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Abstract

The physics of turbulence is a key to understand the plasma confinement. In reversed-

field pinch (RFP), turbulence plays an important role to sustain the plasma configura-

tion. However, experimental study of the turbulence is not sufficient especially around

the reversed field surface. Microwave imaging reflectometry (MIR) is a powerful tech-

nique to measure the two-dimensional (2D) density turbulence localized at the cutoff

surface directly.

For this purpose, the MIR system in 20 GHz with large aperture imaging optics and

a 4 × 4 Yagi-Uda antenna array has been developed to measure the turbulence around

rcut/a = 0.7 ∼ 0.9 in a large RFP device, TPE-RX. The MIR signal Aeiφ is detected by

the quadrature detectors, with which the amplitude A and IQ signals (cosine and sine

components of the phase φ) of the reflection wave can be obtained. In this system, the

spatial resolution is 3.7 cm and the temporal resolution is 1µs.

Since this is the first MIR system as a turbulence diagnostics, comparison between

the simulation and a laboratory test of MIR system has been carried out. A numerical

model based on the Huygens-Fresnel equation is used to simulate the MIR signal. Main

results in this test and simulation are as follows: (1) the phase φ corresponds to the

displacement of the cutoff surface in the radial direction; (2) the amplitude A corresponds

to the reflection power, which is modulated by the shape of the cutoff surface; (3) the

coherence length of the complex IQ signals is longer than that of the amplitude signals;

(4) MIR is valid with the condition 4k⊥dL/D < 1 to measure the motion of the cutoff

surface. Here L, D, k⊥ and d denote distance between cutoff and lens, diameter of the

lens, perpendicular wavenumber and radial displacement of the cutoff, respectively. The

fluctuations measured in TPE-RX mainly distribute in the range of 4k⊥dL/D < 0.8

which suggests present MIR system can make a clear image of the cutoff surface in

plasma.

In the RFP plasma, the generalized ohm’s law is written as ηj‖ = E‖+ < υ̃ × B̃ >‖,
where ‖ denotes parallel to the magnetic field (it is poloidal at the reversal surface).

In the standard plasma, the poloidal current is driven by the electromotive forces <

υ̃ × B̃ >p, which is produced by the fluctuations in the plasma (dynamo action). In

the pulsed poloidal current drive (PPCD) plasma, the additional external field in the

poloidal direction is generated and the poloidal current can be directly driven by this

external electric field. As a result, the fluctuations may be suppressed with PPCD.

In this work, the developed turbulence techniques are as follows: (1) the cross cor-

relation, (2) the wavelet, (3) the maximum entropy method (MEM), (4) the fluctuation
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distributions (PDF, skewness and kurtosis), and (5) the bicoherence. By using these

techniques, the turbulence in the standard and PPCD plasmas has been studied. The

results are as follows:

In the standard plasma, MIR signal has many small time scale structures with τ < 10

µs. The high frequency fluctuations have the features of electrostatic turbulence: (1)

broad and turbulent spectrum, (2) high correlation between MIR and potential, and (3)

propagation in the electron drift direction. In the PPCD plasma, the spectrum has a

low frequency peak, and the high frequency fluctuations have been suppressed.

The nonlinear interaction among the toroidal modes of n = −73, 0, 73, 146 (δn =

±37) has been studied. Here n = 146 is the Nyquist modenumber which corresponds to

the toroidal wavelength of λ = 7.4 cm. In the standard plasma, the nonlinear interaction

is mainly dominated by the coupling among the modes n = −73, n = 73, and n =

0. The strength of the nonlinear interaction is increased as the reversal parameter F

(F = Bt(a)/ < Bt >) is increased in the negative direction. In the PPCD plasma, the

nonlinear interaction is weak as the high n modes are not observed.

The intermittency is increased as the |F | is increased in the standard plasma. The

intermittency of MIR signal corresponds to the bursts in the negative direction, which

has small-scale structure with high fluctuation amplitude. Simulation of MIR signal

suggests that the intermittency is caused by a blob-like structure, which scatters the

reflection wave and leads to the rapid decrease of the reflection power. These structures

enhance the transport and decrease the confinement. In the PPCD plasma, the inter-

mittency is not observed and the confinement is improved as the soft-X-ray is increased

by the factor of 100.

In conclusion, this work is the first demonstration of MIR as the turbulence diag-

nostics. This is the first observation of the turbulence around the field reversal surface

in RFP plasma. This work demonstrates how the dynamo and intermittent structures

cause bad confinement.
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Chapter 1

Introduction

1.1 Introduction

In these days, turbulence is interested in many physicists as turbulence plays an im-

portant role in the plasma physics. It is considered that turbulence contributes to the

anomalous transport and decreases the overall confinement in the fusion devices. Turbu-

lence can cause self-organization phenomena such as the dynamo in reversed-field pinch

(RFP) and the stiffness of the temperature profiles in magnetically confined systems.

The physics of the dynamo has been studied for many years in RFP devices, such as

in TPE-RX and MST. The transport barriers such as the H-mode, the internal trans-

port barrier (ITB) and the internal diffusion barrier(IDB) have been observed in many

devices, such as in LHD.

The physics of turbulence is a key to understand plasma. The turbulent plasma has

many active modes which are nonlinearly coupled. These modes have random behaviors,

which provide rich structures and long-range correlations. Presence of large number of

modes and long-range correlations makes turbulence a very difficult problem that largely

unsolved for more than hundred years.

Since the turbulence has many different structures which are always rapidly changing

in spatial and temporal domains, experimental study of the turbulence should provide

a relatively quick two-dimensional (2D) or three-dimensional (3D) visualization of the

turbulence flow. Many 2D diagnostics for turbulence measurement have been developed
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1.2 Microwave imaging reflectometry

in recent two decades. Among them, microwave imaging reflectometry (MIR) has a

remarkable ability to measure the 2D/3D density fluctuation localized at the cutoff

surface directly [1; 2].

The reversed-field pinch (RFP) plasma provides a very good example of turbulence

to study because the MHD turbulence in RFP is strong and also plays an important

role to sustain the RFP configuration (dynamo activity) [3]. On the other hand, the

electrostatic turbulence plays an important role in the edge transport [4]. The RFP has a

MHD turbulence suppression technique: the pulsed poloidal current drive (PPCD), with

which the plasma is sustained without the help of the dynamo related fluctuations [5].

The experimental study of the turbulence is not sufficient especially around the reversed

field surface. Therefore, the study of turbulence between with PPCD and without

PPCD operations around the reversed-field surface may clarify the physics behind RFP

turbulence.

1.2 Microwave imaging reflectometry

The microwave reflectometry is a powerful tool to measure the electron density fluctu-

ations, because of its relatively simple implementation and its high sensitivity to the

behaviours of the cutoff surface. Some excellent reviews of this technique are given in

references [1; 6–9] and the references herein. However, the interpretation of reflectometry

data from fluctuations remains an outstanding issue, due to the effects of interference

between components of the reflected waves.

In the case of small amplitude fluctuations and a one-dimensional (1D) plane strati-

fied plasma permittivity with the first order fluctuation approximation

ε = ε0(r) + ε̃(r) (1.1)

where ε̃(r) ¿ ε0(r), the fluctuating component of the measured phase is given by the

approximation of geometric optics, as

φ̃ =

∫ rc

0

ε̃(r)√
ε0

dr (1.2)

and the phase fluctuation is proportional to the density fluctuation (φ̃ ∝ Lnñ/n ∝
r̃cutoff ) with the assumption of kr < k0/(k0Lε)

1/3, where Lε = 1/(dε0/dr)r=rc and Ln =

2



1.2 Microwave imaging reflectometry

n/(dn/dr)r=rc . ε is the plasma permittivity which is determined by the characteristic

modes of propagation. In the case of the O-mode:

ε = 1− ω2
pe

ω2
(1.3)

In the case of X-mode:

ε = 1− ω2
pe

ω2

ω2 − ω2
ce

ω2 − ω2
pe − ω2

ce

(1.4)

where, ωpe =
√

4πnee2/me and ωce = |e|B/me are the plasma frequency and the electron

cyclotron frequency, respectively. The cutoff frequencies of O-mode and X-mode are ωpe

and ωr = ωce/2 +
√

ω2
pe + ω2

ce/4, respectively. Figure 1.1 shows the principle of the

1D reflectometer. The phase fluctuation is dominated by the change in permittivity

close to the cutoff layer, due to the factor 1/
√

ε0(r) in the integral, which becomes very

large near the cutoff layer. Therefore, reflectometry provides the localized fluctuation

measurement directly.

c
r
~

n

n
e

r

Cutoff density

Launching and 

receiving beam

’

Refractive index:

0

dxk

0

0

~~

0

Figure 1.1: The principle of the reflectometer

However, the turbulent structures are often multi-dimensional, and exhibit rapidly

variations in radial, poloidal and toroidal directions. The difference between 1D and 2D

fluctuations in a standard reflectometry is illustrated in figure 1.2 [2]. In the case of 1D

fluctuations, the cutoff surface moves back and forth in the radial direction, resulting in

the phase changes in the reflected wave. In the case of 2D fluctuations, the backward field

contains components from multiple fragmented wave fronts, resulting in a complicated

3



1.2 Microwave imaging reflectometry

Incident beam

(a)
reflection

Radial

C
u
to

ff

reflection

Radial

(b)

Incident beam

C
u
to

ff

Figure 1.2: Comparison of (a) 1D and (b) 2D fluctuations in the reflectometry

4



1.2 Microwave imaging reflectometry

interference pattern at the detector plane, and the simple relation between phase and

density fluctuations is breakdown [1; 2; 10].

Plasma
Image plane

optical system

The image of cutoff 

surface
Cutoff surface

Figure 1.3: Schematic view of the MIR

To correct the disturbed wave front, the optical imaging technique can be used in the

reflectometry. This so called the microwave imaging reflectometry (MIR) [1; 2]. Figure

1.3 shows the schematic view of the MIR. A wide aperture optical system is used to form

an image of the reflected surface onto a 2D detector array located at the image plane.

The time evolution of 2D image of the density fluctuation at the cutoff surface can be

captured at the image plane, just like a movie.

The feasibilities of MIR for the turbulence measurement have been investigated in

theories and experiments [1; 2; 11–14] intensively. So far, the MIR diagnostics are under

development in several fusion devices, such as TEXTOR, LHD, DIII-D and ASDEX-

U. Some encouraging results have been obtained in TEXTOR and LHD [11; 12]. For

example, in TEXTOR, the MIR signals obtained by the phase detectors have the charac-

teristic of a circular arc in the in-focus conditions, while the phase is filled in the complex

plot in the case of out-of-focus [15]. The 2D features of edge harmonic oscillation (EHO)

have been observed by using MIR with amplitude signals in LHD [16]. However, the

turbulence study by using MIR has not been reported yet.

In the MIR, we obtain the signal A exp(iφ), where A is the amplitude and φ is the

phase. The amplitude signal is obtained by using a diode detector which has been used

in many reflectometry systems because of simple technique and low costs. However,
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1.3 Features of reversed field pinch

          

detector

Amplitude 

phase Cutoff 

(a)

detector 

Amplitude 

phase

Cutoff 

v

(b)

Figure 1.4: The diagrammatic view of the reflected signals in the case of (a) fluctuation

in radius direction, (b) wave propagates in perpendicular direction

simulations suggest that the phase directly corresponds to the movement of the cutoff

surface, not the reflected amplitude. Figure 1.4 shows the responses of the amplitude and

the phase signals to the movement of the cutoff surface. The amplitude is constant if the

cutoff surface only moves in the radial direction. The amplitude signal is only sensitive

to the waves propagating in the perpendicular direction. The phase is measured by a

quadrature detector, from which the cosine and sine components of the phase (I and Q

signals) can be obtained (Note: phase measurement is complicated than the amplitude).

The phase is φ = arctan (Q/I). Therefore, we can have six signals, as: A, I, Q, I + iQ,

A(I + iQ), and φ. Interpretations of these data are hard. Different experiments and

simulations may have different conclusions. Mazzucato [1] and Rhodes [17] prefer the

amplitude signals, while Conway [18] and Schirmer [19] prefer the complex phase signals.

1.3 Features of reversed field pinch

Reversed field pinch (RFP) is one of the toroidal magnetic confinement systems for

plasmas. Several reviews have been published [3; 20; 21]. RFP is characterized by the

reversed toroidal magnetic field outside the reversal radius in respect to the direction

inside of it (Bϕ(a) < 0). The reversed field is maintained by driving the plasma current

Ip, through the so called dynamo effect. The magnitude of the maximum poloidal

6



1.3 Features of reversed field pinch

magnetic field is comparable to that of the toroidal magnetic field (Bθ ≈ Bϕ). The pitch

of the magnetic field lines gradually changes from the magnetic axis toward the plasma

boundary without having a pitch minimum, which is favorable to confine relatively high

beta (β) plasma with normal conducting toroidal coils.

B0J0( r)

B0J1( r)

(Bodin,1984)

B
B

Ip, Bt(r= 0)

toroidal

poloidal

Figure 1.5: The magnetic field profiles in a RFP configuration

The reversed field is generated naturally, as a result of relaxation process. The

relaxation of a plasma with small but finite resistivity is considered, and the final relaxed

state (or Taylor state) is obtained by minimizing the magnetic energy with respect to

7



1.3 Features of reversed field pinch

the single constraint that the total magnetic helicity

K0 =

∫

V

−→
A · −→Bdτ (1.5)

is invariant. The vector potential
−→
A is given by

−→
B = ∇×−→A , and the integral is taken

over the whole volume of the system. Phyiscally, helicity is a linkage of flux. The relaxed

stated equilibrium for a system which conserves the toroidal flux Φ is given by

∇×−→B = µ
−→
B (1.6)

where µ is constant in space. For a large aspect ratio torus of circular cross-section the

solution to this equation is given by the Bessel function.

Br = 0, Bθ = B0J1(µr), Bϕ = B0J0(µr) (1.7)

Figure 1.5 shows the typical magnetic field profiles in the RFP configuration. The

measured magnetic field profiles agree well with the theory [3; 22]. There is a small

discrepancy in the outer region as µ decreases towards the wall and is not constant

in the experiments. The modified Bessel function model has been developed with the

assumption of µ = µ0(1− (r/a)α), where µ0 is the value on the axis, and α can be fitted

to the measured profiles [23].

The solution of equation 1.7 includes a constraint condition. That is, µ and the

minor radius a of the flux conserving boundary are related to the pinch parameter Θ.

It is given as:

Θ =
Bθ(a)

< Bϕ >
(1.8)

The reversal parameter F is defined as

F =
Bϕ(a)

< Bϕ >
(1.9)

It possesses field reversal in the case of F < 0. In general, the high Θ corresponds to

the deep F .

Both the reversal parameter F and the pinch parameter Θ are used to describe the

features of RFP plasmas, such as the field reversal and fluctuations. Experiments and

simulations suggest the field reversal when Θ exceeds 1.2 [23] (or when F < 0). The

fluctuation becomes more coherent and the magnetic fluctuation amplitude is increased

as the Θ is increased [24].
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1.4 Standard and PPCD plasmas in RFP

1.4 Standard and PPCD plasmas in RFP

In RFP, the duration of the plasma is much longer than the classical magnetic field

diffusion time, because the dynamo sustains the RFP configuration and governs the

transport in the standard RFP operation (without additional current drive such as

PPCD) [3; 25]. One of the important issues relating to RFP plasma is the underlying

physics of dynamo activity. This problem has been studied for several decades, and it

is believed that the dynamo activity is driven by instabilities and turbulences [22; 26–

29]. The nonlinear MHD theory applied to the standard RFP plasma predicts the

turbulent structures in the dynamo actions arising from spatial fluctuations in the flow

(υ̃ ) and magnetic fields (B̃ ). These fluctuations form an equilibrium electromotive

force EM ‖=< υ̃ × B̃ >‖, where ‖ denotes parallel to the magnetic field (it is mainly

poloidal at the edge region), <> denotes the average over an equilibrium flux surface.

The electromotive force EM ‖ can drive the poloidal plasma current, which generates

the reversed toroidal field. As a result, the plasma configuration is sustained by the

electromotive force. Here we define the plasma sustained by the EM ‖ as the standard

plasma.

However, these fluctuations (in dynamo action) may cause strong particle and energy

transport in plasma. It is difficult to improve the plasma confinement in the standard

operation. It is reported that more than 90% of the RFP magnetic fluctuations are

dominated by the core-resonant tearing (or resistive kink) instabilities with the poloidal

mode number of m = 1 and several toroidal mode numbers of n ∼ 2R/a [23]. Since

the tearing fluctuation is driven by the current density gradient, the current drive in

the outer region of the plasma can change the current profile. This eliminates the

magnetic fluctuation and improves the confinement. So far, the current drives, such as

the electrostatic poloidal current drive (EPCD), the RF poloidal current drive (RFCD),

the lower-hybrid current drive (LHCD) and the pulsed poloidal current drive (PPCD)

have been demonstrated in MST and other RFP devices [5; 30; 31]. Among them, PPCD

is the widely used one.

In the PPCD operation, an external poloidal electric field is generated. Since the

magnetic field is mostly poloidally directed in the outer region of the plasma, the external

electric field generated by PPCD is parallel to the edge magnetic field. The parallel

mean-field Ohm’s law include the electromotive force should be written as [32]

ηj‖ = E‖ + EM‖ (1.10)
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1.4 Standard and PPCD plasmas in RFP

where, η is the electric resistivity. j‖ is the parallel equilibrium current, ṽ, B̃ are the

fluctuating fluid velocity and magnetic field, respectively. <> denotes the average over

an equilibrium flux surface. E‖ and EM‖ are the external electric field and the electro-

motive force parallel to the magnetic field, respectively. Since the external electric field

E‖ can drive the poloidal current, the plasma configuration can be sustained without

the help of dynamo (EM‖) in the PPCD operation.

//// )()( BvE
M

standard PPCDToroidal coil

PPCD: current is induced by the coil 
current embedded in the TF coil

Standard: current is sustained 
by the dynamo activity

//)(
PPCD

E

Figure 1.6: The operations of the standard and the PPCD

Figure 1.6 shows the comparison of the operations in the standard and the PPCD

plasmas. In the standard plasma, the poloidal current is driven by the parallel electro-

motive force EM‖, which may be as a consequence of the nonlinear interaction between

MHD fluctuations. In the PPCD plasma, the external electric field is generated by the

current in the coil embedded in the toroidal field (TF) coil. This external electric field

can drive the poloidal current, so that the reversal field can be sustained without the

help of the electromotive force driven by fluctuations. As a result, the turbulence may

be suppressed in the PPCD operation. The details of the waveforms in the PPCD and

the standard plasmas are explained in chapter 2.

Experiments with PPCD operation have been performed in MST, TPE-RX and

RFX [5; 30; 31]. The reductions of the magnetic fluctuations and transport coefficient

have been observed [30]. About ten-fold improvement of the confinement time has been

10



1.5 Review of turbulence in RFP

(a) (b)

Figure 1.7: (a) Magnetic fluctuation (dBr/dt) in the PPCD plasma in TPE-RX, (b)

Improvement factor of τE versus reduction rata of δb2 in the PPCD experiments.

obtained in MST [33]. An example of the reductions of the magnetic fluctuations and

the improvement of the confinement in the PPCD operation are shown in figure 1.7.

1.5 Review of turbulence in RFP

The RFP configuration relies on currents flowing in the plasma for the generation of

both toroidal and poloidal components of the magnetic field. A highly sheared magnetic

configuration can be obtained. The RFP stability theory gives the q profile which differs

significantly from that of tokamaks. Figure 1.8 shows the schematic view of q profiles

and possible resonances in RFP. The q value monotonically decreases from the center

value (typically q(0) ∼ 0.1). It becomes negative in the edge region. In general, the

m = 1 modes are the most unstable ones. Hence there are many potentially unstable

modes (m,n) = (1, n) with resonant surfaces in the central part of the plasma. The

radial density of resonances is increased with the radius. The high n modes are rather

densely packed near reversal surface. This configuration may be unstable with respect

to neighboring modes corresponding to smaller or larger toroidal mode numbers n.

Various candidates for the RFP instabilities have been discussed: tearing instabilities,

pressure-driven g-modes and drift-wave turbulence [34–38]. The reviews of these theories
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Figure 1.8: Schematic view of q profiles and possible resonances (m = 1 modes) in

RFP.

are as follows.

The current driven tearing instability may occur in any sheared magnetic configura-

tion [34]. The growth rate of the tearing mode is as a function of ∆′, as

γ ' η3/5(∆′)4/5(kB′
0)

2/5 (1.11)

where, ∆′ = lim
δ→0

[ψ′1(xs + δ)−ψ′1(xs− δ)]/ψ1(xs), ψ(xs) is the magnetic flux function

at the resonance surface, given by B⊥ = ez ×∇ψ. In the framework of incompressible

MHD, tearing mode is unstable only if ∆′ > 0.

In the case of plane sheet pinch, ∆′ can be simplified as

∆′ =
2

a
(

1

ka
− ka) (1.12)

The tearing mode is unstable (∆′ > 0) for the long wavelength ka < 1, and stable

(∆′ < 0) for the short wavelength ka > 1.

A more general analysis gives a maximum growth rate γmax(k) ∼ η1/2 at k ∼ η1/4.

For still smaller k, decreases again. Therefore, the tearing instability is limited to low

mode number [35].

In the RFP, q decreases with radius. The low n modes with n ∼ 1/qmax which have

the resonances close to the axis are most unstable, while high n modes with resonances

close to the field reversal radius are stable. High mode numbers are primarily driven by

the plasma pressure gradient instead of the parallel current [34].
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1.5 Review of turbulence in RFP

The pressure driven modes are generalizations of the Rayleigh-Taylor process. These

modes are also called interchange modes, since they correspond simply to an interchange

of the positions of neighboring flux tubes together with their plasma content.

The growth rate of the ideal pressure driven modes is given by

γ = (
gρ′0
ρ0

k2
⊥

k2
)1/2 ' (

g

Lρ

)1/2 (1.13)

where, Lρ = ρ0/ρ
′
0 is the density scale length. k⊥ is the wave vector component perpen-

dicular to the gravity g. The growth rate is largest for small-scale modes kLρ À 1.

If we consider the effect of finite resistivity, the dispersion relation of the interchange

instabilities is changed as

γ2 ' 2κp′0
ρ0

−
k2
‖υ

2
A

1 + ηk2
⊥/γ

(1.14)

where, κ = −r(1−q2)/(R2q2) is the cylindrical curvature. If the average curvature κ > 0,

there are always unstable modes. In the case of RFP, |q| ¿ 1, the the pressure-driven

interchange modes are always destabilizing.

Since the growth rate of interchange instabilities is increased with wavenumber, the

magnetic perturbation ψ1 = B0·∇φ/(γ+ηk2
⊥) becomes small as wavenumber is increased.

Contrary to the long-wavelength tearing modes, the small-scale pressure-driven modes

has B0 · ∇φ + ηj1 ' 0, which means that the magnetic perturbation ψ1 produced by

the current j1 can be neglected. Therefore, the small-scale pressure-driven modes are

dominated by the electrostatic fluctuations.

Figure 1.9 shows the growth rates of the tearing and interchange instabilities as a

function of the wavenumber k with the assumptions of Ds ∼ 1.0, S = 106 [35]. It gives

the k spectrum of the growth rate of all pressure-driven modes transiting from tearing

parity modes to interchange parity modes as k increases. Since, the growth rate at high

k modes is stabilized by the finite Larmor radius effects, the global low k pressure-driven

modes may be more important for the RFP plasma.

The quasi-linear theory of MHD dynamics suggests the nonlinear interactions (mode

to mode to coupling) which is shown in figure 1.10 [23; 36]. Consider two m = 1 modes,

(1, n) and (1, n+1) with neighboring values of n, where mode interaction is expected to

be strong. Two types of coupling processes can be distinguished. Exciting the linearly

stable (2, 2n+1) mode implies the generation of smaller spatial scales, since such modes

are rather strongly localized radially. This process corresponds to the direct turbulent
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Interchange 

parity 

Tearing mode 

parity 

Figure 1.9: The growth rate as a function of wavenumber of ideal pressure-driven modes

at Ds ∼ 1.0, S = 106. Triangles denote modes with a radial structure with tearing mode

parity; box denote interchange parity
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Figure 1.10: Diagram of the mode to mode coupling
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1.5 Review of turbulence in RFP

energy cascade to small dissipative scales. By contrast the coupling to the stable, (0, 1)

mode is non-dissipative since this mode has a global radial distribution. By further

coupling to the (1, n + 2) and the (1, n− 1) modes this process leads to a broadening of

the n-spectrum of the m = 1 modes. The couplings to the m = 0 modes are either direct

interactions of the different m = 1 modes with the (0, 0) components or (0, n) modes

which are particularly important for the dynamo effect since they are all resonant at the

field reversal point.

It should be noted that both the tearing and interchange instabilities only have the

purely growing. They don’t have the real eigenfrequency. The drift waves have the

complex frequency ω = ωr + iγ, with γ ¿ ωr usually.

The drift wave instabilities occur in a plasma of non-uniform density maintained in

equilibrium by a strong and essentially straight magnetic field. The dispersion relation

of the drift waves is given by [39]

ω2 − ω∗ω − k2
‖C

2
s = 0 (1.15)

where, ω∗ = −k⊥κTe/(eB0Ln) is the diamagnetic frequency, Ln = ne/n
′
e is the density

gradient length, Cs = (Te/mi)
1/2 is the velocity of ion sound wave.

The growth rate of the drift wave is given by

γ =
ηk2

⊥
µ0

ω2(ω2 − k2
zC

2
s )

k2
zυ

2
A(ω2 + k2

zC
2
s )

(1.16)

The drift wave is unstable when |ω| > |kzCs|. There are two branches of the drift waves:

electron branch and ion branch (see Fig. 1.11). Experimentally, we are usually interested

in the electron drift wave in the limit of ω∗ À kzCs. The electron drift wave has the

frequency of

ω ≈ ω∗ (1.17)

and the drift wave propagates in the electron drift direction.

Experimental studies of the turbulence in the RFP plasmas have been performed

by magnetic probes, electrostatic probes, spectroscopy, reflectometer, heavy ion beam

probe (HIBP) and Gas-puff imaging (GPI), which view the plasma fluctuations from

the core to edge region [25; 29; 40–45]. Since the magnetic fluctuation is very strong in

the RFP plasmas (∼ 1%, it is about 10 ∼ 100 times higher than that in tokamaks), two

main interpretations of the RFP turbulence have been suggested: the MHD turbulence

15



1.5 Review of turbulence in RFP

Magnetic instability Electrostatic instability

Core region 

(r/a<0.7) 

Low n tearing modes  

Around m=1, n=2R/a [Biskamp,1993] 

Weak electrostatic turbulence 

 [HIBP, Lei, PRL2002, Ji, RPL1991] 

Around reversal 

surface
m=0 and high (m=1) n tearing modes Electrostatic 

Edge region 

(0.85<r/a<1.1)

High n tearing modes (very weak, 

may not be measured)
Strong electrostatic [Antoni, PRL1998] 

Instabilities 

Resistive g-modes [Sarff,IAEA1994] 

Tearing instabilitiy: current driven 

Interchange instability: pressured 

driven [ Agostini, PPCF2008]

Electrostatic turbulence [Antoni, 

PRL1998; Rempel, PRL1991]  

Drift wave turbulence [Antoni, 

PPCF1997] 

Features of 

fluctuations

Narrow spectral profile,  

The modes are dominated by the m=1, 

0 modes. 

The fluctuation power is rapidly 

decreased as the mode number is 

increased. 

Low frequency (f < 100 kHz) 

Broad spectral profile 

High frequency (f > 100 kHz) 

 [Li, EPS1994, Li, POP1995]. 

Nolinear 

interaction

Core: low n tearing modes coupling. 

[Assadi, PRL1992] 

Edge: high n tearing modes coupling. 

[Bunting, EPS1977]  

Magnetic reconnection and MHD 

turbulence [Rusbridge, Plasma 

Phys.1977] 

Strong edge electrostatic turbulence 

Correlation between magnetic and 

electrostatic fluctuations: (1) Strong, Tsui 

NF1992, Brunsell, POP1994, Li, 

POP1995. (2) Weak: Rempel,PRL1991, Ji, 

RPL1991 

Diagnostics

Magnetic probes (r/a~1.0) 

Complex edge probe (r/a~1.05) 

Langmuir probes (r/a~1.0) 

GPI  (r/a=0.95~1.0) 

HIBP (r/a=0.2~0.7) 

Spectroscopy  

Reflectometer (r/a~0.95) 

Table 1.1: Review of fluctuations in RFP.
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1.5 Review of turbulence in RFP

Figure 1.11: Electron and ion branches of the drift-wave dispersion relation. Both

branches approach asymtotes ω = ±kzCs

and the electrostatic turbulence. Both these interpretations have experimental data

supporting them.

The summary of the fluctuations in RFP plasmas studied by experiments and simu-

lations is shown in table 1.1. The fluctuations in the core region and the edge region have

been experimentally studied by HIBP, GPI, magnetic probes and electrostatic probes

in RFP. These results suggest the MHD instabilities (m = 1, low n tearing modes) are

dominant in the core region. Around the reversal surface, there are many densely packed

high n tearing modes (m = 1) and the resonance surface of the m = 0 tearing modes. In

the edge region, the results obtained by electrostatic probes and reflectometer suggest

that the electrostatic fluctuations can account for significant particle losses [46; 47].

The features of electrostatic fluctuations exhibit broad band features with ∆f/f ∼ 1,

∆k⊥/k⊥ ∼ 1 and a wide spectrum of toroidal and poloidal periodicity numbers [48]. The

observed mode number spectrum of the electrostatic turbulence (∆n ∼ 150) is about

two times wider than that of magnetic fluctuation (∆n ∼ 60) in MST [46]. The observed

frequency ranges of the electrostatic fluctuation are high (typically f > 100 kHz) and

broad [42].
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So far, the study of the turbulence in RFP plasma is lack of experiment, especially the

turbulence around the reversed-field surface due to the inaccessibility of the diagnostics

and the complicated fluctuations (high magnetic and electrostatic fluctuations, as a

result, some approximations in MHD theory may be violated). These fluctuations may

highly interact with each other, lead to a very difficult problem. Nevertheless, the

study of the fluctuations near the reversal surface may be very important to clarify the

turbulence physics in RFP.

1.6 Object of this work

The RFP turbulence in the core region and edge region has been studied by magnetic

probes, electrostatic probes, GPI and HIBP. However, around the reversed-field sur-

face, the turbulence has not been well understood until now (see table 1.1). This work

presents the first turbulence measurement around the reversed field surface in the RFP

plasma in TPE-RX. This measurement is established by using MIR because MIR is the

local measurement of the electron density fluctuation. It aims to contribute to a better

understanding of the RFP turbulence, as well as the development of MIR system and

turbulence analysis techniques.

For this purpose, the MIR system with the microwave frequency of 20 GHz (O-

mode, the cutoff density is 0.51019 m-3) and the large aperture imaging optics has been

developed for the experiments in a large RFP device TPE-RX (R = 1.72 m, a = 0.45 m).

By using MIR system, the 2D (4×4) image of density fluctuations have been observed

in the region of rcut = 0.7 ∼ 0.9. In this system, the toroidal and poloidal spatial

resolutions are 3.7 cm, and the temporal resolution is 1µs. However, interpretation of

the MIR signal is still an important issue. In order to investigate the principles of MIR

measurement, a 2D simulation model based on Huygens-Fresnel equation is developed

to simulate the MIR signal. The simulation and the test results are compared, and a

valid clear image condition is obtained. The turbulence in the plasmas with and without

PPCD has been compared by various analysis techniques, which have been developed in

this work. The features of RFP turbulence around the reversed field surface have been

clarified.
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1.7 Structures of this work

This work is organized as follows: Chapter 2 contains a description of the experiments

with MIR in TPE-RX RFP. The features of MIR signals are presented. In chapter 3,

a 2D numerical simulation model has been developed to simulate the MIR signal. The

simulation agrees well with the laboratory test when the displacement of the cutoff sur-

face in radial direction is much smaller than the wavelength of the launching wave. MIR

is valid with the condition 4kdL/D < 1 to measure the fluctuation. Some turbulence

analysis techniques, such as cross-correlation analysis, wavelet analysis and maximum

entropy method (MEM), are described in chapter 4 and 5. The features of these anal-

ysis techniques have been discussed. In chapter 6, we clarify the characteristics of the

RFP turbulence by using MIR diagnostics. PPCD suppresses the m = 0 tearing modes

and electrostatic-like turbulence. Without PPCD operation, the plasma has charac-

teristic of high intermittency and high nonlinear interaction among the magnetic and

electrostatic-like fluctuations at deep F . Simulation of MIR signal suggests the inter-

mittency is caused by the blob structure, which enhances the transport and decreases

the confinement. The conclusion and discussion are given in the chapter 7.
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Chapter 2

The Experiments in TPE-RX

2.1 TPE-RX reversed-field pinch

TPE-RX is one of the largest reversed-field pinch (RFP) devices in the world. This is in

the National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba,

Japan. The major radius is R = 1.72 m and minor radius is a = 0.45 m [30; 49] (see

figure 2.1). It is characterized by a multilayered shell system in a conductive all-metallic

vacuum vessel which provides relatively high Ip/N values ( 10−19Am; N = πa2 < ne >,

the number of electron per unit toroidal length, derived using the line-averaged electron

density < ne >). The plasma equilibrium is provided by thick aluminum shell with the

thickness of 50 mm . A thin copper shell, which has two layers with the thickness of 0.8

mm each, effectively stabilizes the fast growing MHD modes in an order of millisecond

by its close distance to the plasma surface. The all-metal first wall (vacuum chamber)

also provides MHD mode stabilization and the fast equilibrium control in a short time

scale less than millisecond. TPE-RX can operate in the standard (normal or without

PPCD) and with the pulsed poloidal current drive (PPCD). To improve the energy

confinement time, a six-pulsed PPCD operation has been developed in TPE-RX [50].

The confinement time has been improved by order of magnitude [51]. In general, PPCD

operation starts at 18 ms and ends at 35 ms. The duration time of the standard plasma

is about 100 ms and the duration time of the PPCD plasma is about 35 ms.

Several diagnostics are used in the experiments besides the microwave imaging re-

21



2.1 TPE-RX reversed-field pinch

Figure 2.1: Overview of TPE-RX

flectometry (MIR). The plasma density is measured by a dual-chord interferometer [52].

One channel views the plasma center (r/a = 0) and the other channel views the nor-

malized radius r/a = 0.69. The soft-X-ray intensity is measured by two surface barrier

diodes (SBD) arrays (the vertical array has 13 parallel lines of sight with impact pa-

rameters lying between r/a = −0.8 and r/a = 0.8, the horizontal array has 11 lines of

sight lying between r/a = −0.61 and r/a = 0.61 ) located in the poloidal section. The

local toroidal magnetic field is measured with a toroidal array of 32 pairs of pickup coils

(named as extensive magnetic measurement system: MMS), which equally distributed

around the inboard and outboard sides of the equatorial plane of torus [53]. Therefore,

the modes with even or odd poloidal mode numbers can be separated. Since the m = 0

and m = 1 modes are usually dominant in RFP plasmas, the even mode is called the

m = 0 mode and the odd mode is called the m = 1 mode. A complex edge probe system

(CEP) has been developed to measure the high frequency magnetic fluctuations and the

floating potentials [51; 54]. The CEP is installed at r/a ∼ 1.0 inside the vacuum vessel.

It is composed of three magnetic coils which can measure the toroidal, poloidal and

radial magnetic fields (B̃t, B̃p, B̃r) with 1.0 MHz frequency bandwidth, and six pins to

measure floating potentials. The layout of the MIR and other diagnostics in TPE-RX is
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2.1 TPE-RX reversed-field pinch

Complex Edge

Probe

MIR

Figure 2.2: Layout of the diagnostics in TPE-RX
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2.2 MIR system in TPE-RX

shown in figure 2.2. MIR and CEP are arranged at the same port (Port 2). MIR views

the equator plane, while CEP is arranged at the top of port.

Plasma parameters range

Plasma current, Ip 200-350 kA 

Electron density, ne (0.5-1)  x 10
19

m
-3

Pinch parameter,

 = Bt(a)/<Bt>

1.4 ~ 1.8 (standard)

1.4 ~ 3.0  (PPCD)

Reversal parameter,

   F=Bp(a)/<Bt>

-0.1 ~ -0.6 (standard)

-0.1 ~ -2.0 (PPCD)

Table 2.1: Range of the main plasma parameters used in MIR experiments.

Table 2.1 shows the range of the main plasma parameters with MIR measurements

in this work. The experiments used in the analysis have the plasma current (Ip) of

200 ∼ 300 kA and electron density (ne) of (0.5 ∼ 1.0)× 1019 m−3. The pinch parameter

(Θ = Bp(a)/ < Bt >) and the reversal parameters (F = Bt(a)/ < Bt >) are Θ = 1.4 ∼
1.8 and F = −0.1 ∼ −0.6 in standard plasma, respectively. Since the edge toroidal field

is generated by the external driven field in PPCD plasma, they are Θ = 1.4 ∼ 3.0 and

F = −0.1 ∼ −2.0, respectively.

2.2 MIR system in TPE-RX

Figure 2.3 shows the schematic diagram of the MIR system in TPE-RX [52]. It consists

of a optical system and a 2D receiver system. The quartz window of the TPE-RX

viewing port is located at r = 67 cm. The RF wave illuminating from the horn antenna
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2.2 MIR system in TPE-RX

Figure 2.3: Schematic diagram of the MIR system in TPE-RX
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is reflected by the first plain mirror (M1). The RF wave passes through the first beam

splitter (BS1) to the main mirror (M2). The main mirror, which is an elliptic concave

mirror with the size of 40 cm in diameter at r = 140 cm, makes a parallel illumination

beam in the plasma. The reflected wave is collected by the main mirror and is separated

from the illumination beam by the first beam splitter (BS1). The local oscillation (LO)

wave and the reflected wave are mixed at the second beam splitter (BS2). These beam

splitters are 3 mm thick Plexiglas plates. The image of the plasma fluctuation is made

on the detector surface by the Teflon lens (L1). The optical system has been designed

and tested carefully. Good agreement between the measured beam profiles and those

obtained by a ray tracing simulation was confirmed.

The receiver system consists of a planer Yagi-Uda antenna, a balun, a beam lead type

Schottky barrier diode, band pass filter (BPF), intermediate frequency (IF) amplifier and

phase-detector. The Yagi-Uda antenna array is made on the Teflon printed circuit board

(PCB) with the thickness of 0.18 mm. On the design of the antenna system, a computer

code for electro-magnetic field is employed. The 4 by 4 2D antenna and detector circuits

are made by the microstrip line technology. The detector system has high sensitivity to

the small fluctuation. 4 elements of the antennas are set on a PCB with a distance of

12 mm, and 4 PCBs are stacked with a distance of 15 mm. The spatial resolution of

the detector array in the plasma is about 3.7 cm. The schematic diagram of 4 × 4 2D

antenna array in the MIR system is shown in figure 2.4. The circled digits in the picture

represent the detector number. The setup of the detector position can be changed in

the experiments.

A Gunn oscillator generating the microwave with frequency of 20 GHz is used. Since

the magnetic field is very low (∼ 0.1 Tesla) in TPE-RX and it is mainly poloidal at the

edge, the RF wave illuminates in the O-mode and the cutoff frequency is determined by

the electron density ne−cut ≈ ω2
p/81 = 0.5× 1019 m−3. The LO wave with the frequency

of 20.11 GHz is made by mixing the RF wave (20 GHz) and the low frequency wave

(110 MHz) at an up-converter. By mixing the reflected wave and the LO wave, the

2D mixer array makes intermediate frequency (IF) signal of 110 MHz. This IF signal

contains the amplitude A and the phase φ of the density fluctuation A exp(iφ) in plasma.

The amplitude is obtained by rectifying the IF signal with a diode detector. The phase

is obtained by comparing the IF wave and the mixed signal by the IQ demodulator.

I and Q signals correspond to the in-phase I = A cos(φ) and the quadrature Q =

A sin(φ) components of the density fluctuation, respectively. The phase is given as
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Figure 2.4: Schematic diagram of 2D antenna array in the MIR system. The circled

digits represent the detector number

27



2.3 Experimental results

φ = arctan(Q/I). The data is sampled at 1 MHz (standard plasma) or 2 MHz (PPCD

plasma) by the digitizer.

2.3 Experimental results

2.3.1 Estimation of the cutoff surface

The plasma density is measured by a double-chord CO2/HeNe laser interferometer in

TPE-RX, whose impact parameters, normalized by a, are r/a = 0 and 0.69. The density

profile is estimated by fitting the experimental data with the following relation [52].

ne(r, t) = ne(0, t)(1− r4)(1 + C(t)r4) (2.1)

where, ne(0, t) is the core density, C(t) is the profile factor. The profile factor C > 1

represents the hollow density and C < 1 represents the peaked density profile. Both

ne(0, t) and C(t) are determined by the two measured chord values.

Figure 2.5 shows the (a) time evolution of the density profile in the PPCD plasma

(shot No. # 52971), (b) time evolution of live averaged density nel and the normalized

cutoff radius of MIR rcut, and (c) density profiles at t = 10, 16, 21, 26, and 30 ms.

The PPCD operation starts at 18 ms and ends at 35 ms. The plasma density profile

becomes hollow and the plasma density increases during PPCD. The large oscillations

in the line-averaged density may be caused by the mechanical oscillation. Although the

density has a large error, the normalized cutoff radius of MIR (20 GHz) keeps at near

r/a = 0.7 ∼ 0.9 during the flat top of the discharge due to the very flat or hollow density

profile. It should be noted that the flat or hollow density profile is often observed in

PPCD and standard plasmas. As a result, the normalized cutoff radius is mainly located

in the region from r/a = 0.6 to 0.9. This region is near the reversed field surface. The

strong turbulence is expected due to the densely packed m = 1 modes (high n modes)

and high electrostatic turbulence [4; 23]. On the other hand, it is very useful for the

calibration of the optical aberration in the MIR optical system.
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Figure 2.5: (a) Time evolution of the density profile in a PPCD plasma, (b) time
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2.3.2 Operation conditions of PPCD and standard plasmas

Figure 2.6 shows the waveforms of (a) plasma current, (b) line-averaged density, (c) F ,

(d) Θ, (e) soft X-ray, (f) toroidal magnetic fields at outside of the wall (Btout: solid line)

and at the plasma surface (Bta: broken line), (g) total toroidal average magnetic field,

and (h) parallel electric field to the magnetic field at the plasma surface (E‖) in PPCD

(black) and standard (red) plasmas. The plasma duration time is about 70 ms in the

standard plasma (shot: 52792) and 35ms in the PPCD plasma (shot: 52971) ( see figure

2.6 (a)). The plasma current is about 300 kA during the flat top of the discharge. E‖ is

estimated by [55]

E‖ =
E(a) ·B(a)

|B(a)|
=

BtaVta/(2πR) + BpaVpa/(2πa)√
B2

ta + B2
pa

(2.2)

where, R and a are the major and minor radii, respectively. Vta and Vpa are the toroidal

and poloidal on-turn voltages at the plasma surface, respectively. E(a) is the electric

field at the plasma surface. B(a) is the magnetic field at the plasma surface, and Bpa is

the poloidal magnetic field at the plasma surface, given as

Bpa =
µ0Ip

2πa
(2.3)

Bta is generated by the external coil current and also by an induced current in the liner.

The poloidal one-turn voltage is induced by a change in the total toroidal magnetic field.

The total toroidal magnetic field < Bt > increases during the ramp up phase (< 20 ms,

in figure 2.6 (g)) and induces a poloidal current in the liner. The reversal field can

be sustained without Btout (in standard plasma) by driving the plasma current. E‖ is

usually negative in a standard plasma. The dynamo activity can be reduced when E‖ is

positive [50]. The PPCD power supply in TPE-RX consists of six groups of capacitor

banks, which can produce six pulses. Therefore, Btout is stepped down six times.

The PPCD waveform is controlled to maintain a positive E‖ as long as possible.

The optimized PPCD timing is shown by the short lines in the bottom of figure 2.6

(e)-(h). The total toroidal magnetic field < Bt > decreases after applying the PPCD,

and the poloidal electric field is induced. As a result, E‖ increases rapidly and becomes

positive (figure 2.6 (h)). The soft X-ray increases more than ten fold. Since the total

toroidal magnetic field < Bt > decreases smoothly during PPCD, the pinch parameter
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Θ = Bp(a)/ < Bt > increases rapidly and the reversal parameter F = Bt(a)/ < Bt >

decreases rapidly (figure 2.6 (c),(d)). The details of the PPCD and standard operations

in TPE-RX are described in ref. [30; 55].

2.3.3 Features of MIR signals

The 2D density fluctuations have been measured in TPE-RX by using MIR. Figure 2.7

shows the time evolution of the plasma current (Ip), F , Θ, the line-averaged density

(ne) and the normalized cutoff radius (rcut), and the MIR signals (Amplitude, I and Q

signals) in the 2D detector array in shot #52971, respectively. MIR signals represent the

density fluctuations when the cutoff surface appears. The fluctuation amplitude is very

small when there is no cutoff surface, for example at t = 5 ∼ 9 ms. MIR obtains the

interferometer signal and the fluctuation of the signals is very small. The sharp burst

at t = 7.5 ms may be caused by the suddenly presence of the cutoff surface. There is

no cutoff surface at t = 12 ∼ 18 ms but the fluctuation of the MIR signals is increased.

This may be due to the stronger radial dependence than r4 (see Eq. 2.1) in the actual

density profile. The fluctuation of the MIR signal is increased as the cutoff surface moves

out. During the flattop of the discharge, the fluctuation amplitude of the MIR signals

becomes constant. and the normalized cutoff radius is about r/a=0.8 ∼ 0.9, which is

near the surface of field reversal.

The waveforms of MIR signals look similar in the 2D detector array, especially for

the large fluctuations (for example, the crash at t = 20.005 ms). It suggests that there

are some waves or turbulent structures which propagate on the cutoff surface. The

MIR signals also contain many short period bursts with small-scales, for example the

fluctuation at t = 20.04 ms. If we expand the waveforms, the time delay of the fluctuation

structures between different channels can be obtained. The time delay represents the

propagation time the turbulence eddy. Therefore, the 2D image of the density turbulence

is obtained by MIR.

Since the IQ signals are the cosine and sine components of the phase fluctuation,

the Lissajous’ curve (I-Q plot) should be a circle. The operation of the IQ detector is

confirmed as the trajectory is rotating. In the test of IQ detector, the Lissajous’ curve

is a circular arc. Therefore, the IQ plot can be used to identify the movement of the

cutoff surface or the fluctuation of the phase. One circle represents the motion of 1.5

cm in the radial direction at present setup in MIR. However, the Lissajous’ curve is not
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to bottom they are the plasma current, F , Θ, line-averaged density, cutoff radius, the

amplitude signals of channel 2 and the MIR signals in 2D detector array (Amplitude

and IQ signals), respectively.
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always circle in the experiments. It is distorted by the curvature of the reflection surface,

turbulence and plasma rotation [56; 57].

Figure 2.8 shows the Lissajous’ curves of the I and Q signals with (a) 1 ms time

window, (b) 50 µs time window and (c) no cutoff surface (shot No. #52973). The

complex IQ-plot looks like a doughnut if there is cutoff surface in plasma, which suggests

MIR makes a clear imaging of the cutoff surface. In the case of small time window (see

figure 2.8 (b)), the movement of the IQ signals is observed. The rotation of the I and

Q signals indicates the cutoff surface is moving back and forth. The turn over points

are indicated by the arrows. This corresponds to that the motion of the reflection

surface is turned over. If there is no cutoff surface in the plasma, the complex IQ plot

has characteristics of random walk and the signals are distributed in the center of the

complex IQ plot.

Figure 2.9 shows the coherence of the amplitude and the IQ signals with the toroidal

separation of 3.7 cm. The coherence analysis is performed during the flattop of the

plasma (data length: 6 ms). The data of a 6 ms time window (1MHz sampling) is divided

into 200 data sections. Each section has 64 data points. The coherence is obtained by

the Fourier transform of these data sections. The dashed line is the uncertainty (noise)

level which is decided by the independent data sections (1/
√

N). The detail of the

coherence analysis method is discussed in chapter 4. The coherence decreases as the

frequency increases. In the low frequency range (f <100 kHz), both the amplitude and

the IQ signals have the high coherence (greater than 0.8). In the high frequency range

(f > 100 kHz), the coherence of IQ signals is higher than that of amplitude. At about

400 ∼ 500 kHz, the coherence of amplitude becomes the noise level, while the coherence

of IQ signals is about 0.3 ∼ 0.4. This is about two times higher than that of amplitude.

Therefore, the IQ signal is more sensitive to the high frequency fluctuation. The higher

coherence in the high frequency range suggests the longer coherence length is measured

by the IQ signals.
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(a)   t=25-26ms, #52973 

p
(c)  No plasma, 7~9ms, #52973 
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Figure 2.8: The Lissajous’ curve (IQ-plot) of the I and Q signals of channel 1 (#52973).

(a) 1ms time window (25 ∼ 26 ms) and (b) 50 µs time window (25.5 ∼ 25.55 ms) and

(c) no cutoff surface (7 ∼ 9 ms) of channel 1. x-axis is I signal and y-axis is Q signal.

The arrows represent the turn over points
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Chapter 3

Two-dimensional Simulations and

Tests of MIR

3.1 Introduction

Microwave reflectometry is a powerful tool to measure the plasma density profile and

density fluctuation [1; 9; 58]. In a reflectometry system, the microwave illuminates the

plasma, and the microwave is reflected by the cutoff surface in the plasma. The reflected

power is scattered by the modes on the cutoff surface. The phase difference between the

illumination wave and the reflection wave is modulated by the radial displacement of the

cutoff surface. The reflection wave is mainly modulated by the density fluctuations close

to the cutoff surface, and the phase fluctuation is proportional to the density fluctuation

as φ ∝ Lnñ/n, where Ln = n/(dn/dr)r=rc is the reverse density gradient length at the

cutoff surface. The wave propagation is well understood in the one-dimensional (1D)

reflectometry system [1]. However, in the two-dimensional (2D) and three-dimensional

(3D) configurations the complicated interference pattern appears on the detection plane,

because the reflected wave propagates in different directions. Therefore, it is difficult to

extract any useful information from the fluctuations in a standard reflectometry [1; 2;

10; 56].

To correct the disturbed wave front, microwave imaging reflectometry (MIR) is devel-

oped [1; 2]. It uses the optical imaging technique in the reflectometry. A wide aperture
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3.1 Introduction

optics system is used to form an image of the reflected surface onto a 2D detector array

located at the image plane. The time evolutions of 2D pictures of density fluctuation

at the cutoff surface can be obtained, just like a movie. The feasibilities of MIR for

turbulence measurement have been investigated in theories and experiments intensively

[1; 2; 11–14]. The understanding of the received signals is very important to develop the

next generation of MIR system. There remain many issues [2; 11; 15], such as the fringe

jump, the antenna array and receiver array. Among them, the optical aberration is one

of the biggest issues. Therefore, the optical system will be considered in the simulation.

Simulations have been performed at the standard reflectometry without imaging op-

tics in many literatures [12; 56; 59]. In this work, the 2D numerical simulation model

based on the Huygens-Fresnel equation is used to simulate the wave propagation in a

microwave imaging system. The optical lens is considered in this model. A laboratory

arrangement of the MIR system is made to test the reflected signal, which is compared

with the simulation. The experimental results show that the MIR system works well at

the in-focus condition when the displacement of the cutoff surface in the radial direction

is much smaller than the wavelength of the launching wave. The Lissajous’ curves of

simulation and experiments have the shapes of circular arc when the MIR system is

arranged at the in-focus condition. The reflected signals exhibit large random fluctua-

tions at the out-of-focus conditions. Therefore, the in-focus of optics in MIR system is

one of the key issues to obtain a bright reflected image. However, in the case of strong

fluctuation, the reflected signals are distorted. Both the simulation and the experiments

show that the distortions of the reflected signals depend on not only the displacement

of the fluctuation in radial direction but also the wave number of the fluctuation. Their

relationships are discussed by a geometrical model.

Section 3.2 contains a description of the numerical simulation based on the Huygens-

Fresnel equation, which is used for the propagation of the reflected signals. The simula-

tions with different amplitude and the phase fluctuations are shown. The arrangement

of the MIR is described in section 3.3. The experimental signals are compared with

simulations in the case of weak and strong fluctuations. The phase error of the test is

given in section 3.4.
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3.2 Numerical simulation

3.2 Numerical simulation

3.2.1 Model

The electric field in all space can be calculated from the Maxwell equation. It is used

in the reflectometer model for the propagation of reflected signals. In this simulation,

we assume the wave is only reflected at the cutoff surface in vacuum. The solutions of

the homogeneous wave equation by means of Fourier method in a cartesian coordinate

system (x, z) are given as follows [59]

E(x, z) =
1

2π

∫ ∞

−∞
Ez(kz)e

i(kzz+x
√

k2
0−k2

z)dkz (3.1)

Ez(kz) =

∫ ∞

−∞
E0(z)e−ikzzdz (3.2)

where k0 is the wavenumber of the incident microwave, E0(z) is the distribution of the

incident microwave at position x0, given as:

E0(z) = Ex0(z)e−z2/w2

eik0z2/ρeiφ (3.3)

here, x represents the radial direction and z represents the vertical direction. The first

term Ex0(z) is the amplitude of the original electric field at the cutoff surface. It is

a constant in a 1D model while it is modulated by the cutoff surface in a 2D model.

Ex0(z) = cos(2 arctan(dRc(x, z)/dz)) is used in this simulation, Rc(x, z) is the function

of cutoff surface. The second term e−z2/w2
denotes the Gaussian incident beam, and w

is the 1/e fold of the Gaussian beam intensity. The third term eik0z2/ρ comes from the

curvature effects of the cutoff surface and the incident wave front. The ρ = ρcρw/(ρc+ρw)

is the effective curvature radius, where ρc and ρw are the curvature radius of cutoff surface

and the incident wave front, respectively. Since the plane wave is used in MIR, we can

assume ρ ≈ ρc. The curvature effect becomes prominent at the inner reflection. The

forth term eiφ represents the phase modulation by density fluctuation.

The phase difference between the reference wave and the reflected wave is calculated

in the 1D geometrical optics. It is given as:

φ = 2k0

∫ xcut

x0

ε1/2 dx (3.4)

where ε is plasma permittivity which is a function of plasma density and magnetic field

(X-mode)(see equation 1.3 and 1.4).
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A poloidal plasma density fluctuation causes a phase modulation with poloidal wavenum-

ber kp. Assume the fluctuation is localized near the cutoff surface and the fluctuation

radius is much smaller than the cutoff radius, the cutoff surface is given as:

Rc(x, z) = x2/R0 + (z − z0)
2/R0

+
∑

j

dj sin(kpj
(σj)z + θj) (3.5)

where dj is the fluctuation amplitude which corresponds to the displacement in the x

(or radial) direction, the wavenumber kpj
has the standard deviation σj, θj represents

the initial phase, z0 is the vertical shift of the cutoff surface, and R0 is the cutoff radius

without fluctuation.

z

x

Rc

Lens  
Image screen  

Antenna 

array 

Rw

k

k

f1

M

f1

Incident wave 

front 
Cutoff 

surface 

Figure 3.1: The model of the reflectometer imaging system.

In general, the concave mirror is used in the MIR optics system. The role of the

concave mirror is similar to the convex lens, which can make a convergent beam. The

mirror system in MIR is simplified to one optical lens. Figure 3.1 shows the schematic

view of MIR. The image of the cutoff surface at the detector screen is made by the
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3.2 Numerical simulation

optical lens M. The wave propagation direction rotates an angle α by the optical lens

M. The electric field is changed as:

E(x, z) = EM(x, z)e−iα

= EM(x, z)e−i0.5k0z2/
√

f2
1 +z2

(3.6)

where EM(x, z) is the electric field at the optical lens M and f1 is the focal length. If

the focal length is infinite, the optical lens M can be considered a plane mirror.

The wide aperture lens is necessary to obtain a definitional image. The small optical

lens may lose some of the reflected beam and reduce the imaging depth (low brightness).

Experimentally, the size of the optical lens should be at least two times larger than

the image size. On the other hand, the solution of the electric field in this model is

based on the WKB approximation, which requires the fluctuations should be in the

range of k < k0(k0Lε)
1/3, where Lε is the scale length of the plasma permittivity: Lε =

1/(dε/dx)|x=xcut [1].

3.2.2 Numerical results

The amplitude modulation of the reflected wave is mainly caused by the perpendicular

(azimuthal) fluctuations which scatter the reflection wave. To obtain a large amplitude

modification, we assume that the fluctuation amplitude (displacement in the x direction)

is d = λ0, where λ0 is the wavelength of the incident wave. Figure 3.2 (a) shows the

contour plot of the amplitude of electric field in the imaging system. Here, we assume

the cutoff surface is at x = 40 cm. The launched wave is a plane wave with the frequency

of 20 GHz and the beam width of 20 cm. The wave is reflected and modified by the

cutoff surface. An aperture with a diameter of 30 cm is set at x = 67 cm. The optical

lens with a focal length of 50 cm is arranged at x = 140 cm. Therefore, the inverse image

is made at x = 240 cm according to the principle of geometrical optics. We assume the

poloidal wavenumber is kp = 0.2 cm−1 with the deviation of 0.1 cm−1. The interference

pattern is observed outside of the cutoff surface. The beam becomes convergent when it

passes through the optical lens, and the image of the cutoff surface is made at the image

plane. Figure 3.2 (b) shows the amplitude distributions of the electric field at x = 40

cm (solid line), x = 67 cm (dashed line) and x = 240 cm (long dashed line). The peak

of the electric field amplitude in cutoff surface is at z = 2 cm while it is at z = −2 cm
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Figure 3.2: (a) The contour plot of the calculated electric field intensity in the imaging

system. (b) The electric field amplitude profiles at x = 40 cm (solid line), x = 67 cm

(dashed line) and x = 240 cm (long dashed line).
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in the image plane. The profile of the electric field amplitude at x = 67 cm shows large

fluctuation. Therefore, the reflected wave is deformed at away from the image plane.

Figure 3.3 shows the waveforms of the reflected wave with the phase fluctuation of

π. Here we assume the fluctuation of the cutoff surface is modulated by a sinusoidal

wave with the poloidal wavenumber kp = 0.2 cm−1 and the phase fluctuation is φ = π.

The phase at the imaging plane is a sinusoidal wave which is similar to the fluctuation

of the cutoff surface. The amplitude is slightly deformed by the scattering wave. The

amplitude peak is obtained when the cutoff surface is perpendicular to the illumination

wave. As a result, the frequency of the amplitude fluctuation is two times higher than

that of the phase fluctuation if the mode only propagates in the perpendicular surface.

It should be noted that the frequency of the amplitude signal mainly depends on the

perpendicular velocity of the mode, as ω = k⊥υ⊥. Therefore, the interpretation of the

phase fluctuations is easier than the amplitude fluctuations.

The phase modulation of the reflected wave is mainly produced by the radial fluctua-

tions of the cutoff layer. Figure 3.4 plots the complex amplitude of the reflected waves at

(a) in-focus, (b) weak-focus and (c) out-of-focus conditions of the fluctuation amplitude

d = λ0/4 , and at the (d) in-focus of fluctuation amplitude d = 3λ0/2. Therefore, the

phase fluctuations in the radial direction are φ̃ = 1.0π and φ̃ = 6.0π due to the beam

illuminating back and forth. The other parameters are the same as those in figure 3.2. In

the case of weak fluctuation, the Lissajous’ plot is a half circle at the in-focus condition.

When the focus becomes weak, the Lissajous’ plot changes to waning moon shape. At

the out-of-focus condition, the Lissajous’ plot exhibits large and random fluctuations. In

the case of strong fluctuation, the Lissajous’ plot shows deformed circles at the in-focus

position. Therefore, the phase is distorted at strong fluctuation.

3.3 Laboratory test of MIR

3.3.1 Arrangement of MIR system

Figure 3.5 shows the Schematic view of the MIR system used in a laboratory test. It

consists of optical elements (i.e., mirrors, optical lenses, beam splitters and antennas)

and a 2D receiver system. The radio-frequency (RF) wave illuminating from the horn

antenna is reflected by the first beam splitter (BS1), and comes to the main mirror (M).
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Figure 3.3: Waveforms of the reflected wave from the MIR model with the phase

fluctuation (φ = π) and kp = 0.2 cm−1. They are the phase (a), the real (b) and

imaginary (c) parts of the reflection wave, the amplitude (d) from the top to bottom,

respectively.
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Figure 3.5: Schematic view of the laboratory arrangement for microwave imaging

reflectormtery. The plane and rotation reflectors are used. In the test, the plane reflector

moves back and forth in the x direction. The rotation reflector is made of a wood disk

with a sinusoid corrugation with the wavenumber of kp and the depth of d. The disk is

driven by an electric motor.
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3.3 Laboratory test of MIR

The main mirror, which is an elliptic concave mirror with the size of 50 cm in diameter,

makes a parallel beam to illuminate the reflector. The plane and rotation reflectors are

used. In the test, the plane reflector moves back and forth in the x direction with distance

d. The rotation reflector is made of a thick wood disk (2 cm) with a sinusoid corrugation

with the poloidal wavenumber of kp and the depth of d. The disk is covered with the

aluminum foil. The disk is driven by an electric motor in the experiment. The reflected

wave is collected by the collection mirror (M) and is separated from the illumination

beam by the first beam splitter (BS1). The local oscillation (LO) wave and the reflected

wave are mixed at the second beam splitter (BS2). The beam is focused at the antenna

plane. Therefore, an image of the plasma fluctuation is made. A new pyramidal 5 by 8

2D antenna array with a wide band frequency response array is developed (the toroidal

separation is 1.6 cm and the poloidal separation is 1 cm. It has been used in the 12th

experimental campaign in LHD). The resolution pattern at the object position has been

measured by moving a 4 cm diameter spherical ball wrapped by aluminum foil. The size

of the radiation pattern is 4.5× 4.3 cm and the shape is circular. The detail discussions

about the antenna array and the size of the radiation pattern are described by Kuwahara

[60].

The launching microwave frequency is 48 GHz. The LO wave with the frequency of

48.11 GHz is made by up-converting the RF wave (48 GHz) and the lower frequency

wave (110 MHz) at an up-converter. By mixing the reflected wave and the LO wave,

the 2-D mixer array makes intermediate frequency (IF) signal of 110 MHz. This IF

signal contains the amplitude (A) and the phase (φ). Here, the phase (φ) indicates

the radial displacement of the reflection layer, and the amplitude (A) represents the

reflected power which is scattered by the propagation wave on the cutoff surface. The

amplitude is obtained by rectifying the IF signal with a diode detector. The phase is

obtained by comparing the IF frequency and the mixed signal by the IQ demodulator.

I and Q signals correspond to in-phase signal (I = A cos(φ)) and quadrature signal

(Q = A sin(φ)), respectively.

3.3.2 Calibration

To obtain an in-focus image of the reflector, the detector array must be arranged at the

image plane. The position of the detector array can be calculated by the geometrical

optics theory (1/U + 1/V = 1/f1, U is the object distance, V is the image distance and
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Figure 3.6: The in-focus region of the MIR setup. X-axis is the distance between the

reflector and the collection mirror.

f1 is the focal length). The in-focus image is obtained when the reflector is set at about

2 m away from the collection mirror (M) at present setup. Figure 3.6 shows the cross-

correlation of the reflected signals as a function of the distance between the reflector

and the collection mirror. The cross-correlation is calculated by the two signals with the

distance of 1 cm in the horizontal direction. Here, the plane reflector is used. The cross-

correlation is high when the reflector is located at the region between 1.7 m to 2.15 m.

This is the in-focus region which agrees with the geometrical optical estimation. Note

that the cross-correlation is not exactly one at the in-focus region. It is caused by either

the misalignment of the reflector or the optical abbreviation of the MIR system. This

problem can be solved by carefully adjusting the optical system. The low correlation at x

> 2.2 m and x < 1.6 m indicates out-of-focus condition in MIR system which may cause

the phase and amplitude distortions. By the way, the measurement region is mainly

decided by the size of the optical mirror. Generally, the larger size of the optics is, the

wider and better in-focus image will be.
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Figure 3.7: Waveforms obtained by the plane reflector with phase fluctuation φ̃ = 0.7π

and the simulation with phase fluctuation φ̃ = 0.7π. (a) The phase, I, Q and amplitude

from top to bottom, (b) the Lissajous’ curves of test and simulation.
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3.3 Laboratory test of MIR

3.3.3 Plane reflector

Measurements are taken with a series of fluctuations when the reflector is arranged at the

in-focus region. Figure 3.7 shows the waveforms in the case of weak fluctuation by using

the plane reflector. There are (a) the phase, I, Q and amplitude from top to bottom, and

(b) the Lissajous’ curves of test (black) and simulation (red). The phase is obtained from

the I and Q signals. The phase fluctuation is about φ̃ = 0.7π when the plane reflector

moves back and forth with the displacement of 1.1 mm along the x direction. Simulation

with the phase fluctuation of φ̃ = 0.7π (kp = 0, d = λ0/6) is also given in this figure.

The simulated signals are quite similar to that obtain in the experiment. The phase

fluctuation is quasi-sinusoid which reflects the cutoff surface moves back and forth. The

amplitude has small fluctuation while it is constant in the simulation. According to the

1D/2D reflectometer model, the fluctuation in the x (radial) direction can only cause the

phase fluctuation, not the amplitude fluctuation. In this test, the amplitude fluctuation

is very small, and it might be caused by the misalignment of the plane reflector. The

plane reflector didn’t move along the x direction exactly. The Lissajous’ curve shows

a circular arc with the angle of 0.7π. Therefore, the movement of the cutoff surface in

radial direction is captured by MIR system.

3.3.4 Rotation reflector

Figure 3.8 shows the waveforms obtained by the rotation reflector with kp ≈ 0.2 cm−1

and d ≈ 0.8 mm. The surface of the rotator is sinusoidal-like modulated. The phase

fluctuation is about φ = 0.6π. Simulation with kp = 0.2 cm−1 and the phase fluctuation

of 0.6π is also shown (solid line). In this simulation, we assume the fluctuation is a

sinusoidal wave. The simulation agrees with the experiment when the phase is slowly

changing, for example at t = 0.18 ∼ 0.27. However, when the phase is rapidly changing,

there is some discrepancy in the amplitude signal between the experiment and simulation,

for example at t = 0.28 ∼ 0.34. Although the amplitude signal is deformed, it seems

that the phase signal is not deformed very much. The experimental circular arc in the

Lissajous’ curve agrees with the simulation.

To further understand this problem, a rotation reflector is used in the test. The

rotation reflector is corrugated with three types of modulations on the surface. The

test results are shown in figure 3.9. The waves with different amplitude modulations
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Figure 3.8: Waveforms obtained by the rotation reflector and simulation with phase

fluctuation φ ≈ 0.6π. (a) the phase, I, Q and amplitude from top to bottom, (b) the

lissajous’ curve of the reflected signal.
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modulations (S, M, L). (a) the phase, I, Q and amplitude from top to bottom, (b) the

lissajous’ curve of the reflected signal.
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3.3 Laboratory test of MIR

are indicated by S, M and L in figure 3.9(a). Here, the S, M and L represent the small

(φ̃ = 2/3π), medial (φ̃ = 4/3π) and large (φ̃ = 2π) phase fluctuations, respectively.

The fluctuation amplitudes of S, M and L are about 0.1 cm, 0.2 cm and 0.3 cm on

the reflector, respectively. The wavenumbers of the waves are about k = 0.2 cm−1.

The fluctuation signals appear periodically, and the angular velocity of the reflector is

estimated about 14.0 rad.s−1 in this test.

In the case of small phase fluctuation, the Lissajous’ curve is a standard circular

arc. The reflected amplitude (power) is also modulated. This is consistent with the

phase fluctuation. In the case of medial phase fluctuation the Lissajous’ curve is a

deformed circular arc, and the reflected amplitude has two large sharp peaks with higher

frequency fluctuations. In the case of large phase fluctuation the amplitude has spurious

peaks, and the Lissajous’ curve is a deformed circle. The amplitude distortion may

be caused by the strong interference effect due to the strong fluctuation or the optical

abberation of MIR system. Although the Lissajous’ curve is deformed, it seems that

the phase fluctuation is not so seriously distorted by the strong fluctuation. The phase

modulation has a sinusoidal trace which is similar to the reflector surface. It corresponds

to the longer correlation length measured by IQ detectors in reflectometer [19; 58]. This

result suggests that the phase measurement is necessary to obtain the high correlation

signals, especially for the strong and high k fluctuations.

The phase distortion depends not only on the fluctuation amplitude (displacement

in radial direction) but also on the wave number of the fluctuation. A rotation reflector

with 12 sinusoidal corrugations is made. The modulated amplitude of the corrugation

is about d ≈ 1.0 cm. Therefore, the phase fluctuation is about φ̃ = 6.4π, and the

wavenumber is about k = 0.55 cm−1. The waveforms of phase, IQ and amplitude signals

are shown in figure 3.10. The signals have strong and complicated fluctuations. The

Lissajous’ plots are deformed. The phase rapidly increases when the reflected amplitude

becomes large. The phase stops at small reflected amplitude, leading to the runaway-

phase phenomenon which is known in standard reflectometry [15]. One possible reason

of the runaway-phase phenomenon is that the cutoff surface reflects the launching beam

out of the optical lens when the deviation angle of the cutoff surface is too big, leading

to small reflected power at the detector surface. The auto-gain amplifier in the phase

detector doesn’t work well with small signals. Another reason might be the strong

fluctuations may cause a complicated interference pattern near the reflected surface,

MIR can’t restore the strong fluctuations, and the interference signals are obtained.
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Figure 3.10: Waveforms in the strong fluctuations (φ̃ = 6.4π, k = 0.55 cm−1). (a) the

phase, I, Q and reflected amplitude from top to bottom, (b) the lissajous’ curve of the

reflected signal.
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3.4 Limit of phase error

This result agrees with the simulation shown in figure 3.4. Therefore, MIR fails to make

the clear image in the strong fluctuations.

3.3.5 Wave propagation

The optical abberation of the MIR system can be checked by observing the 2D wave

propagations. This is very important to understand the 2D turbulence measurement.

The wave is generated by using the rotation reflector. Here, we use three detectors with

1 cm separation in the horizontal direction and three detectors with 1.6 cm separation

in the the vertical direction. The reflector is rotating in the vertical direction, so the

modulated wave is not propagating in the horizontal direction. Figure 3.11 shows the

wave propagation in the (a) horizontal and (b) vertical directions by using the rotation

reflector in the case of small fluctuation. To avoid overlapping, channel 2 and 3 are

vertically shifted. The propagation of the wave is indicated by the arrows. The time

delay of the modulated wave reflects its propagation speed and direction. One can

find that the time delay in the horizontal direction is zero, while it is about 0.025 s

between the neighboring detectors in the vertical direction. The wave only propagates

in the vertical direction. The velocity of the wave in the vertical direction is about 0.64

ms−1. The angular velocity of the rotation reflector is about 18.4 rad.s−1 in this test.

Therefore, we confirm that the image of the density fluctuation can be obtained by using

MIR system in the case of small fluctuation.

However, both the amplitude and the phase will be distorted in the case of strong

fluctuation as discussed in the previous section. Figure 3.12 show the wave propagation

in the case of strong fluctuations (d = 0.5 cm, k ∼ 6 cm−1). Both the phase and

the amplitude fluctuations are deformed. The signals have spurious peaks which may

be caused by the interference pattern or out-of-focus of the MIR optical system. The

jumps in the phase are caused by the phase runaway. As a result, the propagations of

the waves are deformed.

3.4 Limit of phase error

In this simulation, we consider the optical lens in the wave equation at the laboratory

scenario. There is no density gradient in the laboratory test, so the permittivity is
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Figure 3.11: The wave propagation in the (a) horizontal and (b) vertical directions by

a rotation reflector. The propagation of the wave is indicated by the arrows.
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Figure 3.12: The wave propagation in the vertical direction by a rotation reflector in

the case of strong fluctuation (d = 0.5 cm, k = 6 cm−1). (a) the phase, (b) amplitude

and (c) Lissajous’ plots
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3.4 Limit of phase error

constant. It can be used to calibrate the optics system and explain the experimental

signals. In the present imaging system, the incident beam is perpendicular to the cutoff

surface if the optical system is well designed and arranged. Therefore, the refractive effect

is not so serious as expected in the plasma. The approximation in this work might be

used for the O-mode plasma. However, it is not true under the most conditions. The full

wave equation simulation should be used for the actual plasma test because of the strong

diffractive effect. Several similar works, based on synthetic imaging technique and finite-

difference time-domain (FDTD) methods, have been carried out [12–14]. Nevertheless,

the phase distortion is still a crucial problem in MIR experiments.
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Figure 3.13: Schematic illustration of the beam diffraction

The diffraction effect causes the obscure image with low brightness (not zero) and

with mismatch of the wavefront and the fluctuation. It is mainly decided by the size of

the aperture optics, the displacement in radial direction and perpendicular wavenumber.

The phase distortion can be estimated from the optical arrangement in MIR system.

Figure 3.13 shows the schematic illustration of the beam diffraction in the MIR system.
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3.4 Limit of phase error

Where, n is a surface normal vector and α1 is the cutting angle of the cutoff surface,

D is the diameter of the optical lens, L is the distance between the optical lens and the

reflector surface, k⊥ is the perpendicular wavenumber, d is the displacement in the x

direction (fluctuation amplitude). The parallel launching beam is deflected by the angle

2α1 with the reflector surface. The phase error increases when the lens can’t collect the

main reflected beam. If we assume the modulated wave is sinusoidal and L À D, the

relationship between d and k is given as

4k⊥dL

D
< 1 (3.7)

for the in-focus imaging. The error of the detected phase becomes significant when the

radial displacement of the cutoff surface is larger than D/(4k⊥L). As shown in figure

3.9 (b), the perpendicular wavenumber k⊥ of the modulated wave is estimated about 0.2

cm−1. Therefore, the radial displacement should be smaller than 0.16 cm for the phase

fluctuation without distortion. In the case of small fluctuation, the radial displacement

is about 0.1 cm, so the circular IQ plots are obtained. In the case of medial and large

fluctuations, the radial displacement are 0.2 cm and 0.3 cm, respectively. So the IQ

plots are distorted.
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Figure 3.14: The error of the phase fluctuation as a function of 4k⊥dL/D

Figure 3.14 shows the error of the phase fluctuation as a function of 4k⊥dL/D. The

error of the measured phase is smaller than 0.1π in the case of 4k⊥dL/D < 1. This
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suggests that a clear image of the cutoff surface may be made by MIR. The phase error

is increased as 4k⊥dL/D is increased in the case of 4k⊥dL/D > 1. Therefore, MIR

can’t make a clear image of the strong fluctuations with k⊥d > D/4L due to the strong

diffraction effect of the reflected wave.

The equation 3.7 clarifies the relation between the optical parameters of MIR and

the fluctuation parameters of the cutoff surface. It can be used to estimate the sensi-

tivity of the MIR optical system to the turbulence. It can be also used to estimate the

optical parameters if we know the fluctuation parameters in plasma. The perpendicular

wavenumber and the radial displacement of the fluctuations are coupled. In general,

high k⊥ fluctuations have small radial displacement in the experiment. The measured

k⊥d is determined by the geometrical parameter of the optical system. In the case of

TPE-RX, the distance between the plasma and the main mirror is about 100 cm and the

diameter of the main mirror is about 40 cm. Therefore, MIR can measure the fluctuation

with k⊥d < 0.1 in TPE-RX plasma.

Figure 3.15 shows the distribution of the fluctuations as a function of 4k⊥dL/D in

TPE-RX. The distribution decreases as 4k⊥dL/D increases. The tail of the distribution

in the high k⊥d range may be caused by the strong high k fluctuation or the intermittent

burst of the turbulence (see chapter 6), which is often observed in the reversed-field pinch
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3.4 Limit of phase error

plasma [41]. Nevertheless, the fluctuations mainly distribute in the range of 4k⊥dL/D <

0.8 which suggests present MIR optical systems in TPE-RX can make a clear image of

the cutoff surface in plasma.
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Chapter 4

Development of the Spectral

Analysis Techniques

4.1 Introduction

The analysis method is important in the experimental study of turbulence. The real

experimental signals are often submerged in the strong background noises such as elec-

tronic noise and thermal noise, especially when the signal is very weak. The turbulence

has a large number of modes and different ranges of correlations. It is similar to a se-

ries of wave packets, which contains many different scales of fluctuations. On the other

hand, the turbulence is transient and it always rapidly changes in spatial and temporal

domains. The spectrum of the turbulence is broad due to many active modes in the wave

packets. The transient turbulent structures may cause the distortion of the spectrum.

Sometimes the turbulence is similar to the random noise. Therefore, it is hard to see

something from the signal even in the frequency domain. Proper selection of analysis

methods can give the direct evidence of the underlying physics of turbulence. On the

contrary, miss selection of the analysis methods may lead fake results.

Many numerical noise reduction techniques have been developed in previous studies

[61–63]. These techniques use the statistical feature of the random noises, whose power

spectral density is similar in the whole frequency band. The expected error of the

averaging in Fourier space (or real space and time) decreases monotonically as a function
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4.2 Noise reduction in Fourier analysis

of the number of the independent data sections in the ensemble average. Therefore, the

statistical analysis of a fluctuating quantity over a long period may be useful to pickup

fluctuating signals.

Fourier transform is one of the basic analysis methods which can provide the fre-

quency and phase spectra of the fluctuations. However its time resolution is rather poor.

The short time Fourier transform can provide the time evolution of the fluctuation spec-

trum. The frequency resolution becomes worse at high time resolution. Therefore, it

is difficult to obtain the time evolution of the rapid changing modes by the traditional

Fourier spectrum.

The wavelet transform is one of the most useful methods for the transient signal.

This method uses a small wave packet which only contains several wave periods. The

transform is performed by convoluting integral between the wave packed and the signal.

When the structures are in correlation between wavelet packet and the signal, the wavelet

transform has high value. By time sliding the wavelet packet, the wavelet can analyze

the time series that contain non-stationary frequencies or multi-scale structures.

This work presents the methods to quantify the statistical properties of the spectra

by using the test signals. As an example of the analysis, the MIR signals obtained in

TPE-RX are used. This work is organized as follows. Section 4.2 introduces the fast

Fourier transform (FFT) analysis method and the effects of ensemble average on the

noise reduction in the spectrum. In section 4.3, the cross correlation analyses based on

Fourier transform are presented. Wavelet analysis is explained in section 4.4. Section

4.5 shows the application of the analysis to the MIR signals. Significant results are as

follows: the FFT spectrum with ensemble average technique has been quantitatively

analyzed to reduce the noise; the wavelet analysis shows higher time and frequency

resolutions and the transient structures are observed.

4.2 Noise reduction in Fourier analysis

Fourier analysis is used to obtain the frequency spectrum and the phase. The Fourier

transformation X(ω) of signal x(t) is given by

X(ω, t) =

∫ t+∆t

t−∆t

w(t′)x(t′)e−jωt′dt′ (4.1)
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4.2 Noise reduction in Fourier analysis

where w(t) is the Hanning window function, which is used to reduce the leakage of the

sideband. The short time FFT analysis is used to analyze the time evolution of the

spectrum.

In many situations the signal from plasma contains random noise. Sometimes its

amplitude in the frequency domain is higher than the signal that we are interested in.

This may submerge the useful information. By using the ensemble average technique in

the frequency domain, the amplitude of the random fluctuations has an average power

level in all frequency range. The ensemble average has less influence on the mode whose

amplitude doesn’t change in the ensemble time.

By using a test parameter composed of a sinusoidal wave and a random function, it

is used to show the qualitative effect of the noise on signal in the frequency spectrum.

In this work, the definitions of the signal to noise (S/N) ratio in the time and frequency

domain are illustrated in figure 4.1 (a) and (b), respectively. They are defined as the

amplitude ratio between the test signal and the random noise. Figure 4.1 (c) shows the

ratio between the absolute amplitude of the Fourier component at the frequency of the

test signal and the amplitude of noise in frequency domain versus S/N ratio in time

domain. Therefore, the y-axis can be called the S/N ratio in frequency domain. The

FFT time window is fixed to 2 ms. Here, the black solid line denotes the ratio without

average and the others are that with different ensemble numbers. The S/N ratio in

frequency domain is increased with the ensemble number (N). Larger ensemble number

is suggested for lower S/N signal.

Figure 4.1 (d) shows the relative ratio between S/N in frequency domain and S/N in

time domain versus ensemble number. The ratio changes greatly with the time window,

but not with the signal frequency. The time window reflects the frequency broadening.

It implies that the frequency broadening affects the present S/N. The ratio is decreased

as the frequency width is decreased. It becomes saturated as the ensemble number is

larger than 100. Therefore, the improvement by ensemble average on noise reduction

becomes weak at larger ensemble number. That is to say, the noise reduction is not

improved very much even with large ensemble number. The best way is to improve the

signal to noise ratio in the signal. The saturated threshold of the ensemble average with

long time window is smaller than that of short time window. If the S/N ratio is lower

than 1%, it is difficult to obtain the spectral peak even with large ensemble number.

Here, we assume 1.5 (S/N in frequency domain) as the discriminating level of the
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Figure 4.1: Effects of S/N on the FFT spectrum. (a) definition of S/N in time domain

(S/N = 1 case), (b) definition of S/N in frequency domain (S/N = 0.1 in time domain),

(c) the S/N in frequency domain versus S/N ratio in time domain, here, Y-axis is the ratio

between FFT amplitude of the test signal and the maximum amplitude of background

fluctuation in frequency domain; (d) The relative ratio between S/N in frequency domain

and S/N in time domain as a function of ensemble numbers.
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Fig. 3 The effects of frequency broadening on the S/N ratio (same definition as shown in Fig. 

Figure 4.2: The effects of frequency broadening on the S/N ratio (same definition as

shown in Fig. 2). x-axis is the full width of the mode packet in the frequency domain.

The S/N ratio in time domain is 0.1 and the ensemble number is 200.

FFT spectrum (red horizontal line shown in figure 4.1 (c)). That is, the FFT amplitude

of the signal is 1.5 times higher than the maximum amplitude of the noise in frequency

domain. By using the ensemble average technique, the value of S/N in time domain

is about 0.03, while it is about 0.1 without ensemble average (the time window is 2

ms). Note that, this value mainly depends on the frequency broadening, not on the

frequency of the signal. This simulation only shows the qualitative effect of the noise on

the periodical signal. For the quantitative estimation, the frequency broadening should

be considered in the test model.

Figure 4.2 shows the effects of frequency broadening on the S/N ratio, where x-axis

is the full width of the mode packet in the frequency domain. Here, the S/N ratio of

0.1 in time domain and the ensemble number of 200 are used. The S/N ratio decreases

as the width of the spectrum increases. This suggests that the S/N value used in this

work is sensitive to the frequency broadening.

Although the ensemble technique is an effective way to reduce noise, this method

requires the lifetime of the mode should be longer than the time window of FFT. Oth-

erwise, the signal might be distorted by averaging and new analysis method which has
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4.3 Cross correlation analysis

both high time and high frequency ability should be used, for example wavelet transforms

[64–66].

4.3 Cross correlation analysis

The cross-power spectral analysis is used to identify the two time series which have the

similar spectral properties. The cross-power spectrum between two time series x(t) and

y(t) is defined as

Gxy = Y (ω)X(ω)∗ (4.2)

here the asterisk (∗) denotes the complex conjugate. X(ω) and Y (ω) is the discrete

Fourier transforms of the time series x(t) and y(t), respectively. The phase shift between

two time series is given by

Φxy(ω) = arctan{Im[Gxy(ω)]

Re[Gxy(ω)]
} (4.3)

In order to obtain the phase shift whose value corresponds to a high correlation in

the frequency domain, the coherence spectrum is introduced and it is defined by the

cross-power spectrum normalized by the total power, as

γxy(ω) =
| < Gxy(ω) > |√

< Gxx(ω) >< Gyy(ω) >
(4.4)

where the bracket (<>) denotes ensemble average. The coherency is bounded between

0 and 1, and high value corresponds to high correlation, zero represents completely

uncorrelated. The statistical confident level of coherence spectrum is determined by the

number of the independent time series (1/
√

N).

The phase-frequency spectrum can show the phase shift of a certain frequency be-

tween two signals in a 2D plot. The spectrum is obtained by the two-point cross-

correlation method.

S(Φ, ω) =< |Gxy(ω)|δ(Φxy(ω)− Φ) > (4.5)

In the calculation the delta function is replaced by a rectangular window. The width of

the window depends on the number of the discrete sections in the value range of Φxy(ω).

Substituting the wavenumber kxy(ω) for the phase shift Φxy(ω) in equation 4.5, the wave

number frequency spectrum (dispersion relation of the fluctuation) can be obtained [62].

S(k, ω) = 〈|Gxy(ω)|δ(kxy(ω)− k)〉 (4.6)

68



4.4 Wavelet analysis

where, ∆xy is the distance between two detectors. The wavenumber is kxy(ω) = Φxy(ω)/∆xy.

The phase velocity can be obtained by υ = ω/kxy(ω). If we substitute the modenumber

for phase shift, the modenumber-frequency spectrum can be obtained.

4.4 Wavelet analysis

The wavelet transform of time series is its integration with the local basis functions, i.e.

wavelet functions, which can be stretched and translated with flexible resolution in both

time and frequency.

W (s, t) =
1√
s

∫ T+∆t

T−∆t

x(t′)Ψ∗(
t′ − t

s
)dt′ (4.7)

where s is the scale parameter and t is the time translation parameter, asterisk (∗)
denotes the complex conjugate, Ψ(s, t) is the wavelet mother function. We use Morlet

wavelet function because it has a good balance between time and frequency localization.

Furthermore, complex Morlet wavelet analysis preserves the phase information that is

very important for the cross correlation analysis. The Morlet wavelet is a continuous

transform. One can select any time scales s (or frequencies) in the wavelet transform. It

is very convenient for some analyses which need frequency selection rules, for example

the wavelet bicoherence (see chapter 6). The complex Morlet wavelet waveform is a

sinusoidal wave with a Gaussian envelope, defined as

Ψ(s, t) =
√

s exp[iω0(
t′ − t

s
)− 1

2
(
t′ − t

sd0

)2] (4.8)

where ω0 is the dimensionless frequency and t′ is the dimensionless time. d0 is a constant

related to the envelope of the Morlet wave packet. The conversion between the time scale

and the frequency of Morlet wavelet is given as

1

f
=

4πs

ω0 +
√

2 + ω2
0

(4.9)

Here we take d0 = 1 and ω0 = 2π in this study. Therefore, the scale is an approximation

of the inverse of the frequency, thus s ≈ 1/f .

Figure 4.3 shows the waveforms of Morlet wavelet functions (left) and their Fourier

transforms (right) with s = 1 and d0 = 1, 2, 3 and 20. The Fourier transforms of the

Morlet wavelet function have been shown at the right hand side. The black solid line

denotes the real part, and the red dotted line denotes the imaginary part. The envelope
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Figure 4.3: The Morlet wavelet functions (d0 = 1, 2, 3 and 20) and their Fourier

transform at s = 1.
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4.4 Wavelet analysis

of the Morlet wavelet function is changing with d0. As d0 is decreased, the wave packet

becomes small. As d0 is increased, the wave packet becomes large. The frequency

response of the wavelet function is similar to that of a band pass filter. The width of the

frequency response is changing with d0. The small d0 has the wide frequency response,

while the large d0 has the narrow frequency response. Therefore, in the Morlet wavelet

spectrum the time resolution becomes better while the frequency resolution becomes

worse as d0 is decreased. The Morlet wavelet becomes the Fourier transform at very

large d0.

Quantity Fourier form Wavelet form 

Transform 
tt

tt
tj
dtetxtwtX ')'()'(),( '

')
'

()'(
1

),( *tT

tT
dt

s

tt
tx

s
tsW

Cross-

transform 

*)()()( XYGxy

*)()()( sWsWsW yxxy
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Table 4.1: Comparison of equations used in Wavelet and Fourier analysis

The calculations of Wavelet transform can be performed as a convolution which is

considerably faster in frequency domain.

W (s, t) = F̂−1[X(ω)Ψ(ω)] (4.10)

where X(ω) and Ψ(ω) are the Fourier transforms of the time series x(t) and the Morlet

wavelet function, respectively. F̂−1 represents the inverse Fourier transform. Based
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4.5 Analysis results

on the similar definitions described in the previous section, the cross wavelet spectrum,

wavelet coherence, the phase difference and the wavelet bispectrum can be obtained. The

comparisons of the equations used in wavelet analysis and Fourier analysis are shown in

table 4.1 [66; 67].

4.5 Analysis results

Shot # 52973 

Figure 4.4: Time evolution of the plasma parameters and the MIR signal in TPE-RX

The Fourier spectrum is obtained by integrating e−jωt over the time series within

a time window. It is difficult to distinguish the mode which changes in the Fourier

integration time. If we shrink the time window, the frequency resolution becomes worse.

Wavelet analysis can reveal the fluctuation structures at any scales in correlation with
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4.5 Analysis results

high time resolution. This is advantageous to analyze the turbulence, especially for the

intermittent fluctuations.

As an example of the wavelet analysis, we will present an analysis of one shot

(#52973, PPCD plasma) in TPE-RX. The details of the experiment have been pre-

sented in chapter 2. Figure 4.4 shows the time evolution of the plasma parameters and

the MIR signal (ch1, #52973). They are the plasma current Ip, the line-averaged density

nea, the cutoff radius and MIR signal from top to bottom. Here, the amplitude signal

is used. The fluctuation of the MIR signal is increased when there is cutoff surface in

plasma. The cutoff radius is about 0.8 ∼ 0.9 (normalized by the minor radius of a = 45

cm) during flat top of the plasma current. This region is close to the reversed field

surface and the fluctuation is strong and changed rapidly [24; 68].

To further understand the difference between the Fourier analysis and the wavelet

analysis, the toroidal cross power spectra by FFT and wavelet transforms are compared

in figure 4.5. A band pass filter with the frequency range of 5 kHz ∼ 50 kHz is used. The

time window of FFT transform is 0.25 ms and frequency resolution is 4 kHz. Therefore

it is difficult to get the mode which changes faster than 250 µs. In the wavelet spectrum,

many small time structures with the time duration shorter than 0.2 ms appear in the

high frequency range. It suggests that the RFP turbulence is short-lived fluctuations.

The high frequency modes have shorter duration.

Fourier transform has a fixed time resolution. We can’t distinguish the frequency

which changes within the Fourier time. The spectrum may be transverse elongated by

the integration in the range of time window. For example, the fluctuation between 30 ∼
35 kHz from 26.4 ms to 26.7 ms is changing both in frequency and amplitude, but it has

the same frequency and amplitude in Fourier spectrum. Comparing FFT and wavelet

spectra between 26.5 ms and 27.6 ms, the frequency evolution between 7 ∼ 10 kHz in

the FFT is less clear than that in wavelet analysis. Therefore, wavelet transform can

give good time resolution for high frequency events and good frequency resolution for

low frequency events. It is sensitive to the transient fluctuation.

Since Morlet wavelet has the waveform of a sinusoid with the Gaussian envelope,

it may fail in tracking the very sharp pulses. In this case, the complex Paul wavelet

function may be an adequate one [65]. On the other hand, Morlet wavelet may fail

in tracking the high frequency components due to the interference of the low frequency

components. This problem can be solved by changing the time and frequency resolutions
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(by adjusting the parameter d0 in the equation 4.8) or using a high pass filter. Figure

4.6 shows the contour plot of the toroidal cross wavelet spectrum |Wa(s, t)W
∗
b (s, t)| with

d0 = 2.0. Here the same signal in figure 4.5 is used. We can find that the frequency

resolution in the high frequency range becomes better while the time resolution becomes

poor. To obtain the high frequency resolution in the high frequency range and the high

time resolution in the low frequency range, We can change the d0 with different time

scales (frequencies), as a small d0 in the low frequency range, and a large d0 in the high

frequency range.

Figure 4.7: (a) The waveforms of 20 kHz fluctuations and its propagation direction at

t = 27 ms. (b) The waveforms of 8 kHz fluctuations and its propagation direction at

t = 27− 27.5 ms.

Since MIR has a 2D detector array, we can select the mode by the wavelet spectrum.

By comparing the phase difference, the propagation of the wave can be obtained. Figure

4.7 (a) shows the waveforms of 20 kHz fluctuations and its propagation direction at

t = 27 ms by the plane wave assumption. Where, the waveforms are reconstructed from

the frequency and the phase obtained by using the Fourier analysis. The amplitude

is normalized. Since the phase difference is almost the same between the neighboring

76
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channels, the wave number is k = 17 m−1 and θ = 0.46 rad. Therefore, the poloidal and

the toroidal wave numbers are kp = 7.5 m−1 and kt = 15 m−1, respectively. The mode

number is m/n = 3/25. The phase velocity is ω/k = 8 kms−1. Figure 4.7 (b) shows the

waveforms of 8 kHz fluctuations and its propagation direction between t = 27 ms and

27.5 ms. The wave-number is k = 10 m−1, the mode number is m/n = 2/15 and phase

velocity is ω/k = 5 kms−1.

4.6 Discussions

The analysis of the plasma density fluctuation measured by MIR in TPE-RX has been

performed by using the techniques developed in this work. The ensemble technique

has been developed to reduce the noise effect in the spectrum analysis. By using this

technique, the statistical property of the fluctuations is obtained more accurately than

a single data. The mode numbers are obtained by the cross correlation technique. The

wavelet analysis has higher time and frequency resolutions, and the evolution of the

small time scale structures is observed.

The traditional Fourier method integrated over a large time window, it is useful for

the periodical signals. However, this method can’t compare the waves which changes

within the time range of the Fourier transform, especially for the high frequency com-

ponents. The reason is that the low frequency components are transformed by several

waveforms (poor frequency resolution), and the high frequency components are trans-

formed by many waveforms (poor time resolution) by using a fixed Fourier time window.

The turbulence usually has a feature of short time scale and the occurrence of the tur-

bulence often has many non-periodic fluctuations. The integration over a large time

window in Fourier method may distort the natural features of turbulence. As a result,

the intermittent occurrence of the turbulence may be lost.

The definition of the S/N ratio in section 3.2 may be significantly disturbed by the

intermittent bursts in the turbulence signal. One possible improvement of this method

is that change the definition of the S/N ratio used in this work, for example the ratio

between standard deviation. Nevertheless, present work gives the basic diagram of the

noise reduction by statistical method.

In wavelet analysis, the time window is changing with the frequency (or time scale).

The spectral resolutions are decided by the number of the wave periods in the wavelet
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packet. The wavelet spectrum is slightly changing with the wavelet mother function.

Therefore, the waveform of the wavelet mother function should be similar to the wave-

forms of the turbulent signal.
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Chapter 5

MEM Analysis of the 2D

Turbulence

5.1 Introduction

Analysis of the 2D turbulence is very important because it provides the more accurate

information of the turbulence. In the 2D turbulence measurement system, a big size de-

tector array is necessary to measure the fine structures of the turbulent flow. However,

the detector size is often smaller than the cross correlation length of the fluctuation in

the real experiments. The measured area in plasma is limited by the small window. On

the other hand, the turbulent signals are often mixing with long distance correlation

and short distance correlation modes, leading to the complicated 2D cross-correlation

function. The traditional two-point cross-correlation analysis can’t distinguish the mul-

tiple modes which have the finite correlation lengths. It is necessary to develop a new

numerical method to estimate the turbulent structure from the signals measured by the

small size detector array.

In this work, we developed the maximum entropy method (MEM) to analyze the

2D turbulence measured by MIR in TPE-RX [69]. This method is similar to the 2D

filter technique. It can estimate the cross correlation outside the detector array through

autoregressive arithmetic (the entropy of the spectrum becomes maximum). As a result,

the measurement region is extended, and the spectrum resolution is improved. In this
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5.2 MEM analysis technique

work, the turbulences between the pulsed poloidal current drive (PPCD) and the high

Θ plasmas are compared by MEM. The analysis result shows that the PPCD plasma

switches off the turbulence. the standard plasma has high turbulence.

5.2 MEM analysis technique

5.2.1 2D cross-correlation

The two-point cross-correlation [62] is a standard analysis method to study the correla-

tion between two fluctuations, given as

Γij =< ninj >=

∫

∆t

∫

∆ω

ni(ω, t)n∗j(ω, t) dωdt (5.1)

where the asterisk ∗ denotes complex conjugation, n(ω, t) is the Fourier transform of the

time series, i and j represent different channels, <> denotes ensemble averaging. The

cross-correlation spectrum array can be obtained by the cross-correlation analysis be-

tween the reference channel and every channel in the measured region. Since the averag-

ing is performed over many wave periods in Fourier space, the cross-correlation spectrum

should be independent of the spatial position. In this work, we assume the homogenous

turbulence is measured by MIR detector array. The two-point cross-correlation spectrum

with the same distance and same direction should be same.

Figure 5.1 shows an example of (a) the detector array (the filled circles denote de-

tectors, and the digits denote the detector number) and (b) its cross-correlation array

(the digits in the brackets denote the number of cross-correlation, X denotes no cross-

correlation). Six detectors are arranged in a (4 × 2) array (missed two detectors). To

decrease the error, the cross-correlation array is averaged over cross-correlation spectra

with the same distance and same direction. x-axis and y-axis in figure 5.1(b) represent

the distance between two detectors, and the digits in the brackets denote the number of

the cross-correlation in the same distance and same direction. For example, the digit 6

at the center represents the autocorrelation between six detectors themselves. The digit

4 at the right hand side denotes the cross correlation of the channel pair: (4,3), (3,2),

(2,1) and (6,5). (4,3) denotes the cross correlation between channel 4 and channel 3.

The digit 2 at the right hand side denotes the correlation of the channel pair: (4,2) and
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Figure 5.1: Schematic diagram of the autocorrelation function by a (4 × 2) detector

array. (a) detector array (the digits denote the detector No.), (b) locations of the cross-

correlation (the digits in the brackets denote the No. of cross-correlation)
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(3,1), while at the left hand side the digit 2 denotes the cross correlation of the channel

pair: (2,4) and (1,3).

The cross-correlation spectrum is the inverse Fourier transforms of the power spec-

trum. According to the Wiener–Khinchin theorem, the power spectrum is the Fourier

transform of the corresponding autocorrelation function, defined as

S(kx, ky) =

∫ ∫
Γ(x, y)e−i(kxx+kyy) dxdy (5.2)

where, kx and ky are the toroidal and the poloidal wavenumbers, respectively. Γ(x, y)

is the average autocorrelation array which is averaged over different reference channels.

The average rule is averaging the cross-correlations of two detectors which have the same

direction and distance. Γ(x, y) is a complex function. The real part is an even function

and the imaginary part is an odd function according to the Fourier theorem.

To test the 2D spectrum, we assume two sinusoidal waves with the wavenumbers

of k1(kx = −0.5, ky = −0.2), and k2(kx = 0.3, ky = 0.1) propagating on a (7 × 7)

detector surface simultaneously. Figure 5.2 shows the real and imaginary parts of the

autocorrelation array of the test signals. X-axis and y-axis represent the toroidal and

poloidal distances between two detectors, respectively. The autocorrelation array has

some periodical structures which represent the measured waves. Here, the autocorrela-

tion is normalized by the total power. The real part is symmetric at the zero while the

imaginary part is inverse symmetric at the zero. The center of the correlation array is

one which represents the coherence of itself. Since the coherence is still high at the edge

of the detector region, the detector array size is smaller than the coherence length. The

power spectrum calculated by equation 5.2 is broad due to the finite detector size which

is smaller than the coherent length.

Figure 5.3 shows the 2D power spectrum S(kx, ky) calculated by equation 5.2. Here

we use the autocorrelation function shown in figure 5.2. The x-axis and y-axis are the

toroidal and the poloidal wavenumbers, respectively. The normal z-axis is used for the

spectral power. The green and black colors correspond to the high power. The yellow

color denotes the low power. The spectrum has a broad peak with some sidelobes

caused by the small detector size. The energy of the low k leaks to the high k. The

broad spectrum with the dominant energy might conceal the other modes which have

small power density. It shows poor spectral resolution. Therefore, by using standard

Fourier method, the location of peak k is unclear due to the imaged region being smaller
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Figure 5.2: The real part (a) and imaginary part (b) of the autocorrelation function.
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than the wave measured. Since the low k leaks to high k, we can’t compare when there

are a few simultaneous propagating modes.

5.2.2 MEM analysis

The power spectrum estimated by the Fourier transform is similar to a spatial band

pass filter in the autocorrelation function. If one can extend the correlation outside the

measured region, the power spectrum with high resolution can be restored. One possible

way is trying to find the filter coefficients by autoregressive method. However, the result

is sensitive to the noise and is not very reliable sometimes. It may cause spurious peaks

if we fail to set the convergence condition and fail to select the optimized order of the

autoregressive filter. So far, many numerical methods such as autoregressive, maximum

likelihood method (MLM) and Pisarenko methods have been used to the power spectral

estimation [70–72]. Among them, 2D MEM is the most powerful and effective method

[73]. This technique allows us to fit as many peaks to the k spectrum as there are

unique values of cross-correlation points. As a result, the location of peak k becomes

clear especially when the imaged region is smaller than the wave measured.

The difference between the FFT and the MEM analysis methods are shown in figure

5.4. The red dot line represents the measured cross-correlation. Here, we assume the

width of the window is w. Since the broadening of the power spectrum is proportional to

1/w, a broad spectrum with energy leakage is observed by FFT. In the MEM analysis,

the cross correlation range is extended, and the peak spectrum is obtained if there are

some waves in the cross correlation array.

In this work, the Skilling MEM is used [73], because it is a model-free method which

can give the more reliable results than the other MEM algorithms, for example the

method based on the autoregressive model. The entropy is defined as

H(S) =

∫ ∫
log(S(kx, ky)) dkxdky (5.3)

Define the constrained statistic, chi-squared, to estimate the misfit between the experi-

mental value and expectation value, as

C(S) = χ2(S)− χ2
tar.

=

Nch∑
i=1

(Γmeas. − Γaim)2/σ2 − χ2
tar. (5.4)
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Figure 5.4: Comparison of the k spectrum estimation between (a) Fourier analysis and

(b) MEM
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5.2 MEM analysis technique

The entropy is changed to solve the following equation in maximum

P (S) = H(S)− λC(S) (5.5)

under the constraint of C → 0. Here λ is the Lagrange multiplier. Γmeas. is the 2D

autocorrelation function given by eq. 5.1. Γaim is the autocorrelation function estimated

by MEM. σ is the standard error of Γmeas.. χtar. is the target to converge maximum of

eq. 5.5 within reasonable calculation time. The maximum condition is satisfied when

Γmeas. = Γaim and it is possible for the 1D MEM. However, the maximization process

of eq. 5.5 in 2D array requires non-linear optimization. χtar. should be equal to channel

number but it is determined empirically for good convergence. This problem is solved

iteratively by searching for maximum entropy over three well chosen search directions.

The details of the calculation are described in ref. [71–74].
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Figure 5.5: The power spectrum log(S(kx, ky)) of the PPCD plasma obtained by MEM

using the autocorrelation function shown in figure 5.2. The kx and ky are the toroidal

and the poloidal wavenumbers, respectively.

Figure 5.5 shows the 2D power spectrum log S(kx, ky) estimated by MEM by using

the autocorrelation array shown in figure 5.2. Note that the logarithm z-axis is used.
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5.3 Analysis of the RFP turbulence

The peaks in the power spectrum are much higher than the background fluctuations.

In contrast with the standard 2D Fourier method, the sidelobes are very small and the

locations of the peak k become clear. The spectral peaks at k1(kx = −0.5, ky = −0.2),

and k2(kx = 0.3, ky = 0.1) agree with the wavenumbers in the test signals. Therefore,

the MEM analysis may reduce the spectrum broadening and provides a clear peak k-

spectrum.

5.3 Analysis of the RFP turbulence

The standard RFP configuration is generated by the relaxation process and sustained

by the dynamo activities, which are driven by the turbulences and instabilities. The

RFP plasma can also be sustained by PPCD operation. The mechanisms of dynamo

have been investigated intensively [29; 75]. The nonlinear MHD model is widely used

to explain the dynamo mechanism. This model assumes that the fluctuation-induced

electromotive electric field sustains the field aligned current against resistive decay. The

Ohm’s law can be written as [75]

ηj‖ = E‖+ < ṽ × B̃ >‖ (5.6)

where, η is the electric resistivity. j‖ is the parallel equilibrium current, ṽ, B̃ are the

fluctuating fluid velocity and the magnetic field, respectively. <> denotes the average

over an equilibrium flux surface. < ṽ × B̃ >‖ represents the electromotive force. E‖ is

the external electric field parallel to the magnetic field which is generated by PPCD (In

the edge region, the magnetic field is poloidal in the RFP).

The standard plasmas includes low Θ and high Θ plasmas. Both of them are sus-

tained by dynamo related fluctuations. Here, the pinch parameter Θ is defined as the

ratio of the poloidal magnetic field at the edge to the volume averaged toroidal magnetic

field, Θ = Bp(a)/ < Bt >. The high Θ is defined as Θ > 1.6. The fluctuation becomes

more coherent and the fluctuation amplitude of the magnetic probe is increased with

the Θ. The sawtooth crashes are often observed during high Θ operation [45; 68]. In

the PPCD operation, the external E‖ drives the poloidal current, so that the relaxation

state ( or Taylor state ) is sustained without the help of the dynamo effect. As a result,

the dynamo-related fluctuations can be suppressed.
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5.3 Analysis of the RFP turbulence
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Figure 5.6: The power spectrum log(S(kx, ky)) of the PPCD plasma (shot # 53330,

t = 20− 30 ms, f = 93 kHz) obtained by MEM. The kx and ky are the toroidal and the

poloidal wavenumbers, respectively.
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5.3 Analysis of the RFP turbulence

The turbulences of the PPCD and the high Θ plasmas are compared by the 2D k

spectra estimated by MEM. Figure 5.6 shows the power spectrum log(S(kx, ky)) of PPCD

plasma (shot #53330) obtained by MEM. Where, the black and blue colors correspond

to the high power. The white and yellow colors denote the low power. The peaked

power is observed at kx = −3± 3 m−1 and ky = 3± 3 m−1 in the PPCD plasma. Here,

the error is defined as the 90% of the spectral power. The mode energy is limited at the

low k range which suggests low turbulence in the PPCD plasma. The dominant mode

is m = 1/n = −7 with the error of ∆m = 1/∆n = 7, where m and n are the poloidal

and toroidal modenumbers, respectively. This is the quasi-single helicity mode which is

often observed in the PPCD plasma in TPE-RX.
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Figure 5.7: The power spectrum log(S(kx, ky)) of the high Θ plasma (shot # 53447,

t = 20 − 30 ms, f = 109 kHz) estimated by MEM. The kx and ky are the toroidal and

the poloidal wavenumbers, respectively.

Figure 5.7 shows the power spectrum log(S(kx, ky)) in the high Θ plasma (shot

#53447). The cutoff radius is about r/a = 0.75. The spectral peak is observed at

kx = −3±5 m−1 and ky = −3±6 m−1. The dominant modes are m = −1±2/n = −7±14.
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5.4 Discussions

It is wider than that of the PPCD plasma. Therefore, the spectrum of high Θ plasma

expands to the high k range.

The revered surface can be obtained by the modified Bessel function model [3].

Generally, the reversed field surface is about r/a = 0.9 in the standard plasma, while

it is about r/a = 0.8 in the typical PPCD plasma due to the driving of the external

field. In the PPCD plasma, the cutoff surface of MIR is about r/a = 0.85 because of the

high electron density. MIR may detect the density fluctuation outside of the reversed

field surface. In the high Θ plasma, the cutoff surface of MIR is at about r/a = 0.75

because of the low electron density. MIR may detect the density fluctuation inside of

the reversed field surface. Therefore, the poloidal mode numbers of the PPCD and the

high Θ plasmas have different signs.

The evolutions of the tearing modes during the dynamo event have been discussed by

using magnetic probes [45; 68]. Those observations show that the multi-modes will be

excited during the dynamo event in the high Θ plasma. As shown in figure 5.7, the wide

k distribution denotes the presence of multi-modes in the high Θ plasma (The mode

analysis is shown in chapter 6).

The turbulence has many active modes. The measured wide k distribution in high

Θ plasma suggests the high turbulence. The expansion direction in k spectrum of the

high Θ plasma is mainly in toroidal direction which indicates by an arrow shown in

figure 5.7. The magnetic field is mainly poloidal near the reversed field surface. The

expansion direction is perpendicular to the magnetic field line. It is in the electron drift

direction. Therefore, the turbulence in the high Θ plasma propagates in the electron

drift direction. The expansion in high k range suggests the strong turbulence in the high

Θ plasma. This result agrees with the nonlinear MHD dynamo model.

5.4 Discussions

In this work, turbulences between the PPCD and the high Θ plasmas have been studied

by using MEM, which provides high spectral resolution. The low k mode is dominant

in the PPCD plasma, while in the high Θ plasma the spectrum is broad which suggests

presence of multi-modes in the plasma. The k spectrum of the high Θ plasma expands

to the high k range and the turbulence propagates in the electron drift direction. The
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5.4 Discussions

preliminary result suggests that the PPCD operation suppresses the turbulence, and the

high Θ plasma has strong turbulence. It agrees with the nonlinear MHD dynamo model.

MEM is a new technique to estimate the power spectrum. It allows us to fit as many

peaks to the k spectrum as there are unique values of cross-correlation points. As a

result, the location of peak k becomes clear especially when the imaged region is smaller

than the wave measured. This technique is very useful and can be used in other imaging

diagnostics.

Nevertheless, MEM may make artefacts when the signal-to-noise ratio (SNR) is very

low, and the detector size is much smaller than the cross-correlation length. Some sorts

of numerical checking would be necessary, for example, synthesizing data. To measure

the fine structures of the turbulence, the high sensitive detector array with big size and

high spatial resolution should be developed.
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Chapter 6

Characteristics of Turbulence in

RFP Plasma

6.1 Introduction

Although the turbulence theory is well established [76; 77], the turbulence in RFP

plasma is hard to study. The main reason is the complicated fluctuations (magnetic and

electrostatic) and the high beta operation in RFP plasmas, which may cause the violation

of the approximations in turbulence theory. On the other hand, the magnetic and

electrostatic fluctuations may highly interact with each other, make the RFP turbulence

a very difficult problem.

Experimental study of the RFP turbulence is not sufficient. So far, the turbulence

in the RFP plasma has been studied by magnetic probe, Langmuir probe and Gas-

puff imaging (GPI) [40; 41]. However they measure the very edge region or obtain the

integrated signal. Previous research suggests that the turbulence in the inner area is

important for the sustainment of the RFP configuration [75]. The turbulence around

the reversed field surface has not been well understood experimentally.

Reflectometry is a powerful tool for turbulence measurement, because it can provide

the direct view of the density turbulence localized at the cutoff surface (the reflected

signal is sensitive to the motion of the cutoff surface) [1]. In this work, we have developed
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6.2 Experimental results

a microwave imaging reflectometry (MIR) system for the two-dimensional (2D) local

density turbulence measurement in TPE-RX. This is the first demonstration of the

turbulence diagnostics by MIR.

There are two types of plasmas in RFP: one is the standard plasma, the other is

the PPCD plasma [5; 28]. Here, we define the standard plasma is the plasma without

current drive such as PPCD. In the standard operation, the plasma configuration is

sustained by the electromotive force generated by fluctuations (dynamo). In the PPCD

operation, the plasma configuration is sustained by the external driven field. As a

result, the fluctuations may be suppressed in the PPCD operation. Therefore, the study

of turbulence between the plasmas with and without PPCD by using MIR may clarify

the physics of turbulence in RFP.

In this chapter we will study the turbulence near the reversed-field surface by com-

paring the plasmas with and without PPCD in TPE-RX [78]. It is organized as follows:

Section 6.2 describes the experiments of the plasmas with and without PPCD in TPE-

RX. In section 6.3 the features of the fluctuation distribution are presented. Section 6.4

shows the long range cross correlation of the turbulence. Section 6.5 describes the mode

analysis by magnetic probes. The 2D k spectra are presented in section 6.6. Section 6.7

describes the correlations of MIR with potential and magnetic signals. In section 6.8,

the nonlinear interaction of the turbulence has been analyzed. The relations between

the nonlinear interaction and the intermittent structures are discussed in section 6.9.

6.2 Experimental results

Experiments have been performed in the standard and PPCD plasmas in TPE-RX. The

experimental parameters with MIR is explained in chapter 2. Figure 6.1 shows the

plasma current (Ip), the reversal parameter (F = Bt(a)/ < Bt >), soft X-ray (SXR),

the line averaged density (nea), the normalized cutoff radius (rcut), the amplitude signals

of MIR and their wavelet spectra in the standard (# 53441, F ≈ −0.5, Θ ≈ 1.7) and

PPCD (# 53362) plasmas. During the flattop of the discharge, the plasma current is

about 285 kA and 235 kA in the PPCD and standard plasmas, respectively. The PPCD

operation starts at 18 ms which causes the rapidly increase in the SXR intensity and

the rapidly decrease in the reversal parameter F (because the edge toroidal field Bt(a) is

mainly driven by the external field generated by PPCD operation). The SXR intensity
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Figure 6.1: Plasma parameters and MIR signals in the standard (left) and the PPCD

(right) plasmas in TPE-RX. (a) the plasma current (Ip) and reversal parameter (F ), (b)

the soft X-ray (SXR), (c) the line averaged density (nea) and cutoff radius (rcut), (d) (e)

the amplitude signal of MIR (ch.4) and (f) wavelet spectrum.
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6.2 Experimental results

of the PPCD plasma is about 100 times higher than that in the standard plasma. This

indicates good confinement with PPCD.

Without PPCD, F is constant during the flattop of the plasma. The normalized

cutoff radius rcut is estimated from the density profile measured by the double-chord

interferometer [52]. It is about 0.8 during the flattop of the plasma current due to the

flat density profile which is often observed in TPE-RX. The fluctuation amplitude is

very small if there is no cutoff surface in plasma. The standard and the PPCD plasmas

have the same density fluctuation amplitudes near the cutoff rcut ≈ 0.8. However,

their fluctuation structures are different. In the standard plasma, the fluctuation in the

amplitude signal is intermittent which bursts mainly in the negative direction, while in

the PPCD plasma the fluctuation in the amplitude signal is symmetric. Actually, the

plasma (#53441) has a higher Θ (Θ ≈ 1.7)(or deeper F , F ≈ −0.5) than the usual RFP

plasma. With low Θ (or narrow F ) (t = 10− 18 ms at the right hand side) the SXR is

much less than that with PPCD.

Figure 6.2 shows the poloidal magnetic fluctuations (δBp) in the standard (F = −0.5)

and the PPCD plasmas. The magnetic fluctuation is measured by the complex edge

probe (CEP) which is sensitive to the fast magnetic fluctuations [54]. The magnetic

fluctuation is suppressed during PPCD, while in the standard plasma (F = −0.5) the

magnetic fluctuation amplitude is high. It should be noted that the magnetic fluctuation

before PPCD operation is low because of shallow F (or low Θ) (Θ = 1.4, F = −0.15).

The high magnetic fluctuation at t = 24 ∼ 25 ms may be caused by the time interval

between two PPCD pulses. After switch off the PPCD operation, the strong magnetic

fluctuation appears at t = 34 ∼ 35 ms.

Figure 6.3 shows the magnetic fluctuation as a function of plasma energy (P = neaTe)

in the standard and the PPCD plasmas. Here, nea is the line averaged density measured

by interferometer. The temperature is measured by the Thomson scattering (one data at

about 30 ms in one discharge). The magnetic fluctuation (B̃t) is obtained by the complex

edge probe (CEP). The PPCD plasma has high pressure and low magnetic fluctuation.

The magnetic fluctuation during PPCD plasma is about 0.5%. The standard plasma

(F = −0.5) has low pressure and high magnetic fluctuation. The magnetic fluctuation

of the standard plasma is up to 2.5%. The plasma pressure in the PPCD plasma is

about 5 times higher than the standard plasma (F = −0.5). Although the magnetic

fluctuation has been suppressed in the PPCD plasma, it is much higher than that in

tokomak and stellarator (typically < 0.1%).
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Figure 6.2: Time evolution of the poloidal magnetic field in the standard (top, F =

−0.5) and the PPCD (bottom) plasmas
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6.3 Fluctuation distribution

As discussed in chapter 4, the traditional Fourier method is not suitable to analyze

the intermittent signals. Here, we use wavelet transform because it is a powerful tool to

analyze the intermittent signals [79; 80]. Figure 6.1 (f) shows the wavelet spectra of the

amplitude signals. The summed powers
∑

P (ω) are also shown. Here, the black and blue

colors represent high power. The yellow color represents low power. In standard plasma

the spectrum has some high discrete power at about 20 ∼ 60 kHz, which corresponds to

the intermittent bursts in MIR signal. There are many short-lived fluctuations (< 0.1

ms) in the high frequency range. As a result, the summed power is increased in the high

frequency range. In PPCD plasma the high frequency fluctuations have been suppressed,

and the spectrum is dominated by a single frequency (∼ 15−20 kHz) which corresponds

to the sinusoidal-like fluctuation in the the signal.

6.3 Fluctuation distribution
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Figure 6.4: Definition of the probability distribution function (PDF)

The fluctuating quantities of the quasi-stationary turbulence can be characterized by

the probability distribution function (PDF). It is defined as

D(xi) = ni/N0 (6.1)

where, ni is the data number at value xi in the data series x(t), N0 is the total data

number. The definition of the PDF is illustrated in figure 6.4. Here, the circles denote
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6.3 Fluctuation distribution

the points of the value xi in x(t). The sum of the D(xi) for all xi is one, as

∫ ∞

−∞
D(xi)dxi = 1
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Figure 6.5: PDF of the standard and the PPCD plasmas

Figure 6.5 shows the PDF of the standard and PPCD plasmas. Here, the x-axis

represents the fluctuation amplitude which is normalized by its standard deviation (σ).

The black solid line denotes the Gaussian distribution. A non-Gaussian PDF represents

the presence of coherent structures or intermittency of ambient turbulence. The PDF

of PPCD plasma is similar to the Gaussian distribution, and the fluctuating quantities

are limited at the low (δne/σ) values (no Gaussian tail), which suggests the fluctuation

is suppressed. The standard plasmas have the non-Gaussian distribution. As shown in

figure 6.1, the standard plasma has many negative intermittent bursts, which correspond

to the negative non-Gaussian tail. The non-Gaussian tail is increased as the pinch

parameter Θ (Θ = Bp(a)/ < Bt >) is increased. This suggests more and more large

peaked structures are generated as the Θ is increased in standard plasma.

100



6.3 Fluctuation distribution

To quantify the asymmetry and peak degrees of the fluctuation distribution with

respect to its mean value, the third and fourth moments of the probability distribution

function, called as skewness S and kurtosis K, are used. They are defined as [81]

S =< x̃3 > / < x̃2 >3/2 (6.2)

K =< x̃4 > / < x̃2 >2 −3 (6.3)

respectively, where x̃ = (x−x)/σ is the normalized fluctuation signal. The skewness is a

measure of the asymmetry of the PDF. The kurtosis is a measure of the non-Gaussianity

of the PDF. For a Gaussian random distribution, S = K = 0, whereas for others the

deviation from zero indicates a non-Gaussian distribution. If one has a positive skewness,

the relatively more positive perturbations exist than the negative one. On the contrary, a

negative skewness corresponds to relatively more negative perturbations. As the absolute

value of the skewness is increased, the asymmetry deviation from a Gaussian distribution

is increased. If one has a higher kurtosis, there are larger perturbations (more negative

and positive) for the present distribution than for a normal Gaussian one. The larger

the kurtosis is, the further the present distribution deviates from a Gaussian one. A

negative kurtosis represents the fluctuations are suppressed.

The dependence of skewness and kurtosis on the frequency can be obtained by using

a wide bandpass filter (The filtered signal becomes a sinusoidal-like signal if we use a

narrow band pass filter) [82]. The filter extracts the fluctuations in the bandpass domain

(f1, f2). The skewness and kurtosis are calculated from the isolated fluctuations, and

they are supposed to be located at the frequency (f1 +f2)/2 with a bandwidth of f2−f1.

Figure 6.6 shows the frequency dependence of the skewness and kurtosis in PPCD and

standard (F = −0.5, Θ = 1.68) plasmas. Here we use a bandwidth of f2 − f1 = 50 kHz.

The dashed lines represent S = K = 0, respectively. The values of |S| and K in PPCD

plasma are very small (around zero). This corresponds to the symmetric fluctuation

in the MIR signal. In standard plasma, the skewness is negative in the low frequency

region (f < 50 kHz). This corresponds to the negative bursts in MIR signal. In the high

frequency region, the skewness of standard plasma becomes positive, which suggests

the high frequency fluctuation is different from the low frequency intermittent bursts

in standard plasma. The kurtosis is increased with the frequency, and the kurtosis of

standard plasma is much higher than that in PPCD plasma. It suggests that there are

more peaked structures in standard plasma especially in the high frequency range.
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6.4 Toroidal cross correlation

In order to further understand the turbulent structures, the wavelet spectrum is

used in the kurtosis analysis, because wavelet transform is sensitive to the short lived

fluctuations [80]. Figure 6.7 shows the kurtosis of the wavelet spectrum as a function

of time scale (inverse of frequency). In standard plasma, the kurtosis at the small time

scale is rapidly increased. This corresponds to many short lived structures in the wavelet

power spectrum. The kurtosis of PPCD plasma is much smaller than that of standard

plasma especially in the small time scale range. Therefore, the turbulent structures have

been suppressed in PPCD plasma.

6.4 Toroidal cross correlation

The characteristics of the fluctuations are analyzed by the two-point cross correlation

method. In this section, we select the MIR signals, which are arranged in the toroidal

direction, to study the characteristics of the toroidal cross correlation, such as the co-

herence and coherent length of the turbulence.

Figure 6.8 shows the cross-correlation spectra ((a) cross power spectrum, (b) coher-

ence and (c) cross phase spectrum) of the standard and PPCD plasmas by using complex

IQ signals (X(t) = I + iQ). The distance between two signals is 7.4 cm in the toroidal

direction. Here, we select the data length of 10 ms at the flattop of the discharge. The

data has been separated into 200 sections, and each section has 64 data points. Note

that there is overlapping between the neighboring sections. The cross correlation spectra

are obtained by ensemble averaging the cross Fourier spectra of these 200 data sections.

Therefore, the frequency resolution is 15.6 kHz ( 1MHz sampling).

In the cross-power spectra, PPCD plasma has the high fluctuation power in the low

frequency range, while the power spectrum is decreased in the high frequency range. The

standard plasma has higher fluctuation power in the high frequency range, and it is slowly

decaying compared with PPCD plasma. The decay index (f−α) of the power spectrum

represents a qualitative indication of an energy exchange process between fluctuations at

different scales [83]. The higher α denotes the stronger energy dissipation in the plasma.

The power decay index of the PPCD plasma is about f−2.5 in the frequency range of 200-

500 kHz. In the standard plasma, the power decay index is about f−1.4. The coherence

decreases as the frequency increases, and it is higher than the noise level (1/
√

N) in the

whole frequency range. In PPCD plasma, the coherence is higher than that in standard
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6.4 Toroidal cross correlation

plasma, which suggests long distance fluctuation structures in PPCD plasma. Both the

standard and PPCD plasmas have a positive cross-phase shift (electron drift direction).

The phase shift linearly increases as the frequency increases, which gives a phase velocity

(ω/k) about 100 kms−1 in the electron drift direction.
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Figure 6.9: The toroidal coherence length

The coherence length identifies the size of the fluctuation. Figure 6.9 shows the

toroidal coherence length of the standard (red square) and PPCD (black dot) plasmas

(the magnetic field is mainly poloidal at the edge region). The coherence is obtained by

averaging the toroidal coherence at f = 10 ∼ 100 kHz. The coherence is decreased as

the distance is increased. The toroidal correlation length is defined as the coherence is

decreased to 1/e. Both the coherence of PPCD and standard plasmas are higher than

this value in the measured range. So the coherence length is longer than the detector

size. PPCD has higher coherence. So PPCD plasma has a longer coherence length

and standard plasma has a shorter coherence length. Therefore, the fluctuations in

PPCD plasma have the characteristic of large-scale structures. In standard plasma, the

fluctuations have the characteristic of small-scale structures. If we draw a trendline in

figure 6.9, the toroidal correlation length of PPCD and standard plasmas at the cutoff
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6.5 Mode analysis

surface (rcut ≈ 0.8) can be estimated. The estimated correlation length may be larger

than 40 cm in PPCD plasma, while it is about 15 ∼ 20 cm in standard plasma. Note

that the estimated toroidal correlation length at (rcut ≈ 0.8− 0.85) is similar to results

at r/a = 1.0 measured by GPI in TPE-RX [41].

6.5 Mode analysis

Figure 6.10: m = 0 and m = 1 modes in the PPCD plasma

Figure 6.10 shows the mode spectra (B̃t/Bp(a)) of the magnetic fluctuations (m = 0

and m = 1 modes) as a function of the toroidal modes n in PPCD plasma (#53362,

t = 20 − 22 ms). The magnetic fluctuations are obtained by an extensive magnetic

measurement system (MMS) [53]. The power of the m = 1 modes is higher than the

m = 0 modes. It may indicate the suppression of the dynamo (m = 0 modes). The

fluctuation in PPCD plasma is dominated by the localized MHD modes (m = 1 modes).

The low n modes have the high fluctuation energy. The high n or (k) modes have

very small power. This suggests that the high k modes (or small-scale fluctuations) have

been suppressed. As shown in Fig. 6.1(f), the frequency in the wavelet spectrum has the
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6.6 2D k-spectrum

short-lived features, though the summed spectrum is dominated by a single frequency of

∼ 20 kHz. Therefore, the low n modes (n = 1 ∼ 7), which have the dominant fluctuation

power, may have different fluctuation frequencies.

Figure 6.11: m = 0 and m = 1 modes in the standard plasma

Figure 6.11 shows the mode spectra of the magnetic fluctuations (m = 0 and m = 1

modes) as a function of the toroidal modes n in standard plasma (#53441, t = 19− 21

ms). The power spectra of standard plasma is stronger than that of PPCD plasma. This

is as a result of strong magnetic fluctuation in standard plasma. The power of the m = 0

modes is higher than the m = 1 modes especially for the low n modes. It suggests the

global features of the fluctuations (global dynamo effects, m = 0 modes) in standard

plasma. The fluctuation powers of the these modes are much higher than that in PPCD

plasma. The wide distribution of m = 0 and m = 1 modes suggests that the standard

plasma is rich of fluctuation structures (multi-helicity (MH) state).

6.6 2D k-spectrum

Figure 6.12 shows the 2D wavenumber (k) spectra of the standard and PPCD plasmas

by using complex IQ signals (X = I + iQ). Here, the kϕ and kθ are the toroidal and
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(bottom) plasmas estimated by MEM
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6.7 Correlation structures

poloidal wavenumbers, respectively. The k spectra are analyzed by the 2D maximum

entropy method (MEM) [69; 73]. The details of the MEM have been discussed in chapter

5. In PPCD plasma, the fluctuation power is localized in the low kθ and kϕ ranges, and

the spectrum is dominated by a pinpoint (m = 0 ± 4, n = 0 ± 15). The k spectrum of

the standard plasma distributes in a wide k range, especially in the toroidal direction

(m = 0 ± 6, n = −60 ∼ 40). The magnetic field is mainly poloidal near rcut ≈ 0.8. It

is indicated by an arrow in figure 6.12. The k spectrum spreads in the electron drift

direction which is perpendicular to the magnetic field line. The expansion into the high

k range suggests presence of many mode structures in standard plasma. This result is

consistent with the multi-helicity modes state in the standard plasma ( see figure 6.11).

Figure 6.13 shows the toroidal modenumber-frequency spectra log10 S(n, f) of stan-

dard (top) and PPCD (bottom) plasmas. The toroidal modenumber spectrum is ob-

tained by integrating the 2D k spectra (in poloidal direction) estimated by MEM. In

standard plasma, the spectrum is broad (n = −60 ∼ 40) in the whole frequency range.

In PPCD plasma, The fluctuation is limited at the low n mode range (n = 0± 20) and

the fluctuation power becomes weak at high frequency range.

Figure 6.14 shows the kϕ (or n) spectra of the standard and PPCD plasmas by inte-

grating the toroidal modenumber-frequency spectrum from 15 kHz to 110 kHz. PPCD

has a sharp peak at the low n mode (n ∼ 0). In standard plasma, the spectrum has a

broad peak with high fluctuation power. The width of n spectrum is ∆n ∼ 120 (from

n = 40 to −80). The n spectrum of standard plasma tends to shift in the electron

drift direction. These results suggest that the turbulence measured by MIR has the

electrostatic-like features [46; 48]. The wide k spectrum suggests standard plasma has

high turbulence. In PPCD plasma, the narrow k spectrum indicates PPCD has low

turbulence. The large fluctuation in PPCD plasma (shown in figure 6.1) may be the low

frequency MHD mode.

6.7 Correlation structures

Both the magnetic and electrostatic fluctuations can induce the density fluctuations. As

discussed in chapter 1, the electrostatic fluctuation is dominant in the edge region, while

in the core region, the magnetic fluctuation is dominant. In this work, MIR measures the
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6.7 Correlation structures

local density fluctuation near the field reversal region. This area may have many high n

tearing modes (m = 1), m = 0 tearing modes and strong electrostatic fluctuations.

In order to analyze the dominant fluctuation in MIR, one good way is taking the

correlations of MIR signal with magnetic fluctuation and with electrostatic fluctuation.

Here, we use the magnetic and electrostatic fluctuations measured by a complex edge

probe system (CEP). MIR and CEP are arranged in the same poloidal plane (see chapter

2). The CEP is arranged at r/a = 1.05 in the vertical (top) position. MIR is arranged

at the equatorial position and the cutoff surface is about r/a ' 0.8. The radial distance

between MIR and CEP is about 10 cm.

Since the MIR, magnetic and electrostatic probes measure at different positions, the

measured fluctuations may have some time delay. Here, the correlation function is used.

It is a function of one signal (auto) or between signals (cross) which allows extraction of

lag time and correlation time. The method integrates one signal (the reference signal),

and another signal shifted in time. The shift parameter is defined as the time delay τ ,

and is the variable which the function C1,2 is plotted against. The equation is normalized,

bounding C1,2(τ) ∈ [−1, 1], as

C1,2 =

∫
x1(t)x2(t− τ)dt√∫
x2

1(t)dt
∫

x2
2(t)dt

(6.4)

where, x1(t) and x2(t) denote two signals, respectively. The auto correlation function is

defined as C1,1.

Figure 6.15 shows the cross-correlation between (a) MIR and B̃r, (b) MIR and Vf in

PPCD and standard plasmas. In order to select the low frequency fluctuation, the signals

are low-pass filtered at 20 kHz. As a result, the possible high frequency turbulence do

not affect the analysis. The correlation is not high due to the large distance between

MIR and probes. MIR signals have similar correlations with magnetic and potential

fluctuations. The periodical correlations between MIR and magnetic fluctuations give

the frequencies of ∼ 17 kHz in PPCD plasma and ∼ 12 kHz in standard plasma, which

agree with the results shown in Fig. 6.1 (f). This result suggests that the low frequency

fluctuation in MIR signal is caused by the MHD modes.

Figure 6.16 shows the (a) autocorrelations of MIR (black solid line), the radial mag-

netic fluctuation B̃r (red dotted line) and floating potential (Vf ) (blue dashed line), (b)

toroidal cross-correlation of MIR (ch1-ch2) and Vf (ch1-ch2), (c) cross-correlation be-

tween Vf and B̃r, and (d) cross-correlation of the MIR (r = 0.8, and r = 0.85) with Vf ,
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and MIR (r = 0.8) with B̃r in the standard plasma.In order to select the high frequency

turbulence, the signals are high-pass filtered at 2 kHz. As a result, the possible low

frequency fluctuations do not affect the analysis. The distances between the two signals

used in Fig. 6.16 (b) are 3.7 cm for MIR and 0.5 cm for floating potential, respectively.

The autocorrelations of MIR and floating potential are similar when the time delay is

smaller than 50 µs. It gives the autocorrelation time of ∼ 25 µs for the density and

potential fluctuations. The autocorrelation time of magnetic fluctuation is only about

10 µs. There is no correlation between magnetic and potential fluctuations (Fig. 6.16

(c)).

There are some correlations between the MIR signal and the potential, though it is

very low (about 0.15 ∼ 0.25) (Fig. 6.16 (d)). The reason may be the large radial distance

between MIR and electrostatic probe (about 8 ∼ 10 cm), and the short radial correlation

length of the electrostatic turbulence [4]. Nevertheless, the correlation between MIR and

potential is much higher than that between MIR and magnetic fluctuations in the high

frequency range. The correlation between MIR and floating potential increases as the

distance between MIR and electrostatic probe decreases, and the time delay between

them is very small.

To understand the frequency dependence of the correlation of MIR signal with the

potential and the magnetic fluctuation. A bandpass filter is used to extract the fluc-

tuations in the bandpass domain. Figure 6.17 shows the relative cross-correlation ratio

CCFp/CCFm as a function of frequency. Where, CCFp denotes the cross-correlation

116



6.8 Nonlinear wave interaction

(standard deviation) between MIR signal and potential, CCFm denotes the cross-correlation

(standard deviation) between MIR signal and magnetic signal. The signals are bandpass

filtered with the bandwidth of 35kHz. The relative cross-correlation indicates that the

low frequency mode has high correlation with the magnetic fluctuation, and the high

frequency mode has high correlation with the electrostatic fluctuation. These results

suggest that the low frequency modes are dominated by the magnetic fluctuation, and

the high frequency modes are dominated by the electrostatic turbulence.

6.8 Nonlinear wave interaction

6.8.1 Toroidal spatial waves

Since we have a 2D detector array in MIR system, the spatial structures of the fluc-

tuations can be obtained. Assume a toroidal (or poloidal) periodic condition on the

fluctuation, the time evolution of the wave on the cutoff surface is obtained by the

spatial Fourier transform of the MIR signals.

S(k, t) =
L−1∑

l=0

X(l, t)ei2πkl/L (6.5)

where, L is the total aligned toroidal (or poloidal) detector number. The wavenumber k

is normalized by the Nyquest wavenumber kN = π/d. X(l, t) is the density fluctuation

measured by MIR. The complex IQ signals X(l, t) = I + iQ are used because they di-

rectly correspond to the density fluctuation and are more sensitive to the high frequency

fluctuations [18; 57]. If there is a mode in the fluctuation, the spectrum of the IQ signal

is asymmetric. The asymmetric power spectrum include the propagation direction of

the mode. But for the amplitude signal, its spectrum is symmetric.

MIR has a (4× 4) detector array. Here, we select four detectors arranged along the

toroidal direction to do the spatial Fourier transform. The wavenumbers of−0.5kN , 0, 0.5kN

and kN can be obtained. Where, the Nyquest wavenumber kN = 85 m−1 represents the

wavelength of 7.4 cm and the toroidal modenumber of n = 146. The half Nyquest

wavenumber is 0.5kN = 42 m−1, which represents the toroidal modenumber of n = 73.

The minus indicates the opposite propagation direction. The wavenumbers obtained by

equation 6.5 may include many spatial modes due to the poor spatial resolution.
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Figure 6.18: Power spectra of the waves in the standard and the PPCD plasmas.
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6.8 Nonlinear wave interaction

Figure 6.18 shows the wavelet power spectra of the waves with the wavenumbers of

0,−0.5kN , 0.5kN , kN (or modenumbers of n = 0,−73, 73, 146 with δn = ±37) in standard

(shot #53441) and PPCD (shot #53362) plasmas. The power spectra are transformed

from wavelet analysis method within 8 ms during the flattop of the plasma current.

Some frequencies are observed in the spectra. The fluctuation energy of k = 0 mode

is much stronger than the high k modes. The fluctuation energy is decreased as k is

increased. For k = kN (n = 146), the fluctuation becomes the noise level.

The fluctuation energy of the standard plasma is higher than that in PPCD plasma,

especially in the high modenumber and high frequency ranges. Some fluctuation fre-

quencies are observed in the standard plasma, for example the frequencies of −200 kHz,

−100 kHz, 50 kHz and 150 kHz. In PPCD plasma, the MHD mode (k = 0) with the

frequency of ∼20 kHz is observed. This corresponds to the sinusoidal fluctuations shown

in figure 6.1(e).

6.8.2 Nonlinear interaction

The nonlinear simulation of turbulence suggests that there is a strong mode to mode

interaction when the wavenumbers satisfy the matched condition k1 + k2 = k3. The

interaction of the mismatched coupling (k1 + k2 6= k3) is very weak usually, and it is

often considered as the noise level.

To quantify the strength of the nonlinear wave interaction, the squared wavelet bi-

coherence is used due to the short lived time scales (s < 100 µs) of the RFP turbulence

[80]. It is defined as [84]

b2(s1, s2) =
| < Wk1(s1, τ)Wk2(s2, τ)W ∗

k3
(s, τ) > |2

< |Wk1(s1, τ)Wk2(s2, τ)|2 >< |Wk3(s, τ)|2 >
(6.6)

where, <> indicates the ensemble average over time τ . The time scales s satisfy the

frequency sum rule within the frequency resolution, as

1

s
=

1

s1

+
1

s2

(6.7)

Since the time scales can be interpreted as inverse frequencies ω/2π = 1/s, it is

convenient to interpret the sum rule as ω = ω1 + ω2. Wk(s, τ) is the Morlet wavelet

transform of the waves obtained by equation 6.5, as:

Wk(s, τ) =
1√
s

∫
S(k, t)Ψ∗(s, τ)dt (6.8)
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6.8 Nonlinear wave interaction

where, Ψ(s, τ) = π−1/4 exp[−i2πτ/s− (τ/s)2/2] is the Morlet function.

To compare the strength of the nonlinear interaction, it is convenient to introduce

the summed bicoherence, which is defined as

b2
s(ω) = b2

s(s) =
∑

1/s=1/s1+1/s2

b2(s1, s2) (6.9)

where the sum is taken over all time scales s1, s2 satisfied the frequency sum rule, and

the total bicoherence

b2
tot =

∑
s1,s2

b2(s1, s2) (6.10)

where the sum is taken over all time scales s.

Since four detectors along the toroidal direction are used in the spatial Fourier trans-

form, the wavenumbers of k = −0.5kN , 0, 0.5kN and kN (or k = −42, 0, 42, and 85

m−1) are obtained, which represents the toroidal modenumbers of n = −73, 0, 73 and

146. It is convenient to define the normalized wavenumbers as ka = −1, 0, 1 and 2,

which correspond to the wavenumbers of k = −42, 0, 42 and 85 m−1, respectively. Here,

the nonlinear wave interaction among the three waves of k1, k2 and k3 is defined as

k = (k1, k2, k3).

Some wavenumbers satisfy the matched condition of the nonlinear wave interaction,

for example ka = (−1, 1, 0) and ka = (1, 1, 2). The matched couplings of ka = (−1, 1, 0)

and ka = (1, 1, 2) represent the nonlinear interactions between different turbulent scales.

It should be noted that the spatial modes measured by MIR include a wide mode range.

ka = 0 represents the low n modes (n = 0± 37) which may be dominated by the MHD

modes. ka = 1 represents the n = 73 ± 37 mode which may correspond to high k

turbulence. The coupling of ka = (−1, 1, 0) may represent the correlation between the

MHD and turbulence.

Figure 6.19 shows a typical squared wavelet bicoherence spectra among the waves

of ka = (−1, 1, 0) in the standard and the PPCD plasmas. The wavelet transform is

performed within 8 ms during the flattop of the plasma current. The spectrum has some

high dispersed bicoherence. This is caused by the interaction between the frequency

components shown in figure 6.18, for example, the high bicoherence at ω1/2π ≈ −100

kHz and ω2/2π ≈ −100 kHz. The bicoherence doesn’t have a linear relation. It suggests

that the nonlinear coupling in the standard plasma is more complicated than the linear

three wave interaction. It may have a higher order interaction. The bicoherence of the
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6.8 Nonlinear wave interaction

standard plasma is distributed in a wide frequency range, and it is much stronger than

that in the PPCD plasma.

Since the edge reversed toroidal magnetic field is mainly sustained by the fluctuations

in the dynamo process, the reversal parameter F can be used to identify the strength

of the nonlinear interaction in the standard RFP plasma. The deeper F corresponds to

the stronger nonlinear interaction and higher turbulence. It should be noted that the

pinch parameter Θ is usually high in the deeper F plasma. The explanation of high

turbulence at deep F is only valid for the standard plasma. In the PPCD plasma the

deep F is caused by the external driven field which may suppress the turbulence.

Figure 6.20 shows the summed wavelet bicoherence among the waves of (-1, 1, 0), (1,

1, 2) and (2, 2, 2) with (a) F = −0.15, (b) F = −0.3, (c) F = −0.5 in standard plasmas

and (d) in PPCD plasma. The summed bicoherence is averaged over several shots with

the same plasma condition. The dot-dash line represents the Milligen noise level, which

is an empirical formula defined as [84]

b2
n(ω1, ω2) =

ωsamp/2

min(|ω1|, |ω2|, |ω1 + ω2|)
1

N
(6.11)

The matched coupling is distinctly stronger than the mismatched coupling of (2, 2,

2) and than the Milligen noise level. The bicoherence among the coupling of (−1, 1, 0)

is larger than that of (1, 1, 2) which suggests that there is strong interaction between

the mid-scale and the large-scale turbulent structures in the standard plasma. PPCD

plasma has low bicoherence, the reason may be the turbulence is suppressed by external

driven field. The bicoherence becomes high as F decreases from −0.15 to −0.5. It is

interesting to find that the increase in the bicoherence at deep F is mainly contributed

by the high frequency fluctuations.

Figure 6.21 shows the total bicoherence as a function of F in the standard and the

PPCD plasmas. For the PPCD plasma, we only show the coupling of (−1, 1, 0) which

indicated by blue filled square (Note: F in the PPCD plasma is different from the

standard plasma). In the standard plasma, the bicoherence of (−1, 1, 0) increases when

F increases in the negative direction. It is about two times higher than the interaction

of (1, 1, 2). In the PPCD plasma, the total bicoherence of (−1, 1, 0) is about half of the

standard plasma (deep F ) which suggests that the nonlinear wave interaction is weak

in the PPCD plasma.
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Figure 6.20: The summed wavelet bicoherence of the coupling between the waves of

(−1, 1, 0), (1, 1, 2) and (2, 2, 2) with (a) F = −0.15, (b) F = −0.3 and (c) F = −0.5

in the standard plasmas, and (d) in the PPCD plasma. The bicoherence is conditional

averaged.
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Figure 6.22: Schematic of intermittency caused by the scattering of one blob-like struc-

ture.

The presence of the large-scale turbulent structures may deform the cutoff surface.

The illumination microwave of MIR is scattered. MIR optical system makes an obscure

image (because of low brightness) of the cutoff surface if the scattering is very strong

and MIR can’t collect most of the reflected power [1; 57]. As a result, the reflection

power is rapidly changing, for example, the intense bursts shown in figure 6.1(e).

Figure 6.22 shows the schematic of the intermittency caused the scattering effect

of one blob-like structure. If the scale of the turbulent structure is smaller than the

size of the detector array and the radial displacement of the cutoff surface is large, the

scattering effect becomes strong. As an example of intermittency, we select the MIR

signals at t = 30.2 ∼ 30.6 ms in shot #53441 (see Fig. 6.23 (a)). The arrangement of

the detector array is shown in Fig. 2.4. This corresponds to the long-range correlation

fluctuations. At t ≈ 30.35 ms, a strong negative burst is observed in channel 1 and 2. It

is not observed in channel 3 and 6. This suggests that a localized structure with small

size (about 8 cm, k > 40 m−1) appears at channel 1 and 2. This structure is radial

elongated, which causes a strong negative burst in MIR signal. At t = 30.45 ∼ 30.6 ms,

similar fluctuations are observed in all the channels. This suggests that the fluctuation

is dominated by the low k mode (k < 21 m−1).
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Figure 6.23: (a)Intermittency of the MIR signals, (b)Simulation of the intermittency

caused by a blob-like structure (k = 80 m−1, d = λ0/4 = 3.75 mm). The arrangement

of the detector array is shown in Fig. 2.4
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In order to understand the intermittency further, we use the Huygens-Fresnel model

to simulate the MIR signal. The detail of the model is explained in chapter 3. Here, we

simulate the MIR signal at t ≈ 30.35 ms in shot #53441. Assume the size of a blob-like

structure is 7.8 cm on the cutoff surface, which corresponds to k = 80 m−1. The radial

displacement is d = λ0/4 = 3.75 mm, where λ0 is the wavelength of the microwave.

The blob-like structure moves along the cutoff surface with the velocity of 3 kms−1.

The simulation result is shown in Fig. 6.23 (b) (red thick line). The simulation agrees

with the experimental signal (ch1, #53441). Since the blob-like structure scatters the

microwave power, the intermittency of MIR signal has the features of negative bursts.
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Figure 6.24: The total bicoherence as a function of kurtosis

The strong intermittency correspond to the high non-Gaussian tail. In this case, the

kurtosis is increased. Figure 6.24 shows the total bicoherence among the modes ka = −1,

ka = 1 and ka = 0 as a function of kurtosis. The dots represent the experiments, and

the line denotes their linear fitting. The total bicoherence is increased as the kurtosis

is increased. It suggests that the nonlinear interaction contributes to the intermittent

bursts of the turbulent structures.

The soft-x-ray (SXR) intensity can be used to characterize the plasma energy, since
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Figure 6.25: The soft-X-ray intensity versus the kurtosis

it is a function of the plasma density and temperature, as ISXR ∝ nα
e T β

e (assume Zeff

is constant), α ∼ 2 and β ∼ 2 usually [85]. High SXR intensity denotes high plasma

energy. Figure 6.25 shows the soft-x-ray (SXR) intensity as a function of kurtosis.

The SXR is decreased as the kurtosis is increased. Since high kurtosis corresponds to

high intermittency of the turbulence, the intermittency reduces the plasma confinement.

Suppression of the intermittency can improve the confinement.

Figure 6.26 shows the skewness and kurtosis as a function of reversal parameter F .

Here, the broken lines denote S = K = 0 which represent the Gaussian distribution.

The filled squares represent PPCD plasma. The value of F is averaged at the same time

range of bicoherence analysis. It should be noted that the operation of PPCD plasma

is different from that of standard plasma. In PPCD operation, F is rapidly decreased

due to the external driven field. In without PPCD operation, F is almost constant

during the flattop of the discharge. The skewness and kurtosis have the low values at

F > −0.4. However at F < −0.4, the skewness and kurtosis are suddenly increased. The

high values of the skewness and kurtosis at F < −0.4 represent the high intermittency

in no-PPCD plasma. This corresponds to the intermittent bursts in MIR signal. The

high total bicoherence and high intermittency suggest that the turbulent structures are
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Figure 6.26: (a) skewness and (b) kurtosis as a function of F . The broken lines denote

S = K = 0. The filled square represents the PPCD plasma.
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intensely generated through nonlinear interactions. Although the total bicoherence is

high at F ≈ −0.3, the plasma is less intermittent. It suggests that F ≈ −0.4 is the

threshold for the intense generation of the turbulent structures.
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Chapter 7

Summary and discussion

7.1 Summary of experimental results

This work presents the first measurement of the two-dimensional (2D) local density tur-

bulence with microwave imaging reflectometry (MIR) in a reversed-field pinch (RFP)

plasma. By using this system, 2D image of the density fluctuations around the rever-

sal surface have been observed with the spatial resolution of 3.7 cm and the temporal

resolution of 1µs.

In order to investigate the principles of MIR measurement, comparison between the

simulation and a laboratory test of MIR system has been carried out. The numerical

model based on the Huygens-Fresnel equation is used to simulate the fluctuations mea-

sured by MIR. In this test, we found that the phase φ corresponds to the displacement

of the cutoff surface in the radial direction, and the amplitude A corresponds to the

reflection power, which is modulated by the shape of the cutoff surface in MIR signal

A exp(iφ). The simulation agrees well with the test in the case of the weak fluctuation.

In the case of the strong fluctuation, the amplitude signal is deformed, while the phase

(IQ signals) is not deformed too much. The coherence length of the complex IQ signals

is longer than that of the amplitude signals. From the simulation and laboratory test,

MIR is valid with the condition 4k⊥dL/D < 1 to measure the motion of the cutoff

surface, where, D is the diameter of the optical lens, L is the distance between the

cutoff surface and the optical lens, k⊥ and d are the perpendicular wavenumber and the
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radial displacement of the fluctuation, respectively. The most measured fluctuations in

TPE-RX distribute in the range of 4k⊥dL/D < 0.8.

The RFP turbulence measured by MIR around the field reversal surface in TPE-RX

has been studied by comparing the plasmas with and without PPCD in this work. The

features of the RFP turbulence are as follows:

(1) In the low k and low frequency ranges, MIR signals have high correlation with the

magnetic fluctuations. Without PPCD operation, the m = 0 tearing modes (dynamo)

are dominant. While in the PPCD plasma, the m = 1 tearing modes are dominant.

(2) In the high k and high frequency ranges, MIR signals have high correlation with

the electrostatic fluctuations measured by Langmuir probe. The k spectrum of MIR is

broad and shifted in the electron drift direction in the plasma without PPCD. The high

nonlinear coupling between the high k modes and the low k modes is observed. While

in PPCD plasma, the high k modes have not been observed.

(3) The intermittency is increased as the reversal parameter | F | is increased in

the case of without PPCD. Note that a deep F (F = Bt(a)/ < Bt >) corresponds to

a strong dynamo as the reversed toroidal magnetic field Bt(a) is mainly sustained by

the dynamo. The intermittency of MIR signal corresponds to the bursts in the negative

direction, which has a small-scale structure with high fluctuation amplitude. Simulation

of MIR signal suggests that the intermittency in MIR signal is caused by the blob-

like structure, which scatters the reflection wave and leads to the rapid decrease of the

reflection power (negative burst). In PPCD plasma, the intermittency is not observed

and the confinement is improved as the soft-X-ray is increased by the factor of 100.

These results suggest that the high frequency fluctuations around the reversal surface

in the plasma without PPCD have the features of electrostatic turbulence, while the low

frequency fluctuations are the m = 0, 1 tearing modes. PPCD operation suppresses the

m=0 tearing modes and turbulence, and the low frequency fluctuations are dominated

the m = 1 modes.

In conclusion, this work is the first demonstration of MIR as the turbulence diag-

nostics. This is the first observation of the turbulence around the field reversal surface

in RFP plasma. This work demonstrates how the dynamo and intermittent structures

cause bad confinement.
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7.2 Discussions

Various candidates for RFP turbulence have been discussed by numbers of authors [34–

38]. The theories of the tearing instabilities, interchange instabilities and drift waves have

been explained in chapter 1. Table 7.1 shows the possible candidates of the instabilities in

RFP [34; 85; 86]. Present theories predict as follows: In RFP, the toroidal modenumbers

(m = 1 modes) increase with radius. In the core region, the fluctuations are dominated

by the long wavelength tearing instabilities, which become stable as the wavenumber k

increases [34]. In the edge region, the interchange instabilities may become dominant

due to their fast growth rate at high k. On the other hand, the interchange instabilities

become electrostatic fluctuations for the small-scale fluctuations.

 Fluctuations  Stabilization  Driven force  

Tearing

modes 

Magnetic: B
~

Low k mode is dominant  (core: m=1, 

edge: m=0),  high k mode is stable. 

Current profile 
Current gradient  

Finite pressure 

effects (high )

Micro-

tearing 

modes 

Magnetic and electrostatic ~,
~
B

Short wavelength turbulence. 

e = 0

 Low collision  

 high collision 

Te

Nonlinear effects  

Resistive 

interchange 

modes 

Magnetic, it becomes electrostatic at 

high k. ~,~,
~

nB

Low k mode is dominant, high k mode 

tends to stable  

)/~)(/*(/~
e

Tenn  at 
eiTe

k
22

||

Phase difference of (n ) /2 ~ /4

Good magnetic curvature 

(convex-toward: R<0) 

Finite Larmor effect 

Pressure driven 

Gradient B

Drift wave 

( i mode) 

Electrostatic,   ~,~
n

Short wavelength turbulence.  

e
Tenn /~/~  at 

eiT
e

k
22

||

Phase difference of (n )

Shear flow 

Finite 

Short connection length 

Good magnetic curvature 

Driven by i

(low )

Table 7.1: Candidates of the instabilities in RFP

In this work, MIR measures the density fluctuations around the reversal surface with

k ≤ 85 m−1 and kρi ≤ 0.8. The low frequency fluctuations in MIR signals should be

the MHD mode because of the high correlation with magnetic fluctuations (see Fig.

6.15). For the high frequency fluctuation, there is no correlation between MIR and

magnetic fluctuations (see Fig. 6.16). The high correlation between MIR and floating
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potential supports the electrostatic turbulence in the MIR signal. Therefore, the drift

waves and the high k interchange turbulence are the major candidates for the RFP

turbulence around reversal surface. Here we will discuss which instability agrees with

our experiment.

In the case of drift wave turbulence, the density fluctuation satisfies the approxima-

tion
ñe

ne

≈ eφ̃

Te

(1− ε) (7.1)

where, ε ¿ 1. The small ε is due to the resistivity. The density perturbation (ñe) is

in phase with potential perturbation (φ̃) in the case of small ε. In the case of resistive

interchange turbulence, the electrons behave isothermally

ñe

ne

=
ω∗
ω

eφ̃

Te

(7.2)

in the region of k2
‖υ

2
Te

< ωνei. The fluctuations in ñe and φ̃ may have the phase of ∼ π/2

due to the strong growth rate ω ' iγ [35]. In the weakly collisional limit, the phase

difference is ∼ π/4 [86].

As shown in Fig. 6.16, the phase difference between density and potential fluctua-

tions is small (< π/4). The phase difference increases as the radial distance decreases.

However, MIR and electrostatic probe measure at difference positions, and their radial

distance is large. It is impossible to estimate the real phase difference near the cutoff

surface from present experimental results.

Another method to compare the drift wave and interchange turbulence is the eigen-

frequency and the propagation direction of the fluctuations. Theoretically, both the

ideal tearing and interchange instabilities only have the purely growing. They don’t

have the real eigenfrequency. However, in the experiment, the low frequency (f ∼ 10

kHz) MHD modes are often observed. It may be caused by the plasma rotation which

is υ < 10 kms−1 observed in TPE-RX [87; 88]. The drift wave has the diamagnetic

frequency in the electron drift direction (The drift wave in the ion drift direction has

very low frequency ω → 0.). The diamagnetic frequency is given by

ω∗ = −k⊥
κTe

eneB0

dne

dr
(7.3)

Since the magnetic field is mainly poloidal near the reversal surface, the perpendicular

wavenumber k⊥ should be the toroidal wavenumber kϕ.
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Figure 7.1: Time evolution of L−1
n in shot #53441 (standard plasma, F = −0.5)

In TPE-RX, the magnetic field is about ∼ 0.1 Tesla. The inverse density gradient

length L−1
n = (dne/dr)/ne is estimated about (2 ∼ 10)/a (minor radius a = 0.45 m)

because of the high density gradient around the reversal surface. Figure 7.1 shows the

time evolution of L−1
n at the cutoff density (ne = 0.5 × 1019 m−3, rcut = 0.8) in a

standard plasma (shot #53441, F = −0.5). Ln = 10 ∼ 15 m−1 during the flattop of the

plasma (t = 15 ∼ 30 ms). Assume Te = Te(0)(1− r2) and Te(0) = 300 eV, the electron

temperature is about 100 eV around the cutoff rcut = 0.8. In this measurement, we have

the waves of n = 73± 37 (kϕ = 42± 21 m−1). The estimated frequency is in the range

of 30 ∼ 150 kHz. It is consistent with the experimental results (see Fig. 6.17). The

MEM analysis gives the turbulence propagates in the electron drift direction (see Fig.

6.12 (a)). These results suggest that high frequency fluctuations observed by MIR have

the features of drift wave turbulence.

However, the RFP plasma has high β and high magnetic fluctuations. The drift wave

turbulence has high wavenumber, and it is valid for the low-β plasma. In this work, the

k range of MIR system is k ≤ 85 m−1. The fluctuations measured by MIR are dominated

by the low k modes, and the fluctuation energy decreases as the k increases. The high

intermittency and the strong magnetic fluctuations suggest that the turbulence measured

by MIR is affected by MHD fluctuations. So the possible candidate of the electrostatic

turbulence around the reversal surface is the high k interchange turbulence. The features

of the drift wave in the interchange modes may be caused by the two-fluid instabilities

for electrons and ions. Therefore, the interchange effects and drift wave effects must be

considered in the theoretical models.

The nonlinear coupling between the high k (or n) electrostatic turbulence and the
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low n MHD modes has been studied in this work. In RFP plasma (without PPCD),

the dynamo is a global phenomenon which corresponds to the m = 0 (usually low n)

tearing modes. Without PPCD plasma, the m = 0 tearing modes is dominated (see Fig.

6.11). This may be as a result of strong dynamo effect. The high nonlinear coupling

between the high k electrostatic-like turbulence and the low k MHD modes implies the

existence of strong correlation between the electrostatic turbulence and the dynamo

effect. The high intermittency and the high nonlinear coupling support this results (see

Fig. 6.20). The high intermittency at the deep F plasma is expected to be partly driven

by the nonlinear interaction between electrostatic-like turbulences. Simulation of the

MIR signal suggests the intermittent structure may be due to the amplification effect

of the initial perturbation by interchange instabilities, which enhance the transport and

decrease the confinement.

In a PPCD plasma, the turbulence and dynamo (m = 0 modes) are suppressed,

and the m = 1 modes are dominant (see Fig. 6.10, 6.15 and 5.6). The observed low

frequency fluctuations (see Fig. 6.1) are the m = 1 modes. Since the PPCD plasma has

high confinement, the MHD modes may be enhanced by the high pressure gradient.

Interpretations of the turbulence measured by MIR are as follows: (1) Present ex-

periments support the electrostatic turbulence with the features of drift wave turbulence

is dominant near the reversal surface. (2) Suppressing the m = 0 tearing mode activity

and the reduction of the electrostatic turbulence in the PPCD plasma are related . (3)

The strong nonlinear coupling between the high k electrostatic turbulence and the low

k MHD modes suggests that the electrostatic turbulence correlates to the sustainment

of the RFP configuration (dynamo) through nonlinear interaction.

In this work, although the 2D turbulence in the plasmas with and without PPCD

has been measured by MIR, the spatial resolution of the observed waves is poor. The

observed spatial waves include many modes. On the other hand, the signal to noise

ratio (SNR) is not very high. To measure the fine structures of the turbulence, the high

sensitive detector array with big size and high spatial resolution (< 1 cm) should be

developed.
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