pair of alleles B1 and B2 are evenly segregating.

Then, the mutation introduces the mutant allele A1 to the locus A of one of the allele

B1 bearing chromosomes. This model specifies p = 1/(2N), q = 1/2,D = 1/(4N). For
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the recurrent mutation model, the mutation-drift equilibrium was assumed for the founder

populations with an effective size of N . The initial conditions for the three moments (2.53)

were set to their equilibrium values (2.83) with u = 10−5.

Accuracy of the asymptotic formula σ2
d ≈ 1/ρ(s) for the squared standard linkage

deviation is shown in Figure 2.4. It was assumed that the populations with current effective

sizes of N(s) = 10, 000 were founded s = 40, 000 generations ago with effective sizes of

N = 500, 1, 000, and 5,000. Figure 2.4 (a) shows the results for the admixture model,

however, the results for the single mutation model were the same up to the 10−5 order.

It can be seen that the asymptotic formula is highly accurate. Figure 2.4 (b) displays

the results for the recurrent mutation model. It can be seen that the asymptotic formula

is not accurate when ρ is small. The reason for the poor fitting is that the asymptotic

formula is not applicable for small ρ. It is due to the mutation rate v being comparable

to the recombination rate r, exemplifying the fact that mutations become the dominant

factor for the decay of linkage disequilibrium between very closely linked loci.

The squared standard linkage deviation in populations with a current effective size

of N(s) = 10, 000 and founded s = 4, 000 generations ago with effective sizes of N =

500, 1, 000, and 5,000 are shown in Figure 2.5. Figure 2.5 (a), (b), and (c) show the results

for the single mutation model, admixture model, and the recurrent mutation model, respec-

tively. In contrast to Figure 2.4, it can be seen that the asymptotic formula σ2
d ≈ 1/ρ(s)

does not give accurate values. Note that the perturbation is valid, since the perturbative

series truncated at the 10th order term had small error. Compared with Figure 2.4, the

poor fitting shows that the time period of the growth s = 4, 000 is too short to apply the

asymptotic formula.

The squared correlation coefficient of gamete frequencies (Hill and Robertson, 1968)

(2.89) r2 :=
z2

x(1 − x)y(1 − y)
,

has been used as a practical summary statistic for linkage disequilibrium. Unfortunately,

analytical treatment of the statistics is not available. It has been discussed whether or not

the squared standard linkage deviation approximates the expectation of the squared cor-

relation coefficient. Maruyama (1982) used numerical integration of the stochastic differ-

ential equation to estimate expectation of the squared correlation coefficient. He assumed

the infinite allele mutation model. He showed that the squared standard linkage deviation

can differ substantially from the squared correlation coefficient. By simulations, Hudson

(1985) showed that the squared standard linkage deviation gives a good approximation of
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Figure 2.4. The squared standard linkage deviations in exponentially

growing populations. N(s) = 10, 000 and s = 40, 000. (a) the admix-

ture model; (b) the recurrent mutation model. The line shows values given

by the asymptotic formula.

the expectation of the squared correlation coefficient, conditional on the minor allele fre-

quencies being larger than 0.05. It is worthwhile examining whether the squared standard

linkage deviation gives a good approximation of the expectation of the squared correla-

tion coefficient in an exponentially growing population. Also, it is not trivial that the
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Figure 2.5. The squared standard linkage deviations in exponentially

growing populations. N(s) = 10, 000 and s = 4, 000. (a) the admixture

model; (b) the single mutation model; (c) the recurrent mutation model.

The lines show values given by the asymptotic formula.

time-inhomogeneous diffusion process introduced here gives a good approximation of the

time-inhomogeneous Wright-Fisher model. Thus, simulations of the time-inhomogeneous

Wright-Fisher model were conducted for an exponentially growing population with the

exponentially size growth. The single mutation model, the admixture model, and the

recurrent mutation model described in Section 2.6 were assumed. The expectations of the

squared correlation coefficient and the moments (2.53) were estimated by the arithmetic

mean of the values in the simulated populations in which both of the loci were segregating.



2.6. NUMERICAL EXAMPLES AND SIMULATION RESULTS 29

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  10  20  30  40

(a)

r2
sigmad

2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  10  20  30  40

(b)

r2
sigmad

2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  10  20  30  40

(c)

r2
sigmad

2

r2(cond.)

ρ

ρ

ρ

Figure 2.6. Simulation estimates for the squared standard linkage de-

viations (×) and the expectation of the squared correlation coefficients

(+) in exponentially growing populations. N(s) = 10, 000, s = 4, 000 and

N = 500. The lines show the squared standard linkage deviations given by

the time-inhomogeneous diffusion model. (a) the admixture model; (b) the

single mutation model; (c) the recurrent mutation model. For the recurrent

mutation model, simulation estimate for the squared correlation coefficient,

conditional on the minor allele frequencies being larger than 0.05 (�) is

also shown.

The expectation of the squared correlation coefficient and the squared standard linkage

deviation obtained by the simulations are shown in Figure 2.6. It was assumed that the
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populations with a current effective size of N(s) = 10, 000 were founded s = 4, 000 gen-

erations ago with an effective size of N = 500. The results for the single mutation model

and the admixture model are shown in Figure 2.6 (a), and (b), respectively. For the single

mutation model and the admixture model, 100,000 and 1,000 populations were gener-

ated, respectively. The squared standard linkage deviation obtained by the simulations

was close to that obtained by the solution to the system of differential equations (2.66),

which means that the time-inhomogeneous diffusion model gives a good approximation

of the time-inhomogeneous Wright-Fisher model. Also, it can be seen that the squared

standard linkage deviation gives accurate approximation of the expectation of the squared

correlation coefficient. The results for the recurrent mutation model are shown in Figure

2.6 (c). To generate founder populations in mutation-drift equilibrium with effective sizes

of N = 500, 40, 000 generations were simulated. For the model, 10,000 populations were

generated. It can be seen that the squared standard linkage deviation obtained by the

simulations is close to that obtained by the solution to the system of differential equa-

tions (2.77). The squared standard linkage deviation was substantially smaller than the

expectation of the squared correlation coefficient. However, the squared standard linkage

deviation gave a fairly accurate approximation of the squared correlation coefficient, con-

ditional on the minor allele frequencies being larger than 0.05, as was observed by Hudson

(1985) for constant size populations.

2.7. Summary

The analytic expression of conditional expectation of transient gamete frequency given

that one of the two loci remains segregating was obtained in terms of the diffusion process

by calculating the moments of the distribution. This expression is independent of models

which introduce linkage disequilibrium into a population. We considered the model that

linkage disequilibrium is introduced by a single mutation and association between the

mutant allele A1 and the allele B1, which filled the other locus of the chromosome on

which the mutation occurred. Because the allele A1 is prone to be lost by random genetic

drift, the conditional expectation of the frequency of the gamete A1B1 given that the

locus A remains segregating would describe our observation. The behavior is significantly

different from the monotonic decrease in the deterministic model without random genetic

drift. After 4N generations, the conditional expectation of the gamete frequency almost

reaches the asymptotic value for large ρ, although 4N generations is still not enough

for small ρ. The conditional covariance between the frequency of the alleles A1 and
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B1 does not vanish asymptotically and it depends on the recombination rate between

the loci. Note that the conditional expectation of the linkage disequilibrium coefficient

monotonically decreases in a similar manner to that in the deterministic model (see 2.9).

This observation demonstrates the obvious fact that the linkage disequilibrium measure is

not enough to characterize the two-locus problem uniquely.

Then, evolution of linkage disequilibrium of the founders in exponentially growing

populations was studied using a time-inhomogeneous diffusion model. By simulations, it

was shown that the model is a good approximation of a time-inhomogeneous Wright-Fisher

model, where the population size grows exponentially in a deterministic way. It is easy to

extend this model to other types of demographic models. It was demonstrated that the

squared linkage deviation can be obtained by solving a system of differential equations

numerically. In addition, a perturbative solution was obtained when the growth rate is

not large. By using the first order perturbation, an asymptotic formula for the squared

standard linkage deviation after a large number of generations was obtained, although such

long term growth, say, the number of generations same as the current effective size, may

hardly occurred in natural populations. According to the formula, the squared standard

linkage deviation tends to be 1/ρ(s). It is independent from either the initial effective

size, the growth rate, or the mutation rate. It was shown that the squared standard

linkage deviation gives a good approximation of the expectation of the squared correlation

coefficient for models without mutation after populations are founded. For a model with

mutation after populations are founded, the squared standard linkage deviation gave a

good approximation of the expectation of the squared correlation coefficient, conditional

on the minor allele frequencies being larger than 0.05. It is clear that the conjecture by

Slatkin (1994a) does not hold. When a rapidly growing population is founded by small

size in which there is already linkage disequilibrium between a particular pair of loci, the

linkage disequilibrium decays faster than a constant size population whose effective size is

the harmonic mean of the individual effective sizes over the time period of the growth.

Rogers and Harpending (1992) obtained an approximate distribution of the number

of nucleotide site differences in pairwise comparisons of DNA sequences in growing pop-

ulations. They showed that the size growth can be inferred by fitting the distribution

to sample data. A differential equation for the expectation of the average number of

nucleotide sites differences in pairwise comparisons of DNA sequences, or the nucleotide
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diversity, in a size changing population is known (Li, 1977; Tajima, 1989b). In exponen-

tially growing populations,

(2.90) E[π] = π(0)e−τ +
θ

β

{

Ψ

(

1, 1;
1

β
− τ

)

− e−τΨ

(

1, 1;
1

β

)}

.

Since Ψ(1, 1;x) ≈ − log x as x → 0, after a large number of generations we have E[π] ≈

θt = 2us irrespective of the population size. This expectation is consistent with star

shape genealogies which are expected to be observed in growing populations, where all

coalescence events occur at around the most common recent ancestor (Slatkin and Hud-

son, 1991). If we ignore mutations after the populations were founded, the second term in

(2.90) can be dropped. Since τ is the harmonic mean of the individual effective sizes over

the time period of the growth, the decay of the nucleotide diversity is similar to that in a

constant size population whose effective size is the harmonic mean of the individual effec-

tive sizes over the time period of the growth. In contrast, the asymptotic formula 1/ρ(s)

means that linkage disequilibrium in exponentially growing populations is asymptotically

the same as that in a constant size population, the effective size of which is the current

effective size. When we use the formula for constant size populations, the estimates of

effective population size via linkage disequilibrium and those via the nucleotide diversity

will give different estimates. Nevertheless, several authors have implicitly assumed that

these two estimates can be equated (Pritchard and Przeworski, 2001; Przeworski and Wall,

2001). The expected squared standard linkage deviation in the current entire human pop-

ulation for the estimates N = 3, 200,N(s) = 550, 000, s = 4, 800 obtained by Rogers and

Harpending (1992) is shown in Figure 2.7, where the solution to the system of differential

equations (2.66,2.77) was used. Also, the expected squared standard linkage deviation in

a population, the effective size of which is the harmonic mean of the individual effective

sizes over the time period of the growth, or 16,523, is shown, where the solution (2.56) was

used. It can be seen that that the expectation of the squared standard linkage deviation

for the current entire human population is significantly smaller than that in a constant

size population whose effective size is the harmonic mean of the individual effective sizes

over the time period of the growth. The squared standard linkage deviation given by the

asymptotic formula (2.74) is also shown in Figure 2.7. It can be seen that the time period

of the growth is too short to use the asymptotic formula.
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Figure 2.7. The expected squared standard linkage deviations in the cur-

rent whole human population. The size growth model is based on the

estimates given by Rogers and Harpending (1992). Those in a constant

size population the effective size of which is the harmonic mean of the indi-

vidual effective sizes over the time period of the growth is also shown (×).

(a) the admixture model; (b) the single mutation model; (c) the recurrent

mutation model. The lines show values given by the asymptotic formula.

2.8. Appendix. Derivation of equations for the moments

The covariance matrix of x is

(2.91) σT σ =











x(1 − x) z z(1 − 2x)

z y(1 − y) z(1 − 2y)

z(1 − 2x) z(1 − 2y) xy(1 − x)(1 − y) + z(1 − 2x)(1 − 2y) − z2











.
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By applying the Cholesky decomposition to the matrix, we have a matrix σ, which is a

lower triangular form ((σ)ij = 0, i < j, i, j = 1, 2, 3):

(σ)11 =
√

x(1 − x), (σ)21 = z/
√

x(1 − x), (σ)31 = z(1 − 2x)/
√

x(1 − x),

(σ)22 =
√

y(1 − y) − z2/{x(1 − x)},

(σ)32 =
[

z(1 − 2y) − z2(1 − 2x)/{x(1 − x)}
]

/σ22,

(σ)33 =
√

xy(1 − x)(1 − y) + z(1 − 2x)(1 − 2x) − z2 − (σ)231 − (σ)232.

Applying the Itô formula to a function x(1 − x)y(1 − y) (6Oksendal, 2000), we have

d{x(1 − x)y(1 − y)} = (1 − 2x)y(1 − y)dx + (1 − 2y)x(1 − x)dy − y(1 − y)dx2

−x(1 − x)dy2 + (1 − 2x)(1 − 2y)dxdy

= (1 − 2x)y(1 − y)σ11dB1 + x(1 − x)(1 − 2y)(σ21 + σ22)dB2

−2x(1 − x)y(1 − y)dτ + z(1 − 2x)(1 − 2y)dt.(2.92)

The Itô integral is

x(1 − x)y(1 − y) =

∫ t

0
(1 − 2x)y(1 − y)σ11dB1 +

∫ t

0
x(1 − x)(1 − 2y)(σ21 + σ22)dB2

−2

∫ t

0
x(1 − x)y(1 − y)dζ +

∫ t

0
z(1 − 2x)(1 − 2y)dζ,

(2.93)

and we have

(2.94) E[x(1 − x)y(1 − y)] = −2

∫ t

0
E[x(1 − x)y(1 − y)]dζ +

∫ t

0
E[z(1 − 2x)(1 − 2y)]dζ.

Then,

(2.95)
dE[X(1 − X)Y (1 − Y )]

dt
= −2E[x(1 − x)y(1 − y)] + E[z(1 − 2x)(1 − 2y)].

Applying the Itô formula to functions Z(1− 2X)(1− 2Y ) and Z2 in the same manner, we

obtain a system of differential equations (2.52). The method presented here is equivalent

to the method to derive equation for the moments which was presented by Ohta and

Kimura (1969b).



CHAPTER 3

Concerted Evolution of Duplicated Genes

3.1. Introduction

The evolutionary rate of a gene is defined as the rate of nucleotide substitutions in

a certain time period, say, per year or per generation (Zuckerkandl and Pauling, 1965;

Jukes and Canter, 1969). The rate is given by the product of the mutation rate and the

fixation probability. Under neutrality, it is well known that, in a random mating diploid

population with an effective size of N , the neutral evolutionary rate is identical to the

mutation rate. When genic selection operates in the locus, the fixation probability of a

mutant is

(3.1) u(p) =
1 − e−4Nsp

1 − e−4Ns
,

where p is the initial frequency of the mutant and the selective advantage of a mutant allele

over a wildtype allele is s (Kimura, 1957). Fixations of mutations also occur in genes that

belong to a multigene family. It is possible that a mutation spreads over all member genes

of a multigene family when they undergo concerted evolution, a phenomenon that the

members evolve in a concerted manner by exchanging their DNA sequences (Ohta, 1980;

Dover, 1982). A typical observation of concerted evolution is that the nucleotide sequence

diversity between the copy members in the family is very low because of frequent exchanges

of genetic material, while there is substantial divergence from the orthologous family in

other species. This means that genetic variation among the family can migrate between

different copy members, and a certain allele eventually becomes fixed in the species. The

accumulation of such fixations results in the divergence between species.

In this chapter, the rate of nucleotide substitutions in duplicated genes or a small

multigene family, that are currently undergoing concerted evolution by gene conversion is

studied. Gene conversion between copy members should be the major mechanism to cause

concerted evolution of small multigene families (Ohta, 1983a), while both gene conversion

and unequal crossing over should be working simultaneously in middle- and large-size

families (Hillis et al., 1991). The fixation of a mutant which appears in one of the member

in a multigene family is that all locus of all individuals of the population are occupied by

35
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the mutant allele at all loci. Theoretical aspects of genetic variation within a multigene

family have been extensively studied by Innan (2002, 2003a) and Teshima and Innan

(2004). A directional selection model, in which selection works on the copy number of the

mutant in a diploid, is assumed. An analytic expression of the fixation probability in terms

of a two-locus diffusion model, which was firstly obtained by Mano and Innan (2008), is

presented. When no dominance exists between the copy number of the mutant in a diploid,

the formula for the fixation probability can be extended to the n-locus model (Mano and

Innan, 2008). With the formula of the fixation probabilities, effects of selection on the

rate of molecular evolution in a multigene family under concerted evolution are discussed.

It is known that GC-rich regions include many genes in mammalian genomes (Durret

et al., 1995). This suggests that the distribution of GC content could have some functional

relevance, raising the issue of its origin and evolution. A possible evolutionary force that

might explain the pattern is biased gene conversion. Since biased mismatch DNA repair

toward GC has been observed experimentally (Brown and Jiricny, 1987), gene conver-

sion could favor particular alleles over others, or GC over AT base pairs. If biased gene

conversion were major determinant of GC content evolution, one would expect sequences

undergoing frequent gene conversion to become GC-rich. In fact, among genes undergoing

concerted evolution in mammals, ribosomal operons, transfer RNAs, and histones are all

GC-rich, consistent with the prediction (Galtier, et al. 2001).

In this chapter, a model of biased gene conversion, in which gene conversion favor

an allelic type over the other type, is studied. An analytic expression of the fixation

probability in terms of an n-locus diffusion model is presented. With the formula of the

fixation probability, effects of biased gene conversion on the rate of molecular evolution in

a multigene family under concerted evolution are discussed.

3.2. A two-locus diffusion model with selection and gene conversion

Let us assume two loci in which pair of alleles A, a are segregating, and let the initial

frequencies of gametes AA,Aa, aA, aa be respectively g1, g2, g3 and 1− (g1 + g2 + g3), and

let the frequencies at time t be respectively x1, x2, x3 and 1− x1 − x2 − x3. Let the initial

frequencies of allele A at the first and the second locus be respectively p and q, and the

frequency of them at time t be respectively x and y. Let D = g1(1−g1−g2−g3)−g2g3 be

the initial value of the linkage disequilibrium coefficient and z = x1(1−x1−x2−x3)−x2x3

be the value of the linkage disequilibrium coefficient at time t. Assume zygotes consist of

random union of two gametes. Let relative fitness of zygotes which have i copies of allele A
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to be 1+si, i = 0, 1, 2, 3, 4, where s0 = 0. Let the recombination fraction between two loci

be r (> 0) and the conversion rate between the two loci be c (> 0). A diffusion time scaling

is to measure time in units of 4N generations and let 4N → ∞, while σi = 4Nsi, ρ = 4Nr

and γ = 4Nc are held constant. The Wright-Fisher model converges to a diffusion process

{x(t), y(t), z(t); t ≥ 0} in H (see Chapter 1), which is governed by a generator

L = x(1 − x)
∂2

∂x2
+ y(1 − y)

∂2

∂y2
+ {xy(1 − x)(1 − y) + z(1 − 2x)(1 − 2y) − z2}

∂2

∂z2

+2z
∂2

∂x∂y
+ 2z(1 − 2x)

∂2

∂x∂z
+ 2z(1 − 2y)

∂2

∂y∂z
+ {−γ(x − y) + σx}

∂

∂x

+{γ(x − y) + σy}
∂

∂y
+ {γx(1 − x) + γy(1 − y) − (2 + 2γ + ρ)z + σz}

∂

∂z
,(3.2)

where

σx = σ1x4{x2 − 2(x1 + x2)(x2 + x3)}

+σ2[x1x4{1 − 2(x1 + x2)} + {x2 − (x1 + x2)(x2 + x3)}(x2 + x3)]

+σ3x1{2x2 + x3 − 2(x1 + x2)(x2 + x3)} + σ4x
2
1(1 − x1 − x2),

σy = σ1x4{x3 − 2(x3 + x1)(x2 + x3)}

+σ2[x1x4{1 − 2(x3 + x1)} + {x3 − (x3 + x1)(x2 + x3)}(x2 + x3)}

+σ3x1{x2 + 2x3 − 2(x3 + x1)(x2 + x3)} + σ4x
2
1(1 − x3 − x1),

σz = σ1x4{−3x1x2 − 2x2x3 − 3x3x1 + 4(x1 + x2)(x2 + x3)(x3 + x1)}

+σ2[x1x4{1 − 4x1 − x2 − x3 + 4(x1 + x2)(x1 + x3)}

+2(x2 + x3)(−x1x2 − x2x3 − x3x1 + (x1 + x2)(x2 + x3)(x3 + x1)}

+σ3x1{−(x2 + x3 + 5x1)(x2 + x3) − 2x2x3 − 4(x1 + x2)(x2 + x3)(x3 + x1)}

+σ4x
2
1{1 − 3x1 − x2 − x3 − 2(x1 + x2)(x1 + x3)}.

The generator is an extension of that obtained by Innan (2002). Let us count degree of

terms by sum of degree in x, y and twice of z. For example, degree of xyz is counted

by 1 + 1 + 2 = 4. Then, in general, σx and σy involve terms up to fifth degree. For

computational simplicity, we put the condition that σx and σy involves up to third degree

terms: σ3 = −3σ1 + 3σ2 and σ4 = −8σ1 + 6σ2. Then, we can reparametrize the selection

coefficients by two parameters σ and h:

(3.3) σ1 =

(

3h −
1

2

)

σ, σ2 = 4hσ, σ3 =

(

3h +
3

2

)

σ, σ4 = 4σ.
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Especially, h = 1/2 corresponds to the additive effect model. The coefficients are simplified

and

σx = σ

[

(1 − 2h){x(1 − x)(x + 2y) + yz} +

(

3h −
1

2

)

x(1 − x) +

(

h +
1

2

)

z

]

,

σy = σ

[

(1 − 2h){y(1 − y)(y + 2x) + yz} +

(

3h −
1

2

)

y(1 − y) +

(

h +
1

2

)

z

]

,

σz = σ[(2h − 1){z2 − xy(1 − x)(1 − y) + 2(x + y)(x + y − 3)z}

−4(1 − h)(x + y)z + 4hz].(3.4)

3.3. Fixation probability with selection

Both of the two loci destined to be fixed by either of the allele A or a. Denote the

fixation probability of the allele A be u(p, q,D). u(p, q,D) satisfies the following partial

differential equation

Lu(p, q,D) = 0.(3.5)

To address the boundary condition, it is convenient to consider the diffusion process

{x1(t), x2(t), x3(t); t ≥ 0} in K. The fixation probability u(g1, g2, g3) satisfies the elliptic

partial differential equation

3
∑

i,j=1

gi(δi,j − gj)
∂2u

∂g2
i

+

3
∑

i=1

vi(g1, g2, g3)
∂u

∂gi
= 0.(3.6)

The generator degenerates over ∂K. It is obvious that (x1, x2, x3) = (1, 0, 0), (0, 0, 0) are

the exit boundaries, and we may put the Dirichlet type conditions u(1, 0, 0) = 1, u(0, 0, 0) =

0. However, appropriate conditions for other portion of the boundary

(3.7) S = ∂K − {(1, 0, 0), (0, 0, 0)}

is not clear. In contrast to the classification of boundary conditions for one dimensional

processes (Feller, 1952), boundary conditions for higher dimensional processes is not thor-

oughly studied. It is known that we do not always have to impose conditions at all portion

of a boundary. But the existing general theory is not applicable here, since it depends on

C2-differentiability of the boundary (Oleinik and Radkevic, 1973), while ∂K is not differ-

entiable at the edges. So, we employ biological intuition to put the condition on S. Since

there should be finite probability of fixation when a population evolves from an arbitrary

point in S, we may put a condition

(3.8) u(g1, g2, g3)|s ∈ (0, 1).
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For example, consider a point (ǫ, c2, c3) ∈ K near to the surface

(3.9) S1 : x1 = 0, 0 < x2 < x2 + x3 < 1

in S with small ǫ (> 0). We may expand u as a Laurent series in ǫ

(3.10) u(ǫ, c2, c3) =

∞
∑

i=−∞

fi(c2, c3)ǫ
i,

where fi(c2, c3) is a function of c2 and c3. To keep u(ǫ, c2, c3) be finite with ǫ → 0, we

have to set fi = 0, i < 0. Subsequently, we have

(3.11) u(g1, g2, g3)|S1 = lim
ǫ→0

u(ǫ, c2, c3) = f0(c2, c3) ∈ (0, 1).

This kind of argument on boundary condition has been used in population genetics liter-

ature to discuss fixation time of an allele (for example, Kimura and Ohta (1969); Kimura

and King (1979)).

The additive effect model (h = 1/2) has special interest. For the case, it is straight-

forward to confirm that

(3.12) u(p, q,D) =
1 − e−2σp̄

1 − e−2σ
, p̄ =

p + q

2

is the solution. Actuary, it satisfies (3.5), u(1, 1, 0) = 1, u(0, 0, 0) = 0. Also, it is straight-

forward to check that it satisfies (3.8) for each portion of S. For example,

(3.13) u(x1, x2, x3)|S1 =
1 − e−σ(x2+x3)

1 − e−2σ
∈ (0, 1).

The two-locus fixation probability (3.12) is identical to the single-locus fixation probability

(3.1) with replacing σ by 2σ and p by p̄. The two-locus model discussed here is substantially

complicated than the single-locus model, nevertheless, the fixation probabilities of them

are almost identical. The two-locus fixation probability is independent of D, ρ and γ.

Walsh (1985) has obtained an analytical expression for the fixation probability with the

assumption that gene conversion rate is low and under linkage equilibrium among loci

(Equation 8 in Walsh (1985)). The expression (3.12) reduces to Walsh’s result in the

limit. In addition, (3.12) is consistent with the result of Nagylaki and Petes (1982), who

obtained the fixation probability with the assumption of infinite population size and under

neutrality.

Furthermore, Mano and Innan (2008) showed that (3.12) can be extended to models

where more than two loci are involved. By simulations, they demonstrated that

(3.14) u(p, q,D) =
1 − e−nσp̄

1 − e−nσ
,
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where p̄ is the arithmetic mean of the initial allele frequencies of A in each locus, holds

for n = 3, 4, 5, 6 loci. It is worth pointing out that the expression (3.14) also appear

in a problem with population structure and migration. Maruyama (1972) obtained the

identical expression as the fixation probability of a mutant under genic selection, where

the mutant spreads over the whole population which consists of n subpopulations whose

effective sizes are N . The remarkable property is that the expression does not depend on

properties of migration pattern, as long as the population sizes of each subpopulation are

maintained. It is straightforward to show that n-unlinked locus version of the generator

(3.2) is identical to the generator of the process of a n-island model with the migration

rates between any of subpopulations are γ. Thus, Maruyama’s solution should be the

same as that for our n-locus model, at least when ρ = ∞.

It seems difficult to obtain the exact solution of (3.5) in general case with h 6= 1/2.

But it is possible to obtain a perturbative expansion of it. Denote the moments

(3.15) µl,m,n(t) = E[xlymzn], l,m, n = 0, 1, ...

Because (x, y, z) = (1, 1, 0), (0, 0, 0) are the exit boundaries, we should have

(3.16)

lim
t→∞

µl,m,0(t) = lim
t→∞

E[xlym] = P[x(∞) = y(∞) = 1] = u(p, q,D), l + m = 1, 2, ...

Thus, we can obtain u(p, q,D) as a limit of a moment µ1,0,0(t). Assume σ is not so large

such that the solution can be well expressed by a perturbative series in σ with few terms

µl,m,n(t) = µ
(0)
l,m,n(t) + σµ

(1)
l,m,n(t) + σ2µ

(2)
l,m,n(t) + · · ·(3.17)

The initial condition is µ
(0)
l,m,n(0) = plqmDn and µ

(i)
l,m,n(0) = 0, i = 1, 2, ... The diffusion

process governed by the generator (3.2) is represented by a system of stochastic differential

equations (See Chapter 1)

(3.18) dx = σdB + vdt,

where

(3.19) v = (−γ(p − q) + σx, γ(p − q) + σy, γ{x(1 − x) + y(1− y)} − z(2 + 2γ + ρ) + σz)
′.

By using the Itô formula, we obtain differential equations for the moments (see Chapter

1). For example, applying the Itô formula to a function x, we have

dµ1,0,0

dt
= −γ(µ1,0,0 − µ0,1,0) + σ

{(

3h −
1

2

)

µ1,0,0 +

(

h +
1

2

)

µ0,0,1 +

(

3

2
− 5h

)

µ2,0,0

+(1 − 2h)(2µ1,1,0 − µ3,0,0 + µ0,1,1 − 2µ2,1,0)} .(3.20)



3.3. FIXATION PROBABILITY WITH SELECTION 41

Substituting (3.17) into the equation (3.20), we have ordinary differential equations for

each order of the perturbation. For the zeroth order in σ, we have

(3.21)
dµ

(0)
1,0,0

dt
= −γ(µ

(0)
1,0,0 − µ

(0)
0,1,0),

and for the higer orders, we have

dµ
(i)
1,0,0

dt
= −γ(µ

(i)
1,0,0 − µ

(i)
0,1,0) +

{(

3h −
1

2

)

µ
(i−1)
1,0,0 +

(

h +
1

2

)

µ
(i−1)
0,0,1 +

(

3

2
− 5h

)

µ
(i−1)
2,0,0

+(1 − 2h)(2µ
(i−1)
1,1,0 − µ

(i−1)
3,0,0 + µ

(i−1)
0,1,1 − 2µ

(i−1)
2,1,0 )

}

, i = 1, 2, ...(3.22)

Let us obtain µ
(0)
1,0,0 and µ

(1)
1,0,0. First, µ

(1)
1,0,0 and µ

(1)
0,1,0 satisfy

dµ
(1)
1,0,0

dt
= −γ(µ

(1)
1,0,0 − µ

(1)
0,1,0) +

(

3h −
1

2

)

µ
(0)
1,0,0 +

(

h +
1

2

)

µ
(0)
0,0,1 +

(

3

2
− 5h

)

µ
(0)
2,0,0

+(1 − 2h)(2µ
(0)
1,1,0 − µ

(0)
3,0,0 + µ

(0)
0,1,1 − 2µ

(0)
2,1,0)(3.23)

dµ
(1)
0,1,0

dt
= γ(µ

(1)
1,0,0 − µ

(1)
0,1,0) +

(

3h −
1

2

)

µ
(0)
0,1,0 +

(

h +
1

2

)

µ
(0)
0,0,1 +

(

3

2
− 5h

)

µ
(0)
0,2,0

+(1 − 2h)(2µ
(0)
1,1,0 − µ

(0)
0,3,0 + µ

(0)
1,0,1 − 2µ

(0)
1,2,0),(3.24)

respectively. The Laplace transform of (3.23,3.24) are

λν
(1)
1,0,0 = −γ(ν

(1)
1,0,0 − ν

(1)
0,1,0) +

(

3h −
1

2

)

ν
(0)
1,0,0 +

(

h +
1

2

)

ν
(0)
0,0,1 +

(

3

2
− 5h

)

ν
(0)
2,0,0

+(1 − 2h)(2ν
(0)
1,1,0 − ν

(0)
3,0,0 + ν

(0)
0,1,1 − 2ν

(0)
2,1,0),(3.25)

λν
(1)
0,1,0 = γ(ν

(1)
1,0,0 − ν

(1)
0,1,0) +

(

3h −
1

2

)

ν
(0)
0,1,0 +

(

h +
1

2

)

ν
(0)
0,0,1 +

(

3

2
− 5h

)

ν
(0)
0,2,0

+(1 − 2h)(2ν
(0)
1,1,0 − ν

(0)
0,3,0 + ν

(0)
1,0,1 − 2ν

(0)
1,2,0).(3.26)

The expression involves moments up to the third degree. The first degree moments are

closed, and we have

(3.27)





λ + γ −γ

−γ λ + γ









ν
(0)
1,0,0

ν
(0)
0,1,0



 =





p

q



 .

For the second degree moments are closed, we have

(3.28) (A2 + λE)

















ν
(0)
2,0,0

ν
(0)
0,2,0

ν
(0)
1,1,0

ν
(0)
0,0,1

















=

















2ν
(0)
1,0,0 + p2

2ν
(0)
0,1,0 + q2

pq

γ(ν
(0)
1,0,0 + ν

(0)
0,1,0) + D

















,
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where E is the unit matrix, and

A2 =

















2(1 + γ) 0 −2γ 0

0 2(1 + γ) −2γ 0

−γ −γ 2γ −2

γ γ 0 2 + 2γ + ρ

















.

For the third degree moments are closed, and we have

(3.29) (A3 + λE)





























ν
(0)
3,0,0

ν
(0)
0,3,0

ν
(0)
2,1,0

ν
(0)
1,2,0

ν
(0)
1,0,1

ν
(0)
0,1,1





























=





























6ν
(0)
2,0,0 + p3

6ν
(0)
0,2,0 + q3

2ν
(0)
1,1,0 + p2q

2ν
(0)
1,1,0 + pq2

2ν
(0)
0,0,1 + γ(ν2,0,0 + ν1,1,0) + pD

2ν
(0)
0,0,1 + γ(ν0,2,0 + ν1,1,0) + qD





























,

where

A3 =





























6 + 3γ 0 −3γ 0 0 0

0 6 + 3γ 0 −3γ 0 0

−γ 0 2 + 3γ −2γ −4 0

0 −γ −2γ 2 + 3γ 0 −ρ

γ 0 0 γ 6 + 3γ + ρ −γ

0 γ γ 0 −γ 6 + 3γ + ρ





























.

It is straightforward to solve (3.27), and we have

(3.30) ν
(0)
1,0,0 =

p̄

λ
+

p − q

2(λ + 2γ)
.

By substituting solution of (3.27, 3.28,3.29) into (3.25, 3.26), we have

(3.31) ν
(1)
1,0,0 =

p̄(1 − p̄) +
(

h − 1
2

)

u
(1)
d

λ
+

10
∑

i=1

ai

λ − λi
,

where

u
(1)
d = (1 − 2p̄)

[

p̄(1 − p̄)

{

2

3
+

4ργ

(1 + γ)(6 + 4γ + ρ)

}

−
(3 + 2γ)D

(1 + γ)(6 + 4γ + ρ)
−

pq − p̄

2(1 + γ)

]

,

and λi (< 0), i = 1, 2, ..., 10 are eigenvalues of A2 and A3, and the coefficients ai depend

on p, q,D, h, ρ, γ. Especially, eigenvalues of A2 are λ1 = −2(1 + γ) and the three roots of

a cubic equation

(3.32) ξ3 + (ρ − 2)ξ2 − 2(ρ + 2γ2)ξ + 4γ2(2 − ρ) = 0,
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where ξ = λ + 2(1 + γ). This is identical to the equation which was obtained by Ohta

(1983b), where x in her Eq. 4 is replaced by 4Nλ + 1 in our notation. Let λ2, λ3, λ4 be

the three roots and let λ2 be the largest. We have

(3.33) λ2 = −2γ −
4 + ρ

3
+ 2

√

ζ

3
cos

ϕ

3
, cos ϕ = −

η

2

(

3

ζ

)3/2

, 0 ≤ ϕ ≤ π,

where

ζ =
(ρ + 1)2

3
+ 1 + 4γ2, η =

2

27
(ρ − 2){(ρ + 1)(ρ + 4) − 36γ2}.

Ohta (1983b) discussed fixation time of a neutral mutant by computing decay rate of

genetic identity. In our analysis of fixation probability, fixation time of a neutral mutant

can be discussed by computing decay rate of the moments. Up to the second degree

moments, the largest eigenvalue max{−2γ, λ2} gives asymptotic decay rate after large

number of generations. Since max{−2γ, λ2} = λ2 (Because left hand side of the cubic

equation (3.32) is −4γ2ρ ≤ 0 at ξ = 2, we have λ2 + 2(1 + γ) ≥ 2), the decay rate is λ2,

which is in accordance with Ohta’s estimate.

Applying the inverse Laplace transformation to (3.30,3.31), we obtain

µ
(0)
1,0,0 = p̄ +

p − q

2
e−2γt,(3.34)

µ
(1)
1,0,0 = p̄(1 − p̄) +

(

h −
1

2

)

u
(1)
d + µ̃

(1)
0,1,0(t),(3.35)

where µ̃
(1)
0,1,0(t) represent terms decay as t → ∞. Thus, up to the first order in σ, we have

u(p, q,D) = p̄ + σ

{

p̄(1 − p̄) +

(

h −
1

2

)

u
(1)
d

}

+ O(σ2).(3.36)

For the case without dominance h = 1/2, it is straightforward to check that (3.36) is

consistent with the exact expression (3.12). The correspondence between the two-locus

fixation probability and the single-locus fixation probability does not hold in general. The

single-locus fixation probability is (Kimura, 1957)

u(p) =

∫ p

0
e−σz[1+(2h−1)(1−z)]dz

/
∫ 1

0
e−σz[1+(2h−1)(1−z)]dz

= p +
σ

2

{

p(1 − p) +
2

3

(

h −
1

2

)

p(1 − p)(1 − 2p)

}

+ O(σ2),(3.37)

where relative fitness of zygotes for AA,Aa and aa are 1+2s, 1+2hs and 1+s, respectively.

(3.36) and (3.37) are not identical when we replace σ by 2σ and p by p̄. Nevertheless, for

γ → ∞, up to the first order in σ, the two-locus fixation probability (3.36) and (3.37) are

identical with replacing σ by 2σ and p by p̄.
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3.4. An n-locus diffusion model with biased gene conversion

Assume gene conversion occurs among the n unlinked duplicated loci with rates per

locus par a single generation of 2αc for conversion from a gene A to a gene a gene and

with 2(1 − α)c for conversion of the reverse direction, where 1/2 ≤ α ≤ 1. Assume the

bias is not strong such that α = 1/2 + ǫ with small ǫ (> 0). Let the initial frequencies

of the allele A in the i-th locus be pi, i = 1, 2, ..., n, and let the frequencies at time t be

respectively xi, i = 1, 2, ..., n. Denote type of gametes by a binary number, which has 1 in

loci with the allele A and has 0 in loci with the allele a. Let frequency of a gamete whose

type is g be f(g), where gi = 1, 0 when the i-th locus of the gamete g is occupied by a

gene A and a, respectively. Since these loci are unlinked, we have

(3.38) f(g) =
∏

{i:gi=1}

xi

∏

{i:gi=0}

(1 − xi).

The increments of the allele frequencies in a single generation is, for i = 1, 2, ..., n,

δxi = 2αc

n−1
∑

j=1

jf(gi = 0, |g| = j) − 2(1 − α)c

n−1
∑

j=1

jf(gi = 1, |g| = n − j)

= c{
∑

j 6=i

xj − (n − 1)xi} + 2cǫ{(1 − 2xi)
∑

j 6=i

xj + (n − 1)xi}.(3.39)

A diffusion time scaling is to measure time in units of 4N generations and let 4N → ∞,

while γ = 4Nc is held constant. The Wright-Fisher model converges to a n-dimensional

diffusion process {xi(t), i = 1, 2, ..., n; t ≥ 0} in a n-dimensional hyper cube [0, 1]n with a

generator

(3.40) L = L0 + ǫL1,

where

L0 =

n
∑

i=1

xi(1 − xi)
∂2

∂x2
i

+ γ

n
∑

i=1

{
∑

j 6=i

xj − (n − 1)xi}
∂

∂x
,

L1 = 2γ

n
∑

i=1

{(1 − 2xi)
∑

j 6=i

xj + (n − 1)xi}
∂

∂x
.

3.5. Fixation probability with biased gene conversion

All locus destined to be fixed by either of the allele A or a. Denote the fixation

probability of the allele A be u(p1, p2, ..., pn). u(p1, p2, ..., pn) satisfies a partial differential

equation

(3.41) Lu(p1, p2, ..., pn) = 0
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with a boundary condition (see Section 2.3)

(3.42) u(0, 0, ..., 0) = 0, u(1, 1, ..., 1) = 1, u|[0,1]n−{(0,0,...,0),(1,1,...,1)} = finite.

Suppose ǫ is not so large such that the solution can be well expressed by a perturbative

series in ǫ with few terms

(3.43) u(p1, p2, ..., pn) = u(0) + ǫu(1)(p1, p2, ..., pn) + ǫ2u(2)(p1, p2, ..., pn) + · · ·

At the zeroth order in ǫ, we have a partial differential equation

(3.44) L0u
(0) = 0

with the boundary condition

(3.45)

u(0)(0, 0, ..., 0) = 0, u(0)(1, 1, ..., 1) = 1, u(0)|[0,1]n−{(0,0,...,0),(1,1,...,1)} = finite.

It is straightforward to obtain the solution

(3.46) u(0)(p1, p2, ..., pn) = p̄, p̄ =

n
∑

i=1

pi

n
.

At the first order in ǫ, we have a partial differential equation

(3.47) L0u
(1) = −L1u

(0) = 4(n − 1)γp̄ −
8γ

n

∑

i<j

pipj,

with the boundary condition

(3.48) u(1)(0, 0, ..., 0) = u(1)(1, 1, ..., 1) = 0, u(1)|[0,1]n−{(0,0,...,0),(1,1,...,1)} = finite.

It is straightforward to confirm that

(3.49) u(1)(p1, p2, ..., pn) = 2(n − 1)p̄ −
4

n

∑

i<j

pipj + 2n(n − 1)γp̄(1 − p̄)

is the solution. Actually, it satisfies (3.47) with (3.48). Note that u(1) does not vanish as

γ → 0. The acceleration of the fixation probability does not vanish in the limit of week

gene conversion.

It is possible to obtain (3.49) by taking limit of moments. Because (0, 0, ..., 0) and

(1, 1, ..., 1) are the exit boundaries, we should have for i = 1, 2, ..., n

(3.50) lim
t→∞

E[xi] = P[x1(∞) = x2(∞) = · · · = xn(∞) = 1] = u(p1, p2, ..., pn).

Let for c1, c2, ...cn = 0, 1, ...

(3.51) µc1c2...cn(t) = E[
n
∏

i=1

pci

i (t)] = µ(0)
c1c2...cn

(t) + ǫµ(1)
c1c2...cn

(t) + · · · .
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The initial condition is µ
(0)
c1c2...cn(0) =

∏n
i=1 pci

i and µ
(1)
c1c2...cn(0) = 0. Denote the Laplace

transforms of µ
(i)
c1c2...cn(t) by ν

(i)
c1c2...cn(λ). From (3.50), it is clear that

(3.52) u(1)(p1, p2, ..., pn) = lim
t→∞

µ
(1)
ci=1,{cj=0:j 6=i}(t), i = 1, 2, ..., n.

For the zeroth order (in ǫ) moments of the first degree (where degree is counted by degree

in pi, i = 1, 2, ..., n), by taking expectations of the stochastic differential equation with

(3.40), we have

(3.53)

λ























ν
(0)
10...0

ν
(0)
010...0

.

.

ν
(0)
0...1























−























p1

p2

.

.

pn























=























−(n − 1)γ γ ... γ

γ −(n − 1)γ ... γ

. . ... .

. . ... .

γ γ ... −(n − 1)γ













































ν
(0)
10...0

ν
(0)
010...0

.

.

ν
(0)
0...1























and the solution is

(3.54) ν
(0)
ci=1,{cj=0:j 6=i}(λ) =

p̄

λ
+

pi − p̄

λ + nγ
, i = 1, 2, ..., n.

By the inverse Laplace transform, we have

(3.55) µ
(0)
ci=1,{cj=0:j 6=i}(t) = p̄ + (pi − p̄)e−nγt, i = 1, 2, ..., n.

It is worth to be mentioned that a measure of time to the fixation is given by nγ. For the

second degree moments, by using the Itô formula (see Chapter 1), it is straightforward to

obtain

ν
(0)
ci=2,{cj=0:j 6=i} = p2

i − {2 + 2(n − 1)γ}ν
(0)
ci=2,{cj=0:j 6=i} + 2γ

∑

j 6=i

ν
(0)
ci=cj=1,{ck=0:k 6=i,j}

+2ν
(0)
ci=1,{cj=0:j 6=i}

, i = 1, 2, ..., n,(3.56)

and for i 6= j, i, j = 1, 2, ..., n − 1,

ν
(0)
ci=cj=1,{ck=0:k 6=i,j} = −2(n − 1)γν

(0)
ci=cj=1,{ck=0:k 6=i,j} + γν

(0)
ci=2,{ck=0:k 6=i}

+γν
(0)
cj=2,{ck=0:k 6=j} + γ

∑

k 6=i,j

ν
(0)
cj=ck=1,{cl=0:l 6=j,k} + γ

∑

k 6=i,j

ν
(0)
ci=ck=1,{cl=0:l 6=i,k}.(3.57)

Substituting (3.54) into (3.56), we have the system of n(n+1)/2 equations for the moments

(3.56) and (3.57). They are closed and it is possible to be solved. For the first order
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moments, we have

λ























ν
(1)
10...0

ν
(1)
010...0

.

.

ν
(1)
0...1























=























−(n − 1)γ γ ... γ

γ −(n − 1)γ ... γ

. . ... .

. . ... .

γ γ ... −(n − 1)γ













































ν
(1)
10...0

ν
(1)
010...0

.

.

ν
(1)
0...1























+2γ























(n − 1)ν
(0)
10...0 +

∑

i6=1 ν
(0)
ci=1,{cj=0:j 6=i}

(n − 1)ν
(0)
010...0 +

∑

i6=2 ν
(0)
ci=1,{cj=0:j 6=i}

.

.

(n − 1)ν
(0)
0...01 +

∑

i6=n ν
(0)
ci=1,{cj=0:j 6=i}























− 4γ























∑

i6=1 ν
(0)
c1=ci=1,{cj=0:j 6=1,i}

∑

i6=2 ν
(0)
c2=ci=1,{cj=0:j 6=2,i}

.

.
∑

i6=n ν
(0)
cn=ci=1,{cj=0:j 6=n,i}























(3.58)

Substituting (3.54) and solutions for (3.56) and (3.57) into (3.58), we have for i = 1, 2, ..., n

(3.59)

ν
(1)
ci=1,{cj=0:j 6=i}(λ) =

2(n − 1)p̄ − 4
n

∑

i<j pipj + 2n(n − 1)γp̄(1 − p̄)

λ
+
∑

k

ak,ci=1,{cj=0:j 6=i}

λ − λk
,

where ak,ci=1,{cj=0:j 6=i} depend on pi, n, γ, and λk are eigenvalues of the generator (3.40).

Applying the inverse transform to (3.59), we have

(3.60) µ
(1)
ci=1,{cj=0:j 6=i}(t) = 2(n−1)p̄−

4

n

∑

i<j

pipj +2n(n−1)γp̄(1− p̄)+ µ̃
(1)
ci=1,{cj=0:j 6=i}(t),

where µ̃
(1)
ci=1,{cj=0:j 6=i}(t) represent terms decay as t → ∞. Thus, we have

(3.61) u(1)(p1, p2, ..., pn) = 2(n − 1)p̄ −
4

n

∑

i<j

pipj + 2n(n − 1)γp̄(1 − p̄).

3.6. Summary

Fixation of a single mutant under directional selection, where the mutant spreads in a

multigene family by a gene conversion, is investigated. It is found that under genic selection

the fixation probability is independent of rates of gene conversion and recombination, and

initial linkage disequilibrium. By simulations Mano and Innan (2008) demonstrated that

the formula could be extended to n loci. Interestingly, the formula (3.14) is given by the

formula for the single locus fixation probability with replacing σ by nσ and p by p̄. The

result can be interpreted as follows; gene conversion is a “migration” between loci and the

effective size of the total population is enlarged to nN . In fact, the formula (3.12) already
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Figure 3.1. The evolutionary rate of duplicated genes under concerted

evolution by gene conversion with directional selection.

appeared in a problem with population structure and migration (Maruyama, 1972). When

dominance exists, the simple correspondence between the n-locus fixation probability and

the single locus fixation probability no longer holds.

The formula (3.14) has interesting implications on the evolutionary rate of duplicated

genes under selective pressure. Assume mutation appears at rate v per generation per

locus. When a new mutant appears, we have p̄ = 1/(2nN). Thus, the substitution rate is

(3.62) 2nNv ×
1 − e−2s

1 − e−nσ
.

The substitution rate (divided by v) with N = 100 is shown in Figure 3.1. It is shown

that the formula implicates that selection works more efficiently in a larger gene family:

the substitution rate of an advantageous mutant is higher for a larger family, while that

of deleterious mutant is lower. Thus, it seems that having more copies in a family could

enhance the action of directional selection. The result predicts that the evolutionary rate

at nonsynonymous sites is different between a single-copy gene and multigene family, while

this does not hold for the rate at synonymous sites. This prediction may well explain a

recent report, which demonstrated that the substitution rate at nonsynonymous sites is

accelerated in concerted evolving gene cluster in Caenorhabditis elegens and its relatives

(Thomas, 2006).
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Figure 3.2. The evolutionary rate of duplicated genes under concerted

evolution by biased gene conversion.

Then, fixation of a single mutant under weak bias in conversion rate, where the mutant

spreads in a multigene family by a gene conversion, is investigated. The acceleration of

the fixation probability by biased conversion is given by (3.49). The formula (3.49) also

has interesting implications on the evolutionary rate of duplicated genes under biased gene

conversion. Assume mutation appears at rate v per generation per locus. Without loss

of generality, we may set p1 = 1/(2N), p2 = p3 = ... = pn = 0, and p̄ = 1/(2nN). The

fixation probability of the mutant is

(3.63) u

(

1

2N
, 0, 0, ..., 0

)

=
1

2nN
+ ǫ

{

1

N

(

1 −
1

n

)

+
n − 1

N

(

1 −
1

2nN

)

γ

}

+ O(ǫ2).

Up to the first order in ǫ, the substitution rate is

(3.64) 2nNv × u

(

1

2N
, 0, 0, ..., 0

)

= v + 2(n − 1)(1 + nγ)vǫ + O(N−1).

The substitution rate (divided by v) with N = 100 and ǫ = 0.05 is shown in Figure 3.2.

It is shown that when γ is small, the acceleration of the evolutionary rate proportional

to size of the gene family. When γ is large, the acceleration of the evolutionary rate is

proportional to square of size of the gene family. It seems that having more copies in a

family could accelerate the substitution rate. Interestingly, the prediction is in accordance

with the recent finding on GC content evolution in mammalian histone gene families.

Galtier (2003) found highly significant correlation between the GC content at the third



3.6. SUMMARY 50

codon positions and the copy number. The observation supports our theoretical prediction,

as long as gene conversion is a biased process that tends to increase GC content.



CHAPTER 4

Ancestral Selection Graphs

4.1. Introduction

In population genetics, the ancestral genealogy of a sample of genes plays an important

role in a probabilistic description of the sample. Consider a discrete-time Wright-Fisher

model of a population consisting of 2N neutral genes. A diffusion time scaling is to measure

time in units of 2N generations and let 2N → ∞. The Wright-Fisher model converges

to a diffusion process. The process of sample of n genes’ ancestors backward in time is

described by the coalescent process (Kingman (1982b)). The convergence is robust under

a number of different models (e.g. Moran model). Let an(t) be the number of ancestors

at time t backward of a sample of n neutral genes. Then the size process {an(t); t ≥ 0}

is a death process with death rate i(i − 1)/2 when the size is i. The size process will

be referred to as the ancestral process. The distribution of an(t) is known (see Griffiths

(1979), Tavaré (1984)) and

(4.1) P[an(t) = i] =
n
∑

k=i

(−1)k−i(2k − 1)(i)k−1[n]k
i!(k − i)!(n)k

ρ0
k(t), i = 1, 2, ..., n,

where ρ0
k(t) := exp{−k(k−1)t/2}. The total variation norm between an(t) and an(∞) = δ1

has a simple form

(4.2) ‖an(t), δ1‖var = 1 − P[an(t) = 1].

There is a first time W 0
n,1 such that an(W 0

n,1) = 1. The density of W 0
n,1 follows

(4.3) P[W 0
n,1 ≤ t] = P[an(t) = 1] =

n
∑

k=1

(−1)k−1(2k − 1)[n]k
(n)k

ρ0
k(t).

A bound for P[an(t) = 1] is known (see Kingman (1982b), Tavaré (1984)) and

(4.4) ρ0
2(t) ≤ 1 − P[an(t) = 1] ≤ 3

n − 1

n + 1
ρ0
2(t), n = 2, 3, ...

The ancestral selection graph introduced by Krone and Neuhauser (1997) is an ana-

logue of the coalescent genealogy. Assume that a pair of allelic types A1 and A2 are

segregating in a population, and the selective advantage of a type A1 gene over a type A2

gene is s (> 0). Let N → ∞ while c = Ns is held constant. The elements are referred to

51
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as particles. Let bn(t) be the number of edges, or ancestral particles, in a cross section of

an ancestral selection graph at time t backward of a sample of n genes. In the ancestral

selection graph, coalescing occurs at rate αi = i(i − 1)/2 and branching occurs at rate

βi = 2ci when the size is i. Then the ancestral process {bn(t); t ≥ 0} is a birth and death

process with rates βi and αi. A particle is called real if it is a part of the real genealogy

of the sample, otherwise the particle is called virtual. If two particles reach a coalescing

point, the resulting particle is real if and only if at least one of the two particles is real,

otherwise the resulting particle is virtual. If a real particle reaches a branching point, it

splits into a real particle and into a virtual particle. If a virtual particle reaches a branch-

ing point, it splits into two virtual particles. If a type A2 particle reaches a branching

point, it splits into two type A2 particles. If a type A1 particle reaches a branching point,

it splits into two particles, where at least one of the two particles is type A1. There is

a first time W c
n,1 such that bn(W c

n,1) = 1 because quadratic death and linear birth rates.

Krone and Neuhauser (1997) consider stopping the process at this time, since the genetic

composition of the sample is determined by then. They called the ancestral particle at

the time the ultimate ancestor. In the case of no mutation, the real genealogy of a sample

is the same as in the neutral process (Theorem 3.12 in Krone and Neuhauser (1997)).

Thus the ancestral process of the real particles can be described by the neutral process

{an(t); t ≥ 0}, however, few properties of the ancestral process {bn(t); t ≥ 0} are known.

In this article, properties of the ancestral process {bn(t); t ≥ 0} which is not stopped upon

reaching the ultimate ancestor are studied. Fearnhead (2002) has studied a process which

is not stopped upon reaching the ultimate ancestor. In particular, he identifies the station-

aru distribution of this process and uses the distribution to characterize the substitution

process to the common ancestor.

Kimura (1955c) studied the density of the allele frequency by the diffusion process to

which the Wright-Fisher model with selection converges. Let xp(t) be the frequency of

the allele A1 at time t forward of a population in which the initial frequency of the allele

A1 is p. Then the Kolmogorov forward equation for the diffusion process {xp(t); t ≥ 0} on

(0, 1) is

(4.5)
∂φ

∂t
=

1

2

∂2

∂x2
{x(1 − x)φ} − 2c

∂

∂x
{x(1 − x)φ} ,

with the initial condition φ(p, x; 0) = δ(x − p). The solution is

(4.6) φ(p, x; t) = 2(1 − r2)ec(r−1)e2cx
∞
∑

k=0

V
(1)
1k (c, r)V

(1)
1k (c, z)

N1k
ρc

k+2(t),
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where r = 1 − 2p, z = 1 − 2x, ρc
k+2(t) := exp(−λkt), k = 0, 1, 2, ... and −λk (0 < λ0 <

λ1 < · · · ) are eigenvalues of the generator. V
(1)
1k (c, z) is the oblate spheroidal wave function

(see Appendix):

(4.7) V
(1)
1k (c, z) =

∑

l≥0

′fk
l (c)T 1

l (z),

where T 1
l (z) is the Gegenbauer function (may also be denoted by C

3
2
l (z)) and the summa-

tion is over even values of l if k is even, odd values of l if k is odd. N1k is the normalization

constant of V
(1)
1k (c, z). The probability mass at the exit boundaries are

(4.8) f(p, 1; t) = 2(1 − r2)ec(r+1)
∞
∑

k=0

V
(1)
1k (c, r)V

(1)
1k (c,−1)

2λkN1k
(1 − ρc

k+2(t)),

and

(4.9) f(p, 0; t) = 2(1 − r2)ec(r−1)
∞
∑

k=0

V
(1)
1k (c, r)V

(1)
1k (c, 1)

2λkN1k
(1 − ρc

k+2(t)).

In Section 4.2, the ancestral process {bn(t); t ≥ 0} without absorbing states is studied.

An explicit form of the probability distribution of bn(t) are obtained, by using a dual

relationship between the ancestral process and the diffusion process in a context by Tavaré

(1984). The ancestral process converges to the stationary measure. In Section 4.3, the

convergence and bounds are discussed. In contrast to the neutral process, the final rates

of convergence are given by the largest eigenvalue for all the states. Bounds for the

probability that bn(t) is at the state 1 are obtained by an elementary martingale argument,

which corresponds to the bounds (4.4) for the neutral process. In Section 4.4, the ancestral

process with absorbing states are considered. It is shown that the first passage times of

the ancestral process {bn(t); t ≥ 0} at the states 1, 2, ..., n − 1 are larger than that in the

neutral process for all the states. By killing the modified process, in which the state 1 is

the absorbing state, the formal form of the joint probability generating function of bn(t)

and the number of branching events is obtained. By using the formula, the expectation of

the total length of the edges in the ancestral selection graph is obtained. In Section 4.5,

the ancestral process of the whole population {b∞(t); t ≥ 0} is studied. It is shown that

the process of fixation of the allele in the diffusion model corresponds to convergence of the

ancestral process to its stationary measure. The time to fixation of an allele conditional

on fixation is studied in terms of the ancestral process. It is shown that the density of

time to fixation of a single mutant gene conditional on fixation is given by the probability

of the whole population being descended from a single real ancestral particle, regardless
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of the allelic type. In the neutral process, the density of the waiting time to the ancestral

process hits the state 1 and the density of the conditional fixation time are given by the

probability that the ancestral process is at the state 1. The property does not hold in the

process with selection.

4.2. Number of ancestral particles

In this section, we will obtain an equation that relates the moments of the Wright-

Fisher diffusion with directional selection to a Markov process that specifies the number of

particles (real and virtual) that are present in the ancestral selection graph. To derive this

result, we will exploit the concept of duality from the theory of Markov processes (Ethier

and Kurtz, 1986). If X = {Xt; t ≥ 0} and Y = {Y ; t ≥ 0} are Markov processes with

values in sets ZX and ZY , respectively, then X and Y are said to be dual with respect to

a function f(x, y) if the identity

(4.10) Ex[f(Xt, y)] = Ey[f(x, Yt)]

holds for every x ∈ ZX and y ∈ ZY . Duality is a useful concept because it allows us to

use our knowledge of one process to learn about the other. Although there is no general

procedure for identifying dual processes, duality can sometimes be deduced using simple

generator calculations. Specifically, if Gx is the infinitesimal generator of the process X

and Gy is the infinitesimal generator of the process Y , then the duality relationship shown

in (4.10) will be satisfied if the identity

(4.11) Gxf(x, y) = Gyf(x, y)

holds for all x and y. Here we think Gxf(x, y) as acting on the x-variable of the function

f(x, y) for each fixed value of y.

To apply these results to the Wright-Fisher diffusion with selection, it will be necessary

to consider the frequency yq(t) of the less fit allele, which is itself governed by a Wright-

Fisher diffusion with generator:

(4.12) Gyf(y) =
1

2
y(1 − y)f ′′(y) − 2cvy(1 − y)f ′(y).

Notice that the selection coefficient is negative in this case (c ≥ 0). If we define the

function f(y, n) = yn, then a simple calculation shows that

Gyf(y, n) =

(

n

2

)

[f(y, n − 1) − f(y, n)] + 2cn[f(y, n + 1) − f(y, n)]

= Gnf(y, n),(4.13)
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where Gn is the operator defined by

(4.14) Gnf(n) =

(

n

2

)

[f(n − 1) − f(n)] + 2cn[f(n + 1) − f(n)].

In other words, Gn is the infinitesimal generator of the birth-death process {bn(t); t ≥ 0}

which keeps track of the number of ancestral particles in the ancestral selection graph.

Because f(y, n) is bounded, we can use a result of Ethier and Kurtz (1986) to deduce that

the Wright-Fisher diffusion {yq(t); t ≥ 0} and the birth-death process bn(t) are dual with

respect to the function f(y, n):

Theorem 4.2.1.

(4.15) E[qbn(t)] = E[(yq(t))
n], n = 1, 2, ...

Because the right-hand side of this identity involves moment of the process {yq(t); t ≥

0}, the process {bn(t); t ≥ 0} is said to be a moment dual for {yq(t); t ≥ 0}. The existence

of moment duals of Wright-Fisher diffusions with polynomial coefficients was first shown by

Shiga (1981), and the explicit description of duality between the birth-death process and

the Wright-Fisher diffusion with directional selection is discussed in Athreya and Swart

(2005). By the Itô formula, we have a system of differential equations for the moments of

yq(t)

(4.16)
dξn

dt
= −(αn + βn)ξn + αnξn−1 + βnξn+1, n = 1, 2, ...

where ξn = E[(yq(t))
n]. The Kolmogorov backward equation for the ancestral process

{bn(t); t ≥ 0} without absorbing states is also given by (4.16), where ξn = P[bn(t) =

i]. Thus, (4.16) with ξn = E[qbn(t)] holds. The isomorphism of these equations is a

consequence of (4.15). A proof of (4.15) by using graph theoretical arguments is also

possible.

Proof. Partition an ancestral selection graph G into disconnected subgraphs Gi, i =

1, 2, ... Let Et be the edges, or the ancestral particles, of a cross section of G taken at time

t backward. Then, bn(t) = |Et|. Each E0 ∩Gi consists only of type A2 particles if and only

if Et ∩ Gi consists only of type A2 particles, since at least one type A1 particle survives

from time t to 0 if Et ∩ Gi contain type A1 particles. Here the ancestral selection graph

is viewed forward in time. If a type A1 particle reaches a coalescing point, the number of

type A1 particles increase by 1. If a type A1 particle reaches a branching point and meets

other particle, the resulting particle is always type A1. Thus, a sample consists only of
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Figure 4.1. A realization of the ancestral selection graph embedded in a

diagram of a sample path of xp(t).

type A2 particles if and only if the ancestral particles at time t consists only of type A2

particles. �

If a sample contains type A1 particles, then for n = 0, 1, ...;m = 1, 2, ...,

(4.17) E[(xp(t))
m(yq(t))

n] = E[(1 − yq(t))
m(yq(t))

n] =

m
∑

i=0

(−1)im!

i!(m − i)!
E[qbi+n(t)],

with the convention b0(t) = 0. In particular,

(4.18) E[xp(t)] = E[1 − yq(t)] = E[1 − qb1(t)] =

∞
∑

k=1

P[b1(t) = k]

k
∑

i=1

k!piqk−i

i!(k − i)!
.

The expression follows immediately from a distribution of particles in Et. Since the ances-

tral selection graph is irreducible, an type A1 particle is sampled if and only if Et contains

at least one type A1 particle. The first summation is over |Et| and the second summation

is over the number of type A1 particles.

A realization of the ancestral selection graph consists of two disconnected subgraphs

embedded in a diagram of a sample path of xp(t) can be seen in Figure 1. The abscissa

is time interval (0, t) and ordinate is xp(t). Thick lines represent the real genealogy.

Lines used by type A2 particles are dotted. The graph contributes to E[(xp(t))
3yq(t)] and

b4(t) = 4. If an ancestral selection graph consists of the upper subgraph only, it contributes

to E[yq(t)] = E[qb1(t)] and b1(t) = 2.
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Using an integral transform by the Gegenbauer function (Erdélyi (1954)) for l =

0, 1, ...;n = 1, 2, ...; i = 0, 1, ...,

(4.19)

∫ 1

−1
T 1

l (z)(1+z)n(1−z)idz =
2n+ii!(l + 1)(l + 2)

(n + 1)i+1
3F2(−l, l+3, i+1; 2, i+n+2; 1),

where 3F2(−l, l + 3, i + 1; 2, i + n + 2; 1) is the generalized hypergeometric function, and

with an identity (4.77), it is possible to obtain explicit form of the probability generating

function of bn(t), and we have

E[qbn(t)] = E[yq(t)
n] =

∫ 1

0
(1 − x)nφ(x, p; t)dx + f(p, 0; t)

=
e4cq − 1

e4c − 1
+ 2(1 − r2)ec(r−1)

∞
∑

k=0

V
(1)
1k (c, r)

N1k

{

Fkn(c) −
V

(1)
1k (c, 1)

2λk

}

ρc
k+2(t)

=

∞
∑

i=1

P[bn(t) = i]qi,(4.20)

where

Fkn(c) :=
∑

l≥0

′fk
l (c)

∞
∑

i=0

(2c)i

(n + 1)i+1

l
∑

j=0

(−l)j(l + 1)j+2(i + 1)j
2 · j!(j + 1)!(i + n + 2)j

.

If n = ∞, f(p, 0; t) gives the probability generating function. Using a power series expan-

sion in q of the Gegenbauer function

(4.21) T 1
l (r) = (−1)l

l
∑

i=0

(−l)i(l + 1)i+2

2 · i!(i + 1)!
qi, l = 0, 1, ..

we obtain explicit form of the probability distribution of bn(t):

(4.22) P[bn(t) = 1] = π1 + 8e−2c
∞
∑

k=0

V
(1)
1k (c,−1)

N1k

{

Fkn(c) −
V

(1)
1k (c, 1)

2λk

}

ρc
k+2(t),

and

(4.23) P[bn(t) = i] = πi+8e−2c
∞
∑

k=0

Gki(c)

N1k

{

Fkn(c) −
V

(1)
1k (c, 1)

2λk

}

ρc
k+2(t), i = 2, 3, ...,

where

Gki(c) :=
∑

l≥i−1

′fk
l (c)(−1)l

(−l)i−1(l + 1)i+1

2(i − 1)!i!

+

i−1
∑

j=1

(2c)j−1(2c − j)

j · (j − 1)!

∑

l≥i−j−1

′fk
l (c)(−1)l

(−l)i−j−1(l + 1)i−j+1

2(i − j − 1)!(i − j)!
,
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and πi are given in (4.33). Note that there are finite probabilities at the states n+1, n+2, ....

The expected number of ancestral particles is

E[bn(t)] = π1e
4c + 8e−2c

∞
∑

k=0

V
(1)
1k (c,−1)

N1k

{

Fkn(c) −
V

(1)
1k (c, 1)

2λk

}

ρc
k+2(t)

+8e−2c
∞
∑

i=2

i

∞
∑

k=0

Gki(c)

N1k

{

Fkn(c) −
V

(1)
1k (c, 1)

2λk

}

ρc
k+2(t),(4.24)

and the falling factorial moments are

(4.25)

E[[bn(t)]i] = i!πie
4c+8e−2c

∞
∑

j=i

[j]i

∞
∑

k=0

Gkj(c)

N1k

{

Fkn(c) −
V

(1)
1k (c, 1)

2λk

}

ρc
k+2(t), i = 2, 3, ...

For small c, the probability distribution is approximately

(4.26)

P[bn(t) = 1] = P[an(t) = 1]−2c+2c
n+1
∑

k=2

(−1)k(2k−1)

{

[n]k
(n)k

+
k(k − 1)[n]k−1

(n)k+1

}

ρ0
k(t)+O(c2),

and for i = 2, 3, ...,

P[bn(t) = i] = P[an(t) = i] + 2cδi,2 − 2c

n+1
∑

k=i

(−1)k−i(2k − 1)(i)k−1

i!(k − i)!

{

k(k − 1)[n]k−1

(n)k+1

+
(k2 − k + 2i − 2)[n]k

(k − i + 1)(k + i − 2)(n)k

}

ρ0
k(t) + 2c

(i − 1)i−1[n]i−1

(i − 1)!(n)i−1
ρ0

i−1(t) + O(c2),(4.27)

with a convention [n]n+1 = 0.

It is possible to obtain the solution of (4.16) as a perturbation series in 2c, where the

series is represented by eigenvalues of the neutral process. Let

(4.28) ξn = ξ(0)
n + 2cξ(1)

n + (2c)2ξ(2)
n + · · · , n = 1, 2, ...

Denote the infinitesimal generator of the neutral process {an(t); t ≥ 0} by Q0 = (q0,ij),

where q0,i+1,i = αi+1, q0,ii = −αi for i = 1, 2, ... and other elements are zero. Let the

Laplace transform of ξ
(i)
n (t) be ν

(i)
n (λ). It is straightforward to show that

(4.29) ν(i) = {(Q0 − λE)−1C}i(λE − Q0)
−1ξ(0)(0), i = 1, 2, ...

where C = (cij) is given by cii = i, ci,i+1 = −i for i = 1, 2, ... and other elements are

zero. Note that the inverse Laplace transform of the element in the n-th row and i-th

column of the matrix {(Q0 −λE)−1C}j(λE −Q0)
−1 gives the j-th order coefficients in 2c

of P[bn(t) = i].
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Let rn(t) be the number of branching events in the time interval (0, t) in the ancestral

selection graph of a sample of n genes, where rn(0) = 0. The joint probability generating

functions of bn(t) and rn(t) satisfy a system of differential equation

(4.30)
dξn

dt
= −(αn + vβn)ξn + αnξn−1 + vβnξn+1 − (1 − v)βnξn, n = 1, 2, ..

with the initial condition ξn(0) = qn, where ξn = E[qbn(t)urn(t)]. The formal solution is

given by killing of the modified process {b̃n(t); t ≥ 0} in which the selection coefficient is

vc, and we have

(4.31) E[qbn(t)vrn(t)] = E

[

qb̃n(t) exp

{

−2c(1 − v)

∫ t

0
b̃n(u)du

}]

.

It is straightforward to show that

(4.32) E[qbn(t), rn(t) = 0] = E

[

qan(t) exp

{

−2c

∫ t

0
an(u)du

}]

,

which shows the Poisson nature of the branching in the ancestral process {bn(t); t ≥ 0}.

The integral is the total length of the edges in the neutral genealogy without branching

in (0, t). In particular, P[b1(t) = 1, r(t) = 0] = e−2ct.

4.3. Convergence and bounds

Standard results on birth and death processes (see, e.g., Karlin and Taylor (1975))

gives the stationary measure of the ancestral process {bn(t); t ≥ 0}. It is straightforward

to obtain the stationary measure

(4.33) πi := P[bn(∞) = i] =
(4c)i

i!(e4c − 1)
, i = 1, 2, ...,

which is the zero-truncated Poisson distribution. Since the ancestral process of the real

particles is the neutral process {an(t); t ≥ 0} and the number of real particles becomes 1

in finite time, π1 is the probability that there are no virtual particles.

It is clear from (4.22) and (4.23) that for i = 1, 2...,

(4.34) πi − P[bn(t) = i] = O(ρc
2(t)), t → ∞.

For small c, the final rates of convergence are approximately

(4.35)

lim
t→∞

(ρc
2(t))

−1 {π1 − P[bn(t) = 1]} = 3e−2c

{

n − 1

n + 1
−

4c

(n + 1)(n + 2)

}

− 2ce−2cδn,1 +O(c2),

(4.36)

lim
t→∞

(ρc
2(t))

−1 {π2 − P[bn(t) = 2]} = −3e−2c

{

n − 1

n + 1
−

2n(n − 1)c

n + 2

}

− 2ce−2cδn,1 + O(c2),
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and

(4.37) lim
t→∞

(ρc
2(t))

−1 {πi − P[bn(t) = i]} = −3e−2c n − 1

n + 1

(2c)i−2

(i − 2)!
+O(ci−1), i = 3, 4, ...

In contrast to the neutral process, the final rates of convergence are given by the largest

eigenvalue for all the states. In the neutral process, we have

(4.38) lim
t→∞

(ρ0
i (t))

−1
P[an(t) = i] =

(i)i[n]i
i!(n)i

, i = 1, 2, ..., n.

The total variation norm has no simple form as in (4.2).

A simple argument gives a bound for P[bn(t) = 1]. The event that the number of

ancestral particles is 1 is a subset of the event that the number of real particle is 1, and

we have

(4.39) P[bn(t) = 1] ≤ P[an(t) = 1], n = 1, 2, ...

An elementary argument on a martingale gives bounds for P[bn(t) = 1] directly. Let

η(n; c) satisfy a recursion

(4.40) (λ0 − αn − βn)η(n; c) + αnη(n − 1; c) + βnη(n + 1; c) = 0, n = 1, 2, ...

with the boundary condition η(1; c) = −2c. Since η is an eigenvector of the transition

probability matrix of the ancestral process {bn(t); t ≥ 0}, η(bn(t); c)(ρc
2(t))

−1 is a martin-

gale to the ancestral process (see, e.g., Karlin and Taylor (1975)). Then,

(4.41) E[η(bn(t); c)] = η(n; c)ρc
2(t).

Although the explicit form of η(n; c) is not available, it is possible to obtain an asymptotic

form. Because of

(4.42)
η(n; c)

η(n − 1; c)
→ 1 +

2λ0

n(n − 1)
+ O(n−3), n → ∞,

we deduce the asymptotic form η(n; c) ≈ η(∞; c)(1 − 2λ0/n), where η(∞; c) is a function

of c. Then, the derivative in c has an asymptotic form

(4.43) log η′(n; c) ≈ 4c
{η′(∞; c) + η(∞; c)}2

η′(∞; c)2
log n, n → ∞.

If η(n; c) is finite, then η′(∞; c) + η(∞; c) = 0. For the neutral process {an(t); t ≥ 0}, it is

known that η(∞; 0) = 3 (see, Kingman (1982a)). Thus, η(∞; c) = 3e−c.

Lemma 4.3.1. η(n; c) is monotonically increasing in n.
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Proof. By taking t = ∞ in (4.41) it follows that

(4.44)

∞
∑

i=1

η(i; c)πi = 0.

Denote the infinitesimal generator of the ancestral process {bn(t); t ≥ 0} by Qc = (qc,ij),

where qc,i+1,i = αi+1, qc,ii = −(αi + βi), qc,i,i+1 = βi for i = 1, 2, ... and other elements are

zero. η is an eigenvector of an oscillatory matrix E+Qc(2N)−1 which belongs to the second

largest eigenvalue 1 − λ0(2N)−1. An eigenvector of an oscillatory matrix which belongs

to the second largest eigenvalue has exactly one variation of sign in the coordinates (see,

Gantmacher (1959), pp. 105). Assume η(i; c) > 0, i ≥ L and η(i; c) ≤ 0, 1 ≤ i ≤ L − 1.

Suppose l ≥ L − 1. By an induction we deduce from (4.40) that

η(l + 1; c) − η(l; c) =
αl

βl
{η(l; c) − η(l − 1; c)} − λ0η(l; c)

=
(l − 1)!

(4c)l−1

{

η(2; c) − η(1; c) −
λ0

π2

l
∑

i=2

η(i; c)πi

}

=
λ0

8c2πl−1

∞
∑

i=l+1

η(i; c)πi > 0.(4.45)

Next, suppose 2 ≤ l ≤ L − 2. We have

(4.46) η(l + 1; c) − η(l; c) =
(l − 1)!

(4c)l−1

{

η(2; c) − η(1; c) −
λ0

π2

l
∑

i=2

η(i; c)πi

}

> 0.

Finally, η(2; c) − η(1; c) = λ0 > 0. �

From Lemma 4.3.1 it follows that

P[bn(t) = 1]η(1; c) + P[bn(t) > 1]η(2; c) ≤ E[η(bn(t); c)]

≤ P[bn(t) = 1]η(1; c) + P[bn(t) > 1]η(∞; c),(4.47)

here we note that there are finite probabilities at the states larger than n. Then, from

(4.41) we have the following bounds:

Theorem 4.3.2. If η(n; c) satisfies the recursion (4.40), then

(4.48)
η(n; c)ρc

2(t) + 2c

3e−c + 2c
≤ 1 − P[bn(t) = 1] ≤

η(n; c)ρc
2(t) + 2c

λ0
, n = 1, 2, ...

Remark 4.3.3. For small c, η(n; c) can be expanded into a power series in c.

(4.49) η(n; c) = 3
n − 1

n + 1

{

1 − c
n2 + n + 2

(n − 1)(n + 2)

}

+ O(c2), n = 3, 4, ...
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As c → ∞, for n = 1, 2, ...,

(4.50) P[bn(t) = 1] → 0, t > 0.

Proof. For small c, it is straightforward to obtain the power series expansion. For

large c, the bounds are approximately

(4.51) inf
n≥1

{

η(n; c)ρc
2(t) + 2c

3e−c + 2c

}

= 1 −
3e−c

2c
− e−λ0t + O(c−2e−2c),

and

(4.52) sup
n≥1

{

η(n; c)ρc
2(t) + 2c

λ0

}

= 1 +
1

2c
+

3e−(c+λ0t)

2c
+ O(c−2),

where λ0 = 2c − 1 + O(c−2) (see Appendix). Then,

(4.53) lim
c→∞

inf
n≥1

{

η(n; c)ρc
2(t) + 2c

3e−c + 2c

}

= lim
c→∞

sup
n≥1

{

η(n; c)ρc
2(t) + 2c

λ0

}

= 1, t > 0.

�

Corollary 4.3.4. For the whole population (n = ∞), the bounds reduce to

(4.54)
3e−cρc

2(t) + 2c

3e−c + 2c
≤ 1 − P[b∞(t) = 1] ≤

3e−cρc
2(t) + 2c

λ0
, n = 1, 2, ...

4.4. First passage times

Let

(4.55) W c
n,i := inf{t ≥ 0; bn(t) = i}, i = 1, 2, ...

and {b1
n(t);W c

n,1 ≥ t ≥ 0} be a modified process, where there is an absorbing state at

1, or the ultimate ancestor. The modified process is the same as that introduced for

ancestral recombination graph, where 4c is replaced by the recombination parameter ρ

(Griffiths (1991)). Theorems 1, 2, 3 in Griffiths (1991) hold for the modified process. The

modified process was studied by Krone and Neuhauser (1997). Here, modified processes

{bi
n(t);W c

n,i ≥ t ≥ 0}, where there is an absorbing state at i = 1, 2, ..., n − 1, are studied

to discuss the first passage times of the ancestral process {bn(t); t ≥ 0} at the states

1, 2, ..., n − 1.

It is possible to show that the expected first passage times of the ancestral process

{bn(t); t ≥ 0} at the states 1, 2, ..., n − 1 are larger than those in the neutral process

{an(t); t ≥ 0}. E[W c
n,1] is given in Krone and Neuhauser (1997).
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Theorem 4.4.1. Let

(4.56) W 0
n,i := inf{t ≥ 0; an(t) = i}, i = 1, 2, ...

Then,

(4.57) E[W c
n,i] = 2

n−1
∑

k=i

∞
∑

j=0

(4c)j

(k)j+2
> E[W 0

n,i], i = 1, 2, ..., n − 1,

where W c
n,1 is the time to the ultimate ancestor.

Proof. The theorem follows from standard results on birth and death processes (see,

e.g., Karlin and Taylor (1975)). The modified processes {bi
n(t);W c

n,i ≥ t ≥ 0} hit the

states i = 1, 2, ..., n − 1 in finite time with probability one, since

(4.58)

∞
∑

m=i

m+1
∏

k=i+1

αk

βk
=

(4c)i−1

(i − 1)!

∞
∑

m=i

m!

(4c)m
= ∞, i = 1, 2, ..., n − 1.

From the Kolmogorov backward equation for the modified process {bi
n(t);W c

n,i ≥ t ≥ 0},

which is (4.16) for n = i + 1, i + 2, ... with ξn = P[bi
n(t) = i] and the boundary condition

ξi = δ(t), the expected first passage times satisfy a recursion for i = 1, 2, ..., n − 1

(4.59) (αn + βn)ζ(n) − αnζ(n − 1) − βnζ(n + 1) = 1, n = i + 1, i + 2, ..., n − 2

with the boundary condition ζ(i) = 0, where ζ(n) = E[W c
n,i]. It is straightforward to solve

the recursion and obtain

(4.60) E[W c
n,i] =

∞
∑

m=i

γm +

n−2
∑

j=i

j+1
∏

k=i+1

αk

βk

∞
∑

l=j+1

γl = 2

n−1
∑

k=i

∞
∑

j=0

(4c)j

(k)j+2
, i = 1, 2, ..., n − 2,

and

(4.61) E[W c
n,n−1] =

∞
∑

m=i

γm = 2
∞
∑

j=0

(4c)j

(k)j+2
,

where

γi =
1

αi+1
=

2

i(i + 1)
, γm =

βi+1βi+2 · · · βm

αi+1αi+2 · · ·αmαm+1
=

2(4c)m−i

(i)m−i+2
, m = i+1, i+2, ...

It is clear from (4.60) and (4.61) that

(4.62) E[W c
n,i] > 2

n−1
∑

k=i

1

k(k + 1)
= 2

(

1

i
−

1

n

)

= E[W 0
n,i], i = 1, 2, ..., n − 1.

�
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As c → ∞, for i = 1, 2, ..., n − 1,

(4.63) E[W c
n,i] = 2

n−1
∑

k=i

1

k(k + 1)

∞
∑

j=0

(

4c
k+2

)j

∏j−1
l=0

(

1 + l
k+2

) > 2
n−1
∑

k=i

e
4c

k+2

k(k + 1)
→ ∞.

Corollary 4.4.2. For the whole population (n = ∞), the expected first passage times

are

(4.64) E[W c
∞,i] = 2

∞
∑

j=0

(4c)j

(j + 1)(i)j+1
, i = 1, 2, ...

Proof. It follows immediately from an identity

(4.65)
∞
∑

k=i

1

(k)j+2
=

1

(j + 1)(i)j+1
, j = 0, 1, ...

�

It is straightforward to obtain higher moments of the first passage times of the ancestral

process {bn(t); t ≥ 0} at the states 1, 2, ..., n−1 in the same manner. The second moments

E[(W c
n,i)

2] satisfy a recursion

(4.66) (αn + βn)ζ(n)−αnζ(n− 1)− βnζ(n + 1) = 2E[W c
n,i], n = i + 1, i + 2, ..., n− 2

with the boundary condition ζ(i) = 0, where ζ(n) = E[(W c
n,i)

2]. However, there is no

simple form for the density as in (4.3). The Laplace transform of the first passage times

of the ancestral process satisfy a recursion for i = 1, 2, ..., n − 1

(4.67) (λ + αn + βn)ζ(n) − αnζ(n − 1) − βnζ(n + 1) = 0, n = i + 1, i + 2, ..., n − 2

with the boundary condition ζ(i) = 1, where ζ(n) = E[e−λW c
n,i ].

The joint probability generating function of b1
n(t) and rn(t) satisfies a system of dif-

ferential equation (4.30) with ξn = E[qb1n(t)vrn(t)]. By taking t = ∞, we have

(4.68) 0 = −(αn + βn)ξn + αnξn−1 + vβnξn+1, n = 1, 2, ..,

with the boundary condition ξ1 = 1, where ξn = E[vrn(∞)]. The formal form of the

probability generating function of r(∞) is

(4.69) E[vrn(∞)] = E

[

exp

{

−2c(1 − v)

∫ W vc
n,1

0
b̃1
n(u)du

}]

,

while the explicit form of the probability generating function is given by Theorem 5.1 in

Ethier and Griffiths (1990), where ρ is replaced by 4c, and we have

(4.70) E[srn(∞)] =
Rn(v)

R1(v)
,
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where

Rn(v) =

∫ 1

0
x4c(1−v)−1(1 − x)n−1e−4cv(1−x)dx

=
(n − 1)!

(4c(1 − v))n
1F1(n; 4c(1 − v) + n;−4cv)

=
∞
∑

i=0

(n + i − 1)!(−4cv)i

(4c(1 − v) + n)n+ii!
.

(4.69) provides a way to compute the expectation of the total length of the edges in the

ancestral selection graph in the time interval (0,W c
n,1), and we have

(4.71) E

[
∫ W c

n,1

0
b1
n(u)du

]

=
1

2c
E[rn(∞)] =

∞
∑

k=1

(4c)k−1
n−1
∑

m=1

1

(m)k
.

It is possible to obtain the probability that the modified process {b1
n(t);W c

n,1 ≥ t ≥ 1}

hits the states n + 1, n + 2, ...

Theorem 4.4.3. Let z(1) = 0, z(2) = 1, and

(4.72) z(j) = 1 +
α2

β2
+

α2α3

α2β3
+ · · · +

α2α3 · · ·αj−1

β2β3 · · · βj−1
=

j−2
∑

k=0

k!

(4c)k
, j = 3, 4, ...

Then, the probability that the modified process {b1
n(t);W c

n,1 ≥ t ≥ 1} hits the states m =

n + 1, n + 2, ... is

(4.73) P[W c
n,1 > W c

n,m] =
z(n)

z(m)
.

Proof. The theorem follows from standard results on birth and death processes (see,

Karlin and Taylor (1975), pp. 323). It is straightforward to show that z(b1
n(t)) is a

martingale to the modified process. min{W c
n,1,W

c
n,m} is a Markov time with respect to

the modified process. We apply the optimal sampling theorem to conclude that

(4.74) z(n) = E[b1
n(min{W c

n,1,W
c
n,m})] = P[W c

n,1 > W c
n,m]z(m), m = n + 1, n + 2, ...

�

Remark 4.4.4. For small c, P[W c
n,1 < W c

n,m] can be expanded into a power series in

c.

(4.75) P[W c
n,1 > W c

n,m] =
(4c)m−n

[m − 2]m−n
+ O(cm−n+1), m = n + 1, n + 2, ...
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4.5. Time to fixation

In studying evolutionary process from the standpoint of population genetics, the prob-

ability and the time to fixation of a mutant gene play important roles. The expected time

to fixation of a mutant gene conditional on fixation was obtained by Kimura and Ohta

(1969). Furthermore, Ewens (1973a) and Maruyama and Kimura (1974) showed that ex-

pected length of time which it takes for an allele to increase frequency from q to y (> q)

on the way to fixation is equal to the expected length of time which the same allele takes

when its frequency decrease from y to q on the way to extinction. The time-reversibility

property is equivalent to the property that the density of the expected sojourn time does

not depend on the sign of the selection coefficient, which was shown by Maruyama (1972).

While these results are well known, their interpretation in terms of the ancestral process

of the whole population {b∞(t); t ≥ 0} are interesting.

The fixation probability was obtained by solving the Kolmogorov backward equation

for the diffusion process {xp(t); t ≥ 0} (Kimura (1957)). The fixation probability of the

allele A1 is

(4.76) u1(p) =
1 − e−4cp

1 − e−4c
,

and the fixation probability of the allele A2 is 1 − u1(p). It follows from (4.9) that

(4.77) 1 − u1(p) = 2(1 − r2)ec(r−1)
∞
∑

k=0

V
(1)
1k (c, r)V

(1)
1k (c, 1)

2λk
.

It is possible to obtain the fixation probability from the stationary measure of the ancestral

process (4.33). If the allele A2 fixes in a population, the ancestral particles of the whole

population in infinite time backwards consist of type A2 particles only, and we have

(4.78) E[qb∞(∞)] =

∞
∑

i=1

πiq
i =

e4cq − 1

e4c − 1
= 1 − u1(p).

The density of time to fixation of the allele A2 conditional on fixation has a genealogical

interpretation. Let

(4.79) T c
0 := inf{t ≥ 0; yq(t) = 1}.

Then, it follows from the expression

(4.80) P[T c
0 < t|T c

0 < ∞] =
E[qb∞(t)]

1 − u1(p)
=

∑∞
i=1 P[b∞(t) = i]qi

∑∞
i=1 πiqi
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that the process of fixation of the allele in a diffusion model, in which left hand side

converges to one as t → ∞, corresponds to convergence of the distribution of the ancestral

process P[b∞(t) = i] to its stationary measure πi as t → ∞.

The expected time to fixation of the allele A2 conditional on fixation was obtained by

solving the Kolmogorov backward equation (Kimura and Ohta (1969), Maruyama (1972)),

and

(4.81) E[T c
0 |T

c
0 < ∞] =

∫ 1

0
Φ(q, y)dy,

where Φ(q, y) is the density of the expected sojourn time of the allele A2 at frequency y

in the path starting from frequency q and going to fixation, and

Φ(q, y) =
S(y)S(1 − y)

2cy(1 − y)S(1)
, y > q,

=
S(y)

2cy(1 − y)

{

S(1 − y)

S(1)
−

S(q − y)

S(q)

}

, y < q,(4.82)

and S(y) = exp(4cy) − 1. Then,

(4.83) E[T c
0 |T

c
0 < ∞] =

∫ 1

0

S(y)S(1 − y)

2cy(1 − y)S(1)
dy −

∫ q

0

S(y)S(q − y)

2cy(1 − y)S(q)
dy,

where

∫ 1

0

S(y)S(1 − y)

2cy(1 − y)S(1)
dy =

π1

8c2

∞
∑

i=1

∞
∑

j=1

(4c)i+j

i!j!

∫ 1

0
yi−1(1 − y)j−1dy

=
π1

2c

∞
∑

k=1

(4c)k

(k + 1)!

k
∑

i=1

1

i(k − i + 1)

= 4π1

∞
∑

k=0

Hk+1(4c)
k

(k + 2)!
,

Hk = 1 + 1/2 + · · · + 1/k, and

∫ q

0

S(y)S(q − y)

2cy(1 − y)S(q)
dy =

1

2cS(q)

∞
∑

i=1

∞
∑

j=1

(4c)i+j

i!j!

∫ q

0

yi−1(q − y)j

1 − y
dy

=
1

2cS(q)

∞
∑

i=1

∞
∑

j=1

(4cq)i+j

i(i + j)!
2F1(1, i, i + j + 1; q)

=
1

2cS(q)

∞
∑

i=1

∞
∑

j=1

(4cq)i+j

i(i + j)!

∞
∑

k=0

(i)kq
k

(i + j + 1)k
.
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It is possible to obtain the expected time to fixation of the allele A2 conditional on fixation

from the distribution b∞(t), and we have

E[T c
0 |T

c
0 < ∞] =

1
∑∞

i=1 πiqi

∫ ∞

0
t
d

dt

[

∞
∑

i=1

{P[b∞(t) = i] − πi}q
i

]

dt

=
1

∑∞
i=1 πiqi

∞
∑

i=1

qi

∫ ∞

0
{P[b∞(t) = i] − πi}dt.(4.84)

From the two expressions (4.83) and (4.84), an identity at q = 0 follows immediately.

(4.85)
∞
∑

k=0

V
(1)
1k (c,−1)V

(1)
1k (c, 1)

λ2
kN1k

= e2cπ2
1

∞
∑

k=0

Hk+1(4c)
k

(k + 2)!
.

It is straightforward to obtain similar identities by comparing (4.83) and (4.84) in each

power of q. Moreover, explicit form of the higher moments of the time to fixation condi-

tional on fixation (Maruyama (1972)) is available, and they produce similar identities.

The density of time to fixation of a single mutant gene conditional on fixation has

interesting properties. Let

(4.86) T c
1 := inf{t ≥ 0;xp(t) = 1}.

Then, from a time-reversibility argument on the conditional diffusion process (Ewens

(1973a), Maruyama and Kimura (1974)), we have

(4.87) lim
q→0

P[T c
0 < t|T c

0 < ∞] = lim
p→0

P[T c
1 < t|T c

1 < ∞] =
P[b∞(t) = 1]

π1
.

The same density hold for a mutant gene of allele A1 and a mutant gene of allele A2. This

property has an intuitive genealogical interpretation. The conditional density is given

by the probability of the whole population being descended from a single real ancestral

particle. Since there is no variation in the population, selection cannot have an effect on

it and consequently, the conditional density should not depend on the allelic type. (4.4),

(4.39) and Corollary 4.3.4 gives bounds for the density of time to fixation of a single

mutant gene conditional on the fixation, and

(4.88)
1

π1
−

3e−cρc
2(t) + 2c

π1λ0
≤ lim

q→0
P[T c

0 < t|T c
0 < ∞] ≤

1

π1
− max

{

ρ0
2(t)

π1
,
3e−cρc

2(t) + 2c

π1(3e−c + 2c)

}

.

It is worth noting that the identity (4.87) gives following identity in the distribution

bn(t). Its interpretation in terms of the ancestral process {bn(t); t ≥ 0} is unclear.
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Remark 4.5.1. The time-reversibility argument on the conditional diffusion process

gives

(4.89) P[b∞(t) = 1] = lim
n→∞

e−4c
n
∑

k=1

(−1)k+1n!

k!(n − k)!
E[bk(t)].

Proof. (4.87) is equivalent to

(4.90) lim
p→0

f(p, 1; t)

u1(p)
= lim

q→0

f(p, 0; t)

1 − u1(p)
=

P[b∞(t) = 1]

π1
,

where

lim
p→0

f(p, 1; t)

u1(p)
= lim

p→0
lim

n→∞

E[xp(t)
n]

u1(p)
= lim

p→0
lim

n→∞

E[(1 − yq(t))
n]

u1(p)

= lim
p→0

lim
n→∞

n
∑

k=0

(−1)kn!

k!(n − k)!

E[qbk(t)]

u1(p)
= lim

n→∞
e−4c

n
∑

k=1

(−1)k+1n!

k!(n − k)!

E[bk(t)]

π1
.(4.91)

�

In the neutral diffusion process, the density of time to fixation of a mutant gene

conditional on fixation follows

(4.92) lim
q→0

P[T 0
0 < t|T 0

0 < ∞] = P[a∞(t) = 1],

where T 0
0 is the time to fixation of a mutant gene in the neutral diffusion process. From

(4.83), the expected time to fixation of a mutant gene conditional on fixation has a simple

form

(4.93) lim
q→0

E[T c
0 |T

c
0 < ∞] = 4π1

∞
∑

j=0

Hj+1(4c)
j

(j + 2)!
< lim

q→0
E[T 0

0 |T
0
0 < ∞] = 2,

where the inequality holds from the following lemma:

Lemma 4.5.2. The density of expected sojourn time of the allele A2 at frequency y in

the path starting from frequency 0 and going to fixation satisfies

(4.94)
S(y)S(1 − y)

2cy(1 − y)S(1)
< 2, 0 < y < 1.

Proof. The inequality is equivalent to

(4.95)
e4cy − 1

y

e4c(1−y) − 1

1 − y
< 4c(e4c − 1),

or

(4.96)
∞
∑

i=0

i
∑

j=0

(4c)iyj(1 − y)i−j

(j + 1)!(i − j + 1)!
<

∞
∑

i=0

(4c)i

(i + 1)!
.
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The inequality follows from an inequality

(4.97)

i
∑

j=0

yj(1 − y)i−j

(j + 1)!(i − j + 1)!
<

1

(i + 1)!

i
∑

j=0

i!yj(1 − y)i−j

j!(i − j)!
=

1

(i + 1)!
, i = 0, 1, ...

�

As c becomes large, P[b∞(t) = 1] decreases, while the expected fixation time of a

mutant gene conditional on fixation decreases. It is straightforward to show that the

inequality for the expected fixation time (4.93) is equivalent to an inequality

(4.98)

∫ ∞

0

{

P[b∞(t) = 1]

π1
− P[a∞(t) = 1]

}

dt > 0.

In the neutral process, the density of the waiting time to the ancestral process hits the

state 1 and the conditional fixation time are given by the probability that the ancestral

process is at the state 1 (4.3,4.92). It follows that

(4.99) E[W 0
∞,1] = lim

q→0
E[T 0

0 |T
0
0 < ∞] =

∫ ∞

0
{P[a∞(t) = 1] − 1}dt = 2.

In contrast, in the process with selection, we have

(4.100) E[W c
∞,1] = 2

∞
∑

j=0

(4c)j

(j + 1)(j + 1)!
> 2,

while

(4.101) lim
q→0

E[T c
0 |T

c
0 < ∞] =

∫ ∞

0

{

P[b∞(t) = 1]

π1
− 1

}

dt = 4π1

∞
∑

j=0

Hj+1(4c)
j

(j + 2)!
< 2.

4.6. Summary

In this article, properties of the ancestral process {bn(t); t ≥ 0}, the total number of

the real and the virtual particles, were investigated. An explicit form of the probability

distribution of bn(t) was obtained. Altohugh this expression cannot be given in closed

form, since it involves eigenvalues and coefficients which are determined by an intractable

three-term recursion relation, it is possible to expand the probability distribution as a

perturbation series in 2c. This expression is given in closed form for each order of the

perturbation and is accurate when |c| is small.

If a sample consists only of type A2 particles, the probability distribution of the an-

cestral particles, all of which are A2, is bn(t) (see Theorem 1). If a sample contains type

A1 particles, the joint probability distribution of the number of the A1 particles and the

number of the A2 particles is interesting. However, it seems that the expression of the

moments in the diffusion model (4.17) does not give any insights of the joint probability
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distribution of the ancestral particles, except for the case that a sample consists of a single

A1 particle. The joint distribution of the ancestral particles needs further investigations.

The time-reversibility argument of the conditional diffusion process gives an identity,

whose interpretation in terms of the ancestral process is unclear (see Remark 5.1). The

interpretation of the time-reversibility in terms of the ancestral process needs further

investigations.

4.7. Appendix. The oblate spheroidal wave function

The oblate spheroidal wave function V
(1)
1k (c, z) can be represented by expansions of the

form (Stratton et al. (1941))

(4.102) V
(1)
1k (c, z) =

∑

l≥0

′fk
l (c)T 1

l (z), k = 0, 1, ...

This notation was used in Kimura (1955c). It was denoted by V
(1)
1k (−ic, z) in Stratton et

al. (1941) and (1− z2)
1
2 S1k+1(c, z) in Flammer (1957). From the orthogonal properties of

the Gegenbauer function it is shown that

(4.103)

∫ 1

−1
(1 − z2)V

(1)
1k (c, z)V

(1)
1l (c, z)dz = δk,lN1k,

where

N1k = 2
∑

l≥0

′ (l + 1)(l + 2)

(2l + 3)
(fk

l (c))2.

Note that

(4.104) V
(1)
1k (c, 1) =

1

2

∑

l≥0

′(l + 1)(l + 2)fk
l (c), V

(1)
1k (c,−1) = (−1)kV

(1)
1k (c, 1).

The coefficients fk
l (c) satisfy a three-term recursion in the form

(4.105) Al+2f
k
l+2(c) + Blf

k
l (c) + Cl−2f

k
l−2(c) = 0,

where

Al = −
(l + 1)(l + 2)

(2l + 1)(2l + 3)
, Bl =

l(l + 3) − bk

c2
−

2l2 + 6l + 1

(2l + 1)(2l + 5)
, Cl = −

(l + 1)(l + 2)

(2l + 3)(2l + 5)
,

and bk = 2λk − 2 − c2. fk
l (c) = 0 for odd l if k is even and for even l if k is odd. (4.105)

can be developed as a continued fraction.

fk
l

fk
l+2

= −
Al+2

Bl−

Cl−2Al

Bl−2−
· · ·

C2A4

B2−

A2

B0
l = 0, 2, ...

−
Al+2

Bl−

Cl−2Al

Bl−2−
· · ·

C3A5

B3−

A3

B1
l = 1, 3, ...(4.106)
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and

(4.107)
fk

l+2

fk
l

= −
Cl

Bl+2−

Al+4Cl+2

Bl+4−
· · · , l = 0, 1, ..

bk is determined by the condition that the reciprocal of the ratio fl/fl+2 by (4.106) must

equal the value of fl+2/fl obtained from (4.107). Then, the continued fractions provide a

way to compute arbitrary coefficient.

For small c, the eigenvalue can be expanded into a power series in c.

(4.108) λk =
(k + 1)(k + 2)

2
+

(k + 1)(k + 2)

(2k + 1)(2k + 5)
c2 + O(c4).

If we set fk
k (c) = 1, then

(4.109)

fk
k+2(c) =

(k + 1)(k + 2)

2(2k + 3)(2k + 5)2
c2 + O(c4), fk

k−2(c) = −
(k + 1)(k + 2)

2(2k + 1)2(2k + 3)
c2 + O(c4),

and other coefficients are zero up to O(c4).

For large c, an asymptotic expansion is possible (Flammer (1957)), and

(4.110)

V
(1)
1k (c, z) ≃

∞
∑

i=−νk

A1k+1
i

{

e−c(1−z)L
(1)
νk+i[2c(1 − z)] + (−1)ke−c(1+z)L

(1)
νk+i[2c(1 + z)]

}

,

where νk = k/2 for k even and νk = (k−1)/2 for k and L
(1)
νk+i(·) is the Laguerre functions.

The coefficients A1k+1
i are given in Flammer (1957). The eigenvalue is

(4.111) λk = 2(1 + νk)c − νk(νk + 2) − 1 + O(c−1).

Since νk is the same when k is equal to k′ and when k is equal to k′ + 1, where k′ is an

even integer, pair of eigenvalues coalesce as c becomes large.



CHAPTER 5

Selective sweep

5.1. Introduction

DNA sequence data are a rich source for detecting adaptive evolution. Especially, huge

single nucleotide polymorphism (SNP) data with linkage phase, or SNP haplotype data,

are emerging. Developing powerful statistical methods to detect positive selection with

the haplotype data is an important issue in population genetics. The Statistical methods

using within species polymorphism data can be loosely classified into three categories: site

frequency, haplotype frequency, and linkage disequilibrium methods. The site frequency

methods require only frequencies of variants at polymorphic nucleotide sites. Linkage

phase of these variants is neither required nor used. One sub-category of the methods is

based on the completely linked infinite site model and utilize the simple summary statistics

of site frequency spectrum (e.g. Tajima (1989a); Fu and Li (1993); Fay and Wu (2000)).

The other sub-category of the methods is based on single site models and utilize the site

frequency spectrum at unlinked segregating sites (e.g., Kim and Stephan (2002); Nielsen

et al. (2006)). The haplotype frequency methods require additional information on the

linkage phase among variant sites. A haplotype is scored as an allele and conditional

haplotype frequency spectrum are used for detection. One sub-category of the method

is based on the infinite allele model and utilize allele frequency spectrum conditional on

the number of different haplotypes (Ewens, 1973b; Watterson, 1978; Slatkin, 1994b). The

other sub-category of the methods is based on the infinite sites model and utilize allele

frequency spectrum conditional on the number of segregating sites (Depaulis and Veuille,

1998; Innan et al., 2005). Recombination is not considered in these null distribution. It can

be expected that there are few intra-haplotype recombination, since a long range haplotype

which has experienced many recombinations makes no biological sense, nevertheless, the

impact of recombination to the power and robustness of these tests should be addressed in

statistical point of view. The last category, the linkage disequilibrium methods, in which

the most popular one is probably the extended haplotype homozygosity test (Sabeti et

al., 2002), depends heavily on simulations and attracts little theoretical interests.

73
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Recently, the author and coworkers assessed the power and robustness of the haplotype

and site frequency methods to detect positive selection by extensive simulations (Zeng et

al., 2007). In their study, intra haplotype recombination are incorporated. They found that

although the haplotype frequency methods conditional on the number of haplotypes were

developed for nonrecombining haplotypes, these tests are insensitive to intra-haplotype

recombination. It could be said that the number of haplotypes have information of not

only mutation rate but also recombination rate. Such tests can therefore be applied to

recombining haplotypes. In contrast, tests conditional on the number of segregating sites

become overly conservative in the presence of recombination. In fact, the Watterson’s

homozygosity test (Watterson, 1978) was usually the most powerful test during the sweep

phase, especially when the local recombination rate is high. The extended haplotype

homozygosity test relies heavily on the prior knowledge of the target of selection. With

the knowledge, it is the most powerful test, whereas in the absence of this prior information,

the test has little power.

Although the tests based on summary statistics of the allele frequency spectrum con-

ditional on the number of haplotypes are generally powerful, these tests give no insights

how the selection operates. On the other hand, the site frequency methods utilize the

site frequency spectrum at unlinked segregating sites are likelihood based and provide

maximum likelihood estimates of the position of the target of selection and the selection

intensity. In theoretical and practical points of view, however, there are ambiguities in

their use of composite likelihood among weakly linked site. The composite likelihood is

not a real likelihood, the test should be done by using simulated distribution empirically.

It could be ambiguous which site among the weekly linked sites contribute mainly to the

results. If the segregating sites were strictly unlinked, we could avoid the ambiguity. How-

ever, we could not expect gain of power by pooling unlinked sites. Their likelihood is

based on single site bi-allelic models, the information could be used at each site would

be small and the power therefore would be daunting. In this chapter, a new likelihood

based test to detect a recent sweep is presented, which is a natural extension of the tests

based on summary statistics of the allele frequency spectrum conditional on the number

of haplotypes. For the likelihood for a model at the end of the sweep, a sampling formula

is employed, which was presented by the author (Mano, 2006).
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5.2. Sampling distribution at the end of a selective sweep

Let us assume a neutral locus A in which alleles are segregating with frequency dis-

tribution which follows that of the infinite allele model. In this subsection recombination

are ignored and a haplotype is scored as an allele. Let Cj, j = 1, 2, ..., n be the number of

different types of alleles whose frequency in a sample of size n is j. Under neutrality, the

distribution of C is given by the Ewens sampling formula (Ewens, 1972)

(5.1) Qn(c) = I(|c| = n)
n!

(θ)n

n
∏

j=1

(

θ

j

)cj 1

cj !
,

where |c| :=
∑n

j=1 jcj , θ = 4Nu and u is the mutation rate per generation. Conditioned

by the number of different types of alleles, we have

(5.2) P[C = c|‖C‖ = k] =
n!

Sk
n

n
∏

j=1

1

jcjcj !
,

where ‖c‖ :=
∑n

j=1 cj and S
k
n is the unsigned Stirling number of the first kind. It is

remarkable that the conditional distribution does not depend on θ. The number of types

of alleles is the sufficient statistic of θ. The Watterson’s homozygosity test (Watterson,

1978) is a test by using the homozygosity
∑n

j=1 c2
j as a test statistic to reject neutrality.

Suppose the neutral locus A links to a locus B in which an advantageous mutant

appears. Assume the selective advantage of the mutant allele B over the wildtype allele

b is s and the genic selection is assumed. We are interested in how the distribution of

C in the locus A could be affected by linking to the locus B. Using a deterministic

model, Maynard Smith and Haigh (1974) obtained the frequency of the hitchhikers, or the

descendants of the allele at which was carried at the locus A of the founder chromosome

at the end of the sweep. That is (Eq. 14 of Maynard Smith and Haigh (1974))

(5.3) pM ≈
r

s
log 2N,

where r is the recombination fraction between the two loci. Apart form hitchhikers, there

are also a few free-riders who jump on the sweep when it is already under way, and make

it as singletons into the sample. The number of the hitchhikers follows Binom.(n, pM ).

To include the randomness of the frequency path, especially at the beginning of the sweep,

Etheridge et al. (2006) investigated approximation of a genealogy of the alleles in the locus

A in the random background of the alleles in the locus B by the structured coalescent. If

the allele B is destined to be fix, the random conditional path {xp(t);T1 ≥ t ≥ 0}, where
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T1 = inf{t ≥ 0;xp(t) = 1}, follows a stochastic differential equation

dx =
√

x(1 − x)dB + α coth(αx)x(1 − x)dt,(5.4)

where α = 2Ns and time is measured in unit of 2N generations (Ewens, 1973a). Etheridge

et al. (2006) showed that the probability that a single ancestral lineage is not hit by a

recombination is approximately given by p = e−γ , where

(5.5) γ = ρ
log α

α
,

and ρ = 2Nr. For large α the subpopulation carrying the advantageous allele is expanding

quickly near the beginning of the sweep, the sample genealogy in the B background can be

approximated by a star-shaped genealogy, i.e. lineages all coalescing at the beginning of the

sweep. In addition, Etheridge et al. (2006) showed that the probability that a neutral lin-

eage recombines out of the B background and then recombines back into the B background

and that a pair of neutral lineages coalesces in the b background are O{(log α)−2}. There-

fore, with an error O{(log α)−2}, we may ignore back-recombinations. A first approxima-

tion to the number of hitchhikers, or nonrecombinants, is given by Binom.(n, p)-number

of individuals stemming from the founder of the sweep, and the rest being free-riders,

or recombinants, all having different ancestors at the beginning of the sweep (See Figure

5.1). Etheridge et al. (2006) gave a proof that the sampling distribution is accurate with

probability 1 − O(1/ log α). Consequently, (5.3) is accurate with the same probability.

Let us consider the sampling distribution at the neutral locus A at the end of a sweep,

where we assume that the distribution at the beginning of the sweep followed the Ewens

sampling formula and the distribution of recombinants and non-recombinants after the

sweep follows the Etheridge et al. (2006) sampling distribution discussed above. Figure

5.1 shows an example of a genealogy under a selective sweep. Lineages in the allele b

background are dotted. Colors represents allelic types in the locus A. Lineages connected

at the beginning of the sweep are the same allelic type at the beginning. Here, the

distribution is c1 = 2, c2 = 1, c6 = 1. The number of the recombinant is 6 and the

number of non-recombinant is 4. Note that the allelic type frequency of the founder of

the sweep is not the same as the number of the non-recombinant, since there could be

recombinants whose allelic type is the same as the founder. Let l be the allelic type

frequency of the founder of the sweep. The distribution after the sweep is given by a

weighted binomial mixture of the Ewens distribution, where the summations are taken
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Figure 5.1. A genealogy of ten samples under a selective sweep.

for all possible configurations characterized by the number of the recombinants m,m =

0, 1, ..., n) and l, l = 1, 2, ...,m + 1.

Theorem 5.2.1. For n = 3, 4, ...

Q̃n(c) = Qn(c)[(1 − p)n + n(1 − p)n−1p]

+

n−2
∑

m=⌈(n−1)/2⌉

{

2m−n+2
∑

l=1

l(cl + 1)[n]m
(m + 1)!

(1 − p)mpn−mQm+1(c + el − en−m+l−1)

+

m−‖c‖+2
∑

l=2m−n+3

l(cl + 1)[n]m
(m + 1)!

(1 − p)mpn−mI(cn−m+l−1 = 1)Qm+1(c + el)







+

⌈(n−3)/2⌉
∑

m=‖c‖−1

m−‖c‖+2
∑

l=1

l(cl + 1)[n]m
(m + 1)!

(1 − p)mpn−mI(cn−m+l−1 = 1)Qm+1(c + el).(5.6)

Proof. The first term is trivial to obtain. 1 ≤ l ≤ m − ‖c‖ + 2 because the number

of recombinants whose allelic type is other than the founder should be equal to or larger

than ‖c‖ − 1. If m + 1 < n − m + l − 1, then I(cn−m+l−1 = k), k = 1, 2, ... is needed,

since Qm+1(·) do not account alleles whose frequency is n − m + l − 1. The inequality

is equivalent to m < (n + l)/2 − 1. Assume m ≤ ⌈(n − 3)/2⌉. If cn−m+l−1 = k, then

k(n−m + l− 1) ≤ n. The inequality is equivalent to m ≥ n(k − 1)/2 + l− 1, which holds

if and only if k = 1. Next, assume m ≥ ⌈(n − 1)/2⌉. If l ≤ 2m − n + 2, then Qm+1(·)

capture alleles whose frequency is n − m + l − 1. Otherwise, assume cn−m+l−1 = k, then
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2m − n + 3 ≤ l ≤ m + 1 − n(k − 1)/2. Such l exists if and only if k = 1. Summing

probabilities for these possibilities, the theorem follows. �

For small γ,

Q̃n(c) =

⌈(n−3)/2⌉
∑

m=‖c‖−1

m−‖c‖+2
∑

l=1

l(cl + 1)[n]m
(m + 1)!

(1 − p)mpn−mI(cn−m+l−1 = 1)Qm+1(c + el)

+O(γ(n−1)/2)

=

⌈(n−3)/2⌉
∑

m=‖c‖−1

m−‖c‖+2
∑

l=1

[n]mθ‖c‖

(θ)m+1
(1 − p)mpn−m

m−l+1
∏

j=1

1

jcjcj!

×I(cn−m+l−1 = 1, |c′| = m − l + 1) + O(γ(n−1)/2),(5.7)

where c′ is a m + 1-dimensional vector, where c′j = cj for j = 1, 2, ...,m + 1. It is

remarkable that if ‖c‖ > ⌈(n − 1)/2⌉ then the probability that c is a result of a recent

sweep is O(γ(n−1)/2). It is straightforward to obtain the distribution of the number of

types of alleles:

P[‖C‖ = k] =
∑

‖c‖=k

Q̃n(c)

=

⌈(n−3)/2⌉
∑

m=k−1

m−k+2
∑

l=1

[n]mθk

(θ)m+1
(1 − p)mpn−m

×
∑

‖c′‖=k−1

m−l+1
∏

j=1

1

jcjcj !
I(|c′| = m − l + 1) + O(γ(n−1)/2)

=

⌈(n−3)/2⌉
∑

m=k−1

m−k+2
∑

l=1

[n]mθk
S

k−1
m−l+1

(θ)m+1(m − l + 1)!
(1 − p)mpn−m + O(γ(n−1)/2).(5.8)

Then, the conditional distribution is

(5.9) P[C = c|‖C‖ = k] =
Q̃n(c, ‖c‖ = k)

P[‖C‖ = k]
.

Up to the first order in γ, we have

P[Cn−k+1 = 1, C1 = k − 1|‖C‖ = k] = 1 −
(k − 1)(n − k + 1)

2(θ + k)
γ + O(γ2),(5.10)

P[Cn−k = 1, C2 = 1, C1 = k − 2|‖C‖ = k] =
(k − 1)(n − k + 1)

2(θ + k)
γ + O(γ2),(5.11)

and the probabilities of other configurations vanish. It is straightforward to obtain the

conditional expectation of the number of types of allele Ci, i = 1, 2, ..., n, and we have

(5.12) E[Ci|‖C‖ = k] =

∑

‖c‖=k ciQ̃n(c, ‖c‖ = k)

P[‖C‖ = k]
,
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where

∑

‖c‖=k

ciQ̃n(c, ‖c‖ = k) =

⌈(n−3)/2⌉
∑

m=k−1

m−k+2
∑

l=1

[n]mθk

(θ)m+1
(1 − p)mpn−m

×
∑

‖c′‖=k−1







m−l+1
∏

j=1

ci

jcjcj !
I(|c′| = m − l + 1, i ≤ m − l + 1)

+
m−l+1
∏

j=1

1

jcjcj!
I(|c′| = m − l + 1, i = n − m + l − 1)







+O(γ(n−1)/2).(5.13)

For i = 1, 2, ..., n − k + 1,

∑

‖c‖=k

ciQ̃n(c, ‖c‖ = k) =

⌈(n−3)/2⌉
∑

m=k+i−2

m−k−i+3
∑

l=1

[n]mθk
S

k−2
m−l−i+1

i(θ)m+1(m − l − i + 1)!
(1 − p)mpn−m

+

⌈(n−3)/2⌉
∑

m=n−i

[n]mθk
S

k−1
n−i

(θ)m+1(n − i)!
(1 − p)mpn−m + O(γ(n−1)/2),(5.14)

and for i = n − k + 2, n − k + 3, ..., n,

∑

‖c‖=k

ciQ̃n(c, ‖c‖ = k) =

⌈(n−3)/2⌉
∑

m=k+i−2

m−k−i+3
∑

l=1

[n]mθk
S

k−2
m−l−i+1

i(θ)m+1(m − l − i + 1)!
(1 − p)mpn−m

+O(γ(n−1)/2),(5.15)

where k 6= 1. Up to the first order in γ, we have

E[C1|‖C‖] = (k − 1)

(

1 −
n − k + 1

2(θ + k)
γ

)

,(5.16)

E[C2|‖C‖] =
(k − 1)(n − k + 1)

2(θ + k)
γ,(5.17)

E[Cn−k|‖C‖] =
(k − 1)(i + 1)

2(θ + k)
γ,(5.18)

E[Cn−k+1|‖C‖] = 1 −
(k − 1)i

2(θ + k)
γ.(5.19)

The conditional expectation of the number of types of alleles for a sample with n = 50 is

illustrated in Figure 5.2. It is assumed that θ = 1, k = 5, and γ = 0.033.

5.3. Tests

Various tests have been proposed based on the allele frequency distribution conditional

on the number of alleles (5.2). Ewens (1973a) proposed a test whose summary statistics

is the frequency of the most common allele, Watterson (1978) proposed a test whose
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Figure 5.2. The conditional expectation of the number of types of alleles

whose frequency in a sample is given. n = 50, θ = 1 and k = 5. The

neutral expectation is also shown.

summary statistics is is the homozygosity, and Slatkin (1994b) proposed an exact test

based on configuration of haplotype. It was shown that these tests yield similar statistical

properties to detect a recent selective sweep (Zeng et al., 2007). In fact, it is straightforward

to show that the test proposed by Ewens (1973b) test and that proposed by Watterson

(1978) have exactly same power when ‖c‖ = 2. Here, we study the test proposed by Ewens

(1973b), because the null distribution of the test statistics is given by a simple analytical

form.

Lemma 5.3.1. Define a generalized unsigned Stirling number of the first kind S
k
n,m,

which is the number of permutations of n whose decomposition has exactly k cycles of

which are of length less than m (≤ n). Then, S
k
n,m satisfy a recurrence relation

(5.20) S
k
n,m = S

k−1
n−1,m +

min{m,n}
∑

i=2

[n − 1]i−1S
k−1
n−i,m, k = 1, 2, ..., n,

with the boundary conditions S0
n,m = δn,m for m > n and S0

n,m = 0 for m ≤ n.

Proof. Suppose k cycles consist of a cycle which includes n and other k − 1 cycles.

Then, the length of the cycle which include n could be 1, 2, ...,m. When the length of the

cycle is i, i = 1, 2, ...,m, the number of ways to choose member of the cycle is n−1Ci−1,

and the number of permutations of a cycle whose length is i is S
1
i = (i − 1)!. Then,
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contribution of the case to S
k
n,m is [n − 1]i−1S

k−1
n−i,m. By summing over i, the lemma

follows. �

Remark 5.3.2. The number of permutations of n whose decomposition has exactly k

cycles of which are of length two or greater is defined as the associated Stirling number of

the first kind (Comtet, 1974).

Theorem 5.3.3. The distribution of the frequency of the most common allele G is

given by

P[G ≥ g] = 1 −
S

k
n,g−1

Sk
n

, g = 1, 2, ..., n.(5.21)

Proof. By using the conditional distribution (5.2) and Lemma 5.3.1, we obtain

P[G < g|‖C‖ = k] = P[Cg = Cg+1 = · · · = Cn = 0|‖C‖ = k]

=
∑

‖c‖=k,cg=···=cn=0

n!

Sk
n

n
∏

j=1

1

jcjcj!
=

S
k
n,g−1

Sk
n

.(5.22)

�

The sampling formula under neutrality (5.2) and that at the end of a sweep (5.9) lead

directly to a likelihood-ratio test of neutrality to detect a recent sweep, which compares

the null hypothesis of neutrality (γ = ∞) and the alternative hypothesis (γ < ∞). To

perform the likelihood-ratio test, we need to maximize (5.9) for θ and γ. The likelihood

ratio test statistic, Λ, is

(5.23) Λ =
L(γ̂, θ̂)

L0
,

where the denominator is (5.2) and the numerator is (5.9) with replacing γ and θ by their

maximum likelihood estimators. Appealing to large sample results, 2 ln Λ ∼ χ2
2. By using

the sampling formula at the end of a sweep (5.9), it is straightforward to compute powers

of the tests considered here. The powers to detect a sweep at the end of the sweep by a

sample with n = 50 as a function of the mutation rate is shown in Figure 5.3. It is assumed

that γ = 0.1. The number of alleles is set to be the nearest integer to the expectation given

by the distribution under the sweep (5.8). It can be seen that powers become higher as

the mutation rate become higher, which is consistent with the result obtained by extensive

simulations (Zeng et al., 2007). As is shown in Figure 5.3, the likelihood ratio test was

generally slightly less powerful than the test whose summary statistics is the frequency of

the most common allele.
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Figure 5.3. Powers of the Ewens test and the likelihood ratio test as a

function of the mutation rate. n = 50, γ = 0.1.

5.4. Summary

An approximate sampling formula for the infinite allele model at the end of a selective

sweep is obtained, in terms of a weighted binomial mixture of the Ewens sampling formula.

The probability of mixture is firstly obtained by Maynard Smith and Haigh (1974), and

the approximate sampling formula is accurate with probability 1−O(1/ log α). Although

the approximation is clued, the formula will give a simple and useful framework for theo-

retical understanding of allele frequency distribution at the end of a sweep. Barton (1998)

pointed out that distribution of “families” of lineages, each sharing a different common

ancestor at approximately the same time (at the recombining into the b background), have

plenty information. He pointed out that a population size bottleneck could readily distin-

guished from a sweep if one knew homozygosity and number of families (Figure 8 and 9 in

Barton (1998)). In the approximated sampling formula presented here, a family consists

of non recombinants alleles and other singleton families in his terminology. However, these

singleton could be related to each other and make up some families size of which is larger

than one. In this sense, the Watterson homozygosity test could be regarded as a way to

detecting sweep by using both of the homozygosity and number of families.

By using the approximate sampling formula for the infinite allele model at the end of

a sweep, the new likelihood based test to detect recent selective sweep is presented. The

test seems slightly less powerful than the test based on the frequency of the most common
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allele when the mutation rate (size of the neutral region) is low, however, the test gives

estimates of γ. γ involves two parameters: the selection coefficient and the recombination

fraction between the loci. Nevertheless, these two parameters could be easily disentangled

if we know genetic map of a region. Because the test is based on a single likelihood, the

test could be done as standard likelihood ratio test. It is possible to contract a test based

on the composite likelihood. The test should be done by using simulations, but the gain

of power is attractive. Finally, assessment of whether the likelihood based test presented

here is still powerful and robust when it is applied to haplotype data with intra-haplotype

recombination should be addressed.
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