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Abstract

Recently there has been a remarkable progress in constructing N = 8 supersym-

metric three-dimensional field theory with SO(8) R-symmetry by Bagger, Lambert and

Gustavsson (BLG model) which can be considered as the effective action of multiple M2-

branes. Another very interesting proposal for N = 6 multiple M2-branes was also made

by Aharony, Bergman, Jafferis, Maldacena (ABJM model). We clarified Lorentzian BLG

model, which is one of the BLG models, could be derived from the ABJM model by tak-

ing the scaling limit. Also we found the coordinate dependent couplings was allowed in

Lorentzian BLG model. This fact is important for understanding the conformal symme-

try of multiple M2-branes. From the AdS/CFT point of view, we also studied the dual

gravity analysis and we made a point that the gravity dual of Lorentzian BLG model

was the probe branes in AdS space. We also investigate gravitational solutions in 11-

dimensional supergravity with respect to the multiple M2-branes symmetry. We obtain

the solutions which has basically SU(2) fiber bundle over CP 2. We squash this space and

get a higher-dimensional analog of Eguchi-Hanson space. We clarify the solutions have

curvature singularity at one point where base space CP 2 shrinks to zero.
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Chapter 1

Introduction

We believe the existence of new physics beyond the Standard Model. The astrophysical

observation data tells us only 4 % of the energy-momentum contributions can be inter-

preted by the Standard Model. The other constituents are Dark Matter and Dark Energy.

Dark Matter is defined as a matter which does not couple to the photon directly (in the

low-energy regime). Dark Energy is defined as a effect which comes from the cosmolog-

ical constant which was originally introduced by A. Einstein. Dark Matter is expected

to be clarified by the new physics beyond the Standard Model and it may appear in the

Large Hadron Collider (LHC) at CERN. However there still remain problems about Dark

Energy. In the Standard Model, we have succeed to construct the quantum field theory

of the strong interaction, weak interaction and the electro-magnetic interaction. There

remains one more interaction, “gravitational interaction”. To explain the Dark Energy,

quantization of gravitational force will be quite important.

There have been huge amount of investigations about the quantum gravity. People

might think that the field theory for gravity can be constructed in analogy with the Stan-

dard Model. However there are some troubles in constructing quantum gravity as ordinary

particle field theory, such as the nonrenormalizable ultra-violet divergences. In construct-

ing a renormalizable quantum gravity, the most promising proposal is String Theory.

String theory is a quantum theory and includes gravitons as oscillation modes of closed

strings. Treating the gravity in terms of particle theory, we are faced with nonrenormal-

Figure 1.1: The fraction of constituents in our universe from the astorophysical observation. This
suggests the matter contributes only 4% and the other part are unknown.
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2 CHAPTER 1. INTRODUCTION

ization problem. The divergence in the ultra-violet regime comes from the zero-distance

behavior which is obtained when we consider an integration over the whole phase space.

However in the string theory, the relationship between distance and momentum is roughly

like

∆L ∼ ~
p

+ α′ p

~
≥ 2

√
α′

where the parameter α′ is related to the string tension as Ts = 1/(2πα′). The string

length are also given by α′ = ℓ2s. Therefore we don’t meet the zero-distance problem

and the string theory does not seem to have the nonrenormalizable problem. Hence the

string theory can become a candidate for the quantum gravity. Especially the superstring

theory really includes the 10-dimensional supergravity (IIA, IIB, Hetero) as its low-energy

effective actions. Therefore the string theory is a powerful model for investigating the

quantum gravity. There are also interesting phenomena in the string theory. UV behavior

is related to the IR behavior (UV-IR mixing) through a duality between open strings and

closed strings. This can be understood as the conformal symmetry in the string theory.

We expect a unified theory to exist at the UV fixed point of running coupling constants.

At the fixed point the theory becomes conformal, so the string theory has been considered

as a candidate for the unified theory.

The supergravity itself is also interesting. The supergravities with maximal supersym-

metric construction are restricted to the four-dimensional N = 8 or 11-dimensional N = 1.

The supersymmetry is interesting technique to cause a restriction which can constrain the

fundamental theory; “Theory of Everything”. If we compactify the one of the directions in

11-dimensional supergravity, we obtain the 10-dimensional supergravity which is the low-

energy effective action in string theory as we mentioned. In analogy with the string theory,

there seems to exist the fundamental theory which has the 11-dimensional supergravity

as its low-energy action. This is so called M-theory. Standing on the point of view of

the 11-dimensional supergravity, the M-theory should have the three-dimensional objects

and six-dimensional objects, which are called M2-branes and M5-branes. The effective

theory of multiple M2-branes seems to have N = 8 supersymmetries with (maximally) an

SO(8) R-symmetry in 2 + 1-dimensions since we have 32 supercharges in 11-dimensions

and half of them are preserved by a world-volume parity condition. On the other hand,

the effective theory for multiple M5-branes has N = 2 supersymmetries with (maximally)

an SO(5) R-symmetry in 5 + 1-dimensions. The M-theory must be interesting idea for

constructing the quantum gravity because of its uniqueness protected by supersymmetry.

There is also a long history about constructing M-theory. The review of these construc-

tions (essential part only) will be reviewed in Chapter 2. We will concentrate on the

M2-branes throughout this paper.

During the last year (2008), there has been remarkable progress about the effective

theory of multiple M2-branes. Bagger, Lambert and Gustavsson constructed the 2 + 1

dimensional superconformal Chern-Simons theory with the maximal N = 8 supersymme-

try and manifest SO(8) R-symmetry [1–3]. In the Bagger-Lambert-Gustavsson (BLG)

model, the essential idea is triple-algebras. However there are only two known realizations
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of triple-algebras which are an SO(4) model with a positive group metric and a Lorentzian

BLG model [4–6] with a negative one.

Another important development is given by Aharony, Bergman, Jafferis and Malda-

cena (ABJM) [7]. The SO(4) BLG model can be reformulated as an SU(2)×SU(2) bifun-

damental representation [8]. ABJM generalized the SO(4) BLG model to a U(N)×U(N)

Chern-Simons gauge theory with levels k and −k. This ABJM model is considered as

a dual description of N multiple M2-branes placed at the orbifold singularity of R8/Zk.

The orbifold group Zk acts on a phase of complex space C4 and this manifold preserves

only N = 6 supersymmetry for k > 2. The ABJM model has indeed this amount of

supersymmetry. For k = 1, 2 cases the theory is expected to be enhanced to N = 8,

however this does not manifestly exist in the ABJM model. The explicit ABJM action is

denoted in [9]. The ABJM model includes the SO(4) BLG model as a special model with

an SU(2) × SU(2) bi-fundamental gauge group and also the Lorentzian BLG by taking

the scaling limit [10, 11]. A gravitational dual of the Lorentzian BLG was discussed with

respect to the scaling limit [12].

In this paper, we emphasize the importance of coordinate dependence of the couplings

in Lorentzian BLG model. The coordinate dependence was first mentioned in [13] in

the context of multiple M2-branes. The meaning of the Janus couplings in the title is

following. Originally it was considered to be a dual of supergravity solutions with a

space-time dependent dilaton field [14], and it has two different “faces” at the boundary.

If there are two boundaries and different coupling constants at each boundary, we should

include interface terms which make gauge couplings non-constant. Supersymmetric field

theories with the interface terms are constructed in [15–18]. Here we use the meaning of

Janus couplings by extending the original usage to more general dependence on space-time

coordinates.

Supersymmetries must be spontaneously broken in our world at low energy (Standard

Model). At the TeV scale, we may have N = 1 supersymmetry because of the existence of

Dark Matter. Therefore how to obtain lower supersymmetric theory from the M-theory is

important. In the gravity side, the multiple M2-branes can have various seven dimensional

compact Einstein manifolds as in AdS4 ×X7. These manifolds would be usable to obtain

the lower supersymmetric theory in four-dimensions. There has been interesting progress

in constructing X7, some of which are a squashed S7 of Awada, Duff and Pope [19], coset

manifolds Np,q,r
I of the form SU(3) × U(1)/U(1) × U(1) by Castellani and Romans [20]

and a squashed N0,1,0
I geometry named as N0,1,0

II , by Page and Pope [21].

In particular, the squashed S7 has the SO(5)×SU(2) isometry group and this manifold

preserves maximally N = 1 supersymmetry. To interpolate the squashed S7 and the

round S7, we need to add scalar fields and potentials. These fields suggest that there is a

renormalization group flow from an SO(5)×SU(2) symmetric UV fixed point to an SO(8)

symmetric IR fixed point [22]. There is also a development about the 2 + 1 dimensional

Chern-Simons theory with an Sp(2) × U(1) by Ooguri and Park [23]. The Sp(2) is

isomorphic to SO(5). The U(1) comes from an effect divided by Zk as same as in the

ABJM model. A dual operator was discussed, which corresponds to the renormalization
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group flow from the Ooguri-Park model and the ABJM model [24]. There is also another

way of discussions for squashed geometry N0,1,0
II . With special values for p, q, r of Np,q,r

I , we

can obtain maximally N = 3 supersymmetric manifold N0,1,0
I . The interpolation between

the squashed manifold N0,1,0
II and N0,1,0

I was also discussed [25, 26]. The other related

recent work of squashed 7-sphere is [27].

In searching for the other solution, we know that there is an interesting way to obtain

more general squashed geometries in 5D supergravity by Ishihara and Matsuno [28]. This

solution has a squashed S3 which is regarded as an S1 Hopf fiber bundle over S2 base space.

They introduced a squashing function of the radius direction, which determines the level

of the squashed S3. The solution has various faces including the Reissner-Nordström black

hole, Gross-Perry-Sorkin monopole (with the Taub-NUT space) [29, 30] and also a black

string. This construction is a generalization including the known solutions as firstly noted

in [31]. There are some developments with respect to the Ishihara-Matsuno squashing for

multi black holes [32], multi BHs with a positive cosmological constant [33], rotating BHs

[34], the Kerr-Gödel BHs [35, 36] with a charge [37].

This paper is organized as follows. In chapter 2, we will review the old progresses of

multiple M2-branes and new progress. In chapter 3, the BLG model will be derived from

the ABJM model. In chapter 4, we will discuss the dual of the Lorentzian BLG model

with respect to the derivation from the ABJM model. We will also mention that we can

have coordinate dependent couplings in the Lorentzian BLG model with and without a

mass term in chapter 5. In chapter 6, we will show the construction of gravitational

solutions in the M-theory with the SU(3)×SU(2) isometry, which are squashed solutions

in analogy with Ishihara-Matsuno solutions in five-dimension.



Chapter 2

Review

There have been a long story to investigate the M-theory. We write a introductionally

review in this section, but only a essential parts for understanding the M-theory.

M-theory is defined as a theory which has the N = 1 11-dimensional supersymmetric

gravity action as its effective theory. The N = 1 11-dimensional SUGRA is a highest

supersymmetric gravity theory because we can have maximally N = 8 supersymmetry in

four-dimensional gravity. The constituents of 11-dimensional SUGRA are graviton gµν ,

gravitino ψµ and 3-form gauge field Aµνρ. The necessity of three-form fields is as follows.

The degree of freedom of gravitons is naively 11 × 11, and there are internal symme-

tries of local Lorentz transformation 1/2(11 × 10), general transformation 11 and gauge

transformation which can be fixed by ∂µ(
√
−ggµν) = 0 as 11. So the d.o.f. of gµν is 44. In

a case for gravitino ψµ (Rarita-Schwinger field), internal symmetries are supersymmetric

gauge transformation which is described ∂µχ as 25 d.o.f. and gauge transformation as

2 × 25 (which can be fixed ∂µψ
µ = 0, Γµψ

µ = 0). There is also on-shell condition which

divide the total d.o.f. by two because of first differential equation. As the result, the d.o.f.

of gravitino is 1/2(11 × 25 − 25 − 2 × 25) = 128. The result tells us lack of bosonic d.o.f.

To cover this, we need three-form gauge field Aµνρ because its d.o.f. is 84 (transverse

directions are 9 and 9C3 = 84).

Objects which included in M-theory can be considered from the three-form field. In

(1 + 2)-dimensional volume, there must exist a term which couple to this three-form field

Aµνρ and the term is called Wess-Zumino term or Myers term. There are also six-form

field Aµνρσλδ which is dual of three form field in 11-dimensional field theory. And we can

also treat (1 + 5)-dimensional objects. The (1 + 2)-dimensional objects are called “M2-

branes” and the (1 + 5)-dimensional ones are “M5-branes”. But there had been many

mysteries to understand these objects because of lack of knowledge about fundamental

objects in M-theory.

5
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2.1 Old progress of multiple M2-branes

2.1.1 Triple algebra

There have been long standing progresses about constructing a effective action of multiple

M2-branes. First process for multiple M2-brane effective action is to preserve world

volume diffeomorphism. Naively it can be considered that a effective action has so called

Nambu-bracket [38] which is generalization of Poisson bracket as

{XI , XJ , XK} ≡ ϵijk∂iX
I∂jX

J∂kX
K . (2.1.1)

Using this Nambu-bracket, the effective action of (1 + 2)-dimension is

SNG =

∫
d3σ

(
T2

√
{XI , XJ , XK}2 + CIJK{XI , XJ , XK}

)
(2.1.2)

where we use σi as world volume coordinate and the Roman indices I, J,K run from 1 to

8. This action is invariant under world-volume diffeomorphism.

In the case of Poisson brackets, we change this notation to commutators to obtain finite

(matrix) representation as {XI .XJ} → [XI , XJ ] and then we can construct quantum

theories for multiple D-branes. For the purpose to quantize of multiple M2-branes, it

seems naturally that we need to construct triple algebras [XI , XJ , XK ] instead of Nambu-

brackets [39].

2.1.2 M2-M5 system

We know there are only two objects in M-theory which are M2-brane and M5-brane. This

fact make us to cast back our strategy to construct D1-D3 system in string theory and

there seems to be possible to construct M2-M5 system. First let’s remind about D1-D3

system.

In D1-D3 system arguments, we can obtain a D3-brane spike solution and also multiple

D1-branes solution. We see these solutions are exactly same solutions each other. We

start with a D3-brane picture. The solution of a D3-brane was constructed in [40, 41] by

using a D3-brane effective Dirac-Born-Infeld action.

SD3 = −T3

∫
d4x
√
− det(ηµν + 2πα′Fµν + ∂µXI∂νXI). (2.1.3)

A half BPS solution can be obtained as

X9 =
N

r
, r ≡

√
(X1)2 + (X2)2 + (X3)2, F9r = ∂rX

9 (2.1.4)

where gauge field was obtained to satisfy BPS equations. Note that this solution is a

magnetic solution which means N is magnetic charges which represent N multiple D1-

branes. If we construct a solution with electric charges N , we can obtain a D3-brane

sticked with N strings. The solution is depend on three-dimensional space world volume



2.1. OLD PROGRESS OF MULTIPLE M2-BRANES 7

Figure 2.1: Multiple D1-branes (M2-branes) sticked in a D3-brane (M5-brane). In D3 point of view,
this is a spike solution. On the other hand, we can see fuzzy S2 solution in D1 point of view.

of D3-brane. If r is large, the direction of X9, a transverse direction to a D3-brane,

goes to zero, but on the other hand if r goes to 0, X9 goes to infinity. This means this

solution infinitely expands as an original D3-brane does, however if we close to its central

region the solution lengthens to X9 direction. So this solution is called a spike solution.

Note that there is a nice textbook to introduce the construction of this spike solution in

Problem 20.6 and 20.7 of [42].

Let’s change our eyes to D1-branes picture. In D1-branes point of view, we consider

the BPS equation of multiple D1-brane. We should consider Non-Abelian generalization

of DBI action, but the expanded one around the flat spacetime. The action is same as

the dimensional reduced action of 10-dimensional N = 1 super Yang-Mills action. The

equations of motion are generally 2nd derivative equations and this can not be solved

easily. So we concentrate on BPS equations which are 1st derivative equations. In the

case for D1-branes we get [43]

∂X i

∂X9
∓ i

2
ϵijk[X i, Xj] = 0 (2.1.5)

where the indices i, j, k = 1, 2, 3 and X9 direction is one of D1-branes world coordinates.

This equation is called Nahm equation. The solution of this equation can be obtained as

[44]

X i = ± 1

2X9
σi, [σi, σj] = 2iϵijkσk. (2.1.6)

The matrices σi obey SU(2) algebra above. This solution is a fuzzy S2 solution which

has SO(3) ≃ SU(2) global symmetry in non-commutative space. The fuzzy solution

has a cutoff of its rank of irreducible representation. We choose the σi to be in the N-

dimensional irreducible representation of SU(2) with quadratic Casimir C = N2 − 1, we

can describe a fuzzy S2 radius as

R =

√
(2πα′)2

N

∑
i

Tr(X i)2 =
2πα′

√
N2 − 1

2X9

N→∞−−−→ πα′ N

X9
. (2.1.7)
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The solution we obtained in a D3-brane picture (2.1.4) has a continuum S2. When we

compare the D1-branes fuzzy solution to the continuum one, we should take the cutoff

N → ∞. If we take the fuzzy sphere radius R as r, we see a perfect agreement (up to

normalization) to the solution (2.1.4). This fact is an interesting consistency in string

theory. Note that there is a brief review of D1-D3 system in [45].

So far we have reminded D1-D3 system in string theory, let’s turn to M2-M5 system

in M-theory. We learned M2-branes and M5-branes really exist in M-theory, we should

consider how to make M2-M5 system since it seems to exist also in M-theory in analogy

with string theory. In D1 point of view in D1-D3 system, a commutator which includes in

effective D1-branes theory is essential to obtain the fuzzy S2 solution. However we need

to construct a fuzzy S3 solution in M2-M5 system because of the difference of 3 space

coordinates. Therefore we should take into account a triple algebra in this case. The

expected BPS equation in M2-brane effective theory can be written as [45]

∂X i

∂s
+
λM3

11

8π
ϵijkl[X i, Xj, Xk] = 0 (2.1.8)

where we use s as one of M2 world volume coordinates, M11 is Plank scale in 11D and λ

is a arbitrary parameter. This BPS equation is called Basu-Harvey equation.

The solution of this Basu-Harvey equation is

X i ∼ 1√
s
Gi, [Gi, Gj, Gk] = ϵijklGL (2.1.9)

where we use generators Gi which satisfy SO(4) algebra and have structure constants

ϵijkl. This algebra is called A4 algebra. Reader may confuse to the usual SO(4) Lie

algebra. However SO(4) construction in triple algebras can be obtained by using matrix

representation. To realize a matrix representation, we need to reconstruct (or define)

triple algebra to the form [G5, X
I , XJ , XK ] [46]. This fuzzy S3 solution (2.1.9) can be

expanded to infinity as s→ 0 and can be regarded as single M5-brane.

2.1.3 Chern-Simons term

We have investigated about transverse scalars and their BPS solution. Let’s concentrate

on gauge fields in multiple M2-branes. Gauge fields are important with respect to super-

symmetric transformation. In D-branes case, we need gauge fields for closure of SUSY

transformation. And also if we write DBI type of action as a D-brane effective action,

gauge fields on a D-brane take a important role to understand the T-duality.

The effective action of multiple M2-branes action may have 8 transverse scalars XI , 3-

dimensional fermions Ψ and 1-form gauge field Aµ. First let’s count the d.o.f. of fermions

[47]. There is 8 transverse direction, we need to keep maximally SO(8) R-symmetry. Only

in 3-dimensional gamma matrices suggest us to have 2-component Majorana fermions,

however we also have the other gamma matrices in transverse 8 directions. So we need

to consider 10 gamma matrices and they make fermions to have 25 components. When

we consider about M2-branes we need to constraint ourselves to impose world parity on
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M2-branes as Γ012Ψ = Ψ. This constraint is important for the closure of any symmetry in

non-Abelian case (we will meet concrete examples of multiple M2-brane later, then you

can see). Also equation of motion for fermions subtract the d.o.f. of fermions. Putting

these all together, M2-brane fermions have 25 × 1/2 × 1/2 = 8 d.o.f.

To preserve SUSY, the d.o.f. of bosons should be equal to fermions. The transverse

bosons are 8 and fermions are also 8. We might consider there are no need to introduce

gauge fields in multiple M2-branes. However, as we will see, we really need gauge fields to

close SUSY. How to realize zero d.o.f. of gauge fields ? We should introduce gauge fields

as topological term. For the case for 3-dimension, we know very well it as Chern-Simons

term. ∫
d3x tr [A ∧ dA+ A ∧ A ∧ A] . (2.1.10)

Only with the Chern-Simons term, gauge fields propagate zero d.o.f. The necessity of

Chern-Simons term is also important for conformal symmetry. When we have the kinetic

term of gauge fields F 2, we cannot naively preserve conformal symmetry because its mass

dimension is four.

We also comment in a case for D2-branes. For the fermions a situation is same as for

M2-branes, so the fermions have 8 d.o.f. Since the transverse directions change to 7 for

D2-brane, we only have 7 transverse scalars. There needs one more d.o.f. The lack of field

can be compensate by introducing gauge fields. Gauge fields with usual kinetic terms F 2

essentially have d.o.f. of transverse direction only in world volume. So D2-brane gauge

fields have one d.o.f. Putting it all together, we can show correct SUSY in D2-brane. This

is different from M2-brane situation.

2.2 Remarkable progress 1; BLG model

There has been a remarkable progress in constructing N = 8 supersymmetric three-

dimensional field theory with SO(8) R-symmetry by Bagger and Lambert and Gustavs-

son. First Bagger and Lambert tried to construct multiple M2-branes effective action

by using triple algebra, however they could not close SUSY algebra [1]. Afterward Bag-

ger, Lambert [2] and also Gustavsson [3] introduced gauge fields and they succeeded to

construct multiple M2-branes effective theory 1.

2.2.1 Triple algebra

Bagger and Lambert introduced triple algebra and they investigated how to construct.

To introduce triple algebra, we first define non-associative algebra.

< A,B,C > ≡ (A ·B) · C − A · (B · C). (2.2.1)

1Bagger and Lambert could construct the action, but Gustavsson wrote down only SUSY algebras.
For this reason, the model sometimes has called BL model.
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If product is usual, this non-associative algebra is zero. Using this non-associative algebra,

we define triple algebra as

[A,B,C] =< A,B,C > + < B,C,A > + < C,A,B >

− < A,C,B > − < B,A,C > − < C,B,A > . (2.2.2)

We can see the importance of non-associative algebra and its product to take triple algebra

meaningful.

To take into account inner product, we also define the relation of trace. Trace operator

should satisfy the relations.

tr(A,B) = tr(B,A), tr(A ·B,C) = tr(A,B · C),

tr([A,B,C], D) = − tr(A, [B,C,D]). (2.2.3)

This is a bilinear map; tr : A × A → C that is symmetric and invariant. These trace

relation will be important to see invariance of gauge symmetry.

In this stage we write down the definition of structure constants of triple algebra and

this can be considered also the definition of triple algebra.

[T a, T b, T c] = fabcdTd. (2.2.4)

With the last equation of (2.2.3), we can see the structure constant fabcd should be

completely anti-symmetric under exchange of indices.

We can consider gauge symmetry with triple algebra as

δX = Λab[T
a, T b, X]. (2.2.5)

This representation for gauge symmetry is correct since a variation of trace of same scalar

fields is invariant under this transformation.

δ [tr(X,X)] = 2fabcdΛabXcXd = 0. (2.2.6)

Taking into account the gauge symmetry, we can introduce gauge fields and covariant

derivative. The variation of gauge fields should be written as covariant derivative of gauge

parameter.

δÃµ
b
a = ∂µΛ̃b

a − Λ̃b
cÃµ

c
a + Ãµ

b
cΛ̃

c
a ≡ DµΛ̃b

a

Ãµ
b
a ≡ f cdb

aAµcd, Λ̃b
a ≡ f cdb

aΛcd (2.2.7)

Then the covariant derivative can be read as

DµXa = ∂µXa − Ãµ
b
aXb. (2.2.8)

The gauge symmetry suggest important rule about structure constants. We need to

consider “derivation” of triple algebra for gauge symmetry.

δ([X, Y, Z]) = [δX, Y, Z] + [X, δY Z] + [X,Y, δZ]. (2.2.9)
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From this derivation we can get

[T a, T b, [X, Y, Z]] =[[T a, T b, X], Y, Z] + [X, [T a, T b, Y ], Z]

+ [X,Y, [T a, T b, Z]],

f efg
df

abc
g =f efa

gf
bcg

d + f efb
gf

cag
b + f efc

gf
abg

d. (2.2.10)

This equation is called fundamental identity in triple algebra. In the case for commutator,

we have Bianchi identity for Lie-algebra and (2.2.10) is considered as an triple algebra

analogy of Bianchi identity. This fundamental identity is quite important to close SUSY

algebras and construct examples.

2.2.2 Supersymmetry and BLG action

Bagger, Lambert and Gustavsson considered firstly to construct SUSY algebras in analogy

with D2-branes effective action. They consider the main difference from D2-brane is to

take into account triple algebra in stead of Lie algebra.

δXI
a = iϵ̄ΓIΨa

δΨa = DµX
I
aΓµΓIϵ+ κ[XI , XJ , XK ]aΓ

IJKϵ

δÃµ
b
a = iϵ̄ΓµΓIX

I
c Ψdf

cdb
a (2.2.11)

where main difference exists at second term in the variation of fermion and κ is a arbitrary

constant. In this transformation, we have 16 component of fermionic fields and super-

symmetric parameter ϵ (they are constrained to preserve world sheet parity as Γ012ϵ = −ϵ
[1]).

For the closure of this SUSY algebra, we need to satisfy the relation;

[δ1δ2]X
I
a = vµ(DµX

I)a + Λ̃b
aX

I
b

[δ1δ2]Ψa = vµ(DµΨ)a + Λ̃b
aΨb

[δ1δ2]Ãµ
b
a = vµF̃µν

b
a + (DµΛ̃)b

a (2.2.12)

where we use bi-spinor vector vµ and bi-spinor scalar Λ̃b
a defined as

vµ ≡ −2iϵ̄2Γ
µϵ1, Λ̃b

a ≡ −iϵ̄2ΓJKϵ1X
J
c X

K
d f

cdb
a.

When we calculate left-hand sides of (2.2.12), we will meet extra terms of ϵ̄2ΓµΓIJKLϵ̄

bi-spinor in the closure of Ψa and also Ãµ
b
a. For the closure of Ãµ

b
a, happily this term

vanishes as a consequence of the fundamental identity (2.2.10). On the other hand for

Ψa, these terms cancel if we choose the arbitrary constant

κ = −1

6
. (2.2.13)
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The other redundant terms to obtain (2.2.12) can be regarded as on-shell condition or

equations of motion. These can be read from (2.2.12) as

ΓµDµΨa +
1

2
f cdb

aΓIJX
I
cX

J
d Ψb = 0,

D2XI
a − i

2
f cdb

aΨ̄cΓ
I
JX

J
d Ψb −

1

2
f bcd

af
efg

dX
J
b X

K
c X

I
eX

J
f X

K
g = 0,

F̃µν
b
a + ϵµνλf

cdb
a

(
XJ

c D
λXJ

d +
i

2
Ψ̄cΓ

λΨd

)
= 0. (2.2.14)

The bosonic equations of (2.2.14) can be obtained by taking the supervariation of the

fermion equation of motion.

To derive the equations of motion (2.2.14), we can guess an action as

LBLG = − 1

2
tr(DµXI , DµX

I) +
i

2
tr(Ψ̄,ΓµDµΨ)

+
i

4
tr(Ψ̄,ΓIJ [XI , XJ ,Ψ]) − 1

12
tr([XI , XJ , XK ], [XI , XJ , XK ])

+
1

2
ϵµνρ(fabcdAµab∂νAλcd +

2

3
f cda

gf
efgbAµabAνcdAλef ). (2.2.15)

The potential term of scalar fields is sixth order as expected to be conformal because a

mass dimension of scalar fields is 1/2 in three dimension. We can also see the existence of

Chern-Simons term and the absence of gauge kinetic term F 2 as we have seen in section

2.1.3. This is surprising thing because we just order to keep supersymmetry. This action

seems to preserve conformal symmetry even if quantized.

2.2.3 SO(4) BLG model

The BLG action (2.2.15) really has N = 8 as we saw, however there are some mystery

to understand the triple algebras. One example can be easily obtained by setting the

structure constant as

fabcd = ϵabcd. (2.2.16)

Levi-Civita symbol with four-indices is only included in SO(4) algebra since it is invariant

under SO(4) rotations. However unfortunately there are no-go theorem which shows

SO(4) BLG is an only essential construction if we choose the group metric trT aT b to be

positive definite [48, 49].

The group SO(4) can be decomposed to SU(2) × SU(2). This decomposition can
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really be done in SO(4) BLG model in [8]. The resultant action is

LSU(2)×SU(2) = − tr(DµXI)†DµX
I + i tr Ψ̄†ΓµDµΨ

+
k

2π

1

2
ϵµνλ tr

(
A(L)

µ ∂νA
(L)
λ +

2i

3
A(L)

µ A(L)
ν A

(L)
λ

)
− k

2π

1

2
ϵµνλ tr

(
A(R)

µ ∂νA
(R)
λ +

2i

3
A(R)

µ A(R)
ν A

(R)
λ

)
− 2i

3

2π

k
tr Ψ̄†ΓIJ(XIXJ†Ψ +XJΨ†XI + ΨXI†XJ)

− 8

3

(
2π

k

)2

X [IXJ†XK]XK†XJXI†. (2.2.17)

The fields consist of two SU(2) gauge fields, having Chern-Simons terms with opposite

levels. The Chern-Simons level k should be quantized and be integer because we need

to have the action invariant under non-Abelian transformation of gauge group. All the

matter fields transform as bi-fundamental of SU(2)L × SU(2)R. In this representation,

we have no more triple algebras but the well known SU(2) Lie algebras.

Let’s consider the moduli space of the action (2.2.17) by focusing on bosonic fields

[50, 51]. Generic scalar configurations for which the potential vanishes correspond (up to

gauge transformations) to diagonal matrices as

XI =
1√
2

(
zI 0

0 z̄I

)
. (2.2.18)

The gauge fields associated with the U(1) that rotates zI and z̄I each other with the

diagonal configuration (2.2.18). So we have

A(L)
µ =

(
a

(L)
µ 0

0 −a(L)
µ

)
, A(R)

µ =

(
a

(R)
µ 0

0 −a(R)
µ

)
(2.2.19)

with the normalization chosen to have gauge transformations

a(L)
µ → a(L)

µ − ∂µθ
(L), a(R)

µ → a(R)
µ − ∂µθ

(R). (2.2.20)

where θ(L,R) have period 2π.

The potential term is zero and the remaining kinetic term of the action changes to be

S =

∫
d3x

[
−
∣∣∂µz

I + i(a(L)
µ − a(R)

µ )zI
∣∣2 +

k

2π
ϵµνλ(a(L)

µ ∂νa
(L)
λ − a(R)

µ ∂νa
(R)
λ )

]
(2.2.21)

Then we combine the gauge fields linearly as

cµ = a(L)
µ + a(R)

µ , bµ = a(L)
µ − a(R)

µ . (2.2.22)
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By using this configuration the action rewritten as

LSU(2)×SU(2) = −
∣∣∂µz

I + ibµz
I
∣∣2 +

k

4π
ϵµνλbµfνλ,

fµν ≡ ∂µcν − ∂νcµ. (2.2.23)

Since the new variable cµ of gauge field is usual U(1) gauge field and it should be

satisfy Bianchi identity

ϵµνλ∂µfνλ = 0. (2.2.24)

To deal with the Bianchi identity together with the action, we take it as constraint term

with Lagrange multiplier field σ(x).

Sconst. =
1

8π

∫
d3xσ(x)ϵµνλ∂µfνλ. (2.2.25)

The Lagrange multiplier field σ(x) should be periodic because there is a monopole condi-

tion; ∫
d3x

1

2
ϵµνλ∂µfνλ =

∫
M

df =

∫
∂M

f ∈ 4πZ. (2.2.26)

Taking into this fact into account, the Lagrange multiplier field σ(x) should be periodic

σ(x) ∼ σ(x) + 2πn (2.2.27)

where we use n as an integer. Together with this periodicity, the constraint term is

harmless because eiSconst = 1. This periodicity will be important to investigate the moduli

space.

The equation of motion for fµν determines

bµ =
1

2k
∂µσ. (2.2.28)

Inserting the solution for bµ, the action becomes

LSU(2)×SU(2) = −
∣∣∣∣∂µz

I +
i

2k
zI∂µσ

∣∣∣∣2 . (2.2.29)

In the final form of action (2.2.29), we have the gauge transformation

zI → eiα(x)zI , σ → σ − 2kα(x) (2.2.30)

We can now fix our gauge to set σ = 0. After doing this, we still have residual gauge

transformation

α =
πn

k
(2.2.31)



2.2. REMARKABLE PROGRESS 1; BLG MODEL 15

which can be regarded as the periodicity for σ in (2.2.27). This residual symmetry give

us a constraint for the scalar moduli should obey

zI → e
πin
k zI . (2.2.32)

There is also a discrete symmetry which changes a scalar moduli and its complex conjugate

moduli as

zI → z̄I . (2.2.33)

(2.2.32) tells us the moduli space should be divided by Z2k and (2.2.33) means to be

divided by Z2. These orbifold projections do not commute with each other for k > 1, and

the combined group is the dihedral group D2k. Finally we conclude that the moduli space

for the level k in SO(4) BLG model is

(R8 × R8)/D2k. (2.2.34)

For the commute case k = 1, this is just

(R8 × R8)/(Z2 × Z2). (2.2.35)

This analysis tells us that the SO(4) BLG model with Chern-Simons coefficient k is a

effective theory of two M-branes living in orbifolded space.

In the supergravity picture, the orbifold moduli space R8/Z2k, except for k = 1.2,

preserves as many as 12 supersymmetries or N = 6, and also gives rise to an R-symmetry

SU(4) × U(1) [52, 53]. However, we have 16 supersymmetries in BLG model even when

we turn on the integer coefficient k in front of the Chern-Simons term. This have still

remained to be a mystery of BLG model.

Fuzzy funnel solution and single M5

People might think the realization of Basu-Harvey equation and its classical solution

which end on single M5-brane as we discussed section 2.1.2. The BPS equation of SO(4)

BLG model is [54]

∂sX
A = mXA +

1

6
ϵABCD[XB, XC , XD] (2.2.36)

where we use s is one of world space coordinates of M2-branes and m is a mass. Since we

can have rich structure of BPS solutions with mass term, first we turn on mass term and

analyze BPS solutions.

The solution of the equation (2.2.36) can be obtained by using the solution which

expand fuzzily

XA =

√
m

π

1√
1 − e−2ms

TA, [TA, TB, TC ] = ϵABCDTD. (2.2.37)
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If we wake s → ∞ the radius of solution becomes a constant and the solution goes to

fuzzy S3 solution. On the other hand, if we take s→ 0 the radius goes to infinity and the

solution with this limit represent single M5-brane. The hole shape of this solution looks

like a funnel, so this solution is called fuzzy funnel solution. The shape have been already

depicted as figure 2.1 (p.7).

Let’s evaluate the action with this BPS solution but without the mass. The fuzzy S3

radius can be estimated as

R2 ≡ tr(XA, XA)

nT2

(2.2.38)

where n is a cutoff of irreducible representation, and T2 is tension of M2-brane. Then the

action without time-integral which can be considered as energy density of this system is

E =

∫
d2x tr

(
∂sX

A, ∂sX
A
) n→∞−−−→ T 2

2

2π

∫
dx1

∫
2π2R3dR

= T5

∫
d5x (2.2.39)

where in the first line we use BPS equation (2.2.36) on one-side and take the cutoff to

diverge, and in the second line we use the explicit representation of tensions related as

T5 = T 2
2 /2π. So we can conclude there exist BPS solution of multiple M2-brane which

end on single M5-brane.

2.2.4 Lorentzian BLG model

There are no-go theorem which prevent us to construct the other model with positive

metric in BLG model. SO(4) BLG model is just two M2-branes effective theory. If we

would like to investigate more general multiple M2-branes, there need more than two. This

is important when we deal multiple M2-brane effective theory with the dual supergravity

language. So let’s change our eyes to allow a negative group metric. With a negative

metric we can have the following structure by using the group generator T−1, T 0, T i [4–6].

[T−1, T a, T b] = 0

[T 0, T i, T j] = f ij
kT

k

[T i, T j, T k] = f ijkT−1 (2.2.40)

where a, b run −1, 0, i and i, j, k run arbitrary. Using this algebras, we can know the

metric of this system as

tr(T−1, T−1) = 0, tr(T−1, T 0) = −1, tr(T−1, T i) = 0,

tr(T 0, T 0) = 0, tr(T 0, T i) = 0,

tr(T i, T j) = hij. (2.2.41)

We can see there is a negative metric. One can easily check that this triple algebra satisfies

the fundamental identity (2.2.10). Since in (2.2.40) we only have the structure constants
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as the usual Lie algebra, we have a possibility to describe multiple M2-branes. Since T−1

commute all the other generators in the language of triple algebra, we can regard T−1 as

a center of the Lorentzian algebra (2.2.40).

Now we have the action with negative metric

LL =

[
−1

2
(D̂µX̂

I −BµX
I
0 )2 +

1

4
(XK

0 )2([X̂I , X̂J ])2 − 1

2
(XI

0 [X̂I , X̂J ])2

+
i

2
¯̂
ΨΓµD̂µΨ̂ + iΨ̄0Γ

µBµΨ̂ − 1

2
Ψ̄0X̂

I [X̂J ,ΓIJΨ̂] +
1

2
¯̂
ΨXI

0 [X̂J ,ΓIJΨ̂]

+
1

2
ϵµνλF̂µνBλ − ∂µX

I
0 BµX̂

I

]
+ Lgh,

Lgh = (∂µX
I
0 )(∂µXI

−1) − iΨ̄−1Γ
µ∂µΨ0 (2.2.42)

where we have redefined the fields as

X̂ ≡ XiT
i, Ψ̂ ≡ ΨiT

i, Âµ ≡ 2Aµ0iT
i, Bµ ≡ Aµ ijf

ij
kT

k.

The covariant derivative and the field strength

D̂µ ≡ ∂µX̂
I + i[Âµ, X̂

I ], D̂µΨ ≡ ∂µΨ̂ + i[Âµ, Ψ̂], F̂µν = ∂µÂν − ∂νÂµ + i[Âµ, Âν ]

(2.2.43)

are the ordinary covariant derivative and field strength for the sub-algebra A. Since this

action has a negative metric, we call this as Lorentzian BLG model. The specialties of

Lorentzian BLG model are manifest SO(8) R-symmetry and N = 8, BF theory and usual

Lie algebra [X, Y ]. There are ghost terms because of a negative metric. And we should

consider whether this model is unitary and how to eliminate this ghost term or ghost

degrees of freedom. With the negative metrics, there is also a no-go theorem [55]. So we

have essentially SO(4) BLG model with positive metrics and Lorentzian BLG model with

negative metrics.

The supersymmetry transformations for each mode are given by

δXI
0 = iϵ̄ΓIΨ0,

δXI
−1 = iϵ̄ΓIΨ−1,

δX̂I = iϵ̄ΓIΨ̂,

δΨ0 = ∂µX
I
0ΓµΓIϵ,

δΨ−1 = {∂µX
I
−1 − tr(Bµ, X̂

I)}ΓµΓIϵ+
i

6
tr(X̂I , [X̂J , X̂K ])ΓIJKϵ,

δΨ̂ = D̂µX̂
IΓµΓIϵ−BµX

I
0ΓµΓIϵ+

i

2
XI

0 [X̂J , X̂K ]ΓIJKϵ,

δÂµ = iϵ̄ΓµΓI(X
I
0 Ψ̂ − X̂IΨ0),

δBµ = ϵ̄ΓµΓI [X̂
I , Ψ̂]. (2.2.44)

The above construction of the 3-algebra contains the ordinary Lie algebra as a sub-

algebra. The generators of the gauge transformation can be classified into 3 classes.
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• I={T−1 ⊗ T a, a = 0, i}

• A={T 0 ⊗ T i}

• B={T i ⊗ T j}

Then it is easy to show that

[I, I] = [I,A] = [I,B] = 0, [A,A] = A, [A,B] = B, [B,B] = I (2.2.45)

and hence the generators of A form a sub-algebra, which can be identified as the Lie

algebra of N D2-branes. We will see concretely this gauge symmetry in section 3.2.

In Lorentzian action, we have another symmetry. The scaling of structure constants

can be absorbed in redefinition of T 0, T−1 as we can see in (2.2.40). This means that the

scaling of overall coefficient of the Lagrangian is a symmetry. To make this symmetry

explicitely, we define a scaling of overall coefficient as 1/g2. Then the theory has the

symmetry

X̂I → gX̂I , XI
0 → 1

g
XI

0 , X−1 → g3XI
−1,

Ψ̂ → gΨ̂, Ψ0 →
1

g
Ψ0, Ψ−1 → g3Ψ−1,

Âµ → Âµ, Bµ → g2Bµ. (2.2.46)

So the overall coefficient of Lorentzian BLG model is irrelevant. This Lagrangian has no

free parameter. The original BLG action (2.2.15) can have the integer coupling in front

of Chern-Simons term as essentially same way as (2.2.17). If we scale the matter fields as

XI →
(
k

2π

) 1
2

XI , Ψ →
(
k

2π

) 1
2

Ψ, (2.2.47)

then we obtain the action with overall coefficients k/2π. This overall coefficient takes a

important role in CS theory, but is irrelevant in BF theory.

When we focus on the fields related to T−1 generator, we can see such kind of fields only

included linearly. Therefore we can regard these fields X−1,Ψ−1 as Lagrange multiplier

to obtain constraint equations

∂2XI
0 = 0, Γµ∂µΨ0 = 0. (2.2.48)

If we consider these constraint equations and regard solutions of these constraint equa-

tions as effective couplings of Lorentzian BLG action, then we can treat the Lorentzian

BLG model as a ghost-free action. This idea is important when we deal with conformal

symmetry and compare with a result from the dual gravity picture (we will see explicitly

in chapter 4, p.45).
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D2 reduction

If the BLG model represents effective action of multiple M2-branes correctly, we can

reduce the action to the effective action of multiple D2-branes. This can be done by

taking a constant vacuum expectation value of scalar fields as

XI
0 = vδI,8, Ψ0 = 0. (2.2.49)

This selection of the solution in the constraint equation (2.2.48) is compatible with the

SUSY transformation and also the gauge transformation. The idea of giving a constant

vev in the context of multiple M2-branes is firstly introduced by [56] in SO(4) BLG and

[6] in Lorentzian BLG.

Taking this vev back to the Lorentzian action (2.2.42), then we obtain

L = Tr

[
− 1

4v2
F̂ 2

µν −
1

2
(D̂µX̂

A)2 +
1

4
v2[X̂A, X̂B]2

+
i

2
¯̂
ΨΓµD̂µΨ̂ +

1

2
v
¯̂
Ψ[X̂A,Γ8,AΨ̂]

]
. (2.2.50)

This is exactly the same action of multiple D2-branes and breaks conformal symmetry by

giving a vev.

Ghost problem

There is a discussion to avoid ghost problem [57, 58]. Basic idea is to be gauged a constant

shift symmetry of XI
−1,Ψ−1.

At casual glance at (2.2.42), we can see a constant shift symmetry;

δshX
I
−1 = ΛI , δsh = η. (2.2.51)

If we impose this shift symmetry to be locally gauged, we need to add a new fields CI
µ, χ

as

Lnew = −CI
µ∂

µXI
0 + Ψ̄0χ. (2.2.52)

When the new fields transform under gauged shift symmetry as

δshC
I
µ = ∂µδ

I(x), δshχ = iΓµ∂µη(x), (2.2.53)

we can take the Lorentzian BLG action (2.2.42) with (2.2.52) to be invariant. Note that

there is another new local symmetry defined as

δgC
I
µ = ∂νΛ̄I

µν , Λ̄I
νµ = −Λ̄I

µν (2.2.54)

Under this symmetry the new term (2.2.52) itself invariant.

We can gauge fixed the gauged shift symmetry ΛI , η to choose the field associated

with T−1 as

XI
−1 = 0, Ψ−1 = 0. (2.2.55)
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With this gauge, we can see there are no ghost term in Lorentzian BLG because the new

additional term (2.2.52) is not a ghost term. Since the new fields CI
µ, χ are also only

included linearly, we can regard them as Lagrange multipliers and then obtain constraints

∂µX
I
0 = 0, Ψ0 = 0. (2.2.56)

This suggests we are allowed to have only constant solutions for effective couplings.

However this analysis seems to be spurious [10, 58, 59] 2. In the analysis we are

restricted to have only constant solutions from the beginning. This can be seen from the

fact that we have used first derivative in ghost action to obtain shift symmetry. And

also we can see this statement when we just simply develop the BLG model with a mass

deformation [60, 61]. With the Lorentzian algebras (2.2.40), we obtain the massive ghost

term [13]

Lbosonic−gh = (∂µX
I
0 )(∂µXI

−1) +
m

2
XI

0X
I
−1. (2.2.57)

At a glance, we can see there are no shift symmetry. However, even if for this massive

case, we can still consider the constraint equation method and have

∂2XI
0 − m

2
XI

0 = 0. (2.2.58)

For the massive case we have rich structure of solutions which can be regarded as effective

couplings of Lorentzian BLG theory. We would like to mention again that to take the

constraint equations is compatible with conformal symmetry and the dual gravitational

picture as we will see in chapter 4, p.45.

2.3 Remarkable progress 2; ABJM model

There has been second remarkable progress to constructing the effective action of multiple

M2-branes by Aharony, Bergman, Jafferis and Maldacena (ABJM) [7]. The ABJM model

has SU(4) R-symmetry and N = 6 supersymmetry. ABJM generalized the SO(4) BLG

model to a U(N)×U(N) bi-fundamental representation, so this model has opposite levels

of Chern-Simons term. First we write down the action explicitely, then we will explain

the construction of this model.

2.3.1 ABJM action

The action of ABJM model is given by (we use the convention used in [9])

S =

∫
d3x tr [−(DµZA)†DµZA − (DµW

A)†DµWA + iζ†AΓµDµζ
A + iω†AΓµDµωA]

+ SCS − SVf
− SVb

, (2.3.1)

2First, authors in [58] said Lorentzian BLG was just D2, but they retracted in v2.
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with A = 1, 2. This is an N = 6 superconformal U(N) × U(N) Chern-Simons theory.

Z,W is a bifundamental field under the gauge group and its covariant derivative is defined

by

DµX = ∂µX + iA(L)
µ X − iXA(R)

µ . (2.3.2)

The gauge transformations U(N) × U(N) act from the left and the right on this field as

Z → UZV †.

The level of the Chern-Simons gauge theories is (k,−k) and the coefficients of the

Chern-Simons terms for the two U(N) gauge groups, A
(L)
µ and A

(R)
µ , are opposite. Hence

the action SCS is given by

SCS =

∫
d3x

k

4π
ϵµνλ tr [A(L)

µ ∂νA
(L)
λ +

2i

3
A(L)

µ A(L)
ν A

(L)
λ − A(R)

µ ∂νA
(R)
λ − 2i

3
A(R)

µ A(R)
ν A

(R)
λ ].

(2.3.3)

The potential term for bosons is given by

SVb
= −4π2

3k2

∫
d3x tr

[
Y AY †

AY
BY †

BY
CY †

C + Y †
AY

AY †
BY

BY †
CY

C

+4Y AY †
BY

CY †
AY

BY †
C − 6Y AY †

BY
BY †

AY
CY †

C

]
, (2.3.4)

and for fermions by

SVf
=

2πi

k

∫
d3x tr

[
Y †

AY
AψB†ψB − Y AY †

AψBψ
B† + 2Y AY †

BψAψ
B† − 2Y †

AY
BψA†ψB

+ϵABCDY †
AψBY

†
CψD − ϵABCDY

AψB†Y CψD†
]
. (2.3.5)

Y A and ψA (A = 1 · · · 4) are defined by

Y C = (ZA,W †A), ψC = (ϵABζ
Beiπ/4, ϵABω

†Be−iπ/4), (2.3.6)

where the index C runs from 1 to 4. Note that we will rewrite Z fields as A, W † as B† to

take into account in superspace notation later. The fermion decomposition is useful for

later convenience. The SU(4) R-symmetry of the potential terms is manifest in terms of

Y A and ψA.

2.3.2 Construction of ABJM

What should we do is to understand how to obtain N = 6 Chern-Simons superconformal

theory as ABJM model. There are interesting works to obtain higher SUSY in CS theory.

However we maximally have N = 3 CS theory. Let’s see the construction of N = 3 CS

theory [62–64].

People might be interesting at the dimensional reduction of well-known N = 4 super-

symmetric theory in four-dimension. In N = 4 theory, we have the superpotential of the

form

W = Φ̃iφΦi (2.3.7)
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where we use an auxiliary adjoint chiral multiplet φ in addition to the vector multiplet,

and chiral multiplets come in pairs Φ̃i,Φi in conjugate representations and i, j run 1, 2.

Let’s connect this superpotential with the CS term includes an additional superpotential

W = − k

8π
trφ2 (2.3.8)

in three-dimension. Since the auxiliary field φ is included without kinetic term, it can be

simply integrated out and we obtain

W =
4π

k
(Φ̃iT

a
Ri

Φi)(Φ̃jT
a
Rj

Φj). (2.3.9)

The couple to the CS term causes to decrease SUSY to N = 3. Note that this CS

theory cannot be renormalized beyond a possible one-loop shift of k so much so that it is

conformally invariant also at the quantum level [65].

Note that however if we are allowed to have coordinate dependent coupling g(y), θ(y)

or complex coupling τ(y) on the compact direction y, we can still preserve N = 4 even if

the presence of CS term in three-dimension [17]. The relevant part of the action is

Sθ = − 1

32π2

∫
d4x θ(y)ϵµνρσ trFµνFρσ. (2.3.10)

Integrating by parts for the compactified direction y and dropping any surface terms, we

obtain

Sθ =
1

8π2

∫
d3xdy

dθ

dy
ϵµνλ tr

(
Aµ∂νAλ +

2

3
AµAνAλ

)
. (2.3.11)

This form of equation imply us that supersymmetrizing a four-dimensional theory with a

y-dependent θ angle is somewhat similar to supersymmetrizing a three-dimensional theory

with a Chern-Simons interaction. This coordinate dependence should be related to the

Janus configuration [14] in the dual gravity. In the gravity picture, we resolve AdS5 which

describes D3-branes with coordinate dependent (on compact direction) dilaton to obtain

AdS4. The action obtained in [17] is conformal in three-dimension, this seems to be the

dual of AdS4.

In this stage, let’s remind the construction of BLG model, but especially of SO(4) BLG

model. The SO(4) BLG model can be reinterpreted as SU(2) × SU(2) bi-fundamental

gauge group (2.2.17) with opposite levels of CS terms. ABJM shed some light on this

construction and tried to generalize U(N) × U(N) gauge group. The key idea to do this

is simple to introduce bi-fundamental chiral multiplets Ai, Bi and their pairs and follow

the same manner in N = 3. The superpotential becomes

W =
k

8π
tr(φ2

(R) − φ2
(L)) + trBiφ(L)Ai + trAiφ(R)Bi. (2.3.12)

We can also integrate out the auxiliary fields, the obtain

W =
2π

k
ϵabϵȧḃtr (AaBȧAbBḃ) . (2.3.13)
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Surprisingly this superpotential is exactly same form (up to a coefficient) as Klebanov-

Witten type superpotential [66].

The whole potential of ABJM comes from superpotential and also the Chern-Simons

piece. The scalar potential arising from the superpotential is

Vsup = |∂W |2 =
16π2

k2

(
ϵȧḃϵċḋ tr

[
W †

ḃ
Z†

aW
†
ȧWċZaWḋ

]
+ ϵabϵcd tr

[
Z†

bW
†
ȧZ

†
aZcWȧZd

])
(2.3.14)

where we use the scalar components of A as Z, and B as W without confusing. On the

other hand the potential comes from the CS term is

VCS = tr
[
ZcZ

†
cσ

2
(1) − 2Z†

cσ(1)Zcσ(2) + Z†
cZcσ

2
(2)

]
+ tr

[
WċW

†
ċ σ

2
(2) − 2W †

ċ σ(2)Wċσ(1) +W †
ċWċσ

2
(1)

]
(2.3.15)

where σ(1,2) are the real scalar field in the vector multiplet (coming from the A3 component

of the gauge field when we dimensionally reduce from 3 + 1 dimensions) as

SN=2
CS =

k

2π

∫
tr

(
A ∧ dA+

2

3
A3 − χ̄χ+ 2Dσ

)
. (2.3.16)

In addition we have the usual D term coupling

tr
[
ZaD(1)Z

†
a − Z†

aD(2)Za −W †
ḃ
D(1)Wḃ +WḃD(2)W

†
ḃ

]
. (2.3.17)

By integrating out for D(1,2), we obtain the relations

k

2π
σ(1) = ZaZ

†
a −W †

ḃ
Wḃ,

k

2π
σ(2) = Z†

aZa −WȧW
†
ȧ . (2.3.18)

Plugging this into VCS, we obtain the whole potential as

V = Vsup + VCS

= tr
[
Y AY †

AY
BY †

BY
CY †

C + Y †
AY

AY †
BY

BY †
CY

C

+4Y AY †
BY

CY †
AY

BY †
C − 6Y AY †

BY
BY †

AY
CY †

C

]
(2.3.19)

where we use Y A ≡ (Z1, Z2,W
†
1̇
,W †

2̇
). This is the SU(4) invariant form of potential so

much so that we have SU(4) R-symmetry and N = 6. This means we have originally

SU(2) × SU(2) R-symmetry as the rotation of each Aa, Bḃ. However together with the

CS potential, the two SU(2) do not commute each other, and then rotate all together.

This is the result of calculation (2.3.19). We recommend readers to see [9], who want to

see explicitely with the fermion potential.
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Expressions in superspace and components

We follow [9] to obtain the whole explicit ABJM constructions in superspace notation. The

superspace action consists from the super Chern-Simons term, matter kinetic terms and

matter potential terms. The matter potential term is the same form as the Klebanov-

Witten superpotential. This is the summary and manifestation of ABJM construction

which we have seen.

S = SCS + Smat + Spot,

SCS = − ik

8π

∫
d3xd4θ

∫ 1

0

dt tr
[
VD̄α

(
etVDαe

−tV)− V̂D̄α
(
etV̂Dαe

−tV̂
)]
,

Smat =

∫
d3xd4θ tr

[
−Āae

−VAaeV̂ − B̄ ḃe−V̂Bḃe
V
]
,

Spot =
8π

k

∫
d3xd2θW (A,B) +

8π

k

∫
d3xd2θ̄W̄ (Ā, B̄) (2.3.20)

with

V = 2iθθ̄σ(L)(x) + 2θγµθ̄A
(L)
µ (x) +

√
2iθ2θ̄χ̄(L)(x) −

√
2iθ̄2θχ(L)(x) + θ2θ̄2D(L)(x),

A = Z +
√

2θζ + θ2Fz, A† = Z† −
√

2θ̄ζ† − θ̄2F †
z ,

B = W +
√

2θw + θ2Fw, B† = W † −
√

2θ̄w† − θ̄2F †
w,

W (A,B) =
1

4
ϵabϵ

ȧḃ trAaBȧA
bBḃ, W̄ (Ā, B̄) =

1

4
ϵabϵȧḃ tr ĀaB̄

ȧĀbB̄
ḃ (2.3.21)

where σ,D, Fz and Fw are auxiliary scalars, χ, χ̄ are auxiliary fermions. The V̂ has been

used as a superfield of A(R). The action includes opposite levels of Chern-Simons terms

and two complex fields each of which has SU(2)R global symmetry and Klebanov-Witten

superpotential with respect to the orbifolded moduli space C4/Zk.

The gauge transformations rule is given by

etV → eiΛetVe−iΛ̄, etV̂ → eiΛ̂etV̂e−i ˆ̄Λ,

A→ eiΛAe−iΛ̄, Ā→ eiΛ̂Āe−i ˆ̄Λ, B → eiΛ̄Be−iΛ, B̄ → ei ˆ̄ΛB̄e−iΛ̄ (2.3.22)

where Λ is a gauge parameter related to A(L) and Λ̂ is with respect to A(R). Note that

we have taken into account the bi-fundamental matter fields from SO(4) BLG model, so

much so that this theory has SO(N) × SO(N) gauge symmetry naturally. Since ABJM

model has two bi-fundamental superfields, we have additional U(1) gauge symmetry

A→ eiαA, B → e−iαB. (2.3.23)

Together with this additional U(1) symmetries, we have enhanced gauge symmetry U(N)×
U(N) in (2.3.22).
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The notation we have used is as follows.

gµν = diag(−1,+1,+1),

γµ β
α = (iσ2, σ1, σ3) β

α ,

θα = ϵαβθβ, θα = ϵαβθ
β,

(ϵ12 = −ϵ12 = 1). (2.3.24)

The operator which raise or lower spinor indices is related to zero component of gamma

matrices. We have used the spinor indices sum notation as

θαθα ≡ θ2, θαθ̄α ≡ θθ̄,

θαγµ
αβ θ̄

β ≡ θγµθ̄,

γµ
αβ = (−I,−σ3, σ1)αβ. (2.3.25)

This notation is same as what we usually deal with in four-dimensional language, however

only one-set of Pauli matrices is essential in three dimension. The other useful expressions,

the Fierz identities, supercovariant derivatives and SUSY generators etc. are denoted in

appendix of [9].

The bosonic potential term can be obtained from the F-term and D-term as

V bos
F (= Vsup) =

∣∣∣∣∂W∂Za

∣∣∣∣2 +

∣∣∣∣ ∂W∂Wȧ

∣∣∣∣2 ,
V bos

D (= VCS) = tr
[
N †

aN
a +M †ȧMȧ

]
(2.3.26)

where Na = σ(L)Za − Zaσ(R), Mȧ = σ(R)Wȧ −Wȧσ
(L). By integrating out the auxiliary

fields, then we obtain the SU(4) superpotential (2.3.19) in components. The whole action

with the fermions (2.3.1) can be obtained by integrating out all auxiliary fields from the

superspace expression.

2.3.3 Duality mapping from IIB

We can also say about the construction of ABJM model in terms of the duality mapping

from IIB configuration. As we mentioned in the above section, we introduced usual

N = 4 superpotential, but in three-dimension. This can be regarded in brane picture as

introducing theN D3-brane, one of which world-coordinates (we choose this as 6 direction)

is compactified. With consideration of SO(4) BLG model, we need to introduce the bi-

fundamental matter fields and opposite level of CS terms. This can be done in brane

construction by adding two NS5-branes as in the left hand side of Figure 2.2. If we

introduce a NS5-brane, there are strings which stretches over a NS5-brane as we see in

Figure 2.3. In our construction we have a compact direction so much so that we should

have at least two NS5-branes to obtain bi-fundamental representation.

In addition to the above construction, we should have integer k which is the coefficient

of CS terms. This can be regarded as introducing the k D5 brane as in the middle picture
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Figure 2.2: Brane construction of ABJM model. We introduced N D3-branes and two NS5-branes
(left). Then we add k D5 at the cross section of D3 and NS5 (middle). k D5 and NS5 are resolved
together and become (1, k)5-brane (right).

Figure 2.3: A string stretched over a NS5-brane. This string represents a bi-fundamental matter.

of Figure 2.2. The D3-branes effective action only has a usual gauge kinetic term, not the

CS term. However when we introduce the k D5-branes, we also have the CS term. This

can be understood as follows.

We add k D5-brane along 012789, which intersect the D3-branes along 012, as well as

one of the NS5-branes along 012. Next we introduce a real mass term of equal sign for

the fundamental and anti-fundamental chiral multiplets which live on D5-branes 3. This

causes a web-deformation in Figure 2.4 [67]. The k D5-branes and NS5-branes break along

the directions 012 and dissolve into an intermediate (1,±k)5-brane which extends along

three-dimensions [3, 7]θ, [4, 8]θ, [5, 9]θ with the angle tan θ = k. The sign of the charges of

the intermediate 5-brane comes from the sign of the mass term. The coefficient of the CS

term gets a contribution +1
2

from each Majorana fermion with a positive mass term, and

−1
2

from each fermion with a negative mass term. Therefore we get a total k coefficient

k for one of the U(N) factors and −k for the other. The resultant figure is showed in the

right hand side of Figure 2.2.

We can also understand the existence of CS term explicitly [68]. The effective field

3There are also the other possible mass deformations. The separation along the 3,4,5 directions
corresponds to a real mass term of equal magnitude but opposite sign for the fundamental chiral and
anti-chiral multiplets.
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Figure 2.4: The web deformation of intersecting NS5-D5 configuration.

theory of the construction of the right hand side of Figure 2.2 has

S = − 1

4g2
4

∫
d3xdx6FMNF

MN , (2.3.27)

where we use the indices M,N runs 0, 1, 2, 3 and we concentrate only on U(1) gauge

field for simplicity. We need to add the boundary conditions correspond to a NS5 and

(1, k)5-branes. The boundary condition for the NS5, D5 are

NS5 : Fµ6 = ∂µA6 − ∂6Aµ = 0,

D5 : Fµν = ∂µAν − ∂νAµ = 0 (2.3.28)

where we µ, ν are 0, 1, 2. To obtain (1, k)5-brane boundary condition, we mix these

boundary condition by using SL(2,Z) transformation.(
1 −k
−s r

)(
Fµ6

aϵµνρ∂
νAρ

)
= 0. (2.3.29)

Note that this transformation matrix represents inverse transformation of usual SL(2,Z).

The resultant boundary condition is

(1, k)5 : ∂µA6 − ∂6Aµ − akϵµνρ∂
νAρ = 0 (2.3.30)

where a is an arbitrary constant which cannot be determined at this stage.

We put a NS5-brane at the point x6 = 0, and a (1, k)5-brane at x6 = L where we define

the length of compact direction is 2L. For the sake of the (1, k)5 boundary condition we

need to add the boundary term and the action changes to

S = − 1

4g2
4

∫
d3xdx6

[
FµνF

µν + 2 (∂6Aµ)2 + 2 (∂µA6)
2 − 4 (∂6Aµ∂µA6)

]
+

a

g2
4

k

∫
x6=L

d3xϵµνλA
µ∂νAλ. (2.3.31)

We would like to focus on massless modes of this system. The massless modes along

the 6 direction means to be the fields should satisfy the massless Klein-Gordon equation

∂2
6f = 0. First let’s take the three-dimensional gauge fields to be independent of x6

for simplicity. What we should consider is only for fields A6 which satisfies ∂2
6A6 = 0.

The equation is second derivative equation so much so that A6 seems to be proportional
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linearly to x6. Together with the boundary conditions of a NS5 and a (1, k)5 , we have a

massless mode for A6 as

∂µA6 = ak
x6

L
ϵµνρ∂

νAρ. (2.3.32)

Plugging into this massless mode to the action (2.3.31) with redefinition of the constant

a and the coupling

1

g2
=
L

g2
4

,
a

g2
4

= − 1

4π
, (2.3.33)

then we obtained the action for the massless mode

S = − 1

4g2

∫
d3x FµνF

µν − k

4π

∫
d3x ϵµνλAµ∂νAλ (2.3.34)

where we integrated out along the compactified direction x6. Therefore we can get the

CS term from this construction. Note that if we allow the field Aµ to depend x6, it can be

regarded as Kaluza-Klein massive field. In order that this theory make sense, the masses

of these modes must be large compared to the former one (Aµ: independent of x6). This

can be done by choosing the combination kg2
4 to be small compared to 1/L.

In the above section 2.3.2, we have obtained the Klebanov-Witten type superpotential

(2.3.13). The reason for that can also be considered on this stage. The Klebanov-Witten

superpotential was originally considered as the dual field theory of D3-branes living on

Sasaki-Einstein space T 1,1 and the dual geometry is AdS5×T 1,1. The T 1,1 can be regarded

as S5/Z2 which has the global symmetry (SU(2) × SU(2))/U(1) as

ds2
T 1,1 = dθ2

1 + sin2 θ1dϕ
2
1 + dθ2

2 + sin2 θ2dϕ
2
2 + (dχ+ cos θ1dϕ1 + cos θ2dϕ2)

2 . (2.3.35)

This space represents U(1) fiber bundle over S2×S2. The Klebanov-Witten superpotential

also has (SU(2) × SU(2))/U(1) global symmetry because the indices i, j are 1, 2. This

type of superpotential is also the general form to have this global symmetry.

By the way, now we know the coefficient k in front of CS term causes the moduli

space divided by Zk. This will be also seen soon in the analysis of geometrical picture.

When we consider the gravitational space S5/Zk, we can obtain almost the same form of

(2.3.35) with a difference of a coefficient in front of the U(1) fibration. This comes from

the reason to take the regular periodicity which described as

dχ2 with χ ≃ χ+
2π

k
→ 1

k2
dχ2 with χ ≃ χ+ 2π. (2.3.36)

However this manifolds still have the global symmetry (SU(2) × SU(2))/U(1). So in the

picture of brane construction, the Klebanov-Witten superpotential is natural.
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Geometrical picture

We also mention about the reason of orbifolded projection of this construction by using

the geometrical picture [69] 4. To see the geometrical picture, let’s remind the Gibbons-

Hawking coordinate in four-dimensional space [70]. By using the Gibbons-Hawking coor-

dinate system, we can know the solution for vacuum Einstein equation as

ds2
4 = Udx⃗2 + U−1 (dφ+ w⃗dx⃗)2

∇⃗2U ≡ ∂a∂aU = 0, ∂aw
b − ∂bw

a = ϵabc∂cU (2.3.37)

where φ ≃ φ+ 2π and φ direction is U(1) fiber bundle over base manifold.

Let’s generalize to the 8-dimensional manifold by dividing 4 + 4, then we obtain

ds2
8 = Uijdx⃗

idx⃗j + U ij(dφi + Ai)(dφj + Aj)

Ai = dx⃗jw⃗ji, ∂xj
a
wb

ki − ∂xk
b
wa

ji = ϵabc∂xj
c
Uki. (2.3.38)

The solution describing the rotating Kaluza-Klein monopole corresponding to a NS5-brane

has the form

U = 1 +

(
h1 0

0 0

)
, h1 =

1

2|x⃗1|
. (2.3.39)

We also have the (1, k)5-brane, we need to add this configuration by performing SL(2,Z)

transformation to the torus T 2 which consists from two U(1) fibration. The superposition

of a NS5 and the (1,k)5-brane results

U = 1 +

(
h1 0

0 0

)
+

(
h2 kh2

kh2 k2h2

)
, h1 =

1

2|x⃗1|
, h2 =

1

2|x⃗1 + kx⃗2|
. (2.3.40)

At a glance, (2.3.40) has a singularity at the point x⃗1,2 ∼ 0. We can treat this carefully

by taking a near horizon limit (neglecting the 1) and GL(2) transformation

x⃗′1 = x⃗1, x⃗′2 = x⃗1 + kx⃗2. (2.3.41)

This transformation tells us to have

U ′ =
1

2

(
1

|x⃗′1| 0

0 1
|x⃗′2|

)
(2.3.42)

However, we should simultaneously transform the two U(1) directions to keep the Gibbons-

Hawking form (2.3.38) as

φ′
1 = φ1 −

1

k
φ2, φ′

2 =
1

k
φ2. (2.3.43)

4We recommend you to see the Appendix B of [7].
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This form (2.3.42) tells us the superposition of two completely orthogonal KK-monopoles.

And (2.3.43) shows to have the periodicities

(φ′
1, φ

′
2) ≃ (φ′

1, φ
′
2) + 2π

(
−1

k
,
1

k

)
. (2.3.44)

Thus we can conclude that KK-monopole configuration of the superposition of a NS5

and a (1, k)5-brane has a C4/Zk singularity. And this configuration can be considered as

U-dual to the brane configurations. Note that in the special case of k = 1 the manifold is

completely non-singular, as it looks like R8 at the origin.

2.3.4 The dual gravity picture of ABJM

In the paper [7], it was pointed out that the ABJM model is dual to the M-theory on

AdS4 × S7/Zk , which is a d = 11 supergravity solution of M2 branes on the orbifold

C4/Zk. This is the correct reflection of the moduli space of the ABJM model. We first

review the solution of supersymmetric M2 branes in d = 11 supergravity.

The d = 11 metric of the multiple M2-branes is given by5,

ds2 = H− 2
3

(
2∑

µ,ν=0

ηµνdx
µdxν

)
+H

1
3

(
dr2 + r2dΩ2

7

)
,

H(r) ≡ 1 +
R6

r6
, (2.3.45)

where R6 = 32π2N ′l6p and dΩ2
7 is the metric of a unit 7-sphere. N ′ is the number of the

M2 branes and later identified with N ′ = kN .

By focusing on the near horizon region of the M2-brane, the geometry becomes AdS4×
S7 geometry. In the near horizon limit R ≫ r, H(r) is replaced by H(r) = (R/r)6 and

the metric becomes

ds2 =
( r
R

)4
(

2∑
µ,ν=0

ηµνdx
µdxν

)
+

(
R

r

)2

dr2 +R2dΩ2
7. (2.3.46)

The first two terms is the metric of AdS4 and the near horizon geometry of supersymmetric

M2 is given by AdS4 × S7. The radius of AdS4 is 1
2
R and that of S7 is R. In the large

N ′ = kN limit, the radius becomes much larger than the d = 11 Planck length and the

d = 11 supergravity approximation is valid.

ABJM model describes M2 branes on C4/Zk orbifold and the dual geometry can be

5We use the convention in [71].
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also obtained by dividing the transverse R8 direction by Zk. The S7 metric is written as

dΩ2
7 = (dφ′ + w)

2
+ dsCP 3 ,

dΩ2
7 =

dzidz̄i

ρ2
, ρ2 ≡

4∑
i=1

∣∣zi
∣∣2 ,

dsCP
3 =

1

ρ2

(
dzi − zi z̄

jdzj

ρ2

)(
dz̄i − z̄i z

jdz̄j

ρ2

)
,

dφ′ + w ≡ i

2ρ2

(
zidz̄i − z̄idzi

)
, dw = id

(
zi

ρ

)
d

(
z̄i

ρ

)
, (2.3.47)

where we parameterized

z1 = ρei(ϕ1+φ′) cos θ,

z2 = ρei(ϕ2+φ′) sin θ cosψ,

z3 = ρei(ϕ3+φ′) sin θ sinψ cosχ,

z4 = ρeiφ′
sin θ sinψ sinχ. (2.3.48)

We perform the Zk quotient by dividing the overall phase of each zi, namely the φ′

direction. Then by rewriting φ′ = φ/k with φ ∼ φ+ 2π, the metric of S7/Zk becomes

ds2
S7/Zk

=
1

k2
(dφ+ kw)2 + ds2

CP 3 , (2.3.49)

where CP 3 geometry and 1-form w are given explicitely as

ds2
CP 3 =dθ2 + sin2 θdψ2 + sin2 θ sin2 ψdχ2

+ cos2 θ sin2 θ
(
dϕ1 − cos2 ψdϕ2 − sin2 ψ cos2 χdϕ3

)2
+ sin2 θ sin2 ψ cos2 ψ

(
dϕ2 − cos2 χdϕ3

)2
+ sin θ2 sinψ2 sin2 χ cos2 χdϕ2

3,

w = cos2 θdϕ1 + sin2 θ cos2 ψdϕ2 + sin2 θ sin2 ψ cos2 χdϕ3. (2.3.50)

Before performing the Zk quotient, the metric has the conformal symmetry and SO(8)

invariance. The orbifolding breaks the SO(8) symmetry to U(4) but the conformal in-

variance still exists. This is precisely the bosonic symmetry of the ABJM model.

The compact radius of direction φ is in Planck units

R11

lp
=

R

klp
∼ (Nk)

1
k

k
. (2.3.51)

Thus, the M-theory description is valid whenever k5 ≪ N , however in the opposite case

we should reduce to the IIA 10-dimensional language with the Kaluza-Klein reduction

[72]

ds2
11 = e−

2
3
ϕds2

10 + e
4
3
ϕ(lp)

2 (dφ+ A)2 . (2.3.52)
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Note that this is not the usual reduction to type IIA D2-branes. The D2-branes reduction

from M2-branes can be seen in Appendix D. Then we obtain in terms of IIA supergravity

ds2
10 =

R3

kl3p

[
1

4
ds2

AdS4
+ ds2

CP3

]
,

e2ϕ =
R3

k3l3p
∼ 1

N2

(
N

k

) 5
2

,

F4 =
3

8

R3

l3p
ϵ̂4,

F2 = dA = kdω (2.3.53)

where we set ls = 1 and ϵ̂4 is a unit AdS4 volume. This results shows us we can obtain

AdS4 which has a dual conformal field theory, not only with D2-branes but also D0-branes.

The radius of curvature in string units is

R2
new

l2s
=
R3

kl3p
= 2

5
2π

√
N

k
. (2.3.54)

This shows the IIA gravity in string units is valid if k ≪ N , on the other hand if N ≪ k

we can expand the dual field theory as perturbation of ’tHooft coupling λ ≡ N/k.

The validity of each theories is summarized as

M − theory : k5 ≪ N,

IIA string : N ≪ k5, 1 ≪ λ,

3D CFT : λ≪ 1. (2.3.55)

The result tells us there is a well-known relation between the IIA string and 3D CFT when

we take a limit k,N → ∞ but keep λ finite. If we consider in terms of 10-dimension, we

can compare the many result as we did in the case for D3-branes because of the existence of

couplings. However in M-theory, there are some difficulties to compare through AdS/CFT

correspondence.

2.3.5 Triple algebra revisited

After the ABJM appeared, Bagger and Lambert (BL) have constructed N = 6 Chern-

Simons theory by using the generalized triple algebra. The BLG model has N = 8 with

the gauge structure constants fabcd which are real, completely anti-symmetric. However

if we relax these condition to have complex, and not completely anti-symmetric, but to

obey

fabcd = −f bacd = −fabdc = f ∗cdab, (2.3.56)

we can also construct the N = 6 CS theory with generalized triple algebra

[T a, T b;T c] = fabc
dT

d. (2.3.57)
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This new BL model was also constructed by the closure of SUSY transformations

δZA
d = iϵ̄ABψBd,

δψBd = γµDµA
A
d ϵAB + fabc

1 dZ
C
a Z̄CbZ

A
c ϵAB + fabc

2 dZ
C
a Z

D
b Z̄BcϵCD,

δÃµ
c
d = iϵ̄ABγµZ

A
a ψ

B
b f

abc
3 d + iϵ̄ABγµZ̄AaψBbf

abc
4 d (2.3.58)

where we use ϵAB to satisfy the reality condition ϵAB = 1
2
εABCDϵCD. To enclose the SUSY

algebra, we need to have

fabc
1 d = facb

2 d ≡ facb
d , f ∗abcd

3 = −fabdc
4 , fabc

3 d = facb
d (2.3.59)

and also the generalized fundamental identity

0 = f efg
bf

cba
d + f fea

bf
cbg

d + f ∗gaf
bf

ceb
d + f ∗age

bf
cfb

d,

0 = [T c, [T e, T f , T g];T a] + [T c, [T f , T e;T a];T g]

+ [T c, T e; [T g, T a;T f ]] + [T c, T f ; [T a, T g;T e]]. (2.3.60)

Together with these condition, we can close the SUSY algebra and obtain equations

of motion. To obtain equations of motion, the action should be defined as

L = − Tr(DµZ
A, DµZ̄A) − iTr(ψ̄A, γµDµψA) − V + LCS

− iTr(ψ̄A, [ψA, Z
B; Z̄B]) + 2iTr(ψ̄A, [ψB, Z

B; Z̄A])

+
i

2
εABCDTr(ψ̄A, [ZC , ZD;ψB]) − i

2
εABCDTr(Z̄D, [ψ̄A, ψB; Z̄C ]) (2.3.61)

where we use

V =
2

3
Tr(ΥCD

B , ῩB
CD);

ΥCD
B = [ZC , ZD; Z̄B] − 1

2
δC
B [ZE, ZD; Z̄E] +

1

2
δD
B [ZE, ZC ; Z̄E], (2.3.62)

This action is invariant under N = 6 or 12 supersymmetries.

People might wonder the relation between the new BL model and the ABJM model.

The ABJM model can be obtained from the new BL model as an example

[X,Y ;Z] = λ(XZ†Y − Y Z†X). (2.3.63)

This explanation of generalized triple algebra satisfies the generalized fundamental iden-

tity. This construction can be viewed as states in the bi-fundamental representation easily.

If the Lie algebra acts on X by

δX = XMR −M †
LX, (2.3.64)

then we can check that

δ[X, Y ;Z] = [X, Y ;Z]MR −M †
L[X,Y ;Z]. (2.3.65)

Thus we see the action is invariant under this type of transformation. By taking (2.3.63)

into (2.3.61), the ABJM action (2.3.1) can be exactly reproduced. Note that this example

is only known example of this N = 6 construction. Because there is no no-go theorem to

construct new BL model, it is interesting to consider the other examples.



Chapter 3

BLG model from ABJM model

So far we have introduced BLG model and ABJM model. Since the higher supersymmetric

theory cannot be easily obtained, there should be relation between BLG and ABJM. In

this chapter we will discuss about the relation. This chapter in mainly devoted to explain

[10, 11].

3.1 SO(4) BLG model from ABJM model

The ABJM model was the essentially generalization of SO(4) BLG model, however the

construction is different. So we explore the relation, especially for superpotential in the

case for SU(2) × SU(2) gauge group. In the proof of SU(4)R before, we combined the

bifundamental Aa with anti-bifundamental B†
i as the complex SU(4) fields Y A. But in

this section we combine with the bifundamental Bi as new SU(4) field. We also use the

SU(2) gauge indices and rotation for Bi to construct new SU(4) fields. More precisely

we write new SU(4) fields as

(EI)
β

α = (Ai
β

α , ϵαα′ϵββ′
Bi

α′

β′). (3.1.1)

By using this notation, we can rewrite the Klebanov-Witten type superpotential as

W = ϵabϵȧḃtr (AaBȧAbBḃ)

= ϵmnrsA
m
1 B

n
1A

r
2B

s
2 =

1

4!
ϵIJKLϵmnrsE

m
I E

n
JE

r
KE

s
L ∼ det(E) (3.1.2)

where in the second line we change our expression SU(2)× SU(2) to the SO(4) notation

and bring A,B together to the new SU(4) fields E. From the final expression, we see

SU(4) symmetry in superpotential. In addition we still have the original SU(2)R symme-

try which exchanges the Ai with the B†
j because these are not combined together. This

does not commute with the new SU(4) global symmetry and therefore these two symme-

tries combine to give an SO(8) global R-symmetry. The resultant action is precisely the

same as SO(4) BLG model in terms of SU(2) × SU(2) bifundamental representation [8].

34
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3.2 Lorentzian BLG gauge structures and Inönü-Wigner

contraction

We first look at the gauge structures of the Lorentzian Bagger-Lambert model [4–6]. The

Bagger-Lambert model [2, 3] has a gauge symmetry generated by T̃ abX = [T a, T b, X].

Because of the fundamental identity

[T a, T b, [T c, T d, T e]] = [[T a, T b, T c], T d, T e] + [T c, [T a, T b, T d], T e] + [T c, T d, [T a, T b, T e]],

(3.2.3)

the following commutation relation holds1;

[T̃ ab, T̃ cd]X = [T a, T b, [T c, T d, X]] − [T c, T d, [T a, T b, X]]

= [[T a, T b, T c], T d, X] + [T c, [T a, T b, T d], X]

= (fabc
eT̃

ed + fabd
eT̃

ce)X. (3.2.4)

The Lorentzian 3-algebra contains 2 extra generators T−1 and T 0 in addition to the

generators of Lie algebra T i. (Here we use the convention of [6].) The 3-algebra for them

is given by

[T−1, T a, T b] = 0, (3.2.5)

[T 0, T i, T j] = f ij
kT

k, (3.2.6)

[T i, T j, T k] = f ijkT−1, (3.2.7)

where a, b = {−1, 0, i}. T i are generators of the ordinary Lie algebra with the structure

constant: [T i, T j] = if ij
kT

k. This 3-algebra satisfies the fundamental identity. The metric

hab = tr (T a, T b) is given by

tr (T−1, T−1) = tr (T−1, T i) = 0, tr (T−1, T 0) = −1,

tr (T 0, T i) = 0, tr (T 0, T 0) = 0, tr (T i, T j) = hij. (3.2.8)

Since the metric has a negative eigenvalue, the field associated with the generators T−1

and T 0 become ghost modes.

The gauge generators of the Lorentzian 3-algebra can be classified into 3 classes:

• I={T−1 ⊗ T a, a = 0, i}

• A={T 0 ⊗ T i}

• B={T i ⊗ T j}.
1 If we write the commutation relation as [T̃ ab, T̃ cd] = fabc

eT̃
ed + fabd

eT̃
ce, it is not always associative.

But when T̃ ab acts on a field X, associativity-violating terms (3-cocycles) vanish and it becomes an
ordinary associative Lie algebra.
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The generators in the class I vanish when they act on X, hence we set these generators 0

in the following. Since the generators in the class B always appear as a combination with

the structure constant, we define generators Si ≡ f i
jkT̃

jk. Then they satisfy the algebra

[T̃ 0i, T̃ 0j] = if ij
k T̃

0k, [T̃ 0i, Sj] = if ij
k S

k, [Si, Sj] = 0. (3.2.9)

The last commutator was originally proportional to the generators in the class I. If we

had kept these generators, the algebra would have become nonassociative. The algebra

(3.2.9) is a semi direct sum of SU(N) (or U(N)) and translations. In the case of SU(2), it

becomes ISO(3) gauge group, which is the gauge group of the 3-dimensional gravity. The

Lorentzian Bagger-Lambert model has the above gauge symmetries and corresponding

gauge fields Âµ and Bµ as we will see in the next section.

On the other hand, the theory proposed by Aharony et.al. [7] is a Chern-Simons gauge

theory with the gauge group U(N) × U(N). They act on the bifundamental fields (e.g.

XI) from the left and the right as X → UXV †. If we write the generators as T i
L and T i

R,

the combination T i = T i
L + T i

R and Si = T i
L − T i

R satisfy the algebra

[T i, T j] = if ij
k T

k, [T i, Sj] = if ij
k S

k, [Si, Sj] = if ij
k T

k. (3.2.10)

By taking the Inönü-Wigner contraction, i.e. scaling the generators as Si → λ−1Si and

taking λ→ 0 limit, the algebra (3.2.10) becomes the algebra (3.2.9) of the Lorentzian BL

model. Therefore it is tempting to think that the Lorentzian BLG model can be obtained

by taking an appropriate scaling limit of the ABJM model. In the next section, we see

that it is indeed the case. Interestingly, even the constraint equations in the BL model

(obtained by integrating the Lagrange multiplier fields) can be derived from this scaling

procedure.

3.3 Derivation of Lorentzian BLG from ABJM

3.3.1 Classical Conformal symmetry of D2 branes with dynam-

ical coupling

Before discussing ABJM model, we investigate the symmetry properties of the Lorentzian

BLG model. As was shown in [4–6], the theory can be reduced to a system of D2 branes

by integrating Bµ fields. This is interpreted as giving a vev to XI
0 field following [56],

and a special solution XI
0 = const. to the constraint equation ∂2XI

0 = 0 was considered.

In our previous paper [13], we revisited the constraint equation and considered a general

solution with space-time dependent XI
0 (x) satisfying ∂2XI

0 = 0. Our interpretation is

slightly different from the original one, and the field XI
0 is treated as a dynamical (but

non-propagating) field. In this subsection we show that if we consider whole set of the

solutions to the constraint equation the reduced action has a classical conformal symmetry

as well as SO(8) symmetry.
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For simplicity, we neglect the fermionic field here. By integrating the Bµ gauge field

the action becomes [13]

S0 =

∫
d3x tr

[
−1

2
(D̂µY

I)2 +
1

4
X2

0 [Y I , Y J ]2 − 1

4(X0)2

(
F̂µν + 2ϵµνρYI∂

ρXI
0

)2]
, (3.3.1)

where X2
0 ≡

∑
I X

I
0X

I
0 and we have defined a new scalar field Y I = PIJX̂

J with 7 degrees

of freedom by using the projection operator

PIJ(x) = δIJ − X0IX0J

X2
0

. (3.3.2)

Indices run I, J = 0, · · · , 8 and Y I transforms as a vector of SO(8). The field XI
0 (x) is

constrained to satisfy ∂2XI
0 = 0. If we pick up a specific solution XI

0 = vδI
10, the action

is reduced to the familiar D2 brane effective action with a coupling constant given by v.

Then SO(8) symmetry is spontaneously broken to SO(7). The conformal invariance is

also broken2. However if we consider whole set of solutions, SO(8) invariance is restored

in the action (5.1.12) with of the background fields XI
0 (x) although Y I has only 7 degrees

of freedom.

Another important symmetry of the action is a conformal symmetry. The ordinary

D2 brane action with a fixed coupling constant is not conformally invariant and the near

horizon limit is not described by the AdS geometry. However, as discussed in a paper by

Jevicki, Kazama and Yoneya [73], Dp brane theory has a generalized conformal symmetry

if the coupling g(x) is not constant and varies with space-time. Our reduced action for

D2 branes (5.1.12) has exactly the same property. The coupling constant is no longer a

constant and varies with space-time. A big difference, however, is that in our case the

coupling constant g is promoted to an SO(8) vector XI
0 , which is a space-time dependent

field satisfying the massless Klein-Gordon equation.

Under the dilation x→ exp(ϵ)x, each field transforms as Y (x) → Y ′(x′) = exp(−ϵ/2)Y (x),

X0(x) → X ′
0(x

′) = exp(−ϵ/2)X0(x) and Aµ(x) → A′
µ(x′) = exp(−ϵ)Aµ(x). It is easy to

see that the action is invariant under the dilation. Special conformal transformations are

more complicated. It is given by

δ xµ = 2ϵ · xxµ − ϵµx2. (3.3.3)

Writing an infinitesimal transformation for each field as δY (x) = Y ′(x′)−Y (x), we define

a special conformal transformation for each field as3

δY I(x) = −ϵ · xY I(x) (3.3.4)

δXI
0 (x) = −ϵ · xXI

0 (x) (3.3.5)

δAµ(x) = −2ϵ · xAµ(x) − 2(x · A ϵµ − ϵ · A xµ). (3.3.6)

2 In the paper [58], it is discussed that the conformal invariance can be restored by sending the
Yang-Mills coupling to infinity or integrating it over all values.

3 If XI
0 is replaced by a single field g(x), the transformation is the same as the generalized conformal

transformation in [73]. Our scalar field Y (x) corresponds to their X(x)/g(x) .
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It is straightforward to show that the action is invariant under the special conformal

transformation4. It can be easily checked that the transformations preserve the condition

X0 · Y = 0.

Finally we need to check that the transformation is closed within the constraint equa-

tion ∂2XI
0 = 0. From the transformation of XI

0 , we define the following transformation

at the numerically same point as

δ̃X0(x) = X ′
0(x) −X0(x) = δX0(x) − δxµ∂µX0(x). (3.3.7)

It is easy to see that if the original XI
0 (x) satisfies the constraint equation ∂2X0(x) = 0,

then the infinitesimal variation satisfies ∂2(δ̃X0) = 0 for both of the dilation and the

special conformal transformations, which means that the transformed field also satisfies

∂′2X ′
0(x

′) = 0. Hence the classical conformal transformation is closed within the configu-

rations of X0 satisfying the constraint equation 5 . If we restrict the configurations of XI
0

that satisfy ∂XI
0 = 0, namely, to a set of constant vectors, the above special conformal

transformations cannot be defined within the set. This indicates that taking into account

the whole set of the constraint equation ∂2XI
0 = 0 as adopted in [13] is important in recov-

ering the SO(8) superconformal symmetry. It is also interesting to note that ∂2(δ̃X0) = 0

holds only when p = 2. (Generalized conformal transformations for general p are given in

[73].)

As we see later, the D2 brane action with a space-time dependent coupling is also

derived from the M2 brane theory given by Aharony et.al by taking a certain scaling

limit. This scaling limit corresponds to locating the M2 branes far from the origin of

the orbifold and then taking k → ∞ limit. It is natural from this brane picture that

the model we considered in this subsection has a classical conformal symmetry as well as

SO(8) symmetry.

More detailed studies of the conformal symmetries and the interpretation in the grav-

ity side are discussed in a separate paper [12]. What we have suggested here is that if

we allow the background fields XI
0 to transform under SO(8) and a special conformal

transformation as an SO(8) vector and as in (3.3.5), the action (5.1.12) is invariant under

them. Note also that the analysis here is just about the classical conformal invariance. It

is interesting to see whether the conformal invariance can be preserved quantum mechan-

ically.

4 The kinetic term of the gauge fields is different from the ordinary one, but both of the ordinary type
and ours are invariant under the same conformal transformations.

5 In order to construct a set of solutions in which the conformal transformations are closed, it seems
to be necessary to consider all the solutions to the constraint equation ∂2X0 = 0. Instead we can consider
the following set of solutions studied by Verlinde [59]

XI
0 (x) =

∑
i

qI
i

|x − zi|

which satisfies the constraint equation with sources at x = zi: ∂2XI
0 = −4π

∑
qI
i δ3(x − zi). These

solutions are closed under the conformal transformation if we consider all set of qI
i and zi. See [12] for

details.
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3.3.2 ABJM model revisited

The ABJM model is similar to the Lorentzian BLG model, but different in the following

points. First the gauge group is U(N) × U(N) while it is a semi direct product of U(N)

and translations in the BL model. Accordingly the matter fields are in the bifundamental

representation in the ABJM model. Furthermore the BL model contains an extra field

X0 and Ψ0 associated with the generator T0, and they are required to obey the constraint

equations (2.2.48).

The bosonic potential terms in both theories are sextic, but the potential in the BL

theories contains two XI
0 fields and four adjoint matter fields X̂I while the potential

terms in the ABJM model are written in the product of six bifundamental matter fields

Y . Hence it is natural to think that the trace part of Y will play a role of X0 in the

Lorentzian BLG model. We will see that, if we separate the matter field Y into a trace

and a traceless part, the potential terms coincides in a certain scaling limit.

3.3.3 Scaling limit of ABJM model

In order to take a scaling limit, we first recombine the gauge fields as

Âµ =
A

(L)
µ + A

(R)
µ

2
, Bµ =

A
(L)
µ − A

(R)
µ

2
, (3.3.8)

then the gauge transformations corresponding to Âµ and Bµ are Z → eiσaT a
Ze−iσbT

b

and Z → eiσaT a
ZeiσbT

b
respectively. They are vectorial and axial gauge transformations.

Matter fields are in the adjoint representation for the Âµ gauge fields. Hence the U(1)

part of Âµ decouples from the matter sector.

The covariant derivative can be written in terms of Âµ and Bµ as

DµZ = ∂µZ + i[Âµ, Z] + i{Bµ, Z}
= D̂µZ + i{Bµ, Z}, (3.3.9)

where D̂µ is the covariant derivative with respect to the gauge field Âµ. SCS can be

written in terms of Âµ and Bµ as

SCS =

∫
d3x 4Kϵµνρ tr [BµF̂µν +

2

3
BµBνBρ], (3.3.10)

where F̂µν is field strength of Âµ.

The gauge fields Âµ, Bµ are associated with the gauge transformations generated by T i

and Si in (3.2.10). Hence in order to take the Inönü-Wigner contraction to obtain the

gauge structure of the Lorentzian BL model (3.2.9), we need to rescale the gauge field Bµ

as Bµ → λBµ and take λ → 0 limit. Simultaneously we need to scale the coefficient K

by λ−1K. Since the coefficient K is proportional to the level of the Chern-Simons theory

k as K = k/8π, the scaling limit corresponds to taking the large k limit. In this scaling
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limit, the cubic term of the Bµ fields vanishes and the Chern-Simons action coincides with

the BF-type action in the Lorentzian BLG model:

SCS →
∫
d3x 4Kϵµνρ tr BµF̂µν . (3.3.11)

In order to match the covariant derivatives in the BL action (4.1.10) and in the ABJM

model (3.3.9), we separate the bifundamental fields into the trace and the traceless part,

and scale them differently. We write the matter fields Y A as

Y A
ij = Y A

0 δij + Ỹ A
a T

a
ij, (3.3.12)

where T a is the generator of SU(N).

Now we perform the following rescaling:

Bµ → λBµ,

Y A
0 → λ−1Y A

0 ,

ψA0 → λ−1ψA0,

K → λ−1K, (3.3.13)

where Y A
0 and ψA0 is the trace part of Y A and ψA. All the other fields are kept fixed.

Then take the λ → 0 limit. If we take the scaling limit, we can show that the covariant

derivatives in both theories exactly match.

In the following we consider the ABJM model with SU(N)×SU(N) gauge group. In

the presence of the U(1) × U(1) group, a little more care should be taken for the scaling

of the U(1) part of the Bµ gauge field.

In taking the above scaling limit, many terms vanish. The kinetic term of the ABJM

action becomes

tr

[
− 1

λ2
∂µY

†
0A∂

µY A
0 +

1

λ2
ψ†

0AΓµ∂µψ
A
0 + 2(i∂µY

†
0AB

µY A + h.c.)

−(D̂µỸA + 2iB̃µY0A)†(D̂µỸ A + 2iB̃µY A
0 ) + iψ̃†

AΓµD̂µψ̃
A − 2ψ̃†

AΓµB̃µψ
A
0 − 2ψ†

0AΓµB̃µψ̃
A
]
.

(3.3.14)

The first and the second terms are divergent for small λ. In order to make the action

finite, we need to impose that the trace part of the bifundamental fields must satisfy the

constraint equations

∂2Y I
0 = 0, Γµ∂µψA0 = 0

in the λ → 0 limit. They are precisely the same constraint equations (2.2.48) in the BL

model.

In the Lorentzian BLG model, the constraints are obtained by integrating out the La-

grange multiplier fields X−1 and Ψ−1. Here they arise from a condition that the action

should be finite in the scaling limit.



3.3. DERIVATION OF LORENTZIAN BLG FROM ABJM 41

The other terms in (3.3.14) are finite in the scaling limit and it can be easily shown

that they are precisely the same kinetic terms as that of the Lorentzian Bagger-Lambert

model (after a redefinition of the gauge field 2Bµ → Bµ and setting K = 1/2). The

trace part of the bifundamental fields is identified with the fields X0 associated with one

of the extra generators T 0 in the Lorentzian Bagger-Lambert model. This is the reason

why we have used the same convention with subscript 0 for both of the trace part of the

bifundamental fields and the field associated with the generator T 0.

Now let us check the potential terms. The potential terms of the ABJM model are

invariant under the SU(4) symmetries but not under full SO(8). By decomposing the

matter fields Y A into the trace part Y A
0 and the traceless part Ỹ A, the bosonic sextic

potential becomes a sum of VB =
∑6

n=0 V
(n)
B , where V

(n)
B contains n Y0 fields and (6 − n)

Ỹ fields. Since the coefficient of the bosonic potential is proportional to K−2, V
(n)
B term

scales as λ2−n. It can be easily checked that the coefficients of V
(n)
B vanishes for n > 3. On

the other hand, the potential terms V
(n)
B for n < 2 vanish in the scaling limit of λ → 0.

Hence the only remaining term in the scaling limit is V
(2)
B . This part of the potential has

the full SO(8) symmetry and becomes identical with the potential in the Lorentzian BL

model. In order to see that the BL potential is obtained, we assume that only the field

Z1 has the trace part for simplicity. Let us write the 4 complex scalar field Y A by 8 real

scalar fields as

Z1 = X1
0 + iX5

0 + iX̃1
aT

a − X̃5
aT

a,

Z2 = iX̃2
aT

a − X̃6
aT

a,

W †
1 = iX̃3

aT
a − X̃7

aT
a

W †
2 = iX̃4

aT
a − X̃8

aT
a. (3.3.15)

Substituting them into SVb
and taking the scaling limit, we can obtain the following

bosonic potential:

SVb
= − 1

8K2

∫
d3x tr

(
(X1

0 )2 + (X5
0 )2)[PI , PJ ][P I , P J ]

)
. (3.3.16)

P I is defined by

P I ≡ (P 1, X̃2, X̃3, X̃4, X̃6, X̃7, X̃8),

=

(
1

2
(Ỹ A + Ỹ †

A),
1

2i
(Ỹ B − Ỹ †

B)

)
, (3.3.17)

Ỹ A ≡ (P 1, Z2,W †
1 ,W

†
2 ),

P 1 ≡ X1
0X̃

5 −X5
0X̃

1√
(X1

0 )2 + (X5
0 )2

.

We can rewrite it as,

SVb
= − 1

8K2

∫
d3x tr

[
1

4
(XK

0 )2
(
[X̃I , X̃J ]

)2

− 1

2

(
XI

0 [X̃I , X̃J ]
)2
]
, (3.3.18)
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where we have used XI
0 = (X1

0 , 0, 0, 0, X
5
0 , 0, 0, 0). This is the potentials for bosons in the

Lorentzian BLG model (4.1.10). It is straightforward to see that the complete potential

of the BL model can be obtained by considering general XI
0 and the full SO(8) invariance

is restored.

It should be noted that the above potential term is written in terms of the commuta-

tors. This shows that, if we replace more than two bosons by their trace components, the

potential vanishes. This assures that the would-be divergent terms V
(n)
B for n > 3 vanish

and the only remaining term in the scaling limit is given by the above potential.

Finally consider the fermion potential. We expand the potential as Vf =
∑4

n=0 V
(n)
f

where V
(n)
f contains n trace parts and (4− n) traceless parts. Since the coefficient of the

fermion potential is proportional to 1/K, V
(n)
f scales as λ1−n. V

(n)
f for n > 1 diverges

in the scaling limit and their coefficients must vanish. V
(0)
f vanishes in the scaling limit

λ → 0. Hence the only remaining finite terms are V
(1)
f . In the following we look at the

potential term with one of the bosons replaced by the trace part XI
0 . Such a term can be

written as

SVf
=

i

2K
X1

0 tr
[
−ψ†

1[X̃
5, ψ1] + ψ†

2[X̃
5, ψ2] + ψ†

3[X̃
5, ψ3] + ψ†

4[X̃
5, ψ4]

+ ψ†
1[Y2, ψ2] + ψ†

2[Y
†
2 , ψ1] + ψ†

3[Y2, ψ
†
4] + ψ4[Y2

†, ψ3]

+ ψ†
1[Y3, ψ3] + ψ†

3[Y
†
3 , ψ1] + ψ†

4[Y3, ψ
†
2] + ψ2[Y

†
3 , ψ4]

+ψ†
1[Y4, ψ4] + ψ†

4[Y
†
4 , ψ1] + ψ†

2[Y4, ψ
†
3] + ψ3[Y

†
4 , ψ2]

]
+

i

2K
X5

0 tr
[
+ψ†

1[X̃
1, ψ1] − ψ†

2[X̃
1, ψ2] − ψ†

3[X̃
1, ψ3] − ψ†

4[X̃
1, ψ4]

− ψ†
1[iY2, ψ2] + ψ†

2[iY
†
2 , ψ1] + ψ†

3[iY2, ψ
†
4] − ψ4[iY

†
2 , ψ3]

− ψ†
1[iY3, ψ3] + ψ†

3[iY
†
3 , ψ1] + ψ†

4[iY3, ψ
†
2] − ψ2[iY

†
3 , ψ4]

−ψ†
1[iY4, ψ4] + ψ†

4[iY
†
4 , ψ1] + ψ†

2[iY4, ψ
†
3] − ψ3[iY

†
4 , ψ2]

]
. (3.3.19)

Here for simplicity we have assumed that the trace part of the boson XI
0 is non vanishing

for I = 1, 5 . This can be done by using the original SU(4) symmetry. Note again that

these potential terms are written as a form of commutators.

To get the 3-dimensional Majorana fermion as the BL model, we rewrite the SU(4)

complex fermion in terms of the real variables 6.

ψ1 = iχ1 − χ5, ψ2 = iχ2 − χ6,

ψ3 = iχ3 − χ7, ψ4 = iχ4 − χ8. (3.3.20)

where χI are real 2-component spinors. We also expand the complex bosons as the real

ones (3.3.15). Then the fermion potential (3.3.19) becomes by using the 8× 8 Γ matrices

6 When we give a vev to the X4
0 part only, we will get 7 Γ matrices as in [74]. In our case we need 8

Γ matrices and their antisymmetrized-products because we give a vev to a more general direction.
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as

SVf
= − 1

2K
tr Ψ̄XI

0 [X̃J ,ΓIJΨ],

Ψ ≡ (χ1, χ2, χ3, χ4, χ5, χ6, χ7, χ8) , (3.3.21)

where the indices I, J run from 1 to 8 and XI
0 = (X1

0 , 0, 0, 0, X
5
0 , 0, 0, 0). The explicit

forms of the Γ matrices are given in Appendix A. This fermion potential has the same

SO(8) invariant form as that of the Lorentzian BLG action (4.1.10). In the same fashion

as the bosonic potential, the full SO(8) invariance can be seen easily by considering the

general XI
0 .

3.4 Comments on scaling limit

Recently an additional suggestion about the scaling limit in the ABJM model has been

appeared by Antonyan and Tseytlin [11]. They have mentioned necessity of additional

fields to obtain precise Lorentzian BLG model. The idea is simple. The ABJM model

has Y A with U(N)×U(N) gauge group so much so that it has 4× 2N2 = 8N2 degrees of

freedom. However, Lorentzian BLG model has X̂I with SU(N) gauge group and originally

ghost fields XI
−1, X

I
0 so this model has 8(N2 − 1)+2× 8 = 8N2 +8 d.o.f. They suggested

to have additional ghost fields Y A
−1 to the ABJM model

LABJM +N

∣∣∣∣−1

λ
∂µY

A
0 +

λ

N
∂µY

A
−1

∣∣∣∣2 . (3.4.22)

With the additional ghost term, we can correctly reproduce the ghost term in Lorentzian

BLG model (2.2.42) by taking the scaling limit λ→ 0. As we said before around (3.3.14),

the divergent term should be regarded as the constraint equation. However with the

additional term, we can obtain the ghost term and also the constraint equation without

divergent terms.

People might think curiously to just add the ghost term. But this seems to be natural

if first we consider the new BL model (2.3.61) (p.33) instead of the ABJM. In the new

BL model we have generalized Lorentzian triple algebra

[E, T i;T j] =
2π

k
f ij

kT
k,

[T i, T j;T k] = − 2π

kN
f ijkE +

2π

k
Aijk

mT
m (3.4.23)

where we use the generators T i of SU(N) in the general case of U(N)×U(N) Lie algebra

and the coefficients Aijk
m as

T iT j = −iδijE +
1

2
(if ij

k + dij
k)T

k,

trT iT j = hij,

Aijk
mT

m =
1

N
hjkT i +

1

4
(ifkj

l + dkj
l)(if

il
m + dil

m)Tm − (i↔ j), (3.4.24)



44 CHAPTER 3. BLG MODEL FROM ABJM MODEL

and also we take the ABJM example of new BL model (2.3.63). By adding an extra ghost

generator e which commutes with all other generators

[e, T a;T b] = 0, (3.4.25)

and taking a similar scaling limit with

e =
N

λ
T−1, E = λT 0 +

N

λ
T−1, k → 1

λ
k, (3.4.26)

then we obtain the Lorentzian BLG model with ghost terms precisely. Note that the gen-

erators E is not “T 0” as we considered before. It should be combined with the generators

T 0, T−1. This can be seen easily by considering additional field and taking the scaling

limit (
1

λ
Y0

)
E +

(
−1

λ
Y0 +

λ

N
Y−1

)
e = Y0T

0 + Y−1T
−1. (3.4.27)

Therefore E should consist from not only T 0 but also T−1.



Chapter 4

Generalized Conformal Symmetry

and the Gravity dual

Now we know how to obtain the Lorentzian BLG model from ABJM model. Together

with the fact we also know the dual description of ABJM model, we can consider about

the dual gravity description of Lorentzian BLG model by taking the scaling limit. We

also clarify the conformal symmetry of Lorentzian BLG model which is expected to be

conformal from the dual gravity description. We explain our work which discussed in [12].

4.1 Conformal Symmetry of ABJM and L-BLG

4.1.1 Conformal invariance of ABJM

As shown in [75], the ABJM model is invariant under the superconformal transformations.

Here we study the invariance of the ABJM model under the conformal transformations,

in particular the special conformal transformations.

First it is obvious that the action is invariant under the dilatation. Dilatation is defined

by x → eϵx and simultaneously we transform each field by multiplying e−nϵ where n is

the conformal weight. The scalars Y A, fermions ψA and the gauge fields Aµ have weights

1/2, 1, 1 respectively.

A little more nontrivial transformation is a special conformal transformation. It is

given by

δxµ = 2ϵ · xxµ − ϵµx2. (4.1.1)

If we write the infinitesimal transformation for each field Y (x) as δY (x) = Y ′(x′)−Y (x),

they are given by

δY A(x) = −ϵ · xY A(x),

δA(L,R)
µ (x) = −2ϵ · xA(L,R)

µ (x) − 2(x · A(L,R)ϵµ − ϵ · A(L,R)xµ),

δψA(x) = −2ϵ · xψA(x) − ϵµνλϵ
νxλΓµψA(x). (4.1.2)

45



46CHAPTER 4. GENERALIZED CONFORMAL SYMMETRY AND THE GRAVITY DUAL

These transformations can be understood as follows. They look like the general coordinate

transformations, but are different since the theory is restricted to live in the flat space-

time with a fixed metric and the change of the metric under the general coordinate

transformations must be compensated by the transformations of the fields. The first

terms in each transformation reflect the conformal weight of each field. The second term

in the transformation of the fermion is the local Lorentz transformation which pulls back

the flat local Lorentz frame (where we use Γ012ψ = ψ). The transformation for the gauge

field Aµ is nothing but the general coordinate transformation with the transformation

parameter (4.1.1).

The action is invariant under the above special conformal transformations. In order

to see it, the following transformation rules are useful:

d3x→ e6ϵ·xd3x,

∂µ → e−2ϵ·x[∂µ − 2(ϵµx
ν∂ν − xµϵ

ν∂ν)],

DµY → e−3ϵ·x [DµY − {Y + 2xν∂νY + 2i(x · A(L)Y − Y x · A(R))}ϵµ
+{2ϵν∂νY + 2i(ϵ · A(L)Y − Y ϵ · A(R))}xµ

]
,

Fµν →e−4ϵ·x [Fµν − 2(ϵνx
ρFµρ − ϵµx

ρFνρ) + 2(xνϵ
ρFµρ − xµϵ

ρFνρ)] . (4.1.3)

Though ϵ is an infinitesimal parameter, we write the overall factors as e−2nϵ·x for conve-

nience. They are cancelled in the action because n is the conformal weight of each field

and coordinates.

Here let us check the invariance of the Chern-Simons term as an example. First the

derivative part transforms as

ϵµνλtrFµνAσ

→ ϵµνλe−6ϵ·xtr[FµνAλ + 4(ϵµx
ρ − xµϵ

ρ)AλFνρ − 2Fµν(x · Aϵλ − ϵ · Axλ)]. (4.1.4)

The pre-factor e−6ϵ·x is cancelled with the transformation of d3x in (4.1.3). The rest

vanishes because

ϵµνλtr[2(ϵµx
ρ − xµϵ

ρ)AλFνρ − Fµν(x · Aϵλ − ϵ · Axλ)]

= ϵµνλtr[2ϵ ρα
µ fαFνρAλ − ϵ ρα

λ fαFµνAρ] = 0. (4.1.5)

In the second line we have defined fα = ϵµναxµϵν . Similarly the invariance of the term

ϵµνλAµAνAλ can be shown by noting that the gauge field transforms as

Aµ → e−2ϵ·x(Aµ + 2ϵµαβf
αAβ). (4.1.6)

Hence the Chern-Simons terms are invariant under the special conformal transformation.

Though we have checked it explicitly, the invariance can be naturally understood because

the Chern-Simons term is independent of the metric if it is defined in a curved background

space-time.

The other terms in the action are also straightforwardly shown to be invariant under

the special conformal transformations.
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4.1.2 ABJM to L-BLG

As shown in [10], the L-BLG model is obtained by taking a scaling limit of the ABJM

model with a gauge group SU(N)×SU(N). In the gauge theory with U(N)×U(N) there

is a subtlety in the scaling of the U(1) part. We will discuss the issue in the Appendix B

and here restrict the discussions to the SU(N) × SU(N) case.

The scaling is given as follows:

Bµ → λBµ,

XI
0 → λ−1XI

0 ,

ψA0 → λ−1ψA0,

k → λ−1k (4.1.7)

where

Y A = X2A−1
0 + iX2A

0 − X̂2A + iX̂2A−1, Bµ =
1

2
(A(L)

µ − A(R)
µ ) (4.1.8)

and XI
0 and ψ0A are trace components of the bifundamental matter fields, and I =

1, · · · , 8. When we take λ → 0 limit and keep the other fields fixed, the action of the

ABJM model is reduced to the action of the L-BLG model. Since the k → ∞ limit is

taken before taking the large N , our scaling corresponds to a vanishing ’t Hooft coupling

N/k → 0. Besides the action, the same constraint equations as those in the L-BLG model

can be obtained from the ABJM model:

∂2XI
0 = 0, Γµ∂µΨ0 = 0, (4.1.9)

by requiring finiteness of the action in the λ→ 0 limit.

In the above scaling limit we arrive at the L-BLG model:

L0 = Tr

[
−1

2
(D̂µX̂

I −BµX
I
0 )2 +

1

4
(XK

0 )2([X̂I , X̂J ])2 − 1

2
(XI

0 [X̂I , X̂J ])2

+
i

2
¯̂
ΨΓµD̂µΨ̂ + iΨ̄0Γ

µBµΨ̂ − 1

2
Ψ̄0X̂

I [X̂J ,ΓIJΨ̂] +
1

2
¯̂
ΨXI

0 [X̂J ,ΓIJΨ̂]

+
1

2
ϵµνλF̂µνBλ − ∂µX

I
0 BµX̂

I

]
. (4.1.10)

In the original formulation of the L-BLG model, the constraint equations (4.1.9) are

derived by integrating the auxiliary fields XI
−1 and Ψ−1:

Lgh = (∂µX
I
0 )(∂µXI

−1) − iΨ̄−1Γ
µ∂µΨ0. (4.1.11)

Since the above scaling is compatible with the conformal transformations discussed in the

previous section, the action (4.1.10) is invariant under the conformal transformations (see

also [76]). The action for the auxiliary fields (4.1.11) is also invariant if we define the

transformations for them as

δXI
−1(x) = −ϵ · xXI

−1(x),

δΨ−1(x) = −2ϵ · xΨ−1(x) − ϵµνλϵ
νxλΓµΨ−1(x). (4.1.12)
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4.1.3 Generalized conformal symmetry in D2 branes

Now integrate the Bµ gauge field. It has been discussed that if we pick up a specific

solution to the constraint equation (4.1.9), especially a constant solution

XI
0 = v δI,8, Ψ0 = 0, (4.1.13)

the L-BLG model is reduced to the action of the ordinary D2 branes whose Yang-Mills

coupling constant is given by gY M = v:

L = Tr

[
− 1

4v2
F̂ 2

µν −
1

2
(D̂µX̂

A)2 +
1

4
v2[X̂A, X̂B]2 +

i

2
¯̂
ΨΓµD̂µΨ̂ +

1

2
v
¯̂
Ψ[X̂A,Γ8,AΨ̂]

]
(4.1.14)

where A,B = 1, · · · , 7. Then SO(8) is spontaneously broken to SO(7) because we have

specialized the 8-th direction. The conformal invariance is also broken. Though the action

is the same as that of the D2 branes, we see later that the interpretation of the L-BLG

model as an effective theory of the ordinary D2 branes is not appropriate since the radius

of curvature is much smaller than the string scale in the gravity dual.

The constraint equations (4.1.9) have more general solutions than (4.1.13) which de-

pend on the spacetime coordinates. Then the resulting action becomes a Yang-Mills

theory with a spacetime dependent coupling [13]. As we have shown [10], the action with

the spacetime dependent coupling is invariant under the conformal transformations if we

consider a set of spacetime dependent solutions. The conformal invariance is discussed in

more details in the next section.

We here consider the simplest spacetime dependent solutions:

XI
0 = v(x) δI,8, Ψ0 = 0, ∂2v(x) = 0. (4.1.15)

Then the L-BLG model is reduced to the same action as that of the D2 branes but with

a spacetime varying coupling:

L = Tr

[
− 1

4v(x)2
F̂ 2

µν −
1

2
(D̂µX̂

A)2 +
1

4
v(x)2[X̂A, X̂B]2

+
i

2
¯̂
ΨΓµD̂µΨ̂ +

1

2
v(x)

¯̂
Ψ[X̂A,Γ8,AΨ̂]

]
. (4.1.16)

SO(8) symmetry is spontaneously broken to SO(7) as well, but the action with a varying

v(x) has a generalized conformal symmetry if the coupling transforms as

δv(x) = −(ϵ · x) v(x). (4.1.17)

This transformation is originated in the special conformal transformation of the scalar

field (4.1.2). The generalized conformal transformation for Dp branes were first proposed

by Jevicki, Kazama and Yoneya [73]. In the present case, the transformation (4.1.17) is

naturally derived since the coupling constant of the Yang-Mills action is determined by

the center of mass coordinates XI
0 (x) of the M2 branes.

It is worth noting that the generalized conformal transformation (4.1.17) is compatible

with the constraint equations (4.1.9) only when p = 2. We will discuss it in the next

section.



4.1. CONFORMAL SYMMETRY OF ABJM AND L-BLG 49

4.1.4 Conformal symmetry and SO(8) invariance of L-BLG

The space-time dependent coupling v(x) can be promoted to an SO(8) vector XI
0 (x) by

considering general solutions to the constraint equations (4.1.9) as shown in [13]. Then the

resultant action after integrating the Bµ gauge field becomes D2 branes effective action

with space-time dependent couplings in a vector representation of the SO(8) . In [10] we

showed that if we consider space-time dependent solutions the theory has the generalized

conformal symmetry as well as the manifest SO(8) invariance.

In this section we study more details of the generalized conformal symmetry of the

L-BLG model. Especially we show that the conformal transformations are closed under

the constraint equations (4.1.9).

By integrating the Bµ gauge field, we get the action S =
∫
d3x(L0 + L′):

L0 = Tr

[
−1

2
(D̂µP

I)2 +
1

4
X2

0 [P I , P J ]2 +
i

2
¯̂
ΨΓµD̂µΨ̂ +

1

2
¯̂
Ψ[P I , (XJ

0 ΓJ)ΓIΨ̂]

+
1

2(XI
0 )2

(1
2
ϵµνλF̂νλ + iΨ̄0Γ

µΨ̂ − 2PI∂
µXI

0

)2 − 1

2
Ψ̄0ΓIJΨ̂[P I , P J ]

]
,

L′ =
1

X2
0

Tr
[(

−Ψ̄0ΓI(X
J
0 ΓJ)[P I , Ψ̂] − iΨ̄0ΓµD̂µΨ̂

)
(XK

0 X̂
K)
]
. (4.1.18)

where we have defined a new scalar field PI with 7 degrees of freedom by using the

projection operator

PI(x) =

(
δIJ − X0IX0J

X2
0

)
XJ . (4.1.19)

The XI
0 (x) field is constrained to satisfy ∂2XI

0 = 0. This is a generalization of (4.1.16).

We called this model as a Janus field theory of (M)2-branes since the coupling constant

is varying with the space-time coordinates.

The action of the gauge field is no longer the Chern-Simons action but we can again

show that it is invariant under the conformal transformations. Under the dilatation

xµ → eϵxµ, each field is multiplied by e−nϵ where n is the conformal weight. The weights

of P,X0, Aµ,Ψ,Ψ0 are 1/2, 1/2, 1, 1, 1 respectively. The action is evidently invariant.

Special conformal transformation is similarly given by

δxµ = 2ϵ · xxµ − ϵµx2 (4.1.20)

and the fields transform as

δP I(x) = −ϵ · xP I(x),

δXI
0 (x) = −ϵ · xXI

0 (x),

δAµ(x) = −2ϵ · xAµ(x) − 2(x · A ϵµ − ϵ · A xµ),

δΨ̂(x) = −2ϵ · xΨ̂(x) − ϵµνλϵ
νxλΓµΨ̂(x),

δΨ0(x) = −2ϵ · xΨ0(x) − ϵµνλϵ
νxλΓµΨ0(x). (4.1.21)

It is now straightforward to show the invariance of the action. The Lagrangian is not

invariant but changes by total derivatives.
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Finally we need to check that the transformation is closed within the constraint equa-

tions (4.1.9). Namely if the field XI
0 (x) satisfies ∂2

xX
I
0 (x) = 0, the transformed field

X
′I
0 (x′) must also satisfy ∂2

x′X
′I
0 (x′) = 0. For an infinitesimal special conformal transfor-

mation, this is equivalent to show ∂2δ̃XI
0 (x) = 0 where δ̃XI

0 (x) is the transformation at

the numerically same point defined by

δ̃XI
0 (x) = X ′I

0 (x) −XI
0 (x) = δXI

0 (x) − δxµ∂µX
I
0 (x),

δ̃Ψ0(x) = Ψ′
0(x) − Ψ0(x) = δΨ0(x) − δxµ∂µΨ0(x). (4.1.22)

In the following, in order to see the specialty for M2 (or D2)-branes, we generalize the

special conformal transformation to Dp-branes [73]:

δ̃XI
0 (x) = −(3 − p)ϵ · xXI

0 − (2ϵ · xxµ − ϵx2)∂µX
I
0 (4.1.23)

It is easy to show

∂2(δ̃XI
0 (x)) = 2(p− 2)ϵµ∂µX

I
0 (4.1.24)

where we have used the constraint equation ∂2XI
0 = 0. This vanishes at p = 2 only.

Similarly, δ̃Ψ0 is given by

δ̃Ψ0(x) = −2(3 − p)ϵ · xΨ0 − ϵµνλϵ
νxλΓµΨ0 − (2ϵ · xxµ − ϵx2)∂µΨ0 (4.1.25)

and satisfies

Γα∂α(δ̃Ψ0(x)) = 2(p− 2)ΓαϵαΨ0 (4.1.26)

where we used the constraint equation Γα∂αΨ0 = 0. Again Γα∂α(δ̃Ψ0(x)) = 0 vanishes

at p = 2 only. Both of the constraints are compatible with the generalized conformal

transformations at p = 2. It shows a specialty of M2 (or D2) branes.

We have shown that the constraint equations are compatible with the generalized

conformal transformations. If the solutions are restricted to constant ones as in (4.1.13),

we no longer have the generalized conformal symmetry. It can be maintained only when

we consider a set of space-time dependent solutions to the constraint equations.

Recently H. Verlinde [59] also considered space-time dependent solutions to the con-

straint equations and discussed the conformal symmetry of the L-BLG model. In his

study the constraint equation is imposed everywhere except at zi where a local operator

Oi(zi) is inserted,

XI
0 (x) =

∑ qI
i

|x− zi|
. (4.1.27)

This is an inhomogeneous solution to the equation

∂2XI
0 = −4π

∑
qI
i δ

3(x− zi). (4.1.28)
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We can add the homogeneous solutions to the above. If qI and z (omitting the index i)

transform as

δqI = ϵ · zqI

δzµ = 2(ϵ · z)zµ − ϵµz
2, (4.1.29)

the transformation of XI
0

δXI
0 (x) = −(ϵ · x)XI

0 (x) (4.1.30)

is reproduced and the L-BLG action is invariant under the conformal transformations.

Note that qI cannot be a constant. If qI is kept fixed, the set of solutions is not closed

under the conformal transformations. In order to recover the conformal invariance, qI

should be a position z-dependent charge.

We have shown that the L-BLG model has both of the SO(8) invariance and the

conformal symmetry. In the next section we discuss the symmetry properties of the

gravity dual of the ABJM model.

4.2 SO(8) and Conformal Symmetry in Dual Gravity

4.2.1 Large k limit of ABJM geometry

In the paper [7], it was pointed out that the U(N) × U(N) ABJM model is dual to the

M-theory on AdS4 ×S7/Zk, which is a d = 11 supergravity solution of M2 branes probing

the orbifold C4/Zk. We first review the solution of supersymmetric M2 branes in d = 11

supergravity.

The d = 11 metric of the multiple M2-branes is given by

ds2 = H− 2
3

(
2∑

µ,ν=0

ηµνdx
µdxν

)
+H

1
3

(
dr2 + r2dΩ2

7

)
,

H(r) ≡ 1 +
R6

r6
, (4.2.1)

where R6 = 32π2N ′l6p and dΩ2
7 is the metric of a unit 7-sphere. N ′ is the number of the

M2 branes and identified with N ′ = kN . The three form field is also given as

C(3) = H−1dx0 ∧ dx1 ∧ dx2 (4.2.2)

and the 4-form flux normalized by the world volume is proportional to N ′.

By focusing on the near horizon region of the M2-brane, the geometry becomes AdS4×
S7 geometry. In the near horizon limit R ≫ r, H(r) is replaced by H(r) = (R/r)6 and

the metric becomes

ds2 =
( r
R

)4
(

2∑
µ,ν=0

ηµνdx
µdxν

)
+

(
R

r

)2

dr2 +R2dΩ2
7

= R2

[
1

4
ds2

AdS + dΩ2
7

]
(4.2.3)
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where we have rescaled the M2 brane world volume coordinates by a factor 2/R3. Hence

the near horizon geometry of the supersymmetric M2 branes is given by AdS4 × S7 with

a radius R. In the large N ′ = kN limit, the radius becomes much larger than the d = 11

Planck length and the d = 11 supergravity approximation is valid.

The ABJM model describes M2 branes on C4/Zk orbifold. The dual geometry can

be obtained by first specifying the polarization (choice of the complex coordinates) in R8

and then dividing C4 by Zk.

Since S7, parameterized by zA (A = 1, · · · , 4) with |zA|2 = 1, is a U(1)-fibration on

CP 3, the metric of S7 is written as

dΩ2
7 = (dφ′ + ω)

2
+ ds2

CP 3 (4.2.4)

where φ′ is the overall phase of zA. The details of the definition of coordinates are written

in Appendix C.

We now perform the Zk quotient by dividing the overall phase of each zA, namely the

φ′ direction. By rewriting φ′ = φ/k with φ ∼ φ+ 2π, the metric of S7/Zk becomes

ds2
S7/Zk

=
1

k2
(dφ+ kω)2 + ds2

CP 3 . (4.2.5)

Before performing the Zk quotient, the metric has the conformal symmetry associated

with the AdS4 geometry and SO(8) symmetry of S7. The orbifolding breaks the SO(8)

symmetry to SU(4) × U(1) but the conformal invariance still exists. This is the bosonic

symmetry of the ABJM model.

The L-BLG action can be derived by taking the scaling limit (4.1.7) of the ABJM

model. In the gravity side, this scaling corresponds to locating the probe M2 branes far

from the orbifold singularity and taking the large k limit. As we show in the next section,

the former process recovers the SO(8) if the positions of the M2 branes are considered

to be dynamical variables. The latter makes the radius of the φ′ circle small and d = 11

geometry is reduced to d = 10.

Now we consider the k → ∞ limit of the dual geometry of the ABJM model. Following

the prescription of ABJM, we shall interprete the coordinate φ as the compact direction

in reducing from M-theory to type IIA superstring. Using the reduction formula [72]

ds2
11 = e−

2
3
ϕds2

10 + e
4
3
ϕ(lp)

2 (dφ+ A)2 (4.2.6)

we get the d = 10 metric and the dilaton field in type IIA supergravity as

ds2
10 =

r

klp
H− 1

2

(
2∑

µ,ν=0

ηµνdx
µdxν

)
+

r

klp
H

1
2

(
dr2 + r2ds2

CP 3

)
, (4.2.7)

e2ϕ =

(
r

klp

)3

H
1
2 =

(
R

klp

)3

. (4.2.8)

Hence in the k → ∞ limit, the metric becomes AdS4 × CP 3:

ds2
10 =

R3

k

[
1

4
ds2

AdS4
+ ds2

CP 3

]
(4.2.9)
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where the radius of curvature in string units is

R2
str =

(
R

ls

)2

=
R3

kl3p
= 25/2π

√
N

k
. (4.2.10)

The dilaton is a constant and this is the reason why the d = 10 metric still has a con-

formal symmetry associated with the AdS4 geometry. This is different from the ordinary

reduction of the M2 branes to D2 branes by compactifying the 11th direction of the Carte-

sian coordinate (see Appendix D). Note that in the type IIA picture, in addition to the

four-form RR flux F4, there is a 2-form RR flux:

F4 =
3

8

R3

l3p
ϵ̂4,

F2 = dA = kdω (4.2.11)

where ϵ̂4 is the volume form in a unit radius AdS4 space. Hence the geometry is described

by the AdS4 × CP 3 compactification with N units of the four form flux on AdS4 and k

units of the two-form flux on the CP 1 in CP 3 space.

In the k → ∞ limit with N/k fixed, the compactification radius along the φ-direction

R11 becomes very small compared to the d = 11 Planck length:

R11

lp
=

R

klp
∼ (Nk)1/6

k
→ 0. (4.2.12)

Thus the theory is reduced to a ten-dimensional type IIA superstring on AdS4 × CP 3.

However the scaling limit from ABJM to L-BLG is taking large k limit before taking the

large N and the ’t Hooft coupling N/k becomes 0 in this limit. Since R11 = g
2/3
s lp, the

string coupling constant gs = eϕ also becomes 0:

gs = eϕ ∼ k−
5
4N

1
4 → 0. (4.2.13)

Since d = 11 Planck length lp and d = 10 Planck length l
(10)
p are related to the string

length as lp = g
1/3
s ls and l

(10)
p = g

1/4
s ls, the ratios of the radius of the IIA geometry (4.2.9)

with ls and l
(10)
p are given by(

R

ls

)2

∼
√
N

k
→ 0,

(
R

l
(10)
p

)2

∼ k1/8N3/8 → ∞. (4.2.14)

Therefore the Type IIA supergravity approximation itself is good but the α′ expansion is

not good and the theory cannot be considered as the low energy approximation of type

IIA superstring. On the other hand, the radius R is much larger than the d = 11 Planck

length and it may be more appropriately interpreted as a dimensional reduction of M2

branes in the d = 11 supergravity.

We summarize the various length scales in the scaling limit of the ABJM model to the

L-BLG model:

R11 ≪ l(11)
p ≪ l(10)

p ≪ RAdS ≪ ls. (4.2.15)
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The compactification radius R11 is much smaller than any other scales and the theory is

reduced to d = 10. But the radius of the AdS4 × CP 3 is smaller than the string length

and larger than the d = 10 and d = 11 Planck scales.

In the ordinary case of the duality between type IIB superstrings on AdS5 × S5 and

N = 4 SYM in d = 4, the radius of curvature R is given by(
R

ls

)4

∼ gsN,

(
R

l
(10)
p

)4

∼ N. (4.2.16)

Thus it is usually assumed that both of gsN and N are large so much so that the type

IIB supergravity approximation and the α′-expansion are valid. Unless gsN is large, α′

corrections cannot be neglected and the supergravity description itself is not valid. In the

weak coupling limit, the dual field theory is usually considered to be more appropriate.

In our case, we can consider the d = 10 supergravity as a dimensional reduction of

d = 11 supergravity. However membranes wrapping the φ direction become very light

strings in the unit of the radius of curvature R, and this may invalidate the supergravity

approximation of the M-theory.

4.2.2 Recovery of SO(8) in dual geometry of L-BLG

In taking the scaling limit k(≫ N) → ∞ of the ABJM model to the L-BLG model, the

eleven-dimensional geometry is reduced to the ten-dimensional AdS4 × CP 3:

ds2 = H− 2
3

(∑
ηµνdx

µdxν
)

+H
1
3 (dr2 + r2ds2

CP 3)

H(r) =
R6

r6
. (4.2.17)

In this section we discuss how the SO(8) can be recovered in the scaling limit of the

ABJM geometry to the L-BLG geometry. The L-BLG geometry is obtained by taking

k → ∞ limit of AdS4 × S7/Zk and simultaneously locating the probe M2 brane far from

the origin of the orbifold. In the large k limit, the geometry becomes d = 10 AdS4×CP 3,

and there are only 7 transverse directions to the M2 brane world volume, However the

radial distance in (4.2.17) is given by the distance in d = 8:

r2 =
8∑

I=1

(XI)2. (4.2.18)

It is invariant under the original SO(8) rotation and the Zk quotient leaves r invariant.

Now we consider a probe M2 brane in the above geometry. In the static gauge, the

M2 brane world volume is identified with the coordinates xµ (µ = 0, 1, 2) and the position

of the M2 brane is given by XI(x) where I = 1, · · · , 8. There are only 7 independent

propagating modes among 8, and the direction that is removed is the φ-direction. Re-

member that the φ is the overall phase of the complex coordinate zi of the transverse

R8. Assuming that the probe M2 brane is located far from the source branes, we can
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separate the probe M2 brane coordinates into the classical background fields XI
0 (x) and

the quantum fluctuations X̂I(x). Since the M2 brane is on C4/U(1), all the points on the

gauge orbit generated by the φ-rotation are identified. Here the position of the M2 brane

is represented by the coordinates of R8; a point on the gauge orbit is singled out by fixing

the gauge (see Appendix C).

If the probe M2 brane is located at

XI
0 = vδI,8 (4.2.19)

where v is much larger than the scale of the fluctuations, the rotation along the φ-direction

is approximated by

δX7 = −δφ v,

δXI = 0 , I ̸= 7. (4.2.20)

This shows that in the large v limit the φ direction can be identified with the 7th direction

X7 1. Since the Zk orbifolding with large k corresponds to gauging away the φ-direction,

the fluctuation along the 7th direction is killed and the field X̂I can fluctuate only in

the other 7 directions. This means that the SO(7) rotation acts among the other 7

directions around the classical background of (4.2.19). If the classical background XI
0 (x)

takes different directions at different world volume points, the killed direction also changes

locally on the world volume.

In order to get a manifest SO(8) covariant formulation of this mechanism, it is con-

venient to separate the classical background field of the M2 brane and the fluctuations in

the complex coordinates as

ZA(x) = ZA
0 (x) + ẐA(x). (4.2.21)

If the fluctuations are much smaller than the classical background field, the φ rotation

can be approximated as

δZA = iδφZA
0 . (4.2.22)

If we write

ZA
0 = X2A−1

0 + iX2A
0

ẐA = iX̂2A−1 − X̂2A, (4.2.23)

where A = 1 · · · 4, the propagating degrees of freedom along the direction (4.2.22) are

killed and the fluctuations are restricted to obey

XI
0 X̂

I = 0. (4.2.24)

1 (4.2.19) has fixed a gauge of the φ rotation and (4.2.20) is nothing but the direction parallel to the
gauge orbit. If we change a gauge,e.g. to XI

0 = vδI,7, (4.2.20) is also changed accordingly.
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Note that the decomposition of the complex fields into the real and the imaginary parts

are different between the classical background ZA
0 and the fluctuations ẐA in (4.2.23).

With this definition, if XI
0 = vδI,8, the killed direction becomes the 8th direction of X̂I .

We can write the fluctuations perpendicular to X̂I in (4.2.24) as

P I =

(
δIJ − XI

0X
J
0

(X0)2

)
X̂J . (4.2.25)

This P I automatically satisfies the condition (4.2.24) and 7 degrees of freedom are pro-

jected among the 8 degrees of freedom. Now everything is written in a manifestly SO(8)

covariant way. The SO(8) covariance is recovered because we have assumed that the

fluctuation is much smaller than the classical background fields of the probe M2 brane.

This assumption is consistent with the scaling limit of the ABJM model to the L-BLG

model.

Note here that the SO(8) rotation changes the gauge choice of the φ rotation and

SO(8) is mixed with the U(1) gauge transformation. Also note that because of the

different assignments of XI to ZA for Z0 and Ẑ, the SO(8) is different from the original

SO(8) before taking the orbifolding.

The analysis here and in the previous section shows why the L-BLG model has both of

the conformal symmetry and the invariance under SO(8). The compactification direction

along the φ direction is different from the ordinary reduction to d = 10 by compactifying

the 11th transverse direction. The dilaton becomes constant and the AdS4 geometry is

preserved. This is the reason why there is a conformal symmetry in the effective field

theory of L-BLG.

The SO(8) invariance is more subtle. In the scaling limit of ABJM to L-BLG, we

take k → ∞ limit and simultaneously locate the probe M2 brane far from the origin of

the orbifold. Then the killed direction of the fluctuations by Zk (k → ∞) orbifolding is

given by the SO(8) vector of the classical background fields XI
0 after specifying the gauge

choice, and defining the projection operator by using XI
0 the manifest SO(8) covariance

is obtained.

4.2.3 Actions of probe branes in AdS4 × CP 3

In this section we study possible forms of the effective field theory of probe M2 branes

in the background geometry (4.2.17). The analysis in the section follows the prescription

of [77] and [78] that a classical scalar field in the radial direction is interpreted as the

Yang-Mills coupling. We will study probe M2 branes in a curved background while flat

11-dimensional background is used there.

By using the metric of (4.2.17), the generally covariant kinetic term can be written as

S0 = − 1

2

∫
d3x

√
− det ggµνgIJtr[DµX

IDνX
J ], (4.2.26)

where µ, ν = 0, 1, 2 are the world volume indices and I, J = 1, · · · , 8 are the target space

indices, and Dµ = ∂µ − iAµ is the covariant derivative to assure that XI lies on C4/U(1)

(see Appendix C).
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Both of the world volume metric gµν and the target space metric gIJ are functions of

the position of the M2 branes XI(x). A static gauge is taken and the world volume metric

gµν is given by the induced metric in the curved space-time (4.2.17).

This kinetic term can be simplified as follows. The metric gµν and gIJ are functions

of the the M2 brane position through r. As we did in the previous section, we separate

the 8 scalar fields XI(x) of the probe M2 branes into a classical background and quantum

fluctuations. If the probe M2 branes are located far from the origin of the orbifold

singularity, the position of the M2 branes is approximated by the value of the classical

background fields XI
0 (x) and r ∼

√
(XI

0 (x))2. Inserting the explicit form of the metric,

the kinetic term can be simplified (see Appendix C) as

S0 = −1

2

∫
dx3ηµνηIJtr[∂µP

I∂νP
J ] (4.2.27)

where P I(x) is the projected fluctuating fields (4.2.25). In deriving this action, we have

used that the classical background fields XI
0 are slowly varying. Note that all the depen-

dence of H(r) vanishes and the kinetic term of the fluctuating fields does not have the

explicit dependence on the position of M2 branes.

The position of the M2 branes XI
0 must satisfy the classical equation of motion on the

geometry (4.2.17). Because of the cancellation of H(r), it looks like a free field equation

of motion. But the fields XI
0 are restricted to be on the geometry where the φ-direction

is killed, and they are slightly different from the constraint equation (4.1.9) in the L-BLG

model, or that in the scaling limit of the SU(N) × SU(N) ABJM model. This is related

to the effect of the U(1) gauge field of the ABJM model. We discuss it in Appendix B.

In the rest of this section, we dare to generalize the discussion of the kinetic term

of the scalar field to the other possible terms in the the effective action of the probe M2

branes in the geometry (4.2.17). First assume that a gauge field is induced on the effective

action of the probe M2 branes and its action is given by the ordinary Yang-Mills type.

Then the general coordinate invariant YM action in the curved metric (4.2.17) is given

by

−1

4

∫
d3x

√
− det ggµρgνσtr [FµνFρσ] = −1

4

∫
d3x

(
R

r

)2

ηµρηνσtr [FµνFρσ] . (4.2.28)

(Since we are considering the d = 11 theory, there is no freedom to multiply a dilaton

dependence in the action.) In this case, H(r) dependence remains and the effective Yang-

Mills coupling is given by the following field dependent value:

g2
Y M(x) =

r2

R2
=

(XI
0 (x))2

R2
. (4.2.29)

Similarly if we assume that the scalar field acquires a quartic potential, the general

coordinate and SO(8) invariance require its form to be

1

4

∫
d3x

√
− det ggIKgJLtr[P I , P J ][PK , PL]

=

∫
d3x

1

4

(XI
0 )2

R2
ηIKηJLtr[P I , P J ][PK , PL]. (4.2.30)
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Here P I are projected scalar fields (4.2.25).

Summing up these three terms, we have the following forms of the effective action:

S = −1

2

∫
dx3

(
tr[∂µP

I∂µP I ] − 1

4

R2

(XI
0 )2

tr [FµνF
µν ] +

1

4

(XI
0 )2

R2
tr[P I , P J ]2

)
. (4.2.31)

Of course there is little justification of the above analysis but it is amusing to see that this

is nothing but the bosonic part of (4.1.18). The analysis might support an interpretation

that the action of L-BLG is the effective action of the probe M2 branes in the geometry of

(4.2.17). The XI
0 dependence of the coefficients will be related to the conformal invariance

of the M2 branes. It will be interesting to constrain possible forms of the effective action

including fermions, higher derivative terms, or generic potential terms by the generalized

conformal invariance.



Chapter 5

Mass deformation

In this chapter, we discussed the mass deformed Lorentzian BLG model and also explain

the possibility of coordinate dependent couplings even without mass term [13]. We also

clarify the BF theory and usual gauge theory which live in Lorentzian BLG model.

5.1 Bagger-Lambert-Gustavsson model

5.1.1 Comments on BLG model to D2 branes

Let’s remind the Lorentzian BLG model from (2.2.42).

LL =

[
−1

2
(D̂µX̂

I −BµX
I
0 )2 +

1

4
(XK

0 )2([X̂I , X̂J ])2 − 1

2
(XI

0 [X̂I , X̂J ])2

+
i

2
¯̂
ΨΓµD̂µΨ̂ + iΨ̄0Γ

µBµΨ̂ − 1

2
Ψ̄0X̂

I [X̂J ,ΓIJΨ̂] +
1

2
¯̂
ΨXI

0 [X̂J ,ΓIJΨ̂]

+
1

2
ϵµνλF̂µνBλ − ∂µX

I
0 BµX̂

I

]
+ Lgh,

Lgh = (∂µX
I
0 )(∂µXI

−1) − iΨ̄−1Γ
µ∂µΨ0. (5.1.1)

XI
−1 and Ψ−1 appear only linearly in the Lorentzian BLG model and thus they are

Lagrange multipliers. By integrating out these fields, we have the following constraints

for the other problematic fields associated with T 0;

∂2XI
0 = 0, Γµ∂µΨ0 = 0. (5.1.2)

This should be understood as a physical state condition ∂2XI
0 |phys⟩ = 0. In the path

integral formulation, these constraints appear as a delta function δ(∂2XI
0 ) and those

fields are constrained to satisfy the massless wave equations. In order to fully quantize

the theory, we need to sum all the solutions satisfying the constraints, but we here take

a special solution to the constraint equations and see what kind of field theory can be

obtained.

The simplest solution is given by

XI
0 = v δI

10, Ψ0 = 0, (5.1.3)

59



60 CHAPTER 5. MASS DEFORMATION

where v is some constant. This solution was considered in [4–6] and preserves all the

16 supersymmetries, the gauge symmetry generated by the subalgebra A, and SO(7)

R-symmetry rotating XA, A = 3, ..., 9. Another interesting solution is given by

XI
0 = v(x0 + x1)δI

10 , Ψ0 = 0 (5.1.4)

where v(x0 + x1) is an arbitrary function on the light cone coordinate. As we see the

supersymmetry transformation for Ψ0,

δΨ0 = ∂µX
I
0ΓµΓIϵ, (5.1.5)

the solution XI
0 = v(x0 + x1)δI

10 preserves half of the supersymmetries.

In both cases, if we fix the fields XI
0 and Ψ0 as above, we can integrate over the gauge

field Bµ and obtain the effective action for N D2 branes1

L = Tr

[
−1

2
(D̂µX̂

A)2 +
1

4
v2[X̂A, X̂B]2 +

i

2
¯̂
ΨΓµD̂µΨ̂ − 1

4v2
F̂ 2

µν +
1

2
v
¯̂
Ψ[X̂A,Γ10,AΨ̂]

]
,(5.1.6)

where A,B = 3, · · · , 9. The coupling v is given by the vev of X10
0 and it is either a

constant or an arbitrary function on the light-cone v(x0+x1). This may be identified as the

compactification radius of 11-th direction in M-theory; v = 2πgsls. The supersymmetric

YM theories with a space-time dependent coupling are known as Janus field theories and

originally considered to be a dual of supergravity solutions with space-time dependent

dilaton fields [14].

A salient feature is that the 10-th spacial fields X10 completely disappear from the

Lagrangian by integrating out the redundant gauge field Bµ. It is interesting that Janus

field theories are naturally obtained from the BLG field theories.

The v → 0 limit cannot be taken after integrating the redundant gauge field Bµ. In

the case of vanishing v, the Lagrangian is simply given by

L = Tr

[
−1

2
(D̂µX̂

I)2 +
i

2
¯̂
ΨΓµD̂µΨ̂

]
(5.1.7)

with a constraint F̂µν = 0. The action is of course invariant under the full SO(8) R-

symmetry.

5.1.2 Janus field theory with Dynamical coupling

In the previous subsection, we have fixed the solution of the constraint equations. But in

the quantization of the BLG model, the solutions should be summed in the path integral.

So we will consider more general solutions in this subsection. After integrating the modes

associated with the T−1 generator, the partition function becomes

Z =

∫
DXI

0DΨoDBµDX̂IDΨ̂DAµ δ(∂
2XI

0 ) δ(Γµ∂µΨ0) e
iS(XI

o ,Ψ0,Bµ,X̂I ,Ψ̂,Aµ). (5.1.8)

1The fermion here is a 32 component spinor satisfying Γ012Ψ = Ψ. In order to recover the ordinary
notation for D2 branes, we rearrange it as Ψ̃ = (1 + Γ10)Ψ. Then it satisfies Γ10Ψ̃ = Ψ̃ and the action is
written in the usual form (no Γ10 in the last term).
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The integrations over XI
0 and Ψ0 are constrained to obey the massless wave equations

and can be expanded as

XI
0 =

∑
n

cInfn(x), Ψ0 =
∑

n

bnun(x) (5.1.9)

where fn(x), un(x) are complete sets of functions satisfying the massless wave equations.

Then the integration over XI
0 and Ψ0 can be reduced to integrations over cIn and bn.

Let us now choose a general solution (XI
0 = vI(x),Ψ0) to the constraints and expand

the action around it. In this case all the supersymmetries are generally broken. Inserting

this general solution into the action, terms including the Bµ gauge field are given by

− 1

2
(D̂µX̂

I −BµX
I
0 )2 + iΨ̄0Γ

µBµΨ̂ +
1

2
ϵµνλF̂µνBλ − ∂µX

I
0BµX̂

I . (5.1.10)

The integration over the Bµ gauge field can be similarly performed. It is convenient to

introduce the locally defined projection operator

PIJ(x) = δIJ − vIvJ

v2
, (5.1.11)

This operator satisfies P 2 = P and PIJv
J = 0. In the simplest case considered in the

previous subsection, vI = v(t + x)δI
10, this projects out the 10-th direction if it acts on

X̂I . Generally, the direction removed is dependent on the space-time position.

After integrating over the Bµ field, the Lagrangian becomes LJanus = L0 + L′ where

L0 = Tr

[
−1

2
(D̂µY

I)2 +
1

4
v2[Y I , Y J ]2 +

i

2
¯̂
ΨΓµD̂µΨ̂ +

1

2
¯̂
Ψ[Y I , (vJΓJ)ΓIΨ̂]

+
1

2(vI)2

(1
2
ϵµνλF̂νλ + iΨ̄0Γ

µΨ̂ − 2YI∂
µvI
)2 − 1

2
Ψ̄0ΓIJΨ̂[Y I , Y J ]

]
, (5.1.12)

L′ =
1

v2
Tr
[(

Ψ̄0ΓI(v
JΓJ)[Y I , Ψ̂] − iΨ̄0ΓµD̂µΨ̂

)
(vKX̂K)

]
. (5.1.13)

Here I, J = 3, · · · , 10 and we have defined a new scalar field Y I = PIJX̂
J with 7 degrees

of freedom.

This is a Janus field theory whose coupling varies with space-time. The Lagrangian

LY M contains only the projected scalar field Y I . On the other hand, in the presence

of Ψ0, the scalar field (vIX̂I) does not decouple from the Lagrangian L′. If we can set

Ψ0 = 0, L′ vanishes and the resultant Lagrangian is given by a similar form to the ordinary

Super Yang-Mills Lagrangian, but the kinetic term of the gauge field F̂µν is modified to

F̂µν + 2ϵµνρYI∂
ρvI . All the supersymmetries are generally broken if we fix one solution to

the constraint equations of (XI
0 (x),Ψ0) as above.

By using the above calculation, the partition function can be simply rewritten as

Z =

∫ ∏
n

dcIn dbn W (vI)

∫
DX̂IDΨ̂DAµ e

iSJanus(X̂
I ,Ψ̂,Aµ;vI(x),Ψ0). (5.1.14)
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Here W (vI) ∼ ((vI)2)−3/2 came from the integration over the Bµ field. It is a sum of

Janus field theories. The coupling constant vI is dynamical and varies with space-time

coordinates. It is constrained to satisfy the massless equations. If we fix the “slow”

variable v and perform the path integration over the other “fast” variables first, then we

can get an effective action for the dynamical coupling vI . This will determine the most

stable configuration of vI(x), and accordingly one of the Janus gauge theory with the

most stable coupling is determined. If the variable vI fluctuates rapidly and cannot be

considered as a slow variable, the theory becomes very different from the ordinary gauge

theory with a fixed (either constant or varying) gauge coupling. This may be related to

the dynamical determination of the compactification radius of 11-th direction in M-theory.

Finally we would like to comment on the unitarity of the BLG theory. If we fix one

solution to the constraints, each theory behaves regularly if the coupling constant does

not vary drastically. The quantization of the coupling is very difficult, but since it is not

a propagating mode, it will not violate the unitarity of the theory. However the unitarity

should be more carefully analyzed.

5.2 Mass deformation and Janus solutions

5.2.1 Mass deformation of BLG

The BLG model in the previous section gives a familiar effective action of N D2 branes

with either a constant or a varying coupling. (For general solutions, the kinetic term of

the gauge field contains a non-familiar term of YI∂
µvI .)

In this section we start from a mass deformed BLG action given by [60, 61] and show

that supersymmetric Janus field theories with a Myers-term are obtained.

One parameter deformation of the BLG action preserving the full supersymmetries is

given by adding the following mass and flux terms to the original Lagrangian. The mass

term is given by

Lmass = −1

2
µ2Tr(XI , XI) +

i

2
µTr(Ψ̄Γ3456,Ψ), (5.2.1)

and a flux term is

Lflux = −1

6
µϵEFGHTr([XE, XF , XG], XH) − 1

6
µϵE′F ′G′H′Tr([XE

′

, XF
′

, XG
′

], XH
′

).(5.2.2)

Here E,F,G,H = 3, 4, 5, 6 and E
′
, F

′
, G

′
, H

′
= 7, 8, 9, 10. This action is invariant under

the original gauge transformation and the deformed SUSY transformation 2

δXI = iϵ̄ΓIΨ,

δΨ = (DµX
I)ΓµΓIϵ−

1

6
[XI , XJ , XK ]ΓIJKϵ− µΓ3456Γ

IXIϵ,

δÃ b
µ a = iϵ̄ΓµΓIX

I
c Ψdf

cdb
a. (5.2.3)

2To give a rigorous proof of the closure of the supersymmetry, we should check the Jacobi identity of
[Q, {Q, Q}] (appendix E of [79]) because there are non-central terms, i.e. SO(4) × SO(4) rotation term,
in the algebra {Q,Q}. We thank Dr. Hai Lin for informing us of the paper [79]
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This deformed theory breaks the original SO(8) R-symmetry down to SO(4) × SO(4).

By setting µ → 0 both the action and SUSY transformation reduce to the original BLG

action. In addition there is another supersymmetry transformation:

δXI
a = 0, δÃ b

µ a = 0,

δΨ = exp
(
−µ

3
Γ3456Γµx

µ
)
T−1η, (5.2.4)

where xµ is the coordinates of the world volume.

5.2.2 Deformed BL to Janus

This model can be similarly investigated by expanding the fields into modes with internal

indices a = (−1, 0, i). The mode expansions of the mass and the flux terms become

Lmass = µ2XI
−1X

I
0 − µ2

2
Tr(X̂I , X̂I) − iµΨ̄−1Γ3456Ψ0 +

i

2
µTr(

¯̂
ΨΓ3456, Ψ̂), (5.2.5)

and

Lflux =
2i

3
µϵEFGHX

E
0 Tr(X̂F , [X̂G, X̂H ]) +

2i

3
µϵE′

F
′
G

′
H

′XE
′

0 Tr(X̂F
′

, [X̂G
′

, X̂H
′

]).(5.2.6)

Now XI
−1 and Ψ−1 again appear linearly in the action, and they are Lagrange multipliers.

Because of the mass terms, the constraint equations are modified to

(∂2 − µ2)XI
0 = 0, (Γµ∂µ + µΓ3456)Ψ0 = 0. (5.2.7)

Namely the fields with the T 0 component are constrained to obey the massive wave

equations. Since XI are real fields, instead of the plane waves exp(ikµx
µ) with a time-like

vector kµ, we take the following solution to the constraint equation;

XI
0 = fepµxµ

δI
10 = v(x)δI

10, Ψ0 = 0, (5.2.8)

where f is an arbitrary constant and pµ is a spacelike vector satisfying p2 = µ2. Without

loss of generality, we can take pµ = (0, µ, 0). This configuration preserves half of the 16

supersymmetries, since Ψ0 transforms as:

δΨ0 = v(x)µ(Γ1 − Γ3456)Γ
10ϵ. (5.2.9)

Hence around the above configuration, we will get Janus gauge field theories with 8

supersymmetries. (For general solutions, more supersymmetries are broken.)

Inserting this configuration to the action, one can again integrate the redundant gauge

field Bµ. Terms involving Bµ are given by:

Tr

[
−1

2
(D̂µX̂

10 − vBµ)2 +
1

2
ϵµνλF̂µνBλ − pµvBµX̂

10

]
. (5.2.10)
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Integrating Bµ gives

Tr

[
1

2v
ϵµνλF̂µνpλX̂

10 +
1

8v2
(ϵµνλF̂µν − 2vX̂10pλ)2

]
= − 1

4v2
TrF̂ 2

µν +
µ2

2
Tr(X̂10, X̂10). (5.2.11)

Interestingly the second term is canceled by the mass term of X̂10 and all the terms

involving X̂10 have disappeared. To summarize, the resultant effective Lagrangian is

given by:

L = −1

2
Tr(D̂µX̂

A)2 − µ2

2
Tr(X̂A, X̂A) +

1

4
v2[X̂A, X̂B]2

+
i

2
Tr
(

¯̂
ΨΓµD̂µΨ̂

)
+
i

2
µTr(

¯̂
ΨΓ3456, Ψ̂) +

1

2
vTr

(
¯̂
Ψ[X̂A,Γ10,AΨ̂]

)
− 1

4v2
TrF̂ 2

µν

−2i

3
vµϵA

′
B

′
C

′
10Tr(X̂A

′

, [X̂B
′

, X̂C
′

]). (5.2.12)

This is a Janus field theory whose coupling constant is given by v = f exp(µx1). The

Lagrangian is invariant under the following 8 supersymmetries

δX̂A = iϵ̄ΓAΨ̂,

δΨ̂ = D̂µX̂
AΓµΓAϵ− 1

2v
ϵµνλF̂

νλΓµΓ10ϵ+
i

2
v[X̂A, X̂B]ΓABΓ10ϵ− µΓ3456Γ

AX̂Aϵ,

δÂµ = ivϵ̄ΓµΓ10Ψ̂, (5.2.13)

Finally if v vanishes, i.e. for XI
0 = 0 and Ψ0 = 0, the Lagrangian becomes

L = −1

2
Tr(D̂µX̂

I)2 +
i

2
Tr
(

¯̂
ΨΓµD̂µΨ̂

)
− µ2

2
Tr(X̂I , X̂I) +

i

2
µTr(

¯̂
ΨΓ3456, Ψ̂), (5.2.14)

with a constraint F̂µν = 0. The supersymmetry transformation is given by

δX̂I = iϵ̄ΓIΨ̂,

δΨ̂ = D̂µX̂
IΓµΓIϵ− µΓ3456Γ

IX̂Iϵ,

δÂµ = 0 (5.2.15)

and the Lagrangian has the SO(4) × SO(4) R-symmetry.



Chapter 6

Gravitational instantons with

Squashed SU(3) × SU(2)

This chapter is organized as follows. In section 6.2, we obtain squashed 2-brane solutions

with SU(3) × SU(2) isometry group in 11-dimensional supergravity 1. These construc-

tions are motivated by the similarity between 5D and 11D supergravity theories [80]. We

use squashing functions depending on the radius coordinate as an analogy of the Ishihara-

Matsuno solution. The solutions include the 11-dimensional Gross-Perry-Sorkin gravita-

tional instanton solutions which has the asymptotic structure as the squashed manifold

N0,1,0
II

2. These can be considered as a higher-dimensional analogy of the Eguchi-Hanson

space.

6.1 A brief review of SU(3) × SU(2) space

In this section we will briefly review the structure of SU(3) × SU(2) Einstein space in

[20, 21] which we have used in following sections. The SU(3) × SU(2) geometry was

firstly considered as the special parameterization of the coset manifold Np,q,r
I of the form

SU(3)×U(1)/U(1)×U(1) by Castellani and Romans [20]. The integers p, q, r characterize

the embedding of each U(1)s. By choosing the certain combination of these U(1)s, we

can define the maximal torus of SU(3) × U(1) Lie algebra as

Z = − 1√
3p2 + q2 + 2r2

[
p
i
√

3

2
T8 + q

i

2
T3 + riY

]
,

M = −
√

2√
(3p2 + q2 + 2r2)(3p2 + q2)

[
rp
i
√

3

2
T8 + rq

i

2
T3 − (3p2 + q2)

i

2
Y

]
,

N = − 1√
3p2 + q2

[
−q i

2
T8 + p

i
√

3

2
T3

]
(6.1.1)

1We use the meaning of “squashed” as twisted of the SU(3) × SU(2) space in this paper.
2In the original paper [30], they also mentioned about the generalization to a non-Abelian instanton.
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where we use the SU(3) generator of isospin T3, the hypercharge T8 and the generator

of the separate U(1). We can know the structure constants C G3
G1G2

of SU(3) × U(1) by

using the (6.1.1) and also the other generators of SU(3), −i/2(T1, T2, T4, T5, T6, T7).

The metric g can be defined by using the group metric γG1G2 with the vielbeins E by

restricting to the coset space. These are written as

γG1G2 = Tr
(
C G′

G1G C G
G2G′

)
,

gµν = γαβE
α
µE

β
ν (6.1.2)

where we use the indices G1, G2 run on G = SU(3) × U(1), α, β are flat indices in G/H

and µ, ν are curved indices in G/H (H = U(1)×U(1)). We can calculate the Ricci tensor

Rµν by using these definitions.

In order to obtain Einstein space, we need four constraint equations for the parameters.

However these constraints do not determine the symmetry of this space uniquely. We also

add a necessary and sufficient condition for supersymmetry. With the supersymmetry

condition we obtained the N0,1,0
I as N = 3 supersymmetric solution, and Np,q,r

I (r ̸= 0)

as N = 1 solutions. The case r = 0 corresponds the coset space

G

H
=
SU(3)

U(1)
(6.1.3)

which insist that the base space is CP 2. And also there is SO(3) isometry group as the

result of N = 3 supersymmetry [81]. So the N0,1,0
I solution must have the isometry group

SU(3) × SO(3).

To obtain explicit form of N0,1,0
I solution, let us consider the SU(2) Yang-Mills instan-

ton over CP 2 which is an indication of isometry group SO(3) [21]. The SU(2) Yang-Mills

instanton can be regarded as the Hopf fiber bundle over CP 2 space by generalized inverse

Kaluza-Klein mechanism.

ds2 = ds2
CP 2 + λ2

[
(ρ2

1 − A1)2 + (ρ2 − A2)2 + (ρ3 − A3)2
]
,

ds2
CP 2 = dθ2 +

1

4
sin2 θ

(
σ2

1 + σ2
2 + cos2 θσ2

3

)
(6.1.4)

where the σi, ρi (i = 1, 2, 3) are the SU(2) Mauer-Cartan 1-forms which satisfy the SU(2)

algebras dσ1 = −σ2 ∧ σ3 etc. The explicite forms of σi are

σ1 = cos γ dα + sin γ sinα dβ,

σ2 = − sin γ dα + cos γ sinα dβ,

σ3 = dγ + cosα dβ. (6.1.5)

The self-dual Yang-Mills field on any four-dimensional Einstein space can be defined by

[82]

Ai = −ω0i −
1

2
ϵijkωjk

F i = dAi +
1

2
ϵijkA

j ∧ Ak (6.1.6)
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where ωij is the 1-form spin connection for four dimensional Einstein space. Applying

this to CP 2, we obtain

A1 = cos θσ1, A2 = cos θσ2, A3 =
1

2
(1 + cos2 θ)σ3 (6.1.7)

as a SU(2) Yang-Mills instanton over CP 2. Plugging this solution into (6.1.4), we get

ds2 = ds2
CP 2 + λ2ds2

SU(2),

ds2
SU(2) = (ρ1 − cos θσ1)

2 + (ρ2 − cos θσ2)
2 +

(
ρ3 −

1

2
(1 + cos2 θ)σ3

)2

. (6.1.8)

There still remains an unknown constant λ in (6.1.8). If we the solution (6.1.8) to be

Einstein solution, the values of λ are allowed to be

λ2 =
1

2
or λ2 =

1

10
. (6.1.9)

The original N0,1,0
I by Castellani and Romans is (6.1.8) with λ2 = 1/2. The solution

with λ2 = 1/10 is a squashed SU(3) × SU(2) solution obtained by Page and Pope [21]

and is named N0,1,0
II . There are two orientations which describe the different solutions

each other. The definition of the orientation of these manifolds is the overall sign of the

vielbeins Eα
µ . The positive-sign defines a left-orientation and negative-sign does a right

orientation. N0,1,0
I has N = 0 supersymmetry for a left-orientation and N = 3 for a

right-orientation. N0,1,0
II keep the supersymmetry N = 1 for a left-orientation but break

all supersymmetry for a right-orientation.

6.2 SU(3) × SU(2) squashed solutions

We investigate the 11-dimensional supergravity theory described by the action

S =
1

16πG

∫
d11x

√
−g
(
R− 1

2 · 4!
F 2

4

)
− 1

16πG

√
2

6

∫
F4 ∧ F4 ∧ C3, (6.2.1)

where C3 is a three-form gauge field and F4 is its field strength. For simplicity we consider

the vacuum (non-charged) solution of the above action.

Rµν = 0. (6.2.2)

In order to get the 2-brane solution with the SU(3) × SU(2) squashed geometry, we

consider the ansatz;

ds2 = −dt2 +
2∑

i=1

dx2
i + r(k)2

[
u(k)2dk2 + kds2

CP 2 + ds2
SU(2)

]
(6.2.3)

where the SU(2) metric is a metric on the manifold of an SO(3) Hopf fiber bundle over

CP 2 space as we discussed in Sec. 6.1. The explicit form of CP 2 is in (6.1.4) and SU(2)
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fiber bundle is described as in (6.1.8). g(k) and u(k) are the unknown functions of k This

ansatz is the analogy of Ishihara-Matsuno solution which is the 5-dimensional squashing

solutions [28]. However we rewrite the degree of freedom of the radial coordinate r as k

which is the squashing function in front of the CP 2 metric.

The solutions which satisfy (6.2.2) are (6.2.3) with,

u(k) =
1

|k − 10|
, r(k) =

c

|k − 10| 3
10k

1
5

(6.2.4)

where c is a arbitrary constants. There are 2-types of solutions, one exists 10 ≤ k region

and the other exists 0 < k ≤ 10. We investigate the property of this solutions in the

following sections.

6.3 The solution for k ≥ 10

In order to see the property easily, we rewrite the metric by using radial coordinate r as

ds2 = −dt2 +
2∑

i=1

dx2
i +

4k2

(k − 4)2
dr2 + r(k)2

[
kds2

CP 2 + ds2
SU(2)

]
. (6.3.1)

Since k cannot be solved as a functional of r analytically, we use k coordinate to interprete

the property. Note that this type of radial coordinate is usual if there is no squashing

function k and this form of solution is a analogy of Ishihara-Matsuno solutions. This

solution can be considered as the 11-dimensional GPS gravitational instanton solution

[29, 30].

First we analyze the asymptotic behavior of r → ∞ which corresponds to k → 10

from (6.2.4). Taking the limit of k → 10 we can get the metric of 7-manifold + radial

direction as

ds2
8 =

100

9

[
dr2 +

9

10
r2

(
ds2
CP 2 +

1

10
ds2

SU(2)

)]
. (6.3.2)

This indicates the known constant squashed Einstein manifold N0,1,0
II solution [21] as we

discussed below (6.1.8). Note that if we are willing to get a constant functional space

solution or the harmonic function type of solution, the coefficient 9/10 in front of the

Einstein 7-manifold metric is important. However for the near-brane case it is not the

case.

Another considerable limit is r → 0 which corresponds to k → ∞. The solution goes

like

grr → 4, gCP 2 → c2, gSU(2) → 0 (6.3.3)

where we defined that the gCP 2 is the overall metric of CP 2 base space and gSU(2) is that

of SU(2) fiber bundle space. When the solution get closer to a point r = 0, the fiber

direction become to be compactified, it is better to interpret this solution in 8-dimensional
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Figure 6.1: The metric for k ≥ 10 case with c = 1. A blue line (top) describe grr, a purple one (middle)
is gCP 2 and a yellow one (down) is gSU(2). The behavior of r is square root of gSU(2).

(super)gravity language. However the compactified direction is fibered, there is SU(2)

instanton solution described as (6.1.7) in 8-dimensional picture by the generalized Kaluza-

Klein mechanism.

Note that the transverse directions of this solution can be transformed as the following.

k =
10

1 −
(

m
R

) 10
3

, m ≡
√

10

3
c,

ds2
8 =

dR2

1 −
(

m
R

) 10
3

+
9

10
R2

[
ds2
CP 2 +

1

10

(
1 −

(m
R

) 10
3

)
ds2

SU(2)

]
. (6.3.4)

This form suggests this solution is higher dimensional analog of Eguchi-Hanson space.

Unfortunately this solution was already obtained in [83] 3. However we still continue to

investigate this solution.

People might think there exists a bolt type singularity. If we take the form

ρ2 = r2

(
1 −

(m
r

) 10
3

)
,

ds2 ∼ 9

25

(
dρ2 +

1

4
ρ2ds2

SU(2)

)
(6.3.5)

where we choose the variables of CP 2 as constants, we can know there is no curvature

singularity. This will be discussed in Sec. 6.5.

Also note that the original gravitational monopole by Sorkin is for the Taub-NUT

solution. However Gross and Perry generalized this solution to have the various structures

which includes Eguchi-Hanson space. The GPS monopole for Eguchi-Hanson space can

3I notice this thing when I have almost finished a paper. A region k ≤ 10 of (6.2.3) with (6.2.4) is
new and a investigation of curvature singularity by using Kretschmann scalar in section 6.5 is also new,
but I gave up to publish because there are too little new things.
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be written as

ds2 = −dt2 +
dr2

1 −
(

m
r

)4 +
1

4
r2

[
σ2

1 + σ2
2 +

(
1 −

(m
r

)4
)
σ2

3

]
. (6.3.6)

Taub-NUT spaces are one-point source solutions in terms of Gibbons-Hawking coordinate

(2.3.37), p.29. On the other hand, Eguchi-Hanson spaces are two-points source solutions.

To summarize this section, we get the new type of squashed coset solution which can

be regarded as the GPS SU(2) gravitational instanton solution and has the asymptotic

structure as the Page-Pope N0,1,0
II solution. The hole behavior of this solution is described

as in Fig. 6.1.

6.4 SO(5) × SU(2) case

The case for SO(5)×SU(2) isometry as squashed S7 was obtained in [84] 4. The isometry

symmetry of SO(5) × SU(2) can be constructed by using the Fubini-study [19].

The Fubini-study can be written as

ds2 =

(
1 +

∑
n

qnq̄n

)−1∑
m

dqmdq̄m −

(
1 +

∑
n

qnq̄n

)−2∑
m,p

q̄mdqmdq̄pqp, (6.4.1)

where m, p run 1, 2, and qm can be taken a form

q1 = tanχ cos
µ

2
U, q2 = tanχ sin

µ

2
V. (6.4.2)

In this notation if we choose q1,2 as complex coordinates, we can write U, V which satisfy

U−1dU = i(dψ + dϕ), V −1dV = i(dψ − dϕ). (6.4.3)

This precisely represents P2(C), or R4 with S3 described by U(1) fiber bundle over S2.

In analogy with complex coordinates, we can generalize the Fubini-study to apply

quaternionic coordinates which are defined by

U−1dU = iσ1 + jσ2 + kσ3, V −1dV = iΣ1 + jΣ2 + kΣ3, (6.4.4)

where we use σi,Σi as SU(2) Maurer-Cartan 1-forms. Together with the quaternionic

coordinates, we can obtain P2(H) space, or R8 with S7 described by SU(2) fiber bundle

over S4.

If we rewrite the solution of SO(5) × SU(2) case in terms of squashing function k,

ds2
8 = r(k)2

[
u(k)2dk2 + kds2

S4 + ds2
SU(2)

]
,

u(k) =
1

|k − 5|
, r(k) =

c

|k − 5| 3
10k

1
5

(6.4.5)

This solution has the additional region for k ≤ 5. The SU(3)×SU(2) squashing solutions

have quite similar forms of SO(5) × SU(2) case but the constant 10 was different from 5

in SO(5) × SU(2) case. This difference may come from the base space symmetry.
4This solution was also obtained by Mizoguchi-Hatsuda-Sumitomo-Tomizawa. However during we

write a paper, we notice this solution was obtained by [84]. Therefore we gave up also to publish this
paper.
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6.5 Regularity

Let us consider whether the solutions (6.2.3) with (6.2.4) is regular or not in this section.

These solution is regular at the level of Ricci scalar because of vacuum solution. However

in order to search the curvature singularity, we should also consider the Kretschmann

scalar

RµνρσR
µνρσ (6.5.1)

and its divergence points.

There are four ambiguous points which are k = 0, 4, 10,∞. The subtlety points of

k = 0, 10 come from the solution r(k) (6.2.4). k = 4 point comes from the rewritten

metric (6.3.1) at which grr diverges. Also we should investigate the k = ∞ point because

of the metric ansatz (6.2.3). There are difficulties to write down explicitly for all k range,

but we can do that at these specialized points. The result is as follows.

k → ∞ : RµνρσR
µνρσ =

576

c4

k → 10 : RµνρσR
µνρσ = 0

k → 4 : RµνρσR
µνρσ =

24/531/5378

c4

k → 0 : RµνρσR
µνρσ → ∞. (6.5.2)

Thus there is singularity only at k = 0 point, but the other points have no singularity.

From this conclusion our solution considered in Sec. 6.3 is regular everywhere. This

fact agree with the discussion around (6.3.5). In the next section we also consider the

remaining region k ≤ 10 although there exists the curvature singularity.

6.6 The solution for k ≤ 10

First we analyze the solution in 4 ≤ k ≤ 10 range by using the same radial reinterpretation

as (6.3.1). In this region the correspond r behavior is

c4

27/1033/10
≤ r ≤ ∞ as varying 4 ≤ k ≤ 10. (6.6.1)

The metric component is described by the left hand side of Fig. 6.2. k → 10 point is

the same as the Page-Pope squashed solution we described in (6.3.2). On the other side

k = 4, the metric grr diverges but this is a spurious divergence as we investigated in Sec.

6.5.

There is another range 0 ≤ k ≤ 4 of this notation described by the right hand side

of Fig. 6.2. In this regime, the r behavior is the opposite of (6.6.1). At the k = 0

point, grr, gCP 2 shrink to zero and gSU(2) diverges. This cannot be treated as the physical

geometry, and this agree with the curvature singularity argument (6.5.2).
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Figure 6.2: The left figure shows the metric for 4 ≤ k ≤ 10 with c = 1 and the right figure shows the
metric for 0 ≤ k ≤ 4 with c = 1. A blue line (top) describe grr, a purple one (middle) is gCP 2 and a
yellow one (down) is gSU(2). The behavior of r is square root of gSU(2).
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Figure 6.3: The metric in the description of new radial coordinate r′ for 0 ≤ k ≤ 10 with c = 1. A
purple one (top) is gCP 2 and a yellow one (down) is gSU(2). The behavior of r′ is described by a dashed
line (blue, middle).

To avoid the spurious divergence but still define the radial coordinates, we rewrite

again the initial metric (6.2.3) as

ds2 = −dt2 +
2∑

i=1

dx2
i + dr′2 + kr(k)2dsCP 2 + r(k)2dsSU(2)

r′(k) ≡
∫ k

r(t)u(t)dt

= − ck4/5

48(k − 10)

(
16(10 − k)7/10 + 107/10(k − 10) 2F1

(
4

5
,

3

10
;
9

5
,
k

10

))
. (6.6.2)

where 2F1(a, b; c, z) is a hypergeometric function. As we can see in Fig. 6.3, r′ is smoothly

drown from r′ = 0 to ∞. Of course there is a trouble at r′ = 0 point which has the

curvature singularity.



Chapter 7

Conclusions

In this paper, we discussed how to obtain Lorentzian Bagger-Lambert-Gustavsson (L-

BLG) model from the Aharony-Bergman-Jafferis-Maldacena (ABJM) model. If we take

the scaling limit correctly, L-BLG model is appeared from the ABJM with constraint

equations. More to say, with the scaling limit, we have obtained SO(8)R from SU(4)R.

The scaling limit agrees with Inönü-Wigner contraction which can be realized only in

group structure. By taking the scaling limit of bifundamental gauge group, then we

obtained the correct gauge group of L-BLG model. Since there is a mystery to obtain

SO(8)R in ABJM model, this fact should be a little bit surprising.

We also investigated the conformal symmetries of the ABJM model and L-BLG model

as well as SO(8) invariance . The conformal invariance, in particular, the invariance

under the special conformal transformations does hold in the L-BLG model only when

we consider a set of spacetime dependent solutions to the constraint equations ∂2XI
0 = 0.

The conformal symmetries in the field theories are consistent with the gravity duals;

AdS4 × S7/Zk geometry for the ABJM model and AdS4 ×CP 3 geometry for the L-BLG.

Although the radius of AdS4 is larger than the d = 10 Planck length and the type

IIA supergravity approximation is good, it is much smaller than the IIA string scale and

the dual geometry of the scaled theory of L-BLG cannot be interpreted as the low energy

effective theory of type IIA superstring. But the radius is larger than the d = 11 Planck

length and it can be considered as a dimensional reduction of the d = 11 supergravity

solution. We discussed that the action of the L-BLG model could be considered as the

probe M2-branes in the curved geometry AdS4 × CP 3. It is amusing and also somewhat

surprising that the position dependent coefficients of the coupling constant can be cor-

rectly reproduced; g2
Y M is proportional to a square of the position of the M2 branes. This

fact is consistent to the conformal symmetry which is expected from AdS geometry.

Now we know the ABJM model is most generalized form at this time. However the

ABJM model has only SU(4)R symmetry, not SO(8)R as expected. There is a idea to

obtain higher supersymmetry, which is called Janus configuration as its original meaning.

We can take the coupling constant to be dependent to a extra dimensional coordinate

which is a encircled world-volume coordinate in D3-branes. If we consider this configu-

ration with scalars which obeys adjoint representation and one Chern-Simons term, then
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we obtain N = 4 supersymmetric Chern-Simons gauge theory [17]. A key-point to ob-

tain higher supersymmetries in ABJM model is bi-fundamental scalars and two CS terms

with opposite levels. Together with these things, in sum, the Janus configuration with

bi-fundamental scalars and two CS terms expected to have higher supersymmetries than

SU(4)R. This should be interesting since the Janus configuration and bi-fundamental

representation come from the same setup, the D3-NS5-D5 system.

We also discussed the squashed 11-dimensional solutions with SU(3) × SU(2) isome-

try. The solution for k ≥ 10 is a Eguchi-Hanson type of Gross-Perry-Sorkin like SU(2)

gravitational instanton solution which includes the squashed manifold N0,1,0
II as an asymp-

totic behavior. The other side k ≤ 10 of the solution can be considered, but there is a

curvature singularity at k = 0.

Recently warped compactification has been considered to obtain the rich structure

in four-dimensional theories, with respect to phenomenological and cosmological aspects.

Quite recently, there has appeared a interesting paper about this non-compact phenom-

ena [85]. Also see a review article about flux compactifications [86]. The constructions

of these noncompact extra-dimensional solutions might have interesting feature in four-

dimensions.

The solution we obtained does not have a charge and a mass yet. It is interesting that

the generalization of solutions to have a charge [87]. (This is the SO(5) × SU(2) case,

and the SU(3)× SU(2) case has not been yet.) That solution seems to include the AdS4

region as a certain limit. And we can also consider the AdS to non-AdS flow, because

that solution has the extra dependence in front of radius direction as squashing function

which runs smoothly. The solution together with a mass and a charge is also interesting

in perspective of rich structures of solution itself.

There will also be an interesting developments to construct the 2 + 1 dimensional

supersymmetric Chern-Simons gauge theory which has SU(3) × U(1) R-symmetry. This

model is expected to have maximally N = 3 supersymmetry. To obtained a dual of

squashed manifold N0,1,0
II , we need to have N = 1 supersymmetry.



Appendix A

The Gamma matrices

The explicit forms of the antisymmetrized products of the 8× 8 Γ matrices we have used

in (3.3.21) are given as ΓIJ = I2×2 ⊗ γIJ where

γ12 =


iσ2

−iσ2

iσ2

iσ2

 , γ13 =


I

−I
σ3

−σ3

 ,

γ14 =


iσ2

iσ2

σ1

−σ1

 , γ15 =


−σ3

I
σ3

−I

 ,

γ16 =


−σ1

−iσ2

σ1

−iσ2

 , γ17 =


−σ3

−I
I

σ3

 ,

γ18 =


−σ1

iσ2

iσ2

σ1

 , γ52 =


σ1

−iσ2

−σ1

−iσ2

 ,

γ53 =


I

σ3

−σ3

−I

 , γ54 =


iσ2

σ1

−σ1

iσ2

 ,

γ56 =


iσ2

iσ2

iσ2

−iσ2

 , γ57 =


σ3

−σ3

I
−I

 ,
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γ58 =


σ1

−σ1

iσ2

iσ2

 (A.0.1)

and I2×2 is a 2 × 2 identity matrix. We have also defined

Γ0 = iσ2 ⊗ I8×8. (A.0.2)

The iσ2 was used to contract the indices of the 2-component spinor χ and it is the 3

dimensional γ0 matrix (see the Appendix of [9]). I8×8 is an 8 × 8 identity matrix. They

satisfy the following consistency relations as Γ12Γ13 + Γ13Γ12 = −(Γ2Γ3 + Γ3Γ2) = 0. At

this stage, there is an ambiguity to determine the Γ matrices, but the explicit forms of

ΓI are not necessary here. To fix the ambiguity, we need to consider more general vevs

of XI
0 .



Appendix B

U(1) part in ABJM model

In scaling the ABJM model to the L-BLG model, we have mainly concerned with the

SU(N) × SU(N) gauge theory. In this appendix we consider the scaling limit of the

U(N) × U(N) ABJM model, especially the effect of the U(1) part. For simplicity we

consider the bosonic terms only. In the presence of the U(1) gauge field, the covariant

derivative is modified to

DµY = D̂µŶ + 2iB0µŶ + i{B̂µ, Ŷ } + ∂µY0 + 2iB̂µY0 + 2iB0µY0, (B.0.1)

where B0µ is the axial combination of the U(1) × U(1) gauge field

B0µ =
1

2
(A(L)

µ − A(R)
µ ). (B.0.2)

The gauge field B0µ is associated with the gauge transformation of the complex field

Y A → eiφY A. Hence if the dual geometry is described by C4/U(1), we need the gauge

symmetry even after the scaling to L-BLG. Therefore, we do not scale the B0µ field unlike

Bµ. The scaling is given by

B̂µ → λB̂µ, Y0 → λ−1Y0, B0µ → B0µ (B.0.3)

and take the limit λ→ 0. The kinetic term of the scalar fields becomes

−1

2
tr|DµYA|2 = tr

[
−1

2
(D̂µŶA + 2iB̂µY0A + 2iB0µŶA)†(D̂µŶ A + 2iB̂µY A

0 + 2iBµ
0 Ŷ

A)

− (∂µY0A + 2iB0µY0A)†(∂µY A
0 + 2iBµ

0Y
A
0 )

2λ2

−i(∂µY0A + 2iB0µY0A)†B̂µŶ A + i(∂µY
A
0 + 2iB0µY

A
0 )B̂µŶ †

A

]
. (B.0.4)

The difference from the SU(N) × SU(N) case is that all the derivative is replaced by

the covariant derivative with respect to B0µ. Requiring finiteness of the action, one can

obtain the modified constraint

D2
U(1)Y

A
0 ≡ (∂µ + 2iB0µ)(∂µ + 2iBµ

0 )Y A
0 = 0. (B.0.5)
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The gauge field B0µ does not have a kinetic term and it is nothing but the auxiliary gauge

field Aµ introduced in the C4/U(1) gauged model discussed in Appendix C.

In the presence of the vector-like U(1) gauge field

A0µ =
1

2
(A(L)

µ + A(R)
µ ), (B.0.6)

there is a coupling of B0µ to A0µ through the Chern-Simons term. If we do not scale the

A0µ either, it is given by

4λ−1KϵµνρtrB0µF0νρ, (B.0.7)

where F0µν = ∂µA0ν − ∂νA0µ. Then because of the λ−1 coefficient this must vanish too.

If we instead scale the A0µ gauge field with λ, the coefficient becomes of the order λ0,

and an integration over B0µ solves it as

2B
(0)
0µ = − i

2|Y A
0 |2

(Y A
0 ∂µ

¯̂
Y A − Ȳ0

A
∂µŶ

A) − 2KϵµνρF
νρ
0 . (B.0.8)



Appendix C

SO(8) recovery in C4/U(1) model

In Section 4.2.2 we showed the recovery of SO(8) invariance in the scaling limit of AdS4×
CP 3. In this appendix, we study a C4/U(1) sigma model and see the recovery of SO(8).

This is a generalization of the equivalence of a gauged model on CP 1 and anO(3) nonlinear

σ model to a higher dimensional target space.

C4 is parameterized by the following angular variables:

z1 = ρei(ϕ1+φ′) cos θ,

z2 = ρei(ϕ2+φ′) sin θ cosψ,

z3 = ρei(ϕ3+φ′) sin θ sinψ cosχ,

z4 = ρeiφ′
sin θ sinψ sinχ,

0 ≤ φ′ ≤ 2π, 0 ≤ θ, ψ, χ, ϕ1, ϕ2, ϕ3 ≤ π. (C.0.1)

We then consider a scalar field on C4/U(1) by identifying

zi ∼ eiφ′
zi. (C.0.2)

The Lagrangian of the scalar field Zi(x) on C4/U(1) must be invariant under the local

gauge transformation

Zi(x) → eiφ′
Zi(x) (C.0.3)

and the action can be written by introducing an auxiliary gauge field Aµ as

S =

∫
d3x|(∂µ − iAµ)ZA|2. (C.0.4)

In the ABJM model, the gauge field comes from the U(1) part of the axial combination of

the two U(N) gauge fields B0µ (see Appendix B). The gauge field does not have a kinetic

term and and it can be eliminated by solving the equation of motion as

Aµ =
i

2|ZA|2
(ZA∂µZ̄

A − Z̄A∂µZ
A). (C.0.5)
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By substituting the solution to the action, we obtain a nonlinear action which depends

on the ZA fields only. The action (C.0.4) becomes

S =

∫
d3x(|∂ZA|2 − A2

µ|ZA|2). (C.0.6)

In the case of CP 1 model, it is well known that the model is nothing but the nonlinear

σ-model on S2. In our case, it is a nonlinear model on C4/U(1).

Now we expand the field around a classical background and expand the field as

ZA(x) = ZA
0 + ẐA. (C.0.7)

The classical background satisfies the equation of motion. Assume that the classical

background is very slowly varying and much larger than the fluctuation ẐA:

|ZA
0 | ≫ |ẐA| , |dZA

0 |. (C.0.8)

Under the assumption (C.0.8), the quadratic terms of the fluctuations in the action (C.0.6)

become

S ∼
∫
d3x(|∂ẐA|2 − A(0)2

µ |ZA
0 |2) (C.0.9)

where

A(0)
µ =

i

2|ZA
0 |2

(ZA
0 ∂µ

¯̂
ZA − Z̄0

A
∂µẐ

A). (C.0.10)

If we decompose the complex fields into real components as

ZA
0 = X2A−1

0 + iX2A
0

ẐA = iX̂2A−1 − X̂2A, (C.0.11)

the gauge field can be written as

A(0)
µ =

1

(XI
0 )2

XI
0∂µX̂

I . (C.0.12)

Thus the action can be written as a manifestly SO(8) covariant expression:

S =

∫
d3x{(∂X̂I)2 − 1

X2
0

(XI
0∂X̂

I)2}. (C.0.13)

In terms of the projected scalar field

P I = X̂I − XI
0X

J
0 X̂

J

(XI
0 )2

, (C.0.14)

the action is written (under the assumption (C.0.8))

S =

∫
d3x(∂µP

I)2. (C.0.15)

It is manifestly invariant under the SO(8) transformations. But note that the SO(8)

transformation is different from the SO(8) acting on the original R8 because of the dif-

ferent decompositions of the complex fields into the real components in (C.0.11).



Appendix D

Ordinary reduction of M2 to D2

In this appendix, we remind the reader of the ordinary reduction of M2 branes in d = 11

supergravity to D2 branes in d = 10 type IIA supergravity to clarify the difference from the

reduction adopted in the ABJM model. By compactifying x11 direction and identifying

x11 ∼ x11 + 2πR11 the M2 brane solution is given by replacing the metric (4.2.1) with a

smeared harmonic function [88]

H(r) =
∞∑

n=−∞

R6

(r2 + (x11 + 2πnR11)2)3
. (D.0.1)

where r is the radial distance in the 7 non-compact transverse directions. The string

coupling constant is given by R11 = gsls. Then we can get the solution of the multiple

D2-branes in the string frame by using the reduction rule and the Poisson resummation

at distance much larger than R11:

dsD2 = H− 1
2

(
2∑

µ,ν=0

ηµνdx
µdxν

)
+H

1
2

(
dr2 + dΩ2

6

)
,

eϕ = H
1
4 ,

H(r) =
6π2gsNl

5
s

r5
. (D.0.2)

It is quite different from (4.2.9). Especially the dilaton is not a constant and the conformal

symmetry of the M2 brane geometry is broken; it is no longer AdS4. The transverse

direction is given by the radial direction and S6, and therefore it has the SO(7) invariance.

81
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