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Chapter 1

Introduction

As it is well known, solids are traditionally classified as metals, semiconductors and
insulators. This classification provides us a useful general framework for material
science both experimentally and theoretically. If we focus on organic molecular
crystals, they are also tvpically classified into insulators, semiconductors, conductors
or even superconductors. Among these various organic materials, in the present
study, we will be concerned with a specific class of organic solids, in which two kinds
of molecules, called donor (D) and acceptor (A), are stacked by 1 to 1 composition
ratio. In these materials, D and A molecules often stack alternately along one of
crystal axes, forming vast number of chains, and the interactions between these
chains are usually quite weak. Therefore, such chain crystals are often theoretically
treated as quasi one-dimensional (1-d) svstems.

If we see much more in detail, they are also classified into two groups according
to the way of stacking, as shown in Fig. 1.1. One is the segregated-stack where
donor molecules and acceptor ones form their own respective chains. The other is
the mixed-stack where donor and acceptor molecules are stacked alternately to form
a single chain. In the later type of crystals, a charge transfer {CT) from D to A

usually occurs vielding cations D™ and anions A~. Because the overlap between D
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Fig. 1.1: Schematic picture of 1-d 1:1 molecular crystals. (a) Segregated-stack, (b)

Mixed-stack.

and A hybridizes neutral states (--- DA ---) with ionic ones (--- D*A™ ...}, the
charge transfer (p) from D to A always becomes fractional. Thus, the mixed-stack
charge transfer crystals can be further classified into two groups according to this
degree of the charge transfer p, the quasi neutral (N} phase with p < 0.5, and the
quasi ionic (I) phase with p > 0.5.

Torrance et al. had studied a large number of mixed-stack charge transfer
crystals. 1) It was shown that, at room temperature, some crystals are situated
close to, and some far from the N-I boundary. For the neutral crystals near this
boundary, by applving hydrostatic pressure or lowering the temperature, we can
change their color distinctly. This reversible change of the color was interpreted as
a phase transition from N phase to I one. A typical example for these materials
is tetrathiafulvalene(TTF)-p-chloranil{CA). Since its discovery, this TTF-CA had
been extensively studied in the past two decades for its unique optical and magnetic
properties.[Ql“{QO]

In the early studies, the N-I phase transition in TTF-CA was discovered at
a broad temperature region of about 30K width around 7T, = 84K 121 Thus, due
to this result, it was regarded not to be a first order phase transition. However,

this conclusion was soon refined by more exact experiments. The visible, infrared



reflectivity and ESR spectra in single crvstals now indicate that it is a sharp first
order transition at 84K. 3 4 9 The broadening of spectra in the original studies
was ascribed to the bad quality of samples, like finite crystal size effects or residual
impurities.

The low temperature I-phase is characterized by a lattice dimerization along the
stacking direction, while the starting N-phase is monomeric and has no dimerization.
Thus, this dimerization is a svmmetry breaking order parameter, and describes the
crystalline structure (electronic, position of nucleus,...) together with the charge
transfer p.

61 indicates that the light absorption spec-

The studv by Jacobsen and Torrance
tral shape in the I-phase has a two-headed structure peaked at 0.6 eV and 1.0 ¢V.
Because the optical dipoles of these two peaks are strongly polarized parallel to
the stacking axis, thev are ascribed to the CT excitations between TTF and CA
molecules. According to the temperature resolved measurement from 300 K to 45
K. this peculiar two-headed shape appears only below T¢, while, above T, we have
only a single peak at 0.6 eV.

Recently, the photoinduced N phase transition(PIPT) has been investigated

7. 89 [t was found that a

by means of time-resolved spectroscopic techniques.!
macroscopic neutral domain can be generated in the I-phase of TTF-CA by shining
a strong laser light of about 0.6 eV ~ 2.2 eV onto it, even when the temperature is
very low.

A number of theoretical studies have also been devoted to clarify this N-I phase
transition. 2U~H400 The first model, which includes the effect of a finite itineracy of
valence electrons, was studied by Soos and Mazumdar.i21] They found a discontin-
uous transition due to the Couloml interaction within a mean-field approximation.
Nagaosa studied the 1-d modified Hubbard model with inter-molecular Coulomb in-

2,23, 24, 23

teraction by the quantum Monte-Carlo simulation.2 Investigating the



lattice-relaxed excited states, he clarified the neutral-ionic domain wall (NIDW),
as well as various other soliton structures.[?9 Sakano and Tovozawa have studied
the ground state properties of TTF-CA, using a long range Coulomb interaction
model.[26 They also showed the origin of the double-peak structure in the optical
absorption spectra of the I-phase. The possibility of dimerized mixed-stack charge
transfer cryvstals and the existence of soliton-like excitations have also been studied
by using various other methods, ranging from the valence-bond technique for finite
rings,27~B1] the real-space renormalization group theory,32! to numerous other
theoretical methadst33/~101,

In the present work, we will investigate the nonlinear lattice relaxation of the
charge transfer exciton. to shed light on the mechanism of the aforementioned pho-
toinduced I—N-phase transition, as well as the ground state properties and the
absorption spectral shape of TTF-CA, from a unified point of view. Within the
adiabatic approximation and the mean-field theory, an extended Peierls-Hubbard
model will be studied to clarify those properties.

The remaining parts of this work are organized as follows. In Chapter 2. the
experimental and theoretical studies will be reviewed for the structural and optical
properties of TTF-CA. Chapter 3 is devoted to the mean-field treatment and the
perturbation calculations for the extended Peierls-Hubbard model. In Chapter 4,
we present our theoretical results for the properties of TTF-CA in the ground state.
In Chapter 5, we give the numerical results for the optical excited states and the
absorption spectra. The analysis of the nonlinear lattice relaxation of the exciton
will be demonstrated with the numerical results in Chapter 6. Future prospect will

be presented in Chapter 7. In the final chapter, we will sum up the work and give

the conclusion.



Chapter 2

General Properties of TTF-CA

2.1 N-I Boundary of Mixed-Stack Charge Transfer
Crystal

In contrast to inorganic compounds, the overlap (transfer energy) between neigh-
boring molecules in an organic solid is rather small compared with other energies
involved, and, in a rough approximation, it can be neglected. A simple theory had
been applied to the mixed-stack charge transfer compound by McConnell. i1 In his
theory, two energies are considered. One is the cost of ionizing a donor-acceptor (D-
A) pair, which is denoted as (I — 4). I is the ionization potential of the donor and
A is the acceptor electron affinity. The other is the electrostatic Madelung energy.
which is denoted as a(%) (v : Madelung constant). The total energy per D-A pair
is then given by ,

E(p) = (I = 4)p - a{=)p" . (2.1)
where p is the degree of charge transfer. For 0 < p < 1, the lowest value of the
energy E{p) occurs for one of the two possible values of p: (1}p=0ifI—A > a(%z)

and this solid is neutral; or (2) p=1ifI - A < a(%), and this solid is ionic. In the
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Fig. 2.1: Comparison of simplest model with hvct for the compounds in Table
(2.1).11

neutral solid, the lowest energy excitation corresponds to the transfer of an electron
from a donor to a neighboring acceptor along the stacking axis. The energy of this

charge-transfer transition is
N e?
by = (1= 4) = (5. (2.2)

For an ionic solid, the lowest excitation corresponds to the transfer of an electron

from a charged acceptor back onto a neighboring donor:

2

hily = (20 — 1)(%) —(I-4). (2.3)

These calculated values of Aver are plotted as the V-shaped straight lines in Fig. 2.1
versus (I-A). The vertical dashed line is the neutral-ionic boundary, where I — 4 =
a(2).

Torrance suggested that the pressure would decrease the spacing between molecules,

increase the Madelung energy, and hence shift the boundary in Fig. 2.1 towards the

6



symbol Compound N/
A TMPD-tetrafluorocTCNQ I

dimethylphenazine-TCNQ I
TMPD-TCNQ
TAPD-chloranil
TMDAP-TCNQ
TTF-chloranil
TTF-fluoranil
Dibenzene TTF-TCNQ
I DEDMTSeF-diethyl TCNQ

TMDAP-fluoranil

—

=-I o L  CI R S
A

TTF-dichlorobenzoquinone

I
g

pervlene-tetrafluoroTCNQ
perylene-DD(Q}
pervlene-TCNE
pervlene-TCNQ
TTF-dinitrobenzene

“z =

A4

perylene-chloranil
pyrene-TCNE

A A4

pyrene-chloranil

anthracene-TCNE

el IR o N~ B 5 B - B

hexamethvlbenezene-chloranil
naphthalene-TCNE
anthracene-PMDA

-
AR A A A A4

anthracene-tetracyanobenzene

N
e

phenanthrene-PMDA

Table 2.1: Name list of the compounds in Fig. 2.1
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Fig. 2.2: Molecule TTF and CA.

right.[ll If the boundary shifts far enough, the neutral compound would become
ionic. This is a simple explanation for the pressure induced N-I phase transition.
Torrance further suggested that the neutral compound closed to the N-I bound-
ary might undergo the same transition at low temperature, presumably driven by
the thermal contraction. In this case, it is temperature induced N-I phase transition.
TTF-CA is a typical mixed-stack CT compound among those close to the N-I
boundary. It was studied extensively on its electric, magnetic. optical and thermo-

dvnamical properties, since its discovery.

2.2 Crystal Structure

The organic 7-electron donor TTF and the acceptor CA are both planar molecules.
Their molecular structures are shown in Fig. 2.2.

The 3-dimensional crystal structure of TTF-CA is shown in Fig. 2.3. The mon-
oclinic unit-cell contains two TTF-CA units. In the N-phase, the space group is
P12,/nl and the unit cell contains two equivalent nondimerized stacks. Figure 2.4
illustrates the schematic drawing of its structural change from N- to I-phase. There
is no alteration of the multiplicity of the unit cell, and the symmetry lowering is
characterized by dimerization. Hence, I-phase space group is Plnl with a ferro-

electric arrangement of two equivalent dimerized stacks related by the glide plane.
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Fig. 2.3: The 3-dimensional structure of TTF-CA crystal.

Neutral Phase (DA% nb Ionic Phase (D*A")
P12/nl a o P90 Plnt

1 ! 1

Dv : ) H _
i j i
g D+ i i D+
PoDe ! i
| TA— |
i !A == ;
i ! i
i D+ i
i Al A ! o i A=
I T T ! ! ?

Molecules at z=i} T Molecuies a1 2= Molecules at z=0 T Molecules at z=dd
Moiecules af z=1:2 Molecules at z=1:2
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In the following three sections, three tvpes of N-I phase transitions (the temper-
ature induced, the pressure induced and the photoinduced ones) will be shown with
a variety of experimental results in close connection with our present work. These
results provide us with verv important information about the microscopic structure
of TTF-CA crystal and their variations under different physical environments. The
phenomenological theory presented in this work depends closely on this information,
and we try to give a unified picture to clarify these properties, especially focusing

on the photoinduced phase transition.
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Fig. 2.5: Phase diagram of the N-I transition of TTF-CA. [40]

2.3 Temperature Induced N-I Phase Transition

As we have already mentioned, N-I phase transition can be obtained not only by
lowering the temperature but also by increasing the pressure, as shown in the phase
diagram Fig. 2.5. In this section, the temperature induced N-T phase transition is
surveyed by keeping samples at atmospheric pressure, if it is not specified.

The symmetry breaking and the structural change are the most essential points
i the studies of N-T phase transition. The crystal structure of TTF-CA was first
investigated by using X-ray diffraction analvsis at room temperature. 1107 1 space
group 1s, as already mentioned, P12, /nl, and the unit cell contains two equivalent
nondimerized stacks with alternation of TTF and CA molecules located on inversion
centers (%%()) and (O%O). Because neutron diffraction has the advantage to vield more
reliable information on light elements than N-ray diffraction, it is a suitable tool to
analyze the intramolecular and intermolecular changes with respect to dimerization
process in the N-T phase transition.

Cointe et al. had undertaken a direct and complete investigation of the structural

11
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Fig. 2.6: Evolution with temperature of the integrated intensity of the characteristic

reflection {030). Error bars are smaller than the diameter of the symbols indicating

the good quality of the data.l11]

aspects associated with the N-I phase transition in TTF-CA by neutron scattering
techniques.[lll According to their results, N-phase has two tvpes of systematic ex-
tinctions due to the monoclinic symmetry P12;/nl. One is 0k0 : £ = odd number
because of the screw axis 2, parallel to b. The other is K0/ : h + { = odd number
because of the glide plane n parallel to {(a,c). On the other hand, only the 0kO :
k = odd number reflections appear below the transition temperature 7Tx_; with
a significant intensity as shown in Fig. 2.6, while the A0l : A + ! = odd number
reflections remain syvstematically absent in the ionic phase. These features imply
the lack of the two-fold screw axis 2, but the persistence of the glide plane n in
the low temperature phase. Thus, the space group of the I-phase is Pinl with a
ferroelectric arrangement of two equivalent dimerized stacks and a dipole moment
lving the (a, c) plane.

Besides the symmetry breaking, the cell parameters shown in Fig. 2.7, 2.8 and

2.9 also give some structural evidence of the phase transition. On one hand, the

12
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Fig. 2.7: Evolution with temperature of the cell parameter a. [1h

contraction of the stacking axis a with decreasing temperature is shown in Fig. 2.7.
The phase transition temperature is indicated by a simple change of the slope, as the
contraction is noticeably reduced in the [-phase. On the other hand, the b and ¢ cell
parameters present an abrupt jump at 7.( Tx 1), which is much more pronounced
for Ab/b = 0.5% than for Ac/c = 0.1%. This behavior strongly evidences the
three-dimensional nature of the interaction.

The positions of all the atoms in the unit cell of TTF-CA have been determined
by using the neutron diffraction technique for N- and I-phases, as shown in Table
2.2

According to these neutron diffraction data, the structural deformations in the
[-phase mainly take place in the dimerization along the stacking axis a, as shown
by Table (2.3). Two distinct D-A distances, dinera = 3.5044 and diper = 3.685A  al-
ternate along the stacking direction, compared to the single D-A distance d =
3.70(1)A in the N-phase. The dipole moment is calculated approximately by as-

suming the partial charge (p = 0.7) transferred from D to A in the I-phase.

13
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Table 2.2: The fractional atomic coordinates(x107%) in the unit cell of TTF-CA are listed with

standard deviations in parentheses. T = 300 K and 7 = 90 K are in the N-phase while T = 40 K

is in the I-phase. i11] The 3-d view for these atoms is given in Fig. 2.10.
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Fig. 2.10: The positions of constituent atoms in TTF-CA crystal. [11]

a b c
Displacements (A):
TTF -0.007(1)  0,019(1)  0.0035(6)
CA 0.0842(6} -0.0061(6) 0.0523(3)
Dipole moment (Debye):
In the chain -0.30(6) -0.09{3) -0.13(3)
In the unit cell -0.6(1) 0.00(6) -0.30(6)

Table 2.3: Molecular center displacements () at 40 K, compared to the neutral phase, and the

corresponding dipole moment (Debye) along the crystallographic axes a, b, ¢. [11]
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Fig. 2.11: The chloranil (CA) molecule and C-Cl bond lengths at different tempera-

tures. Primed and unprimed atoms are svmmetrically equivalent in the ;\'-phase.'-'l?]

Figure 2.11 displays the intra-molecular bond length of the CA molecules at
different temperatures. Both charge-transfer increases and symmetry breaking at
T, contribute to the changes between the N- and the I-phases.

Since its discovery, the TTF-CA has also been studied by using various spec-
troscopic techniques sensitive to electronic states. Figure 2.12 shows the polarized
reflection spectra of TTF-CA cryvstal of the (001) face at temperatures well below
and above the transition temperature, for the electric vectors parallel and perpen-
dicular to the stacking axis a. Those appearing in near infrared region A; ~ Ay are
due to the CT excitations, while the others B~F in the visible region are attributed
to the intra-molecular transitions in TTF(B~E) and CA(F) molecules. The CT
excitation bands are strongly polarized parallel to the stacking axis because of the
1-d overlap along the a-axis, while the intra-molecular excitation bands in TTF are

predominantly polarized perpendicular to the a axis, as their transition dipoles lie

17
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Fig. 2.12: Polarized reflection spectra of TTF-CA single crystal observed at 2K
(solid lines) and at 290 K (broken lines) . (3]

on the TTF molecular plane.

There is a marked difference between the spectra in the I- and N-phases. In
more detail, the spectra of the A, ~ A3 bands and of the B~E bands are plotted at
various temperature across 1. in Fig. 2.13. In the CT excitation band, a shoulder-
like structure A, observed in the I-phase, suddenly disappears at around 7, = 84K.
The change is even more drastic in the TTF intra-molecular transition bands. With
increasing temperature, the B- and C- bands in the I-phase abruptly shift by about
0.2 eV toward high energy side at T, = 84K.

The CT absorption spectra obtained by using Kramers-Kronig analvsis of the
reflectance are shown in Fig. 2.14. At room temperature, the CT absorption band
peaks near 0.6 eV, while at low temperature, a second peak starts to appear at its
high energy side, near 1.0 eV,

Electron spin resonance (ESR} is powerful tool to study the magnetic defects

and their thermodynamics in the crystal. In Fig. 2.15, temperature-dependent ESR

18
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Fig. 2.13: Temperature changes of the charge-transfer excitation band (a) and of
the intra-molecular excitation bands (b) across the neutral-ionic phase-transition

temperature T, = 84K (3!

profile is demonstrated near T, for TTF-CA single crystal. A week and narrow ESR
signal observed slightly above T, is significantly enhanced as the temperature is
lowered across T, and then becomes considerably broadened below T.. Meanwhile,
the integrated intensity increases continuously with decreasing temperature. These
lines fit with Lorentzian curves quite well through the whole temperature range, and
that is naturally attributed to the motional-narrowing effect.

The total spin susceptibility is plotted in Fig. 2.16 against T~'. The dc conduc-
tivity measured along the stacking axis is also shown for comparison. The suscepti-
bility is negligibly small above T, and shows a sharp discontinuous rise at T.. In the
lonic region below T, the total spin susceptibility follows a Curier law, indicating
a constant spin density at T < T.. Simultaneously, the dc conductivity shows a
jump, indicating the creation of mobile charge carriers at the onset of the I-phase,
although this crystal is still an insulator.

35CI nuclear quadrupole resonance {NQR) measurements performed on a TTF-
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Fig. 2.14: The frequency dependent conductivities are obtained from a Kramers-
Kronig analysis of the reflectance, showing the temperature dependence of the CT

absorption peak. (6)
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Fig. 2.15: The ESR line shapes and the half widths (inset) of TTF-p-CA single

crystal near T, = 84K (3]
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Fig. 2.16: The total spin susceptibility and dc electric conductivity (dashed curve)
of TTF-CA single crystal plotted against T~!. Dashed straight line represents the

paramagnetic Curie law. [

CA single crystal are demonstrated in Fig. 2.17. In the N-phase (T > T.), the
TTF-CA *Cl NQR spectrum is composed of two resonance lines, a high frequency
(HF) and a low frequency (LF) ones, at 37887 kHz and 37157 kHz for T=91 K,
which correspond to the two kind of svmmetry independent chlorine atoms, Ci,
and Cly, situated on the same CA molecules, as already shown in Fig. 2.11. In the
I-phase, the four chlorine atoms, Cly Cl; Ci] and Cl. of one CA molecule become
svmmetrically unequivalent (centrosymmetry loss), while the two CA molecules in
the unit-sell are still related by the n giide plane.

As for the pressure induced N-I phase transition, TTF-CA undergoes a gradual
transformation from the N-phase to the I one in an intermediate region from 0
to about 10 kbar, in contrast with the temperature induced first-order one.[13, 14]
Therefore, this phase transition had been classified into the second order one with

coexistence of quasi-neutral and quasi-ionic phases.
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2.4 Photoinduced N-1I Phase Transition

Based on femto-second laser pulse techniques, Koshihara et al. systematically stud-
ied the photoinduced N-I bi-directional phase transitions in TTF-CA.[7: 8] Compar-
ing the time-resolved reflection spectra with the typical spectra in N- and I-phases,
theyv demonstrated that the photoinjected localized excited states grow into macro-
scopic metastable domain, which could be as large as 200 ~ 1000 neutral(ionic)
pairs in the ionic{neutral) ground state.

The photoreflectance (PR) spectra in the N- and I-phases, are plotted in Fig. 2.18
(b,c). PR spectra were recorded as the relative difference between the spectra with
and without irradiation bv the pulse laser of 80-fs width. The photoirradiation was
made at energies above the CT gap (hr = 1.55eV) and nearby the lower energy side
of the localized intra-molecular excited state of TTF molecules.

Solid lines in (b} and (c¢) indicate the result well after pulsed excitation. It
is noted that the shape of these PR spectra can be reproduced by the calculated
differential spectra, {R(N) — R(I)}/R(I) and {R(I) — R(N)}/R(N). Here, R(N)
and R(I) are the typical reflectance spectra in the N- and I-phases. This result
clearly indicates that the photoexcitations of the crystal in the I- and N-phases cause
macroscopic I-to-N and N-to-I phase conversions, respectivelv. A rough estimation
shows that about 65% and 25% of the surface of the host I-phase and N-phase
crystals were photoconverted into metastable N- and I-phases.

It should also be noted that, at 77 K, PR peaks observed around 3.0 eV well
after excitation ( At = 670 ps ) seem to be located at higher photon energy sides
immediately after excitation { At = 300 ps }. This phenomenon indicate that there
might appear a new domain entirely different from the neutral one, only in the early
time of the photoexcitation.

The time profiles of the PR signals are plotted in Fig. 2.19 demonstrating the

speed of the phase transition. The PR signals start to increase at A¢ = 100 ps and
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typical reflectance spectra in the N- and I-phases. (b) and (c) Time-resolved pho-

toreflectance(PR) spectra in the N- and I-phases, measured at 100 and 77K, respec-

tively. ()
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Fig. 2.19: Time profiles of the PR signals observed at 2.8 eV induced by the irradi-
ation of 1.55-eV light pulse with 80-fs width. Results observed at 77 K (conversion
form I-phase to N-phase) and 100 K 0(N-to-I conversion) are plotted by closed and

open circles. The photon flux for excitation was 1 x 10em?, 8

are gradually enhanced until they reach their optimum value at around At = 700
ps. These results indicate that local excited species, injected by an 80-fs laser pulse
into the host [-phase (N-phase) crystal, grow into the macroscopic N-phase (I-phase)
domain within a period of 1 ns.

The observed PR signals were transient and disappeared within 1 ms. That
means the metastable phase domain can easily go back to the original stable one.
According to analvsis of a simple model, the height of the potential barrier between
the stable and metastable phases is believed to be rather low at around 7, .

The dynamics of the N-I phase transition strongly depends on the excitation
photon density. Figure 2.20 shows the time dependence of the PR signal observed
with various excitation intensities. With rather week photoexcitation, the PR signal
starts to increase 100 ps later after the irradiation of the light pulse. However, with

higher intensity, the PR signal begins to increase immediately after excitation.
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Fig. 2.21: Excitation intensity dependence of the photoconverted fractions (®) for

I-to-N and N-to-1 PIPT. The arrow and [), denote the threshold for excitation. (8]

The photoconverted fraction (®) also shows its dependence on the excitation
intensity. In Figure 2.21, the excitation-intensity dependencies of ® for I-to-N and
N-to-I are plotted by closed and open circles. The important point in this figure
is that @ increases abruptly if the excitation photon density becomes higher than
Iy = 2 x 10'¥cm~3. This threshold behavior reveals the highly nonlinear nature of
this phase transition.

Not only the excitation intensity but also the excitation energy plays an im-
portant role in the PIPT. Recent studies on the PIPT by Suzuki revealed that the
direct photoexcitation of the CT absorption band can induce a structural transition
from the [-phase to the N one.¥ In Fig. 2.22, we can clearly see that there is a
threshold in the intensity for the 1064 nm excitation. The note-worthy character
in this figure is the difference between the excitation of 1064 nm and of the 332
nm. The former one is a tvpical CT excitation, while the later one is due to the
intra-molecular excitation of TTF*. It means that a single CT exciton alone can

never result in the neutral phase, but only through a nonlinear cooperation between
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Fig. 2.22: Magnitudes of the reflectance changes at 3.0 eV induced by 1064-nm
laser pulse, open circles. and by 332-nm laser pulse, solid circles, as a function of

excitation intensity of the laser pulses. 9

several photo-excited CT excitons, the new phase can be attained. Moreover, the
N-phase generation efficiency quite sensitively depends on the way of the excitation.
Even if the total absorbed photon energies are same, the difference in the electronic

natures of the Franck-Condon state causes the quite different way of relaxation.
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Chapter 3

Theory for TTF-CA

To study the physical properties of a molecular crystal. various approaches can
be applied with proper approximations. It was clear from early davs of quantum
mechanics that the systems with 30 ~ 100 molecules are beyond exact quantum
mechanical computations in the foreseeable future. We have to resort to some kind of
phenomenological theory. As already mentioned, the spectra of CT crystal support
the existence of molecules or molecular ions, and hence, the unperturbed molecular
states are a suitable starting point for those theories treating only its ground state
and low-lving excited states.

In a simple picture, only the highest occupied molecular orbital(HOMO) of the
donor is taken into account as well as the lowest unoccupied molecular orbital
(LUMOQ) of the acceptor. The inter-orbital intra-molecular excitations are excluded,
since they need much higher energies than the CT excitations do. Thus, in TTF-
CA, each TTF(donor) molecule has two electrons to be transferred through the 1-d
stack, forming D*, D*? , A~ and A%, while the overall system is neutral. Soos!42]

had reviewed the following theoretical model:

1 .
H= Z hn + §len,nr + Z tn!n+l(a:_gan+l.cr + (1:_{.1,00*11‘0): (31)

n.n'

where h, and 1, ,, respectively denote the on-site Hamiltonians of the n th site, and
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the inter-site Hamiltonians of the n th (n + 1) th site, while the last term describes

the inter-site electron transfer. For the present TTF-CA, A, can be simplified by
hn = En(a:.annsa + a:.iian.-:ﬂ) + Unaj.oa;;ﬁnn:ﬁan.a,- (3.2)

in which ¢, is the site energy, and U, is the on-site Coulomb energy.

The inter-site Coulomb interaction V;, ,, is often called as Madelung energy,
Vo = | M (0, 0")| pnpnr (3.3)

M(n,n') should be calculated by using the delocalized m-electron charge densities
rather than by using the point charge, because the sizes of molecules are comparable
to the distance between neighboring molecules. The charge operator p, for an A

site 1s

Pn=—2_0; g (3.4)
a

The net charge at a D site, which is +2 in the vacuun state, is

Pn=2-3 a7 Gno- (3.5)
a

In many theoretical studies, V,, n, is often truncated to the nearest neighbor one(n =
n' £1) ¥y, while the missing long-range Coulomb interaction is partially included as
a renormalization of V4.

The inter-site transfer energy t, .11 is also restricted within the nearest neigh-
bors. Typical values of ¢, .4, are in the range of 0.1 ~ 0.5 eV.

Although the Coulomb interactions between electrons are discussed in detail, the
effect of lattice is still not included in the above model. The importance of electron-
lattice coupling has been well known in solid state physics for long history. In
1-d systems, anyv tiny electron-lattice interaction could cause the lattice instability
and induce the various deformations in the lattice. One famous example is the

Su-Schrieffer-Heeger(SSH) model®¥, in which the lattice is dimerized due to weak
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electron-lattice interaction. For the present TTF-CA. the remarkable deformation
of lattice in N-I phase transition makes the lattice dimerization an important order
parameter. Moreover, the nonlinear and threshold behaviors of photoinduced phase
transition also give very strong evidence for the important role of the lattice in this
svstem. Therefore, it is reasonable to encompass the lattice potential and electron-

lattice interaction into our theoretical model.

3.1 Extended Peierls-Hubbard Model

In order to clarify the unusual experimental phenomena from a unified theoretical
point of view, we introduce a modified version of aforementioned model, an extended
Peierls-Hubbard model which consists of the following two key points.

(i} One is the Coulomb interactions which nonlinearly depend on the inter-
molecular distance. It is well known that the electron-phonon coupling leading to
the dimerization may have two origins, the modulation of the inter-molecular(site)
Coulomb interaction, and of the inter-molecular(site) electron transfer energy (= t).
In our model, this coupling is ascribed to the distance dependence of the Coulomb
interaction, not due to the modulation of ¢ as in the case of SSH model. Because
of the small overlap between the 7 electron orbitals of donor and acceptor, this ¢ is
believed to be so small, that its distance variation can be neglected. In contrast to
the SSH model, our model is rather straightforward to make the N-I phase transition
to be the first order, even within the mean-field theory with the weak inter-chain
interaction.

(i1) The other is the very weak interaction between the neighboring chains. As
demonstrated by Fig. 2.7, Fig. 2.8 and Fig. 2.9, the distances between the nearest
neighboring TTF and CA molecules along a, b and ¢ axes are about 3.7 A, 7.6 A and
14.6 A, respectively. Although this inter-chain interaction is quite weak, it can

bring considerable effects when macroscopic domain structures, different from the
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Fig. 3.1: The schematic picture of present theoretical model. (a) Neutral phase. (b)

Ionic phase.

ground state, appear in the present three dimensional lattice. Therefore the strong
fluctuations in our quasi 1-d system are suppressed by this inter-chain interaction,
and it gives a justifiable basis for the mean-field theory.

Let us now proceed to our model Hamiltonian. In our simple-minded picture,
the N-phase is such that the HOMO of the donor is filled up with two electrons of
opposite spins(T or |), while the LUMO of the acceptor is vacant, as schematically
shown in Fig. 3.1(a).

On the other hand. the I-phase is such that the HOMO and the LUMO are
equally occupied by the electrons of opposite spins, as shown in Fig. 3.1(h). The
energy difference between the doubly ionized donor D?* and the acceptor CA is
denoted by A, namely the redox energyv. Whenever we consider various excitations

from the ionic ground state, we focus only on a sample chain, whose total number of
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sites is N,. The donor cations{TTF?*) and the acceptors(CA) sit on the odd(D) and
even{A) sites of the chain, alternately. The distance (= d;,,;) between neighboring

TTF and CA is given as

digr1 = do(1+ ey — @) . (3.6)

where, dy is the average inter-molecular distance, and ¢, 1s the relative and dimen-
sionless lattice distortion of { th site. This sample chain is also assumed to be
surrounded by neighboring ones, which are always kept in the ionic ground state,
no matter whatever various domain structures may occur in this sample chain.

Thus our Hamiltonian{= H) reads,

H=H, + Hp + Her . (3.7)
with
HE = - Z t(Cl+0'CI+laa + C{:—LGCI:U)
{o
A L
+§ Z(—l) n+ U Z TN
7 i
—{ > Vg 1) 2 ~ midrusr + > Vilge qren)[2 — s i}
{,0dd {.even
e =ChLCa . M=) g . (3.8)
5 S
Hy = ) 71(@1 — @)+ f(fh —qa)t, (3.9)
i {

where H., H,, and Hiy.r denote the Hamiltonians of the electron part, the phonon
part and the inter-chain one. C)" (C;,) is the creation(annihilation) operator of
an electron with spin o(= a or 3) at [ th site. As already mentioned, ¢ is the
electron transfer energy and A is the site energy difference between TTF?* and
CA. U is the on-site Coulomb repulsion. The nearest neighbor Coulomb interaction

(= Vi(qi, q1+1)) is assumed to depend nonlinearly on the inter-molecular distance as

Vg, 1) = Vo + Bilg — @) + Bolar — qran)® (3.10)
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Here Vj is the constant part, and §,(5,) is its first{second) order expanding coefhi-
cient with respect to g.

In the phonon part Hpn of eq.(3.9), the kinetic energy is neglected because of
the adiabatic approximation, and a fourth order potential energy is introduced, as
well as the ordinary second order one. The coeflicients of these two potentials are
denoted by S, and Sy, respectively. As will be shown in the Chapter 4, the fourth
order potential helps to keep out of unphysically large lattice distortions.

As for the inter-chain coupling term Hipter, we will neglect it in the study for the
ground state properties. This inter-chain interaction is tacitly assumed to have no
contribution provided that the ground state is uniform for all over the chains in the
crystal, no matter what it will be the dimerized [-phase or the monomeric N one.
Its effect also will not be included in the optical absorption spectrum. Only if the
macroscopic domain appears in the I-phase, this inter-chain interaction is assumed
to bﬂng a considerable energyv increase. We will give its practical form later in
Chapter 6.

Overall electrical neutrality requires

Y2-n)=3 n, (3.11)

l,odd l.even

and so, H, can be rewritten as

H. = - Z t(CIToCI-H,U + CJ:I,JC!,U)

Lo
+ 2
{

+ ) Vilgn @is1) unisr — XI: Vilgrs qr) + Viella . @) . (3.12)
;

A i
;ff (—l)lm + U Z a3
)

where
Aer = A = 2Vi{g 1) — 2Via (g, @) - (3.13)

Our model is a simplified version of Sakano and Tovozawa’s, in which a point charge

model with the long-range Coulomb interaction is a(IOpted.i%}. As mentioned be-
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fore, the overlap between the HOMO and the LUMO is tiny, and hence, the trans-
fer energy ¢ also becomes so small, that its distance dependence can be neglected.
Therefore, in our model. the electron-phonon coupling entirely comes from the inter-

site Coulomb interaction.

3.2 Hartree-Fock Approximation

In order to study the ground state and the single electron excited states, we fo-
cus only on the sample chain and neglect the inter-chain interaction. Thus, the
remaining part of our Hamiltonian H becomes (H, + Hyy), and we reduce it to an

approximated one (= Hyp) within the unrestricted Hartree-Fock theory.

H.+ H,, — Hyr , (3.14)
where
Hyr = - Zf(mz.a +my,) + UZ(< Mo > Mg — % < Mg >< Ny _g >
Lo Lo
+ZT’}(q;,q;+1)(< N> e+ < ey > = < g > ey )
!
- Z Vilgr, qraa ) (< mib, > my ot < myg > mi, — < my, >< mfa >
Lo
=3 Wilans ars) + Viey (g @)l + 3 A,;” (=1)'n;
! s
+3 %((H — )+ Y %(Cﬂ —q ) . e =ChClie . (3.13)
i 1
In this equation, < --- > denotes the average over the ground state (= |¢ >). namely

< oo >=< g|---|g >. We can also define the difference (= AH) between H. + H,,

and Hyy as,

AH = He + th - H[“.‘ - (316)
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Thus, according to eqs.(3.9), (3.12) and (3.13), AH is given by

AH = U.Z(H(:Q— < Ny >)(TI,[!5— < Nyg >)
{

*Z"E((ﬂzflm)(”f— <y > ) (g — < nys >)
i

+ > Vilar qur)

lo

X(< My > Mo+ < My, >mib,— <m, ><mi,>).  (3.17)
In the ground state, the lattice is assumed to be uniformly dimerized as,
!
= (-, (3.18)

where ¢y is the amplitude of Peierls distortion. Correspondingly, < n;, > and

< my, > can also be assumed as

1 .
<Nyg > = §+ (—I)IOHG .
<My, > = My +(=1)'ém, . (3.19}

and én, , m, and dm,, newly appeared here, should be determined self-consistently

later. By using these definitions, the Hamiltonian Hyr is now rewritten as,

Hyy = - Z[teg‘g + aeﬂ,g(—l)f}(-rm,g +m/,)
lo
+ > At a(—1)'no + C (3.20)
l.o
where
teig = t+ Vegiiy, +281g00m, ,
Qeffg = 2/61 QUma + l/veffo_"rncr 3
- A . i
Autg = =2 +Ubn_y — 2Vyron . (3.21)
dn = dng +dng .
Ve = Vo+4h? |
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= ¥ Ubnadng - Vaall - (5
g 3 [(7)? + (6m,)?)

+4|13qu Z (Sma—mg + 251(]'(2} + 482@‘3 .

(.
o

This compact form of Hyr provides us some hints of its numerical solution. The
modulation of the effective site-energy ieff:g indicates the existence of charge density
wave(CDW), while the variation of the transfer energy a.q , gives arise to bond-order
wave. It should be noted that Vg (effective Madelung energy per dimer} is irrelevant
to 31. It can be justified by the fact that the contributions from the linear part of
V; cancel each other, and give no net energv to the ground state. because the lattice
displacement (—1)gy is staggered. Although 3, gives its appearance in t.,, its
effect is rather limited, because this term originates from the weak exchange between
the nearest neighboring molecules. Hence, the second order expanding coefficient
32 plays a more important role in our theory. Roughly speaking, the energy of the
ground state mainly depends on the g5. As for the electrons, the increase of V] lowers
their energies. Consequently, a large lattice distortion may appear if we consider
only the second order lattice potential. To suppress this kind of unphysical effect,
the fourth order term is necessary.

In the spirit of the adiabatic approximation, each step of the lattice motions is
an equilibrium state of the electron subsystem. Therefore, the equilibrium lattice
dimerization can be determined by minimizing the total ground state energy as

3<HHF>_

0. 3.22
0 (3.22)

To obtain the one-body eigenvalues and eigenfunctions of Hyp, we introduce the

following new operator (= a} ) as

aj\",a = Zf,\,g([)CITg . (323)
{
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so that this unitary transformation can diagonalize Hyr as

Hyp = Y €340} 400 + cOnst. (3.24)
Ao

Here, €,, is the Ath eigenvalue of Hyr and fy,(I) is its wavefunction. €, is
numbered according to their energies from the lower ones to the upper ones, A =
1,2,--+, Ny. Thus, |g > is given as

occ

lg >=[[af.afs/0> . |0 >— true electron vacuum , {3.23)

and its energv is

Qe

E, =) e\, + const. (3.26)

P

In the numerical calculation, those parameters, dn,, 7, and dm,, should be given
as a set of initial values to establish the Hamiltonian Hyp. According to their
definitions in eq. (3.19) and eq.(3.23), they are given in following form

1 ocC

on, = (=1)'f0 (D fro(l)

f\it {A

1 Qcce

i, = Zf/\a (D) fao(l+1) (3.27)
f LA
1 occ

ém, = (D' (el +1).

i
\tl'/\

Then, they can be solved self-consistently by using the iteration method.

3.3 Band Structures

The Hamiltonian can also be solved by the Fourier transformation with a wavevector(=

k) as,

I|I

Ze\p -ik - )Cip ., —7< k<. (3.28)
!

N t
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To illustrate the resultant band structure, we will use this representation. According

to eq.(3.20) and eq.(3.28), the Hyr in the k-space is

HHF = Z [_QtEﬁ,U COS(k)] (Clzack,d - C:—?T,O‘Ck*‘n',a')

k.o

+ ) [=2iess sin(k)] (Cf yCrore — i ,Crio)
k.o

+ 5 Ao CE Crn + Cf 2 sCha) + C _7" <k< % . (3.29)
k.o

By defining the effective band-energy function € 4, like in a tight-binding model,
€ka = —2teg 5 cOs(K), (3.30)
Hyr is given in an easier form for diagonalization,

Hyr = Y €olCF,Cho — Ci_r yChorn )
k.o

_ kZ \/[2%”,0 sin(k)]” + A2,

x [exp(i®s o) CF, Chor + exp(—i®io)Ci, Cia| + €, (3.31)

where

2000110 5in(k)])? + 53
tan(2®y ,) = V(205510 6( ) fro (3.32)
k.o

We introduce the following unitary transformation to diagonalize Hyp.

Cro = cos(bkq)ar, +sin(fi,) exp(i®x.q )k o

Crong = —sin(fkq)exp(—i®xq)ak s + cos{Be o) b0 (3.33)

in which az, and by, are newly defined operators, which satisfy the fermion com-

mutation relations,

[ak,g,bza] = 0, [bk,g,aza] 0,

1, [bio, b,;ga} =1. (3.34)

Il

+
{ak,aa ak’g]
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The Hyr is then diagonalized as

Hyr = \/ek o+ (20010 sin(k)]* + A%l (a,j}aak:g - b}&abk,g) +C.  (3.35)

It is apparent now that by, is associated with the occupied states, while a;, is
unoccupied one, if we restrict the system in case of half-filling. After straightforward

but lengthy calculation, these self-consistent parameters are obtained in the k-space

as,
X 1 Aesto
Mg = - I 2
‘Nf k fk0+[2agff0—51ﬂ( )} +Aeffcr
1 o cos(k
W, = —— €0 COS() . (3.36)
N el + [2aeps0sin(k)] + A%,
Sm. = —i, 20011 4 [sin(k)]? '
N * \/E%,a 2aeffgsln(k)] + A? eff.o

3.4 Excited States

Let us now proceed to the excited states. Within the Hartree-Fock approximation,
the excited states are such ones that an electron is removed from an occupied level
and is put into an unoccupied one. It is denoted by |n >, which can be written,

according to its definition, as
[n >= ai’uomaa,\occ,alg > (3.37)

It is well known that the Coulomb interaction between the excited electron and the
hole left in the valence band, can lower the system energy, and make a bound state
called exciton. To include such an exciton effect, we enhance our calculation by the
first order perturbation theory as follows. At first, the matrix element(= E? |} of

Hyr between the one electron excited states is calculated as
EY . =<n|Hyp|n' > . (3.38)
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Since Hyp had already been diagonalized, it simply gives
EL . = by < n|Hygpln > . (3.39)
Then the matrix element(= AF,,) of AH reads as
AFE,» =< n|AH[{n > . (3.40)
The total energy matrix element (= E,,,,-) is now given by
Epw = E>  + AE,, (3.41)

which has contained the energy correction from the non-Hartree-Fock part. Be-
cause there are off-diagonal elements in E,,, the new eigenvalues (= E;) and their

eigenfunctions (= [ >) can be obtained after its numerical diagonalization.
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Chapter 4

Ground State Properties

4.1 Parameter Selection

Our way of thinking throughout this work is the phenomenological parameter theory,
and we have eight parameters ¢, A, U, V4, 31, 2. 5; and 5;. These parameters are
determined so that, they, only as a set, reproduce main experimental and theoretical
results existing already prior to our theory.

According to the ab-initio calculation by Katan, we set ¢ at 0.17 eV.37l There
are seven well-known experimental results, listed in Table (4.1). Especially, the
transition temperature 7. is an important data which we should address. However,
in this work, we will be concerned with only the adiabatic nature at the absolute zero
of temperature. Hence, we have to assume some rough relation between the adiabatic
nature and 7. There will be various ways for it. In the present thesis, we simply
assume that g7, 1s roughly equal to the adiabatic barrier (= E},) between the I- and
the N-phase at the absolute zero of temperature. This is only an order of magnitude
estimation, and it will be explained more in detail later. To reproduce these eight
experimental results, we use the following values of theoretical parameters, as listed

in Table (4.2).
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Parameter Value Description

o 0.8 Charge-Transfer ( I-phase )

o 0.3 Charge-Transfer { N-phase )

o1 2.5% Lattice dimerization ( I-phase }

En 0.6 eV First CT absorption peak ( I-phase )
E 1.0 eV Second CT absorption peak ( I-phase )
Ex 0.6 eV CT absorption peak ( N-phase )

T. 84 K N-I phase transition temperature

Table 4.1: Experimental results to be reproduced.

A U Vo 3 I S S,

2.716 1.528 0.604 1.0 8.54 4.86 3.4x103

Table 4.2: List of theoretical parameters. All the values are in the unit of eV.
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To avoid the finite size effect. the periodic boundary condition is imposed on the

sample chain whose N, is set at 32.

4.2 Energies and Charge (Spin) Distributions

The calculated adiabatic energies, given by eq.(3.26), are shown in Fig. 4.1(a). Two
phases, the I and the N ones, are pseudo-degenerate with each other. The energy
minimum of the I-phase is 0.002 eV lower that of the N one, and they are separated
by an energy barrier of about 0.0045 eV. Thus the I-phase is the true ground state,
while the N-phase is the false one. Furthermore, the lattice of the [-phase is dimer-
ized of about 3% of the lattice constant, while that of the N-phase is not dimerized.
As mentioned before, our eight parameters are chosen so that, they, as a set, make
the barrier Ey, and k7. equal very roughly, because kg7, is the energy necessary
at each site to excite our system from the ionic state to the neutral one, as the first
order phase transition.

In our theory, the inter-site Coulomb interaction is assuined to be the major
factor leading to the N-I phase transition. The variation of 1§ could cause a great
change in the ground state. Figure 4.1(b) gives us the result with smaller Vj. As
shown in this figure, the minimum of the N-phase is 0.0014 eV below that of the
I-phase, and hence, the N-phase is, now, the true ground state. In the both cases,
the I- and N-phases are all locally stable and are separated bv the energy barrier,
which is the characteristic of the first order phase transition. When the tempera-
ture is lowered down through 7,, the N—I phase transition occurs. According to the
experimental result, this I-phase has 2.5% dimerization of the lattice constant 11

112,360 nfrared 41 reflec-

being close to our theoretical result. From the visible,
tivity and ESR spectra,!?! this transition is confirmed to be the first order one, as
mentioned occasionally.

Figures 4.2(a) and 4.2(b) illustrate the charge and the spin density distributions
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state. {a) lonic phase. {b) Neutral phase.

in these I- and N-phases. In the Fig. 4.2(a), the I-phase is characterized by the
strong spin density wave (SDW) mixed with the weak charge density wave. The
calculated charge transfer is quite large p. = 0.95 and is fractional. As for the
N-phase, Figure 4.2(b) demonstrates that there is only the CDW type order. The
calculated charge transfer is comparatively small px. = 0.2, but is still significant,
due to the finiteness of ¢ in our model. A rough estimation from the data of visible
and infrared optical spectra gives py ~ 0.3 for the N-phase, and p; ~ 0.8 for the I

one.[6, 4 Thus, our theory can well reproduce these basic experimental data.
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Because of the antiferromagnetic character of the I-phase, a staggered magnetic
structure and a magnon dispersion relation can be measured by the neutron scatter-
ing to determine the natures of this ground state and low energy magnetic excitations
therefrom. In the long-wavelength limit, the SDW ground state can be also explored

by antiferromagnetic resonance./43!

4.3 Band Structures

The Figures 4.3(a) and 4.3(b) present the band structures of the aforementioned I-
and N-phases. There are four sub-bands in the I-phase, denoted by up(down) arrows
to the electron spins, and by D(A) to the donor{acceptor) predominance. Obviously,
the two lower sub-bands are occupied, because of the half-filled character of TTF-
CA. In contrast, the N-phase has only two sub-bands due to the degeneracy of
electrons with opposite spins. According to these band structures, we can describe
the one-electron excitations by a schematic picture, which had been originally shown
by Sakano and Tovozawa from their long range Coulomb interaction model.[26] For
the I-phase, two excitations are available as schematically shown in Fig. 4.4. One
is the (D¥A™) — (D?TA?") forming a high energy absorption band. The other
is (DTA™) — (D®A%) forming a low energy absorption band. However, for the
N-phase, there is only one excitation (DA%} — (D*A~), due to the double-band

structure, as shown in Fig. 4.5.
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4.4 Magnetic Excitation

As mentioned before, our ionic phase is almost same as the SDW state. Magnetic
excitations of this SDW state are described by the well-known Hubbard model,

H=—t Z(C(-LC[.;_]J + Ci_:I!aCl_g) + 7] Z M anta - (41)

Lo !

In the case of small ¢t/U limit {¢/U7 << 1), the leading term of the expansion with

respect to t/U has the form of a uniform Heisenberg model

H=JY S-S, J=22/U, (4.2)
1

where J is the exchange integral, and 5; is the % spin operator at site {. The lowest
magnetic excitation of this antiferromagnetic spin system is the gapless spin-wave
{or the magnon), as shown in Fig. 4.6(a). If the lattice is dimerized, this uniform

exchange integral .J undulates with twice the period as
J— Jiper = Jo+ Si(-1), (4.3)

where Jy is the constant part, while J; is the undulation part due to this dimeriza-
tion. Such a dimerized spin system is often called Spin-Peierls (SP) system, which
has a finite gap in its low energy magnetic excitation, as shown in Fig. 4.6(b).

In our present TTF-CA, the I-phase is expect to be almost same as the SP
svstem, as far as the low energy spin excitation are concerned, because it has the
dimerization and each site has only one electron with up(down)spin. The low energy
magnetic excitation has also a finite gap, and is located far below the CT excitations

as shown in Fig. 4.6{c). However, this is not confirmed by experiments vet.
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Fig. 4.6: Magnetic excitation spectra in (a) Antiferromagnetic system {b) Spin-
Peierls system (¢) TTF-CA I-phase. The shadow area of (¢) indicates the CT
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Chapter 5

Optical Excited States and

Absorption Spectra

5.1 Optical Absorption under Thermal Lattice Fluc-

tuation

In order to calculate the light absorption spectrum, we, now, introduce the following
current operator P™,

P =iT"y (C},Criio — Cli0Cra) (5.1)

lo
where T’ is the dipole transition matrix element, which is assumed to be constant.

The transition can only occurs from a given site [ to its nearest neighbor. The real

part of the optical conductivity (= o(w)) is given as

Re[o(w)] = %Z

“S(Ex — E, — hw) | (5.2)

T
Pﬁ.g

where w is the frequency of incident photon, FJ?, is the matrix element between an

excited state |7 > and the ground state |g >,
Pl =< n|PTg > . (5.3)
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In the finite temperature, the lattice fluctuations are also taken into account in
such a way, that, we calculate the ground and the excited states for each randomly
generated lattice displacement, one by one. These random configurations are in-
troduced so as to include the thermal lattice fluctuations. The average of Re[o(«)]

with respect to the Boltzmann factor ( = Wg(E,({¢:})) ) is given by

Relo(w)] = — / I o £ ({ar))
XZ\P% Ellal) - E({ah) ko), (5.4)

Wa(E,({a})) = exp (__%173{1’(%%})

{fndmexp( E,\({;{{,}))}_l ; (5.

where E,({¢}) is the energy of the ground state with a random lattice configuration

it
Y]
~—

{@}. T* is the effective temperature, determined from the real temperature T by

the following semi-classical relation,

. 1 , flu)o -
kpT™ = 2J'“mocoth (QkBT) . (5.6)

Here, wq is the average frequency of phonons. In our calculation, the classical
Monte-Carlo method is adopted with the random lattice configurations created by

the Metropolis method.

5.2 Absorption Spectra

Figures 5.1{a) and 5.1(b) exhibit the light absorption spectral shapes without exciton
effect and with exciton effect respectively, at the absolute zero of temperature. It
reveals that the exciton effect reduces many discrete lines in Fig. 5.1(a) into two
main absorption peaks and shifts them to the low energy side. The Figure 5.2

shows the theoretical absorption spectral shape with exciton effect at T = 45 K.
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26] and in this case, T~

According to the experiment, we adopt wo = 0.0036 eV
becomes almost equal to this temperature. In this figure, the spectrum has an
intense peak at £y = 0.6 eV and a weak peak at E;3 = 1.0 eV. It agrees with the
experimental results shown in Fig. 2.14, which is obtained by using Kramers-Kronig
analysis for the data of optical reflectance.(0].

Our theoretical result well reproduces the positions of these two peaks as well as
the relative intensity between them. However, large broadening of the observed two
peaks in the experiment, and the large overlap between them, are not reproduced in
our present results. They can be ascribed to the other freedoms ignored in our theory.
Thus we can conclude that the lowest optical transition in the I-phase is the CT
exciton at 0.6 eV, and in the localized picture, it corresponds to the transition from
(D¥A™) to (DAP). As for the N-phase, we can apply the same method developed

here, and our theory can well reproduce its peak energy E, although we omit our

explanation for it.



Chapter 6

Photoinduced Phase Transition

6.1 Photoinduced Phase Transition in TTF-CA

It is well known that an electron in an insulating crvstal induces a local lattice dis-
tortion around itself when it is excited by a photon. This phenomenon, called lattice
relaxation, however has long been tacitly assumed to be a microscopic phenomenon,
in which only a few atoms and electrons are involved. Nevertheless, recently discov-
ered unconventionally photoactive solids shake the basis of this picture.{46] In those
materials, the relaxation of optical excited states induces various collective motions
involving a large number of atoms and electrons. In the final stage of this relaxation,
it results in macroscopic excited domain with new structural and electronic orders
quite different from the original ones. It is called photoinduced structural phase
transition(PISPT).

The present TTF-CA is a good candidate for the studies of this PISPT, since it
is close to the N-I transition boundary with the pseudo-degenerate N- and I-phases.
In the absolute zero of temperature, the I-phase can have two dimerization patterns
q = =(—1)"qo, respectively, denoted by IA and IB in Figs. 6.1(a) and 6.1(b). They

are perfectly degenerate because of the broken symmetry of spatial inversion along
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the chain axis. Moreover the N-phase, shown in Fig. 6.1{c), i1s just above the I one.
As already demonstrated in Sec.4.2, the N-phase is separated from the I one by an
energy barrier of about 0.0045 eV per site. The excitations by photons of few eV
can supply an enough energy to overcome this barrier and can build a large neutral
domain in the true ionic ground state. Of course. such metastable domains will
disappear finally within finite lifetime. However, even if they are shortly lived, it is
enough for the modern laser spectroscopy techniques to detected those domains.

[t is now well established that keeping TTEF-CA at the low enough temperature.
but shining the strong laser onto it, we can generate a large neutral domain even in
the ionic ground state, and this domain is composed of about 200 neutral pairs.{S] A
simple scenario for this phenomenon could be given as follows. A single photon can
make a single neutral pair, as schematically shown in Fig. 6.1(d), and after that it
proliferates through the crystal like a domino game. and finally makes the neutral
domain as shown in Fig. 6.1(e). However, this simple scenario is proved wrong
experimentally. A single photon can’t create such a macroscopic neutral domain, if
its energy is just resonated to the CT exciton. Thus, the elementary process of this

photoinduced phase transition seems to be highly nonlinear. 9
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A CT Exciton

Fig. 6.2: A photon with energy £ = hv is shone onto the TTF-CA lattice. Its

wavelength is much longer than the lattice constant.

6.2 Inter-Chain Interaction

The visible photon has a wavelength of about 1000 times of the lattice constant, and
each photon can make a single CT exciton per this length, as schematically shown
in Fig. 6.2. Among many excitons thus created in the whole crystal, we will focus
only on a single CT exciton and will describe its lattice relaxation.

In order to describe this relaxation, which starts from the Franck-Condon state,
and terminates up to the macroscopic neutral domain formation, we introduce the

following lattice distortion pattern g

= (~1'ao{1 + Aqltanh(B(1] ~ 2)) ~ 1]} (6.1)
Here {—1)!go denotes the Peierls distortion in the ionic ground state, and this ¢y has
already been determined by eq.(3.22). The second term in the curly brackets {- -}
denotes the local lattice displacement and Ag is its amplitude. € corresponds to
the spatial extension of this pattern and /; is the domain size. The typical domain
structures are demonstrated in Fig. 6.3. For Ag < 0.5, the inner-domain lattice has
a reduced dimerization, but is still in the same phase as the outer lattice, and hence
corresponds to an ionic domain. In case of second situation Ag = 0.3, it is obvious
that the inner-domain lattice has no dimerization at all. Therefore, it corresponds

to a neutral domain. In the third situation Ag > 0.5, the inner-domain lattice has

a reversed dimerization. Thus, it corresponds to an anti-phase ionic domain.
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Fig. 6.3: Typical domain structures.

We has hung up the problem for Hipe, in Sec.3.1, and left the discussion of its ex-
pression to this chapter. The inter-chain interaction is tacitly assumed to contribute
neither to the uniformly dimerized ground state, nor to the excited states which have
only small distortions from the ground state. Only when a new macroscopic domain
appears in the dimerized ionic ground state, the inter-chain interaction brings con-
siderable energy increase, even if it is weak and hidden at the Franck-Condon state.

For this reason, the practical form of Hiye, is specified as
Ny
Hier = Y_{Ki[q — (-1)'qo)* + Kalgr — (—1)'qo]* + Kalg — (=1)'q0]®} . (6.2)
1=1

Here, g is the lattice distortion of the sample chain, while the (—1)!gy corresponds to
that of the neighboring chains, which are assumed to be always in the ionic ground
state and can never be excited.

Such a situation could be justified by the fact that even very strong laser can
excite only a small fraction of chains in the TTF-CA crystal. Therefore, an excited
chain has much more chances to be surrounded by other nonexcited chains than by
other excited ones. In our theory, for simplicity, one of these kind of excited chains
is picked up as a sample. We assume that the other part of the crvstal are all in the

same situation, namely the excited chains are always surrounded by the nonexcited

60




!
D*A" D'A~ DA D'A-  DA- D'A-  D*A- —(-1)g,
DA~ DA~ D' A" D' A" D' A' DA~ DA 4

i
D4~ DA D'A" D'A”  D*A" D*A- DAC =D

Fig. 6.4: Schematic picture of the chain to be studied and the neighboring ones.

chains. By studying this single sample chain, we deduce the properties of whole
crystal from this small part.

As mentioned before, this inter-chain interaction is introduced so as to determine
the relative stability between the neutral domain and the anti-phase ionic one. As
shown in Fig. 6.4, only relative difference between the present lattice and the starting
uniformly dimerized one will be taken into account. It is also assumed to be highly
nonlinear with respect to g, in the sense that it give no effect when [ — (—1)'g)] is
small. While, when it is large, it will make the system energetically unstable. As one
of typical examples to describe such a situation, we take the following coefficients,
K, =0.6949, Ky = —1.415 x 103, K3 = 9.699 x 10>. All the values above are in the

unit of eV, and this notation will be used throughout this work, hereafter.

6.3 Nonlinear Lattice Relaxation of CT Exciton

Let us now determine the adiabatic potential energy surface, using these H., Hp,
and Hiyer. Correspondingly, the self-consistent equations including < n;, > and
< my, > are solved for given values of Ag¢ and [y, while # is chosen to minimize the
lowest excitation energy (= E,1).

Since macroscopic neutral domain is expected to appear in the ionic state, the
sample chain should be long enough to hold this domain. Experiments have already
shown us that about 200 ~ 1000 ionic neutral pairs could be generated in the ionic
phase during this photoinduced N-I phase transition. However, such giant size of

chain could make the computation time, which roughly increases as the third power
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of total sites, too long to be tolerable. Thus we have to reduce the chain to some
reasonable size and assume that for a long chain, only those parts close to neutral
domain is important. In the other word, the neutral domain can feel only those
ionic pairs which are not so far away, while the other ionic pairs are irrelevant to
the neutral domain. We are going to investigate the neutral domain as large as 80
sites within current computation capacity. Based on this consideration, we now set
Ny =100,

Because the present lattice is not uniformly dimerized, we can not resort to
eq.(3.27) to solve the nonlinear equations for < n;, > and < m;, >. The parameters
related with each [ th site should be determined respectively. However, there arise a
problem. the self-consistent calculation may not give a unique solution for coupled
nonlinear equations. The iteration procedure sometimes meets trouble in conver-
gence and trapped in an oscillatory cycle. A safer and fast-convergence method is
needed to replace the straightforward iteration calculation. The direct-minimization
algorithm, which had been designed by Fukutomel®?l, is a good approach to avoid
those troubles just mentioned. The detail will be given in the Appendix A.

Figure 6.5 demonstrates the adiabatic energy surface of the ground state. The
axis {y denotes the domain size, and Ag indicates the amplitude of distortion. All
the energies are referenced from the ionic ground states (I; = 0, Ag = 0), and this
notation is used throughout this thesis hereafter. As already mentioned, the region
with Ag < 0.5 is still the I-phase. Nevertheless, the neutral domain appears and
becomes stable in the region [y > 40, just like the nucleation of a gaseous bubble
in an overheated liquid. It should be stressed that the threshold size of neutral
domain is closely related with the energy difference between I and N ground states.
Larger energy difference makes the small neutral domain more unstable and results
in much larger domain for the stability. With the current set of parameters, the

[ ground state is just below the N one so that a stable neutral domain appear at
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Fig. 6.5: The adiabatic energy surface of the ground state. One of the energy minima
is shown in the enlarged inset. The bright purple line indicates the schematic

relaxation path from the neutral domain to the true ionic ground state.

40. The region with Ag > 0.5 and [, > 40 corresponds to the anti-phase ionic
domain. It should be noted that the neutral domain is higher than the ionic ground
state, while the anti-phase ionic domain is more above than this neutral domain.
The bright purple line in Fig. 6.5 indicates the schematic relaxation path from the
neutral domain to the true ionic ground state. There exist various shallow minima
on the surface of the ground state in the region of A & 0.5 and [, > 40. An example
is shown as an enlarged inset of this figure. The presence of these minima makes
the decay of neutral domain slow.

Figures 6.6 show the adiabatic energy(FE;,) surface of the first excited state,
through the front and the back views. The minimum point at o = 0 and Ag =0 is
the Franck-Condon state (the CT exciton). There is another minimum at around
lo =~ 40 and Ag =~ 0.5. It corresponds to an excited state of the neutral domain,
and is separated from the Franck-Condon state by a high barrier. The difference
between this excited domain and the ground state one will be explained later.

Figure 6.7 exhibits the adiabatic energy surface along the relaxation path indi-

cated by the bright purple line in Fig. 6.5. The horizontal axis means the number of
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Fig. 6.6: The energy surface of the first excited state. (a) The front view. (b) The

back view.

the neutral sites created in the ionic ground state. The energy curve of the first ex-
cited state has two local minima, at the region of small /y(= 0) and also at the region
of large ly(= 40). As mentioned before, the first one corresponds to the CT exciton,
while the second one is the neutral domain, which is a little above the CT exciton.
Moreover, these two local minima are separated by a high barrier. This result leads
us to a very important conclusion that the lowest state of a single CT exciton can
not relax down to the neutral domain straightly, but a large excess energy is nec-
essary so that it can overcome this barrier, as schematically shown by the dash-dot
excitation line. If we have such a large excess energy at the Franck-Condon state,
this excess energy will be converted into vibronic energies and(or) kinetic energies of
excitons, and may induce various nonlinear processes during the relaxation. As for
the energy curve of the ground state, roughly speaking, it monotonously increases
from the starting ionic ground state to the neutral domain. After the neutral domain
has grown up further, the energy gradually increases, due to the energy difference
between I-phase and N-phase in Fig. 4.1(a), and also due to the weak inter-chain
interaction. Moreover, if we see in detail, there are various shallow minima on the

energy curve. One example is shown in the enlarged inset of this figure. These
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Fig. 6.7: The energy surface along the schematic relaxation path indicated in Fig. 6.5
by the bright purple line. A shallow energy minima in the ground state energy curve

is shown in the enlarged inset, as an example.

wrinkles prevent the fast decay of the neutral domain and ensure this domain to be
a metastable state.

Figure 6.8 illustrates the adiabatic energies as a function of Ag when the domain
size is fixed at {; = 50. In the energy curve of the first excited state, the state
continued from the Franck-Condon state is at Ag = 0, while the neutral domain is
around Ag = 0.5. The anti-phase ionic domain is at Ag ~ 0.7, and in this state
the phase of dimerization is inverted from that of the starting ionic ground state.
The region around the local energy minimum of the neutral domain is shown as an
enlarged inset. We can see that it is a little below the anti-phase ionic domain, and
a low energy barrier separates them. In this situation, even if the anti-phase ionic
domain is generated just after the CT excitation by using the excess energy, it can
not last long, but soon will relax down to the neutral domain.

We have 1o point out that the inter-chain interaction is one of the key points. To
stress its importance, we also demonstrate the adiabatic energies without the inter-

chain interaction in Fig. 6.9. In contrast to Fig. 6.8, the energy of the anti-phase
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Fig. 6.8: The energies of the ground state and of the first excited state with inter-
chain interaction. [y = 530. The energy minimum of the ground state is shown in

the enlarged inset.

ionic domain is much lower than that of the neutral domain in the energy curve of
the ground state. In this case, the most stable optical excited state will be this anti-
phase ionic domain. However, as mentioned in Sec.2.4, we think that this situation
is not realized in the present TTF-CA. By using femto-second photon pulse, it is
also recently discovered that there occurs a new transient domain which is clearly
different from the neutral one.l® It is also shown that this new state appears just
after the excitation, but soon is converted into the neutral domain. We expect that
it is the present anti-phase ionic domain.

Figure 6.10 demonstrates the charge(spin) distribution in the ground and the first
excited states of the neutral domain. In the both left and right sides of this chain.
the I-phase remains, and is characterized by strong SDW type order mixed with
weak CDW type one. While, within the domain, a strong CDW type order appears,
and it clearly corresponds to the N-phase. There is almost no SDW type order
in this new domain. The boundary between these two phases is called NIDW, as

mentioned before, and had been clarified by Nagaosa.[%* 25) The difference between
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Fig. 6.9: The energies of the ground state and of the first excited state without

inter-chain interaction. Iy = 50.

the ground state and the excited one mostly occurs in these NIDW. The sum of
charge(spin) over 10 sites around this NIDW unveils that its ground state can carry
a unit charge or spin. On the other hand, its first excited state can carry neither
charge nor spin.

Let us now see possible decay processes from the excited state to the ground
state shown in Fig. 6.10. We have V,/2 electrons for each spin, up and down, and
hence, in the ground state, one-electron levels up to N;/2 th from the lowest one, are
occupied. While, in the first excited state, this N,/2 th level becomes vacant and
the (N;/2 + 1) th level is newly occupied. In Fig. 6.11, the wavefunctions of these
levels are illustrated for electrons with up spin or down spin. It is apparent that
the wavefunctions of these two levels are centered around these NIDW, and have
almost no overlap between them. Therefore the radiative or nonradiative transition
between these two levels is quite difficult. So that, the first excited state can have
fairly long lifetime, as far as, we restrict ourselves within the present mean-field

theory.
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Chapter 7

Future Prospect

Since a single CT exciton alone can never result in the large neutral domain, the
nonlinear cooperation between CT excitons is important to attain the N-phase.
According to the discussion in Sec. 6.3, the neutral domains could have long life
time due to the barriers which block it back to the initial ground state. Therefore, a
early born N-domain can last long enough to 'see’ other new-generated ones which
are in the same chain, if the photoexcitations are sufficiently strong. Then, these
N-domains could attract each other, move closer and finally merge into a large stable
neutral domain. This type of aggregation processes will be investigated within our
mean-field picture.

It is well known that a pure 1-d systems is unstable against the strong quan-
tum fluctuations. We had argued that our model is effective because these quan-
tum fluctuations are suppressed by the inter-chain interactions. Consequently, a
phenomenological expression is introduced for such interactions to clarify the ma-
jor PIPT properties. However, it is far from satisfaction because the choice of its
form is rather arbitrary, and the determination of coefficients is also difficult. The
inter-chain interaction is a combination of inter-chain charge transfer and screened

Coulomb interactions. We wish to introduce it directly from these factors and de-
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termine its strength in a more reliable way.

So far, we have studied the TTF-CA by the adiabatic approximation and mean-
field theory on an extended Peierls-Hubbard model. The exclusion of the kinetic
energy of lattice makes it difficult for us to investigate any dynamics of the svstem,
According to recently obtained results on the photoinduced NIPT, the earlv time
relaxation contains very interesting physics showing so called initial condition sensi-
tivity. The small difference of imitial optical excitation causes remarkable difference
of the neutral phase generation efficiency, although the total excitation energy is
same. It was also suspected that a transient phase appears only in the early stage
of relaxation, in which the anti-phase may be a possible candidate.

These highly nonlinear phenomena require us to survev the time evolution of
the lattice relaxation of exciton. Therefore, the fully quantum-mechanical study on
both the electron and lattice is extremely important. Because of the limitation in
the computation power, the largest numerically solvable syvstemns are composed of
only less than 20 lattice sites for a 1-d system. The result of such small size is quite
doubtful for any real systems which contain thousands of molecules. Quantum
Monte Carlo simulation has been proved to be a powerful method to study the
many body problem, but is difficult to treat with low temperature case. Recently,
the density matrix renormalization group (DMRG) had also been developed and
successfully applied to a variety of low dimensional systems. It is found to be a
powerful and robust numerical method for low-lving excited states and correlation
functions. Making use of these theoretical methods, we are going to extend our work

to the dvnamical properties of NIPT and finite temperature behaviors of TTF-CA.
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Chapter 8

Conclusion

We have theoretically studied the photoinduced I-N structural phase transition in
the organic molecular crystal TTF-CA. from a unified point of view. Using the adia-
batic approximation and the mean-field theory, we investigated an extended Peierls-
Hubbard model to clarifv various features of TTF-CA, ranging from the ground state
properties. the absorption spectral shape, to the nonlinear lattice relaxation of the
CT exciton. Our model includes strong inter-molecular Coulomb interactions, which
depend nonlinearly on the inter-molecular distance. A weak inter-chain interaction
was also taken into account to describe the formation of the macroscopic neutral do-
main in the three dimensional ionic phase. In the ground state. the quasi-1 phase is
just below the quasi-N one. Both these I- and N-phases are locally stable, and they
are separated by a low barrier. In the I-phase, the lattice has 3% dimerization along
the stacking axis, while the N one is monomeric and has no dimerization. Based on
this mean-field picture, the N-I phase transition in TTF-CA was classified to be the
first order. To calculate the optical absorption spectrum, we have developed a clas-
sical Monte-Carlo theory to take the thermal lattice fluctuations into account. The
exciton effect was also included by using the first order perturbation theory. The

resultant spectrum illustrates the peculiar two-headed shape, which agrees with the
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experimental one. Thus we could well reproduce the positions of these two peaks as
well as the relative intensity between them. It was concluded that the low energy
peak corresponds to the transition from (DYA™) to (DYA?), while the high energy
one is due to the transition from (DTA7) to (D*TA%7).

By studying the nonlinear lattice relaxation processes of the CT exciton, we
clarified the adiabatic relaxation path, which starts from its Franck-Condon state
and terminates up to the large neutral domain formation in the ionic phase. The
ground state energy surface reveals that this neutral domain becomes stable only
when its size is large. Moreover, the first excited state of the neutral domain is a little
above the Franck-Condon state, and these two states are separated by a high barrier.
Therefore the lowest state of a single CT exciton can not relax down to the neutral
domain straightly, but a large excess energy is necessary so that it can overcome
the barrier. This theoretical result explains the origin of the threshold excitation
intensity, below which the macroscopic neutral domain can not be generated by
the photons resonated to the CT exciton. It was also discovered that there exist
various shallow minima on the energy surface of the ground state. These minima
prevent the fast decay of the neutral domain, and let it have a fairly long lifetime.
We also investigated the anti-phase ionic domain. This domain is above the neutral
one, and a low barrier separates them. Thus, even if the anti-phase ionic domain is
generated just after the photoexcitation, it will soon relax down to the neutral one.
These findings are consistent to the recently obtained time-resolved experimental
results. Furthermore, we illustrated the charge and the spin distributions of the
neutral domain. Our results show that the ground state of the NIDW can carry
a unit charge and spin, however, its first excited state can carry almost neither of
them. The radiative or nonradiative decay of the excited NIDW was found to be
quite difficult, so that, the first excited states can have fairly long lifetime, if we

restrict ourselves within the mean-field theory.
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Appendix A

Direct Minimization Algorithm
for Unrestricted Hartree-Fock

Approximations

The Hartree-Fock (HF') theory is the basic approximation for many fermion systems,
and is based on the independent particle picture for motions of these fermions. The
present HE theory does not impose any svmmetry restrictions and allows broken
symmetry orbitals and Slater determinants to appear. It is usually called the unre-
stricted HF (UHF) theory.

The HF equation in its conventional form is a nonlinear equation. It has been
customary solved by the iteration procedure. However, this procedure frequently
meets such troubles, that the iteration is trapped in an oscillatory cvele with no exit
from it. To avoid this tvpe trouble, Fukutome developed the direct minimization
method to secure the convergence and to make the computation fast.147)

Not loosing generality, a following Hubbard system is taken as an example,
- &~ 1 +— 4
H =V +hgala, + 1 [Cnlek] ala aeay, (A.1)
where h¢, is the single particle Hamiltonian, and [(y|x] is the antisymmetrized
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Coulomb repulsion integral

hey = (¥lhldy) (A4.2)
Gl) = () = (Gl (A3)
) = [ [ £ sz @ anae) (A4)

The dummy index are introduced to sum up repeated indices. We introduce a
reference Slater determinant with n electrons occupying the spin orbitals ¥,. o =

1,2,....n,
[9) = af - a [0) = det [t (1)]. (4.5)

In the Slater determinant, the occupied spin orbitals are denoted by the indices
o, 3.7, ...and the unoccupied ones by the indices p, v, €, . ... Theindices (. n. e, k, ...
denote spin orbitals without specification of occupancy. The Slater determinants

with single, double and multiple excitations of electrons are given by
[Wya) = a5 a0 [0), [Wpas) = afagatas W), - (A.6)

The Slater determinants [V, .5.), @ < § < -+, and 4 < v < --- span an or-
thonormal complete set for the space with n electrons.

Let 9., =1,2,.... N be another set of orthonormal spin orbitals
(9¢|n) = dcy- (A7)
&¢ can be expanded by ¢ as
b = Unttng + Unc = (Ul (A.8)

The N dimensional matrix v = (uc,) is unitary and belongs to the U({N) group. The
Slater determinant with n electrons occupying the spin orbitals é,, a =1,2,....n

is therefore given by
1) = (a*u) - (atu), |0) = det [64(7)]. (A.9)
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Now we define a canonical transformation U(N)

UN)T) = [P),
U(N) = e'e” (A.10)
where
= = agalag+E,0 0. 5= —Es. &, =-E, . (A.11)
A = deajas — X aga, . (A.12)

In this canonical transformation, A corresponds to the particle-hole creation process,
while = corresponds to the process in which an electron is transferred within the
occupied or unoccupied orbitals.

It is not difficult to find

etafe™ = af[C(Nsa +al[S(M)]uas

e'afe™ = af[C(Ny — al[S* (V)]s (A.13)

This transformation is equivalent to the following transformation of the orbitals v,
to mix the occupied and unoccupied ones:
Oa = U3[C(N)]sa + LulS(M)]ka .

O = W[CO)u — CalST(N)]ay - (A.14)

The S(A), C()), and C()) are the (N —n) x n, n x n, and (N —n) x (¥ = n)

matrices defined from the (N — n) x n matrix A = (A,,) by

2 k
S0) = ,g M A
C(x) = (A.13)
oy = 5




After lengthy calculation, the HF energy function is given by

. 1
Eg(®) = (Q[H[®) =V + heyly + §[CU|LK‘JQHCQKH (A.16)
1| 1, +C(2X), ST(2)\
Q=3 . ) ( ~) (A.17)
S(2A), v — C(2X)
Equation (A.16) can be rewritten as
Ep(®) = Eu(¥)+ Fp(Q — Py
1
+§[CWILK](Q - P)??C(Q - P)m ]
Fep = hey+ [(n]aal , (A.18)
Eg(¥) = V4+hee+ %[aa’[)’ﬁ},

where P = 1,, is the density

matrix composed of the occupied orbitals v, F¢, and

Ey (W) are the Fock operator and the HF energy function for the Slater determinant

v >.
We can introduce a new

We define

representation of orbitals to diagonalize the matrix A.

04 = Galai. G4 = Ql,uﬁﬂ.-l :

The orbitals defined in eq. (A.19) satisfy

{(taltm)

(01|0m)

We obtain, from eqs. (A.14) and (A.20)

?.-f"A = 2.-f"cﬂi'nfx.-l : 1.-'7".—1 = T‘-”",uﬁy‘—i . (-'\19)
= {(Yaln) =64,  (Yalvs) =0,

= (Baldg) =bim, (Balos)=0. (A.20)
G4 = ¥acosh,y+ Pasinda,

é4 = LB..;COS/\,g—wASiI])\A, *J;:]..k

6, = ¥y forn>M and n>4>N=n, (A.21)
6y = vy forn<M and N-n>A>n. (A.22)
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The density matrix (A.17) in this representation becomes

k . o
11w, O cos2iy — 1, sin 2 4
(@ - P)Crr = Z 9 .
A=1 0. © A sin 2X 4, 1 —cos2Xh,
vT, 0
X . (A.23)
0, ot

An

Substitution of eq. {A.23) into eq. (A.18) vields

k
En(®) = EH(\I:)+%2{@(1—c052,\_4)+1‘45m:2)\,4}

A=1

k
+= 3 {{[AA - AAIBB — BBJ(1 — cos2)4)(1 — cos 2)g)
A,B=1

| =

+[AA + AAIBB + BB]sin 2\ ysin2\g (A.24)
+2[4A4A 4+ AA|BB — BB]sin2A 4(1 — cos 2))}.
ko o= Fii—Faa,  la=Fig+Fap (A.25)
where the indices A and A represent the orbitals ¥4 and ¢4, respectively.

Now let ¥ and & be the Slater determinants in the iteration cycles i and 7 + 1.
Their orbitals are related by a matrix A} = (/\ffg) in the manner of eq. (A.14). Since
the off-diagonal matrix elements F,, of the Fock operator must satisfv F,, = 0 in
the SCF limit, ¢'* and # is determined so as to diagonalize the Fock operator FiY

at the iteration cycle ¢,

F(2 — Z g FS’)UJ.Z\*. (A.26)

v =, o =Pl (A.27)

the number of nonzero matrix elements of the off-diagonal Fock operator is mini-
mized. In order to optimize convergence efficiency, the Fletcher-Reeves (1964) con-

jugate gradient technique is applied in the determination of ¥ and #. Instead of
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eq. (A.26), they are determined to diagonalize the matrix R() = (RD) defined by

() — plo 4 gli-npli-1) (1 — F()
Ry = Fa+8" "Ry Ry=F,

g = SIER SR (228
Hex b

R = 3 BARYL
A=l

Next, A4 is determined to minimize the quadratic approximation of eq. (A.24) at

iteration cycle i,

k
. i i 1 i
SEY = Y. (1E‘)A,.,+§kS)AE,)

A=

—_

Y| —

k .
+ %:_ (A4 + A41BB + BB A4, (A.29)

A 1

and put
AD =y (A.30)

By substituting eq. (A.30) into eq. {A.24), the energy becomes a function of {. We
determine / so as to minimize the energy using the power series expansion in { up
to the fourth or sixth order.

To sum up, the direct minimization procedure consists of the following iteration

cycle:
1. calculate Fq;
2. determine v, ¢ by eq. (A.28);
3. calculate K 4,14, etc., using the orbital (A.27):
4. determine A4 to minimize (A.29);

5. calculate new trial orbitals by eq. (A.24) with /\‘(,i);
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6. check the convergence condition. If the desired accuracy is reached, stop the

iteration. Otherwise, go to step 1.

Thus, the iteration completes.
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