K %

PO (BE S E)

ik
F
t[I_lLlJll

7 L E 5

FAREO B AT

FARE DEMH

i
EF
2
bt
i
o

mXEEER

Kazakov Artem

L (I%)

BT R 1279 &

Fk2 14983 0H

BT AN F—ERR AR MEBHEER

FARAE 6 55 1 Hx Y

Reliable Control System for Future Particle Accelerators

¥ & HEH R
iz
MR
£ €53
MR
MR

LA #
&7 BH
ft EE
I EX
RA B GRRKF)
=) FngA




R DTS

Modern particle accelerator machines are complex and large scale structures. Large projects liké Large
Hadron Collider and International Linear Collider (ILC) consist of thousands of components that are spread
over big distances in underground tunnels. Machines of that scale and complexity raise a set of challenges for
all subsystems of the accelerator. With constantly growing size and complexity of particle accelerators the
role of the control system becomes more and more important for a successful operation. One of the biggest
concerns for large machines is availability. Because of a huge number of components. even very reliable
components, final availability of the accelerator might suffer of continuos failures in one of the subsystems.

For example target availability for the International Linear Collider is 75%. but in order to achieve that,
the control system has to be available for 99-99.9% of time (15 hours of down time is “allocated” for the
control system of the ILC. See Table 1). Design draft specifies that the ILC control system will consist from
~1200 “crates”, and that translates into 99.999% availability for each crate. Such availability has not been a
requirement for present accelerator control systems. Therefore it sets a new challenge for control system
designers, implementors and operators. A multilevel systematic approach should be taken in order to achieve
these availability goals.

Lets analyze availability indicators for current accelerators. Typical high energy physics accelerator
currently has an availability of 75-85%. Though there are some examples of much better availability: Pohang
Light Source (2008) - 97% (with controls responsible for 2% of downtime). SOLEIL light source (2007) -
95.7% (with controls responsible for 2.7% of downtime); KEK Linac (2008) - 98.3% (with controls
responsible for 13.3% of downtime). For KEK Linac it means that control system availability was around
99.76%. The XEK Linac control system comsists of 30 VME crates, 150 PLCs, 30VXIL, 15 CAMAC, 24
intelligent oscilloscopes. ILC control system is 1195 ATCA crates, 8356 network switches and thousands of
other lower level control components. ILC control system has 10.~ 100 times more components than KEK
Linac control system. Such tremendous increase in a number of components will dramatically reduce the
availability indicators for the control system. Therefore availability issues have to be seriously considered for
the future particle accelerator control systems. This research was devoted to that particular goal.

The first chapter provides some introductory information regarding accelerator control systems. historical
overview of the control system evolution and a modern view on building control systems.

The second chapter of this work describes different approaches to improve availability of a particle
accelerator. The general reliability theory is briefly introduced. Then the applications of that theory to
accelerator control system are discussed. An accelerator control system can be roughly separated into four
major parts: hardware, software, humans and procedures. Analysis is done for each of these four components.
Each of these parts requires different approaches in order to achieve high availability. This work covers
improvement of the software and hardware components. Hardware reliability is improved through
implementation of redundancy, and software reliability is improved through implementation of a test system,
that ensures the software quality. Further chapters provide more detailed explanation on how these goals are
‘met.

Chapters 3,4,5 describe my contribution to improve reliability of accelerator control system. This work is
mostly concentrated on improvement of software and hardware components using EPICS software. EPICS

stands for Experimental Physics and Industrial Control System. It has more than 15 years history of usage
and has been being developed during ail these years. It is widely used in many accelerator laboratories all
over the world, including KEK, where it is a basis for the KEKB control system.

Chapter 3 describes the EPICS redundant IOC. In order to achieve high availability (such as 99.999%).
redundancy is essential (as discussed in Chapter 3, section 3.1, 3.2). Redundancy allows to reduce time
needed to recover from a failure to a few seconds or milliseconds, instead of hours and days. The system is
not stopped because of the failure and the stand-by component starts to operate immediately after the failure
is noticed. The redundancy approach is a common technique used in highly available applications (more than
99.999% availability). The original EPICS software distribution lacked redundancy support. This issue was
addressed by developing EPICS redundant IOC. The initial design and development was made by DESY.
Unfortunately from the very beginning only vxWorks support was looked for. Later it was realized that other
OS support is needed as well. As a part of my research, in collaboration with DESY, I generalized the-



redundant EPICS I0C to Linux, Darwin, and other operating systems. The generalization was done using the
Operating System Independent (OSI) library, therefore the ported version should work on any platform,
where the OSI library is fully implemented. The generalized redundant IOC is an important improvement to
the EPICS control system framework. Several serious software bugs were fixed in the original Redundancy
software. The result of this work is a very important improvement to the existing RIOC implementation.
First, it allowed to use RIOC on many operating systems, such as Linux and MAC OS X, therefore providing
much wider application field for the RIOC. Second, it allowed to include the support for the RIOC into the
official EPICS distribution from version 3.14.10. Third, working on this project resulted in modification and
splitting the original software into several libraries which can be used independently. An example of such
usage is provided in the next chapter. describing the implementation of redundant and load-balancing
Channel Access gateways. In chapter 6 the generalized version of the RIOC is extended to support the
Advanced Telecom Computing Architecture (ATCA) platform. These projects would have been impossible
without the generalization of the original RIOC and improvements done during this work.

As mentioned above using the generalized versions of RIOC libraries, Channel Access Gateway was
made redundant and load-balancing. This new and original development is described in Chapter 4. Channel
Access gateways are in operation in many places. They allow separating control networks into several
administrative subnetworks. Also they can be used as a security tool: providing restricted access to the control
network, for example read-only access from public networks. Besides this administrative and security aspects
gateways also optimize the number of Channel Access (CA) connections to the IOCs, because several CA
clients can share one connection to an individual IOC. Due to these important functionalities gateways play a
growing role in today’s installations. Performance and functionality have been continuously improved over
the last vears. The availability of this service is key for machine operations in many places. This was the
driving force to implement redundancy also for the CA gateways. The redundant and load-balancing Channel
Access Gateways were implemented within this research. The development was done using the generalized
version of RIOC libraries discussed in the chapter 3. The implementation of the redundant CA gateway
allowed to escape the single-point of failure, and by introducing the load-balancing the performance and
throughput was improved in the number of 2. Load-balancing version of the CA gateway brings availability
improvements as well, due to the fact that half of the connections are handled via the secondary gateway,
these connections will not be affected when the failure occurs on the primary gateway.

In chapter 5 new hardware standard ATCA and its application to control system are described. Within this
research a support for Advanced Telecommunication Computing Architecture (ATCA) was added to the
RIOC software. This addition, called ATCA-driver. allows to monitor the ATCA-hardware and provide better
availability. This driver can help predict hardware failures and allows to decrease the Channel Access clients
reconnect time from 30 to 2 seconds. Using reliable software in conjunction with reliable hardware can give
us even more reliable solutions. Recently Advanced Telecommunication Computing Architecture standard is
gaining attention in High Energy Accelerator field as platform for modern controls and Data Acquisition
(DAQ) systems. ATCA is an open standard developed by consortium of telecom vendors and users; and from
its very early days it is aimed to high reliability, high bandwidth and modularity. Nowadays it is widely used
in telecom industry and is widely supported by many big vendors. The ILC control system requirement for a
single control shelf is 99.999%. ATCA hardware available on the market provides this level of availability or
better, therefore ATCA was suggested to be used in ILC control system. Even though ATCA provides
redundant cpu boards, power supplies, interconnections and other facilities, redundant IO boards and
software that can work with ATCA hardware and utilize its capabilities must be developed.

For the reasons mentioned above I developed a driver for the Redundant EPICS IOC (RIOC) which
provides support for ATCA. Using the Hardware Platform Independent library (HPI) it allows the RIOC to

monitor the status of the hardware it’s running on. Using this information, fail-over decisions can be made
even before the “real” failure happens. For example, if the temperature starts to rise there is some delay until
system crashes because of overheating. During that time the fail-over sequence can be triggered. Therefore
the fail-over happens in a more stable and controlled environment. An obvious and very important benefit is
that client connections can be gracefully closed and clients would reconnect to the stand-by I0C within 2
seconds. In case of a real hardware failure it would take up to 30 seconds (default Channel Access timeout).

This ATCA RIOC driver can be also utilized on any computer which has an HPI support. Therefore
providing increased availability for the platforms other than ATCA. For example modern computer severs are
usually equipped with the temperature, voltage etc. monitoring hardware. OpenHPI distribution of HPI
supports such hardware on Linux operating system.

Chapter 6 presents another approach to improve the reliability - by means of improving the quality of the
software. An important part of this process is the software testing and quality assurance. In early years EPICS
supported only one operating system for the server side - vxWorks, and one operating system for the client
side - Sun OS; and it was well tested at Argonne National Laboratory. But in recent years EPICS has gained
support for many operating systems and hardware platforms and now it supports more than 10. Each



institution uses its own collection of OS+EPICS running on different hardware. Most of these combinations
are not very well tested, due to a lack of convenient, easy to use and reliable system integration testing
mechanism. Therefore it leads to a potentially dangerous situation when an untested and unproved software is
used for the operation. Obviously a decent automated test system is needed for EPICS software distribution.
EPICS has a decent unit-test system included in the base distribution. It has been continuously extended by
core-developers as EPICS evolve and new features have been added. Basically a unit-testing is a testing of
small pieces (functions) of code, to check that they perform correctly. But it does not mean that these pieces
would work when combined together. For that purpose there is another test package, which consists of
system tests, when real IOC’s are installed on distributed machines and then it is checked if these systems
perform correctly altogether.

Originally that system test package for EPICS consisted of several programs/IOCs and text file
instructions how to run them. But it is not convenient and takes a lot of time for developers and users to
understand how to run these tests, prepare different machines, upload, configure and start the IOCs, preform a
test and compare the results. As a part of my research I have developed a system that antomates the process of
a system testing and system integration testing, and provides a flexible environment to create these tests. This
newly developed software supports a wide variety of configurations by default and can be easily configured
using simple configuration file. It is developed in the high-level object oriented scripting language Ruby,
which makes it easy to extend and add new functionality. Usage of this automated test systems greatly
simplifies the testing process. It allows to run a predefined set of tests on a predefined set of computers in a
fully automated manner. It requires to create a configuration file, specifying the computers and corresponding
test that must be performed. Then only one command must be issued by human to run all the tests. If
compared to manual testing, it saves tremendous amount of human time and effort. Due to automation
chances for human error are greatly reduced too. After all tests are executed the system provides a detailed
report.



BrmXOFEEEROEE

AT KRBT S -5 T, RELIZERZ ,ké?bbﬂéml?ﬁ)bfr oyt 28 R 2 X
FLOEEEN DD TOMRTH S, MEEFILI ORI AE8PED &V ek ssHl
OBEOBTIZIOA AL, PEEDL SEEE (GamEE) SATLERETS ETO
R EEND . NA— KD LT, VIR LY. AMEK, FHEEOMNOOERIZD
WTHREHEMA TS, AFETIHHIIINSOMOOERORNA— K27, Y7k
VXTI BTAEGEEE AT LMEOOOFIERIIDLTHREL A, Sl EH D
DIz AF LA EE 285 2 &124 D, Sigle point of failure L. %94
72 27 AOFIRFRAMMEZRLSED Z LMD THLEEHA LK, BN
IR HE S A F LI B2 EAT L ODORAN Y 7 I 72 MEL ZOH S
TEZBHh o UEERHEH S A7 L THHEL =

HREEHFIEANEIZB T, DESY ICTHEMNED SN TWAILE AL AHlEE R
(Redundant Input Output Controller)?*/ 7 k7 x 7 HF%EIZ s2mL. JV7b7xT7D
B/ MR 8 # T dh 5 RMT (Redundant Monitoring Task) 21 75 1) O B{HaEH L
oo REFIZLHT RMTR 75y b 74 —LKHEDS AT ELTFTEMSIV,
E/=, TD54 75 &2V Redundant IOCIZKEK LINAC Hli#l 25 L THEMMY
BT AENEFIN TS, £/, RMT /2 EN S 1 73113 Redundant 10C 733

HETS EPICS 7L—L7— 7 ORRBHEY 7 T2 70—BELTROAENTS
D, SEBEONERSEOHES AF L0 BAELOEGE s EMEEIN S,

H3EEIE/~. 20 RMT 73 Redundant IOC IZIREENDEMEL, AN T 7Y
F—a AR EFCESZENTHRETHHIEIZERL, NESBHE ATLD
WE7L —L7—0 L TIESBEREINT LS EPICS T?, CA gateway V 7 b U7
IZHEMEZBMT 52E), CA gateway DY —RI— FIZEEEMASZ &72< 7""‘ )
HLBEEEFL-. £-. ZOBEBZIEA TS & T CA gateway IZEFTTEUEREE
METBTENTRETHHIEEZRRAL, JNUZXOERS )LET%Hh@MTﬁH‘E’E%fﬁ
TEDIELEEZH L.

H15#i3 £/, ATCA(Advanced Telecom computing Architecture)/z & D wTHE %
HR—=PFTBEN—RITHEBIIBLTIE, INSOBEE RMT Z2E#cE5Z &1
Lo THAMMEOR LR THS Z & £EHL. TNEEELE.

SRV 7 R 7 OBRBIZELTHE., VI NV THEPOTF A MM EETH
%78, EPICS 2EDMEAY 7 b7 7L —47—0 TR, BEFOY 7 by 77 A b
TU— LT =7 CRHHETF A FAERTEANI S EHHFERLA. HES 2T
LiZBOLTHE, BEOTI Y F 74— LEFOHABRDRIZOWLWTF A b &ITHIEHNH
BTHHIEEHHL. INSORBTORKIZS AFLRKET A M & LIBTHHO
Y=l zZMREL TWA,

A SOVEEL ISR A L D g HI S AT LDE RO EBRIZ OWLWTHRA R
SR ENA, SEUEEROED O FikE AR RLUEREEL TNS, &



<1Z Redundant CA Gateway DEBBLVZAUIHD M7 BEHEDBMIHFHED '
HRAOMEEZRLTHD. SEOSFEEE AT LOBRFEIZEERDOELSD,
DEOENSHEEL T, £RXIMERFHE AT LOMRBL RS HROSEHEEM
ERFHATFLOERIZBETHD, FURBLELTSETHLLBDOTHIHMmEN
3. REBSR 2B NTHBXZGREHEL 2.



