Mechanistic Investigation of CO2 Activation on Ruthenium(II) Bipyridine Complexes Hiroaki Tanaka Doctor of Science Department of Structural Molecular Science School of Mathematical and Physical Science The Graduate University for Advanced Studies # Contents | Abstracts | | 1 | |----------------|--|----| | Abbreviations | | 2 | | Chapter I | General Introduction | 3 | | Chapter II | Comparison of Acidity between CO and NO Coordinated to <i>cis</i> -Bis(2,2'-bipyridine)ruthenium Complex | 5 | | Chapter III | Structure Difference in \emph{cis} -Bis(2,2'-bipyridine)($\eta^1(C)$ -carbon dioxide)carbonylruthenium, \emph{cis} -Bis(2,2'-bipyridine)(carbonyl)-hydroxycarbonylruthenium, and \emph{cis} -Bis(2,2'-bipyridine)-dicarbonylruthenium | 9 | | Chapter IV | Reactivity of the CO ₂ Ligand in \emph{cis} -Bis(2,2'-bipyridine)(η^1 (C)-carbon dioxide)carbonylruthenium | 15 | | Chapter V | Nucleophilicity of CO ₂ in Protic Media ——— Competitive Addition of CO ₂ and Proton to Reduced Quinones | 23 | | Chapter VI | Conclusions | 27 | | References and | d Notes | 28 | | Acknowledgme | ents | 31 | #### **Abstracts** Utilization of CO₂ under mild conditions is interesting in the viewpoints of predictable energy shortage in near future and the increase in the concentration of CO₂ in the atmosphere. Photo- and electrochemical CO₂ reductions using homogeneous catalysts have been intensively studied, and several reaction mechanisms have been proposed so far. None of them, however, is generally accepted due to the lack of the evidence concerning the structural changes in the conversion from CO₂ to CO on metal atoms. Such the fundamental problem, therefore, may be provided the elucidation of the bonding characters between CO₂ and metal complexes of the reaction intermediates, and the relative nucleophilicities of CO₂ and proton toward metal centers in protic media. The purpose of the present work is to give some insight into the reaction mechanism of the electro- and photochemical CO₂ reduction catalyzed by metal complexes. To clarify the acidity of CO ligated on metal complexes may give fundamental information on the conversion of CO₂ to CO. It is reported that not only CO but also NO ligated on some metals reversibly react with OH to form M-XO2 and M-X(O)OH complexes (X=C, N) in H2O. The acidity of those ligands, however, has not been directly compared with each other under the same conditions, so far. In the Chapter II, [Ru(NO₂)(CO)(bpy)₂]PF₆ (bpy=2,2'-bipyridine) was prepared by a reaction of [RuCl(CO)(bpy)2]PF6 with NaNO2 in order to elucidate the acidic and basic characters of CO and NO₂ ligands on Ru. X-Ray structural analysis of [Ru(NO₂)(CO)(bpy)₂]PF₆ reveals that CO and NO₂ ligands on Ru(II) are in a cis-position. The Ru-N (bpy ligands) bond distances (trans to CO and NO2-) are 2.10 (1) and 2.11 (1) Å, respectively, and the remaining two Ru-N bond distances (trans to bpy ligands) are 2.07 (1) and 2.08 (1) Å. Thus, any distinct differences between CO and NO2- ligands were not observed from the Ru-N bond distances. Treatment of [Ru(NO₂)(CO)(bpy)₂]⁺ with HCl resulted in the formation of [RuCl(CO)(bpy)2]+, and a reaction product of [Ru(NO2)(CO)(bpy)2]+ with H_2SO_4 showed v(C=0) and v(N=0) at 1968 and 1911 cm⁻¹, respectively. On the other hand, [Ru(NO₂)(CO)(bpy)₂]⁺ reversibly reacts with Bu₄NOH to afford [Ru(C(O)OH)-(NO₂)(bpy)₂] in CH₃CN. These results indicate that the acidity of a carbonyl ligand is weaker than a nitrosyl one. Among a variety of CO₂ metal complexes, $\eta^1(C)$ -CO₂ metal complexes are generally believed to be plausible intermediates in the electrochemical CO₂ reduction affording CO. In the Chapter III, the molecular structures of $[Ru(CO)_2(bpy)_2](PF_6)_2$, $[Ru(C(O)OCH_3)(CO)(bpy)_2]BPh_4\cdot CH_3CN$ as a model of $[Ru(C(O)OH)(CO)(bpy)_2]^+$, and $[Ru(\eta^1(C)-CO_2)(CO)(bpy)_2]\cdot 3H_2O$ were described. The latter two were prepared by the reactions of $[Ru(CO)_2(bpy)_2]^{2+}$ with CH₃ONa and two equiv of OH⁻. On the basis of the fact that the Ru-C(O)OCH₃ bond distance of $[Ru(C(O)OCH_3)(CO)(bpy)_2]^+$ is shorter than the Ru-CO₂ one of $[Ru(\eta^1(C)-CO_2)(CO)(bpy)_2]$, a multi-bond character of the Ru-CO₂ bond is not larger than that of the Ru-C(O)OCH₃ bond. One extra electron pair involved in $[Ru(\eta^1(C)-CO_2)(CO)(bpy)_2]$ resulting from dissociation of the terminal proton of $[Ru(C(O)OH)(CO)(bpy)_2]^+$ may, therefore, localize mainly in the CO_2 ligand. The increase in the electron density of the CO_2 moiety is effectively compensated by the extended three-dimensional network of hydrogen bondings between the CO_2 ligand and three water molecules of $[Ru(\eta^1(C)-CO_2)(CO)(bpy)_2]\cdot 3H_2O$. Smooth conversion of $[Ru(\eta^1(C)-CO_2)(CO)(bpy)_2]$ to $[Ru(C(O)OH)(CO)(bpy)_2]^+$ is the one of the key reactions in the catalytic cycle of the CO_2 reduction by $[Ru(CO)_2(bpy)_2]^{2+}$. In the Chapter IV, the reactivity of $[Ru(\eta^1(C)-CO_2)(CO)(bpy)_2]$ was examined to elucidate the basicity of the CO_2 moiety. All the oxygen atoms of $[Ru(\eta^1(C)-CO_2)(CO)(bpy)_2]$ undergo an exchange reaction by $H_2^{-18}O$. The reactions of $[Ru(\eta^1(C)-CO_2)(CO)(bpy)_2]$ with CH_3I and ICH_2CH_2I gave $[Ru(C(O)OCH_3)(CO)(bpy)_2]^+$ and $[RuI(CO)(bpy)_2]^+$ in quantitative yields. A C-H bond of organic molecules with active hydrogen such as malonic acid derivatives was also cleaved by the CO_2 moiety of $[Ru(\eta^1(C)-CO_2)(CO)(bpy)_2]$. There still remains a matter of controversy about the initial step of the CO₂ reduction catalyzed by metal complexes, which of proton or CO₂ initially attacks on low valent metal centers. In the Chapter V, interaction between CO₂ and reduced quinones is examined in CH₃CN, CH₃CN/H₂O, and CH₃OH to evaluate the nucleophilicity of CO₂ in protic media. Carboxylation predominantly took place on the oxygen atoms of 2,3,5,6-tetramethyl-1,4-benzoquinone dianion in CO₂-saturated CH₃OH and CH₃CN/H₂O (9:1 v/v). This result implies the formation of M-CO₂ bond rather than that of M-H one in catalytic cycles in photo- and electrochemical CO₂ reduction catalyzed by transition metal complexes. #### **Abbreviations** | bpy | 2,2'-bipyridine | |------|---| | SCE | saturated calomel electrode | | TCNE | tetracyanoethylene | | CV | cyclic voltammogram | | TMQ | 2,3,5,6-tetramethyl-1,4-benzoquinone | | TCQ | 2,3,5,6-tetrachloro-1,4-benzoquinone | | TBQ | 2,3,5,6-tetrabromo-1,4-benzoquinone | | DDQ | 2,3-dichloro-5,6-dicyano-1,4-benzoquinone | | dmpe | 1,2-bis(dimethylphosphino)ethane | | | | # Chapter I #### **General Introduction** The rapid increase in the concentration of CO₂ in the atmosphere due to consumption of fossil fuels may cause the serious problem for human beings in near future. Disposal of CO₂ exhausted from power plants into the deep seas has been proposed to cope with this problem.¹ Thus, CO₂ is considered as useless materials at present. On the other hand, if CO₂ can be activated and converted to organic molecules under mild conditions, CO₂ will be recognized as C₁ resources as well as CO in the chemical industry. Activation of CO₂ under mild conditions, therefore, may open a new era in the chemistry of CO₂. The bond dissociation energy of CO₂, D (C-O) = 5.453 eV (127 kcal), is much larger than COS, N2O, and CS2 that have a linear three-atom structure with the isoelectronic structure as CO2, and only a few percent CO2 molecules are cleaved to CO and oxygen even at 2000 °C.2 Thus, CO2 as the ultimate oxidation product of organic compound is a very stable molecule thermodinamically. CO2 is lacking in donor ability, because of its large ionization potential of 13.79 eV. On the other hand, the electron affinity of CO₂, 3.6-3.8 eV, is close to that of NO and CH≡CH. On the basis of the analysis of ¹³C ESR of CO₂ in a formate matrix, 80% of the electron of the frontier orbital is localized in the C atom of CO2-2 with the O-C-O angle of 134°.4 This means that the C atom of CO2 readily can be changed to a strong nucleophile once CO2 undergoes one-electron reduction. Therefore, electrochemical, photochemical, and chemical reductions are suitable procedures for the activation of CO2. It is, however, required at potentials more negative than -2.1 V vs. SCE to reduce CO2 to CO2" at moderate rates by an electrode directly.3 In case that adsorption and coordination of CO₂ on the surface of solids and metal complexes are possible, an electron transfer to CO₂ is expected to take place at potentials much more positive than the reduction potential of free CO₂. Under such notion, electrochemical and photochemical reductions of CO₂ catalyzed by transition metal complexes have been widely studied, and various homogeneous⁵ and heterogeneous⁶ catalysts which are capable of affording CO, HCOOH, HCHO, CH₃OH, and/or CH₄ have been reported. No reaction intermediate which can activate CO₂, however, has been isolated in those reactions so far and the reaction schemes have been proposed without any evidence. In addition, comparison of acidity between H⁺ and CO₂, the former of which is also requisite for CO₂ reduction, has not been investigated in spite of a controversy about the initial stage of the reduction; either proton or CO₂ attacks on low valent coordinatively unsaturated metal centers. In the former, metal-hydride (M-H) bonds are initially formed, followed by insertion of CO₂ to the resulting M-H bonds to generate formato complexes (M-OC(O)H)^{5f}. On the other hand, protonation of M-CO₂ formed in the latter¹² would produce metal carboxylates (M- C(O)OH), although another path from M-H to M-C(O)OH has been proposed without any evidence.^{5s} Synthesis of CO₂ complexes has intensively
been attempted to aim activation of CO₂ on metal atoms.⁷ The first one is the Rh complex, [Rh₂Cl₂(CO₂)(PPh₃)₅], reported by Val'pin et al. in 1969.^{7a} Although many CO₂ complexes have been prepared after the Rh complex, X-ray structure analysis, which is necessary to comprehend character of ligated CO₂, is achieved for only a few CO₂ complexes. The study of the CO₂ complexes has been limited to the reactivity in stoichiometric reactions⁸⁻¹¹ and no catalytic fixation or reduction of CO₂ has been succeeded so far. Along this line, I paid attention to $[Ru(CO)_2(bpy)_2]^{2+}$ having an ability to catalyze electrochemical and photochemical CO₂ reduction. It has been reported that $[Ru(CO)_2(bpy)_2]^{2+}$ exists as equilibrium mixtures with $[Ru(C(O)OH)(CO)(bpy)_2]^{+}$ and its deprotonated species $[Ru(CO_2)(CO)(bpy)_2]$ (eqs 1 and 2) with the equilibrium constants, K_1 and K_2 of 1.32x10⁵ and 2.27x10⁴ mol⁻¹·dm³, respectively, in H₂O, and the conversion $$[Ru(CO)_2(bpy)_2]^{2+} + OH^{-}$$ $[Ru(C(O)OH)(CO)(bpy)_2]^{+}$ (1) $$[Ru(C(O)OH)(CO)(bpy)_2]^+ + OH^- \xrightarrow{K_2} [Ru(CO_2)(CO)(bpy)_2] + H_2O$$ (2) between $[Ru(CO_2)(CO)(bpy)_2]$ and $[Ru(C(O)OH)(CO)(bpy)_2]^+$ takes place in a diffusion controlled reaction. Those complexes function as active species in not only CO_2 reduction but also a water gas shift reaction. Furthermore, two electron reduction of $[Ru(CO)_2(bpy)_2]^{2+}$ in dry CH_3CN under a CO_2 atmosphere produces $[Ru(CO_2)(CO)_2(bpy)_2]^{15}$ with evolution of CO (eq 3). It is, therefore, proposed that $[Ru(CO_2)(CO)_2(bpy)_2]$ formed in eq 2 is a kind of an $\eta^1(C)$ - CO_2 complex. $$[Ru(CO)_2(bpy)_2]^{2+} + CO_2 + 2e^{-} \longrightarrow [Ru(CO_2)(CO)(bpy)_2] + CO$$ (3) In order to give some insight into the structural changes in the conversion of CO_2 to CO on metal complexes and the relative nucleophilicities of CO_2 and protons in protic media, this thesis discusses the acidic and basic character of CO and NO_2^- ligated on bis(bpy)ruthenium complexes, X-ray structure analysis of $[Ru(CO_2)(CO)(bpy)_2]$, $[Ru(C(O)OCH_3)(CO)(bpy)_2]^+$ as a model compound of $[Ru(C(O)OH)(CO)(bpy)_2]^+$, and $[Ru(CO)_2(bpy)_2]^{2+}$, the reactivity of $[Ru(CO_2)(CO)(bpy)_2]$, and comparison of acidity of H^+ and CO_2 in protic media. # Chapter II Comparison of Acidity between CO and NO Coordinated to cis-Bis(2,2'-bipyridine)ruthenium Complex #### Introduction CO₂ and NO₂⁻ ligated on ruthenium(II) complexes can be smoothly converted into CO and nitrosyl ligands by acid-base equilibria. For example, cis-[Ru(CO)₂(bpy)₂]²⁺ reversibly reacts with OH⁻ in a neutral aqueous solution to afford cis-[Ru(C(O)OH)(CO)(bpy)₂]⁺, which dissociates the hydroxycarbonyl proton to form [Ru(CO₂)(CO)(bpy)₂] in alkaline solution. Carbonyl, hydroxycarbonyl and CO₂ complexes exist as an equilibrium mixture in weak alkaline conditions, as described in Chapter I (eqs 1 and 2).¹⁴ Similarly, cis- ^{16a} and trans-[RuCI(bpy)₂(NO)]^{2+ 16b} are converted into cis- and trans-[RuCI(NO₂)(bpy)₂] via [RuCI(bpy)₂(NO₂H)]⁺ by a reversible nucleophilic attack of OH⁻ to nitrosyl ligand, followed by a dissociation of a terminal $$[RuCl(bpy)_2(NO)]^{2+} + OH^{-}$$ $[RuCl(bpy)_2(N(O)OH)]^{+}$ (4) $[RuCl(bpy)_2(N(O)OH)]^{+} + OH^{-}$ $[RuCl(NO_2)(bpy)_2] + H_2O$ (5) proton of hydroxynitrosyl moiety (eqs 4 and 5).¹⁶ In electrochemical CO₂ reduction, the carbonyl complex of ruthenium has been considered as a precursor for CO generation.^{12,13} Accordingly, comparison of the acidity between CO and NO ligated on a metal seems to be very interesting in connection with CO₂ reduction. I have prepared [Ru(NO₂)(CO)(bpy)₂]⁺ in order to compare acidity of CO with NO among [Ru(NO₂)(CO)(bpy)₂]⁺, [Ru(CO)₂(bpy)₂]²⁺, and [RuCl(NO₂)(bpy)₂]. This chapter describes the crystal structure of *cis*-[Ru(NO₂)(CO)(bpy)₂]PF₆ and the reactivity of the complex toward OH⁻ and H⁺. # **Experimental Section** Preparation of [Ru(NO₂)(CO)(bpy)₂]PF₆. A CH₃OH/H₂O solution (30:1 v/v, 30 cm³) containing [RuCl(CO)(bpy)₂]PF₆¹⁴ (165 mg, 0.27 mmol) and NaNO₂ (49 mg, 0.71 mmol) was refluxed under an N₂ atmosphere for 24 h. On cooling the solution to -20 °C, orange [Ru(NO₂)(CO)(bpy)₂]PF₆ was crystallized in a 70% yield. Anal. Calcd for C₂₁H₁₆F₆N₅O₃PRu: C, 39.88; H, 2.55; N, 11.07. Found: C, 39.94; H, 2.69; N, 11.09. IR spectrum (KBr): v(C≡O) 1983 cm⁻¹, v_{as}(NO₂) 1372 cm⁻¹, v_s(NO₂) 1316 cm⁻¹. Quite similarly, [Ru(¹⁵NO₂)(CO)(bpy)₂]PF₆ was prepared by using [RuCl(CO)(bpy)₂]PF₆ and Na¹⁵NO₂ (90% enriched, Isotech) in CH₃OH/H₂O. IR spectrum of [Ru(¹⁵NO₂)(CO)-(bpy)₂]PF₆: v(C≡O) 1983 cm⁻¹, v_{as}(¹⁵NO₂) 1345 cm⁻¹, v_s(¹⁵NO₂) 1293 cm⁻¹. # X-Ray Crystallographic Studies. The reflections of X-ray analysis were collected by θ -2 θ technique (0 < 2 θ < 60°) on an Enraf-Nonius CAD4-GX21 automated four-circle diffractometer with Mo K α radiation (0.7107 Å). The 1792 independent reflections with $|F_0|$ > $3\sigma |F_0|$ were used for the structure All the calculations were refinement. HITAC-M680H on а carried out computer, using a UNICS III program. Non-hydrogen atoms were refined anisotropically. Hydrogen atoms were placed in idealized positions and included in the structure factor calculations. The data for crystal structure analysis are shown in Table I. The final average coordinates and factors of the temperature atoms without hydrogen atoms of [Ru(NO₂)(CO)(bpy)₂]PF₆ are shown in Table II. #### Results and Discussion of The structure [Ru(NO₂)(CO)(bpy)₂]PF₆presented in Figure 1. CO and NO2 on Ru(II) coordinate in The structural cis-position. parameters of two bpy ligands are not so different from those of the cis-type (bpy)ruthenium complexes reported so far.17 The two **Table I.** Data for Crystal Structure Analysis of [Ru(NO₂)(CO)(bpy)₂]PF₆ | | <u> </u> | |--|--| | formula | C ₂₁ H ₁₆ F ₆ N ₅ O ₃ PRu | | fw_ | 632.46 | | a, Å | 11.112 (4) | | b, Å | 12.318 (4) | | c, Å | 17.501 (4) | | <i>Z</i> ; <i>V</i> , Å ³ | 4; 2395.5 | | space group | <i>P</i> 212121 | | Dcalcd, g/cm ³ | 1.75 | | θ range, deg. | <30 | | no. of data | 1792 | | $used(F_0 >3\sigma F_0)$ | | | no. of variables | 417 | | final R/R _W , ^{a)} % | 6.44/6.82 | | | | a) $R = (\Sigma ||F_0|| - |F_c||)/\Sigma |F_0|$. $R_W = [\Sigma W(|F_0| |F_c|)^2]/\Sigma W|F_0|^2.$ **Table II.** Positional parameters and B(eq) Values for $[Ru(NO_2)(CO)(bpy)_2]^+$. | atom | X | у | z | в, Å ² | |------|-------------|------------|------------|-------------------| | Ru1 | 0.0324(1) | 0.2438(1) | 0.3637(0) | 3.5 | | N1 | -0.0812(8) | 0.0975(7) | 0.3627(5) | 3.7 | | N2 | 0.1385(7) | 0.3847(7) | 0.3752(6) | 4.0 | | NЗ | 0.0417(8) | 0.2598(7) | 0.4817(5) | 4.1 | | N4 | 0.0088(8) | 0.2524(7) | 0.2464(5) | 4.1 | | N5 | 0.1198(9) | 0.3445(6) | 0.3564(5) | 3.9 | | 01 | 0.2472(11) | 0.1024(10) | 0.3668(8) | 10.8 | | 02 | -0.0536(16) | 0.0289(11) | 0.3963(11) | 16.1 | | О3 | -0.1481(14) | 0.1010(12) | 0.3322(11) | 15.4 | | C1 | 0.1887(11) | 0.4409(11) | 0.3151(8) | 4.9 | | C2 | 0.2613(13) | 0.5264(9) | 0.3305(8) | 5.6 | | C3 | 0.2838(13) | 0.5645(9) | 0.4058(8) | 5.4 | | C4 | 0.2325(12) | 0.5056(11) | 0.4643(9) | 5.2 | | C5 | 0.1590(10) | 0.4157(8) | 0.4465(6) | 2.9 | | C6 | 0.1012(10) | 0.3515(8) | 0.5067(6) | 3.5 | | C7 | 0.1010(13) | 0.3778(10) | 0.5843(6) | 4.8 | | C8 | 0.0410(13) | 0.3142(10) | 0.6333(7) | 5.7 | | C9 | -0.0174(11) | 0.2211(9) | 0.6077(7) | 4.7 | | C10 | -0.0152(12) | 0.1975(9) | 0.5321(7) | 4.7 | | C11 | 0.0784(13) | 0.2053(11) | 0.1916(7) | 5.4 | | C12 | 0.0490(15) | 0.2067(12) | 0.1173(7) | 6.4 | | C13 | -0.0470(14) | 0.2640(11) | 0.0919(7) | 6.5 | | C14 | -0.1194(13) | 0.3127(10) | 0.1459(8) | 6.0 | | C15 | -0.0885(11) | 0.3072(9) | 0.2246(6) | 4.1 | | C16 | -0.1618(11) | 0.3620(8) | 0.2839(6) | 3.9 | | C17 | -0.2614(12) | 0.4262(10) | 0.2679(8) | 5.1 | | C18 | -0.3214(13) | 0.4750(10) | 0.3289(9) | 5.6 | | C19 | -0.2779(12) | 0.4612(10) | 0.4019(9) | 5.8 | | C20 | -0.1753(13) | 0.3956(10) | 0.4121(8) | 5.0 | | C21 | 0.1730(10) | 0.1476(8) | 0.3720(7) | 3.9 | | | | | | | oxygen atoms of the nitro group were disordered presumably due to a rotation around the Ru-N1 bond (2.20 (1) Å), and the O2-N1-O3 angle of the nitro ligand (126 (2)°) is also approximately same as that of nitro complexes reported elsewhere. The Ru-C and C-O bond lengths are 1.97 (1) and 1.02 (2) Å, respectively. The Ru-C-O angle, 170 (1)°, shows slight distortion. The Ru-N3 distance (trans to bpy), 2.08 (1) Å, is very close to that for Ru-N4 (trans to bpy), 2.07 (1) Å. In addition, the Ru-N5 (trans to CO) distance, 2.10 (1) Å, is also close to the Ru-N2 (trans to NO₂) distance, 2.11 (1) Å. A distinct difference in electron-donor and/or acceptor character of the carbonyl and nitro ligands of [Ru(NO₂)(CO)-(bpy)2]+ was not observed from the comparison of bond lengths between Ru and bpy ligands. Since the resulting complex has CO and NO₂ ligands, NO ligated on a metal seems to be more acidic than CO ligand. Figure 1. Molecular structure of [Ru(NO₂)(CO)(bpy)₂]⁺. Although two oxygen atoms of the nitro group of [Ru(NO2)(CO)(bpy)2]PF6 are disordered in the solid state, dissociation of NO2- from [Ru(NO2)(CO)(bpy)2]+ may be neglected in a solution, since no ligand exchange between NO2⁻ and ¹⁵NO2⁻ took place at all in the reaction of [Ru(NO₂)(CO)(bpy)₂]PF₆ with 2 equiv of Na¹⁵NO₂ in MeOH for 2 The electronic absorption spectrum of [Ru(NO2)(CO)(bpy)2]PF6 showed no change between acidic (pH 1.0) and alkaline (pH 12.0) aqueous solutions. On the basis of smooth reactions of eqs 1 and 5 in H₂O, both CO and NO₂ of [Ru(NO₂)(CO)(bpy)₂]+ are considered to be less reactive than the CO of [Ru(CO)2(bpy)2]2+ and NO2- of It is well known that basicity of OH is effectively enhanced in [RuCl(NO₂)(bpy)₂].organic solvents compared with that in H₂O.²⁰ In fact, an addition of a methanolic solution of Bu₄NOH (0.26
mol/dm³) to a CH₃CN solution of [Ru(NO₂)(CO)(bpy)₂]PF₆ (0.055 mmol/dm³) results in an increase in electronic absorption bands at 290 and 490 nm with an isosbestic point at 310 nm up to a certain concentration of OH- (0.35 mmol/dm3) (Figure 2), and neutralization of the resulting solution by aqueous HClO4 (0.20 mol/dm³) regenerated the electronic absorption spectrum of [Ru(NO₂)(CO)(bpy)₂]⁺. However, an addition of a large excess of Bu₄NOH into a CH₃CN solution of IRu(NO₂)(CO)(bpy)₂|PF₆ (0.102 mmol/dm³) caused a decrease in the absorbance at the 490 nm band and an appearance of a new band at 585 nm, which remained even after neutralization by aqueous HClO₄. In accordance with these observations, a crude product obtained from the reaction of [Ru(NO2)(CO)(bpy)2]PF6 with 2 equiv of KOH in CH₃OH showed strong IR bands at 1650, 1378, and 1331 cm⁻¹ assigned to v(C=O) of a hydroxycarbonyl moiety, 21 $v_{as}(NO_2)$, and $v_s(NO_2)$, respectively, with a weak v(C=0)band at 1983 cm^{-1} due to a contamination of $[\text{Ru}(\text{NO}_2)(\text{CO})(\text{bpy})_2]\text{PF}_6$, and neutralization of the product by aqueous HCI in MeOH regenerated [Ru(NO2)(CO)- **Figure 2.** Electronic absorption spectra of $[\text{Ru}(\text{NO}_2)(\text{CO})(\text{bpy})_2]\text{PF}_6$ (5.50x10⁻⁵ mol dm⁻³ (A) and 4.08 x 10⁻⁴ mol dm⁻³ (B)) in CH₃CN in the presence of various concentrations of Bu₄NOH: 0 (a and d); 1.73 (b); 3.46 (c); 2.04 (e); 3.06 (f); 4.04 (g); 5.10 (h); 6.08 (i); 7.10 (j); 8.16 x 10⁻⁴ mol dm⁻³ (k). (bpy)₂]⁺. On the other hand, when $[Ru(NO_2)(CO)(bpy)_2]PF_6$ was allowed to react with 20 equiv of Bu_4NOH in MeOH, the reaction product exhibited only a strong band at 1574 cm⁻¹ without any $v(NO_2)$ band. These observations suggest that $[Ru(NO_2)(CO)(bpy)_2]^+$ reversibly is converted into $[Ru(C(O)OH)(NO_2)(bpy)_2]$ in low OH^- concentrations in MeOH (eq 6),²² while $[Ru(NO_2)(CO)(bpy)_2]^+$ decomposes in the presence of a large excess of OH^- presumably by dissociation of NO_2^- from unstable $[Ru(C(O)O)(NO_2)(bpy)_2]^-$. $$[Ru(NO_2)(CO)(bpy)_2]^+ + OH^-$$ $[Ru(C(O)OH)(NO_2)(bpy)_2]$ (6) As similar to the lability of the Ru-NO₂⁻ bond of $[Ru(NO_2)(CO)(bpy)_2]^+$ in the presence of a large excess of OH⁻ in MeOH, treatment of $[Ru(NO_2)(CO)(bpy)_2]PF_6$ with an excess amount of gaseous HCI or aqueous HCI (10 mol/dm³) in CH₃OH caused loss of the NO_2 ⁻ ligand, and $[RuCI(CO)(bpy)_2]PF_6$ was selectively formed in a ca. 80% yield. On the basis of the fact that $[Ru(NO_2)(CO)(bpy)_2]PF_6$ undergoes no substitution reaction by either $Na^{15}NO_2$ or Et_4NCI in MeOH, the formation of $[RuCI(CO)(bpy)_2]^+$ in the reaction of $[Ru(NO_2)(CO)(bpy)_2]^+$ with HCI may result from fission of the $Ru-NO_2$ ⁻ bond after protonation of NO_2 - of $[Ru(NO_2)(CO)(bpy)_2]^+$ in MeOH. In fact, the IR spectra of the crude products obtained from the reaction of $[Ru(NO_2)(CO)(bpy)_2]PF_6$ with H_2SO_4 in MeOH showed two strong bands at 1968 and 1911 cm⁻¹ assignable to the $v(C\equiv O)$ and $v(N\equiv O)$ of $[Ru(CO)(bpy)_2(NO)]^{3+}$. Regeneration of $[Ru(NO_2)(CO)(bpy)_2]^+$ on exposure of $[Ru(CO)(bpy)_2(NO)]^{3+}$ to air (moisture) also implies that the NO ligated on a Ru(II) atom is more acidic than a CO ligand. Chapter III Structure Difference in cis-Bis(2,2'-bipyridine)(η^1 (C)-carbon dioxide)carbonylruthenium, cis-Bis(2,2'-bipyridine)(carbonyl)hydroxycarbonylruthenium, and cis-Bis(2,2'-bipyridine)dicarbonylruthenium # Introduction Since the first characterization of $[Ni(PCy_3)_2(\eta^2\text{-}CO_2)]$, 3c a variety of CO2-metal complexes with η^1 -, 8 , η^2 -, 9 , μ_2 -, 10 , and μ_3 -, 11 , CO2 modes have been prepared. In high oxidation metal complexes, the $\eta^1(C)\text{-}CO_2$ mode may be thermodynamically unstable due to an electronic repulsion between positively charged CO2 carbon and metal atoms. The $\eta^1(C)$ -CO2 mode, on the other hand, is favored by the charge transfer interaction from the d_z^2 orbital of the low oxidation metals such as Rh(I) and Co(I) to the π^* orbital of CO2, 23 and is considered to be more suitable than other modes as active species in the reduction of CO2 to CO and/or HCOOH, since $[M(\eta^1(C)\text{-}CO_2)]^{n_+}$ would be smoothly converted to $[M(C(O)OH)]^{(n+1)+}$ and $[M(CO)]^{(n+2)+}$. Despite intensive studies on catalytic CO2 reduction by using homogeneous catalysts in recent years, there are only two $\eta^1(C)\text{-}CO_2$ complexes, which have been determined the molecular structure by X-ray analysis. It is, therefore, highly desired to elucidate the molecular structures of a series of $\eta^1(C)\text{-}CO_2$, hydroxycarbonyl, and carbonyl metal complexes as possible active species in photo- and electrochemical CO2 reductions. The comparison of the molecular structures of $[Ru(CO_2)(CO)(bpy)_2]$, $[Ru(C(O)OH)(CO)(bpy)_2]^+$ and $[Ru(CO)_2(bpy)_2]^{2+}$ may give fundamental information with respect to the smooth conversion among CO, C(O)OH, and CO₂ on the Ru atom. This chapter describes the molecular structures of $[Ru(CO)_2(bpy)_2]^{2+}$, $[Ru(C(O)OCH_3)(CO)-(bpy)_2]^+$ as a model compound of $[Ru(C(O)OH)(CO)(bpy)_2]^+$, and $[Ru(CO_2)(CO)(bpy)_2]$. # **Experimental Section** **Materials** $[Ru(CO)_2(bpy)_2](PF_6)_2$ and $[Ru(C(O)OH)(CO)(bpy)_2]PF_6$ were prepared according to literatures^{24,14} $[Ru(C(O)OCH_3)(CO)(bpy)_2]B(C_6H_5)_4$. CH₃CN for X-ray structure analysis was similarly prepared as $[Ru(C(O)OCH_3)(CO)(bpy)_2]PF_6^{14}$ A methanolic Bu₄NOH solution (0.347 M) was used without further purification. CH₃OH was dried over molecular sieves(4A). CH₃CN was distilled over calcium hydride. **Preparation of [Ru(CO₂)(CO)(bpy)₂]·3H₂O** A methanolic solution (5 cm³) of Bu₄NOH (0.347 M) was added to a stirred H₂O/C₂H₅OH solution (100 cm³, 1:1 v/v) of [Ru(CO)₂(bpy)₂](PF₆)₂ (602 mg) . Slow evaporation of the resulting reddish yellow solution gave red crystals, which were washed with CH₃CN, and dried under reduced A part of this work is published in *Organometallics* **1992**, *11*, 1450 and *Organometallics* **1992**, *11*, 3171, and in press in *Inorg. Chem*. pressure. Calcd for C₂₂H₂₂N₄O₆Ru: C, 48.98; H, 4.11; N, 10.38. Found: C, 48.86; H, 3.99; N, 10.37. Yield 340 mg (80%). Infrared spectrum (KBr) ν (C=O) 1911 cm⁻¹ and ν (CO₂) 1428, 1242 cm⁻¹. ¹³C NMR (67.8 MHz, MeOH- d_4) δ 203.9 and 210.2 (CO₂ and CO), 158.2, 157.7, 157.1, 156.6, 155.9, 155.8, 150.0, 149.1, 140.0, 139.9, 139.8, 137.8, 127.9, 127.7, 127.5, 127.4, 124.7, 124.6, 124.2, 123.6 (bpy). ¹³C NMR Data for [Ru(C(O)OH)(CO)(bpy)₂]PF₆ in CD₃CN δ 201.5 and 205.1 (CO and hydroxycarbonyl); δ 158.3, 157.2, 156.7, 156.4, 156.1, 150.5, 148.6, 141.0, 140.8, 140.8, 139.6, 128.7, 128.6, 128.4, 128.2, 125.6, 125.3, 124.9, 124.4 (bpy). Physical Measurements and Product Analysis Infrared spectra were obtained on a Shimadzu DR8000 spectrophotometer. ¹H and ¹³C NMR were obtained on a JEOL EX270 spectrometer. Elemental analyses were carried out at Chemical Materials Center of Institute for Molecular Science. **X-Ray Crystallographic Studies** The reflections of X-ray analysis were collected by θ -2 θ technique (0 < 2 θ < 55° for [Ru(CO₂)(CO)(bpy)₂]·3H₂O and [Ru(CO)₂(bpy)₂]-(PF₆)₂, and 0 < 2 θ < 50° for [Ru(C(O)OCH₃)(CO)(bpy)₂]B(C₆H₅)₄·CH₃CN on an Enraf-Nonius CAD4-GX21 automated four-circle diffractometer with Mo K α radiation (0.7107Å). The 2370 and 3770 for [Ru(CO₂)(CO)(bpy)₂]·3H₂O and [Ru(CO)₂(bpy)₂](PF₆)₂, respectively, independent reflections with $|F_0| > 4\sigma|F_0|$, and 7219 for [Ru(C(O)OCH₃)-(CO)(bpy)₂]B(C₆H₅)₄·CH₃CN with $|F_0| > 2\sigma|F_0|$ were used for the structure refinement. All the calculations were carried out on a HITAC-M680H computer, using a UNICS III program. The structures were solved by the heavy-atom method. Non-hydrogen atoms were refined anisotropically. Hydrogen atoms were placed in idealized positions and included in the structure factor calculations. The data for crystal structures analysis are shown in Table III. The selected bond distances and angles of [Ru(CO₂)(CO)(bpy)₂]·3H₂O, [Ru(C(O)OCH₃)(CO)(bpy)₂]B(C₆H₅)₄·CH₃CN, and [Ru(CO)₂(bpy)₂](PF₆)₂ are shown in Tables IV, V, and VI. Table III. Data for Crystal Structure Analysis of [Ru(CO₂)(CO)(bpy)₂]·3H₂O, $[Ru(C(O)OCH_3)(CO)(bpy)_2]B(C_6H_5)_4 \cdot CH_3CN$, and $[Ru(CO)_2(bpy)_2](PF_6)_2$. | formula | C ₂₂ H ₂₂ N ₄ O ₆ Ru | C49H42BN5O3Ru | C22H16F12N4O2P2Ru | |--|--|----------------|--------------------| | fw | 539.51 | 860.77 | 759.39 | | a, Å | 8.672 (2) | 9.548 (3) | 12.034 (2) | | b, Å | 12.279 (1) | 13.004 (5) | 16.434 (3) | | c, Å | 20.820 (4) | 17.743 (4) | 13.925 (3) | | a, deg. | 90.00 | 77.26 (3) | 90.00 | | b, deg. | 97.48 (6) | 74.89 (2) | 94.88 (1) | | c, deg. | 90.00 | 83.64 (3) | 90.00 | | Z; V, Å ³ | 4, 2190.1 (7) | 2, 2071.1 (12) | 4, 2743.9 (9) | | space group | <i>P</i> 2 ₁ /n | P-1 | P2 ₁ /c | | Dcalcd, g/cm ³ | 1.64 | 1.38 | 1.84 | | θ range, deg. | <27.5 | <25 | <27.5 | | no. of data used $(F_0 > 4\sigma F_0)^{a}$ | 2370 | 7219 | 3770 | | no. of variables | 299 | 532 | 389 | | final <i>R(F)/RW(F)</i> , ^{b)} % | 7.1/7.9 | 4.5/4.5 | 6.9/8.1 | a) $|F_0| > 2\sigma |F_0|$ for $[Ru(bpy)_2(CO)(C(O)OCH_3)]B(C_6H_5)_4 \cdot CH_3CN$. b) $R(F) = (\Sigma ||F_0| - |F_c||)/\Sigma |F_0|$. $RW(F) = [\Sigma W(|F_0| - |F_c||)^2]/\Sigma W|F_0|^2$. | Table IV | . Selected Bond distances (Å) and Bond Angles (deg) for [Ru(CO ₂)(CO)(bpy) ₂]·3H ₂ O. | |----------|--| |----------|--| | | | | | | 7/212 | |-------|------------|----------|-----------------------|----------|------------| |
Ru-C1 | 2.064 (13) | C1-Ru-C2 | 88.5 (6) | N1-Ru-N2 | 77.6 (4) | | Ru-C2 | 1.815 (14) | C1-Ru-N1 | 88.7 (5) | N2-Ru-N3 | 88.5 (4) | | Ru-N1 | 2.073 (10) | C1-Ru-N2 | 86.6 (4) | N3-Ru-N4 | 76.9 (4) | | Ru-N2 | 2.133 (10) | C1-Ru-N3 | 172.6 (5) | N4-Ru-N1 | 167.0 (4) | | Ru-N3 | 2.204 (10) | C1-Ru-N4 | 97.7 (5) [′] | Ru-C1-O1 | 118.5 (9) | | Ru-N4 | 2.105 (10) | C2-Ru-N1 | 96.7 (̇̀5) | Ru-C1-O2 | 120.6 (10) | | C1-O1 | 1.245 (16) | C2-Ru-N2 | 172.7 (5) | 01-C1-02 | 120.9 (12) | | C1-O2 | 1.283 (15) | C2-Ru-N3 | 96:9 (5) | Ru-C2-O3 | 178.8 (11) | | C2-O3 | 1.145 (17) | C2-Ru-N4 | 94.7 (5) | •• | 110.0 (11) | **Table V.** Selected Bond Distances (Å) and Bond Angles (deg) for [Ru(C(0)OCH₃)(CO)(bpy)₂]B(C₆H₅)₄·CH₃CN. | | | · · · · · · · · · · · · · · · · · · · | | | | |-------|-----------|---------------------------------------|-----------|----------|-----------| | Ru-C1 | 2.042 (6) | C1-Ru-C2 | 88.5 (3) | C2-Ru-N1 | 95.6 (2) | | Ru-C2 | 1.800 (7) | C1-Ru-N1 | 89.8 (2) | C2-Ru-N2 | 172.9 (2) | | Ru-N1 | 2.070 (5) | C1-Ru-N2 | 89.1 (2) | C2-Ru-N3 | 98.8 (2) | | Ru-N2 | 2.105 (5) | C1-Ru-N3 | 169.9 (2) | C2-Ru-N4 | 91.4 (2) | | Ru-N3 | 2.151 (5) | C1-Ru-N4 | 95.9 (2) | Ru-C1-O1 | 125.4 (5) | | Ru-N4 | 2.093 (5) | N1-Ru-N2 | 77.7 (2) | Ru-C1-O2 | 115.4 (4) | | C1-O1 | 1.191 (8) | N2-Ru-N3 | 84.5 (2) | O1-C1-O2 | 119.2 (6) | | C1-O2 | 1.344 (8) | N3-Ru-N4 | 77.0 (2) | C1-O2-C3 | 116.4 (6) | | O2-C3 | 1.463 (9) | N4-Ru-N1 | 171.1 (2) | Ru-C2-C3 | 176.5 (6) | | C2-O3 | 1.154 (8) | | ` , | | | Table VI. Selected Bond Distances (Å) and Bond Angles (deg) for [Ru(CO)2(bpy)2](PF6)2. | | ····· | ~~···· | | | (· · O)Z, | |-------|------------|----------|-----------|----------|-----------| | Ru-C1 | 1.865 (10) | C1-Ru-C2 | 88.8 (4) | N4-Ru-N1 | 169.5 (3) | | Ru-C2 | 1.906 (9) | C1-Ru-N1 | 97.9 (3) | C2-Ru-N1 | 89.5 (3) | | Ru-N1 | 2.095 (6) | C1-Ru-N2 | 93.9 (3) | C2-Ru-N2 | 175.9 (3) | | Ru-N2 | 2.102 (6) | C1-Ru-N3 | 175.7 (3) | C2-Ru-N3 | 93.1 (3) | | Ru-N3 | 2.073 (7) | C1-Ru-N4 | 88.7 (3) | C2-Ru-N4 | 98.9 (3) | | Ru-N4 | 2.083 (6) | N1-Ru-N2 | 78.2 (3) | Ru-C1-O1 | 176.4 (8) | | C1-O1 | 1.144 (12) | N2-Ru-N3 | 84.5 (2) | Ru-C2-O2 | 177.2 (7) | | C2-O2 | 1.125 (11) | N3-Ru-N4 | 78.0 (2) | | | #### Results and Discussion Isolation [Ru(CO₂)(CO)of A colorless H₂O/ $(bpy)_2] \cdot 3H_2O$ C2H5OH (1:1 v/v) solution of [Ru-(CO)₂(bpy)₂](PF₆)₂ rapidly changed to yellow on an addition of an equimolar amount of a methanolic Bu₄NOH. Concentration of the solution afforded [Ru(C(O)OH)(CO)-(bpy)2]PF6 as a yellow solid, which shows strong v(C=0) and v(C=0)bands at 1946 and 1619 cm⁻¹.14 These bands were shifted to 1904 and 1586 cm⁻¹ after the hydroxycarbonyl complex was dissolved in CH₃OH/CH₃CN/H₂¹⁸O (5:2:1 v/v) for 30 min. On the other hand, the H₂O / Figure 3. Infrared spectra (KBr) of $[Ru(CO_2)(CO)(bpy)_2]$ (a dotted line) and the sample isolated from $CH_3OH/H_2^{18}O$ (99% enriched, 5:1 v/v, a solid line). C₂H₅OH (1:1 v/v) solution of [Ru(CO)₂(bpy)₂](PF₆)₂ turned to reddish yellow by an addition of 2 equiv of Bu₄NOH. Slow evaporation of the reddish yellow solution gave red single crystals of [Ru(CO₂)(CO)(bpy)₂]·3H₂O. The infrared spectrum of [Ru(CO₂)-(CO)(bpy)₂]·3H₂O shows the v(C=O) band at 1911 cm⁻¹ and the v(CO₂) bands at 1428 and 1242 cm⁻¹ (Figure 3). The v(CO₂) bands are relatively low wavenumber compared with those of η^1 (C)-CO₂ complexes reported so far; 1610 and 1210 cm⁻¹ for [Rh(η^1 (C)-CO₂)Cl(diars)₂],^{8a} and 1650 and 1280 cm⁻¹ for [Co(pr-salen)KCO₂·THF]_n^{8b}. It is worthy to note that both v(CO₂) and v(C=O) bands of [Ru(η^1 (C)-CO₂)(CO)(bpy)₂] were shifted to 1869, 1407 and 1213 cm⁻¹ after the complex was dissolved in CH₃OH/H₂¹⁸O (99% enriched, 5:1 v/v) for 3 h. Thus, the oxygen atoms of both CO₂ and CO of [Ru(CO₂)(CO)-(bpy)₂] are replaced by that of H₂¹⁸O (Figure 3, eq 7). $$[Ru(CO_2)(CO)(bpy)_2] + 3H_2^{18}O$$ $=$ $[Ru(C^{18}O_2)(C^{18}O)(bpy)_2] + 3H_2O$ (7) X-Ray Structure Analysis A comparison of the molecular $[Ru(CO)_2(bpy)_2]^{2+}$, $[Ru(C(O)OH)(CO)(bpy)_2]^+$, and $[Ru(CO_2)(CO)(bpy)_2]$ is particularly interesting in the view point of the smooth conversion among those complexes in H2O. Although colorless and red single crystals of $[Ru(CO)_2(bpy)_2](PF_6)_2$ [Ru(CO₂)(CO)(bpy)₂]·3H₂O suitable for X-ray crystal analysis were obtained successfully, attempts to grow single crystals of [Ru(C(O)OH)(CO)(bpy)2]+ were The crystal structure of [Ru(C(O)OCH₃)(CO)(bpy)₂]B(C₆H₅)₄·CH₃CN, unsuccessful. therefore, was determined as a model compound of [Ru(C(O)OH)(CO)(bpy)₂]⁺ based on the view that the molecular structure of $[Ru(C(O)OH)(CO)(bpy)_2]^+$ can be safely presumed by that of [Ru(C(O)OCH₃)(CO)(bpy)₂]⁺. The molecular structures of [Ru(CO₂)-(CO)(bpy)₂]·3H₂O, $[Ru(C(O)OCH_3)(CO)(bpy)_2]B(C_6H_5)_4\cdot CH_3CN$ (bpy)21(PF6)2 are shown in Figures 4, 5, and 6. Two bpy ligands of three complexes are in cis-position, and the bond distances and angles of bpy ligands are similar to those observed in the other bpy ruthenium complexes, reported so far. 17 So, the difference in structural the present complexes is focused on the Ru(CO)2, $Ru(CO)(C(O)OCH_3),$ and Ru(CO)(CO₂) moieties (Figure 7). Although the bond distances of the C1-O1 (1.144 (12) Å) and C2-O2 bonds (1.125 (11) Å) for [Ru(CO)2- $(bpy)_2]^{2+}$ are not so difference from those of the C2-O3 for [Ru(C(O)OCH3)(CO)- $(bpy)_2]^+$ and $[Ru(CO_2)(CO)(bpy)_2]$ (1.154) (8) and 1.145 (17) Å, respectively), the **Figure 4.** Molecular Structure of [Ru(CO₂)(CO)(bpy)₂]. Figure 5. Molecular Structure of $[Ru(C(O)OCH_3)(CO)(bpy)_2]^+$. $[Ru(CO_2)(CO)(bpy)_2]$ (2.133 (10) and 2.204 (10) Å). Figure 6. Molecular Structure of $[Ru(CO)_2(bpy)_2]^{2+}$. wavenumber of v(C=0) bands of the CO ligand decreases in the order; $[Ru(CO)_{2}-(bpy)_{2}]^{2+}$ (2093 and 2039 cm⁻¹), $[Ru(C(O)OCH_{3})(CO)(bpy)_{2}]^{+}$ (1960 cm⁻¹), and $[Ru-(CO_{2})(CO)(bpy)_{2}]$ (1911 cm⁻¹). This may be correlated with the difference in the electron donor ability of CO, $CO_{2}CH_{3}$, and CO_{2} ligands. In accordance with this, both Ru-N2 (trans to CO) and Ru-N3 (trans to CO, $CO_{2}CH_{3}$, or CO_{2}) bond distances for the present complexes have a tendency to lengthen in the same order; $[Ru(CO)_{2}(bpy)_{2}]^{2+}$ (2.102 (6) and 2.073 (7) Å), $[Ru(C(O)OCH_{3})(CO)(bpy)_{2}]^{+}$ (2.105 (5) and 2.151 (5) Å), and Figure 7. The bond distances and angles of Ru(CO)(CO₂), Ru(CO)(C(O)OCH₃), and Ru(CO)₂ moieties. The most interesting features in $[Ru(C(O)OCH_3)(CO)(bpy)_2]^+$ and $[Ru(CO_2)(CO)(bpy)_2]$ are the bond lengths and angles of the Ru-CO₂ fragments. The Ru-C1 bond distance of the former is 2.042 (6) Å with Ru-C1-O1 (125.4 (5)°), Ru-C1-O2 (115.4 (4)°), and O1-C1-O2 (119.2 (6)°), and that of the latter is 2.064 (13) Å with Ru-C1-O1 (118.5 (9)°), Ru-C1-O2 (120.6 (10)°), and O1-C1-O2 (120.9 (12)°). The Ru-CO₂ bond distance of $[Ru(\eta^1(C)-CO_2)(CO)(bpy)_2]$ is close to CO_2 -metal distances of $[Rh(\eta^1(C)-CO_2)Cl-(diars)_2]^{8a}$ and $[Co(pr-salen)KCO_2\cdot THF]_{n,}^{8b}$ and the Ru-CO₂CH₃ bond length of $[Ru-(C(O)OCH_3)(CO)(bpy)_2]^+$ is also similar to metal-CO₂CH₃ ones of other methoxy-carbonyl metal complexes. Although a double bond character has been suggested in the W-CO₂ bond of $[W(CO)_5(\eta^1(C)-CO_2)]^{2-,26}$ the fact that the Ru-C1 distance of $[Ru(C(O)OCH_3)(CO)(bpy)_2]^+$ is shorter than that of $[Ru(\eta^1(C)-CO_2)(CO)(bpy)_2]$ suggests that a multi-bond character of the Ru-CO₂ bond is not always larger than the Ru-C(O)OCH₃ one. A difference in the C1-O1 (1.245 (16) Å) and C1-O2 (1.283 (15) Å) bond distances of [Ru(CO₂)(GO)(bpy)₂]·3H₂O may be associated with a difference in the number of hydrogen bondings of O2 with two water (O4 and O5"), and that of O1 with another water (O6) (see below). It is, however, worthy to note that the C1-O1 (1.245 (16) Å) and C1-O2 (1.283 (15) Å) bond distances of [Ru(η^1 (C)-CO₂)(CO)(bpy)₂] are intermediate between those of [Ru(C(O)OCH₃)(CO)(bpy)₂]⁺ (1.191 (8) and 1.344 (8) Å), and the average of the C1-O1 and C1-O2 bond distances of the former (1.264 Å) is almost consistent with that of the latter (1.268 Å). The C1-O1 and C1-O2 bonds of [Ru(CO₂)(CO)(bpy)₂], therefore, are approximated by 1.5 bond order, and one extra electron-pair involved in [Ru(CO₂)(CO)(bpy)₂] resulting from dissociation of the terminal proton of [Ru(C(O)OH)(CO)(bpy)₂]⁺ may be mainly localized in the CO₂ ligand rather than delocalized over the RuCO₂ moiety. The increase in the electron density of the CO₂ moiety of [Ru(CO₂)(CO)(bpy)₂] 3H₂O compared with that of [Ru(C(O)OH)(CO)(bpy)₂]⁺ may be compensated by the existence of the extended three-dimensional network of hydrogen bondings observed between the complex and three water molecules (Figure 8). Each water molecule is connected by three hydrogen bondings; e.g., O4 (water) is connected to O2 (CO₂), O5 (water), and O6 (water) with distances of 2.711 (14), 2.800 (14), and 2.751 (14)Å, respectively. Similarly, O5 is connected to O2 (CO₂), O4 (water), and O6 (water) with distances of 2.764 (14), 2.800 (14), and 2.870 (14) Å, respectively, and O6 is connected to O1 (CO₂), O4 (water) and O5 (water) with 2.653 (15), 2.751 (15), and 2.870 (14) Å, The hydrogen respectively. bonding network of [Ru(CO₂)-(CO)(bpy)2]·3H2O results in a distinct difference in the solubility of hydrated and [Ru(CO₂)(CO)anhydrous $(bpy)_2$]; $[Ru(CO_2)(CO)(bpy)_2]$. 3H₂O is only soluble in H₂O, CH₃OH, and C₂H₅OH, and almost insoluble in CH3CN, DMF, while DMSO, and [Ru(CO₂)(CO)anhydrous (bpy)2] prepared similarly in dry CH3CN is quite soluble in most organic solvents. Figure 8. Three-dimensional network of hydrogen bondings of $[Ru(CO_2)(CO)(bpy)_2] \cdot 3H_2O$. # **Chapter IV** Reactivity of the CO_2 Ligand in *cis*-Bis(2,2'-bipyridine)(η^1 (C)-carbon dioxide)carbonylruthenium # Introduction The conversion of the M- $\eta^1(C)$ -CO $_2$ moiety to M-CO through the M-C(O)OH in protic media is the key reaction in the photo- and
electrochemical CO $_2$ reduction catalyzed by transition metal complexes. Such the conformational change has been elucidated by X-ray analysis of a series of [Ru(CO $_2$)(CO)(bpy) $_2$], [Ru(C(O)OCH $_3$)(CO)-(bpy) $_2$]+, and [Ru(CO) $_2$ (bpy) $_2$]²⁺. A proton abstraction from a C-H bond of organic molecules by $\eta^1(C)$ -CO $_2$ moiety of [Ru(CO $_2$)(CO)(bpy) $_2$] is also interesting in the viewpoint of the elucidation of not only the nucleophilicity of the CO $_2$ molecules activated on metals but also the reactivity of [Ru(C(O)OH)(CO)(bpy) $_2$]+ toward the resulting carbanions. On the basis of the fact that most of the reaction products are limited to C1 compounds and a new carbon-carbon formation has hardly been achieved in electroand photochemical CO $_2$ reduction so far, the reaction of the Ru-C(O)OH moiety with carbanions may lead to a new synthetic route for a C-C bond formation in the electrochemical CO $_2$ reduction. This chapter describes the reaction of [Ru(CO $_2$)(CO)-(bpy) $_2$] with acidic protons of organic molecules. # **Experimental Section** Materials [Ru(CO)₂(bpy)₂](PF₆)₂ was prepared according to literature procedure.²⁴ TCNE was sublimed prior to use. Malononitrile, dimethyl malonate, succinonitrile, fumaronitrile, 1,2-dibromoethylene, dimethyl acetylenedicarboxylate, methyl acrylate, iodomethane, and a methanolic solution of Bu₄NOH (0.347 M) were used without further purification. Commercially available 1,2-diiodoethane was purified by washing a diethylether solution of 1,2-diiodoethane with aqueous sodium thiosulfate, aqueous sodium hydrogencarbonate, and water. Then, the diethylether solution was dried with sodium sulfate. After evaporation of the solvent, 1,2-diiodoethane was used for a reaction. Methanol was dried over molecular sieves(4A). Acetonitrile was distilled over calcium hydride. Reaction of [Ru(CO₂)(CO)(bpy)₂]·3H₂O with CH₃I A CD₃CN/CD₃OD solution (0.6 cm³, 1:1 v/v) containing [Ru(CO₂)(CO)(bpy)₂]·3H₂O (22.2 mg) and iodomethane (5.9 mg) was standing for 3 hr under an N₂ atmosphere. ¹H and ¹³C NMR spectra of the resulting solution was consistent with those of [Ru(C(O)OCH₃)(CO)(bpy)₂]-B(C₆H₅)₄ in the same solvent. ¹H NMR (270 MHz, MeOH- d_4) δ 3.36 (s) (the methyl proton); ¹³C NMR (67.8 MHz, MeOH- d_4) δ 202.2 and 206.8 (CO and methoxycarbonyl); δ 158.0, 156.9, 156.5, 156.2, 155.7, 150.6, 149.0, 140.7, 140.6, 140.5, 139.3, 128.5, 128.2, 128.0, 125.4, 125.1, 124.6, 124.2 (bpy); δ 49.9 (the methyl group). Reaction of [Ru(CO₂)(CO)(bpy)₂]·3H₂O with H₂C(CN)₂ H₂C(CN)₂ (33.4 mg, 0.51 mmol) was added to a suspension of [Ru(CO₂)(CO)(bpy)₂]·3H₂O (24.7 mg, 0.046 mmol) in CH₃CN (3.6 cm³). The suspension was stirred for 18 h at room temperature. The reddish suspension changed to an orange one during the time. An insoluble orange [Ru(C(O)C(CN)₂)(CO)(bpy)₂]·0.5H₂O was obtained by filtration, and washed with CH₃CN and CH₃OH, and then dried *in vacuo*. Calcd. for C₂₅H₁₇N₆O_{2.5}Ru: C, 55.35; H, 3.16; N, 15.49. Found: C, 55.32; H, 3.20; N, 15.40. Yield 20 mg (80%). Infrared spectrum (KBr) ν (C=O) 1926 cm⁻¹, ν (C=O) 1428 cm⁻¹, ν (C=N) 2172, 2149 cm⁻¹. # Reaction of $[Ru(CO_2)(CO)(bpy)_2]$ -3H₂O with H₂C(C(O)OCH₃)₂ $H_2C(C(O)OCH_3)_2$ (200 mg, 1.52 mmol) was added to a suspension of $[Ru(CO_2)(CO)(bpy)_2]\cdot 3H_2O$ (28.9 mg, 0.054 mmol) in CH₃CN (1.0 cm³), and the suspension was stirred for 12 h. The reddish yellow suspension changed to an orange solution during the time. Slow evaporation of the solution gave orange microcrystals. After excess of $H_2C(C(O)OCH_3)_2$ was removed by washing with diethylether, $[Ru(C(O)CH(C(O)OH)_2)(CO)(bpy)_2]OH\cdot 3H_2O$ was obtained. Yield 70%. Calcd. for $C_{25}H_{26}N_4O_{10}Ru$: C, 46.65; H, 4.07; N, 8.71. Found: C, 46.58; H, 4.07; N, 8.45. Infrared spectrum (KBr) $v(C\equiv O)$ 1950 cm⁻¹, $v(C\equiv O)$ 1732, 1601 cm⁻¹. Reaction of [Ru(CO₂)(CO)(bpy)₂]·3H₂O with TCNE TCNE (17.4 mg, 0.136 mmol) was added to a methanolic solution (5 cm³) of [Ru(CO₂)(CO)(bpy)₂]·3H₂O (72.1 mg, 0.134 mmol) under an N₂ atmosphere. The solution was stirred for 5 min at room temperature and then concentrated to about 1 cm³ under reduced pressure. On cooling the solution to -20 °C, [Ru(C(O)OC(OCH₃)₂CH(CN)₂)(CO)(bpy)₂]OH crystallized out of the solution. The product separated by filtration was washed with diethylether and dried *in vacuo*. Calcd. for C₂₈H₂₄N₆O₆Ru: C, 52.41; H, 3.77; N, 13.10. Found: C, 52.25; H, 3.68; N, 13.21. Infrared spectrum (KBr) ν (C=O) 1960 cm⁻¹, ν (C=O) 1632 cm⁻¹, ν (C-O) 1050 cm⁻¹, ν (C=N) 2195, 2164 cm⁻¹. ¹³C NMR (67.8 MHz, DMF- $d\tau$) δ 202.9 (s) and 201.9 (s) (carbonyl); δ 118.8 (s), 116.7 (s) and 115.7 (s) (C(CN)₂); δ 50.0(s), 49.4 (s) and 49.1 (s) (methoxy and methine); δ 123-158 (20 signals of bpy). Reaction of $[Ru(CO_2)(CO)(bpy)_2]\cdot 3H_2O$ with ICH_2CH_2I A methanolic solution (12 cm³) containing $[Ru(CO_2)(CO)(bpy)_2]\cdot 3H_2O$ (46.5 mg, 0.086 mmol) and ICH_2CH_2I (122 mg, 0.433 mmol) was stirred for 10 h under an N₂ atmosphere in dark. A dark brown $[RuI(CO)(bpy)_2]I_3$ precipitated was collected by filteration and washed with a small amount of methanol and diethylether. Yield 75%. Calcd. for $C_{21}H_{16}I_4N_4ORu$: C, 26.58; H, 1.70; N, 5.90. Found: C, 26.55; H, 1.75; N, 5.83. Infrared spectrum (KBr) v(C=O) 1950 cm⁻¹. Physical Measurements and Product Analysis Infrared spectra were obtained on a Shimadzu DR8000 spectrometer. ¹H and ¹³C NMR were obtained on a JEOL EX270 spectrometer. Elemental analyses were carried out at Chemical Materials Center of Institute for Molecular Science. Quantitative analyses of CO₂ and CH₂=CH₂ were carried out on a Shimadzu GC-8A gas chromatograph equipped with a 3 m column filled with Unibeads 1S using He as a carrier gas. Electrochemical measurements were performed in a pyrex cell equipped with a glassy carbon working electrode, a Pt auxiliary electrode, an Ag/AgCl reference electrode, and a nozzle for bubbling of N₂ or CO₂. Cyclic voltammograms were obtained by use of a Hokuto Denko HR-101B potentiostat, a Hokuto Denko HB-107A function generator, and a Yokokawa Electric Inc. 3077 X-Y recorder. ### **Results and Discussion** Reaction of [Ru(CO₂)(CO)(bpy)₂] with CH₃OH The ¹³C NMR spectrum of [Ru(CO)₂(bpy)₂](PF₆)₂ showed the CO carbon at δ 190.3 in CD₃CN, and the CO and CO₂ signals of $[Ru(CO₂)(CO)(bpy)₂]·3H₂O were observed at <math>\delta$ 203.9 and 210.2 in CD₃OD. An addition of an equimolar amount of a methanolic solution of Bu₄NOH to the $[Ru(CO)_2(bpy)_2](PF_6)_2$ solution resulted in a complete disappearance of the δ 190.3 signal, and the CO and COOH carbons of $[Ru(C(O)OH)(CO)(bpy)_2]^+$ appeared at δ 201.5 and 205.1 with 19 signals of two non-equivalent bpy ligands. Such selective formation of [Ru(C(O)OH)(CO)(bpy)2]+ in the reaction of an equimolar amount of OH- with $[Ru(CO)_2(bpy)_2]^{2+}$ in CH₃CN is quite contrast to that in H₂O, where $[Ru(C(O)OH)(CO)_{-}]^{2+}$ $(bpy)_2$ always exists as an equilibrium mixture with either $[Ru(CO)_2(bpy)_2]^{2+}$ or [Ru(CO₂)(CO)(bpy)₂], or both of them. A further addition of a methanolic solution of Bu₄NOH (about 1.2 molar excess) to the CH₃CN solution of [Ru(CO)₂(bpy)₂](PF₆)₂ caused an appearance of two signals of δ 203.9 and 210.2 of [Ru(CO₂)(CO)(bpy)₂] in addition to the δ 201.5 and 205.1 signals of [Ru(C(O)OH)(CO)(bpy)₂]+.²⁷ This result indicates that the conversion between [Ru(C(O)OH)(CO)(bpy)2]+ and [Ru(CO2)(CO)- $(bpy)_2$ in CD₃CN/CD₃OD is very slow compared with that in H₂O. Cooper et al. have demonstrated that $[W(CO)_5(\eta^1(C)-CO_2)]^{2-}$ produced in the reaction of $W(CO)_6$ with Li under CO_2 at -78 °C in THF undergoes an oxide-abstraction reaction by CO_2 to regenerate $W(CO)_6$ at room temperature (eq 8) and shows the $\eta^1(C)$ - CO_2 carbon at δ 225 in the ¹³C NMR spectrum.²⁶ Such an unusual oxide-abstraction reaction by CO_2 may be rationalized by a strong nucleophilicity of the oxygen atom of the $$[W(CO)_5(\eta^1(C)-CO_2)]^{2-} + CO_2 \longrightarrow W(CO)_6 + CO_3^{2-}$$ (8) CO₂ ligand. On the other hand, $[Ru(CO_2)(CO)(bpy)_2]$ does not react with CO₂ and the chemical shift of the $\eta^1(C)$ -CO₂ carbon is observed at fairly high magnetic field compared with that of $[W(CO)_5(CO_2)]^{2-}$. These results suggest that $[Ru(CO_2)(CO)(bpy)_2]$ exists as the deprotonated form (1) of $[Ru(C(O)OH)(CO)-(bpy)_2]^+$ rather than the Fischer-type carbene form (2) (Scheme I), although the Ru-CO₂ bond distance of $[Ru(CO_2)(CO)(bpy)_2]$ (2.064 Å) is close to metal- $$Ru - C = 0$$ $Ru = C = 0$ 0 carbon bonds of Ru carbene complexes reported so far (2.09 Å).²⁸ In contrast to eq 8, $[Ru(CO_2)(CO)(bpy)_2]$ is quite stable in CH₃OH at room temperature, as described above. The ¹³C NMR of $[Ru(CO_2)(CO)(bpy)_2]$ -3H₂O in CO₂-saturated CD₃OH, however, revealed the formation of both $[Ru(C(O)OH)(CO)(bpy)_2]$ - $(\delta 201.5 \text{ and } 205.1)$ and CD₃OC(O)O⁻ $(\delta 161.4)$, and neither $[Ru(CO_2)(CO)(bpy)_2]$ nor $[Ru(CO)_2(bpy)_2]^{2+}$ was detected in the solution. The absence of $[Ru(CO)_2(bpy)_2]^{2+}$ in the CO₂-saturated CD₃OH indicates that $[Ru(CO_2)(CO)(bpy)_2]$ does not undergo an oxide-abstraction reaction by CO₂. On the basis of the p $K_{a=9}.5$ of $[Ru(C(O)OH)(CO)(bpy)_2]^{+}$, protonation of $[Ru(CO_2)(CO)(bpy)_2]$ affording $[Ru(C(O)OH)(CO)(bpy)_2]^{+}$ in CO₂-saturated CD₃OH is explained by an enhancement of the acidity of CD₃OH due to concomitant formation of CD₃OCO₂-(9). It is worthy to note that a selective conversion of $[Ru(CO_2)(CO)(bpy)_2]$ to $[Ru(C(O)OH)(CO)(bpy)_2]^{+}$ can not be attained in aqueous conditions, since $[Ru(C(O)OH)(CO)(bpy)_2]^{+}$ in Variably exists as an equilibrium mixture of $[Ru(CO_2)(CO)(bpy)_2]$ and $[Ru(CO)_2(bpy)_2]^{2+}$ in H₂O. The conversion of $[Ru(CO_2)(CO)(bpy)_2]$ to $[Ru(CO)(bpy)_2]^{+}$ in CO₂-saturated CH₃OH was also observed in
a $$[Ru(CO_2)(CO)(bpy)_2] + CH_3OH + CO_2 \longrightarrow [Ru(C(O)OH)(CO)(bpy)_2]^+ + CH_3OCO_2^-$$ (9) cyclic voltammogram (CV); the CV of $[Ru(CO_2)(CO)(bpy)_2]\cdot 3H_2O$ shows an irreversible anodic wave at +0.53 V vs. Ag/AgCl (a solid line in Figure 9(a)) and a strong cathodic current at potential more negative than -1.25 V in CH₃OH under an N_2 atmosphere (a solid line in Figure 9(b)). The anodic +0.53 V wave completely disappears in CO₂-saturated CH₃OH (a dotted line in Figure 9(a)) and the reduction of CO₂ takes place at potentials more negative than -1.18 V (a dotted line in Figure 9(b)). Those results may make clear the roles of $[Ru(CO_2)(CO)(bpy)_2]$ and $[Ru(C(O)OH)(CO)(bpy)_2]^+$ in a previous electrochemical CO₂ reduction catalyzed by $[Ru(CO)_2(bpy)_2]^{2+}$, where $[Ru(C(O)OH)(CO)(bpy)_2]^+$ resulting from $[Ru(CO_2)(CO)(bpy)_2]$ functions as the active species for the formation of HCOO⁻ in CO₂-saturated CH₃OH.²⁹ Reactions of $[Ru(CO_2)(CO)(bpy)_2]$ with Organic Compounds Having Active Hydrogens . A proton abstraction from a C-H bond by the $\eta^1(C)$ -CO₂ moiety of $[Ru(CO_2)(CO)(bpy)_2]$ is much more interesting than that of hydroxy proton of methanol, since the resulting carbanion may react with the hydroxycarbonyl carbon of $[Ru(C(O)OH)(CO)(bpy)_2]^+$ to form a carbon-carbon bond. Although no reaction took place between $[Ru(CO_2)(CO)(bpy)_2]^-3H_2O$ and $NCCH_2CH_2CN$ in CH_3OH , the reaction of $[Ru(CO_2)(CO)(bpy)_2]^-3H_2O$ with $H_2C(C(O)OCH_3)_2$ afforded $[Ru(C(O)CH(C(O)O-CH_3)_2)(CO)(bpy)_2]^+$ in CH_3OH . The reaction was monitored by the ^{13}C NMR spectra of $[Ru(CO_2)(CO)(bpy)_2]^-3H_2O$ in the presence of 30 equiv³⁰ of $H_2C(C(O)OCH_3)_2$ in CD_3OD/CD_3CN (1:2 v/v). The mixture showed two signals at δ 170.6 (s) and 171.8 (s), and a triplet signal at δ 44.8 (t) due to the formation of a C-D bond ($J(^{13}C-D) = 19.3 Hz$) in **Figure 9.** Cyclic voltammogram of $[Ru(CO_2)(CO)(bpy)_2] \cdot 3H_2O$ in CH_3CN containing 0.1M Bu_4NBF_4 as a supporting electrolyte under N_2 (solid lines) and CO_2 (dotted lines). dE/dt = 100 mV/s. the vicinity of the strong carboxylate (δ 167.5 (s)) and methylene (δ 41.1 (s)) signals of free H₂C(C(O)OCH₃)₂. In addition, the δ 203.9 (s) and 210.2 (s) signals of [Ru(CO₂)-(CO)(bpy)₂] completely disappeared, and two signals appeared at δ 201.5 (s) and 205.3 (s). This result suggests that [Ru(C(O)CD(C(O)OCH₃)₂)(CO)(bpy)₂]⁺ is formed in the solution. The reaction of [Ru(CO₂)(CO)(bpy)₂] with H₂C(C(O)OCH₃)₂, therefore, may proceed *via* abstraction of a methylene proton of H₂C(C(O)OCH₃)₂ by the η ¹(C)-CO₂ moiety of [Ru(CO₂)(CO)(bpy)₂], followed by a replacement of OH⁻ in the hydroxycarbonyl group of [Ru(C(O)OH)(CO)(bpy)₂]⁺ by [HC(C(O)OCH₃)₂]⁻ with generating [Ru(C(O)CH-(C(O)OCH₃)₂)(CO)(bpy)₂]OH. The fact that [Ru(C(O)CH(C(O)OH)₂)(CO)(bpy)₂]OH was obtained as the final reaction product indicates that $[Ru(C(O)CH(C(O)O-CH_3)_2)(CO)(bpy)_2]OH$ underwent a hydrolysis reaction presumably due to either OH^- or H_2O^{31} during the purification (Scheme II). As similar to $[Ru(C(O)OH)(CO)(bpy)_2]^+$, $[Ru(C(O)CH-(C(O)OH)_2)(CO)(bpy)_2]OH$ rapidly was converted to $[Ru(CO)_2(bpy)_2]^{2+}$ in a quantitative yield by treatment with acidic water (pH 2). The reaction of $[Ru(CO_2)(CO)-(bpy)_2]$ with $H_2C(CN)_2$ is very rapid compared with the reaction with $H_2C(C(O)OCH_3)_2$. A reddish yellow suspension of $[Ru(CO_2)(CO)(bpy)_2]$ in Scheme II $$\begin{bmatrix} Ru-C & O \\ O^{-} \end{bmatrix}^{0} + H_{2}C(C(O)OCH_{3})_{2}$$ $$Ru-C & O \\ OH \end{bmatrix}^{+} + HC(C(O)OCH_{3})_{2}$$ $$Ru-C & O \\ + C(C(O)OCH_{3})_{2} \end{bmatrix}^{+} + OH^{-}$$ $$Ru-C & O \\ + C(C(O)OCH_{3})_{2} \end{bmatrix}^{+} + OH^{-}$$ $$Ru-C & O \\ + C(C(O)OCH_{3})_{2} \end{bmatrix}^{+} + OH^{-}$$ CH₃CN rapidly changed to an orange suspension by an addition of 10 equiv of $H_2C(CN)_2$. The product was insoluble in usual solvents such as DMF, CH₃CN, CH₃OH and H₂O. The IR spectrum of the product showed $v(C\equiv O)$ and $v(C\equiv O)$ bands at 1926 and 1428 cm⁻¹, respectively, and two $v(C\equiv N)$ bands were observed at 2172 and 2149 cm⁻¹. In addition, the reaction product suspended in acidic H₂O (pH 2.0) also gave $[Ru(CO)_2(bpy)_2]^{2+}$ quantitatively. Combined with these results and the elemental analysis, the orange product may be $[Ru(C(O)C(CN)_2)(CO)(bpy)_2]$ rather than $[Ru(C(O)-CH(CN)_2)(CO)(bpy)_2]^+$. From analogy with the reaction with $H_2C(C(O)CH_3)_2$, the initial reaction product may be the latter, which presumably dissociates a methine proton by the presence of strong electron-withdrawing two cyano group.³² The reaction of $[Ru(CO_2)(CO)(bpy)_2]$ with $H_2C(CN)_2$, therefore, may be expressed by eq 10. $$[Ru(CO_2)(CO)(bpy)_2] + (NC)_2CH_2$$ [Ru(C(O)C(CN)₂)(CO)(bpy)₂] + H₂O (10) The Reaction of [Ru(CO₂)(CO)(bpy)₂] with Alkyl lodides In comparison with eq 8 and 9, the nucleophilicity of the CO2 ligand of [Ru(CO2)(CO)(bpy)2] may be much less than that of $[W(CO)_5(\eta^1(C)-CO_2)]^{2-}$. It has been ,however, reported that a neutral $\eta^1(C)$ -CO₂ complex [IrCl(dmpe)₂($\eta^1(C)$ -CO₂)] can be converted to the corresponding methoxycarbonyl complex [IrCl(C(O)OCH3)(dmpe)2]FSO3 by a treatment with a strong methylation agent such as CH₃FSO₃.33 In the present study, [Ru(C(O)OCH₃)(CO)(bpy)₂]I, which shows methyl proton at δ 3.36 (s) in CD₃OD on a 1 H (270 MHz) NMR spectrum, was quite smoothly obtained in the reaction of [Ru(CO₂)(CO)- $(bpy)_2]\cdot 3H_2O$ with CH_3I in CH_3OH (eq 11). It is worthy to note that $[Ru(C(O)OCH_3)(CO)-ICO]$ $(bpy)_2]^+$ can be also synthesized by the reaction of $[Ru(CO)_2(bpy)_2]^{2+}$ with CH_3ONa in CH₃OH (eq 12).¹⁴ Thus, [Ru(C(O)OCH₃)(CO)(bpy)₂]+ can be prepared not only by an electrophilic attack of CH₃I to [Ru(CO₂)(CO)(bpy)₂] but also by a nucleophilic attack of CH_3O^{-} to $[Ru(CO)_2(bpy)_2]^{2+}$. $$[Ru(CO_2)(CO)(bpy)_2] + CH_3I \longrightarrow [Ru(C(O)OCH_3)(CO)(bpy)_2]^1 (11)$$ $$[Ru(CO)_2(bpy)_2]^{2+} + CH_3O^{-} \longrightarrow [Ru(C(O)OCH_3)(CO)(bpy)_2]^{+} (12)$$ In contrast to the reaction with CH₃I, $[Ru(CO_2)(CO)(bpy)_2]\cdot 3H_2O$ reacted with two moles of ICH_2CH_2I in CH₃OH to generate $[RuI(CO)(bpy)_2]I_3$, CO₂, and 2 moles of $CH_2=CH_2$ in a quantitative yield (eq 13). The initial reaction product of eq 13 may be $$[Ru(CO_2)(CO)(bpy)_2] + 2ICH_2CH_2I \longrightarrow [RuI(CO)(bpy)_2]I_3 + CO_2 + 2CH_2=CH_2$$ (13) [Ru(C(O)OCH₂CH₂I)(CO)(bpy)₂]⁺ and I⁻ from analogy with the reaction with CH₃I. An intramolecular nucleophilic attack of terminal iodine of [Ru(C(O)OCH₂CH₂I)(CO)(bpy)₂]⁺ to Ru may afford [RuI(CO)(bpy)₂]⁺ with liberating CH₂=CH₂ (Scheme III). Another CH₂=CH₂ evolution in eq 13 apparently results from the reaction of I⁻ with ICH₂CH₂I, since vigorous CH₂=CH₂ evolution took place by an addition of KI or NaI to a methanolic solution of ICH₂CH₂I. # Scheme III $$\begin{bmatrix} Ru - C \\ O^{-} \end{bmatrix}^{0} + ICH_{2}CH_{2}I \longrightarrow \begin{bmatrix} C \\ Ru \\ I - CH_{2} \end{bmatrix}^{+} + I^{-}$$ $$\begin{bmatrix} Ru - I \end{bmatrix}^{+} + CO_{2} + CH_{2} = CH_{2} + I^{-}$$ Reaction of $[Ru(CO_2)(CO)(bpy)_2]$ with TCNE Neither dimethyl acetylene-dicarboxylate, fumaronitrile, 1,2-dibromoethylene nor methyl acrylate reacted with $[Ru(CO_2)(CO)(bpy)_2]\cdot 3H_2O$ in CH₃OH. On the other hand, TCNE smoothly reacted with $[Ru(CO_2)(CO)(bpy)_2]\cdot 3H_2O$ under an N_2 atmosphere to give air-unstable yellow microcrystals of $[Ru(C(O)OC(OCH_3)_2CH(CN)_2)(CO)(bpy)_2]OH$, which showed two methoxy carbons and a methine carbon at δ 49.1 (s), 49.4 (s) and 50.0 (s), two cyano carbons and -O-*C(CN)₂- at δ 115.7 (s), 116.7 (s) and 118.8 (s), and two carbonyl carbons at δ 201.9 and 202.9 in the ¹³C NMR in (CD₃)₂NC(O)D. The replacement of two groups of TCNE by CH₃O groups in the product may be explained by the fact of a smooth conversion of TCNE to 1,1-dicyano-2,2-dimethoxyethylene in the presence of weak base such as urea in CH₃OH.³⁴ The IR spectra of the product displayed v(C=0)and v(C=0) bands at 1960 and 1632 cm⁻¹ together with Scheme IV $$\begin{bmatrix} Ru - C & O \\ O^{-} \end{bmatrix}^{0} + NC & OCH_{3} \\ + NC & OCH_{3} \end{bmatrix}$$ $$= \begin{bmatrix} Ru - C & O & OCH_3 & CN \\ O & OCH_3 & CN \end{bmatrix}^{+} + OH^{-}$$ v(C=N) bands at 2164 and 2195 cm⁻¹. The new C-O bond involved in the product may be $[Ru(C(O)OC(OCH_3)_2CH(CN)_2)(CO)(bpy)_2]^+$ rather than $[Ru(C(O)OC(CN)_2CH-(OCH_3)_2)(CO)(bpy)_2]^+$ by considering the Michael-type addition and the polarization of $(NC)_2C=C(OCH_3)_2$ (Scheme IV). The product also underwent a smooth hydrolysis in acidic water (pH 2) to form $[Ru(CO)_2(bpy)_2]^{2+}$ quantitatively. This chapter reveals the nucleophilicity of the $\eta^1(C)$ -CO₂ moiety of [Ru-(CO₂)(CO)(bpy)₂]. The Ru-CO₂ bond of [Ru(CO₂)(CO)(bpy)₂] may be expressed by the resonance structure 1 of Scheme I, and neither spectroscopical data nor the reactivity of [Ru(CO₂)(CO)(bpy)₂] gives any positive evidence for the contribution of the structure 2 of Scheme I. # Chapter V Nucleophilicity of CO₂ in Protic Media — Competitive Addition of CO₂ and Proton to Reduced Quinones #### Introduction There is a matter of controversy about the initial stage of the reduction of CO₂ catalyzed by transition metal complexes; which of proton or CO₂ attacks on low valent coordinatively unsaturated metal centers. In the former, formato complexes (M-OC(O)H) are produced by insertion of CO₂ to the resulting M-H bond (eq 14),^{5f} while metal carboxylates (M-C(O)OH) would be generated by protonation of M-CO₂ in the latter (eq 15).¹² Both metal-formato and -carboxylato complexes are reasonable precursors for $$[M]^{n+} \xrightarrow{H^{+}} [M-H]^{(n+1)+} \xrightarrow{CO_{2}} [M-OC(O)H]^{(n+1)+}$$ $$(14)$$ $$CO_{2} \qquad H^{+}$$ $$[M]^{n+} \xrightarrow{M^{-}} [M-CO_{2}]^{n+} \xrightarrow{M^{-}} [M-C(O)OH]^{(n+1)+}$$
$$(15)$$ the formation of formic acid, and generation of CO has been ascribed to an irreversible reduction of metal-carbonyl complexes resulted from dehydroxylation of M-C(O)OH complexes.¹² The question, however, has been raised whether CO₂ attacks on metals or not in aqueous solutions because of lack of any data concerning the acidity of CO₂ in protic media. This chapter describes a competitive electrophilic addition of CO₂ and proton to reduced quinones in CH₃CN/H₂O and CH₃OH from the viewpoint of the elucidation of the relative acidity of CO₂ and proton in those media. # **Experimental Section** Electrochemical measurements were performed in a pyrex cell equipped with a glassy carbon working electrode, a Pt auxiliary electrode, an Ag/AgCl reference electrode, and a nozzle for bubbling of N₂ or CO₂. Cyclic voltammograms were obtained by use of a Hokuto Denko HR-101B potentiostat, a Hokuto Denko HB-107A function generator, and a Yokokawa Electric Inc. 3077 X-Y recorder. #### Results and Discussion The CV of TMQ shows two reversible $[TMQ]^{0/-}$ and $[TMQ]^{-/2-}$ redox couples at $E_{1/2}$ = -0.75 and -1.31 V vs. Ag/AgCl in dry CH₃CN (a solid line in Figure 10(a)). Introduction of CO₂ to the CH₃CN solution (0.24M) results in the increase of the cathodic peak current of the $[TMQ]^{0/-}$ couple and a strong anodic wave appeared at 0.05 V (a dotted Figure 10. Cyclic voltammogram of TMQ (3.40 mM, (a)), TCQ (1.16 mM, (b)), and DDQ $(1.89 \, \text{mM}, (c))$ under N_2 (solid lines) and CO_2 (dotted lines) in CH₃CN containing Bu₄NBF₄ (0.1M). dE/dt = 100 mV/s: working electrode; glassy carbon. line in Figure 10(a)). The original [TMQ]0/and [TMQ]-/2- redox couples are completely regenerated with the same peak current intensities upon removing CO2 by bubbling N₂ for 20 min. This result clearly indicates that [TMQ]2- forms a CO2 adduct, as similar to the 1:2 adduct between 9,10-phenanthrenequinone dianion and CO2.35 Quite similarly, the CV of 2,6-di-t-butyl-1,4-benzoquinone, 1,4-benzomethyl-1,4-benzoquinone, quinone, and 1,4-naphtoquinone exhibited irreversible two-electron cathodic and anodic waves around -0.6 and 0 V in CO2-saturated CH₃CN (Table VII). Thus, those quinone dianions [Q1]2- form 1:2 adducts with CO2 (eq 16) in CH3CN. $$Q_1 + 2e^- + 2CO_2$$ [Q₁·2CO₂]²⁻ (16) CO2 gives no effect on the reversible (0/1-) redox couple of TCQ at $E_{1/2} = 0.12 \text{ V}$, but causes 90 and 350 mV anodic shifts of the cathodic and anodic waves of the [TCQ] /2- couple as compared with those in CH₃CN under N2 (compare a solid line with a dotted one in Figure 10(b)). This implies that the acidity of CO2 is not strong enough to attack Table VII. Electrochemical data of quinones in CH₃CN ^{a)}. | Table | VII. Electrochemical data of q | Q+e- | | Q-+e- | Q2- | se | e b) | |----------------|--------------------------------|-------|-------------|-------|-------|---------------------|-------------------| | tuno | quinones | Epc | Epa | Epc | Epa | Epc | E _{pa} | | type | 2,6-di-t-butyl-1,4-benzo- | -0.68 | -0.60 | -1.46 | -1.32 | -0.69 | 0.10 | | Q ₁ | | -0.78 | -0.70 | -1.35 | -1.17 | -0.79 | -0.02 | | Q ₁ | TMQ | -0.78 | -0.44 | -1.18 | -0.98 | -0.52 | 0.13 | | Q ₁ | methyl-1,4-benzo- | -0.49 | -0.36 | -1.27 | -0.96 | -0.55 | 0.21 | | Q ₁ | 1,4-benzo- | -0.43 | -0.53 | -1.19 | -1.07 | -0.63 | -0.10 | | Q_2 | 1,4-naphtoquinone | 0.08 | 0.15 | -0.69 | -0.60 | -0.60 | -0.25 | | Q_2 | TCQ | 0.00 | 0.08 | -0.72 | -0.64 | -0.65 | -0.27 | | Q ₂ | TBQ
DDQ | 0.52 | 0.60 | -0.30 | -0.21 | -0.29 ^{c)} | 0.16 ^C | a) V vs. Ag/AgCl.; dE/dt = 100 mV/s. b) $Q_1 + 2e^2 + 2CO_2 = [Q_1 \cdot 2CO_2]^{2-}$; $Q_2^2 + e^2 + CO_2 = [Q_1 \cdot 2CO_2]^{2-}$ $[Q_2 \cdot CO_2]^{-}$, c) weak interaction. on a radical anion of TCQ. TBQ showed quite similar redox behavior under N₂ and CO₂ (Table VII). Dubois et al. has proposed a new CO₂ carrier system by using the [TCQ]^{-/2}-redox couple in organic solvents (eqs 17 and 18).³⁶ $$Q_2 + e^- \qquad Q_2^- \qquad (17)$$ $$Q_2^- + e^- + CO_2 \qquad [Q_2 \cdot CO_2]^{2^-} \qquad (18)$$ DDQ also displays two reversible [DDQ]^{0/-} and [DDQ]^{-/2-} couples at $E_{1/2} = 0.56$ and -0.24 V in CH₃CN under N₂ (a solid line in Figure 10(c)). A weak anodic wave appears at +0.18 V at the expense of the peak current of the anodic wave of the [DDQ]^{-/2-} couple under CO₂ (a dotted line in Figure 10(c)). The +0.18 V anodic wave disappears by bubbling N₂ for 5 min, suggesting the interaction of DDQ²⁻ with CO₂. Based on the small change in the CV of DDQ under N2 and CO2, the interaction of DDQ2- with CO2 is extremely weak as compared with $[Q_1]^{2-}$ and $[Q_2]^{2-}$. It is worthy to note that guinones having cathodic waves of the [Q]^{0/-} and [Q]^{-/2-} couples at potentials more negative than -0.5 V show strong affinity for CO₂, and the interaction increases in the order [DDQ]²⁻ << $[Q_2]^{2-} \ll [Q_1]^{2-}$. To evaluate the acidity of CO₂ in protic media, the redox behavior of TMQ in CH₃CN/H₂O and MeOH under CO₂ was investigated, since those solvents are widely used as a proton source in electrochemical CO₂ reductions. The (1-/2-) couples of Q₁ undergo pronounced anodic shifts as compared with the (0/1-) couple with increasing amount of H₂O in CH₃CN.³⁷ In accordance with this, two couples of cathodic and anodic waves of TMQ appear at -0.65 and -0.53 V in CH3CN/H2O (9:1 v/v, a solid line in Figure 11(a)), as described elsewhere. 37 Similarly, TMQ also shows only a pair of cathodic and anodic waves at -0.56 and -0.06 V in CH₃OH (a solid line in Figure Based on the anodic peak potentials of [TMQ:2H]⁰ at +0.59 and +0.60 V in CH₃CN/H₂O (9:1 v/v) and CH₃OH, respectively, the main species of TMQ dianion may be [TMQ·H] in those media (eqs 19 and 20).38 On the other hand, the cathodic and anodic waves of TMQ are observed at -0.64 and +0.29 V, and -0.52 and +0.33 V in CO2- $$TMQ + 2e^{-} + H^{+} = [TMQ \cdot H]^{-}$$ (19) $TMQ + 2e^{-} + 2H^{+} = [TMQ \cdot 2H]^{0}$ (20) saturated CH₃CN/H₂O (9:1 v/v) and CH₃OH, respectively (dotted lines in Figure 11). There are four possible CO₂ adducts ([TMQ·H·CO₂]-, [TMQ·H·CO₂H]⁰, [TMQ·CO₂·CO₂H]-, and [TMQ·(CO₂H)₂]⁰) except for [TMQ·2H]⁰ existing in strong acidic solutions. Both [TMQ·H·CO₂]- and [TMQ·H·CO₂H]⁰ would be produced by an addition of CO₂ to [TMQ·H·CO₂]-, although the existence of [TMQ·H·CO₂H]⁰ generated by protonation of [TMQ·H·CO₂]- Figure 11. Cyclic voltammogram of TMQ (0.96 mM, (a); 1.22mM,(b)) under N₂ (solid lines) and CO₂ (dotted lines) in CH₃CN / H₂O (9:1 v/v) (a) and CH₃OH (b), containing Bu₄NBF₄ (0.1 M). dE/ dt =100 mV/s: working electrode; glassy carbon. may be doubtful from the comparison of the basicity between [TMQH]- and ITMQ·H·CO₂]⁻. The other two, [TMQ: $CO_2 \cdot CO_2 H$ ⁻ and $[TMQ \cdot (CO_2 H)_2]^0$, are formed by protonation of [TMQ:2CO₂]²⁻. Thus, the three possible CO2 adducts apparently result from an electrophilic attack of CO2 to either [TMQ]2- or [TMQH]. It is, therefore, concluded that the acidity of CO2 is almost equivalent or stronger than that of hydroxy proton of CH3CN/H2O (9:1 v/v) and CH3OH under CO2. If the selectivity of eqs 14 and 15 is mainly controlled by the acidity of CO₂, the reaction of eq 15 rather than eq 14 is liable to occur in CH3CN/H2O (9:1 v/v) and CH₃OH. # Chapter VI #### Conclusions To evaluate a relative acidity of CO and NO ligated on metal complexes, $[Ru(NO_2)(CO)(bpy)_2]PF_6$ was prepared and analyzed the structure. The CO ligand of $[Ru(NO_2)(CO)(bpy)_2]^+$ undergoes a reversible nucleophilic attack of OH^- to form, while neither $[Ru(CO)(bpy)_2(NO_2H)]^{2+}$ nor $[Ru(CO)(bpy)_2(NO)]^{3+}$ was formed by the treatment of $[Ru(NO_2)(CO)(bpy)_2]^+$ with HCl. This observation suggests that the Ru-NO or Ru-NO₂H moiety has more acidic character than the Ru-CO one. The molecular structures of $[Ru(CO)_2(bpy)_2](PF_6)_2$, $[Ru(C(O)OCH_3)(CO)(bpy)_2]-BPh_4\cdot CH_3CN$ as a model of $[Ru(C(O)OH)(CO)(bpy)_2]^+$, and $[Ru(\eta^1(C)-CO_2)(CO)(bpy)_2]-BPh_4\cdot CH_3CN$ as a model of $[Ru(C(O)OH)(CO)(bpy)_2]^+$, and $[Ru(\eta^1(C)-CO_2)(CO)(bpy)_2]-BPh_4\cdot CH_3(CO)(DCH_3)(CO)(bpy)_2]^+$ is shorter than the Ru-C(O)OCH_3 bond distance of $[Ru(C(O)OCH_3)(CO)(bpy)_2]^+$ is shorter than the Ru-CO₂ one of $[Ru(\eta^1(C)-CO_2)(CO)-(bpy)_2]$, a multi-bond character of the Ru-CO₂ bond is not larger than the Ru-C(O)OCH_3 bond. One extra electron pair involved in $[Ru(\eta^1(C)-CO_2)(CO)(bpy)_2]$ resulting from dissociation of the terminal proton of $[Ru(C(O)OH)(CO)(bpy)_2]^+$ may, therefore, localize mainly in the CO₂ ligand. The increase in the electron density of the CO₂ moiety is effectively compensated by the extended three-dimensional network of hydrogen bondings between the CO₂ ligand and three water molecules in $[Ru(\eta^1(C)-CO_2)(CO)(bpy)_2]\cdot 3H_2O$. The basicity of $\eta^1(C)$ -CO₂ moiety of $[Ru(\eta^1(C)$ -CO₂)(CO)(bpy)₂] is strong enough to abstract an active hydrogen of malonic acid and malononitrile (R-H). The resulting $[Ru(C(O)OH)(CO)(bpy)_2]^+$ further reacts with those carbanions (R-) to form the Ru-C(O)R moiety with generating a new C-C bond. Interaction of CO₂ with reduced quinones was examined in CH₃CN, CH₃CN/H₂O (9:1 v/v), and CH₃OH to evaluate the nucleophilicity of CO₂ in protic media. Predominant carboxylation of TMQ dianion in CO₂-saturated CH₃OH and CH₃CN/H₂O (9:1 v/v) implies that the acidity of CO₂ is strong enough to attack basic sites even in these protic media, although there has been a controversy about the formation of either M-CO₂ or M-H complex in the reaction of CO₂ with low valence metal complexes in protic media. The above result reasonably explains the presence of M- η^{1} (C)-CO₂ complexes as the reaction intermediate in catalytic cycles of photo- and electrochemical CO₂ reduction catalyzed by transition metal complexes. The present work could give the information concerning the structural changes in the conversion from CO_2 to CO on metal complexes and the
relative nucleophilicities of CO_2 and protons in protic media, for the first time. #### References and Notes - (1) Handa, A. Kagaku-kogyo 1991, 42. - (2) Tansan-gasu-no-kagaku edited by Kitano, Y.; Ichikawa, M.; Osa, T.; Asada, K., Kyoritsu-shuppan, 1976, 33. - (3) Amatore, C.; Saveant, J. M. J. Am. Chem. Soc. 1981, 103, 5021. - (4) Chantry, G. W.; Whiffen, D. M. Mol. Phys. 1962, 5, 189. - For electrochemical CO₂ reduction, see, e. g.: (a) Dubois, D. L.; Miedaner, A.; (5) Haltiwanger, R. C. J. Am. Chem. Soc. 1991, 113, 8753. (b) Atoguchi, T.; Aramata, A.; Kazusaka, A.; Enyo, M. J. Chem. Soc., Chem. Commun. 1991, 156. (c) Tsai, J. C.; Khan, M. A.; Nicholas, K. M. Organometallics 1991, 10, 29. (d) Fujita, E.; Creutz, C.; Sutin, N.; Szalda, D. J. J. Am. Chem. Soc. 1991, 113, 343. (e) Ishida, H.; Fujiki, K.; Ohba, T.; Ohkubo, K.; Tanaka, K.; Terada, T.; Tanaka, T. J. Chem. Soc., Dalton Trans. 1990, 2155. (f) Pugh, J. R.; Bruce, M. R. M.; Sullivan, B. P.; Meyer, T. J. Inorg. Chem. 1991, 30, 86. (g) Tamaura, Y.; Tabata, M. Nature (London) 1990, 346, 255. (h) Ruiz, J.; Guerchais, V.; Astruc, D. J. Chem. Soc., Chem. Commun. 1989, 812. (i) Tomohiro, T.; Uoto, K.; Okuno, H. J. Chem. Soc., (j) Eisenschmid, T. C.; Eisenberg, R. Chem. Commun. 1990, 194. (k) Tukahara, K.; Wilkins, R. G. Inorg. Chem. Organometallics 1989, 8, 1822. 1989, 28, 1605. (I) Silavwe, N. D.; Goldman, A. S.; Ritter, R.; Tyler, D. R. Inorg. Chem. 1989, 28, 1231. (m) Sugimura, K.; Kuwabata, S.; Yoneyama, H. J. Am. Chem. Soc. 1989, 111, 2361. (n) Hurrell, H. C.; Mogstad, A. L.; Usifer, D. A.; Potts, K. T.; Abruna, H. D. Inorg. Chem. 1989, 28, 1080. (o) Tanaka, K.; Wakita, R.; Tanaka, T. J. Am. Chem. Soc. 1989, 111, 2428 and references therein. For photochemical CO₂ reduction, see, e. g.: (p) Ishida, H.; Tanaka, K.; Tanaka, T. Chem. Lett. 1988, 339. (q) Mandler, D.; Willner, I. J. Am. Chem. Soc. 1987, 109, 7884. (r) Kutal, C.; Corbin, A. J.; Ferraudi, G. Organometallics 1987, 6, 553. (s) Grant, J. L.; Goswami, K.; Spreer, L. O.; Otvos, J. W.; Calvin, M. J. Chem. Soc., Dalton Trans. 1987, 2105. (t) Ishida, H.; Tanaka, K.; Tanaka, T. Chem. Lett. 1987, 1035. (u) Hawecher, J.; Lehn, J.-M.; Ziessel, R. Helv. Chim. Acta 1986, 69. 1990. (v) Ziessel, R.; Hawecher, J.; Lehn, J.-M. Helv. Chim. Acta 1986, 69, 1065. (w) Hawecher, J.; Lehn, J.-M.; Ziessel, R. J. Chem. Soc., Chem. Commun. 1985, 56. (x) Kutal, C.; Weber, M. A.; Ferraudi, G.; Geiger, D. Organometallics 1985, 4, 2161. (y) Kitamura, N.; Tazuke, S. Chem. Lett. 1983, 1109. (z) Hawecher, J.; Lehn, J.-M.; Ziessel, R. J. Chem. Soc., Chem. Commun. 1983, 536. - (6) (a) Noda, H.; Ikeda, S.; Oda, Y.; Imai, K.; Maeda, M.; Ito, K. Bull. Chem. Soc. Jpn. 1990, 63, 2459. (b) Noda, H.; Yamamoto, A.; Ikeda, S.; Maeda, M.; Ito, K. Chem. Lett. 1990, 1757. (c) Hori, Y.; Murata, A. Chem. Lett. 1991, 181. (d) Ogura, K.; Migita, T.; Imura, H. J. Electrochem. Soc. 1990, 137, 1730. (e) Azuma, M.; Hashimoto, K.; Hiramoto, M.; Watanabe, M.; Sakata, T. J. Electrochem. Soc. 1990, 137, 1772. (f) Kanemoto, M.; Shiragami, T.; Pac, C.; Yanagida, S. Chem. Lett. - 1990, 931. (g) Irvine, J. T. S.; Eggins, B. R.; Grimshann, J. *Solar Energy* 1990, 45, 27. (h) Albers, P.; Kiwi, J. *New J. Chem.* 1990, 14, 135. (i) Bandi, A. *J. Electrochem. Soc.* 1990, 137, 2157. (j) Durr, H.; Trierweiler, H.-P.; Willner, I.; Maidan, R. *New J. Chem.* 1990, 14, 317. (k) Goren, Z.; Willner, I.; Nelson, A. J.; Frank, A. J. *J. Phys. Chem.* 1990, 94, 3784 and references therein. - (7) (a) Val'pin, M. E. *Izvest. Akad. Nauk SSSR*, *Khan*, 1969, 20. (b) Lee, G. R.; Cooper, N. J. *Organometallics* 1985, 4, 794. (c) Carmona, E.; Munoz, M. A.; Perez, P. J.; Poveda, M. L. *Organometallics* 1990, 9, 1337. (d) Vites, J. C.; Steffey, B. D.; Giuseppetti-Dery, M. E.; Culter, A. R. *Organometallics* 1991, 10, 2827. (e) Jeung, G. H. *Mol. Phys.* 1989, 67, 747. (f) Mascetti, J.; Tranquille, M. *J. Phys. Chem.* 1988, 92, 2177. (g) Ashuri, S.; Miller, J. D. *Inorg. Chim. Acta* 1984, 88, L1. - (8) (a) Calabrese, J. C.; Herskovitz, T.; Kinney, J. B. J. Am. Chem. Soc. 1983, 105, 5914. (b) Gambarotta, S.; Arena, F.; Floriani, C.; Zanazzi, P. F. J. Am. Chem. Soc. 1982, 104, 5082. (c) Jegat, C.; Fouassier, M.; Tranquille, M.; Mascetti, J. Inorg. Chem. 1991, 30, 1529. - (9) (a) Tsai, J.-C.; Khan, M.; Nicholas, K. M. Organometallics 1989, 8, 2967. (b) Alvarez, R; Carmona, E.; Marin, J. M.; Poveda, M. L.; Gutierrez-Puebla, E.; Monge, A. J. Am. Chem. Soc. 1986, 108, 2286. (c) Bristow, G. S.; Hitchcock, P. B.; Lappert, M. F. J. Chem. Soc., Chem. Commun. 1981, 1145. (d) Aresta, M.; Nobile, F. J. Chem. Soc., Chem. Commun. 1975, 636. (e) Jegat, C.; Mascetti, J. New J. Chem. 1991, 15, 17. (f) Jegat, C.; Fouassier, M.; Mascetti, J. Inorg. Chem. 1991, 30, 1521. (g) Fu, P.-F.; Khan, M. A.; Nicholas, K. M. Organometallics 1991, 10, 382. (h) Fu, P.-F.; Khan, M. A.; Nicholas, K. M. J. Am. Chem. Soc. 1992, 114, 6579. (i) Gambarotta, S.; Floriani, C.; Chiesi-Villa, A.; Guastini, C. J. Am. Chem. Soc. 1985, 107, 2985. - (10) John, G. R.; Johnson, B. F. G.; Lewis, J.; Wong, K. C. *J. Organomet. Chem.* **1979**, *169*, C23. - (11) (a) Eady, C. R.; Guy, J. J.; Johnson, B. F. G.; Lewis, J.; Malatesta, M. C.; Sheldrick, G. M. J. Chem. Soc., Chem. Commun. 1976, 602. (b) Beck, W.; Raab, K.; Nagel, U.; Steimann, M. Angew. Chem. Int. Ed. Engl. 1982, 115, 2271. (c) Lundquist, E. G.; Huffman, J. C.; Folting, K.; Mann, B. E.; Caulton, K. G. Inorg. Chem. 1990, 29, 128. - (12) Ishida, H.; Tanaka, K.; Tanaka, T. Organometallics 1987, 6, 181. - (13) Ishida, H.; Terada, T.; Tanaka, K.; Tanaka, T. Inorg. Chem. 1990, 29, 905. - (14) Ishida, H.; Tanaka, K.; Morimoto, M.; Tanaka, T. Organometallics 1986, 5, 724. - (15) A prolonged electrolysis of $[Ru(\eta^1(C)-CO_2)(CO)(bpy)_2]$ at -1.10 V in dry CH₃CN results in a slow decomposition of the $\eta^1(C)$ -CO₂ complex even under a CO₂ atmosphere.¹² Therefore, reduction of $[Ru(CO)_2(bpy)_2]^{2+}$ under anhydrous - conditions with CO₂ is not suitable for the synthesis of pure $[Ru(\eta^1(C)-CO_2)(CO)-(bpy)_2]$. - (16) (a) Godwin, J. B.; Meyer, T. J. Inorg. Chem. 1971, 10, 2150. (b) Nagao, H.; Nishimura, H.; Funato, H.; Ichikawa, Y.; Howell, F. S.; Mukaida, M.; Kakihana, H. Inorg. Chem. 1989, 28, 3955. - (17) Reveco, P.; Schmehl, R. H.; Cherry, W. R.; Fronczek, F. R.; Selbin, J. *Inorg. Chem.* **1985**, 24, 4078. - (18) Leising, R. A.; Kubow, S. A.; Churchill, M. R.; Buttrey, L. A.; Ziller, J. W.; Takeuchi, K. J. *Inorg. Chem.* **1990**, *29*, 1306. - (19) The IR spectrum of the reaction mixture was consistent with summation of those of [Ru(NO₂)(CO)(bpy)₂]PF₆ and Na¹⁵NO₂. - (20) (a) Shaik, S. S. J. Org. Chem. 1987, 52, 1563. (b) Sawyer, D. T.; Roberts, J. L. Jr. Acc. Chem. Res. 1988, 22, 469. (c) Fukuzumi, S.; Yorisue, T. J. Am. Chem. Soc. 1991, 113, 7764. - (21) $[Ru(C(O)OH)(CO)(bpy)_2]^+$ shows a v(C=O) at 1578 cm⁻¹.¹⁴ - (22) The occurrence of eq 6 may be supported also by a reversible reaction of $[Ru(NO_2)(CO)(bpy)_2]PF_6$ with CH₃ONa in CH₃OH affording $[Ru(C(O)OCH_3)-(NO_2)(bpy)_2]$ (v(C=O) 1574 cm⁻¹). - (23) (a) Sakaki, S.; Aizawa, T.; Koga, N.; Morokuma, K.; Ohkubo, K. *Inorg. Chem.* 1989, 28, 103. (b) Sakaki, S.; Dedieu, A. *Inorg. Chem.* 1987, 26, 3278. (c) Sakaki, S. *J. Am. Chem. Soc.* 1990, 112, 7813. (d) Marcos, E. S.; Caballol, M. R.; Trinquier, G.; Barthelat, J.-C. *J. Chem. Soc., Dalton Trans.* 1987, 2373. - (24) Kelly, J. M.; O'Connell, C. M. J. Chem. Soc., Dalton Trans. 1986, 253. - (25) (a) Burk, P. L.; Engen, D. V.; Campo, K. S. Organometallics 1984, 3, 493. (b) Garlaschelli, L.; Malatesta, M. C.; Martinengo, S.; Demartin, F.; Manassero, M.; Sansoni, M. J. Chem. Soc., Dalton Trans. 1986, 777. (c) Cardaci, G.; Bellachioma, G.; Zanazzi, P. F. J. Chem. Soc., Dalton Trans. 1987, 473. - (26) Maher, J. M.; Lee, G. R.; Cooper, N. J. J. Am. Chem. Soc. 1982, 104, 6797. - (27) The concentration of the ruthenium complexes became too low to detect the ¹³C NMR signals when the CH₃CN solution of [Ru(CO)₂(bpy)₂](PF₆)₂ was mixed with two molar excess of methanolic solution of Bu₄NOH. - (28) Cardin, D. J.; Cetinkaya, B.; Lappert, M. F. Chem. Rev. 1972, 72, 545. - (29) Ishida, H.; Tanaka, H.; Tanaka, K.; Tanaka, T. J. Chem. Soc., Chem. Commun. **1987**, 131. - (30) In the measurement of ¹³C NMR spectra, 30 equiv of H₂C(C(O)OCH₃)₂ was used in order to accelerate the reaction rate. - (31) The source of H_2O may be the solvated molecules of $[Ru(\eta^1(C)-CO_2)(CO)(bpy)_2]$ $3H_2O$ and moisture in air, since microcrystals of $[Ru(C(O)CH(C(O)OH)_2)(CO)-(bpy)_2]OH$ were obtained by slow evapolation of the solvent on exposure to air. - (32) Mizuho, Y.; Kasuga, N.; Komiya, S. Chem. Lett. 1991, 2127. - (33) Harlow, R. L.; Kinney, J. B.; Herskovitz, T. J. Chem. Soc., Chem. Commun. 1980, 813. - (34) Middleton, W. J.; Engelhardt, V. A. J. Am. Chem. Soc. 1958, 80, 2788. - (35) Mizen, M. B.; Wrighton, M. S. J. Electrochem. Soc., 1989, 136, 941. - (36) Bernatis, P.; Curtis, C. J.; Herring, A.; Miedaner, A.; Dubois, D. L. *Proceeding of the international symposium on chemical fixation of carbon dioxide*, **1991**, 89. - (37) Encyclopedia of Electochemistry of the Elements (volume XII), edited by Bard, A. J.; Lund, H., Marcel Dekker, New York, 1978. - (38) [TMQH] is considered to exist as an equilibrium mixture with [TMQ]²⁻ in CH₃OH and CH₃CN/H₂O (9:1 v/v). The anodic peak potential in CH₃OH is consistent with the reported value of [TMQH] (ref. 37). Therefore, the equilibrium in CH₃CN/H₂O (9:1 v/v) may be shifted to [TMQ]²⁻ compared with that in CH₃OH. # Acknowledgments The author would like to express his gratitude to Professor Koji Tanaka and Dr. Hirotaka Nagao for their continuous guidance and encouragement. Thanks are due to Professor Yoshihiko Kushi and Dr. Tatsuya Kawamoto of Osaka University for their advice on X-ray analysis in Chapter II. Thanks are due to Professor Shie-Ming Peng and Mr. Biing-Chiau Tzeng of National Taiwan University for their advice on X-ray analysis in
Chapter III. Thanks are also extended to Mr. Nobutoshi Komeda, Miss Hide Kambayashi, Mr. Tetsunori Mizukawa, Dr. Ryo Miyamoto, and Mr. Yoshinori Kushi for their collaboration. Many thanks are due to all the members of the Coordination Chemistry Laboratories in Institute for Molecular Science. Thanks are due to Mr. Toshizaburo Oga, Mr. Akitaka Kimura, and Mr. Hitoshi Itani of Sumitomo Rubber Industry Co. Ltd. for their kindness. Thanks are due to my dear parents for their kindness. The present work is partially supported by Grant-in-Aid for Scientific Research No. 03453105 from the Ministry of Education, Science and Culture.