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Abstract

We investigate a mechanism of nonlinear phenomena in laser-plasma interaction, a
laser wakefield excited by intense laser pulses, and the possibility of generating an
intense bright electron source by an intense laser pulse. We need to understand and
further employ some of these phenomena for our purposes. We measure self-focusing,
filamentation, and the anomalous blueshift of the laser pulse. The ionization of
gas with the self-focusing causes a broad continuous spectrum with blueshift. The
normal blueshift depends on the laser intensity and the plasma density. We, however,
have found different phenomenon. The laser spectrum shifts to fixed wavelength
independent of the laser power and gas pressure above some critical power. We call
the phenomenon ”anomalous blueshift”. The results are explained by the formation
of filaments.

An intense laser pulse can excite a laser wakefield in plasma. The coherent wake-
field excited by 2 TW, 50 fs laser pulses in a gas-jet plasma around 1018 cm−3 is
measured with a time-resolved frequency domain interferometer (FDI). The density
distribution of the helium gas is measured with a time-resolved Mach-Zehnder inter-
ferometer to search for the optimum laser focus position and timing in the gas-jet.
The results show an accelerating wakefield excitation of 20 GeV/m with good co-
herency, which is useful for ultrahigh gradient particle acceleration in a compact
system. This is the first time-resolved measurement of laser wakefield excitation in a
gas-jet plasma. The experimental results are compared with a Particle-in-Cell (PIC)
simulation.

The pump-probe interferometer system of FDI and the anomalous blueshift will
be modified to the optical injection system as a relativistic electron beam injector.
In 1D PIC simulation we obtain the results of high quality intense electron beam
acceleration. These results illuminate the possibility of a high energy and a high
quality electron beam acceleration.
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Chapter 1

Introduction

Ultrashort intense laser pulses[1]-[4] have opened a new frontier of science so called
high field physics. In particular, interactions of intense laser pulses with plasma
manifest a large number of nonlinear optical phenomena; optical field ionization
(OFI)[5][6], spectral frequency shifts[7]-[14], self-focusing effect[15], higher harmonics
generation[16][17], generation of ultrafast X-ray radiation[18]-[20], X-ray lasers[21]-
[24], excitation of large amplitude plasma waves[25]-[34] that associate with large
electric fields called ”laser wakefields”, and generation of high energy particles[35]-
[38].

Recently laser-driven plasma accelerators using laser wakefields have been con-
ceived to be the next-generation particle accelerators, promising ultrahigh field par-
ticle acceleration and compact size compared with conventional accelerators[25]. For
this purpose, it is first important to investigate the mechanism of the nonlinear opti-
cal phenomena in laser-plasma interactions; OFI, self-channeling, ionization induced
spectral shift, and excitation of laser wakefield. These phenomena are deeply related
to laser wakefield acceleration of particles. We investigate the laser wakefield exci-
tation and acceleration of bright electron beams due to laser-plasma interactions to
clarify the feasibility of a laser wakefield accelerator (LWFA). We present the study of
ultra-high gradient wakefield excitation by intense ultrashort laser pulses in plasma
according to a diagram as shown in Fig. 1.1.

In chapter 2, the excitation mechanism of wakefields are described. As an in-
tense laser pulse propagates through an underdense plasma, the ponderomotive force
expels electrons from the region of the laser pulse. This effect excites wakefields in
plasma. The wakefield excitation is described by solving the Maxwell equation and
the equation of motion of electrons based on the linear cold fluid model.

In chapter 3, generation of intense laser pulses and measurements of the nonlinear
optical phenomena induced laser-plasma interactions are presented. Thanks to the
advance of intense ultrashort pulse lasers with a chirped pulse amplification (CPA)
technique, in recent years a large number of experiments have been devoted to the
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studies of the intense laser-matter interactions. OFI and self-focusing are observed
in the measurement. Measurements of side and forward scattered radiations indicate
self-channeling that causes filamentation and a long propagation of the intense laser
pulse. The gradient of a refractive index in an ionization front causes a spectral
frequency shift of the short pulse laser[15]-[10]. The spectral blueshift has been ob-
served experimentally in the propagation of intense ultrashort laser pulses through
a gas medium[11]-[14]. This generic blueshift strongly depends on the laser inten-
sity and the gas density. In our experiments, a different type of blueshift has been
discovered. In this blueshift, a whole spectrum of the laser pulse shifts to a fixed
value without regard to the laser intensity and the gas density. We call this effect an
”anomalous blueshift”. We present a physical interpretation of this puzzling effect.

In chapter 4, the gas density measurements of the neutral gas and the laser wake-
field measurement are presented. The gas-jet has been used for many applications
to supply a plasma source in the vacuum chamber[39]-[42]. Since a gas adiabatically
expands through a nozzle at a sound speed, the density distribution changes in space
and time at the same rate as the sound velocity of the gas. Therefore it is necessary
to measure the time-dependent spatial distribution of gas density for controlling the
plasma precisely. For this purpose, we have made a time-resolved measurement of the
gas density distribution produced by the gas-jet. These results visualize dynamics of
a neutral gas ejected from the gas-jet nozzle.

Following the gas density measurements, a direct measurement of the plasma
density oscillation can be performed by means of the ultrafast time-resolved frequency
domain interferometry (FDI)[43]. The FDI measurement is based on the pump-
probe technique consisting of an intense ultrafast pump pulse and two ultrafast probe
laser pulses. In FDI, the plasma electron density oscillations excited by the pump
pulse can be detected as a phase shift of the frequency domain interferogram in
the spectrum produced by two probe pulses. The measurement of the phase shift
as a function of time gives direct information of the amplitude and phase of the
wakefields. Several measurements have been made with FDI to demonstrate wakefield
excitation by ultrashort laser pulses in an underdense plasma[33][34][44]-[46]. These
measurements have been done for a relatively low density plasma in a gas filled
chamber using laser pulse durations around 100 fs and pump peak powers less than
1 TW. In these measurements the probe pulse width limits the highest measurable
density to ∼ 4×1017 cm−3, and the pump pulses were tightly focused to enhance the
plasma wave excitation due to 2D effects. In the 2D dominant regime, where the pulse
width is longer than the spot size, the radial wakefield is higher than the longitudinal
one. Therefore a shorter pulse is preferable to generate a more 1D coherent planar
wakefield at the higher resonant plasma density. The measurement of laser wakefields
has been made in less 2D dominant regime[47]. The measured wakefield is compared
with 1D Particle-in-Cell (PIC) simulation results.

In chapter 5, we present the application of the laser wakefield excitation to electron
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beam acceleration with a small emittance and a small energy spread. We make
a numerical simulation of electron beam acceleration for parameters based on our
experimental results ; i.e. the anomalous blueshift effect and the laser wakefield
measurements.

The LWFA has been experimentally demonstrated and has great potential to pro-
duce ultrahigh field gradients of the order of ∼ 100 GeV/m[26]-[34]. The maximum
energy gain has exceeded 100 MeV with an energy spread of ∼ 100% due to dephasing
and wave-breaking effects in the self-modulated LWFA regime, where thermal plasma
electrons are accelerated[32]. The highest energy gain acceleration which exceeded
200 MeV was observed with the injection of an electron beam at an energy matched
to the wakefield phase velocity in a fairly underdense plasma[33][34].

Hence, from the point of view of applications for particle accelerators, it is crucial
that an ultrashort particle bunch with an energy higher than the trapping threshold
should be injected with respect to the correct acceleration phase of the wakefield to
produce a high quality beam with small momentum spread and good pulse-to-pulse
energy stability. The trapped phase space of the wakefield accelerations are typically
less than 100 fs temporally and 10 µm spatially, respectively. Therefore it is essential
to inject a very short pulse and a low emittance electron beam into the wakefield.
Electron beam injection triggered by an intense ultrashort laser is proposed to an
injector of ultrashort electron beams as ”optical injection”[35]-[38]. We present the
numerical simulation an optical injection scheme based on the FDI system and the
anomalous blueshift.

In conclusion we have investigated the extraordinary nonlinear phenomena mani-
fested via interactions of intense ultrashort laser pulses with gas and plasma; optical
field ionization, ionization induced self-focusing and filamentation, an anomalous
spectral shift and a large amplitude wakefield excitation. On the basis of direct ob-
servations of ultrafast phenomena from different aspects, this thesis reveals that these
phenomena occur in a consecutive strong field process through mutually correlated
mechanism generated above a certain threshold intensity and that they can be con-
trolled with femtosecond optical pulse technique in order to generate a relativistic
bright electron beam with high quality in a laboratory table-top scale. A consecutive
process of nonlinear phenomena is initiated by direct optical field ionization of gaseous
matter due to interaction between an atomic bound Coulomb field and a strong laser
field in a non-perturbed quantum regime as well as the self-focusing effect caused by
a generic nonlinear optical property of medium. This ultrafast ionization through the
OFI mechanism creates plasma in the duration of laser pulse, which has completely
deferent optical and dynamic properties compared with a neutral gas state. The ul-
trafast refractive index change strongly affects propagation of laser pulses to cause a
complex filamentation and a spectral blueshift of coherent radiation. The fast electro
dynamic motion of plasma electrons excites large amplitude coherent wakefields in
plasma due to ponderomotive force of intense laser pulses.
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In this thesis we present particular observations of nonlinear optical phenomena
related to ionization induced self-focusing with filamentation and anomalous spectral
blueshift. The anomalous blueshift is a puzzling phenomenon that shows a coherent
frequency upshift of the whole laser pulse to a fixed frequency independent of the
plasma density and the laser power. We clarify that this phenomenon results from
a complex mechanism of the ultrafast optical field ionization and filamentation to
cause acceleration of the whole laser photons due to a steep gradient of the refractive
index change from neutral gas to plasma. The thesis is focused on wakefield exci-
tation driven by a ponderomotive force of intense ultrashort pulse lasers, of which
tremendous recent progress has demonstrated generation and acceleration of relativis-
tic particle beams. Reported is the first direct measurement of coherent excitation
of ultrahigh gradient wakefields of 20 GeV/m in a gas jet plasma, made by using
the pump-probe femtosecond time-resolved diagnostic on plasma density as well as
precise measurements of gas density distribution. In the numerical simulations based
on the results of these measurements, we confirm generation of a relativistic electron
beam accelerated by laser wakefields to be optically controlled with two colliding
injection pulses of which one pulse can utilize a frequency up-shifted pulse due to
the anomalous blueshift effect. We propose a design of all-laser-based particle ac-
celerator capable of producing a high quality relativistic electron beam with a small
emittance and a narrow energy spread. This synthetic study on laser wakefield ex-
citation illuminates physical mechanisms of complex ultrafast nonlinear phenomena
generated by interaction of ultraintense laser pulses with plasma and gives prospects
for the development of next generation particle accelerators based on laser wakefield
acceleration concept.
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Figure 1.1: A configuration of the dissertation research.
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Chapter 2

Laser wakefield excitation by an
intense laser pulse

2.1 Laser strength parameter

The laser fields are expressed in term of the vector potential A, which in turn is
expressed in the dimensionless form a0 = eA/mec

2, and we assume the condition
∇ · A = 0; where c is the speed of light, me is the rest mass of the electron and e is
the electron charge. When A is a plane wave for the function of exp(iω0t), the laser
strength parameter a0 is

a0 =
eEL

mec2k0
, (2.1)

where ω0 and k0 are the frequency and the wave number of the laser, and EL is
electric field of the laser. For the resistance Ω0 in vacuum of 377 Ω and the relation
of potential EL =

√
2Ω0I in a linear polarization, the equation (2.1) is rewritten by

a0 =
eλ0

√
Ω0I√

2πmec2
= 8.5× 10−10λ0[µm]

√
I[W/cm2], (2.2)

where λ0 is the wavelength of the laser and I is the laser intensity. The laser electric
field EL is given by

EL[TV/m] =
mec

2k0

e
a0 = 2.7× 10−9

√
I[W/cm2]. (2.3)

2.2 Ponderomotive force in plasma

The equation of motion of an electron in the electric field of the laser is

me
dv

dt
= e(E+ v × B), (2.4)
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where B is the magnetic field of the laser. We assume the electric field E is

E = Es cos(ω0t). (2.5)

The position vector r is expanded as r = r0 + δr1 + δr2 + · · ·, where δr1 and δr2

are due to first and second order perturbations, respectively. The velocity and the
electric field are

v =
dr

dt
=
dδr1

dt
+
dδr2

dt
+ · · · = v0 + v1 + v2 + · · ·, (2.6)

E = E|r=r0 + (δr1 · ∇)E|r=r0 + · · · = E1 + E2 + · · ·, (2.7)

To first order, v × B is 0 in Eq. (2.4).

me
dv1

dt
= eE|r=r0 = eEs cos(ω0t), (2.8)

From the integral of Eq. (2.8), v1 and δr1 are given by

v1 =
e

meω0
Es sin(ω0t), (2.9)

δr1 = − e

meω2
0

Es cos(ω0t). (2.10)

No longitudinal wave is generated to first order for the side wave of the laser pulse.
The equation of motion to second order we have

me
dv2

dt
= e[(δr1 · ∇)E|r=r0 + v1 × B1]. (2.11)

B1 can be calculated from the Maxwell equation ∇×E = −dB/dt.
B1 = − 1

ω0
∇× Es|r=r0 sin(ω0t). (2.12)

The equation of motion is given by

me
dv2

dt
=

e2

meω2
0

[cos2(ω0t)(Es · ∇)Es + sin2(ω0t)Es × (∇×Es)]. (2.13)

For the average of time 〈sin2(ω0t)〉 = 〈cos2(ω0t)〉 = 1/2, the equation of motion is

me〈dv2

dt
〉 = e2

2meω2
0

[(Es · ∇)Es + Es × (∇×)Es] =
e2

2meω2
0

∇〈E2
s 〉. (2.14)

The right side of the equation of motion to second order shows the ponderomotive
potential. For E2

s = 2〈E2〉, the ponderomotive force fpond is

fpond =
e2

meω2
0

∇〈E2〉. (2.15)

We introduce the relation of fpond = −e∇φpond. For the electric field in Eq. (2.15) of
the averaged one, the ponderomotive potential is given by

φpond = −mec
2

2e
a2. (2.16)
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2.3 Laser wakefield excited by an intense laser pulse

Plasma provides some advantages as an accelerating medium in laser-driven accel-
erators. Plasma can sustain ultrahigh electric fields as well as optically guide the
laser beam and the particle beam under appropriate conditions. For a nonrelativistic
plasma wave, the acceleration gradients are limited to the order of the wave-breaking
field E0 given by

E0[eV/cm] = mecωp 
 0.96n1/2
e [cm−3], (2.17)

where ωp = (4πnee
2/me)

1/2 is the electron plasma frequency and ne is the ambient
electron plasma density. It means that a plasma density of ne = 1018 cm−3 can
sustain an acceleration gradient of 100 GeV/m.

As an intense laser pulse propagates through an underdense plasma, the pondero-
motive force expels electrons from the region of the laser pulse. This effect excites a
large amplitude plasma wave (wakefield) with a phase velocity approximately equal
to the group velocity of laser pulse, given by vp = c(1− ω2

p/ω
2
0)

−1/2, where ω0 is the
laser frequency. Figure 2.1 presents an overview of the laser wakefield excitation. An
intense laser pulse creating plasma and subsequently exciting a longitudinal plasma
oscillation. The electron motion in plasma is calculated by solving the cold fluid
equation, the equation of continuity and Poisson’s equation.

me
dv

dt
= e(E+ v × B), (2.18)

∂ne
∂t

+∇ · v = 0, (2.19)

∇2Φ = 4πene, (2.20)

where v is the electron velocity, Φ is the potential and ε0 is the dielectric constant
in vacuum. The perturbative expansions of v、n、Φ are performed for |a0| < 1.
The first order motion is just the quiver motion of the electrons. The perturbative
solution of Eqs. (2.18)-(2.20), to second order we have

me
dδv

dt
= e(δφ+ φpond), (2.21)

∂δne
∂t

+∇ · δv = 0, (2.22)

∇2δφ = 4πeδne, (2.23)

where δv is the electron velocity of second order, δne is the electron density of second
order, δφ is the potential of second order and φpond is the ponderomotive poten-
tial(Eq. (2.16)). The second order equations for δne, δφ and δv are(

∂2

∂t2
+ ω2

p

)
δne = − ω2

p

4πe
∇2φpond, (2.24)
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(
∂2

∂t2
+ ω2

p

)
δφ = −ω2

pφpond, (2.25)

(
∂2

∂t2
+ ω2

p

)
δv =

e

m

∂

∂t
∇φpond. (2.26)

The general solution to these linearized from a convolution, nonrelativistic 2D fluid
equations has been given by

δφ(r, ζ) = kp

∫ ∞

ζ
sin[kp(ζ − ζ ′)]φpond(r, ζ ′)dζ ′, (2.27)

where, ζ = z − vpt is the longitudinal speed-of-light-frame coordinate, kp = ωp/c is
the wave number of the plasma. The electron density perturbation is rewritten by

δne = − 1

4πe
∆δφ = − 1

4πe

(
∂2

∂z2
+
1

r

∂

∂r
r
∂

∂r

)
δφ, (2.28)

and

δne
ne

=
a2(r, ζ)

2
+
kp
2

∫ ∞

ζ
sin[kp(ζ − ζ ′)]a2(r, ζ)dζ ′

− 1

kp

∫ ∞

ζ
sin[kp(ζ − ζ ′)]

[
1

r

∂

∂r
r
∂

∂r

a2(r, ζ)

2

]
dζ ′. (2.29)

We make an assumption that the laser pulse is a Gaussian beam in the radial direction
and f(ζ) in the longitudinal direction as

a(r, ζ) = a0 f(ζ) exp

(
− r2

2σ2
r

)
, (2.30)

where σr is the rms-width of the laser pulse in the radial direction. The electron
density perturbation is given by

δne
ne

=
a2(r, ζ)

2

+kp
a2

0

2
exp

(
− r

2

σ2
r

)[
1 +

4

k2
pσ

2
r

(
1− r2

σ2
r

)]

×
∫ ∞

ζ
g(ζ ′) sin[kp(ζ − ζ ′)]dζ ′, (2.31)

where g(ζ) = f 2(ζ). The laser pulse a(r, ζ) and g(ζ) become 0 for the localization of
the laser pulse when ζ → −∞.∫ ∞

−∞
g(ζ ′) sin[kp(ζ − ζ ′)]dζ ′ = A sin(kpζ + δ), (2.32)
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∫ ∞

−∞
g(ζ ′) cos[kp(ζ − ζ ′)]dζ ′ = A sin(kpζ − δ), (2.33)

A2 =
[∫ ∞

−∞
g(ζ ′) cos(kpζ ′)dζ ′

]2
+
[∫ ∞

−∞
g(ζ ′) sin(kpζ ′)dζ ′

]2
, (2.34)

tan δ =
[∫ ∞

−∞
g(ζ ′) cos(kpζ ′)dζ ′

]
/
[∫ ∞

−∞
g(ζ ′) sin(kpζ ′)dζ ′

]
. (2.35)

A is rewritten by a Fourier transform F

A2 = |F{g(ζ)}|2. (2.36)

It should be noted that A can be uniquely obtained in the laboratory from the
2nd order background free autocorrelation of the laser pulse. The electron density
perturbation is given by

δne
ne

=
kpa

2
0

2
exp

(
− r

2

σ2
r

)[
1 +

4

k2
pσ

2
r

(
1− r2

σ2
r

)]
A sin(ωpt+ δ). (2.37)

The longitudinal and radial electric fields can also be obtained from Eq. (2.27)

E = −∇δφ, (2.38)

eEz(r, ζ) = e
∂

∂z
δφ =

mec
2k2

pa
2
0

2
exp

(
− r

2

σ2
r

)
A cos(ωpt− δ), (2.39)

eEr(r, ζ) = e
∂

∂r
δφ = −mec

2kpa
2
0r

σ2
r

exp

(
− r

2

σ2
r

)
A sin(ωpt+ δ). (2.40)

Here, we make an assumption that the laser pulse is also a Gaussian beam in
the longitudinal direction as f(ζ) = exp(−ζ2/2σ2

z), where σz is the rms-widths of
the laser pulse in the longitudinal direction. The electron density perturbation, the
longitudinal electric field and the radial electric field in the linear regime are rewritten
from Eqs. (2.37), (2.39) and (2.40)

A =
√
πσz exp

(
−k

2
pσ

2
z

4

)
, (2.41)

δne
ne

=

√
πkpσza

2
0

2

[
1 +

4

k2
pσ

2
r

(
1− r2

σ2
r

)]
exp

(
− r

2

σ2
r

− k2
pσ

2
z

4

)
sin(kpζ), (2.42)

eEz(r, ζ) =

√
πmec

2k2
pσza

2
0

2
exp

(
− r

2

σ2
r

− k2
pσ

2
z

4

)
cos(kpζ), (2.43)

eEr(r, ζ) = −
√
πmec

2kpσza
2
0r

σ2
r

exp

(
− r

2

σ2
r

− k2
pσ

2
z

4

)
sin(kpζ). (2.44)
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Figure 2.1: An intense laser pulse creating plasma and subsequently exciting a longi-
tudinal plasma oscillation. The horizontal axis, denoted t in the figure, is in a frame
moving with the laser pulse and the ionization front/wakefield. The arrow denotes
the direction of propagation.

The normalized electric fields are shown in Fig. 2.2. The figure indicates that the
electron beam is accelerated in the phase of π/2 to 3π/2, and the electron beam is
focused in the phase of π to 2π. In order to accelerate the electron beam, the electron
beam has to be injected in the phase of π to 3π/2. Figure 2.3 shows the electric fields
excited by a 50 fs laser pulse. The laser strength parameter a0 is 0.7.

The maximum accelerating gradient is achieved on the propagation axis of the
laser pulse at the plasma wavelength λp = πσz i.e. (eEz)max = 2

√
πe−1mec

2a2
0/σz.

The amplitude of the longitudinal wakefield at r = 0 is given in terms of the amplitude
of the plasma density oscillation as

( |eEz|
mecωp

)
r=0

=

( |δne|
ne

)
r=0

[
1 +

4

k2
pσ

2
r

]−1

, (2.45)

This means that measurements of the plasma density oscillation provide a direct
mapping of the wakefields excited by laser pulses as long as the wake is coherent in
the linear regime.
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Figure 2.2: The longitudinal electric field and the radial electric field in the linear
regime.

13



ζ

r [µ
m]

E
r [

G
eV

/m
]

r [µ
m]

E
z [

G
eV

/m
]

ζ

(a)

(b)

Figure 2.3: (a) The longitudinal electric field and (b) the radial electric field in the
linear regime for the laser pulse width of 50 fs and the laser strength parameter a0

of 0.7.
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Chapter 3

High field optical phenomena

3.1 Generation of intense ultrashort laser pulses

The combination of chirped pulse amplification (CPA)[1] and ultra-broadband solid-
state laser medium has made it possible to produce multi-terawatt femtosecond
pulses. Figure 3.1 shows a schematic of CPA system for an intense ultrashort
laser pulse. An ultrashort pulse generated by a mode-locked oscillator is tempo-
rally stretched from the femtosecond to the nanosecond regime with an antiparallel
diffraction grating pair pulse stretcher to decrease the peak power (see Fig. 3.2(a)).
The low-energy and long duration chirped pulse is then amplified to a high energy
commensurate with the saturation fluence of the laser amplifiers. For the Ti:sapphire
laser, the medium of the laser amplifier is excited by a second harmonics of a Nd:YAG
laser at the repetition rate of 10 Hz. The amplified pulse is then compressed to an ini-
tial ultrashort pulse of high peak power with a parallel grating pair compressor(see
Fig. 3.2(b)). In the experiments of nonlinear optical phenomena, the compressed
pulse duration is 90 fs and the maximum pulse energy is 300 mJ at the repetition
rate of 10 Hz.

3.2 Ionization of atoms

At intensities greater than 1018 W/cm2, the field of the laser is much larger than
Coulomb field binding the ground state electron in the hydrogen atom, Eat = 5×109

V/cm. At 1019 W/cm2, the laser electric field is close to 1011 V/cm, 20 times Eat.
The sum of the photon energy over the ionization potential causes multi-photon

ionization. When the absorbed photon number is N , the frequency of the light is ω0

and Nhω0/2π > Ui; A
n+ + Nhω0/2π → A(n+1)+ + e−. When the ionization cross

section is σi[W
−N cm2N s−1], the ionization rate is

W = σiI
N . (3.1)
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Figure 3.1: A schematic of chirped pulse amplification system used for the blueshift
measurement.

Agostini et al.[48] discovered that the ejected electron could absorb photons in excess
of the minimum required for ionization to occur. The study of this excess-photon
ionization, known as ”above threshold ionization” (ATI), has been one of the central
themes of multiphoton physics. Figure 3.3 shows the schematic diagram of energy
levels for multiphoton ionization at threshold and above, together with the energy
spectrum of the emitted electrons. As the intensity I, peaks at higher energies
appear, whose intensity dependence does not follow the lowest order perturbation
theory prediction according to which the ionization rate for an N -photon process is
proportional to IN .

Photoionization of materials is determines by the Keldysh tunneling parameter
κ[5].

κ = ω0

√
2meUi

eE0

=

√
Ui

2φp
, (3.2)

where Ui is the ionization potential, ω0 is the laser frequency, E0 is the electric field
of the laser and φp is the ponderomotive potential.

φp =
e2E2

0

4meω2
= 9.33× 10−14I[W/cm2]λ2

0[µm]. (3.3)

Multi-photon ionization dominates for κ > 1.
Optical field ionization (OFI) causes the electric field of laser for κ < 1. A

schematic of OFI is shown in Fig. 3.4. Figure 3.4(a) shows the tunneling ionization
and Figure 3.4(b) shows the barrier suppression ionization. The red lines correspond
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(a)

(b)

Figure 3.2: The matched stretcher and compressor. The stretcher (a) is composed of
a telescope of magnification 1 two antiparallel diffraction gratings. The compressor
(b) is composed of a pair of parallel gratings in which the optical length for the blue
is shorter than that for the red.
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to the Coulomb potential. The blue lines correspond to the contribution to the po-
tential energy due to the instantaneous laser electric field. The green lines correspond
to the total effective potential energy. The characteristic time scale for the electron
velocity to change in the atom by the electric field, τ , has to be shorter than the
inverse frequency of the laser for direct ionization by the electric field of the laser.

τ =

√
2meUi

eE0
<

1

ω0
. (3.4)

In addition, the electron passes through the potential wall when the Coulomb poten-
tial decreases due to the strong electric field of the laser. The Coulomb potential in
the electric field is

V (x) = −Ze
2

x
− eE0x. (3.5)

The tunneling ionization starts when the potential is same as the ionization potential,
the minimum electric field of the tunneling ionization is

E0 =
U2
i

4e3Z
, (3.6)

and the threshold of the laser intensity for tunneling ionization is

Ith[W/cm2] =
cU4

i

128πe6Z2
=

2.2× 1015

Z2

(
Ui[eV ]

27.21

)4

. (3.7)

In order to ionize helium gas perfectly, the threshold of the laser intensity is 3.9×1016

W/cm2 for the ionization potential of 78.9 eV.

In our calculations we choose the tunneling formula of Ammosov et al.[6] to
calculate the OFI rate. The Ammosov et al. formula is in better agreement with the
experimental data[49]. The ionization rate W is given by

W [s−1] = 1.61ωau
Z2

n4.5
eff

[
10.87

Z3

n4
eff

Eau

EL

]
exp

[
−2

3

Z3

n3
eff

Eau

EL

]
, (3.8)

where ωau of 4.1 × 1016 s−1 is the atomic unit of frequency, Eau of 0.51 TV/m is
the atomic field strength, EL is the laser electric field, the effective quantum number

neff = Z/
√
Ui/UH , Z is the charge of the ion, and UH of 13.6 eV is the hydrogen

ionization potential. To obtain estimation for the ionization threshold of gases the
barrier suppression ionization model is conveniently used, where the strong external
electric field of the laser is superimposed to the Coulomb potential of the atom or
ion.
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Figure 3.3: A schematic diagram of energy levels for multiphoton ionization at thresh-
old and above, together with the energy spectrum of the emitted electrons.
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Figure 3.4: A schematic diagram showing (a) tunneling ionization and (b) barrier
suppression ionization. The red lines corresponds to the Coulomb potential. The blue
lines corresponds to the contribution to the potential energy due to the instantaneous
laser electric field. The green lines corresponds to the total effective potential energy.
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3.3 Self-focusing of an intense laser pulse

3.3.1 Principle of self-focusing

Self-focusing occurs due to the nonlinear index of refraction when an intense laser
pulse propagates in materials. The refractive index Ng is

Ng = N0 +N2I, (3.9)

where N0 is the usual index of refraction, N2 is the nonlinear index of refraction in
units of cm2/W, and I is the intensity of the laser in units of W/cm2. For helium
gas, the usual refractive index NHe is

NHe = 1 + 35× 10−6 × p, (3.10)

where p is the gas pressure in units of atm. Using the experimentally determined
value for the nonlinear susceptibility χ(3) = 2.3 × 10−39[esu][50] for helium gas and
the formula for the nonlinear index of refraction from the nonlinear susceptibility[51]

N2[cm
2/W] =

96π2ng
N0c

107χ(3)[esu], (3.11)

where ng is the gas density in cm−3. The refractive index N varies with the laser
intensity I. We make an assumption that the laser pulse is a Gaussian beam of which
central intensity is stronger than the outerward intensity. The self-focusing results
from the light bent toward the part with the high refractive index.

The refractive index of plasma Ne is given by

Ne =

√
1− ne

nc
, (3.12)

where ne[cm
−3] = 2.69 × 1019 × p is the plasma density, nc = π/reλ

2
0 is the critical

density, and re is the classical electron radius.
It is known that when a laser pulse with sufficient power propagates in a gas,

it can self-focus due to the effects of the nonlinear index of refraction of the gas.
Figure 3.5 shows a schematic of the self-focusing with filamentation of the intense
laser pulse in a gas. The self-focused laser pulse produces plasma. The laser pulse
is defocused and makes filaments due to the small refractive index in plasma. Each
filament is propagating with intensity near the threshold intensity for the ionization
of the gas.

3.3.2 Measurement of self-focusing and filamentation

Figure 3.6 shows a schematic of the experimental setup for the measurement of non-
linear laser-plasma phenomena. The maximum pulse power was 2.4 TW with a
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Figure 3.5: A schematic of self-focusing and filamentation of an intense laser pulse
in gas.

repetition rate of 10 Hz. The 100 fs laser pulse with an initial spot size of 45 mm
was focused using an f/10 off-axis parabolic mirror (OAP) in a gas chamber to a spot
size in vacuum of 13 µm with the focal length of 44.3 cm.

Figure 3.7 shows the plasma recombination fluorescence measured by a charge-
coupled-device (CCD) camera (see the bottom of Fig. 3.6) using a blue-pass filter
with a bandwidth between 410 and 532 nm full width at half maximum (FWHM)
for a single laser shot with energy of 165 mJ at helium gas pressures of (a) 1 Torr,
(b) 20 Torr, (c) 400 Torr and (d) 760 Torr. The figures on the right side in Fig. 3.7
are lineouts of the corresponding CCD image integrated across the pulse propagation
direction. These images are interpreted as approximately representing the plasma
density. The exposure time is 100 ms. At 1 Torr the intensity of the scattered
radiation increases as the pulse focuses. There is a dip in the intensity at the focus
point. This is due to geometric effects since we are observing a line integration of
the intensity. At the focus the ionized plasma is narrower. This agrees with the
propagation of a Gaussian pulse. Over 20 Torr the dip is not apparent indicating
non-Gaussian pulse propagation. Also, the peak intensity is shifted towards the laser
injection direction indicating that the focus point of the pulse has moved backwards
with increasing the gas pressure.

Figure 3.8 shows the Thomson scattering measured by a CCD camera shown at
the bottom of Fig. 3.6 using an interferential filter centered at the laser wavelength
of 793 nm with a width of 10 nm FWHM for a single laser shot with energy of 165
mJ for helium gas pressures of 1, 20, 400, and 760 Torr. These images represent
the laser intensity multiplied by the plasma density. The figures on the right side
in Fig. 3.8 are lineouts of the corresponding CCD image integrated across the pulse
propagation direction. The exposure time is 100 ms which corresponds to the time
between injected laser pulses. In all the figures the laser propagates from the right
to the left. A clear transition can be seen between Fig. 3.8(a) at the pressure of 1
Torr emission and Fig. 3.8(b) at the pressure of 20 Torr emission. In the low pressure
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case the intensity profile of the scattered radiation smoothly varies from the right
to the left at the intensity peak near the focus point. In the higher pressure case
spikes in the intensity can be seen. At 20 Torr both spikes and a smoothly varying
portion in the light intensity can be seen whereas at 400 and 760 Torr only spikes
are observed. In the case of 20 Torr this seems to indicate that some portion of the
pulse is self-focused while other parts of the pulse are not.

Figure 3.9 also shows the Thomson scattering measured by a CCD camera using
an interferential filter centered at the laser wavelength of 793 nm with a width of 10
nm FWHM for the helium gas pressure of 20 Torr for a single laser shot with energies
of 22, 66, and 165 mJ. The intensity of Thomson scattering increases with the laser
energy.

Figure 3.10 shows the forward scattered radiation image for the laser energy of
230 mJ at a helium gas pressure of (a) 23 Torr and (b) 760 Torr measured by a CCD
camera focused approximately at the vacuum focus point. At the gas pressure of 760
Torr more filaments appear than those at the pressure of 23 Torr. This is a result of
the difference of the nonlinear refractive index between 23 Torr and 760 Torr. The
number of spikes in Fig. 3.8 and the number of filaments in Fig. 3.10 are correlated.
It has been known that filamentation of the laser pulse in the gas can occur[52] for
P > Pcr, and that the each filament has a power comparable to Pcr. The critical
power Pcr at which self-focusing occurs is given by[53]

Pcr =
π(0.6λ0)

2

8N0N2
. (3.13)

where λ0 is the laser wavelength. The number of filaments is roughly given by N 

P/Pcr. The critical power decreases with increasing the gas density, and the number
of filaments is inversely proportional to the gas density form Eqs. (3.11) and (3.13).
The critical power is 46 GW for 760 Torr. With a laser power of 2.4 TW there should
be approximately 50 filaments for 760 Torr. A large number of filaments appears to
occur in the experiment, although the exact filament number is difficult to determine.

The saturation intensity of the individual filament is the ionization threshold
intensity of gas, the diameter d of the filament can be calculated by[54]

d =
λ0

4E0

(
N0

N2

)1/2

, (3.14)

where E0 is the breakdown or ionization threshold field of the gas. We can obtain
an estimate of the size of the filaments by using the threshold intensity for singly
ionizing helium of 1.47× 1015 W/cm2 in Eq. (3.14) and the corresponding values for
the nonlinear index of refraction. For 760 Torr the filament size is 36 µm. If we look
at the scale size of the bright spots which can be distinguished, they range between
10 and 50 µm in size. This is in rough agreement with the theoretical prediction.
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Figure 3.6: The experimental setup for the measurement of nonlinear laser-plasma
phenomena.
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Figure 3.10: Forward scattered radiation image at the focus point for a laser energy
of 230 mJ, and helium gas pressure of (a) 23 Torr, and (b) 760 Torr.
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3.4 Blueshift of an intense laser pulse

3.4.1 Principle of blueshift

Since each filament is propagating with intensity near the threshold intensity for
ionization of the gas, each filament is copropagating with density gradient. Normal
blueshifted femtosecond laser pulses have been observed experimentally and a shift
has been attributed to ionization[11]-[13]. It has been shown theoretically and nu-
merically that a laser pulse which is propagating in copropagating ionization front
will up-shift in frequency[7].

A phase shift ∆φ can be expressed as the gradient of a refractive index along the
propagation direction,

∆φ =
∫
∆N

ω0

c
dz, (3.15)

where ∆N is the defference of the refractive index and ω0 is the frequency of the laser
pulse. The frequency shift ∆ω is given by

∆ω = −∂∆φ
∂t

= −ω0

c

∫ cτ

0

∂∆N(z, t)

∂t
dz, (3.16)

where cτ is the interaction length. The refractive index in an underdense plasma, i.e.
ne � nc, is given by

Ne =
(
1− ne

nc

)1/2


 1− 1

2

ne
nc
, (3.17)

where ne is the plasma electron density, nc = π/reλ
2
0 is the critical density, re =

e2/mec
2 is the classical electron radius, and λ0 is the wavelength of the laser pulse.

The gradient of the refractive index is

∂∆N(z, t)

∂t
=

(1− ne(z)/2nc)− 1

L(z)/c
= −ne(z)

2nc

c

L(z)
, (3.18)

where L(z) is the length of the ionization front. The frequency shift is given by

∆ω =
ω0

2nc

∫ cτ

0

ne(z)

L(z)
dz, (3.19)

where cτ is the laser-ionization-front propagating distance. Assuming a linear density
gradient this shift is given by

∆ω = ω0
cτ

2L0

ne
nc

= ω0
cτ

2L0

ω2
p

ω2
0

, (3.20)

where L0 is the length of the ionization front for the linear density gradient and ωp
is the plasma frequency.

29



Here, we consider a laser pulse in the ionization front. The dispersion relation is

ω2
0 = ω

2
p + c

2k2, (3.21)

where k is the wave number of light. The phase velocity of the pulse is vp = ω0/k.
If the frequency shift remains small compared to ω0, the local phase velocity of the
pulse is

vp
c
=

(
1− ω2

p

ω2
0

)−1/2

, (3.22)

For ω0 � ωp the local phase velocity of the pulse is approximately

vp
c
= 1 +

ω2
p0

2ω2
0

ω2
p

ω2
p0

= 1 +
ω2
p0

2ω2
0

ne
n0
, (3.23)

where ωp0 and n0 are the plasma frequency and the plasma density after ionization,
respectively. Assuming a linear density gradient a frequency shift is given as photon
acceleration by

∆ω

ω0
=
dvp
dζ
τ, (3.24)

where ζ = z − ct. The phase velocity gradient is given by

dvp
dζ

=
ω2
p0

2ω2
0

c

n0

dne
dζ

=
ω2
p0

2ω2
0

c

L0
, (3.25)

The frequency shift is rewritten in the form

∆ω

ω0
=
cτ

2L0

ω2
p0

ω2
0

, (3.26)

The equation of the frequency shift calculated from photon acceleration is the same
as the equation of the frequency shift calculated from gradient of the refractive index.
In other word, blueshift is photon acceleration.

Here, we rewrite the plasma frequency ωp0 to ωp. We obtain the same equation
as Eq. (3.20). The shifted laser frequency ωs is

ωs = ω0

(
1 +

cτ

2L0

ω2
p

ω2
0

)
. (3.27)

For cτ � L0ω
2
0/ω

2
p we can rewrite the equation to

ωs = ω0

(
1 +

cτ

L0

ω2
p

ω2
0

)1/2

. (3.28)
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3.4.2 Measurement of anomalous blueshift

In Fig. 3.6 the CCD camera replaced to a spectrometer to measure the forward
scattered radiation spectrum.

Figure 3.11 shows the forward scattered radiation spectrum for various pulse
energies after the laser pulse has traveled through the gas chamber filled with helium
gas at (a) 1 Torr, (b) 20 Torr, (c) 400 Torr, and (d) 760 Torr. In Fig. 3.11(a) the
spectrum at 1 Torr remains centered near the initial laser wavelength of 793 nm with
shoulders at the laser wavelength of 787 nm independent of the energy of the laser
pulse. At 20 Torr in Fig. 3.11(b) a blue-shifted peak in the spectrum can be seen
above about 50 mJ (0.5 TW) of laser peak power. The peak in the blue-shifted
component of the radiation remains centered around 746 nm independent of the laser
peak power. At higher power the whole spectrum shifts to this value. The amount
of blueshift remains fixed above specific pressures and laser powers. We call the
phenomenon ”anomalous blueshift”. The anomalous blueshift of the laser pulse is
observed to be about ∆λ/λ0 ≈ 5.9% at the higher pressure than 20 Torr.

We compare Fig. 3.8 and Fig. 3.11. At 1 Torr we can observe no filamentation
and no anomalous blueshift. At 760 Torr a whole laser pulses are blue-shifted and
self-focused with filaments. At 20 Torr these are between the 1 Torr case and 760
Torr case in both figures. The fact implies that the anomalous blueshift occurs due
to the filamentation.

When different gases are used in the chamber, the same blueshift phenomenon
occurs. In the case of argon gas at 26 Torr and laser energy of 38 mJ (0.4 TW)
a complete blueshift of the laser pulse appears at 749nm (see Fig. 3.12(a)). This
is at lower pressure and power than in the case of helium. Figure 3.12(b) shows
the spectra for the case of nitrogen gas. It can be seen that the complete blueshift
to 742 nm is observed even at 10 Torr for a laser energy of 206 mJ (2 TW). The
anomalous blueshift of the laser pulse for argon and nitrogen are observed to be
about ∆λ/λ0 ≈ 5.6% and ∆λ/λ0 ≈ 6.4%, respectively. For these gases the amount
of blueshift is also independent of the laser power and the density of gas.

3.4.3 Analysis of anomalous blueshift

For P > Pcr the gradient scale length becomes constant. Assuming a linear density
gradient this shift is given by[7]

ωs = ω0

√√√√1 +
cτ

L0

ω2
p

ω2
0

= ω0

√
1 +

cτ

L0

ne
nc
, (3.29)

where τ is the propagation time, L0 is the gradient scale length, ωp is the plasma
frequency, and ω0 is the initial laser frequency.
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Figure 3.11: Forward scattered radiation spectrum after the laser pulse has through
the chamber in helium gas at (a) 1 Torr, (b) 20 Torr, (c) 400 Torr, and (d) 760 Torr
for various laser energies.
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Figure 3.13 shows a schematic of the laser propagation due to balancing the plasma
refraction and natural diffraction against the self-focusing. Figure 3.13(a) shows a
profile of a laser with self-focusing. Figure 3.13(b) shows a lineout of Thomson
scattering. Figure 3.13(c) shows the Thomson scattered radiation at 20 Torr for a
laser energy of 165 mJ. The propagation of the laser pulses is based on the refraction
and the self-focusing with filamentation. We can estimate the propagation time τ
to be the depletion time of the filament. Here we assume that the main depletion
mechanism is due to refraction of light. The depletion distance is approximately
equal to the refraction distance. So, the propagation distance cτ is roughly equal
to the refraction distance. This is based on recent simulations of the propagation of
high intensity lasers in air where the main arrest mechanism was attributed to the
refraction of the light in the plasma[55]. The refraction distance lD is roughly given
by[56]

lD =
λ0

2

nc
ne
, (3.30)

where ne is the plasma density, nc is the critical plasma density, and λ0 is the laser
wavelength. The refraction and the self-focusing cause the spike in Fig. 3.13(b). This
refraction distance is roughly equal to the spike distance. The distance is measured
from the Thomson side scattered images in Figs. 3.8 and 3.9. The distances of the
spikes ranged between 0.5 and 1.5 mm at 20 Torr. The calculated refraction distance
is about 1 mm. The spike distance decreases with increasing pressure of the gas.
Substituting Eq. (3.30) into Eq. (3.29), then we obtain

ωs = ω0

√
1 +

λ0

2L0
, (3.31)

which indicates that the frequency shift is independent of the plasma density, type
of gas, and laser intensity. The amount of shift just depends on λ0 and L0. L0 is
roughly constant due to the filamentation that fixes the maximum intensity at the
ionization threshold of the gas.

For P > Pcr the intensity is given by

Ii =
Pcr

π(d/2)2
, (3.32)

where d is the diameter of the filament. The intensity ca be rewritten by Eqs. (3.13)(3.11)
and (3.14). We can obtain

Ii =
2.88E2

0

N2
0 c

. (3.33)

The usual refractive index of gas is nearly equal to 1 (see Eq. (3.10)). The laser
intensity is independent of the gas density and the laser power. In other words, the
laser intensity is nearly equal to the intensity of the ionization threshold, since each
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Table 3.1: The amount of blueshift for various gases.
Gas Experimental results [%] Theoretical value [%]
He+ 5.9 6.0
N3+ 6.4 6.6
Ar3+ 5.6 5.4

filament is propagating with intensity near the threshold intensity for ionization of
the gas. The minimum threshold of the laser intensity is 1.47 × 1015 W/cm2 for
the ionization potential of 24.6 eV (see Eq. (3.7)). The laser intensity become higher
than the ionization threshold intensity like a Fig. 3.13(a). Approximately, we make an
assumption that the laser intensity Ii is slightly higher than the ionization threshold
intensity Ith, i.e.

Ii = 1.0004Ith. (3.34)

For helium gas L0 is 3.2 µm (10.7 fs) from Eqs. (2.3) and (3.8). We obtain the
frequency shift ∆λ/λ0 = 6.0% from Eq. (3.31). In addition, the ionization thresholds
for nitrogen and argon are lower than the ionization thresholds for helium. We make
an assumption that the nitrogen and argon are ionized to N3+ and Ar3+ for the pre-
focusing with the OAP. Table 3.1 shows the experimental results and the theoretical
amount of blueshift for various gases. The experimental results are in good agreement
with the theoretical predictions.

In the anomalous blueshift, the whole spectrum shifts to a fixed wavelength. This
mechanism is illustrated in Fig. 3.14. The leading front of the laser pulse ionizes gas
with blueshift, and the retarding part behind the ionization front of the laser pulse
propagates in plasma without blueshift as shown in Fig. 3.14(a). Since the phase
velocity of a laser pulse in the ionization front is slower than that in plasma due to
the difference of refractive indexes between gas and plasma, the leading part with
blueshift moves behind the retarding part as shown in Fig. 3.14(b). Eventually, the
whole spectrum shifts to the fixed wavelength by repeating ionization with blueshift
and filamentation in a distance of spikes as shown in Fig. 3.13.
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Figure 3.13: A scheme for the self-focusing and side scattering. (a) shows a profile of
a laser with self-focusing, (b) shows a lineout of laser intensities, and (c) shows spike
distance measured by side scattered radiation using an interferential filter centered
at 793 nm with a width of 10 nm FWHM at 20 Torr for a laser energy of 165 mJ.
The spike distance is a separation of the self-focusing.
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Figure 3.14: A schematic of the mechanism for the anomalous blueshift. The solid
line shows evolution of the plasma density ne. The red lines show the original laser
pulse and the blue lines show the blue-shifted laser pulse. The blueshift proceed from
(a) to (e).
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Chapter 4

Observation of laser wakefield

4.1 Measurement of gas density distribution

4.1.1 Principle of gas density measurement

We measure the gas density distribution shown in Fig. 4.1. In the Mach-Zehnder
interferometer, a change of the optical path length due to the difference of the speed
of light in the material produces a fringe phase shift due to the variation of the
refractivity for the two optical paths. The phase shift ∆φ is given by

∆φ =
∫
(N2 −N1)

ω

c
dL, (4.1)

where N1 is the refractive index in vacuum, i.e. N1 = 1, N2 is the refractive index of
the gas, ω is the frequency of the probe laser, c is the speed of light in vacuum, and
L is the interaction distance of the probe beam with the gas. Assuming adiabatic
expansion of the gas for the pressure p [atm] at the temperature T [K], the refractive
index difference is given by

∆N = N2 −N1 = (Ng − 1)p
273

T
. (4.2)

where Ng is the refractive index at 0 ◦C and 1 atm. The phase shift is obtained as

∆φ

2π
= 3.74× 10−14(Ng − 1)

d · L
λ
, (4.3)

where L is the interaction length in mm, λ is the wavelength of the probe laser in
nm, and d is the gas density in cm−3. Table 4.1 shows the refractive index of various
gases.

For helium gas (Ng = 1.000 035) at 24 ◦C, the gas density is given by

d = 7.65× 1017 λ

L

∆φ

2π
. (4.4)
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Table 4.1: The refractive index of various gases
Gas (Ng − 1)× 106

He 35
Ne 67
Ar 283
Xe 707
H2 140
N2 298

The gas density can be calculated by Eq. (4.4) for a gas target with uniform
thickness. For a gas target with an arbitrary shape, we must correct the interaction
distance along the path of each ray of the probe beam. Assuming that the gas
density distribution with respect to radial position r from the nozzle center has axial
symmetry as d = f(r), the phase shift is

∆φ

2π
= C

∫
f(r)dy, (4.5)

where C is a constant. The gas density distribution can be calculated from the Abel
inversion technique as follows. Let us consider a cylindrically sliced gas target with
thickness ∆r shown in Fig. 4.2. The phase shift along the line k can be calculated as

∆φ

2π
(k) = C ·

k∑
i=1

d(i) · Lk(i), (4.6)

Here
Lk(i)i=1,k−1 =

√
(r − (i− 1)∆r)2 − x2(k)−

√
(r − i∆r)2 − x2(k), (4.7)

Lk(k) =
√
(r − (k − 1)∆r)2 − x2(k), (4.8)

x(k) = r +
∆r

2
− k∆r, (4.9)

where d(k) is the density at the kth sliced cylinder, Lk(i) is the ith length of line k
and the x(k) is the distance of the line k from the nozzle axis. The gas densities d(i)
can be obtained from a set of simultaneous linear equations (4.6).

4.1.2 Time-resolved gas density measurements

The gas density was measured with the Mach-Zehnder interferometer consisting of a
He-Ne laser (λ = 632.8 nm), two mirrors, and two beam splitters, shown in Fig. 4.1.
The laser beam expanded to 1 cm in diameter is split into two beams which travel
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Figure 4.1: A schematic of the Mach-Zehnder interferometer for measurement of the
gas density distribution of the gas-jet.
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Figure 4.2: An illustration of the reconstruction of the gas density distribution of the
gas-jet with axial symmetry by the Abel inversion technique.
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along separate paths. The gas-jet nozzle with an orifice diameter of 0.8 mm is placed
inside a vacuum chamber evacuated to 10−5 Torr. One of the two beams travels
through the gas-jet in the vacuum chamber. The two laser beams are merged to make
an interferogram on a screen as shown in Fig. 4.3. The interferogram is captured with
a charge-coupled-device (CCD) camera with an image intensifier. The time-resolved
measurement can be made by gating the CCD camera triggered with some delay
between the CCD camera and the gas-jet. The room temperature was controlled at
24 ◦C within 0.3 ◦C during this measurement. The opening duration of the gas-jet
valve was 2 ms and the gate time of the CCD camera was 5 µs. The distribution of
the gas density can be calculated from the phase shift and Eq. (4.4).

Figures 4.4(a)-(f) show contour plots of the gas density distribution of N2 gas at a
backing pressure of 25 atm with a delay time of (a) 1.0, (b) 1.2, (c) 1.4, (d) 1.6, (e) 1.8
and (f) 2.0 ms. Figures 4.5(a)-(f) show contour plots of the gas density distribution
of N2 gas with a delay time of 1.6 ms at a backing pressure of (a) 5, (b) 10, (c) 15,
(d) 20, (e) 25, and (f) 30 atm. The gas flows from bottom to the top starting at
y = 0. The position x = 0 is the center of the gas-jet nozzle. The gas expands to
up and sides like a cone and the gas density becomes stable at the distance 1.5 mm
from the nozzle.

Figure 4.6 shows a contour plot of the He gas density distribution at a backing
pressure of 30 atm with a 1.6 ms delay. Figure 4.7(a) shows the radial distribution
0.7 mm below the end of the gas-jet nozzle and (b) shows the axial distribution along
the nozzle axis. The time-resolved measurements show that the gas density builds
up quickly to a constant value in 0.8 ms as shown in Fig. 4.8. From measurements of
nitrogen gas, it is found that the gas density distribution is uniform at the point of
1.5 mm away from the gas-jet nozzle. From these measurements, we find the optimum
laser focus position at 1.5 mm off the gas-jet and a delay of 1.6 ms to provide an
appropriate gas density for wakefield excitation. Since the gas density is inversely
proportional to the square of the distance from the nozzle and linearly proportional
to the backing pressure, the neutral gas density of He gas is ≈ 3.6×1017 cm−3 at the
pump laser focus with a backing pressure of 10 atm.
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Figure 4.3: The interferogram of nitrogen gas ejected from the gas-jet at a backing
pressure 25 atm. (a) shows a typical image taken by the CCD camera and (b) its
2D projection of the fringe phase shifts at the transverse distance x and the axial
distance z from the center of the gas-jet nozzle.
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(c) (d)

(e) (f)

Figure 4.4: Contour maps of the gas density distribution of N2 gas at a backing
pressure of 25 atm with a delay time of (a) 1.0 ms, (b) 1.2 ms, (c) 1.4 ms, (d) 1.6
ms, (e) 1.8 ms and (f) 2.0 ms.
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Figure 4.5: Contour maps of the gas density distribution of N2 gas at a backing
pressure of (a) 5 atm, (b) 10 atm, (c) 15 atm, (d) 20 atm, (e) 25 atm and (f) 30 atm
with a delay time of1.6 ms.
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Figure 4.6: A contour map of the gas density distribution of He gas at a backing
pressure of 30 atm with a delay time of 1.6 ms.
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Figure 4.7: The gas density distribution measured for He gas at a backing pressure
of 30 atm with a delay time of 1.6 ms: (a) is the radial distribution 0.7 mm below
the end of the gas-jet nozzle and (b) the axial distribution along the nozzle axis.
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Figure 4.8: The gas density distribution of He gas 0.7 mm below the end of the gas-jet
for the backing pressure of 30 atm as a function of the delay time between the gas-jet
opening time and the CCD camera gating time.
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4.2 Measurement of wakefields

4.2.1 Frequency domain interferometry

Let us consider two probe pulses displaced temporally by a time T with a phase shift
∆φ induced by a change in the medium between the two pulses, where the electric
fields are given by

E1(t) = E(t) exp(iω0t), (4.10)

E2(t) = E(t− T ) exp(iω0(t− T ) + ∆φ), (4.11)

and ω0 is the laser frequency. The power spectrum I(ω) measured by the spectrometer
is obtained from the Fourier transform of the sum of the two fields:

I(ω) = |F [E1(t) + E2(t)]|2 = 2|E(ω − ω0)|2(1 + cos(ωT +∆φ)). (4.12)

Thus we have frequency-domain fringes separated by 2π/T with a phase shift ∆φ
in the spectrum. The phase difference of the two pulses traveling through different
refractive index materials is

∆φ =
∫
(N2 −N1)

ωpr
c
dL, (4.13)

where N1 is the refractive index of the first probe pulse, N2 is the refractive index
of the second probe pulse, ωpr is the frequency of the probe pulses, c is the speed of
light, and L is the interaction length. The refractive index in an underdense plasma,
i.e. ne � nc, is given by

Ne =
(
1− ne

nc

)1/2


 1− 1

2

ne
nc
, (4.14)

where ne is the plasma electron density, nc = π/reλ
2
pr is the critical density, re =

e2/mec
2 is the classical electron radius, and λpr is the wavelength of the probe laser.

Assuming that the interaction length is approximately a plasma length Lp produced
in the gas-jet, the phase difference is calculated as

∆φ 
 −π Lp

λpr

δn

nc
, (4.15)

where δn = n(t+ T )− n(t) is the density difference between the time t and t+ T at
the focus point.

Since the density perturbation oscillates as

sin[ωp(t+ T )]− sin(ωpt) = 2 sin(ωpT ) sin
(
ωpt+

ωpT

2
+
π

2

)
, (4.16)

the measured phase difference is maximized in the case where the time separation of
the two probe pulses is T = nTp/2, n = 1, 3, · · ·, where Tp = 2π/ωp is the period of
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the electron plasma wave. Thus the amplitude sensitivity factor[44][45] due to the
mismatch of the time separation is

St = 2 sin(ωpT ) = 2 sin(2πT/Tp). (4.17)

The finite temporal and spatial widths of the probe pulses cause averaging of the
phase shift reducing the amplitude. Estimates of the sensitivity factors due to aver-
aging effects can be obtained for a Gaussian intensity profile of the probe pulse with
a temporal rms width σzpr/c and a radial rms width σrpr. The temporal sensitivity
factor is

Sz =

∫
cos(ωpt) exp(−c2t2/2σ2

zpr)dt∫
exp(−c2t2/2σ2

zpr)dt
= exp

(
−σzprkp

2

)
, (4.18)

and the spatial sensitivity is

Sr =

∫
(1− r2

σ2
r
) exp(− r2

σ2
r
) exp(− r2

2σ2
rpr
)dr∫

exp(− r2

2σ2
rpr
)dr

=
1 + (σrpr/σr)

2

(1 + 2(σrpr/σr)2)3/2
, (4.19)

where σr is the rms radius of the pump pulse. Thus the measured phase difference is
given by

(∆φ)m = −πStSzSr Lp

λpr

δn

nc
. (4.20)

4.2.2 Measurement of the plasma electron oscillation and the
phase of the plasma wave

The experimental setup of the FDI is shown in Fig. 4.9. The 2.6 TW 10 Hz
Ti:sapphire laser pulse at a wavelength of 800 nm with a maximum energy of 135 mJ
and a duration of 52 fs (FWHM) is split into two beams. The reflected beam (80%)
is used as the pump pulse and the transmitted beam as the probe beam, which is fre-
quency doubled with a BBO crystal and transported into a Michelson-interferometer
to make two collinear pulses with an adjustable time delay. The time delay between
the pump and the probe pulses is adjusted with a delay line. The probe beam is
combined collinearly with the pump beam by transmission through a dichroic beam
splitter reflecting the pump beam. The pump and probe pulses are focused by an
off-axis parabolic mirror with a focal length of 15 cm. The focal spot images taken
with a CCD camera show that the pump focused intensity profile is approximately
a Gaussian distribution with a rms radius (at 1/e) σr = 8.9 µm, while the probe
beam radius is σrpr = 3 µm and centered on the pump beam. The peak pump in-
tensity is 8.4 × 1017 W/cm2 (a0 
 0.6), producing fully ionized He gas in the focal
region. The probe beam is separated from the pump beam with a dichroic beam
splitter after passing through the plasma and guided through an optical fiber into
the spectrometer to analyze the interferograms. A part of the probe beam is sent
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directly to the spectrometer to make the reference fringes. The spectrometer is a
Czerny-Turner type with a focal length of 1.33 m and a grating of 1800 gr/mm. The
spectral resolution is 0.06 Å.

The phase shift ∆φ is obtained from the difference of the peak position between
the interferograms of the probe and the reference, shown in Fig. 4.10. The phase
shift is calculated from the peak of the correlation function between the probe and
reference spectrum using a spectral analysis technique[57]. The correlation function
C(Y1, Y2) between two spectra Y1 = f(ω) and Y2 = g(ω) is defined as

C(Y1, Y2)(ω
′) =

∫ ∞

−∞
f(ω + ω′)g(ω)dω. (4.21)

The function C(Y1, Y2) becomes a maximum for the frequency ω′ = ∆φ/T . The
correlation function is calculated using the Fourier transform:

C(Y1, Y2)(ω
′) = F−1[F [f ]F [g]], (4.22)

where F denotes the Fourier-transform. Figure 4.11 shows the correlation function
for the two spectra of the probe and the reference interferograms. We obtain the
phase difference (∆φ)m from the peak frequency ω′

pk of the correlation function.

In this experiment, the time separation was adjusted to 720 fs (∼ 5.5Tp), which
was obtained from the fringe period of the frequency-domain interferogram shown
in Fig. 4.10. The time separation T is given by T = λ2

pr/(c∆λ), where λpr = 400
nm is the wavelength of the probe laser and ∆λ = 0.74 nm is the fringe period of
the reference interferogram in the spectrum. The time delay between the pump and
the probe pulses was varied from -1.5 ps to 3.1 ps with a time step of 6.7 fs to scan
the density oscillation of the wake excited by the pump pulse. The phase shift at
each position was obtained by averaging 50 shots of the phase shift data to reduce
pulse-to-pulse fluctuations. The gas-jet was operated at a backing pressure of 10 atm
for He gas. The pump pulse was focused 1.5 mm below the end of the nozzle where
a fully ionized plasma was expected with an electron density of 7.2× 1017 cm−3 from
the neutral gas density measurements.

In Fig. 4.12 (a), no phase shift was observed for the region where the two probe
pulses were located before the pump pulse. This means that no wakefield is excited
before the pump pulse passes through the gas-jet. In the region where the probe pulse
was delayed after the pump pulse, a large amplitude density perturbation excited by
the pump pulse was detected as indicated by the phase shifts shown in Fig. 4.12 (b)
to (g). In the measurement shown in Fig. 4.12 (b) and (c), the first probe pulse
traveled before the pump pulse and the second one after it. For this measurement,
the sensitivity factor St is a half of that for the measurements shown in (d) to (g) in
the region where both probe pulses travel after the pump pulse. From these phase
shift data, the period and the amplitude of the electron density oscillation and the
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amplitude of the longitudinal wakefield are obtained as a function of time delay
between the pump and probe pulses

Figure 4.13 shows the plasma density that is calculated from the oscillation periods
of the plasma waves. The oscillation period of the electron plasma wave is 130± 3.4
fs behind the pump. This plasma wave period corresponds to the electron density
of 7× 1017 ± 8.5× 1015 cm−3 in linear wakefield theory, which is in good agreement
with the electron density for the fully ionized He gas expected from the neutral gas
density measurements.

The wakefield can be calculated from the sensitivity factor and the plasma density
oscillation. The sensitivity factor St · Sz · Sr is 0.46 for the measurements shown in
Fig. 4.12 (b), (c), and 0.92 for those in Fig. 4.12 (d) - (g), with kpσz = kpσzpr = 1.06,
kpσr = 1.44, and kpσrpr = 0.48. Figure 4.14 shows the amplitude of the electron
density oscillation and the amplitude of the longitudinal wakefield as a function of a
time between the pump and probe pulses. The amplitudes of the density perturbation
and the longitudinal wakefield quickly damp in a time of 1.7Tp just after the pump
pulse. Afterward their amplitudes attenuate slowly with a damping time of 8Tp. The
fast damping of the wakefields may be caused by the trapping and loading of electrons
from the plasma. The slow damping may be induced by the non-uniformity of the
plasma density distribution in the gas-jet. The measured density perturbation before
damping is (δn/ne)m 
 0.74 with the plasma length Lp = 1 mm. The maximum
longitudinal wakefield of 20 GV/m is deduced by Eq. (2.45). These estimates are in
good agreement with the density perturbation (δn/ne)th = 0.75 and the longitudinal
wakefield of 21 GV/m calculated by linear wakefield theory. Figure 4.15 shows the
electric field of Fig. 4.12(b).

We compare the experimental and 1D Particle-in-Cell (PIC)[58] simulation re-
sults. The result of PIC simulation is obtained by solving the Maxwell equation,
the equation of motion, the plasma fluid equation and the integral of difference equa-
tions (see appendix A). Figure 4.16(a) shows the simulation result on the longitudinal
wakefield as a function of time for a0=1, the laser pulse width of 50 fs, the laser wave-
length of 800 nm, and the plasma density distribution of Fig. 4.16(b). The wakefield
decreases with time in Fig. 4.16(a). The damping time of 11 Tp corresponds the
experimental result. It is shown that the damping of wakefields results from the
non-uniformity of the plasma density distribution.
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Figure 4.9: Experimental setup of the frequency domain interferometry. The delay
line 1 adjusts the time delay between two collinear probe pulses and the delay line 2
the time delay between the pump and probe pulses.
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Figure 4.12: The relative phase shift as a function of the time delay for the measure-
ment of the plasma density oscillation in the gas-jet operated at a backing pressure
of 10 atm. (a) is measured in the case of the two probe pulses before the pump, (b)
and (c) in the case of the first probe pulse before the pump and the second after the
pump, and (d) to (g) in the the case of the two probe pulses after the pump.
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Figure 4.16: (a)The simulated result of the longitudinal wakefield as a function of
time by the PIC code for the laser strength parameter a0 of 1. (b) The plasma density
distribution.
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Chapter 5

Acceleration of electron beams in
laser-produced-plasma

We present the numerical simulation of high quality electron beam acceleration based
on the anomalous blueshift effect and FDI technique. The trapped phase space of the
wakefield, where the accelerating and focusing forces are exerted on particles, extends
a quarter of the plasma wavelength in longitudinal space and half of the laser spot
size in transverse space, which are typically less than 100 fs temporally and 10 µm
radially, respectively.

Presently there are three major schemes: nonlinear wave-breaking injection[35],
transverse optical injection[36], and colliding pulse optical injection[37][38]. No proof-
of-principle experiment for these schemes has been yet performed because of exper-
imental difficulties. Nonlinear wave-breaking injection uses one pump laser pulse.
Figure 5.1(a) shows a schematic of transverse optical injection. Transverse optical
injection uses two laser pulses; one pump pulse and one injection pulse. The two
pulses cross at a focal point. Figure 5.1(b) shows a schematic of colliding pulse opti-
cal injection. Three laser pulses consisting of a pump pulse for wakefield excitation
and two injection pulses for trapping the electrons in plasma make up a colliding
optical injector.

For colliding pulse optical injection into a wakefield excited by the pump pulse,
a frequency difference between the two injection pulses is needed. We can produce
the frequency shifted pulse using the anomalous blueshift effect. The three pulses
propagate through plasma collinearly. We demonstrate the optical injection scheme
using 1D Particle-in-Cell (PIC) simulations[58] (see appendix A).

5.1 Motion of electrons in a plasma wave

The motion of electrons in a plasma wave can be represented by a phase-space dia-
gram as shown in Fig. 5.2(a). The horizontal axis shows the longitudinal speed-of-
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Figure 5.1: (a) A schematic of transverse optical injection. A radial wakefield due
to the injection pulse injects electrons into a longitudinal wakefield due to the pump
pulse. (b) A schematic of colliding pulse optical injection. The laser pulse of injection
1 is an anomalous blue-shifted pulse.
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light-frame ζ = z − vpt. Electrons inside the bounded region, known as separatrix,
are ”trapped” by the plasma wave and carried along at the same wavelength as the
plasma wave. Electrons above and below this bounded region are ”untrapped”. Elec-
trons in plasma are below the separatrix due to the low energy. When an electron
is below the separatrix initially, it gains and loses energy quickly due to the slow
electron velocity, the electron moves in the opposite direction of the plasma wave,
and never has an energy higher than that corresponding to the phase velocity of the
plasma wave. On the other hand, when an electron is inside the separatrix, it can
move to the top of the separatrix and gain significant energy. This is the process of
electron acceleration in a plasma wave. As a result, the bottom and top of the sep-
aratrix determine the minimum trapping threshold γmin and the maximum electron
energy γmax attainable, respectively, for a given plasma wave amplitude. They are
given by[59]

γmin = γp(1 + γp∆φ)− γpβp[(1 + γp∆φ)2 − 1]1/2, (5.1)

γmax = γp(1 + γp∆φ) + γpβp[(1 + γp∆φ)
2 − 1]1/2, (5.2)

where
∆φ = 2βp[(1 + ε

2/2)2 − 1]1/2, (5.3)

ε = Emax/E0 is given by the plasma-wave amplitude, and E0 is the non-relativistic
cold wave-breaking limit in Eq. (2.17). The normalized energy γ is defined

γ =
Etotal

mec2
=

1√
1− β2

, (5.4)

where Etotal is the total energy of an electron and β is the normalized velocity of an
electron. The normalized velocity β is given by

β =
ve
c
, (5.5)

where ve is the electron velocity. γp is the normalized energy of the plasma-wave
phase velocity, and βp = vp/c is the normalized phase velocity. The actual trapping
threshold for each electron depends on its position (phase) in the plasma wave at
injection. The maximum electron energy attainable in a plasma wave increases with
the plasma-wave amplitude limited by wave breaking. The wave-breaking limit is
defined by the point at which the plasma wave traps the bulk of electrons that
constitute the plasma wave itself and thus self-destructs. In a cold plasma, the
maximum plasma-wave amplitude is given by[60]

Emax = E0

√
2(γp − 1), (5.6)

and the maximum electron energy is

γmax = 4γ3
p − 3γp. (5.7)
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For a higher plasma temperature, the wave-breaking limit is lowered, due to trapping
of hot bulk electrons at a lower plasma-wave amplitude. For a plasma wave with an
amplitude below the wave-breaking limit, it can trap hot electrons that are at the tail
of a Maxwellian distribution of a thermal plasma, or that are preheated to exceed the
trapping threshold by other mechanisms, or that are injected externally. In this case,
these trapped electrons are accelerated and thus take energy away from the plasma
wave, resulting in damping of the plasma wave. This is referred to as electron beam
loading or nonlinear Landau damping. In fact, untrapped electrons can also gain
energy (as seen in Fig. 5.2(a)) and damp the wave.

5.2 Principle of colliding pulse optical injection

In Fig. 5.1(b), an intense pump pulse denoted by subscript 0, a forward going in-
jection pulse denoted by subscript 1, and a backward going injection pulse denoted
by subscript 2. The frequency, wave number, and normalized intensity are denoted
by ωi, ki, and ai (i = 0, 1, 2), respectively. Furthermore, ω1 = ω0 + ∆ω (∆ω ≥0),
ω2 = ω0, and ω0 � ∆ω � ωp are assumed such that k1 
 k0 and k2 = −k0. The
pump pulse generates a fast wakefield. When the injection pulses collide, they gen-
erate a slow ponderomotive beat wave with a phase velocity vp. The phase velocity
vp is given by

vp =
ω1 − ω2

k1 − k2
=

∆ω

2k0
. (5.8)

During the time in which the two injection pulses overlap, a two-stage acceleration
process can occur; i.e., the slow beat wave injects plasma electrons into the fast
wakefield in Fig. 5.2(b).

The problems for the experiment of the optical injection are the timing between
the pump pulse and the injection pulses, and the frequency difference of the injection
pulses. The wakefield excited in the gas-jet has an ultra-high gradient with good
coherency and can be used for particle accelerators (see chapter 4). In the optical
injection schemes, provided that the probe pulses are replaced with the injection
pulses, the FDI system to measure the wakefield will be modified into the optical
injection system for the laser wakefield. In order to make a frequency difference ∆ω
between two injection pulses, the anomalous blue-shifted pulse is used as a forward
going injection pulse (see chapter 3).
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Figure 5.2: Phase-space trajectories for electrons in a plasma wave excited by (a)
single laser pulse and (b) a pump pulse with two injection pulses. The horizontal
axis shows the longitudinal speed-of-light-frame ζ = z − vpt in unit of the plasma
wavelength λp. Electrons above and below the separatrix are untrapped, while elec-
trons within the separatrix are trapped by the wave. The motion of the electrons
relative to the wave is indicated by the arrows.
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Figure 5.3: Plasma density distribution assumes for simulation of the optical injec-
tion.

5.3 Simulation results of optical injection by an

intense laser pulse

5.3.1 Simulation results of the wave-breaking optical injec-
tion scheme

We make a numerical simulation of the optical injection scheme for the plasma density
distribution shown in Fig. 5.3 using a PIC code[58]. Figure 5.4 shows the results of
the optical injection simulation for ne = 7× 1017 cm−3 as a function of a0. In order
to generate the electrons by the single pulse optical injection, the pump intensity
a0 should be larger than 1.5. The energy spread ∆E/Emax of accelerated electrons
results in 100%, where Emax is the maximum energy of electrons. This scheme has
disadvantage for generating a high quality electron beam with narrow energy spread.

5.3.2 Simulation results of the colliding pulse optical injec-
tion scheme

We performed a simulation of the colliding pulse optical injection scheme for a0 = 1.
We assume that the frequency upshift of the forward going injection pulse ∆ω/ω0 is
set to be 6% from the anomalous blueshift experimental data in chapter 3. Figure 5.5
shows the results of the simulation at ne = 7× 1017 cm−3 for a0 = 1.0 as a function
of a1 = a2. These results indicate that electrons can be inject into the wakefield at
the strength parameter larger than 0.3.

The accelerated energy and the energy spread are shown in Fig. 5.6 as a function
of the plasma density. The accelerated energy increases with the plasma density.
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Figure 5.4: Results of the wave-breaking optical injection simulation for ne = 7 ×
1017 cm−3. The horizontal axis shows the pump strength parameter a0. The open
circles and dotted line show the maximum energy Emax, and the closed circles and
the solid line show the energy spread ∆E/Emax.
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Nevertheless, the energy spread is the smallest at ne = 7× 1017 cm−3.
The electron distribution in a phase space and the energy spectrum for a0 = 1.0

and a1 = a2 = 0.3 at ne = 7×1017 cm−3 are shown in Figs. 5.7(a) and (b), respectively.
A part of electrons in plasma is trapped and accelerated in the wakefield excited by
the pump pulse. The pulse shape and the energy spectrum of the accelerated electron
beam are shown in Figs. 5.8(a) and (b), respectively. The accelerated electron beam
has the pulse width of 7.7 fs (rms), the peak energy of 7.5 MeV with the energy
spread of 3% (rms) from these figures. Assuming the electron beam radius of 15 µm,
the accelerated electron charge becomes 26 pC corresponding to the peak current
of the electron beam of 1.3 kA. It could be difficult to generate such an ultrashort
intense electron beam by means of the conventional RF accelerators.

Figure 5.9 shows the distribution of the transverse normalized velocities βt of
the accelerated electrons. We can obtain an emittance of the electron beam from
βt = 0.0064. The un-normalized emittance εx of the electron beam is approximately
equal to

εx = πrbβt, (5.9)

where rb is the electron beam radius. The normalized emittance εnx is

εnx = γβεx, (5.10)

where β is the longitudinal normalized velocity. For the electron energy of 7.5 MeV
γ and β are approximately equal to 14.7 and 1, respectively. Assuming the electron
beam radius, rb = 15 µm, the normalized emittance of the accelerated electrons
becomes 1 π mm mrad (rms). This emittance is comparable to that of best quality
beam produced by the conventional RF accelerator technology such as a photocathode
RF-gun[34][61].
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Figure 5.5: Results of the colliding pulse optical injection simulation for a0 = 1.0 at
ne = 7 × 1017 cm−3. The horizontal axis shows a1 = a2. The open circles and the
dotted line show the maximum energy Emax, and the closed circles and the solid line
show the energy spread ∆E/Emax.
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Figure 5.7: (a) The electron energy in phase space and (b) the energy spctrum of
the colliding pulse optical injection simulation for a0 = 1.0 and a1 = a2 = 0.3 at ne
= 7× 1017 cm−3.
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Figure 5.8: (a) The pulse shape and (b) the energy spectrum of the accelerated
electrons for a0 = 1.0 and a1 = a2 = 0.3 at ne = 7× 1017 cm−3.
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Figure 5.9: The distribution of the transverse normalized velocity βt of the accelerated
electrons for a0 = 1.0 and a1 = a2 = 0.3 at ne = 7× 1017 cm−3.
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Chapter 6

Conclusions

We have investigated the extraordinary nonlinear phenomena manifested via interac-
tions of ultrashort laser pulses with gas and plasma; optical field ionization, ionization
induced self-focusing and filamentation, an anomalous spectral shift and a large am-
plitude wakefield excitation. This study reveals that these phenomena occur in a
consecutive strong field process through mutually correlated mechanism generated
above a certain threshold intensity and that they can be controlled with femtosecond
optical pulse technique in order to generate a relativistic bright electron beam with
high quality in a laboratory table-top scale.

As a result of particular observations of nonlinear optical phenomena in strong
field, we found the anomalous blueshift that shows a coherent frequency upshift of the
whole laser pulse to a fixed frequency independent of the plasma density and the laser
power. We clarify that this phenomenon results from a complex mechanism of the
ultrafast optical field ionization and filamentation to cause acceleration of the whole
laser photons due to a steep gradient of the refractive index change from neutral gas
to plasma.

In the wakefield measurement, we have made the first direct observation of 20
GeV/m of coherent ultrahigh gradient wakefields excited by an intense ultrashort
laser pulse in a gas-jet plasma. The experimental results agree with the 1D PIC
simulation results and the linear theory. In the numerical simulations based on the
results of these measurements, we verify generation of a relativistic electron beam
accelerated by laser wakefields to be optically controlled with two colliding injection
pulses of which one pulse can utilize a frequency up-shifted pulse due to the anomalous
blueshift effect.

This synthetic study on laser wakefield excitation illuminates physical mechanisms
of complex ultrafast nonlinear phenomena generated by interaction of ultraintense
laser pulses with plasma and gives prospects of next generation particle accelerators
for applications to a wide range of sciences; such as material science, nuclear science,
high energy physics, chemical science, biological science, and medical science.
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Appendix A

Thomson scattering

If a plane wave E(x, t) is incident on a free particle of charge e and mass m, the
particle will be accelerated. The acceleration is provided by the incident plane wave.
If its propagation vector k0, and its polarization vector ε0, the electric field can be
written

E(x, t) = ε0E0 exp(ik0x − iωt). (A.1)

Then, from the force equation for nonrelativistic motion, we have the acceleration,

v̇(t) = ε0
e

m
E0 exp(ik0x − iωt). (A.2)

The differential scattering cross section is[62]

dσ

dΩ
=

(
e2

mc2

)2

|ε∗ · ε0|2, (A.3)

where ε is a polarization state. The scattering geometry with a choice of polarization
vectors for the outgoing wave is shown in Fig. A.1. The polarization vector ε1 is in
the plane containing n and k0; ε2 is perpendicular to it. In terms of unit vectors
parallel to the coordinate axes, ε1 and ε2 are

ε1 = cos θ(ex cosφ+ ey sinφ)− ez sin θ, (A.4)

ε2 = −ex sin φ+ ey cosφ. (A.5)

For a linearly polarized wave with polarization parallel to the x axis incident, the
angular distribution summed over final polarization is (cos2 θ cos2 φ+sin2 φ), and the
scattering cross section is rewritten

∣∣∣∣∣ dσdΩ
∣∣∣∣∣
ε0‖x

=

(
e2

mc2

)2

(cos2 θ cos2 φ+ sin2 φ). (A.6)
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When the direction n is parallel to the x axis, the scattering cross section becomes
zero. For polarization parallel to the y axis it is

∣∣∣∣∣ dσdΩ
∣∣∣∣∣
ε0‖y

=

(
e2

mc2

)2

(cos2 θ sin2 φ+ cos2 φ). (A.7)

For unpolarized incident radiation we can obtain the scattering cross section by in-
tegrating Eqs. (A.6) or (A.7) as a function of φ

dσ

dΩ
=

(
e2

mc2

)2
1 + cos2 θ

2
. (A.8)

The total scattering cross section, Thomson cross section, is

σT =
8π

3

(
e2

mc2

)2

. (A.9)

The Thomson cross section is equal to 0.665× 10−24 cm2 for electrons. The unit of
length, e2/mc2 = 2.82 × 10−13 cm, is called the classical electron radius, since a
classical distribution of charge totaling the electron charge must have a radius of this
order if its electrostatic self-energy is to equal the electron mass.
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Figure A.1: The scattering geometry. The polarization vector ε1 is in the plane
containing n and k0, and ε2 is perpendicular to it.
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Appendix B

Particle-in-Cell simulation

B.1 Basic equation

We solve Maxwell’s equations for the electric field E ≡ (Ex, Ey, Ez) and the magnetic
field B ≡ (Bx, By, Bz)

∇× B = µ0J+
1

c2
∂E

∂t
, (B.1)

∇× E = −∂B
∂t
, (B.2)

where J ≡ (Jx, Jy, Jz), c and µ0 are the current density, the speed of light and
the magnetic permeability, respectively. We assume a one-dimensional system taken
along the x-axis. The electric field Ex should satisfy the initial condition given by
Poisson’s equation

∂Ex

∂x
=
ρ

ε0
, (B.3)

where ρ and ε0 are the charge density and the electric permittivity, respectively. It
is noted that Poisson’s equation is solved only for the initial condition. It is satisfied
automatically, if Eq. (B.1) is solved correctly in time based on the current density
J satisfying the continuity equation of the charge density ρ. The magnetic field Bx

should satisfy the initial condition given by

∂Bx

∂x
= 0. (B.4)

This condition means that Bx is constant in space and time, because there is no term
for Bx in Eqs. (B.1) and (B.2).

The current density J and the charge density ρ are computed from the motion of
a large number of particles. The equations of motion for particles with a charge q
and a mass m is

dv

dt
=
q

m
(E+ v × B), (B.5)
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dx

dt
= vx, (B.6)

The basic equations described above are written in the form of the MKS unit
system. In a simulation, however, values of the permittivity ε0 and permeability µ0

can be defined arbitrarity, as far as they satisfy the relation

ε0µ0 =
1

c2
. (B.7)

For simplicity, we adopt the following definition

ε0 = 1, (B.8)

µ0 =
1

c2
. (B.9)

The E, B and J are defined at the spatial grid points, while particles can take
arbitrary positions. The E and B in Eq. (B.5) are interpolated from those at the
adjacent grid points.

B.2 Grid assignment

We define full-integer grids at i∆x (i = 1, 2, 3, ..., Nx) and half-integer grids at (i +
1/2)∆x. The Ey, By, Jy and ρ are defined at the full-integer grids, and Ex, Ez,
Bz, Jx, Jz at the half-integer grids as shown in Fig. B.1. This assignment of the
electric and magnetic fields E and B realizes centered difference forms for the spatial
derivatives in Maxwell’s equations. The components Jx, Jy. Jz of the current density
must be assigned to the same grids of Ex, Ey, Ez, respectively, because J contributes
directly to the time integration of E as in Eq. (B.1).
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B.3 Time step chart

The quantities of the field and particles are advanced in time based on the sequence
shown in Fig. B.2. We define a full-integer time n∆t and a half-integer time (n +
1/2)∆t with a time step ∆t. Basically, the electric field E at the full-integer time and
the magnetic field B at the half-integer time are integrated in time by the leap-frog
method. However, the magnetic field B is advanced twice by a half time step ∆t/2 to
obtain intermediate values for the particle pushing fields at the full-integer time. The
particle positions x at the full-integer time and velocities v at the half-integer time are
also advanced by the leap-frog method. The positions are advanced twice with a half
time step ∆t/2 to obtain intermediate values for computation of the current density
J at the half-integer time. The current density J is computed from the positions and
velocities of particles.

B.4 Courant condition

In solving Maxwell’s equations by the centered difference scheme in space and by the
leap-frog method in time, the grid spacing ∆x and the time step ∆t should satisfy
the following inequality, which is called the Courant condition,

∆x > c∆t. (B.10)

The condition easily derived from the numerical dispersion relation of the light
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more. Let us see the numerical effect in solving a differential equation by a centered-
difference equation. We assume a quantity A(x, t) has a wave structure with a
wavenumber k and a frequency ω as

A(x, t) = A0 exp(ikx− iωt). (B.11)

We compute the derivative by a centered-difference equation as

δA

δx
=

A(x0 +∆x/2, t)− A(x0 −∆x/2, t)

∆x

=
exp(ik∆x/2)− exp(−ik∆x/2)

∆x
A(x0, t)

= i
sin(k∆x/2)

∆x/2
A(x0, t). (B.12)

Comparing the ∆A/∆x withe the spatial derivative ∂A/∂x, we find that the wavenum-
ber k is replaced by K represented by

K =
sin(k∆x/2)

∆x/2
, (B.13)

in converting the differential equations to the difference equation. In the same man-
ner, we find that the frequency ω is replaced by Ω defined as

Ω =
sin(ω∆t/2)

∆t/2
. (B.14)

The dispersion relation of the light mode is obtained by neglecting the current den-
sity J and assuming the electromagnetic wave with a frequency ω and the wavenumber
k as

ω2 = c2k2. (B.15)

Replacing k and ω with Kand Ω, we have the numerical dispersion relation for the
light wave

Ω2 = c2K2. (B.16)

For the maximum wavenumber kmax = π/∆x, we have

sin2(ω∆t) =
(
c∆t

∆x

)2

. (B.17)

If c∆t/∆x > 1, the ω becomes complex, given rise to a numerical instability. If
c∆t/∆x > 1, then the system is marginally stable. Therefore, we have the Courant
condition.
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