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The Doctoral Thesis Summary

Two-photon correlation measurement provides a promising way to
experimentally demonstrate the statistical nature of a light source, which is
very significant for the deep understanding of the photon-generating
process and the diagnosing of the coherence property. Quantitatively two-
photon correlation is described by second-order coherence. Usually the
behavior of the second-order coherence against any of the parameters
defining the phase volume is different for different photon statistics. The
Poisson photon statistics for coherent light gives its second-order coherence
as a flat response; The Bose-Einstein photon statistics for chaotic light gives
its second-order coherence as a bunching effect; While the Sub-Poisson
photon statistics for non-classical light gives its second-order coherence as
an anti-bunching effect. Therefore the measurement of two-photon
correlation is proved to be a good finger print to check whether light is in
coherent state or incoherent state such as thermal state or non-classical state.

Historically the measurement of two-photon correlation was first perform-
ed by Hanbury-Brown and Twiss (HBT) in 1956. They used a linear mixer to
realize the correlation of the two currents from the photoelectric detectors
illuminated by a stationary thermal light souece, a mercury arc, and the
photo-bunching effect was first successfully observed in the visible region of
435.8 nm.

HBT method is no doubt a good way to extract the small excess two-
photon correlation for a stationary light because the background, that is the
DC components, has been cut off automatically by the broad band amplifiers,
which is in fact the key of the success of HBT experiment. However there
exists a general problem, to which no attention has ever been paid, in
measuring the two-photon correlation of non-stationary light such as
synchrotron radiation (SR) by the HBT method. Here the "non-stationary"
means a sense of classical mechanics that the observed intensity has some
deterministic time structure. The systematic time structure of SR decided by
the bunch distribution of the electric current in a storage ring will give rise to
a large amount of unexpected accidental correlation, which in fact has
nothing to do with the inherent photon statistics of light source and usually
1000~10000 times larger than the true two-photon correlation due to the




short bunch separation length (2as) and the short coherence time (~0.1ps)
which is not comparable to the time resolution (1ns) of the measuring system.
The existence of the accidental correlation would severely prevent us from
observing the bunching effect of the true two-photon correlation.

Therefore to suppress the much larger accidental correlation and to
extract the small true two-photon correlation, a novel intensity interferometer
has been developed for soft X-ray synchrotron radiation. This intensity
interferometer consists of an optical vacuum chamber and an electric
correlator. All the essential optical elements which includes a wire scanner, a
precise diffraction slit, a grating monochromator with a coherence time
modulator, a beam divider and two fast-response photon detectors
(microchannel plates) are mounted in this high vacuum chamber. The electric
correlator completes the multiplication of the two broad band electric
currents coming from the photoelectric detectors. The basic idea to suppress
the much larger accidental correlation is to modulate the coherence time by
modulating the entrance slit width of the monochromator by a piezoelectric
translator. The two sets of light intensity are simultaneously modulated too.
When the frequency of modulation is f, the third harmonics 3f is detected
with a loch-in amplifier because the 3f components include only the true
two-photon correlation. Practically it is difficult to modulate with frequency f
without any higher order harmonics distortion which might add some false 3f
components. To overcome this difficulty we have used a sharp bandpass
filter of 100~350 MHz in each branch of the correlator, which is lower than
the RF frequency 500 MHz and much higher than 1.6 MHz, the revolution
frequency of the stored beam of the 2.5 GeV storage ring.

This new apparatus has been operated successfully in the measurement of
the horizontal two-photon correlation for the first harmonic of undulator
radiation with photon energy of 70 eV at the Photon Factory, KEK. By
narrowing the precise slit width which correspondingly changes the spatial
coherence of the incident SR, a bunching effect of the normalized excess
two-photon correlation has been clearly observed. This explicit bunching
effect implies that synchrotron radiation is chaotic radiation.

Further investigation shows that although second-order coherence is
completely determined by the first-order coherence for the case of chaotic
light, the measured information from the light source is essentially different.
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The two-photon correlation of synchrotron radiation does not depend on
the response time of the detectors but gives the information of instantaneous
emittance of the stored beam with the time scale of coherence time 1.. By
fitting the experimental data, the horizontal instantaneous emittance of the
stored beam is estimated to be 40nmrad.

This intensity interferometer can be utilized to characterize the coherence
properties of incomplete FELs, such as SASE, because if they are fully
coherent light sources the normalized excess two-photon correlation would
have a flat response, but not showing a photon-bunching effect.
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1 Introduction
1.1  Historical review of two-photon correlation

1.1.1 Hanbury-Brown and Twiss experiment

The first experimental evidence for the existence of correlations between the
outputs of two photoelectric detectors illuminated by a partially coherent
light was obtained in a series of experiments performed by Hanbury-Brown
and Twiss in the 1950s [1][2][(31[41[5], with the apparatus shown in Fig, 1-1.
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Fig. 1-1 A simplified outline of Hanbury-Brown and Twiss
intensity interferometer




A secondary light source was formed by a circular pinhole on which the
image of a high-pressure mercury arc was focused by a lens. The 435.8 nm
line of mercury was isolated by a liquid filter. The beam of light from the
pinhole was divided by a semi-transparent mirror to illuminate the cathodes
of the photomultiplier P, P,. The degree of coherence of the light at the
cathodes could be varied by traversing one photomultiplier (P,) horizontally
and normal to the incident light.

The fluctuations in the anodes currents of the photomultipliers were
transmitted to a correlator through coaxial cables of equal length. The photo-
electric correlation was done by a linear mixer (multiplier). The average
value of this correlation product, which was recorded on the revolution
counter of an integrating motor, gave a measure of the correlation in the
fluctuations. Another noise-level integrating motor, which recorded the
average of the square of the correlation product, was used to measure the
background that was indeed the product of average current of each branch.
The signal to noise ratio, as was called by Hanbury-Brown and Twiss, gave
the normalized correlation signal which is independent of the inevitable small
changes in the light and of the changes in the gain of the correlator. As a
result, a strong positive correlation was observed when the cathodes are
superimposed but not when they are widely separated. This is the well-
known bunching effect nowadays of the second-order coherence of thermal
light.

The apparatus in Fig.1-1 was later developed to the application to
astronomy and the angular sizes of stars were successfully measured with a
precision higher to several orders than the ones by conventional method of
Michelson's stellar interferometer [2][6]. The reason is that HBT electric
correlator actually measures the “wave noise” correlation. This “wave
noise” is just the light intensity fluctuation originating from the thermal
nature of light sources (stars). Although the atmospheric scintillations, which
had seriously affected the precision in Michelson's stellar interferometer,
could introduce an additional disturbance fluctuation to the light, they are
uncorrelated at all.

The great significance of Hanbury-Brown and Twiss experiment is that it
provides a basic method to measure two-photon correlation. Two-photon



correlation is a measure of second-order coherence. It is essentially different
from the familiar interference effects such as Youngs double-slit interference
effect or Michelson interference effect( rigorously speaking they belong to
first-order coherence). Hanbury-Brown and Twiss experiment might be a
milestone in the development of quantum optics. It made one reconsider the
concept of coherence quantum mechanically and directly resulted to the
outgrowth of the quantum theory of optical coherence developed by R. J.
Glauber in 1963 [7][8].

1.1.2 Two kinds of measuring methods

Up to now to measure two-photon correlation, there are two basic methods.
One is photoelectric currents correlation as shown in Fig.1-1 (or called HBT
method, because it was first performed by Hanbury-Brown and Twiss),
where a linear multiplier is used to realize the correlation of two fluctuating
photoelectrc currents. The other is coincidence-counting method. Fig.1-2
shows its basic arrangement .
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Fig.1-2 A coincidence-counting intensity interferometer

The two counters N, and N, register the number of photoelectrons in each
channel and the counter N, register a coincidence when two pulses arrive
within a time 7. N, and N, are usually used for the normalization of N, but

not the only way, depending on the properties of light.



The coincidence N, in Fig.1-2 includes not only the excess two-photon
correlation but also the random Poisson coincidence, which requires that the
coherence time should not be too smaller than the response time of photon-
detectors, otherwise the much larger Poisson random coincidence would
severely affect the extraction of the excess two-photon correlation and its
measuring precision. On the other hand in photoelectric currents
correlation method (HBT method) the large DC correlation has been cut off
automatically by the broad band amplifiers and only the excess two-photon
correlation is recorded, which would give a relatively higher measuring
precision.

In photoelectric currents correlation method (HBT method), increasing
of the light intensity helps improvement of signal to noise ratio, while it does
not help in coincidence method due to the finite resolving time of practical
detectors and counters which severely limit the number of photoelectrons
per second that can be counted separately [6].

1.1.3 Two-photon correlation of X-ray synchrotron radiation

After Hanbury-Brown and Twiss's pioneering work, a number of experiments
of two-photon correlation were performed both by photoelectric correlation
and coincidence-countering technique in the visible region [9][10]. The
application to the X-ray region was suggested by Lewis et al in 1963 [11].
But because degeneracy parameter is proportional to the third power of
wavelength, it was apparently getting too difficult to detect the intensity
correlation in a shorter wavelength region until the appearance of high
brightness light source.

The advent of synchrotron radiation bring one a new ambition. First in
1975 Shuryak proposed the observation of two-photon correlation with
synchrotron radiation [12]. Later in 1992 Ikonen gave a detailed argument of
the possibility of detecting two-photon correlation of independent Gamma
rays with the aid of the third-generation synchrotron radiation source, that is,
high-brilliance undulator radiation [13]. In the same year a soft X-ray
intensity interferometer was constructed for undulator radiation by Gluskin
et al [14][15][16][17][18] by completely following the method of Hanbury-
Brown and Twiss's electric correlator. But unfortunately the huge DC drift



severely prevented them from observing the small true two-photon
correlation. According to our present study it has become clear that the huge
DC drift is just the accidental correlation caused from the non-stationary time
structure of synchrotron radiation [19][20].

The first success in the measurement of X-ray two-photon correlation from
a synchrotron radiation source was reported by a Japanese group in 1997 by
using the photoelectric coincidence technique [21]. The highly monochro-
matic hard X-ray with the photon energy 14.4 KeV and its energy width 6.4
meV came from a high-brilliance undulator radiation of the Tristan Main
Ring, KEK, Japan. The block diagram of their photon-counting system is
shown in Fig. 1-3. The output pulses from two detectors were fed into the
coincidence unit and then scaler 1 counted the number of coincidences. In
the delay circuit the delay time for the output pulse from one detector was
set at the circulation period of electron bunch, 10us. Poisson random
coincidence events, which were the coincidence between one photon
emitted from a certain electron bunch and another photon emitted from the
same electron bunch after making one revolution, was recorded at scaler 2.

Diffracted
X-rays
—_—

Detector Delay

14.4 KeV Coincidence S Coincid
caler] incidence
Unit unit Scalerz

——3 Detector
Transmitted
X-rays

Fig. 1-3 The photon-counting system used by Y. kunimune et al [21]

After changing the width of a precise slit, which change the spatial coheren-
ce of incident synchrotron radiation, a bunching effect was observed.

Any way the strong background, that is the poisson random coincidence,
severely decrease the measuring precision due to the finite response time of
detectors compared with the coherence time.



1.2 Non-stationary light and accidental correlation

So far as we know there has been no report of successful measurement of
two-photon correlation of synchrotron radiationin in soft X-ray region. Due
to. the considerations described in last two sections we believe that the
photoelectric currents correlation (HBT method) might be an efficient way
in the measurement of two-photon correlation of soft X-ray synchrotron
radiation no matter how high its Bose degeneracy would be.

However the complete following after HBT method would inevitably lead
to a failure in the measurement just as Gluskin did. This is because
synchrotron radiation is a kind of non-stationary light. Here the “Non-
stationary” means in sense of classical mechanics that the observed intensity
has some deterministic time structures which are determined by the bunches
distribution of electric current in the storage ring. This time structure will give
a large amount of unexpected accidental correlation. It is caused by the fact
that when one detector catches a photon signal, the other detector has more
chance to get a photon signal through systematic time variation of radiation
intensity modulated by the bunch structure. Usually this false correlation is
1000~10000 times larger than the true correlation due to the short bunch
separation length (2ns) and the short coherence time(0.01ps) which is not
comparable to the time resolution(lns) of the measuring system. The
accidental correlation is a positive correlation. It has nothing to do with the
inherent photons statistics and will give a flat response. However the strong
background formed by this accidental correlation would severely prevent us
from observing the bunching effect of true two-photon correlation.
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1.3 Motivations of this work
1.3.1 Exploration of a new experimental method

The existence of accidental correlation is a general problem in the measure-
ment of two-photon correlation of non-stationary light by HBT method.
Therefore how to suppress this accidental correlation, how to extract the
true two-photon correlation 1s a new challenge to us.

To meausure the true two-photon correlation a most important step is to
select an appropriate way to eliminate the influence of the systematic time
structure. In fact a new intensity interferometer for soft X-ray synchrotron
radiation based on a coherence time modulation technique has been
developed and been successfully operated in the measurement of true two-
photon correlation at the undulator beam line BL16B of Photon factory of
KEK.

1.3.2 Study of photon statistics

Two-photon correlation measurement provides a promising way to experi-
mentally demonstrate the statistical nature of a light source. Although
rigorous appraisal of a totally coherent light needs to measure the coherence
higher than the second-order, at least from the measurement of second-order
coherence, thermal light (chaotic light) and squeezed light could be
distinguished. Bose-Einstein photon statistics in thermal light gives the
bunching effect of its second-order coherence; Sub-Poisson photon statistics
in squeezed light gives the anti-bunching of its second-order coherence:
while Poisson photon statistics in coherent light gives a flat response (a
constant) of its second-order coherence. As it is shown later, the information
of photon statistics is very significant for deep understanding of photon-
generating process and mechanism.

According to our experimental result, it is first experimentally verified that
soft X-ray synchrotron radiation is indeed a chaotic radiation and its photons
obey Bose-Einstein distribution. |

In fact the concept of second-order coherence has been nowadays
generalized to not only photons, but a Bose-Einstein condensed atomic gas,
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where the released atoms behaves completely like coherent photons from a
laser. [22]

The measurement of second-order coherence can be utilized as an import-
ant experimental method to diagnose FELs, such as SASE. If it is a complete
FEL its second-order coherence would exhibit a flat, but not bunching
response.

1.3.3 Measurement of instantaneous emittance for synchrotron
radiation

By the information of two-photon correlation, Hanbury-Brown and Twiss
succeeded in measuring the angular size of stars with a higher precision. That
was attributed to the second-order coherence which has a lot of advantages
than the first-order coherence. Through the present study we found, in case
it is known at advance that synchrotron radiation is chaotic radiation, the
instantancous emittance of synchrotron radiation could be measured with
the time scale of coherence time T, by measuring two-photon correlation.
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2 Mechanism of synchrotron radiation

Since our light source is synchrotron radiation, it is very necessary to review
briefly the mechanism of synchrotron radiation, where incoherent collective
effect - superposition of a large amount of spontaneous emissions happens.
Such an incoherent superposition produces a low-efficiency radiation of the
stored relativistic electrons in the storage ring and should be the origin of
the chaotic characteristics of synchrotron radiation. The various time
responses of electrons in a bunch are also reviewed with relation to the
possible influences on the measurement of two-photon correlation of
synchrotron radiation. '

2.1 One-electron classical theory

A relativistic electron which is accelerated in a macroscopic field will radiate
electromagnetic energy at a rate which is proportional to the square of the
accelerating force. The rate depends on the angle between the force and the
electron velocity and is larger by the factor ( ’yez =(E/ mc? )*) when the
force is perpendicular to the velocity than the force is parallel to the velocity.
The radiated field is well described by the Maxwell equations and could be
expressed in an analytic form in the far field limit [ see Appendix C ] [23]{24].

2.1.1 Bending-magnet radiation

For an extremely relativistic electron following a circular trajectory ( as in the
bending magnets of a storage ring as Fig. 2-1 shows ), the Fourier component
of the radiated field in the observation direction n(0,sin y,cos y)can be

expressed as follows in the far field limit,

E(nR,,w)= (-)A(w) (2-1)

e
2V2me R,

A K35(m)
A(w)= [A"J = 5‘% v 21+ X)) i "

2-2
z W, T\/—X;Kﬁ?’(m ( )
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where R, is the observation distance, 1 is the vertical observation angle, the
electric field has been decomposited into two components(e,,e,) in the

transverse plane against n. In order not to confuse with the coherence
degree 7, we here use ¥,to stand for the normalized electron energy by its

rest mass. K ,;(x) and K,,;(x) are modified Bessel functions with the

orders of 1/3 and 2/3 respectively.

Fig. 2-1 The orbit and coordinate system for bending-magnet radiation
In Eq.( 2-2) the parameters X and 7 are defined as follows,

X=yy (2-3)

n=2(1+x%) (2-4)
w

o

where . is called critical frequency and decided by the bending radius
p and electron energy v,
3yic

‘w, ==t 2-5
Ye®@, 2 ( )

3

W, =
2
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In the case of bending-magnet radiation electron produces a smooth
spectrum as Eq.(2-2) shows, and the emitted power is within a narrow cone
of angular width ¥, in the direction of the motion.

2.1.2 Undulator radiation

If a relativistic electron is accelerated in a periodic magnetic structure of
period A, and under a condition of its K parameter K < 1, where K is

defined as K =eByA, / 2rmc and B, is the peak value of magnetic field,

the electron will produces strong undulator radiation, and the radiated
spectrum is not continuous again due to the interference effect.

Qualitatively the discrete spectrum can be understood simply as a grating
effect [25].

X
b e

| E{) |I JH1)
N2 o

Fig.2-2 Orbit of an electron in x-z plane with a period of iu .

when moving in a periodic y-direction magnetic field
of a period A, with a number of periods, N.

The time-dependence of x and z components in Fig. 2-2 can be easily got
from the equation of motion [22][23] and the results are shown as follows,

\ K2, .(2nrct
x(t')=———%sin
Y, 2n A, 2.6
, 1+K%/2Y , K* A, . {4mer (2-6)
Z(t)=|1-———— |cf' —— —“sin
27v. 8y, 2m A,
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where ¢' is the local time, K is the undulator parameter, and A, is the period

of the external periodic magnetic field . As Fig. 2-2 shows, the constructive
interference between A and B happens when the optical path deference is
the integral times of the radiated wavelength. From Eq.(2-6) we can easily
get the emitted discrete wavelength as follows,

2
PR -lﬂ (n=123..) (2-7)
no 2y

The difference from the classical grating in calculating the optical path
difference is that relativistic effect must be considered in getting Eq.(2-7)
from Eq.(2-6).

More general from Maxwell equations the Fourier component of the
radiated electric field can be expressed as follows under the condition of far
field limit ,

. [N:rwJ
sin
AC’ w yeK wl(e)
[A ) w(O)(1+K2/2) [ nw )

BO’ w)¢’u

B, (w,¢,¥)

where

Bo(w, ¢’ w.) '}’e(b /I K .(w (B)§+qsm(2§)+qsm(§)J
[B,,(w,fp,w)J Hi 5[ w/xj (2-9)

where ¢ and y are observation angles, 6* = ¢2 + wz. The nth hamonics is

expressed as follows,

2men 2y?

o) =
©.(8) A, 1+K*/2+7y20?

(n=123.) (2-10)

u
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Therefore Eq.(2-7) is just a special case of Eq. (2-10) where 6 = 0. Undulator
radiation is squeezed into discrete spectrum satisfied by Eq. (2-10) and an
narrower emission angle of an order about (y,N)™' due to the interference

of radiation from different parts of the trajectory.
2.2 Collective effects

The electric fields emitted at different positions by one electron could
produce interference or total coherence which results to the quasimono-
chromatic spectral distribution of undulator radiation. Usually in one bunch
the number of electrons is about 10 and the interference effect of the fields
emitted by different electrons which are regarded as a large amount of
radiators is to be discussed in the following sections for two extreme cases:
incoherent superposition for synchrotron radiation and constructive inter-
ference for FELs {26]~[30].

2.2.1 Incoherent superposition - Chaotic synchrotron radiation

Synchrotron radiation, no matter whether it is bending-magnet radiation or
undulator radiation, essentially belongs to spontaneous radiation. Therefore
for more than one electron, each radiator (relativistic electron) radiates with
its own phase, and these phases are completely random with respect to one
another.

Let us consider one bunch with N electrons as one ensemble,. For a
certain Fourier component (say angular frequency @,) emitted by each

individual electron, it has a fixed amplitude E, and an unknown random
phase @, then the total electric field amplitude is

E(f)=E )+ E,()+..E, (1)
= Ege ' (€% + 692,67 (2-11)

- Oe—lwgfael¢

The formal summation of the phase factors carried out in the final line of
Eq.(2-11) is illustrated in Fig.2-3. For the case of the stored electron bunch in
Photon factory of KEK, the average distance between two neighboring

17



electrons is of the order of 1 um, which is much larger than the wavelength of
the observed soft X-ray photon ( for example A=17rm for the photon of 70
eV). So any small fluctuation of the relative position of the electron in a
bunch will lead to a large variation of the phase of the photon it emitted.
Therefore the amplitude a and the phase ¢ in Eq. (2-11), which comes from
the superposition of large amount of complex random phasors, will be
appreciably different for different ensemble due to the fluctuation of two-
electron's distance. Fig. (2-3-a) illustrates the resultant amplitude a and phase
¢ from one electron bunch, and Fig. (2-3-b) is the case from another electron
bunch. It is worth noting here that, even for the same electron bunch, the
resultant amplitude a and the phase @ will also become significantly
different after one revolution due to the complicated random motion of the
electron in the bunch, which results to the strong fluctuation of its relative
position.

(a) electron bunch 1 (b) electron bunch 2

Fig. 2-3 Argand diagram to show the amplitude a and phase ¢ of the

resultant vector formed by a large number of unit vectors,
each of them has a randomly chosen phase angle.

18



Let p(a) be the probability that the end-point of a two-dimensional random
walk of N step lies in unit area around the point specified by coordinate a
and @ in Fig.2-3, then the result given by the random-walk theory [31] for

the present problem is,

(ajziex [_a_z) (2-12)
PRO=N"P N

Clearly p(a) obeys to a Guassian distribution and exhibit the maximum at
a=0. Because ¢ is randomly distributed between 0 and 2w, which naturally

leads to the zero ensemble average of the total electric amplitude,

(E()=0 (2-13)
The ensemble average of the intensity is also readily calculated from Eq.(2-
11) as follows,

(I()y=(E"(1)E(1)) = NE; (2-14)

From Eq.(2-11 ~ 2-14) we can get an important formula for the probability
distribution of instantaneous intensity measurement for a chaotic radiation,

_ L 1@ i
p(I(t))—mexP[ <I>J (2-15)

The negative exponential distribution as Eq.(2-15) shows is a typical charac-
teristics of a chaotic radiation. Although the thermal radiation from a thermal
equilibrium gives the same distribution as Eq.(2-15), the terminology of
"chaotic radiation" is more general whenever the excitation has an
appropriately random quality, no matter how far the radiator is from thermal
equilibrium just as synchrotron radiation does. There is no heat reservoir in
an electron storage ring but it really belongs to chaotic radiation due to the
spontaneous radiation and the incoherent superposition.

2.2.2 Constructive interference - complete FELs

19



The basic principle of FEL is to cause all electrons to have approximately the
same phase, thereby producing constructive interferences (stimulated emiss-
on).

Still we consider Eq.( 2-11), if all electrons are forced to emit with roughly
the same phase, @, =¢@; =@ for all k and j in one bunch, then the total

electric field amplitude is
E(t)= NEy e ''e'® (2-16)
The ensemble average intensity is written as follows,
(I(t)) =(E"())E(1)) = N*E} (2-17)

There are two important features for FELs. One is the high efficiency of the
radiation. By comparison with Eq.(2-14), the radiated intensity by a complete
FEL is N times larger than that by conventional synchrotron radiation. The
other is the high stability of the radiated intensity. From Eq.(2-16) we can see
that if electrons number in one ensemble is unchanged, the radiated intensity
for different ensemble is also unchanged. Therefore the complete FEL is a
kind of very quiet, well-stabilized light.

2.3 Time response of various dynamical motion of electrons in a
bunch [32]

A systematic intensity variation of synchrotron radiation would cause an
unexpected accidental correlation in the measurement of two-photon
correlation. So it is necessary to survey the various time responses of an
electron in the storage ring and their influences to the intensity modulation.
In general a relativistic electron runs not strictly along an ideal circular
orbit in a storage ring, but has betatron oscillation and synchrotron
oscillation. Betatron oscillation comes from the focusing properties of the
guide field, which drives all electrons toward an ideal design orbit. Fig. 2-4
Just shows the trajectory of one electron's betatron oscillation in the
horizontal plane. Usually in order to avoid resonance of this oscillation, after
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one revolution the electron cannot return back to its initial starting point.
The electron will begin to repeat its past trajectories again after a certain time
( several revolutions ) which is called here betatron oscillation revolution
time #g. This could be calculated from the betatron tune of beam parameters.
For the PF storage ring, the electron bunch revolution frequency is about
1.6 MHz, the horizontal betatron tune is 9.85, and the vertical betatron tune
is 4.20, then

t=0 Design orbit for an
electron of energy E

Fig. 2-4 Tllustrating the lateral betatron oscillation
around an ideal closed orbit

1
N = 0.735 218
B~ = 0.85% 1.6 x 10° s (2-18)
= I ~3.125 (2-19)
BV T 02axl6x100 K )
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Synchrotron oscillation is actually energy oscillation which arises from the
radiation loss and the energy gain from the rf system. This oscillation is
usually very slow and causes the circular orbit as Fig.2-4 shows to oscillate
around its initial orbit. The oscillation period #,, for PF storage ring is

calculated from its synchrotron tune (0.023) as follows,

tsnz 1 6
7 0.023x1.6x10

=0.027ms (2-20)

In stationary conditions a balance is reached between quantum excitation
and radiation damping, leading to a statistically stationary distribution of the
oscillation amplitudes and the phases of the electrons in a bunch. The bunch
then has a stationary size and shape, although the motion for each individual
electron is complicated, So it is reasonable to think that these time responses
discussed above give no contributions to the systematic intensity modula-
tion of synchrotron radiation, which is in fact justified by our measurement of
the spectral distribution of SR intensity as Fig.4-14 shows. However these
complicated microscopic oscillations (betatron oscillation and synchrotron
oscillation) should be responsible for the fluctuation of two-electron's dist-
ance for different ensemble, as is described in section 2.2.1. In addition, the
betatron oscillation is a kind of high-frequency non-harmonic oscillation
(for the case of the PF storage ring, the horizontal oscillation frequency is
about 15.8 MHz, the vertical oscillation is about 6.7 MHz), which might give
some contributions to the chaotic nature of synchrotron radiation and could
be checked by experiment as is described in section 9.
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3 Theory of optical coherence [7)[8][26][27]
3.1 Field correlations

The basic elements of field theory are expressed as the separated positive-
frequency field operator and negative-frequency field operator,

E(r,0)=E*(r,0) + E (r,1), (3-1)

where the positive frequency part of the electric field operator is given as
follows,

-~ . 1 . —i
E*(r,t)= tZ(Emk)”zakuk(r)e it (3-2)
k

and in general

E(r,0)=(E"(r,n)) . (3-3)
In Eq.(3-2) 4, is the annihilation operator, and the mode function w,(r),
which corresponds to frequency wy, is usually determined by physical
considerations and may be taken to satisfy the wave equation at interior
points if the volume contains no refracting materials,

2 wp

In the classical coherence theory this expression as Eq.(3-1) shows in itself is
just that of the analytical signal and could be considered to be a convenient
mathematical trick that allows us to work with exponential functions with
complex variable rather than with sines and cosines. But in the quantum
theory of light they have different interpretations. The positive frequency
part, ﬁl*(r,t), as it is shown in Eq.(3-2), is regarded to be a photon
annihilation operator[33] . Applied to a n-photon state it produces a ( n-1)-
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photon state. Its Hermitian adjoint, E-(r,t), must be a photon creation

operator.
The mth-order field correlation function is defined as follows,

G (X, e X Xy Xo) = (B (X)) B (X, B (X,,,,) - B (X,,,),

MY

(3-5)

where X;=(r;, t; ) stands for the ith time-space point within the field and it
has been assumed that all the field operators have the same polarization for
convenience of discussion. The angular bracket (---) stands for an ensemble
average. In classical mechanics this average is taken over six-dimensional
phase space, while it is Trace(p --) in quantum mechanics where p is density
operator of the field.

3.2 Fully coherent optical field

If for an arbitrary positive integer n, the field correlation function can
factorize as follows, it is said that this field has arbitrarily higher-order
coherence or it is totally coherent field. If » is fixed, this field is said to have
nth-order coherence.

G(m) (X] [ 'X X p+10" 7 ‘XZm) = E* (Xl ) ot 6* (Xm )E(Xm+l ) e E(sz)

(3-6)

for all m < n. Where &(Xm) represent a complex function.

A quantum field in a pure coherent state |a) has such properties as
Eq.(3-6) shows. It can be easily verified because the coherent states for the
kth mode are the eigenstates of the annihilation operator of this mode, and
correspondingly the coherent states for the entire field are the eigenstates of
the positive-frequency field operator,

ala,)=ala,) (3-7)

24



E*(r,0)|a@) = &(r,1)a) (3-8)
where the positive-frequency field operator has been shown in Eq. (3-2) for

a multi-mode field and the set of coherent states for the entire field are given
as follows,

|a>51:[lak>k (3-9)
The eigenvalue function £(r,?) in Eq. (3-8) is given as
£(r,t)=izk:(%hwk)”zakuk(r)e"""“ (3-10)
The density operator can be readily written as

p=la)al (3-11)

In this case the complex function &(r;,#) is interpreted as just the counterpart
of the complex amplitude of classical field. To show an explicit form for | Ui
in terms of the photon-number state, we write,

o, 2 a,”
@), =e ™ IZZﬁIn) (3-12)

This form immediately gives the probability of finding n photons ( the
photon statistics ) in the kth-mode coherent state as

) 2n
p, =Knla, ) = 1! I (3-13)

n!

which obeys a Poisson distribution.
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3.3 First-order coherence

The simplest and the most well-known coherence is first-order coherence,
because it is also defined for a Fermion system, such as electrons. It is the
case of m = 1 in Eq.(3-5). The degree of first-order coherence is defined as

<E‘(r,,t)f§+(r2,r +7))
\/@‘(rl,t)l?*(rl,t)) (ﬁl‘(rz,z + r)ﬁ*(rz,r + r))

Y12(7) = . (3-14)

According to the definition of Eq.(3-6) if a radiation field is first-order
coherent then

7 (T =1, (3-15)

It is easily shown from the definition of Eq. (3-14) that any optical field
with single-mode excitation is first-order coherent and satisfies the
condition of Eq. (3-15). Multi-mode coherent field is still first-order
coherent and can be verified by the density operator defined in Eq.(3-11).
The density operator for a multi-mode chaotic field is given as follows,

b= Slm ) T2 (3-16)

{m} o (1+m )

where 7, represents the average photon number in the kth mode. By
substituting Eq. (3-16) into Eq. (3-14) we get the degree of first-order
coherence for a multi-mode chaotic optical field as follows,

2 oy exp{—ilk-(r, -r,)-w, (1, -1,)]}
_ K
ylz(r) - Z '_lkwk
k

(3-17)

where the plane-wave mode functions appropriate to a cubical volume of
side L has been used,
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u, (r) = L*%6% exp(ik - 1) (3-18)

Clearly from Eq. (3-17) we can see that,

spatial or temporal separation and will exhibit maximum 1 if these two points

coincide. When the optical modes are completely different at r; and rs,
|7,,(7)| vanishes and gives complete incoherence.

¥,,(7)| will strongly depend on the

We will show by the following simple example that any field including a
Fermion field (coherent or incoherent) could be first-order coherent in a
certain condition.

g

I 18
AS
Q P

g Pz

A B

Fig. 3-1 Illustrating Youngs double slits experiment

The above Figure is well known Youngs double slits experiment. & is the
light source with transverse size As, a double slit is placed at plane A, and B is
the observation plane. The angle opened by the double slits to the source is
A8, The visibility in the plane B reflects the field correlation G"(p, p,) and is
proportional to the degree of first-order coherence v,,(t) between p, and p,.
From classical optics we know that, no matter what kind of light source it
might be, if As- A << A the visibility in the plane B is almost 100%, which
implies that |y,,(7)| is almost unity and the field between p, and p, is
completely first-order coherent. This means that the optical modes at p, and
p,are exactly the same and the phase difference between p, and p, does not
fluctuate.
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3.4 Second-order coherence

Second-order coherence is a quantitative description of the two-photon
correlation of a radiation field and belongs to the case of m=2 in Eq.(3-5). Its
degree is defined as follows,

<E‘(r1 ,I)E"(rz,t + r)ﬁl*(r, ,t)E*(rz,t + ‘r)>

F(z) — .
VB, 0E (r,0) (B (0,1 + DE (1,1 + 1)

(3-19)

In a Fermion field with same spin the second-order coherence vanishes at the
same space-time point due to the Pauli principle. From the definition of Eq.
(3-6) we can see, that if a field is second-order coherent its degrees of first-
order coherence and second-order coherence should be simultaneously a
constant, that is

l72(7)] =1, (3-20)

and
r=1. (3-21)

It can be readily verified that coherent state satisfies the above two
conditions and is second-order coherent. It should be noted that Eq.(3-21)
alone does not always mean that the field is totally second-order coherent,
because Eq.(3-21) also holds when the modes of the fields at r; and r are
completely different. In fact the complete second-order coherent field in the
short-wavelength region is very rare except for the fields emitted from some
artificial light sources such as lasers or FELs. Most of the fields we are
familiar with belong to another kind of form, which is a so-called thermal field
or in general chaotic field. Such a field is a statistically mixed states and its
density operator has been given in Eq.(3-16). Obviously the probability of
finding »n photons (the photon statistics) in the kth mode is easily written as

follows
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1 A |
= . 3-22
Pn 1+ﬁk{1+ﬁk} ( )

In other words, the number of photons in the mode is distributed according
to the powers of the parameter 7, /(1+7, ). The Plank distribution for
blackbody radiation furnishes an illustration of a density operator which has
long been known to take the same form as Eq.(3-16). So this is the reason
why the terminology of 'thermal field" has been often used. However it is
worth noting, in particular, that while the Plank distribution is characteristic
of thermal equilibrium, no such limitation is implicit in the general form of the
density operator Eq.(3-16). It will apply whenever the excitation has an
appropriately random quality, no matter how far the radiator is from thermal
equilibrium, Therefore the terminology of chaotic field is more general than
that of thermal field. For any chaotic field its degree of second-order
coherence can be decomposed into its degree of first-order coherence

I =1+y,(0)f, (3-23)

where 7,,(7) is defined by Eq.(3-14) and has an explicit form as Eq. (3-17)
shows for a multi-mode chaotic field. Clearly the above I'*”' is larger than or
equal to unity, and will exhibit a bunching effect against space-time
coordinates.

In addition to the coherent field and the chaotic field, there exists another
interesting field called non-classical field [34]. For example if a field is in a
photon number state |n) its degree of second-order coherence can be

readily expressed as

ro-1-1 o (3-24)
n

This is called anti-bunching effect characterized by a sub-Poisson photon
statistics.

The degree of second-order coherence for three typical optical fields is
drawn in Fig. 3-2, where we can see that from the measurement of two-
photon correlation, at least the chaotic field and the photon-number
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squeezed field could be distinguished. If we measured a flat response like
curve B in Fig. 3-2, we could say this field is second-order coherent and its
photon statistics approaches to a Poisson distribution, where in general we
need to measure coherence higher than the second-order coherence to
check whether the field is totally coherent or not.

2
I' |
A
|
|
! B
1 1
| C
|
|
0

Temporal t or spatial d

Fig. 3-2 Second-order coherence for three typical optical fields
A: chaotic, B: coherent, C: squeezed
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4 A new intensity interferometer

A detailed description of the new apparatus will be presented in this chapter.
4.1 The optical system

4.1.1 Basic idea

To measure the intensity correlation, one important step is to realize the
incident beam division. A conventional half-splitter mirror for visible light is
not appropriate for soft X-ray region because it is not transparent in shorter
wavelengths. The small beam size of undulator radiation suggests us to
adopt the following diffraction splitting method.

(Precise slit
Splitter
SR. i' T
— “"“WMWW o : I;(t)
dT. o
L Monochromator 1,(t)

Fig. 4-1 Simplified diagram of optical beam division system
for synchrotron radiation in YUV and soft X-ray region

As it is shown in Fig. 4-1, a precise slit diffracts incoming SR horizontally (or
any direction, because the whole system can be rotated around the incoming
axis), where the width 4 can be continuously adjusted by a micrometer with
the accuracy of 0.8 um. After going through a monochromator the diffracted
incident light is divided into two beams by a splitter mirror.

Now let’s give a simple quantitative analysis on the second-order
coherence between /,(z) and I,(¢). As Fig. 4-2 shows, o is the center of the
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precise slit, d is its width. Incoming light propagates along z-direction. o’ is
the center of the diffracted beam at the splitter mirror. Due to the Fraunhofer
diffraction we can easily express the field at point y as follows [30],

+d/2
E0)=7 [E@exp(T +(y =27
-d/2

) (4-1)

vers
(L2 4di2

e g Y
=——— | E(x)exp(—ik=x)x,
L _(}.‘/2 L

where L is the distance of oo’, k is the wave vector, and x is the coordinate at
the precise slit plane ox , and the term x* / I? has been neglected. We can
further express the divided intensity 7,(¢) and 1,(¢) as follows,

L) =] EG)E (y)dy (4-2)
and
Q0 *
L=[ EWE (yMdy . (4-3)
X %
A A
y
dr2
X o' >
0
-d/i2 L r4

Fig. 4-2 Tllustrating the intensity correlation between /1,() and 7,(r)
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Substituting Eq.(4-1) into Eq.(4-2) and Eq.(4-3), we get the second-order
coherence between I,(¢) and I,(¢) as follows if we assume that SR is chaotic

radiation,
(4 = LOL@)  _ 14 1 d)?
D= T ey - D
412 di2 2
I J- | (E*(xl)E(x2)> ldxldxz
=1 + 3 : (4-4)
_[ I (L(x)) (L(x)) dxdx,

-di2-di2

where x, are the coordinates at the precise slit, E(x;) and 7 (x;) are the
amplitude and the intensity of the optical field at x;.

Eq. (4-4) implies that the intensity correlation between 1,(r) and 1,(¢) is
completely determinated by the field distribution at the plane of precise slit.
If d is much smaller than the coherent size, the second term in Eq. (4-4) is
nearly unity; if 4 is much larger than the coherent size, the field correlation
between different the two points at precise slit will become very weak, and
this makes the second term much smaller than unity but not zero due to the
existence of auto correlation.

To give an explicit form of the relationship between the second-order
coherence I'*? and the Fraunhofer slit width d, we use the following
relationship to calculate the field correlation from the brightness [23] [37]
[38][39].

(B G+ DEG-2)=[dp Bxperp-iksd),  (4-5)

where x and & are the coordinates at the precise slit and B(x,¢) is the

brightness distribution at this slit and can be expressed as follows,
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2 2
(p” +2ax¢+By ), (4-6)

B(x,¢)= Byexp(~ e

where € is the emittance of the stored beam, ¥, & and § are the so-called Twiss
parameters in accelerator physics and satisfies the following relation,

B-a’=1 (4-7)

Substituting Eq.(4-5) into Eq.(4-4), an approximate analytic solution could
be solved, if we assumed that the precise slit has a Gaussian amplitude
transmissive function such as exp(—x2 / 2D*), where the effective width D
relates the real width d as D=d/2V3, merely for the convenience of
integral. The result is shown as follows,

() = 2 d* +24%° cos”! d’
Y n\(1+2?/ a?)d* +24%? 1+202/2%)d* + 480’ )

(4-8)

where d is the Fraunhofer slit width, X is the beam size and 0,is the

coherent size, at this slit. ©is defined as follows,

sp}:
0, =——t—, (4-9)
£°—¢,

where € is the emittance of the stored beam and €, = Aldr.

Eq.(4-8) is an important formula to give a quantitative estimation of the
excess two-photon correlation between the two divided light beams falling
on the michrochannel plates. For a certain photon energy, if the beam size
and the emittance are given, the dependence on the Fraunhofer slit width 4,
of the excess two-photon correlation, is deterministic. Fig.4-3 shows the
theoretical curves for different emittance according to Eq. (4-8) and Eq. (4-4)
. where it is assumed that the photon energy is 70 ¢V and the beam size
>=80um at the precise slit. The beam size is defined as follows and could be
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measured éxperimentally by a wire scanner attached directly behind the
precise slit.

2
(ER) = |Eyf exp(—%) (4-10)

From Fig.4-3 we can see that the photon bunching effect gets sharper and
sharper as the emittance increases and detection of the bunching effect
becomes more difficult because the total intensity passing the precise slit
should be decreased.

r2(d) | ' .
2 A —+  e=10nmrad;
1 8} — ¢ - £=20nmrad-
- £=30nmrad]
16 ¢=40nmrad ]
1.4F B
1.2F -
'] [ 1 Lo s :_h N ”J__ - R irinl
0 20 40 60 80 100

Precise slit width d (um)

Fig.4-3  Theoretical estimation of T (d) between I,(r) and L,(¢)
Beam size X=80um is assumed at precise slit

4.1.2 Optical setup

The optical setup with the parameters designed is shown in Fig. 4-4, where
(a) is the top view and (b) is the side view. The angle of (a+f) can be
adjusted from 160° to 175°, and the outgoing length b of the exir slit can be
adjusted from 108 mm to 216 mm to satisfy the beam converging condition,
without breaking the high vacuum. In Fig. 4-4 (b) a piezoelectric translator
(PZT) is installed on the entrance slit to modulate this slit width slowly and
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(a) Top view

ise sli Entrance slit Gratin Exit  Plane Beam Beam
Precise slit g slit mirror  splitter mask MCPs
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(b) Side view

1

Fig. 4-4 Setup of the optical system ( unit: mm)
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Fig. 4.5 Side view of the optical vacuum chamber
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Fig. 4-6 Three-dimensional view of the design of the vacuum chamber
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quasi-sinusoidally. All these elements are installed in a high vacuum chamber
as it is shown in Fig. 4-5 . Now I will give a detailed description about its
constituents.

+ Main chamber

The parameters of the main chamber are shown in Fig. 4-6. The total length is
313.5 cm long and the high vacuum is maintained at UHV (107 ~107%torr)
by a 20 /s ion pump. This vacuum chamber, as it shown in Fig. 4-9 and Fig.
4-10, can be rotated around the incident optical axis by a differentially
pumped rotary feedthrough (DPRF) to characterize the transverse coherence
along an arbitrary orientation .

» Precise slit

The width d of this slit is controlled by a high-precision micrometer with the
accuracy of 0.8 um. It is used to diffract the incoming light and to change the
spatial coherence of synchrotron radiation. The normalized excess two-
photon correlation is measured as a function of this width 4.

» Monochromator

The monochromator is an important component in this apparatus. In addition
to make the incident light quasimonochromatic, it plays a role of coherence
time modulation which will be shown later to be vital for the use of lock-in
amplifier to suppress the accidental correlation, to suppress the white noise,
and to extract the weak true two-photon correlation.

This mochromator consists of an entrance slit, a spherical grating, an exit
slit and a plane mirror. The grating parameters are chosen as R=4m( radius
of curvature) and N = 600 I/mm (groove density). To optimize this mono-
chromator, we use the grating equation and the first-order converging
condition as follows[40][41],

sin(a) —sin(f) = —% (411)

cos? (@) N cos(B) _ cos(a)+ cos(f)
a b R

(4-12)
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where d=1/ N, a is the incident length, b is the outgoing length, and the
negative 1st-order diffraction has been used. After optimization the sum of «
and B is fixed at 168.88° in the present study (but could be changed if
needed without breaking the vacuum). As shown in Fig. 4-4, the incident
length a is fixed as 666 mm and the outgoing length b varies between 108.6
mm and 216 mm to satisfy the first-order focussing condition for different
photon energies, which can be scanned continuously from 60eV to 220eV
with the resolution of A/AA ~1000 by rotating the angle of the grating,
correspondingly changing a and §.

Table 4-1 Parameters of the Monochromator

Radius of curvature 4000 mm
of the grating ( R)
Groove density of the grating (N) 600 l/mm
o+B 168.88° (adjustable 160° ~ 175°%)
Incident length (a ) 666 mm
Outgoing length (b) 216 mm ~ 108.6 mm
Scanned photon energies 60eV ~ 220eV

(206 A ~ 56 A)

The resolution of the monochromator is determined by the width of the
entrance slit and exit slit in case that the total number of the grooves be
regarded as an infinity. By differentiating Eq. (4-11), the coherence time can
be expressed as follows,

_ 1 _A sin(B) —sin(a) _
e = AV ¢ cos(a)lAa]+cos(B)AB (4-13)

where Aa=d,/a, AB=d,/b, d, and d, are the widths of the entrance slit and exit

slit respectively. The results are shown in Fig. 4-7. Clearly we can see that if
the exit slit is fixed at 20um, and the entrance slit is modulated between
50um and 100wm, then nearly 30% modulation of the coherence time can be

attained at a fixed wavelength.
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Fig. 47 Coherence time T, of the monochromator for different
entrance slit width of 50um and 100um, where the exit slit
width is fixed at 20um. ( S; - entrance slit, S; - exit sht )

The entrance slit width can be modulated slowly and quasi-sinusoidally
by an installed piezoelectric translator (PZT, P-244.30) as is shown in Fig.4-8,
for the purpose of coherence time modulation. The nominal expansion at the
applied voltage of 1000 V is 40 pm for each PZT. In addition, the width can
be adjusted manually by two micrometers with the accuracy of 1m. The PZT

parameters are given in Table 4-2.
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Fig.4-8 Control system of the entrance slit installed in

the main chamber ( unit: mm).
(a) View from the upper stream, (b) side view

Table 4-2 P-244.30 stacked translator

Nominal expansion (at -1000 V) 40 um
Max. expansion ( at -1500 V) 60 um
Resonant frequency 9 KHz
Stiffness 60 N/um
Electrical capacitance 76 nF
Total length 93.5 mm
Weight 128/147 g
Temperature expansion 0.65 pm/K

( Physik Instrumente P GmbH & Co.)
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The exit slit could be adjusted manually by a similar micrometer with a
accuracy of 1um. The plane mirror acts merely as a reflection mirror.

» Beam splitter
This is actually a plane mirror with a very sharp edge.

» Beam mask

This is used to smooth the divided two beams and to reject the unnecessary
scattered light. In addition it could act as a " balancer" to adjust the incident
intensities falling on the two microchannel plates.

» MCPs

The microchannel plate ( HAMAMATSU F4655-10) acts as our fast-response
photon detector Its rising time is 0.25 ns and falling time is 0.75 ns. The
maximum linear output of this MCP is 1pA. The nominal gain at 2.4 KV is

about 5x107,

Table 4-3 Important parameters of MCP assembly ( F4655-10)

Efficient diameter 14.5 mm
Operation temperature +10°C ~ +40°C
Operation vacuum 1.3x10-3 Pa (1x 107 Torr )
dark current ( 2.4 kV) 3 cps/cm?

Gain ( 2.4kV) 5x107

Rising time 250 ps

Falling time 750 ps
Maximum linear output 1 pA
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Fig. 4-9 Photograph of the side view of the optical vacuum chamber of
the new intensity interferometer for soft X-ray synchrotron radiation
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Fig. 4-10 Photograph of the side view of the optical vacuum chamber of
the new intensity interferometer for soft X-ray synchrotron radiation
The chamber is rotated 45 degrees around the incident optical axis.



4.2 The electric correlator

Just as we have mentioned above, the electric correlator plays an important
role in the measurement of the correlation of intensity fluctuations of
synchrotron radiation. This comes from two reasons. One is the limited
bandwidth of any electronics, and the other is the bunch structures of the
present light source. As it is well known that the intensity of a chaotic light
source fluctuates with a very broad band ( from dc component to the order
of optical bandwidth Av, i.e. inverse of coherent time 1 ). This is apparent
because chaotic light looks stable only in the short period of coherence time
1c. Limited bandwidth of electronics Af (at best several GHz nowadays) cuts
off most of the fluctuation components and makes the correlation, i.e. the
multiplication of two wide band photoelectric currents, decrease by Af/Av
which is around the order of 10-5 in most actual cases. To measure such an
extremely small correlation signal, Hanbury-Brown and Twiss borrowed the
technique of “phase switching” from radio-astronomy and successfully
observed the bunching effect from a stationary thermal light source of
mercury arc nearly forty years ago. So now it seems that there is no severe
difficulties in measuring such a small correlation signal for a stationary light
source in case that the Bose degeneracy is not too small. But things will
become much more complicated for a non-stationary light source such as
synchrotron radiation. In the following sections we first review the outline of
a conventional electric correlator for a conventional optical intensity
interferometer using a linear electric current multiplier, and then consider the
special properties of synchrotron radiation emitted from the Photon factory
of KEK, and finally a new experimental proposal is presented based upon
this basic electric correlator.

4.2.1 Outline of a conventional electric correlator

As Fig.4-11 shows, a conventional electric correlator operated in photo-
electric current mode consists of three basic components: two fast response
photon detectors and one linear multiplier. Such limitations as limited
response time of photon detector and limited bandwidth of electric circuits
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Fig.4-11 Outline of an elementary electric correlator
are represented by a virtual low pass filter in each arm. Now we consider a

stationary light coming from a chaotic source. From Eq.(3-13) the excess
two-photon correlation can be easily expressed as follows,

(AL (DAL (1 + 7))
(D) (L(+7)

2
’

=]71,(7) (4-14)

where 7 is the time delay and 7,,(t) is the first-order coherence. The fast
response detector converts the light intensity fluctuation into photoelectric
current fluctuation according to the semi-classical photoelectric theory [42],

J(8) = ael (1), (4-15)

where o is quantum efficiency of the detector, e is the charge of an electron.
1(?) 1s light intensity and J(¢) is output photoelectric current of the detector.
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Clearly the multiplier output reflects the correlation information (spatial or
temporal) of the two light intensities at each detector

<M1(I)M2(t)>“%(Ml(’)mz(tn (4-16)

R

where T, is coherence time, T} is the average response time of the correlator
and can be expressed as the inverse of the bandwidth of the virtual low pass
filter. The reduction factor 7./ Ty comes from the fact that the time response
of any electric circuit is usually much slower than the coherence time. For

example, in the present soft x-ray region, A=17.7nm, the resolution
A/ AA =1000, electric bandwidth Af =1GHz, then this reduction factor is

around 1076, This is the main reason why two-photon correlation is difficult
to detect, especially in the region of short wavelengths.

42,2 Time structure of synchrotron radiation

The system as shown in Fig. 4-11 works well for a stationary light source.
However for non-stationary light such as synchrotron radiation much more
attention must be paid to the bunch structure. Here "non-stationay' means
that the light source fluctuates not only randomly but also systematically
with some frequency components. Then the much larger accidental
correlation would severely prevent us from observing the true two-photon
correlation. Here the parameters of the PF storage ring of KEK are listed as
follows for the correlator design.

Table 4-4 General parameters for the PF storage ring

Beam energy 2.5 GeV (0.75 - 3.0 GeV)
Initial beam current (multi-bunch) 400 mA (achieved 770 mA)
Beam emittance (design value) 36 nm*rad ( horizontal )
0.4 nm*rad ( vertical )
rf frequency 500.1 MHz
Circumference 87 m( bending radius=8.66m)
Beam lifetime 220 h (at I=400 mA)
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Table 4-5 Beam paramelters

Bunch length (1.m.s.) 1.0cm
Synchrotron radiation loss per turn 400 keV
Horizontal betatron tune 9.85
Vertical betatron tune 4,20
Synchrotron tune 0.023
Momentum compaction factor 0.0061

Among those, the rf frequency and the circumference are most important
parameters because they determine the time structure of synchrotron
radiation. We illustrate this time structure as follows.

I(t)
A T, /TE=O.1I"IS
Ve e
e Ve
| /s | #
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——————————— T = 062318 ~——————— — >

Fig.4-12 Time structure of synchrotron radiation at PF

The fluctuation at each pulse arises from the fact that synchrotron radiation
is chaotic light and the photons emitted by any two electrons have no
deterministic phase relationship. The pulse structure comes from the bunch
distribution of the electron beam in the storage ring. Due to the partial filling
of electron bunches in the storage ring, these pulses exhibit the repetition
frequency not only at the rf frequency ( 1/Tp= 500MHz) but also exhibit
macro-bunches repetition frequency ( or so-called revolution frequency ) at
1/T =1.6MHz, where ¢T is the length of one circumference (187m). Fig.4-13
shows the spectral characters of SR intensity. The slope line comes from the
fluctuation at each pulse as is shown in Fig.4-12, and it has the Guassian
shape and extends to the frequency of the order of 1/, (7, is coherence time)
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provided that the light has a Gaussian spectral distribution in the central
frequency v,. The sharp peaks come from the repetition frequencies of each

bunch, macro-bunches, their harmonics and their coupling.
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Fig. 4-13 Speciral density distribution of SR intensity

Fig.4-14 is a measured spectrum at the Photon factory by a Tektronix 494AP
programmable spectrum analyzer and it is consistent with the theoretical
prediction as is shown in Fig. 4-13 .

The above characteristic temporal and spectral structure of SR intensity
distribution suggests us to consider such kind of non-stationary light as a
pulse-modulated stationary thermal light. By using this model we have given
a detailed theoretical analyses on the photoelectric correlation from the
frequency domain ( see Appendix A ) and the result is as follows,

co o< (XL A+ =y, (4-17)
R

where (/) and (I,) are the average light intensity at each detector, (1+|y,,[")
is the degree of 2nd-order coherence as defined in Eq.(3-17), 1, is the
coherence time, 1/ T, is the bandwidth of electric correlator, The duty ratio k
= (T/T,) X(Trey/Tooy>>1, where T, T, Trey and T, are the bunch width,
bunch separation length, revolution time and bunches partial filling length
respectively, can cancel the reduction factor a little which may be the
advantage of pulse structure of SR for the measurement of two-photon
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correlation just as E. Ikonen predicted [13]. But on the other hand the pulse
structure also gives rise to a great difficulty to observe the true two-photon
correlation. That is just the first term A in Eq.(4-17). It is defined as follows
according to Eq.(A-37),

nt: Z
DC ~ 500 MHz

Fig. 4-14 Intensity spectrum of synchrotron radiation
( measured at the Photon factory, KEK, Japan by a Tektronix 494A

programmable spectrum analyser)
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where the integers N, and N, are the lower and the upper limit of the
bandpass region of the correlator in units of the revolution frequency 1.6
MH7z. we call A accidental correlation or trivial correlation because it is just
the summation of those sharp peaks in the band-pass region of the virtual
low pass filter. This low pass filter could be regarded as a real filter if we
think the response time of the detector and the linear multiplier as zero. And
more its shape can be arbitrary. In Eq. (4-18) the filter function has been
assumed as a square wave with the band-pass region from 1.6N, (MHz )to
1.6N, (MHz ). This unuseful term A usually has the magnitude much larger
than the second term in Eq.(4-17).

4.2.3 A new correlator for SR

In order to measure the true two-photon correlation, the harmful term A must
be suppressed, because otherwise in such a strong background any variation
of the true correlation information could not be resolved with present
experiment precision.

One step to suppress the accidental correlation is to choose an
appropriate filter. There are two requirements for characteristics of such a
filter. First it has to pass those frequency signals including only high
harmonics with small amplitude and small intercoupling. Second the-
bandwidth must be wide enough to measure such a weak signal. As an
optimized choice a bandpass region was decided to be from 100MHz to
350MH?z, where the trivial term A in Eq.(4-17) is suppressed to nearly the
same order with the second term which makes it reasonable to observe the
variation of the 2nd-order coherence as a function of different spatial
positions.

To suppress further the accidental correlation A and to remove the DC
drift of such a broad band electric system, a novel modulation technique is
adopted in this correlator. The entrance slit width of the monochromator is
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selected as a modulated quantity because it strongly affects the coherence
time and is easy to control. The width of entrance slit is actually modulated

by a pair of piezoelectric translators very slowly at a frequency f. This
modulation does modulate not only coherent length 7., but also the two

intensities /, and I, in Eq.(4-17). Therefore when exact sinusoidal
modulation of SR intensity and coherence time 7, is achieved, the third
harmonics 3f of modulation frequency f corresponds to the true correlation
as is shown in the second term in Eq.(4-17). Even when modulation of T,
includes some higher harmonics, the true correlation appears only in the
harmonics larger than 3f. But when the intensity modulation is not sinusoidal
we have to check whether it affects the 3f components of Eq.(4-17). Fig. 4-
15 shows the principal diagram of this new electric correlator.

_ Band-pass filter
Entrance slit —e— 100 -350MHz

_>¢ i 1GHz (x)._ P
SR. ¢ B Multiplier 3f S
f » ) 100 -350MH Frequency selector

Band-pass filter

Modulation frequency

Fig. 4-15 Principal diagram showing how to extract
true two-photon correlation

The block diagram of this correlator is shown in Fig.4-16. A pair of
microchannel plates (MCP,HAMAMATSU F4655-10) are used as photon
detectors due to its fast response time (0.75#xs). A high pass filter( SHF 1735,
100~800MH?z) and a low pass filter(300k~350MH?z) constitute the bandpass
filter. The double balanced mixer (DBM, Mini-Circuits LRMS-5) acts as a
multiplier with broad band frequency response(5~1500MHz). All the high
frequency components including 4 preamplifiers ( EG&G ORTEC 9306, 1-
GHz), DBM and bandpass filters are mounted on a board which is placed in a
copper-electromagnetic shielding box. A temperature controller is installed
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on this borad to control the temperature around (40 0.1)°C. Fig.4-17 and
Fig.4-18 show the photographs. In spite of the high gain of the amplifier A,
and A,, the true 2-photon correlation signal, i.e. the 3f signal, is deeply
submerged in the strong thermal noise sea. Therefore SR830 (DSP Lock-In
Amplifier) is employed to extract the weak signal through its high dynamic
reserve. 17 and I2 are the low frequency (or DC) components which are used
as the normalization of the signal output.
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Band-pass filter

Lock-in
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@ - @ BF2
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Fig. 4-16 Block diagram of electric correlator for SR
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4.2.4 Photon number and S/N ratio

To estimate the S/N ratio of this new electric correlator it is necessary to
estimate the photon number falling on the detectors.

THMCPR0001 X

10°%

1 1.5 2 25 3
MCFREINIRE (kv)

Fig. 4-19 Gain feature of MCP [43]

The gain characteristics of MCPs is shown in Fig.4-19. In the experiment the
high voltage is fixed as 1800 V, and the output current is adjusted to about
100 nA (BL16B, PF). The gain was readily estimated to be of the order
G ~10° from Fig.4-19. The quantum efficiency is about a ~ 0.02 for the
photons of 70eV. The photon number N falling on the detectors within unit
time can be estimated as follows,

]Vz—J—DLle9 sec! . (4-19)
Gae _

Considering the resolution A / AA ~1000 for 4 =17.7nm (70eV), and the
coherence time is 7T, ~10""sec, then the degeneracy parameter & [44] is

calculated as follows (the average photon number falling on the detector
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within coherence time 7, which is a quantity proportional to the Bose

degeneracy [45]),
5=Nt ~107" (4-20)

Obviously & is the same as the Bose degeneracy np when only the diffraction
limited part of the beam is detected. In Fig.4-11 the wave noise Js at the
output of the filter, which comes from photon fluctuation, is given by the
equation [6],

72 2 Af

JSzZZJDC]A_v’ (4-21)

where J, is the direct current component in signals, which is induced by the
average intensity of the light. In addition the shot noise due to the finite
charge of an electron is

J?=2el,-Af. (4-22)

From a simple calculation we can find that in the present situation the wave
noise is much smaller than the shot noise.

Il

=ad <<, (4-23)

—~
~

where a is the quantum efficiency of photon detector, é is the degeneracy
parameter. According to the above analysis the ratio in Eq.(4-23) is about
10°°.

The signal to noise ratio at the correlation output can be expressed as
follows [6],

S 1
ﬁ=a6x|'y12(0)|2 STt %, (4-24)
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where T, is the measuring time, ¢ is the quantum efficiency of photon detect-
‘or, & is the degeneracy parameter of light source, K is duty ratio as defined in
Eq.(4-17), Af is the bandwidth of this electric correlator, X is the unexpected

loss in the period of measuring time 7,
Let us give a numerical estimation of Eq.(4-19). For our correlator, we
assume Af = 250 MHz, k= 20 ( see Appendix A), and X =0.5, For a light

source with Bose degeneracy5=10_4, we give a measuring time T,= 2

hours, then

S
—=27. 4-25
N ( )

Therefore two-hour measurement can give an enough S/N ratio.
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5 System tests

To ensure that this new intensity interferometer be reliable, a series of tests
were performed.

5.1 Monochromator

The monochromator plays the roles of wavelength tuning and coherence
time modulation. To demonstrate its resolution we measured the Aluminium
transmittance spectrum by scanning photon energy with this monochro-
mator. Fig.5-1 shows the Al Ly;; absorption edge of an A/ filter installed at
BLI12A.

MCP current (nA)
B L] l L) 1 1 | T L] L ' T L) L) l T 1 L) ' L
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X e .
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R o SPSREPRES |
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Photon energy (eV)

Fig.5-1 Transmittance spectrum of Aluminium scanned by the
monochromator with different Entrance-Exit slit width pairs.
Curve a: 40um-40 pm, b:100 pm -40 pm, ¢:140 pm -100 um

Curve a, b and ¢ represent the transmittance spectrum scanned by the
monochromator with different Entrance-Exit slit width pairs respectively.
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The first step in Fig.4-1 comes from the Ly; (73 eV) resonant absorption, the
second one from L(74 eV) absorption. The data include the thermal
broadening of the Fermi edge of Al, which is the order of 3.5 K37 and
roughly equal to 80 meV at room temperature. The resolvable photon energy
of this monochromator was estimated to be smaller than 0.1¢V. On the other
hand Fig. 5-1 also gives a qualitative indication about the resolution of the
monochromator. Clearly the relatively plainer curve ¢ than curve a or b
implies the fact that the resolution of this monochromator at the case of small
slit width pair (40 um -40 pm) is better than at other case (100 wm -40 um or
140 pwm -100 pm). In other words the coherence time 7.(a) at case a is the
longest one and 7.(a) > 7.(b) > 7.(c). More exact estimation of the resolution
would need some deconvolution considering the thermal broaderning of the
Fermi edge.

5.2 Time response of MCP

Microchannel plates are installed in the high vacuum chamber of this inten-
sity interferometer and are our photons-electrons converters. Their response
time is important for improving S/N ratio. Fig. 5-2 is measured by IWATSU
400MH? storagecope. The solid lines are Gaussian fitting results.

MCP output (arbitrary unit)

T T L I T i T r T T L l T T 1 | T 1 L] I T T T

Cl 1700V { o=0.5792 nsec)
[ b; 1650V (  ©=0.5915 nsec)
a: 1600V { 0=0.5840 nsec}

»

time (nsec)
Fig. 5-2 MCP response pulses at various bias voltages
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By increasing MCP bias voltage from 1600V to 1700V, the response mag-
nitude is linearly increased but the width is almost invariated, which
corresponds to the response time of MCP. Due to the limited bandwidth of
the storagecope (400 MHz) the measured value (about 1.2nsec) is a little
larger than the actual one ( 0.75nsec).

5.3 Intensity modulation

As it is shown in the last chapter sinusoidal modulation of light intensity is
vital for suppressing false correlation.

Entrance slit

w3

-
¢ MCP
_%.f
PZT ‘
Controller < Function

Generator

Fig. 5-3 Arrangement to modulate the slit width

Fig. 5-3 shows the simplified schematic diagram of this operation. Basically
the waveform of analog output of the function generator (FG) is arbitrarily
program-controlled, and an appropriate waveform can compensate the
influences of hysteresis and nonlinearity of the piezoelectric translator (PZT)
and the nonuniform distribution of SR. Then we can in principle produce
precise sinusoidal modulation of SR intensity. But due to the instability of
beam position the perfect compensation of nonlinearity is difficult to
achieve. We estimate the effect of higher harmonics of the intensity
modulation in Eq. (4-17) by comparing contributions due to the first and the
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second term in the 3f components of Eq. (4-17). We found that the effect is
negligible when undulator radiation is used and the higher harmonics is less
than 10%. Therefore we just use the sinusoidal waveform output of the
function generator.

MCP output
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0 100 200 300 400
Time {msec)

Fig. 5-4 Modulated intensity waveform of synchrotron radiation
5Hz modulation frequency, control input, a: 4.00Vpp, b: 5.6Vpp, c:6.4Vpp

Some examples of modulated SR intensity is shown in Fig. 5-4 at the
fundamental frequency 5Hz with different peak to peak output voltage from
FG. Table 5-1 shows their harmonic ratio of each curve. Apparently appro-
ximate sinusoidal intensity modulation can be achieved by appropriate
selection of peak to peak voltage output of the function generator.

Table 5-1 Higher harmonics and their ratio. (5Hz-modulation frequency)

5Hz 10Hz 15Hz 20Hz
4.0Vpp 1 0.062 0.085 0.023
5.6Vpp 1 0.123 0.062 0.031
6.4Vpp 1 0.182 0.053 0.037
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5.4 DBM performance

Double balanced mixer (DBM) acts as the linear multiplier in the electric
correlator of this intensity interferometer. By using the network analyzer we
measured its performance with the two inputs Lo and RF in the same
frequency.

D.B.M. output Vr (v)

0.06 | _
0.05 I 150MHz N
[ - T 200MHz .
[ ___ :-_: Z250MHz B
0.04 g T .
0.03 :._ ............. E =O z ]
0.02 F .
0.01 | S S :
0 [ 2 ]

0 0.15 0.2 0.25 03 0.35

D.B.M.input V XV (V2
Fig. 5-5 DBM performance test

The measured results are shown in Fig. 5-5. We can see when each input is
larger than 0.2V, DBM can exhibit good linearity. Of course this is just a
simple test of DBM operation. For actual case the output will be an integral
effect because the input frequencies cover a continuous broad band which is
the passing band of the bandpass filter in the correlator.

5.5 Noise characteristics

For such a high-gain (1204B) broadband (250MH?z) electric correlator, the
most important problem is to suppress the thermal noise and coherent noise.
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The lock-in amplifier acts as the 3f selector in our correlator and it is sensitive
only to such signals which oscillates at the same or some harmonic frequency
as its reference input. Fig.5-6 show the working principle for a lock-in
amplifier [46]. For a synchronously excited signal its modulated amplitude s
and phase difference from the lock-in reference 6= Bref - 9“-8 would be
measured simultaneously. The averaged amplitude output can be calculated
as follows for a long-time measurement.

(S) = /(Scos 8 +(Ssin 0)° (5-1)

‘ Noise

Modulated Singnal

Signal /\/

Lock-in reference ’\/j\/\

O ref

Fig.5-6 Illustrating the measuring principle of the Lockin amplifier

The measuring system is shown in Fig.5-7. If the two inputs are independ-
ently, or in other words uncorrelated, the correlator output is apparently only
the thermal noise output, nevertheless this noise is not small but could be
canceled through large sampling number N due to the relation of S/N~ N 12
for white noise .
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Fig.5-7 Illustrating the measuring system

The most serious problem might be the so-called coherent noise, which is the
noise with the same oscillation frequency as the reference frequency and is
the main cause of large DC drift. In fact great care has been taken to
eliminate the influence of coherent noise. Fig.5-8 shows the typical averaged
amplitude output for a noise by giving two independent inputs in Fig.5-7,
and Fig.5-9 shows the locked noise-phase distribution. It clearly shows that
Jor a real noise the locked phase is randomly distributed and the locked
averaged amplitude is time-decreasing. Fig.5-8 also indicates that, at the
sampling number around 20000, the white noise can be canceled to the
order of several nanovolts, which is much smaller than the expected true
correlation signal from undulator radiation.

Average signal (S} ( nanovolt)

0 5000 1x104 1.5x104 2x1dt

Sampling number (time)

Fig. 5-8 Typical integral amplitude output for a noise
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Noise-phase distribution
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Fig. 5-9 The locked phase distribution for a noise

It is worth noting here that, if the two inputs in Fig. 5-7 are dependent or in
other words correlated, the locked phase will have a Gaussian-like
distribution centered at Omax which is the locked phase with the maximum
probability, but not random-distributed any longer. This 8,y is decided by
the modulation system. Fig. 5-10 shows an example of the phase distribution
for a real signal, where the outputs of the two MCPs illuminated by the I;(t)
and I(t) as shown in Fig.4-1 were used as the two inputs, and the width d of
the precise slit was adjusted to 30um.

Signal phase distribution
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Fig. 5-10 The locked phase distribution for a signal
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6 Experiment

In this chapter the experiment and its related data analyzing method are to
be presented.

6.1 Experimental setup

The top view of the whole experimental system is shown in Fig. 6-1. The
light source is undulator radiation at beam line BL16B of the Photon factory,
KEK. The grating of beam line monochromator was placed at the zeroth
order, and its entrance slit and exit slit were kept fully open in order not to
disturb the coherence properties of the light emitted from relativistic electron
beam in the storage ring. The precise slit in our high vacuum chamber
diffracts the incident synchrotron radiation horizontally, so the horizontal
spatial two-photon correlation was measured. The bias voltage of MCPs was
fixed at 1800V and their output currents were fixed at about 100nA at the
beginning of each measurement by adjusting the incident light intensities. To
balance the light intensities falling on the two MCPs, we adopted two ways.
One was to adjust the beam mask in our vacuum chamber, the other was to
adjust the exit slit of the beamline monochromator. The entrance slit of our
monohcromator was modulated at a low frequency f= 9.5Hz. The low-
frequency f-components of the MCPs outputs, that are / 1(f) and L(f), were
measured by two analog lock-in amplifiers for the normalization because the
intensity of synchrotron radiation is time-decreasing due to the damping
effect of electron beam. The high-frequency parts of MCP output currents,
after being amplified and filtered by the amplifiers and the bandpass filters,
were multiplied by a double balanced mixer (DBM). The 3f component S(3f)
of the DBM output was detected by a digital lock-in amplifier. The phase
information of the 3f signal was also recorded due to the characteristic of
lock-in amplifier,

The photon energy was chosen at 70eV. The exit slit was fixed at S50um,
the entrance slit was modulated between 50um and 100um, therefore the
average resolution A/A4 of our monohcromator was about 1000. The true
two-photon correlation S was measured as a function of the horizontal width
d of the precise slit. For each d value, the measuring time was 2 hours and the
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sampling points were 10000. The beam size falling on the precise slit was
also measured by a wire scanner directly attached behind this slit. The
knowledge of the beam size is convenient for the theoretical estimation.

Finally the residual false correlation was measured at BLL12A. This was
done by changing the diffraction order of our grating monochromator to the
zeroth order, consequently the coherence time is zero and only residual false
correlation is left in the signal S(3f).

Table 6-1 Parameters of experimental setup

Light source BL16B, PF (undulator radiation)
Photon energy 70 eV (first harmonics )
PZT modulation frequency 9.5 Hz

Variation of the entrance slit width : 50 um ~ 100 um

Width of the exit slit 40 pm

Resolution of the monochromator ~0.1eV

MCP bias voltage - 1800 V

MCP output ( in the beginning ) 100 nA

Sampling points 10000

Measuring time 2 hours

Table 6-2 Comparison of Case A and Case B

The exit slit of beamline monochro-
Case A mator was used as an intensity
attenuator of SR (vertically)

The beamn mask was used as an
Case B intensity attenuator of SR
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Fig. 6-1 Simplified diagram of the whole experimental system. I,(H, L(H and
S(3f) are simultaneously recorded and saved in each sampling time

by a computer.
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6.2 Statistical analysis on experimental data
6.2.1 Theoretical background [47]

This is going to explore a way to decide a statistical mean X and its error bar.
For a random sample X, X,,...X, from a normal distribution that is n(,0%), p—
mean, o’—variance of this statistics X » @ question is how we can decide the
confidence intervals for the maximum likelihood estimator X of I, where

N
X=-’;z X, (6-1)

i=1

Case 1, if uis unknown but ¢ is known

then the statistics X also obey to a normal distribution n(u1,0°/k) and the sta-
tistics (X —p)/ (o / k) obeys to #(0,1), thus the probability

X-—u
Pr(—2.576 <
r( o/Vk

<2.576)=99% (6-2)

or equivalently

Pr(X -2.576 % <4< X +2.576-Z) = 999 (6 -3)
vk Vi

The probability that the random interval (X - 2.5760/ vk, X +2.5760 / Vi)
includes the unknown fixed point #is 99%. The number 99% is called

confidence coefficient.

Case 2, both u and ¢ are unknown
We define the variance of a random sample of size k as §°,

k

32:%2&.2—)?2 (6-4)

i=1
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then the statistics (X —u)/ (o /Vk) obeys to the normal distribution n(0,1), and
kS*/o* obeys to Chi-square distribution y*(k-1). The random variable T,

defined as follows, has a r-distribution with &-1 degrees of freedom whenever
0">0,

X-—p
TRt (6=3)
t-distribution is written as follows,
T((r+1)/2) 1
)= X 6—
8= T L(ri2)y QQ+22/r)02 (6-6)
(—o0 <t < 00)

r — degrees of freedom

for r >>1, g(t) approaches to normal distribution. For our case the degrees
of freedom k=10000, So we can use the same formula as Eq.(6-3) just with S
instead of 0.

Theorem LetX, X, .. X, be mutually stachastically independent random
variables, which obeys the normal distribution n(ul,af ), n(u,,00), .... and
n(i,,. G ) respectively. The random variable Y=¢X;+c,X,+...c,X, , where ¢,
¢, and ¢, are real constants, is normally distributed with mean ¥ = ¢z, +
oty ...ty and variance o =c,” 0,’+c,” 6,%+...c.’ ¢ °, That is

m*

”(Zcfﬂf’zcizaf) (6-7)

Eq.(6-3) and Eq.(6-7) are important formulae for estimation of the mean,
the standard deviation and the error bar.

71



6.2.2 Data Analyses

For each fixed width d of the precise slit, we have k=10000 sampling points.
The S§(3f) , that is the measured signal in the ith time, can be decomposed
into x; and y; which include the phase information. The low- -frequency 1f-

component of MCP output are 7,,(f} and Z,,(f), then,

y=

mean signal

mean phase

standard deviation

o=

e
L (N (f)

loton
L, (L (f)

Iﬁ(f)li(f)>

< ,,<f>1§,(f)>

6 =tan”'(2)
X

<
=
[ (=)
R
=+
I e
N | I N
e
|
U,

(6—-28)
(6-9)
(6 -10)
(6-11)
(6-12)
(6.—13)
(6-14)

If there are several independent measurements for a fixed width d, say m
times ( notes here for each measurement the number of sampling is k=10000),
then according to Eq. (6-7) we get the final mean signal and its standard

deviation as follows,

(6-15)



Yol (6-16)

m
J=!

— 1
o=—
m
Eq.(6-8) ~ Eq.(6-16) are the fundamental formulae for our data processing.
The following table is calculated from the data measured at case A, where the
exit slit of beamline monochromator was used as a light attenuator to keep

the intensity falling on the MCPs almost the same for different precise slit
widths d in the beginning of each measurement.

Table 6-3 Case A

Precise slit S 0 o 5 o

dn) | (x10%) | (degree) | (x10%) | (x10%| (x10%
10-1 1.09 -115.73 0.036
10-2 2.63 -117.16 0.033

-116.45 1.86 0.024

15 1.83 -110.32 0.055 1.83 0.055
20-1 0.77 - -113.06 0.037
20-2 1.61 -121.82 0.023
20-3 1.38 -114.65 0.046

-116.51 1.25 0.021
30-1 1.46 -121.48 0.025
30-2 1.46 -124.82 0.062

-123.15 1.46 0.033
50-1 1.39 -135.36 0.038
50-2 0.35 -124.12 0.028

-129.74 0.87 0.024

70 1.18 -117.06 0.021 1.18 0.021
100-1 0.73 -135.31 0.035
100-2 1.44 -108.49 0.024

-121.90 1.08 0.021

The exit slit of beamline monochromator was used as a intensity attenuator.
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Table 6-4 is from the datas measured at case B, where the beam mask in our
vacuum chamber was used as the light intensity attenuator.

Table 6-4 Case B

Precise slit S 0 o S ]
d(pom) (x10%) | (degree) | (x10%) | (x10% | (x10%)
10-1 2.01 -120.00 0.037
10-2 1.58 -119.67 0.027
-119.80 1.80 0.023
20 1.16 -120.59 0.023 1.16 0.023
50-1 1.12 -118.90 0.015
50-2 0.88 -117.27 0.047
-118.08 1.00 0.025
100 0.82 -123.80 0.017 0.82 0.017

The beam mask in our vacuum chamber acts as the light attenuator

Table 6-5 shows the residual false correlation measured at BLL12A.

Table 6-5 Residual false correlation A

Measuring A e, o, A o,
times (x10%) | (degree) | (x10% | (x10% | (x10%
1 0.627 | -11321 0.013
2 0.409 | -115.93 0.010
3 0.625 | -118.05 0.007
4 0.165 | -127.58 0.007
5 0.107 | -127.42 0.006
6 0.155 | -125.39 0.006

-121.26 0.348 | 0.0035
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6.2.3 Normalized true two-photon correlation

From Eq.(4.17) we know that the normalized signal output is,

Sd)=4 +x.x;—cw(d)|2 (6-17)

R

where we have assumed that the incoming light is chaotic light and the
second-order coherence is defined as I =1+ | Hd) |2. Of course the second
term in Eq.(6-17) will vanish if the light is totally coherent. The coefficient y
is decided by the characteristics of electric circuit. In experiment all the para-
meters of the electric correlator, the electronics were fixed, so ¥ is a constant.
The first term A is the residual false correlation. We can express the norm-

alized true two-photon correlation as follows,
C(dy=Sd)-A (6-18)

S(d) is listed in Table 6-3 and Table 6-4, K is in Table 6-5. According to
those datas C(d) are drawn in Fig. 6-2 and Fig.6-3. As Eq.(6-3) shows, the
error bar represents the statistical confidence interval around the mean with
99% confidence coefficient.

According to the theoretical analysis of Eq.(4-8) we can express the
theoretical normalized two-photon correlation as follows,

d* +243? d’
C.. (d)=A cos™
Theo(d) \/(1+22/of)d2+2422 [(1+2o§/22)d2+4803
(6-19)
where
£,X
o, =—E— (6-20)
E"—&
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where the influences of the electronics have been represented by a factor A.
€ 1s the emittance of the stored beam and £, =21/ 4x=1.4lnmrad for
70eV. X 1s the horizontal beam size and has measured as X=77.9 um as Fig. 6-
4 shows. By adjusting carefully the two parameters A and € in Eq.(6-19),
we get the optimal fitting as the dotted lines show in Fig.(6-2) and Fig.(6-3)
and the emittance £ is estimated at about 40 nmrad.

There are several possible reasons about the singular points in Fig.6-2.
One is the horizontal-vertical coupling (H-V coupling). This is due to the
reason that the horizontal direction of our vacuum chamber didnot coincide
rigorously with the horizontal direction of beam line. During the beam time
of this experiment the electron beam was run in low emittance. When we
increased the precise slit width horizontally, the exit slit width of the
beamline monochromator was inevitably decreased vertically in order to
keep the light intensity falling on the detectors invariant. In fact the exit slit
of beam line was decreased to the order of several tens of micrometers,
which makes the light very coherent in the vertical direction. The severe
vibration of beam position (instability) would randomly disturb this coupling,
which makes the measured datas behave less regular. Another possible
reason might be the electric correlator. Such a broadband high-gain electric
circuit is extremely sensitive to the change of surrounding environment such
as the temperature and the wind etc. even though we have used a
clectromagnetic shielding and a temperature controller. It might take a long
time to reach its stable state.

To overcome these drawbacks we performed this experiment in case B,
where the H-V coupling effect had been avoided by keeping the exit slit of
beamline monochromator fully open. Of course the electric circuit might be
more stable thermally than in case A because rather long time ( several days )
had passed, which is longer than the time constant to restore the system to
be thermal equilibrium state.
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7 Discussions

In the last chapter the details of the experiment has been described. Related
with the explicit photon-bunching effect shown in Fig.6-2 and Fig.6-3, We
will argue in detail the properties of synchrotron radiation and some
applications of this experiment.

7.1 Chaotic nature of synchrotron radiation

For a field of coherent radiation, photons obey a Poisson distribution, corres-
pondingly the electrons emitted from the detector obey Poisson distribution
too, which make the two photoelectric currents behave as mutually in-
dependent fluctuations, which are just the shot noises of classical electric
currents. The important consequence is that the random coincidence of such
two Poisson distributions does not depend on any temporal or spatial delay
of observed points. In experiment it would give a flat response for the
normalized true two-photon correlation C (d)no matter how we change the
precise slit width d.

The explicit bunching effect shown in Fig.6-2 and Fig.6-3 indicates that
there exists a positive correlation, rather than independent fluctuations,
between the two photoelectric currents for a small spatial delay. This positive
correlation and its strong dependence on the temporal or spatial delay are
typical features of two-photon correlation of a chaotic light. For chaotic light
second-order coherence is completely determined by the first-order
coherence which is temporal or spatial delay dependent. In Fig.6-2 and
Fig.6-3 we have fit the measured datas with a theoretical curve calculated
from the absolute square of the first-order coherence and found they agree
well, although there is a little discrepancy which is possibly caused by the
theoretical approximation and the experimental error.

There are two basically equivalent interpretations on the chaotic origin of
synchrotron radiation One is the classical wave-packet interference in time
domain [19]. The classical wave packets emitted from neighboring two
electrons can overlap and interfere but the phase difference is completely
random due to the random distribution of the electrons in one bunch. If this
interference is constructive, the intensity exhibits maximum; if it is
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destructive, the intensity exhibits minimum, that would be zero. Therefore the
observed intensity fluctuates randomly from zero to its maximum. The other
interpretation is the shot noise of the stored current in the storage ring [48].
This can be understood in frequency domain by following simple considera-
tion.

The electron beam current is constituted by moving electrons randomly
arriving to the entrance of bending magnet:

N
JH=(-e)),8(t-1,) (7-1)
k=1

where e is the charge of one electron, N is the number of electrons in one
bunch, and ¢, is the arrival time of the kth electron.

After average over an ensemble of bunches , we get the bunch profile
function Ff1), |

(j(#)) =(-e)NF(1) (7-2)

F(t) may be Guassian and expressed as follows if the bunch width is o,,

2

1
\/2_7;0'7- exp(_g;%) (7_'3)

F(t)=
The Fourier transform of the current in Eq.(7-1) is easily calculated as follows,

o N
jw)= [ j(ne®dr=(~e) exp(ior,) (7-3)

k=1

So it clearly shows that the Fourier transform of the stored current is the sum
of a large number of complex random phasor with random phase ¢, = @r,,
For our case, wo, >>1, then the phase ¢, can be considered to be uniformly
distributed on interval (t,—wt). Therefore it becomes the famous random-walk
problem. And the probability density distribution of |J/(@)[" is given by the
negative exponential distribution,
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()’
i@y P {f@)P)

pj(w)f) = < (7-4)

On the other hand from Maxwell equations the Fourier components of
electric field of the synchrotron radiation can be written as follows,

E(w)=A(w)j(w) (7-5)

where A(w) is the field emitted by one electron and is deterministic.
Therefore the negative exponential distribution of stored current directly
determines the negative exponential distribution of synchrotron radiation.
Such a distribution is a feature of chaotic light.

Both the above interpretations are based on the assumption that the field
emitted by one electron is a fully coherent field and can be coherent to any
higher order.

7.2 Applications

The present new intensity interferometer has been operated successfully to
extract the true two-photon correlation for non-stationary light source-
synchrotron radiation. Some possible applications of this new experimental
method are to be discussed in this section.

7.2.1 Measurement of instantaneous emittance

The emittance measurement is a traditional but an important theme in
accelerator science[49]. It was found here, If it is known in advance that
synchrotron radiation is a chaotic radiation, that from the measurement of
the true two-photon correlation we can deduce its instantaneous emittance
with the time scale of coherence time .. To understand this we need a little
deeper mathematic model.

First let us review the fact that the degree of first-order coherence could
be decomposited into the product of spatial part and temporal part under the
condition of cross-spectral purity, which is usually satisfied by the
experimental conditions {9] [10). We express this as follows,
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Y12(T) = Y (0)y(7), (7-6)

where ¥,,(r) is a pure spatial coherence and () is a pure temporal
coherence. T is the time delay. The temporal coherence y(7) is the Fourier
transformation of the normalized spectral distribution function F(®) of the
light source according to the Wiener-Khintchine theorem.

'y(‘r)=i_[ F(w)exp(—iwt) dw (7-7)
27 °,

Fig.7-1 shows the form of ¥(7), where a Gaussian spectral distribution has

been assumed.

Y(T)

'“F"I"?”T’T“\“I‘: T ] LI B | T T

||||T|I|||rrlrr‘|"

f
R T =5 -_L_J,,L,L,J__J_l bodo i N

Fig. 7-1 Illustating the temporal coherence with Gaussian form

Here it is worth noting that the tempotal coherence usually happens within
the temporal order of coherence time 7., no matter what kind of spectral

distribution the light has. After the delay 7 is getting larger than T, the
y{ T)will quickly decreases.

Now I will turn back to discuss the intensity correlation output from time
domain.
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Fig.7-2 An equivalent electric correlator
The above figure shows an equivalent electric correlator, where the time

response of this system has been represented by the response time T, of the

photon detectors and the multiplier is an ideal one with zero response time.
The correlation of the two incident light intensities is expressed as follows,

(I(OLE+D) = (L)L) +]7,f lr()f), (7-8)

where the cross-spectral purity of Eq.(7-6) has been used and we have used
a simple notation ¥,, instead of 7, (r). The induced eletric current from the

detector with a response time T, can be expressed as follows [42],
t+Tpg | '
Jy={ " 1 (e (7-9)
+Tg
and : L0y= | L, (7-10)

where the quantum efficiency has been assumed to be unity for simplicity.
The output of the ideal multiplier can be written as

G Roy= """ [T A enam)  (7-11)
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Therefore from Eq.(7-11) we can easily see that the tempral coherence term
would be inevitably induced due to the response delay of the detectors,
although we had expected to detect only the spatial coherence of the two
incident lights. Eq.(7-11) can be further simplified to give an explicit form of
physical meaning as follows,

2
((D,(1)) = <11>(12)TR2[1 + h%'.fon 2Ty - DIy (D) dr) (7-12)
R

y( 7)I° can be regarded as having a constant value and the

If To<<1,
second term can be easily integrated to be |y,,*. If T >> 7., which is our

present case and also most common case nowadays for chaotic light, then we
find, '

Ty 2
J," 2T = Dy dr

~ [ 2T - Dy(v) de (7-13)

= th’

where the upper limit of the integrand has been changed to the coherence
time 7.by considering the characteristics of the temporal coherence. The

following identity also has been used,
[ lr(eyde=1, (7-14)

The physical meaning of Eq.(7-13) is clear, which is that we do not need to
wait such a long time as response time 7T, but several coherence times

7.are long enough to get the final stable state from the correlation

output. In other words the correlation output from the ideal multiplier at

time ¢ is actually the average of the correlation of the two incident
intensities within the time region of ¢ — 7. ~ 1. Therefore the two-photon

correlation gives the instantaneous information of light source
(emittance for synchrotron radiation ) with the time scale of coherence
time 7. Formally the excessive part |}',2I2 of the second-order coherence is
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merely the modulus square of its first-order coherence, but physically they
are essentially different. The emittance information of synchrotron radiation
estimated from the first-order coherence recorded all the historical paths
experienced by the bunch during a period of the response time T, of the
photon detector and gives a 'broadened" emittance; The second-order
coherence can only remember its past history in a short period of coherence
time 7. So the emittance from the second-order coherence may be more
"real'’, more reasonable and may be smaller than the '"broadened" emittance.

There also exist some other advantages about the measurement of two-
photon correlation. Eq.(B-11) in Appendix B gives the expression of the
degree of first-order spatial coherence for a generalized light source which
might be transversely movable with time. We can see the phase disturbance
between the light source and the observation plane falls into the imaginary
part ¢, which gives no contribution to the second-order coherence. This is
the reason why the angular size of stars measured by HBT intensity
interferometer is much more precise than by a Mechelson interferometer.

Eq.(7-13) also indicates that the attempt to measure temporal two-photon
correlation is impossible if the response time of measuring system is much
larger than the coherence time.

7.2.2 Diagnosis of incomplete FELs
The diagnosis of incomplete FELs, such as SASE, is apparent by using this
method. Because if it is fully coherent light the normalized excess two-

photon correlation would be a flat response, but not showing a photon-
bunching effect.
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8 Conclusions

(1) We have constructed a new intensity interferometer for soft X-ray
synchrotron radiation based upon our new operating principle. The large
background, that is the unuseful accidental correlation arising from the
systematic time structure of the light, has been efficiently suppressed by a
novel coherence-time modulation technique.

(2) This new apparatus works well for extracting the true two-photon
correlation of soft X-ray synchrotron radiation. The DC drift, that is the
thermal noise from the broadband high-gain electric correlator, has been
canceled to almost zero compared with the signal output for a two-hour
measuring time. The accidental correlation also has been suppressed to the
magnitude of nearly 1/10 of the true correlation, which enable us to observe
the apparent bunching effect.

(3) The measured explicit bunching effect implies that synchrotron radiation,
even high-brilliance undulator radiation, is a chaotic radiation. Synchrotron
radiation is a spontaneous radiation. The phase difference of the photons
emitted by two neighboring electrons is usually determined by their distance,
which is usually much larger than the observed photon wavelength. The
significant fluctuation of this distance makes the superposed field amplitude
emitted by a large amount of electrons in the bunch behave as a random
walk with an average of zero. This is the chaotic nature of present
synchrotron radiation.

(4) This experimental method provides a way to measure the instantaneous
emittance of the stored beam with the time scale of coherence time 1,

(5) This method will be utilized for characterization of coherence properties
of incomplete FELs, such as SASE. For a complete FEL it will give a total
coherent radiation, therefore the measured normalized excess two-photon
correlation will exhibit a flat response against any values of the precise slit
width. Otherwise the photo-bunching effect will be observed.
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9 Future prospect

So far this work has exhibited a preliminary success in the measurement of
true two-photon correlation of soft X-ray synchrotron radiation based on
our new idea. However the time does not seem long enough to perform some
additional next steps after completing the present series of work, such as
design, construction, test, experiment and analysis etc, within three years.
Therefore there are still several efforts to be made in the future, which might
be important for the evaluation of various light sources. Now I will discuss
the problems to be performed in the future.

= Precise measurement of emittance of the stored beam

Two-photon correlation might be a potential way to measure the instanta-
neous emittance due to the discussion of section 7.2.1. The measured value
of 40 nmrad estimated by fitting the measured data in Fig.6-2 and Fig.6-3 is
actually too rough due to the few measured points ( various d values in
horizontal axis). It is clear that, the more points we measure, the more precise
emittance we can obtain by fitting the experimental points to our theoretical
calculation. In addition, it is very neccessary to explore a more precise
theoretical model, for example, the finite temporal coherence in the plane of
the precise slit might produce some bad influence on the spatial coherence of
the two divided lights falling on the two MCPs.

For the theoretical verification of the above effect we need to measure the
same group of points for various photon energies.

» Absolute measurement of the second-order coherence

Now it is time to explain why the vertical units in Fig. 6-2 and Fig. 6-3 are
arbitrary. This experiment measured the excess part of two-photon correla-
tion, that is |y,,(d )]2. The DC components have been cut out by the band-
pass filters in each arm. We have no way to define its absolute value of the
measured |y,,(d )|2 because we have no standard to calibrate. There exsits a
pair of contradictions. If we tried to keep the DC components which is the
background 1, the excess part I'J/lz(d)f2 would be too small to detect due to
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the reduction factor 7./ T; if we rejected the DC components, we would

lose the standard to deduce its absolute value of the measured 17, (d )[2. For
our case this difficulty comes not only from the small coherence time .,
which is usually much smaller than the response time T}, of the measuring

system for a chaotic light, but also from the non-stationary nature of
synchrotron radiation. How to measure the absolute value of the second-
order coherence for non-stationary light source will be a new exciting and
challenging theme in the future.

The absolute measurement of the second-order coherence is very import-
ant for the precise quantitative evaluation of the coherence properties of
light sources. It would become possible to characterize an intermediate state
between a totally thermal state and a totally coherent state

» Checking the influence of betatron oscillation to chaotic SR

Because betatron oscillation is a high-frequency non-harmonic oscillation, its
fundamental and higher harmonic oscillation frequencies might produce
some contributions to the intrinsic chaotic nature of SR. If we have ways to
measure the absolute second-order coherence, the influence of the betatron
oscillation can be easily checked by correspondingly changing the lower
limit of the bandpass filter in each arm. For example if the horizontal betatron
oscillation frequency is 15 MHz, we can choose the lower limit of the
bandpass filter as S MHz, 20 MHz, 40 MHz, 100 MHz etc., and measure the
corresponding second-order coherence. The contributions of the betatron
oscillation can be readily seen by comparing these data.
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Appendix A
Derivation of the correlation output in the spectral domain

We first suppose that SR be intensity - modulated stationary thermal light,
and its intensity can be expressed as follows,

1) = F()1,(7) (A-1)

Iy is conventional stationary thermal light, We can further express it with its
complex amplitude E(z),

I, =E (1)E(1) (A-2)

Time modulation function F(t) is expressed as follows,

F()=F/F(1) (A-3)

F(t), which comes from the ununiform distribution of electron bunches in
the storage ring, is a rectangular wave with the repetition frequency 1.6MHz.
Fe(t) is a series of uniformly-distributed Guassian pulses with the repetition
frequency 500Mhz. Fig.A-1 shows their shape in time domain with bunch
width Te= 0.1ns, bunch separation Ty=2ns, bunches partial filling length T,

and revolution time T,ey=625ns. According to that, we can write them
explicitly as follows,

F,(t)= Y Fyo(t-nT,,) (A-4)
where
] (|7 < l:rm )
F,(t)=F,(1)= 2 (A~ 4a)
0 (1> ETCDV)
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1. Spectral distribution of time modulation function
For the convenience of calculation, we present some basic formulae,

(1) For any periodic time function, such as

F()= Y Fo(t—kT). (A-6)

k=—co

Here T is the period. Its Fourier transformation has the form as
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F(w)=(-1)" ) 8(e—kawy)Fy(w). (A-7)

k=-c0

Fo(w) is the Fourier transformation of F(z). 0o is the fundamental frequency

2
and equals to w, = —;-

(2) For a multiplication of any two time functions such as

F()=F,(NF,(1) , (A-8)

the Fourier transformation equals to the convolution of each Fourier
transformation,

F(0) = F,(0)® Fy(w)= [F,(0 - 0)F,(0,)do, (A-9)

Thus from Eq.(A-9) and Eq(A-7), we get the spectral distribution of the time
modulation function of Eq.(A-3) as follows,

1
teoteo X Sm(_ memn’) T2
Fw)=F - expl -~ (@ - nw, )’ |8(w — nw,, — kw,),
(A-10)
where
27 2 mx1.6MH: (A-11)
2r
W, = T = 271X S00MHz {A-12)
b
and also T =T,
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Expression (A-10) can be intuitively drawn as Fig. A-2 shows taking the

consideration of D 312>>1.
W

"

| F(w)|

.1’“1. AL, .I'H‘I. 1‘| \l! L AT Ilhl:

-2, -, 0>k W, 2w,
wlrl

Fig. A-2  Spectral distribution of modulation function F(t)

2. Spectral distribution of the photoelectric current for an ideal detector
According to semiclassical theory photoelectric current is proportional to the
incident optical intensity, i.c.

J(t)=oel(t). (A-13)

Substitute Eq.(A-1), Eq.(A-2) and Eq.(A-10) into Eq.(A-13) and then
transform it into the spectral domain, we get,

J(w)= ea” F(w—w, +w,)E(w, )E*(mz)dw,dcoz, (A-14)

where e is the charge of an electron, « is the quantum efficiency of the
detector. E(w)is the Fourier transformation of the complex amplitude of the

incident optical field.

3. Low-pass filter and the average electric current
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We suppose that the low-pass filter in the electric correlator be the following
shape as is shown in Fig.(A-3), where only those frequencies which lie
between w, and e, can pass this filter.

G(w)
1
- T T T L
| |
! |
-
— @, -0, o, W, ©
Fig. A-3  General low-pass filter shape
1 (w, <|wl<w,) :
G(w) = ‘ : (A-15)
0 else

With this filter, we can write the restricted electric current in the time domain
as follows,

Je(ty=eaff[ F(& - 0, +©,)G(0)E(@)E (w,)e dwdw,do  (A-16)

On the other hand, the spectral density of this stationary thermal light can be
regarded as having a Guassian distribution for the simplicity of calculation,

{w-awy )

<E(@)E (0')>= L i
V21w,

(A-17)

w,0'

where I, is the DC component, @, is the central frequency of this quasi-
monochromatic optical field, and the coherent time 7, can be expressed as
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T =22, (A-18)

With the Van Cittert—Zemike theorem, Eq.(A-17) can be easily generalized
to the case of different two space points, i.e.
(w

= = ~@)’
. TN

The mutual degree of the first-order coherence y,,(0) is defined as follows,

<E/(1E,(t)> _<E (DHE; (1) >
<E,(DE (1)>< E,(1)E; () > JI AT

Y1,(0) = . (A-20)

y,,(0) is decided by the properties of light source and geometric structure of
the experimental system.

Based upon those previous facts, we can easily estimate the average
electric current of Eq(A-16),

<J(t)>=0, (A-21)
where < > represents the ensemble average over the optical field, subscript ¢
indicates the time average. This result is obvious due to the DC-cut nature of

this filter.

4 Correlation output
The correlation output of the two restricted electric current signals is

< JF|(I)JF2(I) = (ea)2 J- Jdwadmbdwldwzdw?'dm“e_imarfimbr v

—o0 —o0

Flw, - 0, + 0,)F(o, - 0, + 0,)6(w,)G(w,) < E (v, )E (@,)E,(0,)E, (w,) >

(A-22)
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We note the fact that,

< E(0))E, (0,)E,(03)E; (0,) >
=V,1(@0))V5u(@5)6, 0,00, 0, T Vi2 (0 Wi, )80,.0,80, .0,

(A-23)
where we use the simple notation,
V(@) =< E(,)E;(0,) > . (A-24)

Substitute Eq.(A-24) into Eq.(A-23), we find that the output result includes
two parts,

<Jp (DI, (1)>=A+B | (A-25)

where

A=(ea)’ J Idmadcobdcoldw3e_""’“""”"‘F(wu)F(mb)G(wa)G(wb)V!l(ml)vzz(w3),

(A-26)
and
B=(ea) I _[dwadwbdwldwze"“"a“"“’b’ X

— 00

F(0, - 0, + ©,)F(0, — 0, + 0,)G(0,)G(0,)V,, (0, )V, (@,).

(A-27)
A can be easily integrated by using Eq.(A-10),(A-15),(A-17) ,(A-24)
1 2
L N, | sin(=T, w,n)
A=(ea) T LF Y | —2 : (A-28)

n=~N, E memn
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where

N =2 (A—-29)
wm
and
N, =22 (A-30)
w

We have performed the time average over A and assumed that the
bandwidth of our electric circuit is smaller then «, ( 500MHz ).

The calculation of Eq.(A-27) is a little complicated. First we make such
substitution as follows ,

w. =0 —Q
{" b (A-31)

and then integrate B over w,. Thus Eq.(A-27) can be simplificated as follows,

B=(ea)’ \/1}2 7120

2

5

[[[ = F (@, — 0,)F(@, + ©,)G(0,)G(w,)e **de,dw,do,.

4]

(A-32)

Considering only the DC component and the fact wg;/®,_ >>1 and
bandwidth @, <500MHz, we arrive to

2
oo sm( T w, n)

nt "1

|712(0)| F; z 2 ¢ KTe0p)”

B = (ea) Twn

A=—wo k=—wo

2 _ (w_nwm _ka )2

TlG(m)le Wl gy

(A-33)
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The integral part can be approximately integrated owing to the relation of
w,/ 0, =107,

1 (w-nw,—kog) 2

fiGle “  do=[IG) do=2w,-w)=20; (A-34)

where @, is the electric bandwidth. Another approximation can be achieved

as follows,
sin(l T o n) 2 sinz(l x)
o ~AtmW™m 1 =2 ~ T
2 o~ -[ 22 dx:l rev ,(A-35)
n=—og memn Tm wm —o0 x 4 TCOV
and
o —(kT,wp)? 1 7.2, _ 1T,
e = e dx=—++—"2. A-36
n;_:w T, W, J 2w T, ( )

Finally we get the important correlation output as follows,

2
L N, sin(%memn)
<IpOI M >=TT (3|

n=N, Ememn

- orev “ b L 0
8z T, T, o, 720 ),

v

(A-37)

where J, andJ, are average electric currents of each branch and expressed

as follows,

J, =ealF,, (A-38)

and

J,=eal,F, . (A-39)

Eq.(A-37) is a very important result. The first term in its expression is what
we call trivial (or unuseful ) correlation, which has nothing to do with the
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properties of the intrinsic photon statistics.The main purpose of our design of
an electric correlator is to suppress this harmful correlation. The second term
is the real correlation of photon fluctuations. The duty factor 7,,, /T, ~1,
T,/T, ~ 20 for the case of bunch distribution at the storage ring of Photon
factory, KEK. The ratio of electric bandwidth to optical coherent bandwidth
of w,/w, ~107 is the main barrier for us to extract this so tiny useful

signal. So we should enhance the electric band as we can as possible.
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B Generalization to the Van Cittert-Zernike theorem

Now we consider the case that the light source has some transverse motion,
what will affect the first-order coherence degree 7,, between the observa-
tion point P and P2? ,

As Figure B-1 shows, o is the light source, which is the transverse
electron distribution in the { — 77 plane. P1 and P2 are two points in the
observation x-y plane A. The linear dimensions of ¢ is much smaller

compared to the distance oo'. Electron bunch is moving along z-axis and its
longitudinal distribution in the 77— z plane is shown in Figure B-2.

Fig. B-2 Longitudinal electron bunch distribution
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If the light source has no any transverse motion relative to the observation
points, },, can be easily estimated from the conventional Van Cittert Zernike

theorem. Now we consider the case that the bunch center in the { — 1) plane
could be movable with time.

First we suppose the spectral distribution emitted by an electron be
Gaussian, that is,

. 2
(—“’-A;’—O)), (B-1)

c

Em (CO) = Em (0) eXP(—

where m stands for the mth electron, @, is central frequency, @, is spectral
bandwidth and its inverse is coherence time 7, =27/ .. The electrons'
intensity distribution in the { — 1} plane can be expressed as,

p(&,nt)=I{-C.()n—n.()] B('), (B-2)

where ' is the emitter time, B(¢') is the brightness at time ¢'. {.(¢'), n.(¢') are

the center coordinates of the transverse bunch distribution at time #'.
The optical field at P1 and P2 can be expressed as follows,

E@®=YE,0, E@=YE,Q@ . (B-3)

E_  (t)and E, ,(¢) are the fields at Py and P2 due to the mth electron.

Because the fields emitted by different electrons are assumed to be
statistically independent, the field correlation function can be simplified to
the following,

*

(E[(NE,(1)) = Y (E,,(DE,, (1)) (B-4)
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E  ()and E,,(t) can be expressed as follows,

E, ()= RijdwEm(w)e“'“’“"')”"le (B-5)
mt
and
E ()= Ei—jde,,,(w)e""""""*""’*mz . B-6)
2

Substituting Eq.(B-5) and Eq.(B-6) into Eq.(B-4), considering the wave
vector k is nearly unchanged with respect to @ within the bandwidth @,

then we get,

* 4 2 E 0 2
(El (I)EZ(I)>ZZ n-mC| m( )|

L AL TR
>R R expl 2coc(t ') +ik(R,, — Rl

(B-7)

where the average wave vector is k = w,/ c. We can further perform the
ensemble average of Eq.(B-7) in the { —n—1¢ plane by using the intensity
distribution function Eq.(B-2) and the summation over m is replaced by the
integral over { — n plane. Then we get,

(E; (1)E, (1)) = const.e" [[ 1(§, myexpl-ik(p{ +qm)]dLdn

xB(1)[ exp {—%wﬁ(r — ¢ Y —ik[pl.(1')+qn.(*)]} df'
(B-8)

where p,q and Y are expressed as,

Rl — 22) + (V2 — 2
v = [(x —x)+ i ~¥)

2R ’ (B-9)
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and
xl_x2 yl_yz (B'IO)

p:—-——-—, q:—-u—- y

R R

where xj, y; and x3, y, are the coordinates of P1 and P2 in the x-y plane.

From Eq.(B-8) we can readily get the coherence degree as follows,

o (E/(DE,(D))
T E OEMNE (DE, ()

(B-11)

_ e JJ1C myexpl-ik (s + gmdldn ;
[]1¢¢, mdgdn j

L]

where

fo=r=] exp{_}jwfz(t‘f')z—iE[PCc(f')+q77c(f')]} dr . (B-12)

f. is so-called transverse motion factor.
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C The radiation field emitted from an accelerated
relativistic electron

In this part we try to derive the radiation fields emitted from an relativistic
electron moving in the bending magnet and the undulator from Maxwell
equations.

C-1 General radiation formula

The Maxwell equations are written as follows,

0

VX E(x,t)+ IBX,1) =
ot

V.B(x,t)=0

1 JE(x,1) .
VxB -— =
x B(x,1?) 2 o Hol(x,1)

V- E(x,1)= —1—p(x,t)
&

, (C-1)

where E is electric field [V/m], B is magnetic flux density [T], 1 is electric
current density [A/m2], p is charge density [C/m3], uo is magnetic permeability
[H/m], g is dielectric constant of vacuum [F/m], x is position [m], 7 is time [sec]
, and c is light speed [m/sec].

Let us introduce scalar and vector potential ¢ and A,

E(x,t)=—£9A—§tfﬁ—V¢(x,t) .2

B(x,t)=VxA(x,1)

with the Lorentz gauge condition

1 d¢(x,1) _

VAKX D+—
(x )+c2 ot

0 (C-3)
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After some algebra, potentials are given in Wave equation in case of
Cartesian coordinate system.

2
[A—i ? ]¢(x,t)=—£ip(x,r>

* o )
; (C-4)
A—ia— A(X,1) =—pui(x,t)
c* or ’ o
where A is Laplacian in Cartesian coordinate system
82 82 82
A (C-5)

= ax2 +ay2 +aZZ

When charge and current densities are given, the scalar and vector potentials
will be formally integrated out as follows,

where 8 Dirac's delta function.
Now let's express the charge and the current densities produced by a

point charge moving along an arbitrary orbit x' = r(#),
p(x',t')= e8> (x' —r(1'))

C-
i(X',t')=e53(x' —r(f))%r([l) ( 7)

then the redarded potential for a moving point charge is given as follows by
substituting Eq.(C-7) into Eq.(C-6),
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3(r -~ _|x-_r(_L)|J

C

o(x,t)= ¢ .E:,dt

4re, Ix-x'|

s,

|x - x'| dr'

(C-8)

A(x,1) = %E [ ar

The trajectory of the electron is shown in Fig.C-1, where ' is emitter time.

Observer

Fig. C-1 The electron trajectory and a stationary observer

Let's introduce a new notation,

R(#)=x-r(¢')
n(t,)zx-r(t')=R(t‘) (C-9)
x-r() R()

then the observer time is given as

(C-10)
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Also introduced is the scale-change factor «(?')
1 dt 1y R
fc(r)sd—fl—n(t)-ﬁ(r) (C-11)

where ¢f(¢') is the velocity of the electron, and we note here that B is a
vector. The algebra to derive Lienard-Wiechert potential as follows,

e 1
P = e (R
_ (C-12)
Ax,y=—f B

4re,c k(' )R(1)

From Eq.(C-2) and (C-12) we can readily get the electric field at the
observer as follows,

__e|m 1d(n-B
E(x, )= 4E€0[KR2 +cx dt'[ KR H (C-13)

where the quantities within the square brackets are to be evaluated at the
emitter time ¢. Sometimes it is useful to give the Feynmann's expression [50]
for the emitted field at the observer if we consider the time relationship 7'(¢)
according to Eq.(C-10).

e [mn Rd(n 1 d°
E(x,t)= —+—-—-(—)+——— C-14
(,0) 477:@3‘0[R2 c dt\R*/ c*dr’ n} ( )

108



C-2 Far-Field Limit

The expression of Eq.(C-13) or (C-14 ) simplifies in the far-field limit,
X =NR,,
Ry — (C-15)
r(¢#)l/ Ry —0

Then the electric field at the observer is simplified as follows,

e d
E(x,t)—m[nx(nxﬁr(t (t))):| (C-16)

Fourier transformation of Eq.(C-16) gives the emitted spectral distribution as
follows,

E(nR,,w) = %— _[_: E(x,t)e™dt

) (C-17)
= Iamer, M)
o r= ' R iwr
A(w)sgj_mdtnx{nxﬁe Y (C-18)

Now things get so simple for the exploration of the emitted electric field at
the observer. The only job we need to do is to find its trajectory distribution
with time and then integrate Eq.( C-18).

C-3 Motion of the electron in an external magnetic field

The equation of motion for an electron in an external magnetic field is

m'}'e?—eva (C-19)

o
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where m is the rest mass and y,=1/+1- B? is the electron energy

normalized by the electron rest mass and is a constant in the external
magnetic field B. The velocity v(¢') =cB (¢').

Fig. C-2 The orbit and coordinate system for bending-magnet radiation

First let's consoder the case of bending magnetic field, which is expressed as
follows,

B':(BstX’Bx):(O’BsO) (C'zo)
The solution of Eq.(C-19) that satisfies the initial conditions is

r(t')=p(1-cos(w, ),0,sin(w ' ))

— ) (C-21)
B()=t()/ c=B(sin(w,'),0,cos(w,"))
where the bending radius and angular frequency are defined as,
E—-—m"’y‘fcﬁ, wpsﬁ (C-22)
eB P

The initial conditions in Fig.C-2 are
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{x(0)=0 and {z(0)=0 (C-23)

x(0)=0 2(0)=cB

Under the approximations of @,f'<<1, 1/7,<<1 and small angle
n = (0,y,1 — y? /2), the relation between emitter time and observer time is

given as,

243

1 1 2 |t (Up
'y=—| — + C-24
1) 2[y2+ljf)t 6 ( )

From Eq.(C-24) and Eq.(C-18) we can get the final result as it has been given
in Eq.(2-2).

€

Fig. C-3 The orbit and coordinate system for undulator radiation

111



Another example is undulator magnetic field, which is expressed as,
B=(B B, ,B,)=(0,-B,sin(2nz/ 1,),0) (C-25)

where A, is the period of the undulator. The electron orbit could be readily

obtained as follows,

2 2
lr(t'): —Eisin(wur' ),0,] 1— [+K 2/ 2 r— K 5 isin(2cout')
c 2y, 8y," 0,

€ u

(C-26)

where the undulator parameter K and the orbit frequency have been

introduced,

=Bt o, 2 (C-27)

K= , y
2mm.c A

u

The coordinate system gives the observer pointing unit vector
. . . 1
n = (cos ¥sin ¢,sin ¥, cos ¥ sincos ¢ ) = (qf), v, - 5(¢2 + 1//2)) (C-29)

Then the relation between the emitter time and the observer time is

e (KN (Lo
()=t [ » a)sm(w“t)](p (1 2(¢> +1/f))><

4 u

2 2
2‘}’8 8 e wu

(C-30)

Eq.(C-30) and Eq.(C-18) give the final result described in Eq.(2-8).
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