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1. INTRODUCTION

Since the advent of high-T, superconductivity in copper oxides by

Bednorz and Miiller [1], the interest in solid state properties of various oxides
such as Cu-oxides, Bi-oxides, Mn-oxides and Ti-oxides, has been widely
renewed. In these metal oxides the various noble properties are said to come

from the strong inter-electron coulombic correlation and (or) the strong
electron-lattice coupling. Among those materials, BaBiO, (BBO) and its related

compounds BaPb, Bi O, (BPBO) and Ba,_ K, BiO; (BKBO), are the

l=x
objects of a special interest. BaBiO, becomes a superconductor if doped with
Pb at the Bi sites (with a maximum of 7.~12 K for x~0.25) [2], and also shows
superconductivity if it is doped with K at the Ba sites (with a maximum of
T.~30 K for x~0.40) [3]. In these materials, the strong electron-phonon (el-ph)
coupling is inferred to play very important roles, and we will focus on this
coupling. It can give two properties, one is superconductivity and other is
charge density wave (CDW) type insulator. The very strong el-ph coupling will
give two instabilities. If the whole system remains in the metallic state, it will
give high- T, superconductor. However, it also causes a structural instability like
CDW state. So, these two basic possibilities come from el-ph coupling. In order
to clarify such a strong el-ph coupling, which gives CDW, it is necessary to
understand how electron couples with phonon, and how it effects on the
ground state as well as various excited states therefrom.

In spite of this renewed interest, the basic electronic structure of the parent

material BaBiO, is still not clarified sufficiently. These material present several
peculiarities with comparing to other perovskite type high-7, superconductor
compounds. It is a three dimensional system, does not contain any magnetic ions

and absence of two dimensional metal-oxygen plane. In the undoped phase of



this material, a static charge density wave state with a periodic lattice distortion
appears, opens up a gap at the Fermi level, and makes this compound a Peierls
insulator. Furthermore, the superconductivity appears when this CDW order is
destroyed by doping.

From the band structure calculation for cubic (hypothetical metallic)
BaBiO,, the Fermi level is expected to lie just in the middle of a broad
conduction band, that arises from strong hybridization between Bi 6s and O 2p
orbitals [4]. Since the average valence of Bi in BaBiO, is 4", the electronic
configuration of Bi*" would be 5d'°65s'. With its unpaired 6s electron, such an
ion is expected to be paramagnetic, and the compound would be metallic due to
the half-filled broad conduction band. However, experimentally, the compound
is diamagnetic. Although, the band structure calculations predict a metallic
behavior for BaBiO; [4,5,6], experimental works [7,8] show that the material is
an insulator.

To solve this problem, the Bi charge disproportionation into Bi’* and
Bi** configurations is generally considered, thus skipping up the intermediate
valence 4" [8]. In reality, Bi, O and Bi,O; compounds do exist, BiO, does
not exist. If this situation prevails, several properties are expected to be derived
from the disproportionation. (i) Since Bi** and Bi®" have different ionic radii
(1.03 and 0.76 JEL respectively, in octahedral configuration) [9], two different
Bi-O distances are expected. (i) The opening of gaps at the Fermi level is also
expected. (iii) A structural change from the simple perovskite structure is
expected to occur because of two Bi-O distances. The bismuth
disproportionation has been discussed in terms of a charge density wave
instability by many authors [10,11]. This CDW may open a gap at the Fermi

surface, and is consistent with the observed insulating character of BaBiO,.

Other experimental data also seem to be consistent with this picture. That is, X-



ray diffraction indicates a monoclinic distortion from the simple cubic
perovskite. Neutron diffraction experiments [12] also reported two different Bi-
O distances, viz., 2.28 ;'\ and 2.12 :31 as confirmed by Thornton and Jacobson
[13].

However, a fundamental question 1s, what are the electronic states or the
band structure of this material? The band structure calculated by Mattheiss and
Hamann [4] with the linearized augmented plane wave (LAPW) method well
explains most of the properties of the metallic phase, but does not work so well
in the insulating phase or in the metal-insulator (MI) transition region.
According to their CDW like image, the energy gap can appear only near x=1.0,
whereas insulating properties have been observed to persist over a wide range:
0.35<x<1.0. Rice and Sneddon [14] interpreted the semiconductivity of
BBO as due to the real-space electron pairing which gives rise to the valence
configuration Ba,Bi*"Bi’*0,. They concluded that the MI transition takes
place as Pb dilutes the Bi*" —Bi’* superlattice and weakens the real- space
pairing [15]. Yoshioka and Fukuyama [16] considered a negative U Hubbard
model with on-site disorder for the bismuthates. They believed that, in BPBO,
there is no metal semiconductor transition but only a transition from a
semiconductor to a superconductor (at T=0 K). But there is no firm experimental
evidence for it. Recent density functional theory calculations [17] for breathing
distorted BBO indicated that the U values of Bi are positive and there is no
evidence for a negative U at Bi atoms. Electron diffraction study of the
structural transitions in BPBO has been performed on powder samples by
Koyama and Ishimara [18], and Minami [19]. The phase diagram as a function of
doping (x) that Koyama and Ishimara obtained is different from the one reported
by Cox and Sleight [12] earlier. They found evidence for tetragonal and

monoclinic phases at low temperature and a cubic phase at high temperature.



They have investigated the non existence of incommensurate phase, in
agreement with Cox and Sleight.

A number of theoretical studies [4,20-22], and experimental measurements
[7,23-29] have been performed in order to investigate the band structure, as well
as the optical properties of this parent material BaBiO ;. Using the local density
approximation, Liechtenstein et al. [21] have shown that a gap opens up
between the split Bi 6s sub-bands. They found a direct gap (= E ;) of about 1.3
eV, and an indirect gap (= E,) of about 0.3 eV. While, recent photoemission and

x-ray absorption studies by Namatame et al. [23], showed that £, =1.9eV. The

existence of the indirect gap was firstly proposed by Uwe and Tachibana from
their infrared absorption measurements [24,25]. They estimated the indirect gap
E. of about 0.5 eV, which is much smaller than the direct gap E, of about 2.0
eV observed in the absorption spectrum of the visible region [7,26]. Very
recently, Kim er al. [27] have also measured the absorption spectrum and
estimated the indirect gap E, as 0.84 eV. Thus, we have seen that there are
many different and mutually conflicting proposals for the electronic excitations
in the infrared and visible regions of BaBi0O,.

Raman experiments [28,29] on BaBiO, show the resonant enhancement
and appearance of higher harmonics of the 570 cm ™' phonon mode (breathing
mode). This indicates that the optical gap is closely related to the strong electron
phonon interaction in the system [28,30,]. Inoue et al. [31] have reported the
infrared activeness of the Bi-Bi stretching mode, which is one of the direct
evidence for the charge disproportionation between Bi sites.

As is well known, there are many insulators which show both direct and
indirect optical transitions [32]. In usual insulators, however, the opening of
optical gap (direct gap) and the appearance of indirect gap are often considered

separately. The optical gap usually comes from the difference between the



occupied and unoccupied atomic orbitals relevant to the valence and the
conduction bands. While the indirect transition usually appears because of the
weak electron-phonon coupling, which slightly mixes up direct and indirect
transitions.

On the other hand, it is inferred that a strong electron-phonon interaction,
acting in this present material BaBi10O 4, causes a Peierls distortion of the lattice,
doubling the unit cell, opening up a wide direct gap, and also makes the indirect
transition to appear. So both the direct gap and the appearance of the indirect
transition have the same origin. For this reason, in our theory, we will not use
the conventional perturbation approach, instead, we will develop a unified
theory based on the extended Peierls-Hubbard model.

So, we will see that two types of gap exist in this BBO. One is direct and
the other is indirect. Also the appearance of this direct and indirect gaps are due
to the characteristic and complicated nature of the one electron energy band
E(k) around the Fermi level. Because, in the case of three dimensional metal
oxides, the one body energy E(k) of the electron around the Fermi level is
usually a complicated function of k. It depends on the nature of three
dimensional chemical bonds among the one s-orbital of the metallic atom and
the three p-orbitals of O’s. As a result, it often occurs that even after the CDW
type metal insulator transition, optical excitations appear below the CDW gap.
In this case, we have a mid-gap-absorption, which is not due to the collective
excitations in the gap such as solitons, but simply due to the complicated k-
dependency of the one electron energy band. Recently, this type low energy
optical excitation is found below the CDW gap of BaBiO, [33-37].

Photo-induced reflectance measurements [33] of BBO are reported, and
several new peaks in the reflectance spectra are observed around the mid-gap

energy. This indicates the evidence for a lattice relaxation after removing



electrons from the valence band, and as a consequence, new energy levels
appear within the gap, producing mid gap states.

So our purpose, in this present work, is to theoretically clarify the above
mentioned optical and electronic properties as well as lattice relaxation of
photogenerated excitation in BaBiO,. By using extended Peierls-Hubbard
model, we clarify this problem from a unified point of view in connection with
the direct and indirect excitons. We will introduce the adiabatic approximation
for phonons and the Hartree-Fock approximation for inter-electron coulombic
interactions. The electron-hole correlation on the Bi atoms and the classical
fluctuation of the oxygen sublattice coordinates are also taken into account, so
as to obtain exciton effects as well as thermal fluctuations of the lattice.

The remaining part of this work is organized as follows: In chap. 2, we
briefly review present status of our knowledge for the structure and optical
properties of BaBiO,. In chap. 3, we explain some theoretical study, and
review some experimental evidence of lattice relaxation. In chap. 4, we describe
our model, calculation procedure and clarify the metallic and CDW states. In
chap. 5, we clarify the direct and indirect excitons from the unified point of view
by using our extended Peierls-Hubbard model. In chap. 6, our numerical
calculation for nonlinear lattice relaxation will be presented, and origin of

photoinduced absorption will be explained. The last chapter is devoted to

conclusions.



2. GENERAL PROPERTIES OF BaBiO,

2.1 CRYSTAL STRUCTURE

The crystal structure of Barium Bismuthates (BaBiO,) is a three
dimensional perovskite one, as shown in Fig. 2.1. In this structure, Ba atoms
occupy the corners of a cubic cell, O atoms are at the face centers, and Bi is at

the body center. There are octahedral clusters of O atoms around each Bi atom,

O

O (J o

4.2867A"

Fig. 2.1. The cubic perovskite crystal structure of BaBiO .

Slight rotations or breathing mode distortions of these octahedral lead to a
variety of non cubic structures. For example, the distortions that yield the pure
BaBiO, structure are shown in Fig. 2.2, Here, there are two distinct nearest
neighbor Bi-O distances; 2.28 A and 212 A. Oxygen octahedra around one of
the sublattice cubic structure contract and those around the other sublattice
expand, as shown in Fig. 2.3. This can be interpreted in terms of a freezing of

the breathing mode of the oxygen octahedra leading to CDW. Such frozen



breathing mode has in fact, been observed in neutron diffraction experiment

[38] of BBO.

® i

Fig. 2.2. Possible distortions of the cubic perovskite structure. From Ref. [39].

The X-ray and neutron scattering studies of Cox and Sleight [12]
determine crystallographic structure of this material. At room temperature, they
found that BBO has a periodic but complicated crystalline structure with lattice
constant of about 4.2867 ,EL

In the periodic table, Bi is classified in the group V, and the electronic
configuration is 1s°2s” ---5d'"6s*6p°. It should form compounds with
oxidation states 3" or 5", as these would yield closed outer shell configuration
for the corresponding anions. Indeed, these elements generally form compounds
with valences 3" or 57, skipping the intermediate valence 4", There are some
experimental evidence that Bi charge disproportionation into Bi** and Bi®*

configurations [10,11], thus skipping the intermediate valence 42



: O o

Fig. 2.3(a). Schematic representation of the oxygen octahedra. Only the xy-

plane is shown.

Fig. 2.3(b). Mixed valence state of BiO,.



There are, in fact , about fifteen elements in the periodic table that shows this
extraordinary property of valence skipping. For example, Ge, Sn, and Pb show
valences of 27 and 47, while Ga, In and Tl show 1™ and 3. In all these cases
the intermediate valences are either unstable or metastable. The formal valence
state of these cations determine the shape and orientation of the other orbitals
(of anion) in the compound they form. Hence, any theoretical calculations and
predictions of the chemical nature and physical properties of these compounds
would necessarily taken into account this information. In addition, the
microscopic physics underlying valence skipping is extremely important for the
construction of suitable theoretical models.

In an attempt to resolve the valence of Bi, Hair and Blasse [40] concluded
that the average valence of Bi is 4*. In this case, BaBi**O, has only one
Bi*” ion per unit cell, and this material seems to be metal with a half-filled Bi 6s

conduction band. On the other hand, Scholder er al. [41] assumed that the

oxidation states in BBO are BazBij‘*BiS*(}3, hEshise BiYaid B s

known to exist in Bi, 0, and Bi,0 compounds, respectively.

2.2 PHASE DIAGRAM

The lattice structures that appear in the doped BaBiO, systems can be

viewed as distortions of the basic structure of the simple cubic perovskite
shown in Fig. 2.1. The fundamental distortions are tilts of the nominally rigid
BiO, octahedra, and breathing-mode distortions in which alternating Bi sites
become inequivalent because of oxygen-atom displacements toward or away
from the Bi atoms. These tilting and breathing-mode distortions can occur

independently, or in combination to produce various possible modified

perovskite structures. Therefore, both BaPb,_ Bi, O, and Ba, K, BiO,
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show rich phase diagrams with many structural transitions. Their two
dimensional phase diagrams, spanned by temperature T and doping
concentration X, are shown schematically in Figs. 2.4 and 2.5, respectively
[42,43,44].

In addition to these transitions both bismuthates show metallic,
superconducting, and semiconducting phases (Figs. 2.4 and 2.5). The order of
these phase transitions are not very clear. The metal-superconductor transitions
is, probably, second order. Some works have suggested that there is a first-order
transition at finite temperature from the metallic phase to the semiconducting
phase [43]. From the available experimental data, it is not clear whether the
superconducting and semiconducting phases coexist along any phase
boundary and, if so, what are the order of the transition along this boundary is

[39,45].

10 Bo Pb_Bi, O3
Cubic
semeonductor i
|
T | I
| |
| |
| |
| I
| Dll LM
|- | I |
04 08 0B .0

Fig. 2.4. Schematic phase diagram of the BPBO system in the T-x plane. The
orthorhombic (Oj) and tetragonal (T) phases are metallic at high temperatures and
superconducting at low temperatures. The orthorhombic (Orj) and monoclinic (M) phases

are semiconducting. From Ref. [43].
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However, the maximum value of the superconducting 7, seems to occur at

nearly the same value of X as that of the metal-semiconductor transition.

BOO _
s Ba, , K. BiDy
e
S
™
00 - \\ CUBIC
*
R )
T T
# s
400 » A
Sy, # ™
i 2 “\
'||'| ‘\ Superconductar
200 - M 1] \
‘ \
I
| Y
I \
0 : '
o 0.2 0.4

Fig. 2.5. Schematic phase diagram of the BKBO system in the T-x plane. The
entire cubic phase is metallic, and the hatched low temperature region is a
superconducting phase. The monoclinic (M), orthorhombic (O), and rhombohedral (R)

regions are semiconducting. From Ref. [42,46].

Electron diffraction study of the structural transitions in BPBO has been
performed on powder samples by Koyama and Ishimara [18], and Minami [19].
The phase diagram as a function of doping (x) that Koyama and Ishimara
obtained is different from the one reported by Cox and Sleight [12] earlier.
These authors do not get orthorhombic phase in their electron diffraction
studies. They found evidence for tetragonal and monoclinic phases at low
temperature and a cubic phase at high temperature. They have also investigated
the non existence of incommensurate phase and concluded in the negative, in

agreement with Cox and Sleight.
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In early studies of the lead-doped compound [2] it was suggested that
superconductivity could only occur in the tetragonal phase; however,
subsequent work seems to suggest that it can also be obtained in specimens
with orthorhombic symmetry [45]. On the other hand, in potassium-doped
compound, superconductivity has been observed only in the cubic phase [44].
In both the potassium and lead doped systems, the superconducting phase
appears right after the semiconductors-metal transition, with increasing lead or

potassium concentration.

2.3 ELECTRONIC STRUCTURE

The electronic structure of the BaBiO; has been studied well using
detailed band structure calculations [4,20-22], as well as various experimental
methods [28,45,47].

From a theoretical point of view, the electronic band structure calculations
for cubic BBO have been carried out by Mattheiss and Hamann [4] on the basis
of self consistent linear augmented plane wave (LAPW) method. According to
their results, ten complex bands appear in the energy band diagram, as shown in
Fig. 2.6. From the electronic configuration of Bi atom, the 4" valence state
(Bi*") has an open shell configuration 6s'. Each Bi atom is surrounded by six
O atoms, which form an octahedron. There are ten orbitals in the unit cell of
BiO,, wherein each O atom contributes three 2p orbitals, and each Bi atom
contributes one 6s orbital, as shown in Fig. 2.7. The Bi-O bond lengths are the
same for all the six O atoms in the cubic phase. Of the three 2p orbitals at each O
atom, one forms o bond with the Bi 6s orbital, and the rest two form 7 bonds.

The Fermi level crosses the uppermost ¢ antibonding subband (Fig. 2.6),

13



leaving it a half-filled metallic band. The electronic conduction mainly occurs

through a three dimensional network of this Bi (6s) and O (2p) hybridized state.

[Ty

ERERGY {ev]

[

Fig. 2.6. The LAPW band structure for simple cubic BaBiO,. From Ref. [4].

The sz — Bi, bonding states are rather deep and located around -7 to -13 eV,

whereas, the antibonding one that are mainly composed of Bi-6s orbitals, are

located near the Fermi level ( E ). The electronic states of the Ba atom do not

contribute to the band near the Fermi energy, and no conduction electron is
found at the Ba site. According to their calculations for assuming the ideal
simple cubic perovskite structure, it is found to be metallic in spite of the
perfectly nested Fermi surface.

However, such a nested Fermi surface is susceptible to electronic

instabilities. In the bismuthates, this leads to a Peierls distortion, in which the O



atoms surrounding every alternate Bi site are displaced towards them. This is the
breathing mode displacement of the oxygen octahedra, which doubles the unit
cell and thereby opens up a gap along the entire noninteracting Fermi surface,
splitting the broad conduction band into two sub-bands: a filled lower band and
an empty upper one. Due to this Peierls distortion, the CDW state is formed, and

the metal becomes an insulator.

Fig. 2.7. A spherically symmetric Bi 6s orbital surrounded by the oxygen p

orbitals in the BiO, octahedron. Only the ¢ orbitals of each of the six O atoms are

shown.

In this CDW state, the displacement of oxygen raises and lowers the
energy levels of Bi (6s') orbitals alternately along all Cartesian coordinate axes

x, v and z, as schematically shown in Fig. 2.8(a).
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Fig. 2.8. Schematic potential energy for the 6s electron: (a) The ground state of
CDW, (b) Spin density wave, (c) The charge transfer exciton, (d) The self-trapped

exciton, (e) Solitons.
Liechtenstein ef al. [21] have carried out the band structure study of

Ba,_ K, BiO;. For x=0, they found a lattice instability with a combination of

both tilt and breathing distortions. This yields the experimentally observed
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monoclinic structure. An interesting point that emerges from this band structure

study is that, when details are put in, BaBiO, may have a rather small indirect
band gap, which is shown in Fig. 2.9. The value of this gap, gleaned from Fig.
2.9, is roughly 0.025 Ry (=0.34 V). However, optical experiments must be able

to see this, as a phonon assisted transition.

0.2

(Ry)
0.0

Fig. 2.9. The full potential LMTO band structure near Fermi level for 2BaBiO ,.

Solid line is for t=0 and b=0, dashed line is for t=10 deg and b=0. dot-dashed line is for

a
t=10 deg and b=0.194 A. The Brillouin zone has folded. From Ref. [21].

Therefore, our one purpose in the present work, is to reproduce the
aforementioned LAPW energy band near the Fermi level by using our unified
theory. By using our theory, we will finally show that, due to strong el-ph
interaction, the broad conduction band near the Fermi level is split, and
produces CDW state, which will be shown in Sects. 4.4 and 4.5. In our
theoretical model, we will only consider the breathing mode distortion of the

lattice. Tilting will not be consider, to avoid the model too complicated.
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2.4 OPTICAL ABSORPTION AND OTHERS

This section contains an overview of the experimental data related to the
optical properties of BaBiO . During the last few years, much works have been
done on the nature of the CDW insulating state as well as optical studies on
BBO. The observed spectral shape of this material is quite different from a
typical absorption edge of an ordinary insulator such as GaAs. The spectral
shape near the visible region rather resembles the inter-band excitation across
the energy gap of an ordinary insulator. While, we also have a long absorption
tail extending towards the near-infrared region. Thus the overall spectrum has a
good contrast to the ordinary CDW type insulator, in which a sharp light
absorption peak appears only in the visible region.

In order to investigate the optical gap in BBO, Blanton er al. [26] have
measured the reflectivity spectrum of Ba, K BiO, as a function of doping x,
from x=0 to x=0.4 in the frequency range from 250 to 25000 cm~'. Their data

" in the case of

on optical conductivity indicate that it has a peak at 16000 cm™
CDW, as shown in Fig. 2.10. They claim that this broad peak has evolved from
excitations across the single-particle (CDW) gap of BBO. Tajima ez al. [7] also
performed the resonant Raman scattering measurements, and in their
experiments, a sharp absorption peak is observed near 2.0 eV, as shown in Fig.

211,
Raman experiments [28,29] on BaBiO; show the resonant enhancement,

and appearance of higher harmonics of the 570 cm”' phonon mode (breathing
mode), which indicate that the optical gap is related to the strong electron

phonon interaction in the system [28,30]. Inoue et al. [31] have reported the

infrared and Raman scattering spectra of BaBiO,. They have shown that the

infrared activeness of the Bi-Bi stretching mode is one of the direct evidence for
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the charge disproportionation between Bi sites. If neighboring two Bi’s are
equivalent, this stretching mode is infrared inactive but only Raman-active. In
fact, the oscillator strength of this mode decreases as the doping increases, and
accordingly CDW order disappears. This means that the ordered structure of
CDW makes the Bi-Bi stretching mode infrared active.

Uwe et al. [24] have measured the light absorption spectrum of BBO at
near infrared region, and they found a long absorption tail, which has a square
root type shape at temperature 300 K, as shown in Fig. 2.12. They also

I

mentioned that the prominent peaks below frequency 2000 cm™ are due to

overtones of LO phonon.
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Fig. 2.10. Optical conductivities of Ba,_, K,k Bi0, samples, with x=0.0 (Solid

line). From Ref. [26].
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Fig. 2.11. Optical conductivity spectrum for BaBiO ;. From Ref. [7].
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Fig. 2.12. Absorption coefficient of BaBi0O,. From Ref. [24].
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2.5 SUPERCONDUCTIVITY

We have already mentioned that the BaBiO, is the parent material for
high-7. superconductor BaPb,  Bi,O, and Ba, K BiO, systems. The
superconducting phase occurs [2,3,45,47] in the concentration range
0.05<x<0.30 for BPBO, and 0.37<x<0.60 for BKBO. The highest 7. is 12 K at
x=0.25 for the former, and 30 K at x=0.40 for the latter. If this latter material had
been discovered two years earlier, it would be a record holder, and would cause
a great sensation. The density of states at the Fermi level for both these
bismuthate systems are quite low [48,49]. Although the density of states at the
Fermi level is low, and also they have three dimensional structures, the
superconducting transition temperatures are very high indeed. The insulating
nature of BBO and the metal-insulator transition that occurs on doping with Pb
or K cannot understood on the basis of band structure calculations [4,50]; they
yield a half-filled conduction band for BaBiO;. The simplest explanation for
the insulating nature of BBO invokes a CDW instability, which opens a gap in
the conduction band. Both Pb and K doping should inhibit CDW ordering for
two reasons: first, such doping moves the Fermi level down from its position at

half filling, and second it introduces disorder. For BBO, the top of the occupied
Bi 6s band is located ~0.3 ¢V below E . Doping with K (x=0.0 to 0.3) the top

of the occupied Bi 6s band moves towards £, [51], and touches it, indicating

that the system becomes metallic.

It is reasonable to compare here the properties of high-T, cuprates with
bismuthates superconductor. Strongly hybridized bands (Cu 3d O 2p for the
cuprates and Bi/ Pb 6s O 2p for the bismuthates) characterize both these high

T. superconductors, in which Fermi level falls within the uppermost o

antibonding subband, making it nearly half-filled. In the cuprates this band is
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formed by the o bonding between Cu 3{‘!{9{3 - yz) and the 2p orbitals of the

four surrounding oxygen atoms, and in the bismuthates, by the ¢ bonding
between the spherically symmetric and spatially extended Bi/Pb 6s orbitals and
the 2p orbitals of the six surrounding oxygen atoms. Like the bismuthates, the
cuprates also have a nested Fermi surface (two dimensional as opposed the
three dimensional one in the bismuthates) at zero doping. A system with a
nested Fermi surface is susceptible to various instabilities like spin density wave
(SDW), CDW, etc. The nominal valence of Bi in the bismuthates is 4~ and that
of Cu in the cuprates is 27, which means that Bi and Cu ions have just one
electron in their outer shells in these compounds. Thus one should expect these
oxides to show fully developed magnetic moments in their insulating states,
however these two systems show very different magnetic behavior. The
cuprates show a moment whereas the bismuthates are perfectly diamagnetic and
there is no indication of a moment. In addition, the insulating phase of the
cuprates is antiferromagnetically ordered, but in the bismuthates it exhibits
CDW ordering. These differences suggest that the low energy degrees of
freedom in the cuprates are the spin degrees of freedom, whereas those in the
bismuthates are the charge degrees of freedom.

So we see that the bismuthates are qualitatively different from high-T
cuprate superconductors. Their superconducting and normal state properties
make these bismuthates interesting, and an attempt to understand them a
challenging task. So far there has been no fully successful theoretical treatment
of these systems for all ranges of doping. To understand the mechanism of
superconductivity in this material more clearly, it is necessary to elucidate the

electronic structure and the optical properties as well as nonlinear lattice

relaxation of these materials.
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3. NONLINEAR LATTICE RELAXATION OF CHARGE
TRANSFER EXCITONS

The problems related with the lattice relaxation process of optical
excitations in insulating solids are the subjects of considerable interest in recent
years, both theoretically and experimentally.

As is well known, the exciton immediately after the light excitation is in a
wave like state extending over the crystal, since the light is a plane wave. This
state is usually called Free (F) state of exciton, and it is nothing but the Franck-
Condon state. After the lattice relaxation having been completed, however, the
exciton is a localized state, provided the exciton-phonon interaction is
sufficiently strong, because in this state the exciton is trapped by a self-induced
local lattice distortion. This state is usually called self-trapped state of exciton
(STE), schematically shown in Fig. 2.8(d).

So, exciton created by photon in an insulator interacts with the lattice
vibrations and this interaction brings about various lattice relaxation processes.
In the case of an ordinary insulator, the total number of excitons is kept
unchanged during this relaxation, except when excitons is created up to a very
high density by intense laser light. Thus, the relaxation of low density excitons
in ordinary insulators can be called a linear lattice relaxation. On the other
hand, the CDW state is a special type of insulator that is brought about from the
metallic state through the Peierls transition, and therefore, its ground state has a
degeneracy or a multistability. In this multistable situation, an exciton, created
by a photon from one of the ground states, proliferates during the lattice
relaxation process and finally relaxes down to a collective excited state, which

encompasses more than two ground states. The term nonlinear lattice
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relaxation is introduces so as to emphasize this charactenistic, in comparison

with ordinary insulators.

3.1 LATTICE RELAXATION IN ONE DIMENSIONAL SYSTEM

Although the purpose of our study is three dimensional system. For the
time being, let us review the aforementioned nonlinearity by taking halogen-
bridged mixed-valence metal complexes (HMMC) [52] as one of the typical
examples for quasi one-dimensional CDW system. In Fig. 3.1, schematically
shown the relevant adiabatic energies as a function of an order parameter
(= @), which denotes the displacement of X (X=Cl,Br,I) from the middle point
of the adjacent two M's (M=Pt,Pd,Ni) [53]. Tt is nothing but the Peierls type
lattice distortion. The solid line denotes the ground state, and the dashed line

denotes the excited one.
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Fig. 3.1. Schematic potential energy surfaces of ground and excited states as a

function of the CDW -type order parameter Q. From Ref. [53].
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As shown in this figure, there are three minimum energy points in the ground
state. The two minima where Q is equal to Q_ or -, corresponds to the CDW
states. They have different phases of the Peierls distortion of X . When the
electron-electron coulombic repulsion is taken into account, we get another
energy minimum at Q=0, in addition to these CDW states. In this configuration,
the up and down spins are arranged alternately along the metallic sites M’s to
make this repulsion weak, as shown in Fig. 2.8(b). This is the SDW, and the
relative stability between this state and the aforementioned CDW one is
determined by the competition between the el-ph interaction and the coulombic
repulsion [54].

Referring to Figs. 2.8 and 3.1, let us briefly see the nonlinear lattice
relaxation process of the exciton. The HMMC has a strong light absorption

band in the visible region [55], which corresponds to the charge transfer (CT)
excitation of an electron from the occupied d , orbital to the vacant ones, as

shown in Fig. 2.8(c). Thus an electron and a hole are created, and they attract

each other through the inter-orbital coulombic force. Such a state is called a CT
exciton. In Fig. 3.1, this type of photoexcitation from one of the CDW ground
states is represented by a vertical arrow. Once the exciton has been created, it
will relax down through the potential curve of the excited state, and induces a
local lattice distortion around it.

This photoexcitation is nothing but a backward charge transfer, and the
electron number per orbital becomes almost equal in this local region (Fig.
2.8(c)) and, therefore, the Peierls distortion has lost the reason for its presence.
Hence, it tends to disappear, as seen from Fig. 2.8(d). Thus the exciton self-
induces a local lattice distortion and is trapped in it, by producing STE.
However, since this STE appears near the point with 0=0, the SDW type spin

order is also expected to appear in this localized state.



As seen from Fig. 3.1, the STE is expected to undergo further relaxations.
In the CDW, as is well known, we have a low-lying excited state with a
collective nature. That is one phase of the ground state can appear locally in the
other phase of the ground state, at the expense of creating boundaries between
two phases. This boundary is usually called a soliton, and the exciton is
expected to relax finally down to the state with a pair of solitons, as shown in
Fig. 2.8(e). Experimentally this type of low-lying excited states was observed in

the photoinduced measurements [56-58].

3.2 LATTICE RELAXATION IN THREE DIMENSIONAL SYSTEM

Keeping these one dimensional results in mind, let us return back to the
three dimensional case. So, in this section, we will be concerned with the
nonlinear lattice relaxation of exciton in BaBiO,, as a typical example of three-
dimensional CDW state. Much of theoretical, as well as experimental works
have been done on one and two-dimensional CDW system in connection with
lattice relaxation. However, very few experimental works are performed on
three dimensional system like BaB10 ,, and in the present, there is no systematic

theoretical study to explain the experimental work related to relaxation in this

material.
In BaBiO, there are two type of gaps exist i.e. direct and indirect gaps,

and the appearance of this direct and indirect gaps are due to the characteristic
and complicated nature of the one electron energy band E(k) around the Fermi
level. Its depends on the nature of three dimensional chemical bonds among the
s-orbital of the metallic atoms and the three p-orbitals of O’s atom. As a result, it
often occurs that even after the CDW type metal-insulator transition, optical

excitations appear below the CDW gap. In this case, we have a mid-gap
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absorption, which is not due to the collective excitations in the gap such as
solitons, as described in the previous section, but simply due to the complicated
k-dependency of the one electron energy band. Recently, this type of low
energy optical excitation is found below the CDW gap of BBO [33-37].
Federici et al. [35] indicates the possibility of indirect photoexcitation of the
polaron via direct relaxation. Their schematic explanation is shown in Fig. 3.2.

However, its physical reason is not so clear. Taliani et al. [37] measured the

photoinduced absorption of BaBiO ;. Their result is shown in Fig. 3.3.

20r

EMERGY (eV)

Fig. 3.2. Schematic energy level diagram and relaxation path-ways for BaBiO,.

The labels G, e-h, and P represent the ground state, the photogenerated electron and hole,

and polaron, respectively. From Ref. [35].

Photoinduced reflectance measurements [33] of BaBiO, are reported and
several new peaks in the reflectance spectra are observed around the mid gap
energy, as shown in Fig. 3.4. All of these results indicate the evidence for the
lattice relaxation after removing electrons from the valence band, and as a

consequence energy levels appear within the gap, resulting in mid gap states.
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Fig. 3.3. Photoinduced infrared absorption (left side) and photomodulation (2000
Hz) absorption (right side) of BaBiO, at 10K. From Ref. [37].
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Fig 3.4. Photoinduced reflectance spectrum of a BaBiO, sample. Thin line: as

measured; thick line: smoothed. From Ref. [33].

In chapter 6, we will present our theoretical result to clarify this lattice

relaxation process, and the origin of this photoinduced absorption.
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4. THEORY AND MODEL FOR BaBiO,

4.1 MODEL HAMILTONIAN

To describe the aforementioned direct and indirect excitations as well as

their nonlinear lattice relaxations in BaBiO,, let us now introduce the following

extended Peierls-Hubbard model in a cubic lattice (h=1):

H Z 2 (a.'cra.fo +hc)+UancH{ﬁ T VE Enlanfﬂr

Wy o {tive.a

o 1%

2 237 Mo =it (41D

+/Sw, Y. Oiny, + @, 2(
l.o

Here, aL (a,,) creation (annihilation) operator of an electron at a lattice sites

=11

i 1) with spin o(=a, B). T, is the transfer energy of an electron

between two lattice sites [ and {’. The unit of length is the lattice constant. To
describe the energy band of the metallic state of BBO in detail, we have taken
into account four types of transfer energies between various neighbouring
lattice sites, named 7T, T3, T; and T as shown in Fig. 4.1. It should be noted
that the real Wannier function corresponding to afa 15 a linear combination of
the Bi(6s) and the O(2p) orbitals. It is centered at a certain lattice site of Bi atom
in a perovskite type structure, but is extended widely to various other sites, due
to the extended nature of s-orbitals. In this situation, the T}, is not limited only
within the first nearest neighbor. That is the reason why we have to use these
four types of transfer energies.

The parameters U and V in eq. (4.1.1) denote the intra-site and inter-site

Coulomb energies, respectively. Here ({/,{’)) means an arbitrary pair of Bi sites,
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while (/,/’) means nearest neighbour one. The fourth term of eq. (4.1.1) denotes
the electron-phonon (el-ph) coupling and § is its coupling constant. O, is the
site-localized phonon mode with frequency @,, and corresponds to the
breathing motion of six O atoms around Bi, as schematically shown in Fig. 2.3.

The fifth term is the energy of this phonon mode. Since the phonon energy is

expected to be sufficiently small, w, <<(7,,U,V,§), we can use the adiabatic
approximation (@, — 0), neglecting the kinetic energy term of the phonon in
eq. (4.1.1). In this case, the phonon can be treated as a classical distortion of the

lattice,

Fig. 4.1. Four types of transfer energies T, T, Ty and T,

Introducing W(=H/T)), t, (=T, /7)), w=U/T), v(=VI/T),

s(=5/T)) and gq,(= ﬂjEI_S'Q, ), we rewrite eq. (4.1.1) into a dimensionless

form as
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h=- Z Ztﬂ‘ (aj,a,, +hc)+ 1.12{:{,“.?%'!,}r +vy Y ongn.,.

{ry o / e .o

I +sY q; /2. (4.1.2)
1 !

[n order to determine its ground state, we can now use the Hartree-Fock (HF)
approximation for the inter-electron coulombic interactions. In this case, it is

expedient to divide A formally into the HF Hamiltonian (= ") and the

fluctuations (= Ah, and =Ah)) therefrom, due to the electron-electron and

electron-phonon interactions as

_ . HF
h=h"" +Ah_+Ah,. (4.13)

In this Hartree-Fock approximation, we have decoupled the coulombic

repulsion’s between two electrons, and hence h"" is given by

R =— E E{(tﬂ' + v{my., })a;rgam + h.c}

iy o

+ “Z ((HF.—G }Hfa - (”Ia :’(”.r,-g >"II 2)
Lo

+v E 2 (o g + AR g — (Mg Xy D) + ¥ E E |<mH'a }|1

- - (LY o

+8Y G, +8),4,°12. (4.14)
l.a I

Here, m,, is defined as m,;, Ea,t,a,,a, and the angle brackets (----) appeared

above, denote the average of ... with respect to this HF ground state (=|g})
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() ={g|--18) (4.1.5)

While, g, denotes a static lattice distortion. At present, however, this ground state

i1s not known yet, but will be determined self-consistently afterwards. The

fluctuations terms of eq. (4.1.3) are given as

Ah, =uY An Ang +vd Y An,Any,
/ oo’

v Z E {(mﬂ'cr >mrm + (mrm }'mn*a = <mﬂ"g )(mwa }) : (4.1.6)

(LY o

Ak, =53 AqAny, +33 Aq ((ne ) +(ng) +q,) +s) Aq,* /2, (417)
!

.o !

N ={(n,)+An,, (4.1.8)

g, =4, +Aq,. (4.1.9)

Here, (n,c,}, g, and <m”.r_,> are also unknown parameters, and should be

determined self-consistently.
4.2 GROUND STATE OF THE CDW

The CDW instability originates from the frozen breathing type displacement
of oxygen around Bi atoms. In this state, O atoms displaces alternately in the
opposite direction along the all Cartesian axes (x, y and z), as shown in Fig. 2.3(a),
and leads to the charge disproportionation of Bi**and Bi®" between two

neighbouring Bi sites. As a result, the energy levels of Bi 6s orbitals raise and
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lower alternately, and two electrons with opposite spins occupy the lower energy

sites, as shown in Fig. 2.6(a). Thus the displacement of oxygen g,, can be

described as
g, =(-1)'q-1, (4.2.1)

where (-1 }" q denote the Peierls distortion in the ground state of the CDW, and g

is its amplitude. This g should be determined beforehand, within the mean-field
theory, while -1 denote the uniform displacement. As (n,, ) is equal to (n,g) in

the CDW ground state, the average n,, is given by
{n,)=(-1)én, +1/2. (42.2)

Here on, is the deviation from 1/2 for the number of electron with o spin. We

also assumed that the bond density m,, is independent of the site [, and so it

becomes a constant
(m“,a} = (m],,{cr Y=, (4.2.3)

As g, is given by eq. (4.2.1), we can now calculate the energy of the CDW
ground state of this three dimensional BBO system with N-sites and N-electrons

from eq. (4.1.4). Inserting eqgs. (4.2.1)-(4.2.3) into eq. (4.1.4), we get as

R == YAy, + Vi) o @y + he}+ 3 (1) {udn_, —6vén,
(1" o ‘o

+sqin,, + N{sq® 12+ v(dn,)? - udn, ong +2vin )

+N(=s/2+u/4+v). (4.2.4)
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Here on, =on, +3nﬁ. We should note again that, in the case of CDW, the
charge density waves of electron with opposite spins occur only in phase, i.e.

dn=dn, = 5nﬁ. (4.2.5)

As is well known, the adiabatic approximation is to minimize the electronic
energy with respect to electronic variable dn, and m for a given lattice
configuration g, and after that, the total energy is to be minimize with respect to g.

Therefore, the amplitude of the Peierls distortion g can be obtained from the

Feynman-Hellman's theorem:

L=o. (4.2.6)

Thus, we get a balance equation between the distortion and the charge density as

q=-on,, (4.2.7)

and substituting it into eq. (4.2.4), we can eliminate g. So, we can now determine

the ground state ]g} and its energy, by using the self-consistently calculated

parameters, on, and m.

To determine the one-body eigenvalues and eigenfunctions of A"
practically, let us rewrite the eq. (4.2.4) as the following
B = Z al M,a, + const., (4.2.8)
o
const. = N{sq* 12 +v(dn,)* - udn,on, + 2vinty
+N(-s/2+ W4 +v), (42.9)
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where a;, is the N dimensional row vector operator defined as
t i T
a5 =(ag1835: " 4 8yg)- (4.2.10)

M is the N X N energy matrix and we do not write down these elements

explicitly, since it is simple but too lengthy. From the eigen-value equation

Moflo :eldf}.n‘ (A=12,.--,N), (4.2.11)

we can get the eigenvalue (= e, ) and the eigenvector (=1, ) of M. Here A

is the index of eigenvector, numbered according to its energy. f,_  is the N

dimensional row vector:
£, = (fre D frg @+ fr (ND), (42.12)

where the component f;c () (I=1,2,---,N) denotes its amplitude at the site I.

We, at first, numerically determine the following new operator:

b, =Y fi. als (4.2.13)
I

that can diagonalize h"" as

B =Y e, bl b,, +const. (4.2.14)
AT

So, the Ath eigenvalue ¢, of R and its eigenfunction f, (/) is determined.

A is numbered according to their energies from lower ones to upper ones.
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By using this eigenfunction, the ground state is determined as

18) =1 51.51510), (|0} is the true electron vacwum). ~ (4.2.15)
A

Thus we can determine the ground state Ig) and its energy (= E,) by using the

self-consistent parameters on, and m within the Hartree-Fock approximation,

4.3 EXCITED STATES AND EXCITON

We can now roughly estimate the energies of the excited states, £, within
the Hartree-Fock approximation. However, we will calculate here, the excited
states and its energies including the residual interactions which are neglected in
the HF approximation. We will take this residual interaction into account within
the subspace of one-electron excitation. These excited states are such ones that
an electron is removed from an occupied level and is put into an unoccupied
one. In this way, an excited electron and a hole are created, and they will bound
each other through the inter-orbital coulombic force. Such a state is usually
called a charge transfer (CT) exciton, which is schematically shown in Fig.
2.8(c). In order to perform this calculation, at first, we denote the excited states
within the HF approximation by |n), which are numbered according to their
energies from lower ones to upper ones, n=1,2,3,---. In the next, we have to

calculate the following energy matrix elements,
E.. =(n|n"|n%). (43.1)

Since h""" has already been diagonalized, we can simply rewrite eq. (4.3.1) as
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Er:rl‘ -5 Sﬂn' <” I’:‘l = n} . (432}

We also have to evaluate the energy matrix element coming from Ah_ in eq.

(4.1.6). It 1s given as
AE; . =(n|Ah |n’). (4.3.3)

It should be noted that this is nothing but the electron-hole attraction within the

first order perturbation theory for Ah_, but it surely results in the exciton effect.
Adding this correction term to the original HF energy matrix E ., we obtain the

following total energy matrix E, . as

E_ =E . +AE! (43.4)

nn’ nat

Since this includes off-diagonal elements, we should diagonalize it, and can
obtain new eigenvalues (= E) and their eigenfunctions (=|n) ).
If we return back to eq. (4.1.3), we also have another fluctuation Ah a4

However, as for this f_\hp, we will take it into account only when we consider

the effect of lattice fluctuation, and it will be explained later in details.

4.4 METALLIC STATE

In this section, we will calculate the electronic energy bands of the metallic

state of BaBiO;. As we mentioned before, Mattheiss and Hamann [4] have

calculated the energy bands for a simple cubic BBO by using the self-consistent
linear augmented plane wave method. Therefore, we will reproduce their result

by using aforementioned extended Peierls-Hubbard model. For this purpose, we
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neglect the intra-site el-el, and el-ph interactions, and retain the inter-site el-el
interaction v in eq. (4.1.4). Introducing the following Fourier transformation

with a wave vector k as

i

aka

ZN-HEE-E.&.I&{G‘ (4..4.1}
i

we get the following Hamiltonian (= A" ) for the metallic state as

R = Zz Er"al a; » “Fconstant terms, (4.4.2)
ko
where,
Ef" =Y @ty +vim)e™,  £=(-1). (4.43)
7

Regarding ¢,(=(T,, T, T;, T,)) and v as a set of adjustable parameters,
we can reproduce the aforementioned band calculation. By trial and error
method, assuming the 7, is most dominant, v is sub-dominant, and others are
rather small, we can finally find a set of following parameter values; 7,=0.365
eV, 7,=0.0543 eV, T7,=-00118 eV, T,=-0.1205 eV and v=0.22, which gives the
best fitting. There is no so much ambiguity. The resultant energy band and the
density of states of this metallic state are shown in Figs. 4.2 and 4.3,
respectively. It well reproduces the Mattheiss and Hamann's result as far as the

aforementioned broad conduction band is concemned.

4.5 CALCULATED RESULTS OF CDW STATE

Although the metallic state is predicted from the aforemention band

calculation, BaBiO,, in fact, is an insulator. In view of this insulating
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characteristic of BBO, we can assume that the metallic state is unstable against a

perturbation of wave vector (= (7, m, 7)) with twice the period of the lattice,

3 T'=i}.365 eV, T!=E'l.l}5-l3 eV, TJ=-['II.{II13 eV, T=-0.1205 eV

Energy ( eV )

Wave Vector k

Fig. 4.2. The band dispersion of the metallic state.

Density of States
( arb. units)

Energy ( eV )

Fig. 4.3. The density of states of the metallic state.
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and it opens a gap at the Fermi level, splitting the broad conduction band into
two sub-bands: a filled lower band and an empty upper one. In our case, this
perturbation is taken into account by the electron density wave and the lattice
distortion wave through the el-el and el-ph interactions. To describe this

instability, we use eq. (4.2.1), eq. (4.2.2) and eq. (4.2.3). Neglecting the two

kinds of fluctuations Ak, and Ah,, we can rewrite the HF Hamiltonian (= A /")

ins.

for this insulating state as
d o
{Lry o f.o

where,
D, =uén_, —6vén, +sq, (4.5.2)

and

c, =N{§q2 12+ v(on,)? — udn,on, + 2vii 3+ N(=s/2 + W4+ V). (4.53)

By applying Fourier Transformation, we get,

: E D, | a
B =¥ Y Malsalasd t 2] e, (4.5.4)
B, B

ko a ak+ﬂ.a

where, summation over k should be limited within the half of the first Brillouin
zone, and
EX =Y (t, +vime ™. (4.5.5)
£
The unknown parameters g, dn, and m are determined self-consistently, as we

mentioned in sub-section 4.1. By diagonalize this (2 X 2) matrix, we can obtain

the ground state and its energy. The one-electron energy band is now splits into



lower and upper bands, and the gap appears in between. In order to describe
the CDW state, we have set $=0.43 and u=1.0, so that our theory can reproduce
the direct gap (E,) and indirect gap (E,) around 2.0 eV and 0.55 eV,
respectively. The calculated energy bands and the density of states are shown

in Figs. 4.4 and 4.5 respectively.

§=0.43, u=1.0, v=0.22
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Wave Vector k

Fig. 4.4. The band dispersion of CDW state.
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Density of States
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Fig. 4.5. The density of states of the CDW state.
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In Fig. 4.6 the charge density distribution of the CDW state is also shown.

Fig. 4.6. The charge density of the CDW state on a 4 X 4 plane.

4.6 EXCITON BANDS

Let us now proceeds to the exciton effects, using these new one-electron
energy bands thus obtained. Diagonalizing the energy matrix E_, given by eq.
(4.3.4), we can calculate the exciton energy bands, a part of which is shown in
Fig. 4.7. It is the dispersion relation from (0,7 /2,0)to (-t /2,m/ 2,/ 2), along
the line (-k,w/ 2.k, 0<k<m /2. The minimum at around (-7 /2,m/2.m/2) in
Fig. 4.7 mainly comes from the electron at the point L and the hole at around
point X of Fig. 4.4. We can see that several kinds of exciton bands appear. In
our model, the hole can exert its appreciable attraction only when the electrons
is in its six nearest neighbour sites. Therefore, we can obtain six exciton bands

at most. However, the total number of exciton bands which appear below the
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free el-hole pair continuum is determine by the strength of inter-site coulombic
repulsion v itself. In the case of Fig. 4.7, we can see only three types of exciton

bands; s-type, longitudinal p-type and two transverse p-types.

s=0.43, u=1.0, v=0.22
2.5

2.0 Free el-hole Pair

(-k, /2,k)

Excitation Energy (eV)

1.0}
1 transverse p-lype
0.5 1 longitudinal p-type
0.0 I
0 mid /2

Wave Vector k

Fig. 4.7. The exciton energy bands of BaBiO,.

4.7 SUMMARY

We have thus studied ground and excited states of the CDW in BaBiO,,
using 3-D extended Peierls-Hubbard model. Within this model, we introduce the
adiabatic approximation for phonons, and Hartree-Fock approximation for inter
electron interactions. The el-hole correlation on the Bi atoms are taken into
account so as to obtain the exciton effect. From our calculations we got metallic
state with a broad conduction band near the Fermi level. But due to the strong

el-ph interaction, this metallic state is unstable, and makes CDW type insulator.
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5. LIGHT ABSORPTION SPECTRA OF BaBiO,

5.1 OPTICAL CONDUCTIVITY AND MONTE CARLO SIMULATION

The light absorption spectra in a three-dimensional CDW insulating state
are drastically changed by the exciton effect as well as the el-ph interaction. On
the other hand, in a vibrating but otherwise perfect crystal, phonons are the
natural choice of scatters for the moving electron and hole, and the absorption
spectrum is now broadened by this el-ph scattering. This scattering also relaxes
the dipole selection rule to various extents, and makes indirect transitions across
the insulating gap appear. In order to discuss these characteristics of spectral
shape of BaBiO, we treat the oxygen sub-lattice as classical, because the
observed spectra do not show any fine structure which would be related to its
quantum nature. Furthermore, the el-ph interaction is considered to be rather
strong. The fluctuations of the oxygen sub-lattice coordinates are introduced
around the perfect dimerization by using the Monte Carlo (MC) simulation. It is
expected that the magnitude of such fluctuations are very sensitive to the el-ph
coupling strength s.

As is well known, according to the Franck-Condon principle, only the
electronic part of the system is excited, while the phonon part remains fixed at

the ground state. Thus, we can calculate the optical conductivity (= o(w))

according to the Franck-Condon principle as

2

Foo

1
o()=— [ Tldg W, (E, (4, }))%

xXS(E(q,)—E,(q,) - hw), (5.1.1)
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Here, J,,, is the matrix element between the ground state |&) and the excited

state |n) of the current operator J, which is defined as

J=ir'Y S @, - B)ahap, —ala,), (5.1.2)
Y e

while T is the dipole transition matrix element, assumed to be independent of /
and ]’. €y denotes the unit vector from / to [, and P is the unit vector of the
polarization of light. @ is the frequency of the incident photon. The Boltzmann

factor Wp is defined as

exp(-E,(q)/ k5T")
[ Tldg, exp(-~E,(q,)/ k5 T")

Wy (E,(q,) = (5.1.3)

Here, E,(q,) is the energy of the ground state, and g, ( [=1,---, N ) is the

lattice configuration including the lattice fluctuation around the equilibrium
position given by the Peierls distortion g,. This energy E, (q,) is calculated for

each configuration g, within the HF approximation. T" in eq. (5.1.3) is the
effective temperature, which implicitly includes the quantum fluctuation of the

phonon. In the semi-classical approximation, T~ should be related to the true

temperature 1" as

e ¥ hé,
ksT =—hw, coth ! 5.14
B 5 o [ZRBT] ©C.1.4)

where @, is the average frequency of the phonons. E (g, ) in eq. (5.1.1) is the
energy of excited state for a given g, calculated by the same principle as
described in eq. (4.3.4). In actual calculations for eq. (5.1.1), the Monte Carlo

averaging is performed by the importance sampling [59].
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5.2 DIRECT AND INDIRECT EXCITATIONS

The spectral shapes of BaBiO ; are exotic because the observed spectra
exhibit a sharp peak near the visible region (=2.0 eV), as well as a long
absorption tail near the infrared region. Let us now see why we have these two
spectral parts. The one-electron energy bands and the density of states of the
CDW state, thus calculated, are shown in Figs. 4.4 and 4.5 respectively. From
this figure, we can see that the direct gap appears at W(= XM / 2) point of the
first Brillouin zone with energy =2.0 eV, while the indirect gap opens up
between the X and L (=I'R/2) points with energy =0.55 eV. Since the
strong electron-phonon interaction is acting in this BBO, it causes a Peierls
distortion of the lattice, doubling the unit cell, opening up a wide direct gap, and
also makes the indirect transition to appear. So, both the direct gap, and the
indirect transition have the same origin. In this section, we have study the light
absorption spectra at near-infrared and visible regions of BBO.

Since we are going to calculate absorption spectra which take into
account the exciton effect as well as lattice fluctuation in this three dimensional
BBO system, the whole calculation becomes very complicated. So, for
overcoming the difficulties of our numerical calculation, we will consider a
lattice that consists of 4 X 4 X 4 sites occupied by 4 X 4 x 4 electrons, and
impose the periodic boundary condition for this cluster, so as to reduce the finite

size effects.

5.2.1 DIRECT EXCITON

Here, we calculate the light absorption spectrum under the condition of

rigid lattice or without the thermal lattice fluctuation. Under this condition, the



possible optical transitions are always direct ones. By using the ground and
excited states that determined according to the principle that mentioned in

sections 4.1-4.3, we can calculate the optical conductivity o(w) from the
following formula

o(w) = i Z[J,,_gfa(ﬁ,;* - E, - how). (5.2.2)

n

Figure 5.1(a) shows the Hartree-Fock level spectral shape without exciton
effect. Here, the discrete lines correspond to the inter-band transitions, and the

gap appears at around 2.0 eV,
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Fig. 5.1. The absorption spectra in the uniform CDW state, s=0.43, u=1.0,

v=(.22; (a) Without exciton effect. (b) With exciton effect.
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On the other hand, when the exciton effect is taken into account, the spectral
shape is modulated, as shown in Fig. 5.1(b). In this case, the largest peak around
1.92 eV is due to the charge transfer type exciton, while the following higher
energy peaks are still due to the inter-band transitions.

We can see from this figure, that the oscillator strength of the lowest
transition line increased due to the exciton effect, though the exciton binding
energy itself is rather small. This exciton binding energy is mainly depends on
inter-site Coulomb energy v. Up to now, as far as these spectral shapes are
concerned, the absorption in the indirect gap part has no intensity, because of

the k-selection rule.

5.2.2 DIRECT AND INDIRECT EXCITONS WITH LATTICE FLUCTUATIONS

et us now introduce the lattice fluctuations of the oxygen sub-lattice
coordinates. At finite temperatures, these coordinates are considered to be
fluctuating as classical variables. These fluctuations are taken into account as a
Boltzmann distribution around the Peierls distortion g. After introducing this
lattice fluctuation, we can determine the ground and excited states. Then we
can calculate the optical conductivity according to the principle as described in
section 5.1.

Thus we could introduce the lattice fluctuations, and the calculated
absorption spectrum in the visible region is shown in Fig. 5.2(b). In this figure,
spectra for both with and without exciton effects are also shown. In both cases,
we have a broad single absorption band whose peak is at around 2.0 eV. We
can also see that, due to the exciton effect, the peak now shifts towards the
lower energy side, and its intensity has increased. The calculated absorption

spectral shape with the exciton effect also agrees well with the experimental
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result [7,26] shown in Fig. 5.2(a). In this calculation, we have set the
temperature 7=300 K as in the case of experiment. For the average phonon
frequency, we set Wy=570 em™' according to the experiment [28]. By using

these T and @,,, the effective temperature becomes T =468 K, and this T is

used for our calculation.
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S
u ]
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Photon Energy [ eV )
Fig 5.2. The absorption spectrum of BBO in the visible region. (a) Experiment

[26]. (b) Present calculation; 7° =468 K.

We have also calculated the light absorption spectrum at near-infrared
region which corresponds to the indirect excitation across the CDW gap. Here,

due to lattice fluctuations, the k-selection rule is somewhat relaxed and the
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indirect transition becomes possible. The calculated absorption spectrum in the
infrared region is shown in Fig. 5.3(b). In this figure, spectra for both with and
without exciton effects are shown. The result with the exciton effect almost
agrees with the experiments [24,25] shown in Fig. 5.3(a). There are small
discrepancies between our calculated result and the experimental one at the
infrared region. Our calculation is only concerned with the pure electronic
transitions, for this reason, the calculated intensity vanishes below 0.2 eV. While,
in the case of experiment, there is absorption intensity due to phonon in this

region.
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Fig. 5.3. The absorption spectrum of BBO in the near infrared region. (a)

Experiment [24]. (b) Present calculation ; T" =468 K.
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The results of our unified theory for both infrared and visible regions are
summarized in Fig. 5.4(b), and are compared with the experiment [26] Fig.
5.4(a). In Fig. 5.4(b), the discrete lines are the theoretical absorption spectrum
without lattice fluctuations, while the dotted gray curve is with lattice

fluctuations.
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Fig 5.4. The absorption spectrum of BaBiO, from the infrared to the visible

regions, (a) Experiment [26]. (b) Present calculation; T~ =468 K.

To make the agreement between the theory and the experiment more

transparent, we can roughly compare the spectral intensity ratios between the
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near infrared and the visible regions for both cases. From our calculated results,

we can estimate this ratio (= R,) in the following way. The spectral intensity at
the peak of the visible region of absorption spectrum (= /[, ) is 0.138 (arb. unit),
while the near infrared intensity (=17 ) at the energy 0.3 eV is about
0.78x10~° (arb. unit). Therefore, the intensity ratio R.(=L,/1,.) is
5.6x107°. In the same way, we can calculate the intensity ratio (= R,) from the
experimental results, and it becomes 4.79x10 . This, experimental value agrees

well with the calculated one.

5.3 SUMMARY

We have thus theoretically studied the optical properties of BaBiO;, in
connection with the direct and indirect excitons. Within our unified theoretical
model, the near-infrared and visible absorption spectra of BBO are clarified from
a unified point of view. It is shown here that the two distinct absorption spectra
of the optical transitions occur due to the direct and indirect excitations. The
direct transition corresponds to the excitation across the direct CDW gap, and
this gap arises due to the frozen part of the Peierls distortion. While the indirect
part corresponds to the long tail in the infrared region of the absorption
spectrum, and it is due to the excitation across the indirect CDW gap. It arises
due to the lattice fluctuations from the static Peierls distortion. This lattice
fluctuation relaxes the k-selection rule, and makes the indirect transition
possible. It also shown that due to exciton effect the distribution of the
oscillator strength changes drastically, though the exciton binding energy itself

is rather small. These results are in good agreements with experiments.
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6. NONLINEAR LATTICE RELAXATION OF CHARGE
TRANSFER EXCITONS IN BaBiO,

6.1 THEORY AND CALCULATION FOR LATTICE RELAXATION

In the previous chapter, we have studied the optical properties as well as
the band dispersion of BaBi0,. We found that the appearance of direct and
indirect gaps are due to the characteristic and complicated nature of the one
electron energy band E(k) around the Fermi level. Because, in the case of
three-dimensional metal oxides, the one-body energy E(k) of the electron
around the Fermi level is usually a complicated function of k. It depends on the
nature of three-dimensional chemical bonds among the s-orbital of the metallic
atoms and the three p-orbitals of O’s. As a result, it often occurs that even after
the CDW type metal-insulator transition, optical excitations appear below the
CDW gap. In this case, we have a mid-gap absorption, which is not due to the
collective excitations in the gap such as solitons, but simply due to the
complicated k-dependency of the one-electron energy band. Recently, this type
of low energy optical excitation is found below the CDW gap of BBO [33-37].

On the other hand, several new reflectivity peaks appears around the
midgap energy in the photo-induced reflectance measurements [33] of BaBiO,.
This indicates the evidence for a lattice relaxation after removing electrons from
the valence band and as a consequence energy levels appear within the gap .

Let us now consider the nonlinear lattice relaxation of the exciton in this
three-dimensional CDW type material BaBiO ;. To describe the relaxation path
from the free exciton to the self-trapped exciton (STE), we use the following

variational function for g,

53



g, = (=1)' g{1 + Ag[tanh 6|l - I, / 2) - 1]}, ©6.1.1)

where, (—])Fq denotes the Peierls distortion in the CDW ground state, and this
g should be determined beforehand within the HF approximation. The curly
bracket denotes the local lattice displacement from this ground state. Ag is its
amplitude and [- - -] denotes its pattern. € corresponds to the reciprocal width of
the distortion. I (=1,,1 ,l,) is a vector which expresses the lattice points in a
three-dimensional cubic lattice. [, is the length of the cubic distortion.

Using this g,, we can determine the energies of the ground and excited

state as well as their wave function according to the theories of Sects. 4.1 and
4.2. As for the excited state, we take into account the correction for the A" by
the principle which already mentioned in Sect. 4.3.

In Figs. 6.1 and 6.2, we have shown the potential surfaces in the ground
state and the first excited state, respectively. Here, each surface is drawn in the
two dimensional space spanned by [, and Agq, and being optimized for € in
each state. In Fig. 6.2, the point at [,=2.1 and Ag=0.7 corresponds to the self-
trapped exciton. All the energies are referenced from the energy of the ground
state of CDW, and this notation will be used hereafter.

Fig. 6.3 shows the charge density distribution of CDW ground state, and
this is entirely same as in Fig. 4.6. The new charge density attained by the
creation of relaxed excited state is shown in Fig. 6.4. The difference between
these two is shown in Fig. 6.5, as well. The charge density of the ground state
and that of the STE state along the x axis are also shown in Fig. 6.6, and its
lower part shows difference between them. The arrow shows the center of
distortion.

This self-trapped state partially cancelled the charge density distribution of

the uniform CDW ground state, and it returned back towards the metallic state.
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Fig. 6.2. The potential surface in the first excited state.
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6.2 SELF-TRAPPED STATE IN BaBiO,

Our aim in this section, is to clarify the lattice relaxation paths of the
photogenerated CT exciton and the main origin of the photoinduced absorption
band, as mentioned in Sect. 3.2 at the energy range 0.7~0.9 eV. The numerical

results for the adiabatic potential energy along the relaxation path of the
exciton is shown in Fig. 6.7 as a function of /;. Aq and 0 are determined to

minimize E;, .

s=0.43, u=1.0, v=0.22
5 =

el-hole Continuum

Energy (eV)

Fig. 6.7. Adiabatic potential energy surface from the CT exciton to the self

trapped exciton as a function of /.

The physical interpretation of this relaxation path are as follows. When
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electrons are removed by photoexcitation, the CDW is locally destroyed. That is,
the electron induces a new local lattice distortion around itself (~ polaron), and
gives a localized state. In this localized state the electron is self-trapped, and as a
consequence, an energy level appears within the gap, as marked by S in Fig. 6.7.
This energy level could be observed in the photoinduced absorption
measurement. The optical transition relevant to this absorption will be from this
localized state in the gap (STE) to the peak of the density of states of the
conduction band, as shown in Figs. 6.7 and 6.8. It is expected to be ~0.9 eV.
The photoinduced reflectivity peaks at around mid-gap energy (Av =0.88 eV)
which is shown in Fig. 3.4 [33], can be interpreted as due to this STE.

Energy ( eV )

-3 1 1
0 10 2 30

Density of States
( arb. units )

Fig. 6.8. The density of states of CDW, and explanation of photoinduced

absorption.
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6.3. SUMMARY

We have studied the ground and excited states of the three-dimensional
extended Peierls-Hubbard model with half-filled band electrons, so as to clarify
the origin of the photoinduced absorption of CDW in BaBiO;. The charge
transfer (CT) exciton is created by removing the electron from the valence band
by the incident photon with higher energies than its threshold energy.
However, due to the local lattice distortion this electron is self-trapped. The
experimentally observed photoinduced reflectivity peaks at around mid-gap
energy is assigned for the optical excitation from this localized state (STE) to the

peak of the density of states of the conduction band.
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7. DISCUSSIONS

We have thus theoretically studied the electronic and optical properties of
BaBiO,, as one of the typical material with three dimensional CDW state, in
connection with nonlinear excitations. The ground and excited states of a three
dimensional extended Peierls-Hubbard model with half-filled band electrons
have been evaluated. Within this model, we introduce the adiabatic
approximation for phonons, and the Hartree-Fock approximation for inter-
electron coulombic interactions. The electron-hole correlation on the Bi atoms
and the classical fluctuations of the oxygen sub-lattice coordinates are also
taken into account, to obtain exciton effect as well as thermal fluctuations of the
lattice.

It is well known that, two types of gap exist in this CDW type insulator
BaBiO,, one is direct and the other is indirect. In usual insulators, however, the
opening of optical gap (direct gap) and the appearances of indirect gap are
often considered separately. The optical gap usually comes from the difference
between the occupied and unoccupied atomic orbitals relevant to the valence
and the conduction bands. While the indirect transition usually appears because
of the weak electron phonon coupling, which slightly mixes up direct and
indirect transitions.

On the other hand, BBO is not an ordinary insulator, a strong electron-
phonon interaction is acting in this material, which causes a Peierls distortion of
the lattice, doubles the unit cell, opens up a wide direct gap, and makes the
indirect transitions to appear. So both the direct gap and the appearance of the
indirect transition have the same origin. For this reason, in our theory, we did
not use the conventional perturbation approach, instead, we have developed a

unified theory based on the extended Peierls-Hubbard model.
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In our study, we assumed that our system is phonon mediated, and the
main property arises due to this electron-phonon coupling. Perhaps the most
important aspect of our treatment is the unified theory, that we have provided
for the occurrence of two gaps in the insulating phase of the barium
bismuthates. This picture with the two gaps is consistent with the fact that the
indirect gap is not directly accessible in the optical measurements. However,
optical experiments must be able to see this, as a phonon assisted transition.
Indeed, by fitting the theoretical gaps to the experimental ones, we have
estimated the interaction parameters (s, u and v) as well as the transfer energies
(T;, T>, T; and T4) of the system. With these parameter values we have
calculated the CDW ground state itself, optical properties, and as for as the
nonlinear lattice relaxation process of exciton. Our theory is unified theory, in
that sense that throughout our calculation, we used only a set of fitting
parameter values which gives best fitting for the experiments.

By using our model, we at first clarified the near infrared and visible
absorption spectra of BBO from a unified point of view. The direct transition
corresponds to the excitation across the direct CDW gap, and this gap arises
due to the frozen part of the Peierls distortion. While the indirect part
corresponds to the long tail in the infrared region of the absorption spectrum,
and it is due to the excitation across the indirect CDW gap. It arises due to the
lattice fluctuations from the static Peierls distortion. This lattice fluctuation
destroys the k-selection rule, and makes the indirect transition possible. Our
result shows that, the origin of both the direct gap and indirect transitions are
the same, i.e., the strong coupling between the electron and the breathing
motion of the oxygen atom. It also shown that due to exciton effect the

distribution of the oscillator strength changes drastically, though the exciton
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binding energy itself is rather small. These theoretical results show good
agreement with recent optical experiments on BBO.

Next, we have studied the nonlinear lattice relaxation process of exciton,
and explained the origin of the photoinduced absorption in BaBiO,. The
adiabatic potential energy surfaces, that describe the nonlinear relaxation from
the Franck-Condon state to the STE, have been calculated within our unified
theory. When the CT excitation is created by its threshold energy, the exciton
relaxes down to a STE, and localizes within the CDW gap. This localized self-
trapped state partially cancelled the charge density distribution of the uniform
CDW ground state, and returns back towards the metallic state. It will give a
new absorption band with an energy of about a half of the energy gap. This
energy level could be observed in the photoinduced absorption measurement.
The experimentally observed photoinduced reflectivity peak at around mid-gap
energy is assigned for the optical excitation from this localized state (STE) to the
peak of the density of states of the conduction band.

Let us briefly discuss these nonlinear excitations from a somewhat
different point of view. The collective excited states described in this work can
never be created by ordinary thermal excitations from the ground state, because
a much larger energy is required than the ordinary thermal energy such as at
room temperature. It becomes possible only when the energy is supplied by
photoexcitation. That is, as a combination of the photoexcitation and the
subsequent lattice relaxations, we can clarify the multistable nature of the

ground state, even when thermal excitations can never access it.
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8. CONCLUSIONS

In this and preceding chapters, we have investigated the extended Peierls-
Hubbard model, as a model to the BaBiO; with half-filled band electrons. From
our study the following results have been worked out.

In our calculations, without el-ph interaction, this material shows metallic
state with a broad conduction band, at the center of which, the Fermi level is.
However, due to the strong el-ph interaction, this metallic state becomes
unstable, and changes into the CDW type insulator. In this CDW insulator, we
got two gaps, one of them is direct gap and the other is indirect one.

The light absorption spectra based on our unified theoretical model can
explain both the direct and indirect optical transitions. The direct transition
corresponds to the excitation across the direct CDW gap, and arises due to the
frozen part of the Peierls distortion. While the indirect part corresponds to the
long tail in the infrared region of the absorption spectrum and arises due to the
lattice fluctuations therefrom. So, our conclusion is that, the origin of both the
direct gap and indirect transitions are the same, i.e., the strong coupling between
the electron and the breathing motion of the oxygen atom. Also, the exciton
effect plays an important role in the absorption spectrum. It is shown that due to
exciton effect the distribution of the oscillator strength changes drastically,
though the exciton binding energy itself is rather small. These results are in
good agreement with experiments.

Qur result also indicates the evidence for lattice relaxation of exciton.
When the CT excitation is created by its threshold energy, the exciton relaxes
down to a STE, and localizes within the CDW gap. This localized self-trapped
state partially cancelled the charge density distribution of the uniform CDW

ground state, and returns back towards the metallic state. It will give a new
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absorption band with an energy of about a half of the energy gap. This energy
level could be observed in the photoinduced absorption measurement. The
experimentally observed photoinduced reflectivity peak at around mid-gap
energy is assigned for the optical excitation from this localized state (STE) to the

peak of the density of states of the conduction band.
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9. FUTURE PROSPECT

In this BBO systems, both the magnetism and the strong inter-electron
coulombic correlation are absent, and so, it is necessary for us to determine
whether the superconductivity of BKBO is due to the electron-phonon
mechanism only, or if another mechanism is at work. Many studies suggested
that superconductivity in BKBO is well described by the Bardeen-Cooper-
Schrieffer (BCS) theory, with the electron-phonon interaction playing the key
role in the pairing. As is well known, the role of phonons in superconductivity is
typically established by the isotope effect, and the existence of isotope effect in
the present BKBO and BPBO have been reported in the literatures [48,49,60].
This clearly shows that phonons are involved in the superconductivity. So far
there has been no fully successful theoretical treatment of these systems for all
ranges of doping. In future, we are planning to extend our theory to explain the

doping dependence BaBiO; systems.
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