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ABSTRACT 

 

Spacecraft escape and capture trajectories from/to Halo orbits of the L1 or L2 points using impulsive 

maneuvers at the periapsis of the manifolds for interplanetary transfers in the restricted Hill three-body 

problem were analyzed. This application is motivated by future proposals to place “deep space ports” at the 

Earth and Mars L1 or L2 points.  

First, the feasibility of interplanetary trajectories between Earth Halo orbits and Mars Halo orbits was 

investigated, and such trajectories were designed with reasonable ∆V and flight time. Here, we utilized 

unstable and stable manifolds associated with the Halo orbits to approach the vicinity of the planet’s surface, 

and assumed impulsive maneuvers for escape and capture trajectories from/to Halo orbits. Thus, characteristics 

of periapsis of unstable and stable manifolds were investigated. It was found that the stable and unstable 

manifolds of Halo orbits could intersect the surface of any of the planets of the solar system by changing the 

size of Halo orbits. At the same time, the time of flight for the escape and capture from/to Halo orbits using 

manifolds takes a long time generally. Therefore, reducing the time of flight for escape and the capture 

trajectories and linking Earth Halo orbits with Mars Halo orbit were discussed. Thereby, interplanetary 

trajectories between Earth and Mars Halo orbits with reasonable ∆V and flight time were found. 

Next, applying to Earth-Mars transportation system using spaceports on Earth and Mars Halo orbits, we 

evaluated the system in terms of the spacecraft mass of round-trip transfer. As a result, the transfer between the 

low Earth orbits and the low Mars orbits via the planets’ Halo orbit to leave propellant for the return could 

reduce the spacecraft wet mass compared with a direct round-trip transfer.  
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CHAPTER 1 

1 Introduction 

 

1.1   Background 

Since the start of the space age when Sputnik was launched by the former Soviet Union in 1957, there have 

been many space exploration missions to the Moon, Mars, Jupiter, and other solar system bodies with the goals 

of understanding the formation process of the solar system and the origin of life. Although most of them are 

one-way trip explorations that an instrumented spacecraft go to observe a target body, round-trip explorations 

such as the Hayabusa sample return mission are expected to increase in the future. Besides, for a human 

exploration to Mars, a round-trip transportation system is needed to carry and return people to/from Mars. 

However, it is difficult to construct the round-trip transportation system between Earth and target bodies 

because it needs large amount of propellant. In fact, the massive Saturn V rocket was required for the launch to 

carry the return propellant to the moon in the Apollo program. Therefore, in order to establish a round-trip 

interplanetary transportation system, it is cost effective for a reduction of spacecraft mass to leave the return 

propellant at some places on the way to a target body. Thus, there has been great interest in the vicinity of 

libration points (L1/L2) as candidate locations for such a relay point for transportation. 

The libration points of the Circular Restricted 3-Body Problem (CR3BP) are located where the gravity of the 

primary and secondary bodies and centrifugal force are balanced. In particular, the position of L1 and L2, 

which lie on the line connecting the two bodies, can be considered equivalent to the boundary of the 

gravitational dominance of the secondary body. Thus, a transfer to the inner or outer planets is relatively 

simple by addition of energy to a spacecraft in the vicinity of the L1 and L2 points. Actually, these points are 

considered as candidate gateways for interplanetary transfers in the future. Lo and Ross studied the use of the 

Earth-Moon L1 point as the staging node for further human expeditions [9,10]. Farquhar described a plan to 

use the Sun-Earth L2 libration point as the primary hub for future human space activities in the Earth’s 

neighborhood [11,12]. The Japan Aerospace Exploration Agency (JAXA) has started investigating a deep 

space port built in the vicinity of the L2 point of the Sun-Earth system [13]. Recently, the analysis and design 
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of transfer orbits using invariant manifolds associated with periodic orbits around the libration points have 

been a topic of study [14-20]. The escape trajectories from the libration points of Sun-Earth system have also 

been examined [21-23]. Moreover, these L1 and L2 points are also notable location for astronomical 

observatories because an object around these points can maintain the same position with respect to the two 

bodies. Therefore, transfers between the secondary body and the libration point have been investigated 

extensively in the past [1-6]. In fact, starting with the ISEE-3 (International Sun–Earth Explorer-3) launched in 

1978, several astronomical satellites such as the SOHO (Solar and Heliospheric Observatory), WMAP 

(Wilkinson Microwave Anisotropy Probe), Genesis, and so on have already utilized such locations around the 

L1 and L2 points of the Sun-Earth system [7]. From now, large astronomical observatories like the JWST 

(James Webb Space Telescope), Plank, Herschel and SPICA (SPace Infrared Telescope for Cosmology and 

Astrophysics) will likely be located near the Sun Earth L2 point [8].  The early libration astronomy missions 

have not been designed for human servicing and repair, but future libration missions will probably require 

some level of servicing and repair by people. For human access to the L1/L2 points, putting spaceports at 

L1/L2 points in the future is to be expected. 

Furthermore, if spaceports are built around not only the Sun-Earth but Sun-Target planet L1/L2 points, we 

can separate the transportation system into three regions: transfer inside the gravity field of the Earth, transfer 

inside the gravity field of a target planet, and the interplanetary transfer phase as shown in Fig. 1.1 [11]. 

Moreover, assuming that propellants are left at these spaceports on the way to the target planet, the mass of 

spacecraft could be reduced. Therefore, the system using spaceports as relay points facilitates round-trip 

exploration and also leads to a reusable transportation system [8,10]. In the past, capture trajectories to the 

secondary body in the three-body problem were studied [24-29]. However, capture trajectories from 

interplanetary transfers to Halo orbits of target bodies, and also interplanetary transfers between Halo orbits are 

not fully understood. Alonso & Howell studied interplanetary transfers between Halo orbits with deep space 

impulsive maneuvers using manifolds to move toward outer space from Halo orbits directly without 

approaching planet in the vicinity of the planet once [41]. In this study, interplanetary transfers between Halo 

orbits are investigated, assuming a new way to use manifolds to approach the vicinity of the planet’s surface 

and to perform impulsive maneuvers at periapsis near the surface of planets for interplanetary transfers. And 
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finally, an application to Earth-Mars transportation system using spaceports at Earth and Mars Halo orbits is 

discussed.   

 

Figure 1.1: Vision of an interplanetary transfer in the future. 

 

 

1.2  Overview of the Dissertation 

The objectives of this dissertation are as follows: 

1. to analyze spacecraft escape and capture impulsive trajectories from/to Halo orbits.  

2. to reduce the time of flight for escape/capture trajectories from/to Halo orbits. 

3. to examine linking interplanetary transfer trajectories with Halo stable/unstable manifolds, with an Earth-

Mars transportation system as a case study. 

 

In order to present these goals, this dissertation is divided into 6 chapters: 

CHAPTER 2: In this chapter, the dynamics of the Hill three-body problem is described. Moreover, the local 

motions near the L1 and L2 points are shown. 

CHAPTER 3: Escape and capture trajectories from/to Halo orbits using impulsive maneuver at periapsis of 

invariant manifolds are defined. The characteristics of the periapsis of manifolds are then investigated.  

CHAPTER 4: Reducing the time of flight for escape and capture trajectories are discussed based on using 

stable manifolds. 
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CHAPTER 5: Connecting interplanetary trajectories with stable/unstable manifolds of Halo orbits are 

analyzed. 

CHAPTER 6: Our study of the escape and capture impulsive trajectories from/to Halo orbit are applied to an 

Earth-Mars transportation system. The round-trip Earth Mars transportation system using Halo orbits is then 

evaluated in terms of the required spacecraft wet mass. 

CHAPTER 7: Finally, the summary and conclusions are presented.  
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CHAPTER 2 

2 Hill Three-Body Problem 
 

The physical model considered in this paper is the restricted Hill three-body model. This model is a 

simplified case of the Circular Restricted 3-Body Problem (CR3BP) and describes the dynamics of a massless 

particle attracted by two point masses revolving around each other in a circular obit (see Fig. 2.1). In fact, the 

Hill model can be obtained from the CR3BP by setting the origin of the coordinate system to be at the 

secondary body, and then assuming that the distance of the satellite from the origin is small compared to the 

distance between the target body and the Sun.  The resulting equations of motion provide a good description 

for the motion of a spacecraft in the vicinity of the L1 and L2 libration points of the secondary body [30]. 

 

2.1  From the CR3BP to Hill Three-Body Problem [31,32] 

Let m1 and m2 be the masses of the primary and secondary body, respectively, with the bodies following 

circular orbits around their common center of mass, having a constant distance, D, distance between them. The 

circular restricted three-body problem assumes that the mass of the third body is negligible. In a rotating frame 

with origin at the center of mass, the equations of motion for the massless particle (spacecraft), which does not 

disturb the motion of primary and secondary bodies, are given by 
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where 11 Gm=µ  and 22 Gm=µ  are the gravitational parameter of the two bodies, and )( 212 mmm +=µ  

is a mass ratio. Moreover, 
222

1 )( ZYDXR +++= µ and 
222

2 ))1(( ZYDXR ++−−= µ  are the 
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distances from the center of the primary and the secondary bodies to the spacecraft, respectively, and ω  is the 

angular velocity of the secondary body about the primary body. The positions of the bodies are (-µD, 0) and 

((1-µ)D, 0). The terms Y&ω2  and X&ω2  are the Coriolis accelerations, and X2ω  and Y2ω  are centrifugal 

acceleration terms. 

 The equations of motion, given by Equations (2.1), (2.2), and (2.3), for the circular restricted three-body 

problem can also be expressed in terms of a pseudo-potential ),,(**
ZYXΩ=Ω  as follows:  
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where the pseudo-potential, Ω
*
, is in fact the centrifugal plus gravitational force potential, defined as 
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3
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 (2.7) 

To study the motion in the vicinity of the small secondary body, the origin of the coordinate system is 

transferred to the secondary body, and the coordinates are scaled by a factor 
3/1µ . Thus, they become 

                 xDX 3/1)1( µµ =−− , yY 3/1µ= , and zZ 3/1µ=       (2.8) 

When Equations (2.8) are introduced in the equations of motion (2.1) - (2.3), assuming that the secondary body 

is very small, that is µ  is small, and after dividing by 
3/1µ , 
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z
r

zz
3

22 µ
ω −−=&&

, (2.11) 

where 
222 zyxr ++=   is the distance from the center of the second smaller body to the spacecraft.  

 

 

Figure 2.1: Geometry of the restricted Hill three-body model. 

 

2.2   Libration Points 

In the circular restricted 3-body problem model there are five points where the gravity of the primary and 

secondary bodies and centrifugal force acting on S/C are balanced, which are called libration points. These 

libration points are defined by the conditions 

        0=== zyx &&& and 0=== zyx &&&&&&          (2.12) 

for which reason the points are called equilibrium points. From these equations, we can find the two collinear 

libration points of interest (L1 and L2) in the restricted Hill three-body problem 

            ( ) 0,3
3/12 ==±= zyx ωµ .          (2.13) 

and they are symmetric to the origin with coordinates. 

 

periodic orbit of L2periodic orbit of L1
m2α

yyyy
xxxxL2L1 zzzz
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2.3   Jacobi Integral 

The restricted Hill three-body problem has an integral of motion similar to the CR3BP. Adding equations 

(2.9) - (2.11) after multiplying them by ,, yx && and z& , respectively, we obtain 

 ).(3
3

22
zzyyxx

r
zzxxzzyyxx &&&&&&&&&&&&&& ++−−=++

µ
ωω           (2.14) 

Which, after integration, becomes, 

  ( )2222
3

2

1

2

1
zx

r
vJ −+−= ω

µ
,         (2.15) 

where 222 zyxv &&& ++= is the velocity of the particle in the rotating frame, J is a constant called the Jacobi 

integral (Jacobi constant), which is a conservative quantity determined from the initial conditions. The value 

of this constant has a strong influence on the dynamics of motion. The condition 02 ≥v in Eq. (2.15) impose a 

restriction on the allowable position for the motion at any given value of J. Setting 0=v  defines the zero-

velocity surface, which sets a physical boundary of the allowable motion at a given value of J. In particular, 

the critical value of J at L1 and L2 defines the energy at which the zero-velocity surfaces open at L1 and L2, 

and is expressed as: 

 ( ) 3/2

2,1 9
2

1
µω−=LJ        (2.16) 

2.4   Normalization 

Next, we normalize the above equations setting the unit length and the unit time as follows: 

 
3/1
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= .          (2.17) 

The normalized equations of motion (2.9)- (2.11) are then  

 
3

32
r

x
xyx −=− &&&

, (2.18) 

 
3

2
r

y
xy −=+ &&&

, (2.19) 
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3r

z
zz −=+&&

. (2.20) 

This normalization allows us to eliminate all free parameters from the equations. Thus, computations 

performed for them can be scaled to any physical system by multiplying by the unit length and time, which 

only depend on the properties of the primary and secondary bodies. We may introduce again a pseudo-

potential function  

 

)()(
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 (2.21) 

and so the equations of motion (2.18)-(2.20) may be written as 
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Moreover, this normalization is equivalent to 1=ω  and 1=µ , thus, the normalized x coordinate of libration 

points and the normalized value of J at L1 and L2 are equal to 

 

( ) ...693.031
3/1

2,1 ±=±=Lx

 (2.25) 

 

...16337.29
2

1 3/2

2,1 −=−=LJ

 (2.26) 

Table 2.1 gives the normalized radius for the planets of the solar system.  This is a quantity of interest as it 

defines the closest periapsis passage possible to the planet, and defines the periapsis radius where significant 

drag forces are available for an aerocapture spacecraft. 
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Table 2.1 Normalized Radius of the Solar System Planet    
Planet 

 

Mass, 

 [kg × 10
23

] 

Gravitational parameter, 

[km
3
/s

2
 × 10

5
] 

Mean motion, 

[rad/s × 10
-7

] 

Normalized radius 

 

Mercury 0.3302 0.220329 8.27 0.007663 

Venus 4.869 3.248889 3.24 0.00415 

Earth 5.9742 3.986345 1.99 0.002955 

Mars 0.64191 0.428321 1.06 0.002173 

Jupiter 1899 1267.127 0.168 0.000933 

Saturn 568.8 379.5375 0.0676 0.000641 

Uranus 86.86 57.9582 0.0267 0.000253 

Neptune 102.4 68.32742 0.0121 0.000148 

 

 

2.5  Linearized Equation of Motion around L1/L2 Points 

In order to study the motion near the L1 and L2 equilibrium points, let 

          

ζηξ +=+=+= 2,12,12,1 ,, LLL zzyyxx

, (2.27) 

where ),,( 2,12,12,1 LLL zyx  are the coordinates of the L1 and L2 points and ),,( ζηξ  are the components of the 

position vector of the spacecraft relative to the L1/L2 points. The function Ω  may be expanded around L1/L2 

point, giving 
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 (2.28) 

The differential equations of motion (2.13)-(2.15) become 
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        ζηξ
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2,12,12,1 )2(

zzzyzx

LzzLzyLzx

Ω+Ω+Ω≅

Ο+Ω+Ω+Ω=&&

, (2.31) 

where the symbols O(2) and O(3) stand for second-order term in ξ, η and ζ. 02,12,12,1 =Ω=Ω=Ω LzLyLx
 

since L1 and L2 are the equilibrium points. Moreover, since the L1 and L2 points are always on the x-axis, i.e., 

02,12,1 == LL zy . Therefore, 0000000 =Ω=Ω=Ω=Ω=Ω=Ω zyyzzxxzyxxy
. Then, for the L1 and L2 points, 

equations (2.29)-(2.31) are simplified to 

 

ξηξ 02 xxΩ=− &&&

, (2.32) 

 

ηξη 02 yyΩ=+ &&&

, (2.33) 
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. (2.34) 

The in-plane characteristic equation associated with equations (2.32) and (2.33) is of the form 

 

0)4( 002004 =ΩΩ+Ω−Ω−+ yyxxyyxx λλ

, (2.35) 

and the in-plane eigenvalues can be expressed as 
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112,1
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114,3

, (2.37) 

where 2/)(2 00

1 yyxx Ω+Ω−=β  and 000

2 >ΩΩ−= yyxxβ , and j is the imaginary unit. Additionally 
xyω is called 

the nondimensional frequency of the in-plane oscillatory mode. 

 The out-of-plane characteristic equation associate with equation (2.34) is  

 

002 =Ω− zzλ

, (2.38) 

and the out-of-plane eigenvalues are 
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zzz jj ωλ ±=Ω±= || 0

6,5

, (2.39) 

where  
zω is called the nondimensional frequency of the out-of-plane oscillatory mode. 

At L1 and L2 points in the Hill model, we have 

 

4,3,9 000 −=Ω−=Ω=Ω zzyyxx

, (2.40) 

and the eigenvalues are 

 

508.22,1 ±≅±= σλ

, (2.41) 

 

072.24,3 jj xy ±=±= ωλ
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. (2.43) 

The general solutions for ξ and  η are 
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where Ai and Bi are constant, but not independent. Direct substitution of equations (2.44)-(2.45) into equations 

(2.32)-(2.33) results in the following relation between Ai and Bi, that is, 
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, (2.46) 

and at the initial time, 
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Selecting initial conditions such that A1 = A2 = 0, particular solutions containing only sine and cosine 

functions of the time for ξ and  η  are obtained, 
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, (2.51) 
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where 
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ω

ω
β

2
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= . 

On the other hand, the general solution for ζ can be written in the following form, 

 

tt z

z

z ω
ω

ζ
ωζζ sincos 0

0 −=

 (2.51) 

From the linear approximation, the three-dimensional motion of spacecraft is not periodic since the in-plane 

and out-of-plane frequencies are not commensurate. However, 
xyω  and 

zω  are relatively close in value for the 

problem of interest. This suggests that quasi-periodic motion can be approximated. 

 

2.6   Periodic Orbits in the vicinity of the Libration Points 

There exist periodic orbits near the libration points in the two- and three-dimensional space [33-37] called 

Lyapunov and Halo orbits, respectively, whose sizes depend on the value of the Jacobi constant (see Fig. 2.2). 

If a spaceport is built on a Halo orbit about the L2 point, it is not hidden in the shadow of the secondary body 
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because the radius of the Halo orbits can be made larger than that of the secondary body. Thus, we will only 

consider the Halo orbit transfer case.  

The computation of periodic orbits is generally time consuming unless a good initial guess is already 

available. Thus, development of a numerical method to improve an initial guess by predicting behavior near 

the reference solution is desirable. Such a method requires the information concerning the sensitivity of the 

state from changes in the initial guess. To gain insight into the sensitivities, it is useful to examine the 

evolution of a state vector by the state transition matrix in the vicinity of a reference solution. If a periodic 

orbit exists, it is possible to linearize about the periodic orbit. Equations (2.22)-(2.24) can be rewritten as six 

first-order differential equations where a state vector is defined as T
zyxzyxq ][ &&&

r
= .  

 

)(qfq
r&r =

. (2.52) 

Given some reference solution, 
refq
r

, to the differential equations, an approximation for the variations relative 

to the reference solution can be derived through a first-order Taylor series expansion about the reference. 

Ignoring the high order terms, the resulting linearized state variational equations are written as 

 

)()()( tqtAtq
r&r δδ =

, (2.53) 

where 
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q

f
tA

r

r
∂

∂
=)( is a 6 ×6, generally time-varying, matrix. It can be written in term of the following four 3 

×3 sub matrices, 
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where 0 represents the zero matrix and I3  is the identity matrix. The C is defined as constant, 
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and Ωij has the form, 

 















ΩΩΩ

ΩΩΩ

ΩΩΩ

=Ω

zzzyzx

yzyyyx

xzxyxx

ij

, (2.56) 

where the subscripts indicate second partial derivatives of the pseudo-potential evaluated on the reference 

solution. The solution to the linearized Equation (2.53) is 

 

)(),()( 00 tqtttq
rr

δδ Φ=

, (2.57) 

where ),( 0ttΦ  is the state transition matrix (STM). The expression in Eq. (2.57) relates variations in the 

trajectory at time t to the initial perturbation at time t0. The STM is also described as a sensitivity matrix since 

it offers a linear prediction of the sensitivity of the trajectory to initial variations. Next, we consider the 

Poincaré section, Σ, which is transverse to the flow in three-dimensional space and reduces the dimension of 

the phase space by one (see Fig. 2.3). From some set of initial conditions in the Poincaré section, we propagate 

the equation of motions. At the time that the path crosses this section again, an intersecting point marks on this 

section. This point reflects a second crossing of the section. Thus, the point in the section is denoted a return 

map (Poincaré map). Therefore, the periodic orbit would be represented in this section by a single point, 

denoted as a fixed point, *q
r

 (the periodic orbit intersects the same location in the section on every pass). 

Supposing the crossing period T, from Eq. (2.57),  

 

)(),()( 0000 tqtTtTtq
rr

δδ +Φ=+

, (2.58) 

where ),( 00 tTt +Φ is called the Monodromy matrix. This Monodromy matrix is a linear stroboscopic map for 

the fixed point in the vicinity of the reference trajectory. 

In this study, we compute the Halo orbits as follows. First, we assume the initial condition is 

( )0,,0,,0,)( 0000 yzxtq &
r

= . Using the Runge-Kutta-Fehlberg method, the equations of motion are integrated 

keeping an allowance error below fourteenth-order until the sign of y changes twice, and the time at this point 
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is defined to be t. If  ( )0,,0,,0,)( 0000 yzxttq &
r

=+ , that orbit is considered to be a Halo orbit (t is considered 

to be a period of the Halo orbit, T, at this time).  If the orbit does not close on itself at t, we use the state 

transition matrix to drive the norm of the difference )()( 00 tqttq
rr

−+  to a desired tolerance. 
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Figure 2.2: A few Halo orbits around L1. 
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Figure 2.3: Periodic orbit and Poincaré section. 

 

2.7  Invariant Manifold 

There exist invariant structures associated with these periodic orbits, called unstable and stable manifolds 

[38, 39, 43]. These are trajectories that depart from or wind onto the periodic orbit with a nearly zero velocity 

correction, depending on whether they are stable or unstable, respectively. We exploit the unstable manifolds 

for escape trajectories from Halo orbit and the stable manifolds for capture trajectories to Halo orbits (see Fig. 

2.4).  

To obtain the manifolds, stability information associated with the periodic orbit, contained within the 

Monodromy matrix, is examined. According to Floquet theory [44], the STM can be rewritten as,  

 

)()(),( 0

1

0 tFetFtt
Bt −=Φ

, (2.59) 

where F(t0) is a periodic matrix and B is a constant diagonal matrix. After one period, where t = t0 + T, 

F(t0+T) = F(t0), Eq. (2.59) can be rewritten as, 

 

)(),()( 0000

1)( 0 tFtTttFe
TtB +Φ= −+

. (2.60) 

Therefore, F(t0) and B contain the eigenvectors, 
iν
r

, and the eigenvalues, λi, of the Monodromy matrix. The 

eigenvalues of the Monodromy matrix offer information about the phase space in the vicinity of the periodic 
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orbit because λi reflect the linear stability of the fixed point in the map. According to Lyapunov's Theorem, 

since the determinant of the Monodromy matrix is equal to one, the eigenvalues of the Monodromy matrix 

must occur in reciprocal pairs. Furthermore, one pair of eigenvalues must be equal to one at least because the 

orbit is periodic and any complex eigenvalue must be paired with its conjugate. For periodic orbits in the 

CR3BP, λ1 = λ2  = 1, λ3 and λ4 are complex conjugate eigenvalues located on the unit circle, and λ5 and λ6 are 

real with λ5 = λ6
-1

. The flow in the region of phase space near a periodic orbit can be decomposed into three 

subspaces: the stable, unstable and center subspaces (E
s
, E

u
, E

c
). Table 2.2 shows a relation between the 

subspace and the eigenvalues of the Monodromy matrix. Eigenvectors corresponding to a stable eigenvalue lie 

in the stable subspace and yield stable manifolds asymptotically approaching the periodic orbit as ∞→t . 

Eigenvectors corresponding to an unstable eigenvalue lie in the unstable subspace and yield unstable manifolds 

asymptotically approaching the orbit as −∞→t . Eigenvectors corresponding to a center eigenvalue lie in the 

center subspace and yield trajectories neither approaching nor departing the periodic orbit as ±∞→t . The 

directions defined by the eigenvectors associated with the stable/unstable subspace of the linear system are 

used to approximate the direction of the local stable and unstable manifolds. The local stable/unstable 

manifolds, Wl
s
 and Wl

u
, are then propagated forward/backward in time to compute approximations to the global 

stable/unstable manifolds in the nonlinear system (W
s
 and W

u
). At a fixed point, *q

r
, corresponding stable and 

unstable eigenvectors, )( *
q

s rr
ν and )( *

q
u rr

ν are computed from the Monodromy matrix and normalized with 

respect to its position, these are, 
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, (2.61) 
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The initial state vectors for the local stable and unstable manifolds are expressed as, 

 

s

n

s
dqq ν
rrr

±= *

0

, (2.63) 
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u

n

u
dqq ν
rrr

±= *

0

, (2.64) 

where d is the initial displacement from the periodic orbit. The initial displacement must be small enough to 

justify the linear approximation. A shift in the + s

nν
r

direction results in manifolds Wl
s+

 and Wl
u+

, while the shift 

in the - s

nν
r

direction results in manifolds Wl
s-
 and Wl

u-
. Thus, s

q0

r
and u

q0

r
are used to propagate forward/backward 

in time, and these propagation creates the global stable/unstable manifolds, W
s+

, W
s-
, W

u+
 and W

u- 
(see Fig. 2.5). 

Moreover, the global manifold is computed for each fixed point along the periodic orbit, the manifold surface 

is generated. In this paper, invariant global manifolds are generated by applying an infinitesimal impulse (the 

value of 0.00001 km/s in the Sun-Mars system) at each fixed point along the Halo orbit and integrated 

forward/backwards in time.  The location on the periodic orbit is parameterized by a phase angle α on the 

periodic orbit (see Fig. 2.1). 

 

 

 

 

Table 2.1: Relation between the subspace and the  
                eigenvalue of the Monodromy matrix    

Subspace Eigenvalue of the Monodromy matrix 

Unstable | λi | > 1 

Center | λi | = 1 

Stable | λi | < 1 
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Figure 2.4: Stable manifold around L1 (represented until first Periapsis Point). 

 

 

 

 

Figure 2.5: Stable and unstable manifolds tangent to eigenvectors. 

 



 22

CHAPTER 3 

3 Escape and Capture Trajectories from and to Halo Orbits 

3.1  Assumption of Escape Trajectories 

In this study, we define that escape trajectories are trajectories that leave from a Halo orbit around Sun-Earth 

L1 or L2 using unstable manifolds and approach the Earth. Subsequently, at closest approach an impulsive 

maneuver is performed to escape from the Earth’s gravitational dominance and put the spacecraft on an 

interplanetary trajectory (Fig. 3.1). The reason why an impulsive maneuver is performed near the surface of the 

Earth (perigee) is because it is the energetically efficient place to increase the escape energy. In this way, the 

unstable manifolds are used for escape trajectories from Halo orbits. 

 

 

Figure 3.1: Example of escape impulsive trajectory from the Earth Halo orbit. 

 

3.2  Assumption of Capture Trajectories 

On the other hand, we assume that capture trajectories are trajectories that enter the sphere of influence of a 

target body from the interplanetary space and have a close flyby with the target body. At closest approach an 

impulsive maneuver is performed to put the spacecraft on a stable manifold that leads to capture to a Halo orbit 

around L1 or L2 of the target body (Fig. 3.2). The reason why an impulsive maneuver is performed near the 

surface of the target body (periapsis) is because this is the energetically efficient place to reduce the approach 
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energy, which may also be reduced by using an aero assist with the planetary atmosphere. Once placed on the 

stable manifold, the S/C approaches the Halo orbit, perhaps orbiting around the target body several times on its 

way.  Once it is close to and crosses the Halo orbit a negligible impulsive maneuver is necessary to place it on 

the Halo orbit completely.  In this way, the stable manifolds are used for capture trajectories to Halo orbits. 

 

 

Figure 3.2: Example of capture impulsive trajectory to the Mars Halo orbit. 

 

3.3    Characteristics of Periapsis Points of Invariant Manifolds 

In this section, we investigate the first four periapsis passage points of invariant manifolds where an impulse 

maneuver may be performed for an interplanetary transfer. Unstable manifolds propagate forwards from a 

certain point on the Halo orbits in time. On the other hand, stable manifolds propagate backwards from a 

certain point on the Halo orbits in time.  

 

3.3.1 Periapsis Location 

Figure 3.3 shows an example of the first four periapsis passage points of one example trajectory of the L1 

stable manifold (J = -2.01). The secondary body is located at the origin. Based on this result, Fig. 3.4 plots the 

first four periapsis point’s locations of the L1 Halo stable manifold for several values of the Jacobi constant 

(i.e., the size of Halo orbits). The periapsis locations of stable and unstable manifolds of a L1/L2 Halo orbit are 
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symmetric to the x-z plane. Moreover, the periapsis locations of L1 unstable and L2 stable manifolds are 

symmetric to the y-z plane, and vice versa. We can see that each periapsis point region spreads out and that 

these periapsis locations depend on the value of the Jacobi constant. 

 

 

Figure 3.3: First four periapsis points of an example trajectory of the L1 stable manifold propagated 
backward from a certain point on the Halo orbit. 
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a) J = -2.01  
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b) J = -1.84  
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c) J = -1.75  

Figure 3.4: First four periapsis locations of L1 Halo stable manifold. The secondary body is located at 

the origin. 
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3.3.2 Minimum Periapsis Distance 

Figure 3.5 shows a relation between a minimum periapsis distance and the value of the Jacobi constant. The 

minimum periapsis distance means the distance from the origin to the periapsis point of stable manifold, which 

is closest to the origin in each of the four periapsis points in the same value of the Jacobi constant. The 

minimum periapsis distance decreases as the value of the Jacobi constant increases, and each four minimum 

periapsis distance becomes smaller than 0.000148 (which is smaller than the smallest normalized planetary 

radius, Neptune) when the value of the Jacobi constant is large. Thus the stable and unstable manifold of the 

first four periapsis passage points can intersect the surface of any of the planets in the solar system (but the size 

of the Halo orbit is limited). That is to say, a spacecraft can depart from the Halo orbit and approach the 

surface of the planet with the negligible velocity correction, and wind into the Halo orbit from the surface of 

the planet with negligible velocity correction by changing the size of the Halo orbit.  

 

 

Figure 3.5: Minimum periapsis distance as a function of the value of the Jacobi constant. 
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3.3.3 Fast and Slow Transfer  

In the same size of Halo orbits, there exist fast transfers and slow transfers which have same altitude of 

periapsis (Pf and Ps) as shown in Figs 3.6 and 3.7.  These TOF from a Halo orbit to periapsis are different (e.g., 

fast transfer to Pf = 1.74 years, slow transfer to Ps = 1.86 years). They are obtained by different initial positions 

at a Halo orbit. 

 

 

Figure 3.6: Fast and slow transfers between planet’s periapsis and Halo orbit. 
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Figure 3.7: Periapsis of fast and slow manifold transfers. 

 

3.3.4 Position and Velocity of Periapsis near the Surface of Planets 

Next, Figs 3.8 – 3.13 show the position and the speed of the first periapsis of the Earth “L1” unstable 

manifolds near the Earth surface (altitude = 300 km) as a function of the Jacobi constant in the Sun-Earth fixed 

frame. The x and y components of position and velocity of Earth “L2” unstable manifolds is symmetric to that 

of Earth “L1” unstable manifolds. According to the Fig. 3.13, since the z direction component of velocity 

increases as the value of the Jacobi constant (the size of Halo orbits) increases, we should select small size 

Halo orbits. At this time, the y direction component of velocity is positive with the small value of the Jacobi 

constant form Fig. 3.12. 

On the other hand, Figs 3.14 – 3.19 show the position and the velocity of the first periapsis of the Mars “L2” 

stable manifolds near the Mars surface (altitude = 200 km) as a function of the Jacobi constant in the Sun-Mars 

fixed frame. In the same way as the Earth unstable manifolds, we should select small Halo orbits since the z 

direction component of velocity increases as the value of the Jacobi constant increases as shown in Fig. 3.19. 

Moreover, the y direction component of velocity is negative with the small Halo orbit form Fig. 3.18. 
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Figure 3.8: x-coordinate of periapsis of Earth L1 unstable manifolds as a function of the Jacobi constant. 

 

 

Figure 3.9: y-coordinate of periapsis of Earth L1 unstable manifolds as a function of the Jacobi constant. 
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Figure 3.10: z-coordinate of periapsis of Earth L1 unstable manifolds as a function of Jacobi constant. 

 

 

Figure 3.11: vx component of periapsis velocity of Earth L1 unstable manifolds  

as a function of the Jacobi constant. 
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Figure 3.12: vy component of periapsis velocity of Earth L1 unstable manifolds   

as a function of the Jacobi constant. 

 

 

Figure 3.13: vz component of periapsis velocity of Earth L1 unstable manifolds   

as a function of the Jacobi constant. 
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Figure 3.14: x-coordinate of periapsis of Mars L2 stable manifold as a function of the Jacobi constant. 

 

 

Figure 3.15: y-coordinate of periapsis of Mars L2 stable manifold as a function of the Jacobi constant. 

 



 35

 

Figure 3.16: z-coordinate of periapsis of Mars L2 stable manifold as a function of the Jacobi constant. 

 

 

Figure 3.17: vx component of periapsis velocity of Mars L2 stable manifold  

as a function of the Jacobi constant. 
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Figure 3.18: vy component of periapsis velocity of Mars L2 stable manifold   

as a function of the Jacobi constant. 

 

 

Figure 3.19: vz component of periapsis velocity of Mars L2 stable manifold   

as a function of the Jacobi constant. 
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3.4   Comparison with Periapsis of Trajectories from/to L1 or L2 Points 

 By way of comparison, we consider a two-impulse transfer from the Sun-Earth L1/L2 point to the Earth 

(altitude = 300 km). In Fig. 3.20, there exist two classes of ballistic transfers; one is a fast transfer (∆V is 

around 342 m/s at L1/L2 and the TOF is around 35 days), the other is a slow transfer (∆V is around 279 m/s at 

L1/L2 and the TOF is around 117 days) [12]. On the other hand, the required ∆V at Halo orbit for the transfer 

from the Halo orbit to Earth is almost zero. Moreover, the magnitude of velocity at perigee from L1/L2 points 

is almost the same as that of the transfer from Earth Halo orbit. Therefore, it is better to put the spaceport on 

the Halo orbit of Earth and a target body than to put on L1/L2 point from the view of the ∆V. 

 

 

 

 

Figure 3.20: Transfer between L1 point and secondary body. 
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3.5  Summary 

First, we defined the escape and capture trajectories from/to Halo orbit using the impulsive maneuver at the 

periapsis of manifold. And then, the characteristics of the periapsis of manifold, where an impulsive maneuver 

would be performed for the interplanetary transfer, were investigated. As a result, the stable and unstable 

manifolds could intersect the surface of any of the planets by changing the size of the Halo orbits. Namely, a 

spacecraft could leave the Halo orbit and come close to the surface of the planet with the negligible velocity 

correction, and wind into the Halo orbit from the surface of the planet with negligible velocity corrections. 

Moreover, the position and the velocity of the manifold at periapsis near the surface of planets are discussed. 
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CHAPTER 4 

4 Reduction of the Time of Flight for Escape and Capture from/to Halo Orbit 

In the previous chapter, the periapsis of stable and unstable manifolds associated with the Halo orbits are 

investigated. As a result, it was found that the impulsive maneuver could be performed at the surface of any of 

the planets in the solar system using the unstable and stable manifolds. However, the time of flight (TOF) is 

long for our escape and capture on the Halo orbit using the unstable and stable manifold because the manifolds 

generally orbit around the L1/L2 point several times. For instance, the TOF is approximately 1.9 years for the 

capture using stable manifold from Mars periapsis to the arrival point on the Halo orbit in Fig. 4.1, where the 

points in the figure are plotted every month. It is not feasible, thus a reduction of the TOF for the escape and 

the capture is discussed. 

 

 

Figure 4.1:  Example capture trajectory to Mars Halo orbit for J = -2.01 
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4.1  Time of Flight Reduction  

We assume performing ∆Vperi and ∆VHO at both the periapsis of manifold and the point on Halo orbit, 

respectively, to reduce TOF for escape and capture (two-impulse escape and capture as shown in Fig. 4.2). 

Here, we focus on the capture case, but a similar method can be followed for the escape case. As the total ∆V 

(∆Vperi + ∆VHO) increases, the shape of the capture trajectories varies as shown in Fig. 4.3 (the values are for 

the capture to Mars Halo orbit). As mentioned in chapter 3, there exist two families of the capture trajectories 

approaching Mars. We define the trajectory family as the slow captures (S), and the trajectory family as the 

fast captures (F).  Figure 4.4 plots the TOF against the required total ∆V for the capture from Mars periapsis to 

the Halo orbits. Each parabola line means the relation between the TOF and the required total ∆V with respect 

to each arrival point where is performed ∆VHO. The vertex of a parabola represents the minimum required ∆V 

with respect to the arrival point (Figure 4.5). In fact, depending on the applied direction, TOF not only 

increases but also decreases as the total ∆V to reach each arrival point in Fig. 4.6 increases. From this result, 

TOF could be reduced more than a year by performing a ∆V of only 0.06 km/s. It is a significant improvement 

by performing a decent ∆V. Moreover, it was found that TOF has a linear relation with the logarithm of the 

minimum required ∆V in the both slow and fast capture families. Even changing the size of Halo orbits, TOF 

also has a linear relation with the logarithm of the minimum required ∆V (see Fig. 4.7).  

 

 

Figure 4.2:  Two-impulse capture to reduce the TOF, also applicable to escape. 
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(S-1) ∆∆∆∆V = 2.22e-5 km/s & TOF = 1.28 years 

 

 

(F-1) ∆∆∆∆V = 4.08e-5 km/s & TOF = 1.21 years 
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(S-2)  ∆∆∆∆V = 1.28e-4 km/s & TOF = 1.05 years 

 

(F-2)  ∆∆∆∆V = 2.34e-4 km/s & TOF = 0.98 years 
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(S-3)  ∆∆∆∆V = 6.37e-4 km/s & TOF = 0.82 years 

 

 

(F-3)  ∆∆∆∆V = 1.18e-3 km/s & TOF = 0.75 years 
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(S-4)  ∆∆∆∆V = 3.43e-3 km/s & TOF = 0.59 years 

 

 

(F-4)  ∆∆∆∆V = 5.87e-2 km/s & TOF = 0.53 years 
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(S-5) ∆∆∆∆V = 2.44e-2 km/s & TOF = 0.36 years 

 

(F-5) ∆∆∆∆V = 3.79e-2 km/s & TOF = 0.32 years 

Figure 4.3:  Shape of the capture trajectories as increasing ∆V in the x-y plane. 
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Figure 4.4:  Relation between the TOF and ∆V (J = -1.85) 

 

 

 

Figure 4.5:  Minimum required ∆V for the capture to the arrival point  
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Figure 4.6:  Capture trajectories of minimum required ∆V and others. 

 

 

 

Figure 4.7:  Relation between the TOF and ∆V (Changing the size of Halo orbits). 
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4.2  Summary 

Reducing the time of flight for escape and capture trajectories between the Halo orbits and the periapsis of 

manifolds was discussed. By applying the ∆Vperi and ∆VHO at the periapsis and at the point on a Halo orbit, 

respectively, the TOF could decrease considerably. Moreover, the relation between the TOF and log ∆V was 

found. 
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CHAPTER 5 

5 Analysis of Linking Interplanetary Transfer Trajectories with   

 the Stable and Unstable Manifolds of Halo Orbits 
 

In this chapter, we focus on investigating the applicability of the escape and capture trajectories from/to 

Halo orbits to interplanetary transfer missions, using the impulsive maneuvers at the periapsis of the manifolds. 

We assume that the interplanetary transfer trajectories are approximated by a patched conic method. We 

concentrate our attention on a connection between the manifolds of the Earth Halo orbits and the manifolds of 

Mars Halo orbits, although these results can be applied to other planets of the solar system as well. 

 

5.1  Interplanetary Transfer from Earth to Mars 

Figure 5.1 shows a general elliptic trajectory of the Earth-Mars interplanetary transfer. The inner and outer 

circles correspond to Earth and Mars orbit, respectively. Symbol Ev  and Mv  are the Earth and Mars orbital 

velocities. At Earth departure hyperbolic velocity, dv ,∞ , is added to escape from the Earth, subsequently the 

spacecraft arrives at Mars with the arrival hyperbolic excess velocity, av ,∞ . 
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Figure 5.1: Interplanetary transfer from Earth to Mars. 

 

5.2  Connection between Interplanetary Trajectories with Escape Trajectories  

First, the location of perigee of departure hyperbolic trajectories from the Earth for interplanetary transfers is 

discussed in this section. That point would be used to perform escape impulsive maneuvers for transfer to Mars. 

Figure 5.2 shows the periapsis of the departure hyperbola, P, in the ecliptic plane.  A direction of the 

departure excess hyperbolic velocity relative to the orientation of the Earth orbital velocity vector is expressed 

as 
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We call βd the orientation of periapsis location to the direction of dv ,∞ , which is represented by 
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where Er and Eµ are the radius and the gravitational parameter of the Earth, respectively, and h is a perigee 

altitude. The value of βd depends on the magnitude of the departure hyperbolic excess velocity if the perigee 

altitude is fixed. The value of phase angle αd and βd become zero and 29.2 deg, respectively, in the case of the 

Earth-Mars Hohmann transfer.  

Next, the location and the velocity of the first periapsis of the Earth unstable manifolds are discussed (in 

view of the time of flight, only the first periapsis is discussed here.). As mentioned in chapter 3, the position 

and the velocity of the first periapsis of manifolds depend on the value of the Jacobi constant and whether L1 

or L2 manifolds. Figure 5.3 shows an example first periapsis location of the Earth L1 and L2 unstable 

manifold (for J = -1.75 at the altitude h = 300 km) and each arrow indicates the direction of velocity of the 

Earth unstable manifolds at the first periapsis when the z component of velocity is small. Here, Ps is a periapsis 

of the slow escape transfer and Pf is a periapsis of the fast escape transfer. For a general spacecraft transfer 

from Earth to Mars, the departure hyperbolic excess velocity, dv ,∞ , is added to the direction of the Earth 

orbital velocity. Therefore, the Earth L1 unstable manifolds would be selected to connect with the 

interplanetary trajectory, rather than Earth L2 unstable manifolds.  
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Figure 5.2: Spacecraft departure trajectory for the interplanetary transfer from Earth to Mars. 

 

 

a) L1 unstable manifold          b) L2 unstable manifold 

Figure 5.3: The location of periapsis of Earth unstable manifolds in the ecliptic plane. A center circle 

represents the Earth. 
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5.3  Connection between Interplanetary Trajectories with Capture Trajectories  

Next, the periapsis locations of arrival hyperbolic trajectories after an interplanetary transfer are investigated. 

Figure 5.4 represents a schematic diagram of the approach trajectory to Mars after the interplanetary transfer. 

There are two periapsis points P to Mars at an assumed altitude h = 200 km in the ecliptic plane. A phase angle 

αa gives the orientation of the hyperbolic arrival velocity av ,∞  with respect to the direction opposite to the 

Mars velocity, and βa gives the orientation of the periapsis point direction (h = 200 km) with respect to av ,∞ . 

These phase angles αa and βa are expressed, 
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where Mr and Mµ are radius of Mars and gravitational parameter of the Mars, respectively.  For comparison, 

αa is zero and βa is equal to 51.1 deg in the case of an Earth-Mars Hohmann transfer case. 

Moreover, we study the location and the velocity of the first periapsis point of the Mars stable manifolds. 

Figure 5.5 shows an example first periapsis location of the Mars L1 and L2 stable manifold for J = -0.758 at 

the altitude h = 200 km and each arrow indicates the direction of velocity of stable manifolds at the first 

periapsis when the z component of velocity is small (see chapter 3). Here, Ps is a periapsis of the slow capture 

transfer and Pf is a periapsis of the fast capture transfer. The direction of the capture hyperbolic velocity, av ,∞ , 

in the case of transfers from Earth to Mars should be in the opposite direction of the Mars velocity. Thus, the 

Mars “L2” stable manifold is chosen to connect with the interplanetary trajectory instead of Mars “L1” stable 

manifold.  
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Figure 5.4: Spacecraft approach trajectory for the interplanetary transfer from Earth to Mars. 

 

   

a) L1 stable manifold          b) L2 stable manifold 

Figure 5.5: The location of periapsis of stable manifold in the ecliptic plane. A center circle represents 

the Mars. 

VM VM 
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5.4  Interplanetary Return from Mars to Earth 

For a return mission, Figure 5.6 shows a general interplanetary trajectory from Mars to Earth. The speed of 

the spacecraft must be reduced for it to go into the lower-energy transfer at Mars departure. Thus, the periapsis 

location of the departure hyperbolic trajectory from Mars to Earth is opposite to that of the transfer from Earth 

to Mars with respect to the origin (Figure 5.7).  Therefore, the Mars L2 unstable manifold is selected to 

connect with the interplanetary trajectory to the Earth. On the other hand, the periapsis of the arrival hyperbolic 

trajectory to Earth from Mars is located like in Fig. 5.8. Hence, the Earth L1 stable manifold is chosen to 

connect with the interplanetary trajectory from Mars. 

For these reasons, putting spaceports at Earth L1 Halo orbit and Mars L2 Halo orbit is effective from a 

propellant standpoint. 

 

 

Figure 5.6: Return interplanetary transfer from Mars to Earth. 

 



 56

 

Figure 5.7: Spacecraft departure trajectory for the interplanetary transfer from Mars to Earth. 

 

Figure 5.8: Spacecraft arrival trajectory for the interplanetary transfer from Mars to Earth. 
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5.5  Numerical Results in the Coplanar Circular Model Case 

From here, a patched conic approximation for the interplanetary transfer is applied to our study of the escape 

and the capture using impulsive maneuver on Halo orbits manifolds. We focus our attention on a transfer 

between Earth and Mars. However, these results can be applied to other planets of the solar system as well.  

First, a transfer between Earth L1 Halo orbit and Mars L2 Halo orbit is discussed using the Hill model 

around Earth and Mars and the coplanar circular model between the Earth and Mars. When we connect the 

Halo manifolds with interplanetary trajectories assuming impulsive maneuvers near the surface of planets, the 

position of periapsis of Halo manifolds should be matched with that of periapsis of hyperbolic trajectories. 

Furthermore, it is optimal when the directions of velocity coincide. Therefore, we change the position and 

velocity direction of periapsis of hyperbolic trajectories for interplanetary transfer by varying the interplanetary 

transfer angle and the flight time between Earth and Mars, and change the position and velocity directions of 

periapsis of Halo manifolds by varying the size of the Halo orbit. Here, the required cost for varying the size of 

Halo orbits is small compared to the cost for interplanetary transfers (∆V ≅ 40 m/s with nearly 120 days [42]). 

Tables 5.1 and 5.2 show the cost for the transfer from Earth L1 Halo orbit to Mars L2 Halo orbit. The 

columns called “∆V_E_Phasing_Transfer” and “∆V_M_Phasing_Transfer” represent maneuvers to adjust the 

size of Earth and Mars Halo orbits for the Earth-Mars interplanetary transfer, respectively. 

“∆V_E_Halo_Depart” and “∆V_M_Halo_Insert” indicate impulsive maneuvers to reduce the TOF of the Earth 

Halo escape and Mars Halo capture between periapsis of manifolds and points on Halo orbit (see chapter 4). 

“∆V_E_Escape” is performed at perigee of the unstable manifold of the Earth L1 Halo orbit for the 

interplanetary transfer. “∆V_M_Capture” is used at periapsis of the stable manifold for the capture to Mars L2 

Halo orbit. “Ay_E” and “Ay_M” indicate y-amplitudes of the Earth and Mars Halo orbits. As a result, 

interplanetary trajectories between Earth Halo orbits and Mars Halo orbits with reasonable total ∆V and TOF 

were found. The required ∆V is less than half that of Alonso & Howell, and the TOF is about a quarter of 

Alonso & Howell [41]. This is because impulsive maneuvers for interplanetary transfers are assumed to be 

applied near the surface of planets in this study, as opposed to at deep space in the Alonso & Howell’s study.  

The same goes for a return transfer from Mars L2 Halo orbit to Earth L1 Halo orbit (tables 5.3 and 5.4). 
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Table 5.1   Required V∆  for the transfer from Earth L1 Halo to Mars L2 Halo  

Type 
∆V_E 

Phasing 

Transfer 

∆V_E 

Halo 

Depart 

∆V_E 
Escape 

∆V_M 
Capture 

∆V_M 

Halo 

Insert 

∆V_M 

Phasing 

Transfer 

Total        
∆∆∆∆V    

Coplanar circular 0.04 ~ 0.09 0.82 0.91 ~ 0.04 0.04 ~1.94 

Alonso [41] 2.83 (Link Earth unstable manifold to Arc) 2.45 (Link Arc to Mars stable manifold) 5.28 

(∆V= km/s) 

Table 5.2   Required TOF for the transfer from Earth L1 Halo to Mars L2 Halo  

Type 
TOF  

Phasing 

Transfer 

TOF 

E.Halo ~ 

E.Peri 

TOF 

E.Peri ~ 

M.Peri 

TOF 

M.Peri ~ 

M.Halo 

TOF  

Phasing 

Transfer 

Total  

TOF 
Ay_E Ay_M 

Coplanar circular 120 69 308 117 120 734 0.755 0.552 

Alonso [41]     2919 2919 - - 

(TOF = days) 

Table 5.3   Required V∆  for the return transfer from Mars L2 Halo to Earth L1 Halo 

Type 
∆V_E 

Phasing 

Transfer 

∆V_E 
Halo 

Insert 

∆V_E 
Capture 

∆V_M 
Escape 

∆V_M 
Halo 

Depart 

∆V_M 
Phasing 

Transfer 
Total ∆ ∆ ∆ ∆V 

Coplanar circular 0.04 ~ 0.09 0.82 0.91 ~ 0.04 0.04 ~1.94 

(∆V= km/s) 

Table 5.4   Required TOF for the return transfer from Mars L2 Halo to Earth L1 Halo 

Type 
TOF  

Phasing 

Transfer 

TOF 

E.Halo ~ 

E.Peri 

TOF 

E.Peri ~ 

M.Peri 

TOF 

M.Peri ~ 

M.Halo 

TOF  

Phasing 

Transfer 

Total 
TOF 

Ay_E Ay_M 

Coplanar circular 120 69 308 117 120 734 0.755 0.552 

(TOF = days, Ay = million km) 
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5.6  Numerical Results in the Ephemeris Model Case 

Next, a transfer between Earth L1 Halo orbit and Mars L2 Halo orbit is discussed in the Hill three-body 

model around the Earth and Mars and in the real Ephemeris model between Earth sphere and Mars sphere. In a 

manner similar to the simple ephemeris model case, we investigate a solution to connect the Earth and Mars 

Halo manifolds with interplanetary trajectories by varying the departure and arrival dates from/to Earth and 

Mars, and by varying the size of the Earth and Mars Halo orbits, assuming impulsive maneuvers near the 

surface of planets. 

Tables 5.5 - 5.8 show the ∆V and the TOF for the transfer from Earth L1 Halo orbit to Mars L2 Halo orbits, 

and for the return transfer from Mars L2 Halo orbits to Earth L1 Halo orbits using the Ephemeris data for a 

time interval between 2009 and 2015. It was found that Earth L1 Halo and Mars L2 Halo orbit could be 

connected at the reasonable ∆V and TOF as in the case of previous coplanar circular model case, but those 

values differ by about 10 % since Earth and Mars orbits are not circular.  

 

 

 

 

Table 5.5   Required V∆  for the transfer from Earth L1 Halo to Mars L2 Halo  

Departure & Arrival date 
∆V_E 

Phasing 

Transfer 

∆V_E 
Halo 

Depart 

∆V_E 

Escape 
∆V_M 

Capture 

∆V_M 
Halo 

Insert 

∆V_M 
Phasing 

Transfer 
Total ∆ ∆ ∆ ∆V 

Sep. 2009 ~ Oct. 2010 0.04  0.09 0.88 0.93 0.04 0.04 2.02 

Oct. 2011 ~ Oct. 2012 0.04  0.06 0.69 1.01 0.04 0.04 1.88 

Nov. 2013 ~ Oct. 2014 0.04  0.06 0.56 1.10  0.04 0.04 1.84 

(∆V= km/s) 

Table 5.6   Required TOF for the transfer from Earth L1 Halo to Mars L2 Halo  

Departure & Arrival date 

TOF 

Phasing 

Transfer 

TOF 

E.Halo ~ 

E.Peri 

TOF 

E.Peri ~ 

M.Peri 

TOF 

M.Peri ~ 

M.Halo 

TOF 

Phasing 

Transfer 

Total 
TOF 

Ay_E Ay_M 

Sep. 2009 ~ Oct. 2010 120 62 384 117 120 803 0.743 0.571 

Oct. 2011 ~ Oct. 2012 120 69 356 117 120 782 0.729 0.558 

Nov. 2013 ~ Oct. 2014 120 69 318 117 120 744 0.739 0.547 

(TOF = days, Ay = million km) 
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Table 5.7   Required V∆  for the return transfer from Mars L2 Halo to Earth L1 Halo 

Departure & Arrival date 
∆V_E 

Phasing 

Transfer 

∆V_E 

Halo 

Insert 

∆V_E 

Capture 

∆V_M 

Escape 

∆V_M 

Halo 

Depart 

∆V_M 

Phasing 

Transfer 
Total ∆ ∆ ∆ ∆V 

Jul. 2011~Jul. 2012 0.04  0.09 0.93 0.87  0.04  0.04 2.01 

Aug. 2013~Aug. 2014 0.04  0.09 0.84 1.11  0.04  0.04 2.16 

Oct. 2015~Sep. 2016 0.04  0.09 0.76 1.37  0.04  0.04 2.34 

(∆V= km/s) 

Table 5.8   Required TOF for the return transfer from Mars L2 Halo to Earth L1 Halo 

Departure & Arrival date 
TOF 

Phasing 

Transfer 

TOF 

E.Halo ~ 

E.Peri 

TOF 

M.Peri ~ 

E.Peri 

TOF 

M.Peri ~ 

M.Halo 

TOF 

Phasing 

Transfer 

Total 
TOF 

Ay_E Ay_M 

Jul. 2011 ~ Jul. 2012 120 62 380 117 120 799 0.758 0.578 

Aug. 2013 ~ Aug. 2014 120 62 390 117 120 809 0.789 0.584 

Oct. 2015 ~ Sep. 2016 120 62 361 117 120 780 0.817 0.576 

(TOF = days, Ay = million km) 
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5.7  Summary 

Connection strategies between the manifolds of the Earth Halo orbits and the manifolds of Mars Halo orbits 

were discussed. The periapsis values of the departure and the arrival hyperbolic trajectories for the 

interplanetary transfers were investigated. Moreover, the characteristics of the periapsis of the stable and 

unstable manifolds associated with Earth and Mars Halo orbits were also examined. From these results, a 

connection between the Earth L1 manifold and the Mars L2 manifold was feasible and preferable from a 

propellant viewpoint. 

Furthermore, the required total ∆V and the TOF for the transfer between Earth L1 Halo orbits and Mars L2 

Halo orbits were investigated in the simple and real ephemeris model by varying the departure and arrival date 

from/to Earth and Mars, and by varying the size of the Earth and Mars Halo orbits. It was found that that Earth 

L1 Halo and Mars L2 Halo orbits could be connected at a reasonable ∆V and TOF. 
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CHAPTER 6 

6 Application to Earth-Mars Transportation System 
 

6.1  Application to Earth-Mars Transportation System using Spaceports at Halo Orbits 

In this section, an application to Earth-Mars transportation system, between low earth orbits (LEO) and low 

mars orbits (LMO), using spaceports at Earth and Mars Halo orbit is discussed and compared with a direct 

transfer system. 

Tables 6.1 and 6.2 show the required ∆V and TOF for a transfer between LEO (altitude = 300 km) and LMO 

(altitude = 200 km) via the Earth and Mars Halo orbits and for a direct transfer case using ephemeris data from 

2009 to 2016. “∆V_LEO” and “∆V_LMO” are maneuvers for a transfer from LEO to Earth Halo orbit and 

from Mars Halo orbit to LMO, respectively. “∆V_E_Halo_Insert” and “∆V_E_Halo_Insert” are performed to 

reduce TOF between LEO/LMO and Earth/Mars Halo orbit, and “∆V_E_Phasing_LEO” and 

“∆V_M_Phasing_LMO” indicate phasing maneuvers to adjust the size of the Earth and Mars Halo orbits for 

transfers between LEO/LMO and Earth/Mars Halo orbits. For maneuvers No. 4 ~ 9, refer to Section 5.5. It was 

found that the required total ∆V for a transfer from LEO to LMO via Earth and Mars Halo orbits is slightly 

greater than that of the direct transfer, and the TOF is longer. The same could be said for return transfers from 

the LMO to LEO via Mars and Earth Halo orbits as shown in Tables 6.3 and 6.4. From these results, the 

system using Halo orbits has no advantage over the direct transfer with respect to ∆V and TOF. However, the 

system using Halo orbits is evaluated from a different standpoint next section. 

Considering the round-trip transfer between LEO and LMO, phasing maneuvers to adjust the size of Earth 

and Mars Halo orbits for return interplanetary transfers (“∆V_E.Phasing_transfer” and 

“∆V_M.Phasing_transfer”) are as small as mentioned before [42]. On the other hand, phasing maneuver to 

adjust the phase of LMO for return interplanetary transfers could be large (see Appendix).  
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Table 6.1   Required V∆  for the transfer from LEO to LMO 

Maneuver No. 

(No. for direct) 
1 2 3 4 5 6 (i) 7 (ii) 8 9 10 11 12     

Transfer type 

(Departure date 

 from LEO) 

∆V 

LEO 

∆V_E 

Halo 

Insert 

∆V_E 

Phasing 

LEO 

∆V_E 

Phasing 

Transfer 

∆V_E 

Halo 

Depart 

∆V_E 

Escape 

∆V_M 

Capture 

∆V_M 

Halo 

Insert 

∆V_M 

Phasing 

Transfer 

∆V_M 

Phasing 

LMO 

∆V_M 

Halo 

Depart 

∆V 

LMO 
Total ∆V 

Via Halo 

(in 2009) 3.15 0.06 0.04 0.04 0.09 0.88 0.93 0.04 0.04 0.04 0.04 1.42 6.79 

Direct 

(in 2009) 
- - - (0~5.0) - 3.67 2.03 - (0~2.0) - - - 

5.70 

(~12.70) 

Via Halo 

(in 2011) 3.15 0.06 0.04 0.04 0.06 0.69 1.01 0.04 0.04 0.04 0.04 1.42 6.62 

Direct 

(in 2011) 
- - - (0~5.0) - 3.63 2.16 - (0~2.0) - - - 

5.79 

(~12.79) 

Via Halo 

(in 2013) 3.15 0.06 0.04 0.04 0.06 0.56 1.10 0.04 0.04 0.04 0.04 1.42 6.59 

Direct 

(in 2013) 
- - - (0~5.0) - 3.64 2.39 - (0~2.0) - - - 

6.03 

(~13.03) 

(∆V= km/s) 

 

 

 

 

 

Table 6.2   Required TOF for the transfer from LEO to LMO  

Transfer type 

(Departure date 

 from LEO) 

TOF 

LEO ~  

E.Halo 

TOF 

E.Phasing 

LEO 

TOF 

E.Phasing 

Transfer 

TOF 

E.Halo ~  

E.peri 

TOF 

E.peri ~  

M.peri 

TOF 

M.Peri ~  

M.Halo 

TOF 

M.Phasing 

Transfer 

TOF 

M.Phasing 

LMO 

TOF 

M.Halo ~  

LMO 

Total 
TOF 

Via Halo 

(in 2009) 69 120 120 62 384 117 120 120 117 1226 

Direct 

(in 2009) 
- - - - 322 - - - - 322 

Via Halo 

(in 2011) 69 120 120 69 356 117 120 120 117 1208 

Direct 

(in 2011) 
- - - - 307 - - - - 307 

Via Halo 

(in 2013) 69 120 120 69 318 117 120 120 117 1170 

Direct 

(in 2013) 
- - - - 294 - - - - 294 

(TOF = days) 
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Table 6.3   Required V∆  for the return transfer from LMO to LEO 

Maneuvers No. 

(No. for direct) 
24 23 22 21 20 19 (iv) 18 (iii) 17 16 15 14 13     

Transfer type 

(Departure date 

 from LMO) 

∆V 

LEO 

∆V_E 

Halo 

Depart 

∆V_E 

Phasing 

LEO 

∆V_E 

Phasing 

Transfer 

∆V_E 

Halo 

Insert 

∆V_E 

Capture 

∆V_M 

Escape 

∆V_M 

Halo 

Depart 

∆V_M 

Phasing 

Transfer 

∆V_M 

Phasing 

LMO 

∆V_M 

Halo 

Insert 

∆V 

LMO 
Total ∆V 

Via Halo 

(in 2011) 
3.15 0.06 0.04 0.04 0.09 0.93 0.87 0.04 0.04 0.04 0.04 1.42 6.76 

Direct 

(in 2011) 
- - - (0~5.0) - 3.64 2.07 - (0~2.0) - - - 

5.71 
(~12.71) 

Via Halo 

(in 2013) 
3.15 0.06 0.04 0.04 0.09 0.84 1.11 0.04 0.04 0.04 0.04 1.42 6.91 

Direct 

(in 2013) 
- - - (0~5.0) - 3.79 2.06 - (0~2.0) - - - 

5.85 
(~12.85) 

Via Halo 

(in 2015) 
3.15 0.06 0.04 0.04 0.09 0.76 1.37 0.04 0.04 0.04 0.04 1.42 7.09 

Direct 

(in 2015) 
- - - (0~5.0) - 3.98 2.06 - (0~2.0) - - - 

6.04 
(~13.04) 

(∆V= km/s) 

 

 

 

 

 

 

 

Table 6.4   Required TOF for the return transfer from LMO to LEO 

Transfer type 

(Departure date 

from LMO) 

TOF 

LEO ~  

E.Halo 

TOF 

E.Phasing 

LEO 

TOF 

E.Phasing 

Transfer 

TOF 

E.Halo ~  

E.peri 

TOF 

E.peri ~  

M.peri 

TOF 

M.Peri ~  

M.Halo 

TOF 

M.Phasing 

Transfer 

TOF 

M.Phasing 

LMO 

TOF 

M.Halo ~  

LMO 
Total TOF 

Via Halo 

(in 2011) 
69 120 120 62 380 117 120 120 117 1225 

Direct 

(in 2011) 
- - - - 329 - - - - 329 

Via Halo 

(in 2013) 
69 120 120 62 390 117 120 120 117 1235 

Direct 

(in 2013) 
- - - - 350 - - - - 350 

Via Halo 

(in 2015) 
69 120 120 62 361 117 120 120 117 1206 

Direct 

(in 2015) 
- - - - 229 - - - - 229 

(TOF = days) 
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6.2  Evaluation of the Earth-Mars Transportation System using Halo Orbits  

The Earth-Mars transportation system using spaceports at Earth and Mars Halo orbits is evaluated by the 

spacecraft mass for the round-trip transfer. Table 6.5 shows the required wet mass for the round-trip transfer 

that starts from LEO in 2013. Here, we assume the following things: 

• Payload mass carried during round-trip transfer is unit. 

• The specific impulse (Isp) of spacecraft is 300 seconds. 

• Structure and bus mass is 4 times heavier than the payload mass. 

• The propellant for return from Earth Halo orbits to LEO is left at spaceport on Earth Halo orbits on the 

way to LMO. 

• The propellant for return from Mars Halo orbits to Earth Halo orbits is left at spaceport on Mars Halo 

orbits on the way to LMO. 

 From Table 6.5, compared with direct transfer between LEO and LMO, it is shown that the mass of the 

Earth-Mars transportation system S/C is reduced by half when starting from LEO using spaceports on Earth 

and Mars Halo orbits to leave propellant for the return transfer. The reason is simply because it is not 

necessary to carry the whole propellant for the return to LMO. First, the propellant for returning from Earth 

Halo orbits to LEO (10.1) is left at the spaceport on Earth Halo orbits. And then, the propellant necessary for 

returning from the Mars Halo orbit to the Earth Halo orbit (6.1) is left at the spaceport on Mars Halo orbits 

Consequently, the propellant for the transfer from LMO to Mars Halo orbit (3.3) should be only carried to 

LMO. Therefore, it can be concluded that this round-trip transportation system using spaceport at the Earth and 

Mars Halo orbits is effective. For comparison, Fig 6.1 shows the wet mass (the dry mass and the required 

propellant mass) starting from LEO in the case of nonleaving propellant at neither of spaceports, the case of 

leaving propellant at only the Earth spaceport, the case of leaving propellant at both Earth and Mars spaceports, 

and the case of direct transfer. Numbers in figure (1 ~ 24 and i ~ iv) correspond to the maneuver number in 

tables 6.1 and 6.3. We can say that the leaving propellant at both the Earth and Mars spaceports is the best 

strategy. 
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Fig. 6.1: Dry mass and propellant mass 

Table 6.5   Required mass for the round-trip transfer between LEO and LMO  

(Departure date from LEO in 2013 & Departure date from LMO in 2015) 

Type Via Earth and Mars Halo orbits to leave propellant for return transfer Direct  

Section LEO ~ 

E.Halo 

E.Halo ~ 

M.Halo 

M.Halo ~ 

LMO 

LMO ~ 

M.Halo 

M.Halo  ~ 

E.Halo 

E.Halo ~ 

LEO 

LEO ~ 

LMO 

∆V [km/s] 3.25 1.84 1.50 1.50 2.34 3.25 12.07~ 

Propellant ratio 0.669 0.465 0.399 0.399 0.548 0.669 0.983~ 

Payload mass 1 1 1 1 1 1 1 

Structure & bus 

mass… 
4 4 4 4 4 4 4 

D
ry

 m
as

s 

Carried 

propellant mass 

42.3 

(b+c+d+e+f) 

14.9 

(c+d+e) 

 3.3 

(d) 
0 0 0 0 

Consumed propellant 

mass 
95.6 (a) 17.3 (b) 5.5 (c) 3.3 (d) 6.1 (e) 10.1 (f) 289.1~ 

Wet mass 142.9 37.2 13.8 8.3 11.1 15.1 294.1~ 
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6.3 Application to Interplanetary Transfers other than Mars 

For transfers to outbound targets such as Mars, the Earth spaceport is needed to be located on Earth “L1” 

Halo orbit. However, for transfers to inbound targets such as Venus, the Earth spaceport is needed to be 

located on Earth “L2” Halo orbit. Heteroclinic orbits utilized in the Genesis mission (Fig. 6.2 [7]) could be 

used to move the Earth spaceport between L1 Halo orbits and L2 Halo orbits (∆V ≅ 10 m/s & TOF ≅ 0.4 years). 

 

 

Fig. 6.2: Genesis trajectory [7] 

 

6.4  Summary 

Application to Earth-Mars transportation system putting spaceports at Earth and Mars Halo orbits was 

investigated. It was found that the required total ∆V for a transfer between LEO and LMO via Earth and Mars 

Halo orbits is slightly larger than that of the direct transfer, and the TOF becomes longer. However, by 

considering the round-trip transfer between LEO and LMO, the system using spaceports in Earth and Mars 

Halo orbits to leave propellant for the return transfer is useful compared to the direct transfer. 
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CHAPTER 7 

7 Conclusions 

 

This dissertation discussed the escape and the capture trajectories from/to Halo orbits using impulsive 

maneuvers at periapsis of the manifold for interplanetary transfers, and proposed for application to the Earth-

Mars round-trip transportation system.  

First, the characteristics of periapsis of Halo orbit manifolds were investigated. The relations between the 

minimum periapsis distance of the manifold trajectories and the size of the Halo orbits were obtained. As a 

result, the manifold trajectories of the periapsis passage points from Halo orbits can intersect the surface of any 

of the planets in the solar system by adjusting the size of the Halo orbits.  Therefore, the impulsive maneuver 

for the interplanetary transfer could be used near the surface of planets on the manifolds of Halo orbits. 

 Second, the reduction of the TOF for the escape and capture from/to Halo orbits was studied. It was found 

that a little velocity correction (around 0.06 km/s) could decrease the TOF by more than a year.  

Next, the links between interplanetary trajectory and escape/capture trajectories from/to Halo orbits were 

analyzed. The survey found existing interplanetary trajectories between Earth L1 Halo orbit and Mars L2 Halo 

orbits with reasonable delta-V and flight time. 

Finally, our strategy is applied to the Earth-Mars transportation system. The required delta-V for the round-

trip transfer between LEO and LMO via spaceports on Earth and Mars Halo orbits becomes slightly larger than 

that of the direct round-trip transfer. However, in an evaluation in terms of the required spacecraft wet mass  of 

the Earth-Mars transportation system putting spaceports at Halo orbits, the wet mass starting from LEO could 

be reduced by half compared to the direct transfer by leaving propellant for return at spaceports at the Earth 

and Mars Halo orbits on the way to LMO. 
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Appendix 

 

A.  Phasing Maneuvers of LEO/LMO for Interplanetary Transfer 
 

Considering the round-trip transfer between LEO and LMO, phasing maneuvers of LEO/LMO for 

interplanetary transfers are required. The ∆V for phasing maneuver of LMO depends on the entry angle into 

LMO from LEO. For instance, a magnitude of phasing maneuvers for interplanetary transfer to LEO starting 

from LMO in December 2015, with the insertion into LMO in September 2014 from LEO, increases from zero 

to about 2.0 km/s, considering only solar perturbation. In Fig. A.1, we represent a LMO that a spacecraft is 

injected into with the insertion of zero degree in September 2014 from LEO, a LMO in December 2015 

assuming only solar perturbations starting in September 2014, and a LMO after phasing maneuvers for 

interplanetary transfer to LEO starting from LMO in December 2015. 

 

 

Figure A.1: LMO before and after phasing maneuver in the Sun-Mars line fixed rotating frame. 


