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A basic problem in science is to fit a model to observations subject to errors. It is
clear that the more observations that are available the more accurate will it be
possible to calculate the parameters in the model. This gives rise to the problem of
"solving" an over-determined linear or nonlinear system of equations. When enough
observations are not available, it gives rise to under-determined systems.
Over-determined systems together with under-determined systems are called Jeast
squares problems. It can be shown that the solution which minimizes a weighted
sum of the squares of the residual is optimal in a certain sense. These solutions are
called /least squares solutions.

Least squares problems are usually written in  the form

min [b-4x,, 4eR™, beR" where the norm I, stands for 2-norm. When 4 is

xeR"

large and sparse, it is advantageous to apply iterative methods to the normal
equations A’ (Ax-b)=0 or AA"y-b=0. However, iterative methods usually

suffer from slow convergence when A is ill-conditioned, since the condition number
of A"4 or AA" is the square of that of 4. Hence, when A is ill-conditioned,
preconditioning for the iterative methods becomes necessary.

In this thesis, we consider constructing preconditioners for some Krylov
subspace iterative methods to solve least squares problems more efficiently. We
especially focused on one kind of preconditioners, in which preconditioners are the
approximate generalized inverses of the coefficient matrices of the least squares
problems. We proposed two different approaches for constructing such approximate
generalized inverses of the coefficient matrices: one is based on the Minimal
Residual method. For this approach, the minimal residual method with the steepest

A eRmxn’ MERnxm,

descend direction is used to minimize the norm min |/ - M4,
M

where M » stands for the Frobenius norm. The other is based on the Greville’s

Method which i1s an old method developed for computing the generalized inverse
based on the rank-one update proposed in 1960s. We perform the Greville’s method
incompletely to construct a sparse approximate generalized inverse of 4 and use it
as a precondtioner M. After we obtain the preconditioner M, we use M to
precondition the original least squares problem, to obtain the linear system

M (Ax - b) = 0 (left preconditioning case) or AMy — b = 0 (right preconditioning case).

In this thesis, we chose to use the GMRES method to solve the preconditioned
linear systems based on the results proposed by Prof. Hayami. According to our
preconditioning algorithms, our preconditioner M can be rank deficient when A4 is
rank deficient. Our theoretical analysis shows that no matter A and M are rank
deficient or not, the original least squares problem is equivalent to the
preconditioned problem when our assumptions are satisfied. Our proof is based on
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verifying the two conditions proposed in Hayami’s paper: R(4)=RMT) and

R(M)=R(4"), where R(X) stands for the range space of matrix X. We also proved

that under certain assumptions, if the GMRES method is used to solve the
preconditioned linear systems, the GMRES will not break down before a solution is
found. Besides the theoretical considerations, we also discuss how to implement the
preconditioners practically. In the Greville’s Method, we need to judge which
column of A is linearly dependent on its previous columns and which column is a
linearly independent column. When the numerical droppings are performed, this'is
difficult. In the thesis, we show how to define a threshold so that we can detect the
linearly dependent columns of A relatively more precisely. Our numerical tests
showed that our methods performed competitively for rank deficient ill-conditioned
problems.

As an example of problems from the real world, we apply our preconditioners to
the linear programming problems. To solve large scale linear programming
problems, the Interior-point method is widely used. From an initial solution, by
solving a linear system in each step of the interior-point method, a correction vector
is computed and used to update the current approximate solution to obtain the next
better approximate solution. In the interior-point method, the linear system is
traditionally solved by using the Cholesky decomposition method. However, when
the approximate solution approaches the true solution, the linear system becomes
more and more ill-conditioned. In this case, computing the Cholesky decomposition
is unstable and possibly breaks down. In this thesis, instead of solving the linear
system directly, we take it as a normal equation of a least squares problem. By
doing so, we can use our preconditioner to precondition the corresponding least
squares problem and solve the preconditioned problem by the GMRES method. By
using our method, we can solve the linear systems accurately even when the
approximate solution is close to the true solution, so that the interior-point method
becomes more robust.
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