
A Model Checking based
Framework for Building Correct

Context-Aware Systems

Christian Hoareau

Doctor of
Philosophy

Department of Informatics,
School of Multidisciplinary Sciences,

The Graduate University for Advanced Studies (SOKENDAI)

September 2009

ii

Abstract

Context-aware computing refers to the idea that computing devices can sense
and react to the physical environment where they are deployed. For example,

a context-aware corporate office would intelligently respond to peoples locations and
activities by self-adjusting its lighting and temperature automatically, thus reducing
its energy footprint.

Context-aware systems model the real world by using increasingly complex and
refined contextual-data representations. As a result, their design and management raise
several challenges. An important and somewhat unexplored one is to guarantee that
context-aware systems correctly capture the intent of their designers once deployed. For
example, we might want to assure that the energy conservation of the aforementioned
corporate office is actually preserved.

We propose in this thesis a query processing and specification framework that alle-
viates designing and building context-aware systems. It guarantees the management of
contextual information, and can be used for specifying the underlying rules of context-
aware systems. Our approach encourages a high-level of abstraction for retrieving
contextual information in a robust manner, and supports building “provably-correct”
context-aware systems incrementally, by providing modularity and separation of con-
cerns.

The proposed approach aims at complementing existing context-aware services
wherein contextual information about the physical and computational environment
– information about people, objects, and services – is modeled in a symbolic fashion,
and is independent of any particular sensing technology. In current pervasive com-
puting plateform, contextual information and their underlying models are queried an
ad-hoc manner. Which makes it impossible to guarantee the quality of the results
being returned, and hence the reliability of context-aware services.

The main idea behind our framework is to apply and adapt the principles of model
checking to query the contextual data structures. Because such query mechanisms have
to be sound, our approach is build upon a logic-based query language. We therefore
ensure that the results of any query (i) do not miss any information that satisfy its
necessary and sufficient conditions and (ii) do not contain any information that does
not satisfy the conditions. We describe the implementation of our framework and
discuss its applicability to existing graph-based contextual models.

i

ii

List of Publications

Journals

• Christian Hoareau and Ichiro Satoh, Modeling and Processing Information for
Context-Aware Computing: A Survey. New Generation Computing, 2009. (To
appear)

• Christian Hoareau and Ichiro Satoh, Query Language for Location-Based Ser-
vices: A Model Checking Approach. IEICE Transactions on Information and
Systems, Special Issue on Knowledge-Based Software Engineering, Vol.J91-D,
No.3. April 2008.

Conferences and Workshops

• Christian Hoareau and Ichiro Satoh, From Model Checking to Data Management
in Pervasive Computing: A Location-based Query-processing Framework. Pro-
ceedings of the ACM International Conference on Pervasive Services (ICPS’09),
July 2009.

• Christian Hoareau and Ichiro Satoh, Logic-Inspired Query Processing Framework
for Sensor Networks. Demonstration Session of the 5th International Conference
on Networked Sensing Systems (INSS’08), June 2008.

• Christian Hoareau and Ichiro Satoh, Hybrid Logics and Model Checking: A Recipe
for Query Processing in Location-Aware Environments. Proceedings of the IEEE
22nd International Conference on Advanced Information Networking and Appli-
cations (AINA 2008). March 2008.

• Christian Hoareau and Ichiro Satoh, Logic-Inspired Query Processing Framework
for Pervasive Computing. Demonstration Session of the 6th IEEE International
Conference on Pervasive Computing and Communications (PerCom’08). March
2008.

• Christian Hoareau and Ichiro Satoh, A Model Checking-Based Approach for Lo-
cation Query Processing in Pervasive Computing Environments. Proceedings of
the 2nd OTM International Workshop on Pervasive Systems (PerSys’07). Nov.
2007.

iii

iv

Contents

1 Introduction 1

I Research Domain and State of the Art 5

2 Research Domain 7

3 Context Modeling 11

3.1 Location Models . 13

3.1.1 Geometric Models . 14

3.1.2 Symbolic Models . 15

3.1.3 Hybrid Models . 15

3.2 Context Models . 15

3.2.1 A Great Variety of Frameworks 16

3.3 Evaluating Context Models . 18

3.3.1 Requirement-based Evaluation Framework 18

3.3.2 Data-based Evaluation Framework 20

3.3.3 Discussion . 21

3.3.4 Context Modeling as Active Database Systems 23

4 Context Processing 25

4.1 Mapping Contextual Information on Relational Database Model 26

4.1.1 Resurgence of Graph-database Models 27

v

vi Contents

4.1.2 Semi-structural Data Models for Contextual Information 28

4.2 Query for Contextual Information . 29

4.2.1 Hybrid Approaches . 29

4.2.2 Application-independent Query Processing 30

4.2.3 Application of Formal Methods 30

4.3 Discussion . 31

4.3.1 Holistic Approach to Context Awareness 31

4.3.2 Semantic Computing . 32

4.3.3 Shortcomings with “Modeling” Context 32

4.4 Conclusion . 33

II Contribution 35

5 Formal Query Language 37

5.1 Querying Location Models . 38

5.1.1 Location Query Processing . 39

5.1.2 Motivation and Approach . 39

5.2 Background . 40

5.2.1 Towards Symbolic Location Models 40

5.2.2 Query Processing and Temporal Model Checking 41

5.2.3 Hybrid Logics . 43

5.3 Hierarchical space graph: a semantic and data model 43

5.4 Hybrid Logics-Based Query Language 45

5.4.1 Syntax . 45

5.4.2 Semantics . 46

5.5 Implementation . 49

5.5.1 Architecture . 49

5.5.2 Query Processing . 50

5.6 Related Works . 51

5.7 Conclusion . 52

Contents vii

6 Application 53

6.1 Query Language . 54

6.1.1 Query Processing . 55

6.2 Approach . 56

6.2.1 Model Checking . 56

6.2.2 Application to Context-aware Computing 57

6.2.3 Logic-based Graph Querying . 58

6.3 Implementation . 60

6.3.1 System Architecture . 60

6.3.2 Model Checking Algorithm . 61

6.3.3 Query Processing . 62

6.4 Application . 63

6.4.1 Application to RFID-based Systems 64

6.4.2 Location-aware System for Museums 65

6.4.3 Query Language for Middleware Support 66

6.5 Related Work . 69

7 Conclusion 71

viii Contents

List of Figures

1.1 Overview of a context-aware system. 3

3.1 Context-aware services can sense and react to the physical environment

where they are deployed. 13

3.2 Evaluation of the six major context-modeling approaches based on six

requirements defined by Strang et Linnhoff-Popien [1]. 20

4.1 Example of a graph-based data structure representing a real-world space. 27

5.1 Location-aware system. 39

5.2 Example of hierarchical space tree for a hospital. 41

5.3 Example of a query with a relative location. 42

5.4 Hierarchical space graph extending space tree of Fig. 5.2. 44

5.5 The four hybrid operators in action. 46

5.6 System architecture. 49

6.1 Real-world space and its corresponding graph-based data structure. . . 54

6.2 Layered architecture. 61

6.3 Pseudocode of the subprocedures MCF, MCA, and MC@ called by the query

processing engine. 63

6.4 Query workflow. 64

6.5 Correlation between RFID-based tracking system and symbolic location

model. 65

ix

x List of Figures

6.6 (1) Map-based GUI and (2) RFID speaker. 66

6.7 Time to process 20 queries of different size with respectively 10, 50, and

100 users. 68

List of Tables

6.1 Formal semantics of the query language 58

xi

xii List of Tables

The most profound technologies are those that disappear.

– Mark Weiser

1
Introduction

Context-awareness is embedded into the fabric of our human nature. Con-

sciously or unconsciously, we often derive our actions and behaviors from a

particular set of circumstances, the context. This context is rich, subjective and ever-

changing. The actual meaning of one’s context, and thus its relevance, depends on

what activity one might be engaged in. Context is multi-dimensional; it can encom-

pass perceptual information – environmental (e.g., the level of pollution), physical (e.g.,

one’s current location), social (e.g., one’s family and colleagues), or temporal (e.g., the

time of the day), just to name a few. Non-perceptual information, like memories of

one’s past experiences or one’s emotional state, is part of one’s context as well.

For one thing, our context-awareness stems from a huge number of stimuli coming

from our surrounding world. These stimuli are first captured by an extremely sophis-

ticated sensory system, encoded by our brains into electrical signals, then processed

1

2 Introduction

in one way or another, stored for later retrieval, and/or eventually lost. This process

gives us the ability to sense, and adapt our behaviour to, the world around us. We are

context-aware beings, and we would like to see our ever-growing ubiquitous computing

ecosystem – homes, cities, personal and wearable devices – become context-aware as

well. Ultimately, the technology will adapt to us.

The idea of context-aware computing was introduced in some of the pioneering

work on ubiquitous computing research and has been subject to extensive research

since. Context-aware computing stems from the vision articulated by Marc Weiser [2]

in his seminal 1991 paper: “The most profound technologies are those that disappear.

They weave themselves into the fabric of everyday life until they are indistinguishable

from it”. The goal of context-aware computing is to acquire and utilize information

pertaining to the physical world, and then select, configure, and provide a variety of

services accordingly.

Many researchers have explored the data representation of contextual information

and proposed various context models, including location models. Location models are

usually updated by tracking (or positioning) sensing systems located throughout the

environment (see Fig. 1.1). They maintain the representations of users and objects

according to the data measured by such systems and provide mapping between the

physical and virtual worlds. However, the focus of current research on context modeling

has been on the representation and maintenance of context-aware information. Instead,

mechanisms to retrieve or query the information maintained in context models have

attracted scant attention. This is a serious obstacle to the advance and growth of

pervasive computing, including context-aware computing. In fact, a large number of

context models have been explored thus far, but most of these do not offer any support

for query processing. Also, the few models with built-in query processing rely on ad-

hoc mechanisms to access contextual information, which makes it difficult to guarantee

the quality of the results.

In the database research community, a data model is a collection of conceptual tools

that are used to model the representation of real-world entities and the relationships

among them [3]. There has been a broad consensus about what these conceptual tools

3

Positioning/Tracking Device

Location Model

Context-aware Service
Query

Processing

Symbolic
Modeling

interact with

locates

updates

queries

Users

Figure 1.1: Overview of a context-aware system.

should offer, i.e., data structuring, description, maintenance, and some mechanisms

to retrieve or query the data [4]. However, query mechanisms for existing database

systems are not available in context-aware computing, because they do not support the

notion of context awareness. Therefore, pervasive computing needs query mechanisms

that are designed for context-aware computing.

We propose a logic-based framework to address these issues. It is designed to

support, and benefit from, existing symbolic location models, which are the standards

for representing context of the physical world. Our contribution is emphasized in

Fig. 1.1. The basic idea behind the framework is to apply model-checking principles

to query the underlying data structures. Our approach is build upon a logic-based

query language. Indeed, such query mechanisms must to be sound like SQL, which

is based upon relational algebra. We presented the formal definition and semantics of

an earlier version of the language in an earlier paper [5], which lacked a description

of the implementation. We would like to emphasize that our framework is aimed at

complementing existing location models. That is, the language itself can be applied to

other existing symbolic location models, although it was initially designed to support

hierarchical-based location model.

4 Introduction

Part I

Research Domain and State of the

Art

5

The reasonable man adapts himself to the world ; the unreason-

able one persists in trying to adapt the world to himself. Therefore

all progress depends on the unreasonable man.

– George Bernard Shaw, Maxims for Revolutionists : Reason,

Man and Superman (1903)

2
Research Domain

Context-aware computing has enjoyed remarkable attention from researchers

in diverse areas such as mobile computing (Schilit et al., 1994) and human

computer interaction (Moran & Dourish, 2002). It is also an important idea explored

in connection with pervasive computing and ambient intelligence.

The notion of context itself is not new and has been explored in areas such as

linguistics, natural language processing, philosophy, AI knowledge representation and

problem-solving, and theory of communication (McCarthy, 1993; Akman, 2002; Bou-

quet et al., 2003; Brezillon, 2003). In such work, context is given focus and primacy

(e.g. treated as first-class objects in a logic), enabling assertions to be made about

contexts and context to be explicitly reasoned about in applications.

The Free On-line Dictionary of Computing defines context as “that which sur-

rounds, and gives meaning to, something else”. Such a definition might be instantiated

7

8 Research Domain

according to the need. Whether that “something” is an assertion in a logic, an utter-

ance, or a computer system, with an appropriate definition for meaning, the intuition

captured by the word “context” serves its purpose. The work by Schilit et al. (1994)

provides an instantiation of that definition, from the perspective of distributed, mobile,

and ubiquitous computing (or pervasive computingone view of pervasive computing is

as a combination of mobile computing and ubiquitous computing): a person is that

something and context refers to information about a persons proximate environment

such as location and identities of nearby people and objects. In Dey (2001) is an

operational (and arguably broader) definition of context:

Context is any information that can be used to characterize the situation of an en-

tity. An entity is a person, place, or object that is considered relevant to the interaction

between a user and an application, including the user and applications themselves.

Context-aware applications aim to use such contextual information to do the right

thing at the right time automatically for the user. There has been much work in

identifying what such information can be, the structure of the information, how to

represent such information, and how to exploit it for a specific application. Such work

might focus on a specific kind of contextual information such as location models,4

world models (e.g. Lehmann et al., 2004) and activity models (e.g. Koile et al., 2003;

Muhlenbrock et al., 2004; Tapia et al., 2004), where activity typically refers to some

action or operation undertaken by a human being, such as bathing, doing laundry,

toileting, preparing breakfast, and listening to music, and so differs from situation.

Perhaps one could conceive of a person in the state of preparing breakfast as a situation.

However, in general, activity and situation are clearly not interchangeable, and we

consider activity as a type of contextual information which can be used to characterize

the situation of a person (e.g. preparing breakfast means the person is busy or has

just woken up), or identify characteristics of contextual information (Henricksen et al.,

2004).

Pervasive computing utilizes contextual information about the physical world. Hence,

the connection of sensor information to context-aware pervasive computing is clearly

important (Hopper, 1999; Yoshimi, 2000; Barkhuus, 2003; Patterson et al., 2003), and

9

relates to what can be sensed, the best way to acquire sensor information, and how to

reason with sensor information to infer context. In fact, any information which can be

practically obtained via sensors can be used as context, including the emotional states

of users (Picard, 1997) and movements (Headon, 2003). When the entity is an artifact

instead of a person, we have context-aware artifacts.

There is tremendous variety and diversity in what can be context, and the way

context can be acquired and modelled, and this is an avenue of much interest and re-

search. Given the challenges in representing, structuring, managing and using context,

it is not surprising that various knowledge representation formalisms and techniques

have been applied, ranging from ontologies (Matheus et al., 2003; McGrath et al. 2003;

Chen et al., 2004b; Wang et al., 2004) (that can provide concepts for describing context

and enable reasoning with and reuse of contextual information), first-order logic theo-

ries (Katsiri & Mycroft, 2003; Ranganathan & Campbell, 2003), to conceptual graphs

(Peters & Shrobe, 2003). Such work, however, is not simply a return to previous AI

knowledge representation about context, but consider what aspects of the physical

world should be sensed for a given application and how best to represent such aspects,

how to reason with sensed information, and the software engineering of context-aware

pervasive systems.

Related to the notion of context is the notion of situation. The relationship between

context and situation is illustrated in the above operational definition. A definition of

situation from the American Heritage Dictionary is as follows: “The combination of

circumstances at a given moment; a state of affairs”. Besides context, Dey (2001) also

defines situation as “a description of the states of relevant entities”. Hence, the idea

is of aggregating (perhaps varieties of) context information in order to determine the

situation of the entities (relevant to an application). In this sense, the situation might

be thought of as being at a higher level of abstraction than context.

10 Research Domain

Learning would be exceedingly laborious, not to mention haz-

ardous, if people had to rely solely on the effects of their own

actions to inform them what to do. Fortunately, most human

behavior is learned observationally through modeling.

– Albert Bandura

3
Context Modeling

Contents

3.1 Location Models . 13

3.1.1 Geometric Models . 14

3.1.2 Symbolic Models . 15

3.1.3 Hybrid Models . 15

3.2 Context Models . 15

3.2.1 A Great Variety of Frameworks 16

3.3 Evaluating Context Models 18

3.3.1 Requirement-based Evaluation Framework 18

3.3.2 Data-based Evaluation Framework 20

3.3.3 Discussion . 21

11

12 Context Modeling

3.3.4 Context Modeling as Active Database Systems 23

Context-aware systems are concerned with the acquisition of context (e.g.,

using sensors to perceive a situation), the abstraction and understanding of

context (e.g., matching a perceived sensory stimulus to a context), and application

behaviour based on the recognized context (e.g., triggering actions based on context).

Context-awareness is regarded as an enabling technology for ubiquitous computing

systems. While there seems to be a consensus on the importance and usefulness of

capturing and processing contextual information, its very nature, scale, and complexity

poses major challenges [6]:

• Acquisition of context: Contextual information is acquired from non-conventional

and heterogenous sensors, which may be connected through a network.

• Abstraction of context: It should be abstracted, because it may depend on

the sensors that acquire it [7].

• Understanding of context: It needs to be represented, managed, and used in

relevant data structures and algorithms to be processed by context-aware services.

Of these technical issues, most researchers have addressed the third. In fact, several

international workshops have been dedicated to these very issues in recent years1. This

chapter reviews related work that has focused on contextual information processing and

management in addition to context modeling. We focus on the conceptual tools that

have been proposed to address pertaining to query processing. We overview the most

relevant approaches to modeling context for ubiquitous computing. We provide an

analysis of the existing surveys that have focused on context modeling, and discuss the

relevance of their underlying evaluation frameworks (Sect. 3.3). We place particular

emphasis on the query-processing approaches used to manage contextual information

1Workshop on Modeling and Reasoning in Context (MRC 2008 -

http://events.idi.ntnu.no/mrc2008/). Workshop on Context Modeling and Reasoning (CoMoRea

2009 - http://nexus.informatik.uni-stuttgart.de/COMOREA/). Workshop on Context Modeling and

Management for Smart Environments (CMMSE’08 - http://flash.lakeheadu.ca/ rbenlamr/cmmse08/)

3.1 Location Models 13

Sensing system

Context model

Context-aware service
Query

processing

Real world
abstraction

updates

queries

Smart environment

Figure 3.1: Context-aware services can sense and react to the physical environment where
they are deployed.

(Sect. 4.2). We discuss various problems, shortcomings, and challenges posed by

context modeling at large, and highlight some proposals to address some of them

(Sect. 4.3).

Other important topics that are not directly related to computer-system issues

fall outside the scope of this survey. Some of these are context-awareness applied to

the fields of human-computer interactions, expert systems, and software agents. As a

side note, we have not specifically overviewed context-aware systems that have been

developed since their introduction in the early 90s, nor have we looked at context

middleware, infrastructures and toolkits. We refer to Strimpakou et al.’s review [8] of

the main projects and to Baldauf et al. [9] for their comprehensive overviews.

Much of the context information involved in pervasive systems is derived from

sensing devices. There is usually a significant gap between sensor output and the level

of information that is useful to applications. Therefore, this gap must be bridged by

various kinds of processing of context information before the information is passed to

context-aware services.

3.1 Location Models

Location is one the most typical contextual information. Context-aware applications

primarily use location – of people, objects, and computational devices – as their main

14 Context Modeling

source of contextual information. Indeed as significant progress is achieved in location-

sensing and -tracking technologies – e.g., the Global Positioning System (GPS), Radio

Frequency IDentification (RFID) tags, and ultrasonic-based tracking systems – location

has become de-facto the preeminent contextual information. The functions of a location

sensor can be classified into two typical approaches: positioning and tracking. The

former measures it own location with the help of the infrastructure, and the latter

measures the location of other located objects. Their output may be in raw coordinates,

whereas an application might be interested in identifying the building or room users

are in. Moreover, requirements can vary between applications. Therefore, a context

model must support multiple representations of the same context in different forms and

at different levels of abstraction, and must also be able to capture the relationships

that exist between alternative representations.

There are many types of location information, e.g., rooms in a house and latitude-

longitude on the earth. These different types need to be expressed with different

coordinates and data structures. Most existing context-aware systems maintain con-

textual information in the output format of the underlying sensing system. Therefore,

they tend to depend on their current sensing systems. They cannot be used when

their sensing systems are changed. Therefore, several researchers have proposed and

defined data structures for abstracting and modeling location-based information to be

as independent of sensing systems as possible. Becker and Dürr reviewed the location

models [10].

3.1.1 Geometric Models

They represent the positions of people and objects as geometric coordinates, captured

by positioning sensors. The most prominent reference-coordinate system for outdoor

environments is GPS, which is widely used for navigation-based applications. However

such fine-grained information is often meaningless in human interactions and lacks any

semantics for describing the relations between locations. Geometric coordinates are

therefore contextualized with secondary human-readable information. In navigation-

based applications, GPS coordinates are represented by moving points on city maps.

3.2 Context Models 15

3.1.2 Symbolic Models

They are applied in areas where information about data interconnectivity or topology

is more important, or as important, as the data themselves. In these applications, the

data and relations between them, are usually at the same level. Introducing graphs as

a modeling tool has several advantages for these types of data. It allows for data to

be more naturally modeled. Graph structures are visible to the user and they allow a

natural way of handling application data, e.g., hypertext or geographic data. Graphs

have the advantage of being able to keep all the information about an entity in a single

node and show related information by arcs connected to it. Existing symbolic-based

models can be viewed as subsets of this category.

3.1.3 Hybrid Models

We need to choose location models carefully with respect to the requirements for spatial

reasoning and modeling effort involved. Both humans and computers can easily under-

stand the symbolic model, but there is no precision with geometric models. Therefore,

several researchers have proposed eclectic models, called hybrid location models [11]. A

hybrid model has both the advantages and disadvantages of the previous tow models.

A few researchers have proposed semantic models, which have rather been like focusing

purely on position by using ontologies.

3.2 Context Models

While the computer-science community has initially perceived context as a matter of

user location, as Dey stated [12], in the last few years this notion has not simply

been considered as a state, but part of a process in which users are involved; thus,

sophisticated and general context models have been proposed to support context-aware

applications that use them to (a) adapt interfaces, (b) tailor the set of application-

relevant data, (c) increase the precision of information retrieval, (d) discover services,

(e) make user interactions implicit, or (f) build smart environments [13]. For example,

16 Context Modeling

a context-aware mobile phone may know that it is currently in a meeting room, and

that its carrier has just sat down. The phone may conclude that the user is currently

in a meeting and reject any unimportant calls [14].

3.2.1 A Great Variety of Frameworks

Computing systems may need to understand the real world to provide services accord-

ing to context within it. But unlike humans, they cannot maintain all the information

about the real world. Consequently, they are required to extract and maintain their

context of interest as models of the real world inside them. Most existing context

models have been designed and implemented in an ad-hoc manner, in the sense that

their context models are premature or dependent on the underlying sensing systems.

A few researchers have begun to look at the frameworks for context-aware systems

more generally, independently of specific applications, including context middleware,

infrastructures, and toolkits [15] [16] [17] [18]. Such work facilitates the building of

context-aware systems. Tools for end-users to program context-aware systems are also

being built on top of these infrastructures.

Chen and Kotz [19] thoroughly reviewed the research on context-aware mobile com-

puting. They provided a complete overview of the major context-aware applications

that had been built, and gave a snapshot of the underlying context models. They

highlighted the following six data structures.

Key-value Model

A key (or identifier) in this simple model corresponds to an attribute of the envi-

ronment that has a value. This value is usually measured by sensors embedded in

the environment. For example, <Room 31 temperature, 24> is such a <key, value>

pair. Key-value models were used by Schilit et al. [20] to manage location informa-

tion. For obvious reasons, this simple model has been replaced by more expressive

and flexible alternatives. The model has problems with its expressiveness but it can

be directly maintained on large-scale distributed systems like cloud computing, where

3.2 Context Models 17

data are maintained on a huge number of computers that are loosely coupled.

Markup Model

Markup-based models use a hierarchical data structure consisting of markup tags with

attributes and content. Profiles represent typical markup-scheme models. Typical

examples are the Composite Capabilities/Preference Profile (CC/PP) and User Agent

Profile (UAProf) which are encoded in RDF/S with XML notation [21].

Object-oriented Model

This is based on the concept of objects and relationships between them as in the

object-oriented programming paradigm. Rather than using implementation-based con-

cepts like records, object-oriented models provide flexible structuring capabilities by

fully-fledged object-orientation mechanisms such as encapsulation, reusability, and in-

heritance. Objects are used to represent various types of contextual information (e.g.,

temperature and location); they encapsulate the operations used for context processing.

Logic-based Model

Facts, expressions, and rules are used to define a context model. Contextual infor-

mation comprise facts described by some rule-based mechanisms. Ranganathan et al.

[22] and Katsiri and Mycroft [23] applied first-order logic to reason with contextual

information, and Henricksen [24] applied the same techniques to describe and reason

with situations. Others like Sohn [25] provided end-users with a toolkit that allowed

them to develop context-aware applications by specifying rules. Overall, rule-based

programming has proved to be intuitive and well-suited to prototyping context-aware

applications.

Ontology

Numerous projects use ontologies and the tools from the “Semantic Web” to represent

and reason with context [26]. Ontology-based techniques support a vocabulary for

18 Context Modeling

situation predicates [27], so that the data representations in these projects might be

shared across different systems, or even retrieved from a store over the Web. Also,

ontologies can also provide vocabularies and additional semantics to sensor predicates,

i.e., such predicates can represent context attributes specified by an ontology. This

approach not only has the advantages but also the disadvantages of ontology-based

data representation.

Situation Logic

Loke [27] took rule-based programming further by representing situations and not only

programming rule-based triggers for context-aware actions. He explored the integra-

tion between context infrastructures and LogicCAP, with the infrastructures providing

sensed contextual information and LogicCAP as the programming layer.

3.3 Evaluating Context Models

This section reviews some existing survey papers and discusses their methods to classify

and evaluate context models. These papers are presented in chronological order of

publication.

3.3.1 Requirement-based Evaluation Framework

In a 2004 paper, Strang and Linnhoff-Popien [1] evaluated six modeling approaches

that are deemed to be the most relevant to context-aware computing. Their evaluation

framework was based on a set of six requirements that ubiquitous computing systems

should satisfy.

Distributed Composition. Context-aware systems are distributed, and thus do

not have any central instance responsible for the creation, deployment, or maintenance

of data and services, particularly context descriptions. Instead, the composition and

administration of a context model and its data varies with notably high dynamics in

terms of time, network topology, and source.

3.3 Evaluating Context Models 19

Partial Validation. On the structural as well as on instance level, even if there is

no single place or point in time where the contextual knowledge is available on one

node as a result of distributed composition. This is particularly important because

of the complexity of contextual interrelationships, which make any modeling intention

error-prone.

Richness and Quality of Information. The quality of information delivered by

sensors varies over time, as well as the richness of information provided by different

kinds of sensors characterizing an entity in an ubiquitous computing environment,

may differ. Thus, a context model appropriate for use in ubiquitous computing should

inherently support both quality and richness.

Incompleteness and Ambiguity. The set of contextual information available at

any point in time characterizing relevant entities in ubiquitous computing environ-

ments is usually incomplete and/or ambiguous, particularly if this information is gath-

ered from sensor networks. This should be covered by the model, for instance by

interpolating incomplete data on the instance level.

Level of Formalism. It is always a challenge to describe contextual facts and in-

terrelationships in a precise and traceable way. For instance, carrying out the task

“print document on the nearest printer” requires a precise definition of terms used in

the task, for instance what “nearest” means. It is extremely important that all the

entities share the same interpretation of the data that are exchanged, as well as their

underlying meaning.

Application to Existing Environments. From the implementation perspective,

it is important for a context model to be applied within an existing infrastructure of

ubiquitous computing components.

In addition to the models previously described, Strang and Linnhoff-Popien added the

graphical models. Their conclusions are summarized in Fig. 3.2. The results reveal

that ontologies have the most expressive models and fulfil most of the requirements.

20 Context Modeling

Ontology

Object-oriented

Logic-based

Markup

Key-value

Graphical

Distribution

Ontology

Markup

Object-oriented

Key-Value

Logic-based

Graphical

Quality

Ontology

Graphical

Object-oriented

Markup

Logic-based

Key-Value

Validation

Ontology

Object-oriented

Markup

Graphical

Logic-based

Key-Value

Ambiguity

Ontology

Logic-based

Markup

Graphical

Object-oriented

Key-Value

Formalism

Markup

Ontology

Key-Value

Graphical

Object-oriented

Logic-based

Application

Figure 3.2: Evaluation of the six major context-modeling approaches based on six re-
quirements defined by Strang et Linnhoff-Popien [1].

3.3.2 Data-based Evaluation Framework

Bolchini et al. [13] provided a comprehensive evaluation framework for comparing

context-aware services and their underlying context models. The results of their anal-

ysis were intended to help designers build context-aware systems and choose the context

model that was the most appropriate to their systems’ specifications and requirements.

They classified the features of context models into three groups:

• Modeled aspects: The set of context dimensions managed by the model. This

includes the notion of space and time – which can be represented as absolute or

relative –, context history, subject, and user profile.

• Representational features: The general characteristics of the model itself. This

includes the type and level of formalism, flexibility of the model, variable context

granularity, and valid context constraints.

• Context management and usage: The way the context is built, managed, and

exploited.

3.3 Evaluating Context Models 21

Bolchini et al. placed great emphasis on context-aware data-tailoring, and designed

their evaluation framework according to this. Contextual data acquired from the sens-

ing environment was used to filter the data normally processed by the applications.

Context-data tailoring has three goals: (i) to provide more relevant data for users

(e.g., time- and location-based), (ii) to match the physical constraints of the devices,

and (iii) to improve the efficiency of query processing.

3.3.3 Discussion

Any context model is designed according to a specific set of requirements. These

requirements are based on the nature of the contextual information to be handled by

the context-aware services. In this section, we look at the characteristics of context

information, and then discuss the requirements used to build the evaluation frameworks

that were previously presented.

Target-dependent Context Information

Contextual information can have different natures. Dey [12] distinguished between

three kinds of contextual information or entities: places, people and things. Each en-

tity is characterized by attributes that fall into one the following categories: identity,

location status, or time. Context information can be characterized as static or dy-

namic. Static context information describes those aspects of a pervasive system that

are invariant, such as a persons birthday.

The persistence of dynamic context information can be highly variable. E.g., the

relationships between colleagues typically can endure for months or years, whereas a

persons location and activity often change from one minute to the next. Persistence

characteristics influence the means by which context information must be gathered.

While it is reasonable to obtain largely static context directly from users, frequently

changing contexts must be obtained by indirect means, such as through sensors.

Pervasive computing applications are often interested in more than the current state

of the context. They can also rely on activities planned for the future. As a result, the

22 Context Modeling

contextual description might comprise context histories, both past and future.

Requirements of Services

Arguably, distributed composition is orthogonal to any context-modeling issues, be-

cause it is concerned with the architecture of the system and its underlying imple-

mentation. Also, the richness and quality of the information is both technology- and

application-dependent. Data models have their own sets of requirements. For exam-

ple, Korpip and Mntyjrvi [28] presented four requirements and goals having designed

a context ontology:

• Simplicity: The expressions and relations should be as simple as possible to

simplify the work done by applications developers.

• Flexibility and extensibility: The ontology should support the simple addition of

new context elements and relations.

• Genericity: The ontology should not be limited to special kinds of context atoms

but rather support different types of contexts.

• Expressiveness: The ontology should allow as many context states to be described

as possible, and with arbitrary levels of details.

Knowledge- vs. Data-Modeling

While summarizing Strang and Linnhoff-Popien’s review [1] of the major context-

modeling approaches, Moore et al. [29] raised somes concerns about knowledge-based

modeling, i.e. ontology-based modeling. In particular, they pointed out that the

modeling function of a given ontology fails to address the issue of context processing.

Acknowledging that ontologies provide a powerful support for knowledge reasoning,

Roussaki et al. [30] nevertheless mentioned the same shortcomings in regard to the

acquisition, management, and processing of contextual data. Serious concerns about

ontologies have been raised [31] in the Semantic Web community as well. Pils et al.

[32] summarized these problems in terms of:

3.3 Evaluating Context Models 23

• Readability: Because of the strict standardisation of semantics, it is difficult for

us to comprehend specifications defined by an ontology, and find relevant pieces

of information.

• Costs: It can be expensive to adopt ontologies especially for small businesses like

shops or restaurants.

• Disorder: The more the ontology model is structured, the more effort is required

to increase its structure or even maintain the status quo. Indeed, the system S of

semantic specifications exhibits the entropy H: H(S) = −
∑n

i=0 π(li) · log(π(li))

where π(li) is the probability that humans will misinterpret information, and it

is proportional to the frequency of information use.

3.3.4 Context Modeling as Active Database Systems

Conventional databased management systems are passive. Data are created, retrieved,

modified, and deleted only in response to operations issued by users. By contrast,

context-aware computing is required to automatically carry out some services in re-

sponse to certain changes in the real world, once conditions are being satisfied. There-

fore, it needs some facets that active database systems have [33]. Unfortunately, there

have been few practical implementations of general-purpose active database systems

[34], and as a result, several research projects on context-aware computing have at-

tempted to implement active-database systems optimized for context-aware computing

or to use various techniques found in the literature on active-database systems.

Satoh [7] [35] introduces a world model for location-aware and user-aware services

in ubiquitous computing environments, that can be dynamically organized like a tree

based on geographical containment such as that in a user-room-floor-building hier-

archy. Each node in the tree is constructed as an executable software component,

that enables location-aware services to be managed without databases and by multiple

computers. The proposed world model also provides a unified view of the locations,

as they not only refer to physical entities and spaces, including users and objects,

but also computing devices and services. The model is unique among other existing

24 Context Modeling

context-aware computing systems, because it consists of not only data elements but

also programmable entities to define services. Therefore, the model itself automati-

cally provides context-aware services in response to structural changes in the model

corresponding the contextual changes in the real world.

To know an object is to lead to it through a context which the

world provides.

– William James

4
Context Processing

Contents

4.1 Mapping Contextual Information on Relational Database

Model . 26

4.1.1 Resurgence of Graph-database Models 27

4.1.2 Semi-structural Data Models for Contextual Information . . . 28

4.2 Query for Contextual Information 29

4.2.1 Hybrid Approaches . 29

4.2.2 Application-independent Query Processing 30

4.2.3 Application of Formal Methods 30

4.3 Discussion . 31

4.3.1 Holistic Approach to Context Awareness 31

25

26 Context Processing

4.3.2 Semantic Computing . 32

4.3.3 Shortcomings with “Modeling” Context 32

4.4 Conclusion . 33

Current research on ubiquitous computing has paid attention to the design

and implementation of application-specific location-aware services, such as smart

rooms and navigation systems. These have often been designed for particular sensing

systems (e.g., GPS and RFID tags) that capture context information about users and

objects in the environment. In this section, we review work pertaining to the manage-

ment of contextual data, which is often overlooked. In fact, most existing context-aware

services maintain and process contextual information in an ad-hoc manner and/or rely

on centralized and inadequate data infrastructures. Hereafter, we present the underly-

ing connection between context models and query processing.

From a data-management viewpoint, contextual information is data that have to

be captured, processed, and managed by the system. We previously discussed typical

context models such as key-value and markup models. These models may be suitable

for expressing contextual information, but not so for maintaining the information in

computing systems. Context modeling shares very similars characteristics with data

modeling. There has been a broad consensus in the database and data-engineering

communities about the gap between the structure of data modeling and structure of

data maintenance.

4.1 Mapping Contextual Information on Relational

Database Model

A variety of data structures has been proposed and these have then faded away. Of

these, the relation database (RDB) model, which was proposed by Edgar Codd in

1970 [36], is still the reference model in database systems. Indeed, there have been

many commercial and open-source implementations of RDB. Many researchers have

attempted to maintain contextual information in existing RDB systems. However,

4.1 Mapping Contextual Information on Relational Database Model27

Door

Bob

Bob

Room 1

Floor

Corridor
Room 2 Room 3 Room 4

Computer A Printer Computer
BAlice

Door

Computer A

Printer

Room 1 Room 3

Alice

Corridor

Floor

Computer B

Room 2 Room 4

Figure 4.1: Example of a graph-based data structure representing a real-world space.

the RDB model is different from context models. Nevertheless, several researchers

have extended RDB systems to have the ability of supporting contextual information.

Spatial databases represent the most typical extensions of RDB systems [37]. They can

store and query data related to objects in space, including points, lines and polygons,

whereas typical RDB systems only support numerical and character types of data.

They may be useful for maintaining geometric models for location-awareness, but they

cannot support other models.

4.1.1 Resurgence of Graph-database Models

Graph database models are applied in areas where information about data intercon-

nectivity or topology is more important, or as important, as the data itself [4]. In these

applications, the data and relations between the data, are usually at the same level.

Graph database models are often used in knowledge representations such as semantic

nets and frames. Introducing graphs as a modeling tool has several advantages for this

type of data:

1. It allows for a more natural modeling of data. Graph structures are visible to the

user and they allow a natural way of handling applications data, e.g., hypertext

or geographic data. Graphs have the advantage of being able to keep all the

information about an entity in a single node and showing related information by

arcs connected to it. Graph objects (like paths and neighborhoods) may have

28 Context Processing

first order citizenship; a user can define some part of the database explicitly as a

graph structure, allowing encapsulation and context definitions [38].

2. Queries can refer directly to this graph structure. Associated with graphs are

specific graph operations in the query language algebra, such as finding shortest

paths and determining certain subgraphs. Explicit graphs and graph operations

allow users to express a query at a high level of abstraction. To some extent, this is

the opposite of graph manipulation in deductive databases, where fairly complex

rules often need to be written. It is not important to require full knowledge of

the structure to express meaningful queries. Finally, for purposes of browsing it

may be convenient to forget the schema.

3. For implementation, graph databases may provide special graph storage struc-

tures, and efficient graph algorithms for accomplishing specific operations.

4.1.2 Semi-structural Data Models for Contextual Informa-

tion

There has been an avalanche of work on semi-structured data in the last decade in

database engineering research, because XML, which is a data representation based on

a semi-structured model has been widely used. Several researchers have attempted

to represent contextual information using XML-based notation, in particular the RDF

(Resource Description Framework) notation. RDF is a standard put forward by the the

World Wide Web Consortium (W3C) to mainly represent metadata on Web data. RDF

represents data resources with object-attribute-value groups. It provides a means of

adding semantics to a document without making any assumptions about its structure.

Therefore, RDF can support the complicated data structures of contextual information.

In fact, there have been many projects that have attempted to represent contextual

information in XML or RDF. However, XML and RDF notations are not suitable

for maintaining contextual information. Contextual information dynamically evolves

according to changes in the real world, whereas the notations are static.

4.2 Query for Contextual Information 29

4.2 Query for Contextual Information

Query mechanisms are indispensable for most database systems [3]. There has been

a broad consensus about what these conceptual tools should offer: data structuring,

description, maintenance and some mechanisms to retrieve or query the data [4]. How-

ever, research on contextual information has focused on the representation of informa-

tion. Instead, few researchers have paid attention to query mechanisms for contextual

information. This is a serious obstacle in context-aware services.

4.2.1 Hybrid Approaches

Aiming at providing contextual-information retrieval that is both scalable and robust,

Roussaki et al. [30] enhanced the database with some location-based retrieval mecha-

nisms. They implemented a hybrid context model that maintained (i) symbolic entities

like streets and buildings, and (ii) objects located in a coordinate system. The context

database maintained a hierarchy of entities. By combining the semantical expressive-

ness of ontologies with the hierarchical structure of tree-based location models, they

could dispatch and route the queries along the context database hierarchy and obtain

a significant increase in information retrieval. The same approach has been developed

further to improve context filtering [32].

Ilarri et al. [39] investigated query processing for location-based services. They

targeted outdoor applications that have to handle a fair number of moving objects in

real-time. Responsiveness and performance are therefore critical. The authors focused

on geometric location models that provide both quantitative and high-resolution data

on moving objects. Acknowledging that fine-grain GPS coordinates may be inappro-

priate for many location-based applications (high-resolution requires more overhead),

they introduced the notion of location granules. Granules are geographical areas that

can be defined at different scales, e.g., freeways and buildings. However, the semantics

of the granules are rather poor, since relationships between granules are not explicitly

defined. Therefore, the query language used to retrieve the location cannot benefit

from the spatial semantics of the granules.

30 Context Processing

4.2.2 Application-independent Query Processing

Grossniklaus and Norrie [40] proposed an object-oriented version control to address

the challenges of data management in context-aware services. The query-processing

framework was application-independent. Indeed, as many frameworks were specific to

a single application domain, their notion of context (in particular the context dimen-

sions e.g., users, devices, and environmental factors) was only relevant to a subset of

applications. Moreover, representation and storage are often implied by the context

model. They proposed a general approach, not limited to any particular context model.

It was similar to Bolchini et al.’s [13] that emphasized the importance of context-based

data tailoring.

Perich et al. [41] proposed a solution to managing data in pervasive computing ap-

plications. It broadly consisted of two parts: treating the devices as semi-autonomous

entities guided in their interactions by profiles and context, and designing a contract-

based transaction model. The profile was grounded in a semantically rich language

for representing information about users, devices, and data objects each described in

terms of “beliefs”, “desires”, and “intentions” - a model that has been explored in

multi-agent interactions. They introduced data-based routing algorithms, semantic-

based data caching, and replication algorithms enabling mobile devices to utilize their

data-intensive vicinities.

4.2.3 Application of Formal Methods

Hoareau and Satoh [5] introduced a query-processing framework for location-based

services that is based on model checking. As most context-aware systems tend to

query the underlying location models in an ad-hoc manner, it is difficult to guarantee

the quality of the results and the reliability of context-aware services. Hoareau and

Satoh proposed (i) a hybrid logic-based language that can express location queries over

symbolic representation of space, and (ii) a model-checking-based query-processing

engine that processed queries over these symbolic representations. They subsequently

implemented the language in to a query-processing framework. The latter ensures

4.3 Discussion 31

that the results of any query (i) would not miss any information that satisfied its

necessary and sufficient conditions and (ii) would not contain any information that

did not satisfy the conditions. Model checking has proven valuable to query graph-

based context models. Indeed, query language for context-aware services need some

theoretical underpinnings, just like SQL is built on relational algebra.

4.3 Discussion

4.3.1 Holistic Approach to Context Awareness

Davies and Gellersen [42] discussed the technological and sociological challenges in

creating the widely deployed, ubiquitous computing systems that Weiser envisioned

more than fifteen years ago. They considered Weiser’s scenario [2] and its “foreview

mirror” application, which Sal uses on her way to work, and describe how it could

be implemented with existing technologies. The application would require a satellite

navigation and information system, a video camera-based system for detecting available

parking spaces, and a location-aware system for recommending nearby shops. But since

these three components are currently designed, built, and deployed independently, they

lack the actual mechanisms for seamlessly working together. In particular, they cannot

integrate and process different views of the world, or contexts, in which they run.

Arguably, one needs to have a holistic approach to context-awareness. Such an

approach, however, raises several issues that go beyond mere engineering. We will not

elaborate on these issues, but it is worth mentioning that besides people’s concerns

about their privacy, the designers of context-aware systems may have to cope with

various legislations on data protection, which could eventually inhibit the deployment

of their systems. Moreover, the question of cost repartition is critical for the success

of context-aware systems, in cases where several companies would be providing com-

ponents for individual services. As Davies and Gellersen [42] point out, no effective

business models have been successfully implemented thus far.

32 Context Processing

4.3.2 Semantic Computing

The technical issues of integrating different components for the sake of seamless and

more enjoyable user experiences have been initially approached within the Web com-

munity. The Semantic Web, which Noy defines as “a form a Web content that will be

processed by machines with ontologies as its backbone” [31], has had a considerable

influence on the context-aware research community. For example, in their review on

context modeling, Strang and Linnhoff-Popien [1] concluded that ontologies were the

most flexible and effective approach. The Semantic Web stems from our sheer inabil-

ity, as humans, to process the ever-growing amount of online information. We need

some help from machines. The idea behind the Semantic Web is to create indepen-

dent software agents that would share the notions they operate with. This mutual

“semantic foundation” composed of ontologies would make the agents more amenable

to work together. Reasoning on ontological models has proved valuable in supporting

many context-aware applications. Yet, it is far from being the panacea for achieving

context-awareness. Moore et al. [29] pointed out that ontologies fails to address the

issues of context processing. Roussaki et al. [30] further elaborated on these issues.

4.3.3 Shortcomings with “Modeling” Context

Arguments have recently been aired that the current notion of “context” and hence

context-aware computing builds on a positivist philosophical stance, where “context”

is stable, delineable, and sense-able information separated from human activity. The

argument is that the notion of “context” as referring to the “usage context” for a

specific person using some technology cannot be separated from the human activity.

“Context” then becomes firmly tied to “meaning” i.e., that context cannot be seen

(and much less sensed) as an objective entity in the world, but only exists in connection

to subjective meaning in an activity [43].

4.4 Conclusion 33

4.4 Conclusion

Research on context-awareness has been conducted over a decade, but modeling and

processing contextual information continues to pose some major challenges. The in-

trinsic complexity of representing such heterogeneous and volatile information adds to

a large range of applications. Although each of the various proposals have addressed

reasonable requirements for ubiquitous computing systems, it is unclear whether they

can be generalized to suit all context-aware applications. Indeed there is no well-defined

standard metric to actually evaluate the advantages and disadvantages of contextual

models.

The systems that tend to be completely general and support a wide range of context

models and applications often fail to be effective. In fact, the practical applicability

and usability are important parameters to determine the quality of context modeling,

and they are often inversely proportional to the generality of the model: the more

expressive and powerful, the less practical and usable. Different context subproblems

and applications have almost incompatible requirements, and there is no common and

standard solution. That is the reason why the context models are defined on a per-

application basis.

34 Context Processing

Part II

Contribution

35

In some areas all the steps are equally elegant and interesting,

whereas in other areas we see elegant steps with a lot of dull work

in between, usually suppressed by the author. In such areas people

are likely to hate formal verification.

– N.G. de Bruijn

5
Formal Query Language

Contents

5.1 Querying Location Models 38

5.1.1 Location Query Processing 39

5.1.2 Motivation and Approach . 39

5.2 Background . 40

5.2.1 Towards Symbolic Location Models 40

5.2.2 Query Processing and Temporal Model Checking 41

5.2.3 Hybrid Logics . 43

5.3 Hierarchical space graph: a semantic and data model . . 43

5.4 Hybrid Logics-Based Query Language 45

5.4.1 Syntax . 45

37

38 Formal Query Language

5.4.2 Semantics . 46

5.5 Implementation . 49

5.5.1 Architecture . 49

5.5.2 Query Processing . 50

5.6 Related Works . 51

5.7 Conclusion . 52

The twenty-five-year-old vision of a ubiquitous computing world inspired by

Mark Weiser [2] has spread out of research laboratories, and has become a tangible

reality in our everyday lives [44]. While connected, people do not sit still behind desktop

computers any longer, but move within their daily environments (e.g. homes, offices,

campuses, cities), using more and more sophisticated devices, such as cell phones and

wearable computers. Thus, they continuously modify the set of –potentially mobile–

services and objects they may come to interact with. That is a reason why location-

awareness has become the most popular feature of ubicomp systems. It enables emerg-

ing applications to sense, and adapt to, locations of miscellaneous entities, making the

experience and interaction of users with intelligent surroundings easier and more ap-

pealing. We believe that location-dependent query processing is a major requirement

of ubiquitous computing systems, being closely related to how we model and organize

location information.

5.1 Querying Location Models

Location modeling is an extensively studied topic within the ubicomp community.

Many models were investigated, along with philosophical discussions about the con-

cept of location per se. Previous works on location modeling focused on the needs of

particular applications such as smart rooms [45] and navigation systems [46], or re-

lied on specific tracking technologies, e.g. the Global Positioning System (GPS) [47],

radio-frequency identification (RFID) [48]. As far as we know, no model was used as

an explicit data structure for location-dependent query processing.

5.1 Querying Location Models 39

Figure 5.1 illustrates a typical location-aware system and points out the crucial

role played by the location model. Updated by the tracking system, the location

model represents the physical world, identifies and locates users/objects, and provides

an interface for various services.

queries

updates

tracking system

Location
Models

interacts
with

user

services

locates

answers

Figure 5.1: Location-aware system.

5.1.1 Location Query Processing

Location query processing corresponds to mobile search over (fragments of) location

models, in which the actual service issuing the queries has its counterpart represen-

tation. As described by Becker et al. [10], location-dependent queries encompass

position queries (“where is the conference room?”), nearest neighbor queries (“where

is the closest sushi restaurant to my house?”), navigation queries (“how can I reach

the bus terminal?”), and range queries (“what are the convenience stores located in

my neighborhood?”). Although the sources and targets of queries can be mobile, our

approach does not assume continuous queries.

5.1.2 Motivation and Approach

A general framework for location query processing is necessary so that users, objects

and services can effectively benefit from their location-aware surroundings. We aim

at providing a query language for location-aware services by advocating the need for

defining theoretical foundations. Indeed, modern database systems and standard query

40 Formal Query Language

languages (e.g. SQL) rely on first-order logic, efficiently implemented using relational

algebra [49].

Our approach rests on a symbolic model of space, along with the hierarchical con-

tainment relation between places. We extend this commonly used representation to a

semantic model for hybrid logics [50], and thus map location query processing into a

model checking framework.

Thereafter, we exhibit the connection between query processing and model checking

(Sect. 5.2). We then formally extend the hierarchical space tree to a data structure

that suits the requirements of model checking (Sect. 5.3). We then define the formal

syntax and semantics of the query language (Sect. 5.4), and outline the implementation

of our location query processing framework (Sect. 5.5). After outlining related works

(Sect. 5.6), we conclude and discuss future works (Sect. 5.7).

5.2 Background

5.2.1 Towards Symbolic Location Models

Leonhardt [51] proposed a taxonomy for location models and pointed out two major

categories: geometric and symbolic models. Geometric models only represent positions

of entities as coordinates. For example, the most prominent reference coordinate system

for outdoor environments is the GPS, widely used for navigation applications. However,

such low-level information has little utility for human interaction and lacks semantics to

describe relations between locations. In existing applications, coordinates are therefore

contextualized with auxiliary human-readable information used in city maps. Several

proposals [52, 7] deal with higher-level information represented by symbolic models,

the notion of place which has been defined as:

“[...] a human-readable labeling of positions. A more rigorous def-

inition is an evolving set of both communal and personal labels for

potentially overlapping geometric volumes. An object contained in a

volume is reported to be in that place”, Hightower [53].

Location information is then defined by the interrelations between all the places and

5.2 Background 41

is commonly represented by a hierarchical space tree (Fig. 5.2). The nodes represent

places, and the edges represent containment relations between these places. We propose

to derive location query processing into a dynamic graph search, and advocate a model

checking approach to formally address this problem.

Hospital

Floor 1 Roof

Helicopter

Pilot Victim Paramedic

Nurse Surgery

........

PDA

Cell phone

.....

place

entity

device

Figure 5.2: Example of hierarchical space tree for a hospital.

5.2.2 Query Processing and Temporal Model Checking

Model checking [54] is a well-founded and widely used approach to analyze various

computing systems, both hardware and software. Model checking aims at automatically

checking if a given system S satisfies its specification P . For example, S can be an

automatic lighting system in a conference room, whose main specification P is to switch

on when at least one person is inside. Formally, inputs to a model checking algorithm

are:

• a finite transition graph called Kripke structure [55]. A Kripke structure is a

directed graph whose nodes represent the reachable states of the system and

whose edges represent state transitions,

• a property written in a suitable temporal logic formula.

42 Formal Query Language

The connection between model checking and query processing has been studied in

the literature, because both evaluate logic-based formulas over finite data structures.

In particular, researchers have investigated model checking approaches to query semi-

structured data based on temporal logic such as the Computational Tree Logic (CTL)

[55]. However, temporal logic does not suit location query processing, because of at

least two major limitations:

• Unnamed states : As mentioned by Franceschet et al. [56], temporal logic lacks

mechanisms to name individual nodes of the Kripke structure, whereas location-

related queries deal with identified places. Moreover, temporal logics cannot

express relative node names that are useful when the user has only a limited

knowledge of his environment. Figure 5.3 illustrates such a relative reference:

the user queries a place close his current location “here”,

• Top-to-bottom query routing : Because temporal logic defines operators for current

and future states, location queries can only be routed downward the containment

hierarchy. Due to (1) the hierarchical nature of the location information and (2)

the heterogeneity of sources and targets of queries, our language should provide

both downward and upward operators to navigate within the space tree.

Since temporal logic does not meet our requirements, we assume from now on hybrid

logics [50].

Jinbocho station, Tokyo
Metro, Japan, exit A8

location model

q : "find libraries
near here" "here"

q

......

Figure 5.3: Example of a query with a relative location.

5.3 Hierarchical space graph: a semantic and data model 43

5.2.3 Hybrid Logics

Hybrid logics introduce the concept of nominals. Nominals are propositional variables

that are true at exactly one node in the Kripke structure, i.e. if p is a nominal, the

formula p holds if and only if the current node is called p. Thus, it is easy to capture

the notion of place: a place is associated to a nominal. Besides, hybrid logics define

the following operators:

• access operator @p: It gives random access to the place named p. The formula

@pφ holds if and only if φ holds at the place p,

• downarrow binder ↓x: It creates a new name x and assigns it to the current node.

The formula ↓x.φ holds if and only if φ holds whenever the current node has been

named x.

5.3 Hierarchical space graph: a semantic and data

model

In order to implement a hybrid logics-based strategy for querying locations over sym-

bolic location models, we extend the hierarchical space tree to a Kripke-like structure

that serves as both a semantic and data model, as follows:

Definition 1 (Hierarchical space graph) A Hierarchical space graph is a 4-tuple

G = {N,R↓, R↑, L : N → P(N)} in which:

• Places are represented by the set N of nodes,

• Transitions R↓ ⊆ N×N and R↑ ⊆ N×N define the containment relation between

parents and children,

• Places are labeled with their children’s names by the function L : N → P(N),

P(N) being the powerset of N .

44 Formal Query Language

■ Cell phone

■ Pilot
■ Victim
■ Paramedic

■ PDA

■ Nurse
■ Surgery ■ Helicopter

■ Floor 1
■ Floor 2
■ RoofHospital

Floor 1 Roof

Helicopter

Pilot Victim Paramedic

Nurse Surgery

PDA

Cell phone

Node

Label

R↓ transition

R↑ transition

■ child 1

■ child n
...

Floor 2

Figure 5.4: Hierarchical space graph extending space tree of Fig. 5.2.

The hierarchical space graph of Fig. 5.4 extends the space tree of Fig. 5.2. Labels

are Boolean variables that refer to the places contained under a given location. For

example, the helicopter returning from a rescue operation may either be on the roof of

the hospital or still on its way back. In the former case, the place Roof would be labeled

by its child Helicopter, whereas in the latter case it would have no label Helicopter, as

the place Helicopter would not be its child.

Definition 2 (Transition relations) The transitions R↓ and R↑ are defined as:

1. R↓ and R↑ are irreflexive, intransitive, asymmetric,

2. ∀ p1, p2 ∈ N : (p1, p2) ∈ R↓ ⇔ (p2, p1) ∈ R↑,

3. ∀ p1, p2, p3 ∈ S : (p1, p2),∈ R↑ ∧ (p3, p2) ∈ R↓ ⇒ p1 = p3.

The property (1) ensures that a place cannot be its own parent or own child (ir-

reflexivity). The intransitivity and asymmetry are trivial. The property (2) defines

the relation between the parent p1 and its child p2. Finally (3), a place cannot have

multiple parents, i.e. there is no overlapping area.

5.4 Hybrid Logics-Based Query Language 45

5.4 Hybrid Logics-Based Query Language

In the previous section, we defined a semantic model to express hybrid logic-based

queries on the location data. “Where is the nurse?” consists of exploring the hierar-

chical space graph and finding the place labeled by Nurse.

5.4.1 Syntax

Definition 3 (Language components) The query language Q contains:

• a countable set N = {p1, p2, . . . , pn} of places,

• a countable set X of variables x1, x2, . . . , xn, used for bound names,

• standard logical symbols ∨, ∧,

• spatial modalities E↓ and E↑,

• hybrid logics operators ↓x (binder) and @p (random access)

The first point we want to draw to the readers attention is that we identify the

places in the model. That is semantically the most important ingredient of hybrid

logics. Given these identifiers (e.g. Hospital, Roof):

• @l gives direct access to the location l,

• ↓x creates a brand new name (or label) x and assigns it to the current location.

For example, if the current location is Roof, the formula ↓here instanciates the

name here and binds it to Roof. As we mentioned earlier, the binding operator

allows us to express relative locations.

• E↓ is the spatial counterpart of the CTL temporal operator EF [54], and E↑ its

backward analogue. E↓ and E↑ are routing triggers that move queries along the

space graph, to both directions.

Definition 4 (Assignment) An assignment b for G is a mapping b : X → N . Given

an assignment b, a variable x ∈ X, and a place p ∈ N , we define bxp by setting bxp(x) = p.

46 Formal Query Language

Every bound name is stored by the assignment b. For example, the binder ↓Emergency

triggered at locationHelicopter creates the name Emergency as an alias forHelicopter.

The assignment b provides a lookup function to retrieve aliases, e.g. bxp(Emergency) =

Helicopter.

Definition 5 (Query language) The well-formed formulas of our language are given

by the following recursive grammar:

FORM ::= true | p | ¬FORM | FORM ∧ FORM

| E↑FORM | E↓FORM | @pFORM | ↓ x.FORM

in which p ∈ N and x ∈ X.

5.4.2 Semantics

step 1

pp p p

p p p p

p p p

p p x

a) Upward
 Operator

 E↑

b) Downward
 Operator

 E↓

c) Access
 Operator

 @

d) Binding
 Operator

 !x

step 2 step 3 step 4

step 1 step 2 step 3 step 4

step 1 step 2 step 3

step 1 step 2

!x

Figure 5.5: The four hybrid operators in action.

The semantics of the hybrid logic formulas, i.e. their formal interpretation in terms

of hierarchical space graphs, is defined. The exact meaning of a formula is given by

5.4 Hybrid Logics-Based Query Language 47

a satisfaction relation connecting the hierarchical space graph with a formula, and is

written as: G, b, l |= ϕ.

Readers who are not familiar with such a notation should regard the left side of the

relation as the context of the query, and the right side as the expression of the query.

• Context : It encompasses the hierarchical space graph G representing the location

model (i.e. the data structure), the binding names locally created by the query

(and stored by the assignment b) and the location l, where the query is being

evaluated.

• Query : It is expressed by a hybrid logics-based formula. We give below its formal

semantics, some informal comments, as well as illustrations to demonstrate the

expressiveness of our query language.

1. G, b, l |= true

True is valid everywhere.

2. G, b, l |= p⇔ p is true at l

Place p is contained in location l. For example, the relation G, b, floor1 |= nurse

is satisfied, i.e. the nurse is on the first floor.

3. G, b, l |= ¬ϕ⇔ G, b, l 6|= ϕ

This is the standard definition of ¬ operator. For example, the relationG, b, surgery |=

¬victim is satisfied, i.e. the victim is not in the surgery.

4. G, b, l |= ϕ1 ∧ ϕ2 ⇔ (G, b, l |= ϕ1) ∧ (G, b, l |= ϕ2)

This is the standard definition of ∧ operator. For example, the relationG, b, helicopter |=

victim∧paramedic is satisfied, i.e. both the victim and the paramedic are inside

the helicopter.

5. G, b, l |= ϕ1 ∨ ϕ2 ⇔ (G, b, l |= ϕ1) ∨ (G, b, l |= ϕ2)

This is the standard definition of ∨ operator. For example, the relationG, b, helicopter |=

nurse ∨ paramedic is satisfied, i.e. either the nurse or the paramedic is inside

the helicopter.

48 Formal Query Language

6. G, b, l |= E↑ϕ ⇔ ∃l′ ∈ N : l′ is reachable from l following R↑ transitions and

(G, b, l′ |= ϕ)

See Fig. 5.5(a). Operator E↑ routes the query upward, searching for a place that

satisfies formula ϕ (steps 1 and 2). Place p is found (step 3), so all the nodes

between p and the source of the query also satisfy ϕ (step 4).

7. G, b, l |= E↓ϕ⇔ ∃l′ ∈ N , such that l′ is reachable from l following R↓ transitions

and (G, b, l′ |= ϕ)

See Fig. 5.5(b). Operator E↓ routes the query downward, searching for a place

that satisfies formula ϕ (steps 1 and 2). Place p is found (step 3), so all the nodes

between p and the source of the query also satisfy ϕ (step 4). For example, the

relation G, b, hospital |= E↓surgery is satisfied, i.e. the surgery room is located

on the first floor.

8. G, b, l |= @pϕ⇔
(
(G, b, p |= ϕ for p ∈ N) or (G, b, g(p) |= ϕ for p ∈ X)

)
See Fig. 5.5(c). Operator @p straightly forwards the query to the specific place p

(step 1), where it is evaluated (step 2). Name p can either be (1) a place identifier

or (2) a bound name. In the latter case, a name resolution is first performed.

For example, the relation G, b, hospital |= @roofhelicopter is satisfied, i.e. the

helicopter is on the roof.

9. G, b, p |=↓x.ϕ⇔ G, bxp , p |= ϕ

See Fig. 5.5(d). Operator ↓x binds the variable x to the place p, where the query

is evaluated (step 1). Within the same query, x can then be used as an alias for p

(step 2). For example, the formula
(
G, b, hospital |= (E↓ ↓emergency.victim) ∧

(@emergencyparamedic)
)

is satisfied, i.e. there is an emergency place in the hos-

pital where the paramedic is assisting the victim. Emergency is used as an alias

for Helicopter.

5.5 Implementation 49

5.5 Implementation

We built an implementation of the query processing framework, named Chequery which

architecture is depicted in Fig. 5.6. The language itself is independent of any program-

ming languages but the current implementation uses OCAML (version 3.09 or later).

Chequery works in interactive mode: users can change the source of the query by

moving along hierarchical space graphs1 and execute location queries based on the

syntax specified in Sect. 4.

5.5.1 Architecture

Tree-Based Database

The first version of our system supports filesystem-based tree structures, that are

mapped to hierarchical space trees. Files are associated with places, and hierarchical

links are associated with containment relations between places.

OCAML Runtime

Interaction Shell

Model
Builder

Query
Parsing

Hybrid Logic
Model

Checker

Checkery
Core System

Location
Query

Current
Location

Tree Graph

Binders

Context

Query
Evaluation

Figure 5.6: System architecture.

Hierarchical Space Graph

Model Builder processes the input files and extracts their spatial organisation to pro-

duce a corresponding modal structure, i.e. a hierarchical space graph which:

1This navigation system may be related to the navigation inside tree-based filesystems (i.e. enter

and leave a folder).

50 Formal Query Language

1. Associates files with places,

2. Links the places with transition relations according to the containment structure,

3. Labels each place with its contained places. Thus, nodes of the hierarchical tree

graph are labeled places, called worlds2.

type world =

{mutable conta ine r : p l ace ;

mutable va l i d p rop : p lace l i s t ;

mutable n e s t e d l o c : p lace l i s t ;}

The data (or Kripke) structure has the form ((place world (worlds))...). It is imple-

mented in a hashtable, whose keys are world labels and values are worlds. Note that

in the current implementation, after Model Builder is executed, functions implemented

in Hybrid Logic Model Checker use the same modal structure for all queries.

5.5.2 Query Processing

The recursive grammar defining our query language is syntactically analysed by the

Query Parsing module. Query evaluations call the Hybrid Logic Model Checker, that

maintains and updates two kinds of data, the context and the current query expression.

Without any occurrence of binders, queries simply returns Boolean values. Let us

consider the following query (see Fig. 5.4):

G, b, hospital |= E↓nurse

Query evaluation is actually a matching procedure between the hierarchical space

graph G and the logical expression E↓nurse. This relation can be expressed by “is the

nurse inside the hospital?”. The answer would be either “yes” (true) or “no” (false).

Presence is a low-level information, captured by e.g. a sensing system using RFID

tags. Location-based services are either searching for objects or people location. Binder

2“World” is the appropriate term in model checking terminology.

5.6 Related Works 51

operator ↓x enriches the relations, so that results of the model checking algorithm are

either failures or bound places where formulas are satisfied. For example:

G, b, hospital |= E↓(↓ place.nurse)

The result is the nurse’s current location bound to place. The meaning of the

relation changes from “is there a place inside the hospital in which the nurse is located?”

to “where is the nurse?”. The module Binders maintains the bound variables in a list

of pairs {bound variable, real place}. The names of Real places are resolved after a

computation, carried out by a sub-routine of the query evaluator.

5.6 Related Works

Existing research on location-awareness focused on the design and implementation of

application-specific services (e.g. [45, 46]). As a result, data management for loca-

tion information attracted little attention. Many location-based services maintain and

process location information in ad-hoc manners or rely on centralized and inadequate

data infrastructures. As far as we know, the underlying connection between location

modeling and location query processing has not been explored yet.

The DOMINO project [57] indirectly enables this connection by modeling moving

objects, and their dynamic locations, in a database. The authors focus on trajectories of

moving objects and propose a set of spatial and temporal operators to query locations.

However, the data model is built on a centralized architecture and cannot represent any

relation between objects and places. Still in the context of moving objects databases,

Güting and Schneider [58] propose a modal logic-based approach for query processing.

They define a Future Temporal Logic (FTL) to reason about future events3 using

SQL-like query language extensions. However, drawbacks include (1) the location

data are stored in a single data repository, (2) the approach is dedicated to outdoors

environments, along with GPS (i.e. a geometric location model), and (3) trajectories

of objects must be known beforehand by the query processor.

3The authors consider estimations about trajectories of objects.

52 Formal Query Language

5.7 Conclusion

We presented a novel approach to handle location query processing in pervasive com-

puting environments. Starting from symbolic location models (hierarchical space trees),

we defined an extended Kripke-like structure, as both a semantic and data model for

a hybrid logic-based query language. The logic is defined by four modal operators and

provides good expressiveness for common location queries. We implemented a proto-

type system based on the framework. General, our approach is general is not be limited

to location query processing. Actually, it has a broad application domain and can be

applied to any hierarchical data structure.

In some areas all the steps are equally elegant and interesting,

whereas in other areas we see elegant steps with a lot of dull work

in between, usually suppressed by the author. In such areas people

are likely to hate formal verification.

– N.G. de Bruijn

6
Application

Contents

6.1 Query Language . 54

6.1.1 Query Processing . 55

6.2 Approach . 56

6.2.1 Model Checking . 56

6.2.2 Application to Context-aware Computing 57

6.2.3 Logic-based Graph Querying 58

6.3 Implementation . 60

6.3.1 System Architecture . 60

6.3.2 Model Checking Algorithm 61

6.3.3 Query Processing . 62

53

54 Application

6.4 Application . 63

6.4.1 Application to RFID-based Systems 64

6.4.2 Location-aware System for Museums 65

6.4.3 Query Language for Middleware Support 66

6.5 Related Work . 69

Challenges for implementing large-scale context-aware systems abound. Among

these are issues related to the representation, storage, and processing of contex-

tual information in terms of data structures and algorithms [59]. This chapter discusses

these issues within the scope of location-aware services. We argued in the previous

chapters that data management for context-aware services has been overlooked thus

far. We now describe our approach and present its underlying principles, which revolve

around model checking and logic-based graph querying.

Door

Bob

Bob

Room 1

Floor

Corridor
Room 2 Room 3 Room 4

Computer A Printer Computer
BAlice

Door

Computer A

Printer

Room 1 Room 3

Alice

Corridor

Floor

Computer B

Room 2 Room 4

Figure 6.1: Real-world space and its corresponding graph-based data structure.

6.1 Query Language

From the stance of information management, contextual information is data that has

to be captured, processed, and managed by the system. Context modeling shares very

similar characteristics with data modeling in the database community. As Angles and

Gutiérrez pointed out, the relational model is designed for simple record-type data –

where the schema is fixed – and the query language cannot explore the underlying

graph of the relationship among the data such as paths, neighborhoods, and patterns.

We need a query language which mechanisms can directly refer to the graph struc-

ture corresponding to contextual information in the real world. Associated with graphs

6.1 Query Language 55

are specific graph operations in the query-language algebra, such as finding shortest

paths and determining certain subgraphs. Explicit graphs and graph operations allow

users to express a query at a high level of abstraction. To some extent, this is the

opposite of graph manipulation in deductive databases, where often, fairly complex

rules need to be written. It is not important to acquire full knowledge of the structure

to express meaningful queries.

Like SQL, our query language needs a theoretical foundation behind it, because it

must be sound in the sense that the results of a query (i) do not miss any information

that can satisfy the necessary and sufficient conditions of the query and (ii) do not

contain any information that cannot satisfy the conditions.

6.1.1 Query Processing

Pervasive-computing environments have several unique requirements, which existing

location-based or personalized-information services in non-pervasive computing envi-

ronments do not. These are as follows:

Scalability

Pervasive computing infrastructures need to maintain and process a vast amount of

heterogeneous, dynamic information. Indeed, the trend is toward the deployment of

large-scale systems, e.g. city-wide systems, which maintain information about the

location of moving objects and adaptive services. Query mechanisms require scalability

and response. Scalability not only encompasses the increase in information maintained

by the system but also the number of queries that need to be processed.

Absence of Relational Database

Query processing can be implemented by general purpose object-oriented database

systems. However, these systems tend to have a large footprint. The majority of

devices that make up pervasive-computing environments only have limited capabilities

in terms of bandwidth, autonomy and computational power. The data models, and

56 Application

location models in particular, that are maintained by these devices need to cope with

these limitations.

Remote Access and Control

Moreover, query processing should not be limited to data retrieval. Indeed, as a

pervasive-computing environment consists of service-provider devices, e.g., remotely-

controllable appliances, query processing should also provide access and control to

remote devices and services.

6.2 Approach

This section details our approach to addressing the problems of querying symbolic

location models in context-aware systems.

6.2.1 Model Checking

Model checking [54, 60] is a well-founded approach and has been a widely used technique

to automatically analyze various types of computing systems, ranging from hardware

to software. A system is said to be verified if it satisfies the specifications defined by

its designers. A specification is called a property. For example, an automatic lighting

system in a conference room could have the following property: to switch on when at

least one person is present in the room.

A model-checking algorithm takes in input (i) the representation of the system

S to be analyzed and (ii) the property P . In more formal terms, S is defined as a

finite state machine usually called a Kripke structure. A Kripke structure is no more

than a directed graph with nodes representing the possible states of the system and

edges represent the transitions (or triggers) between states. In our previous example,

someone entering or leaving the room could be a trigger. The property P is written in

a suitable temporal logic formula.

The connection between model checking and query processing has been extensively

6.2 Approach 57

studied in the literature, as both evaluate logic-based formulas over finite data struc-

tures.

6.2.2 Application to Context-aware Computing

The various algorithms implemented in model checkers cannot be directly applied to

querying information in data-intensive, dynamic environments. Indeed, while model

checking does offer a mathematically sound framework for matching graph-like struc-

tures, it is nevertheless a static, off-line process. Therefore, it needs to be adjusted to

cope with the requirements of context-aware services.

Moreover, temporal logic lacks any mechanism for naming individual nodes in the

Kripke structure. Indeed, during the verification phase the graph is parsed from its

unique entry node (which corresponds to the initial state of the system). Location-

related queries need such mechanisms to handle identified places. Moreover, temporal

logic cannot express relative nodes that are required when users only have local knowl-

edge about the system.

Because temporal logic defines the operators for current and future states, location

queries can only be routed down the location model. Due to innate decentralized

information on location and the various query sources and targets, our query language

should some flexible operators to search the space graph.

In our previous paper [5], we proposed the use of model checking principles as query

mechanisms for context-aware computing. The paper aimed at defining the theoretical

aspects of model-checking for context-aware computing. The formal semantics of the

modal language presented in Table 6.1. Queries are defined by the logical assertion

G, b, l |= ϕ, where G is the graph-based data structure (i.e. the Kripke structure

corresponding to the location model), b acts as a container for virtual nodes created

on-the-fly (i.e. bound nodes), l the location where the query is evaluated, and ϕ the

logic-based formula (i.e. the actual query).

On the other hand, this paper addresses the design and implementation of a logic-

based query language and its model checking-based processing for context-aware com-

puting. Furthermore, the framework presented in this paper has many features that

58 Application

Table 6.1: Formal semantics of the query language

G, b, l |= true

G, b, l |= p iff p is true at l

G, b, l |= ¬ϕ iff G, b, l 6|= ϕ

G, b, l |= ϕ1 ∧ ϕ2 iff (G, b, l |= ϕ1) ∧ (G, b, l |= ϕ2)

G, b, l |= ϕ1 ∨ ϕ2 iff (G, b, l |= ϕ1) ∨ (G, b, l |= ϕ2)

G, b, l |= E↑ϕ iff ∃l′(lRl′ ∧ (G, b, l′ |= ϕ)

G, b, l |= E↓ϕ iff ∃l′(lR−l′ ∧ (G, b, l′ |= ϕ)

G, b, l |= @pϕ iff G, b, p |= ϕ

G, b, p |=↓x.ϕ iff G, bxp , p |= ϕ

its earlier version did not have, although the former is defined and constructed based

on the theoretical foundation of the latter. For example, the language itself has been

extended to satisfy the requirements of query processing for context-aware computing

and provide existing location models with query functions.

6.2.3 Logic-based Graph Querying

As mentioned before, the earlier version of the query language was only defined for-

mally, i.e. queries were expressed by satisfaction relations. Since SQL-based ”select-

from” syntax is by far the most well-known and most widely used, we chose to embed

our logic-based query language in a more readable SQL-like language. From now on,

we process queries in an SQL-fashion.

All the queries that we consider allow expressions for navigating the data graph.

Some offer the possibility of comparing object identities, which allows us to implement

queries with joins. We will focus on monadic queries only, i.e., queries that return a

set of objects of the database, or, equivalently, a set of nodes of the graph structure.

The reason for this restriction is that we want to embed the query-processing problem

into the global model-checking problem, as the output of a global model checker is a

set of nodes. In the following the examples are taken from Fig. 6.1.

6.2 Approach 59

Simple Selection – Query Q1

select X

from path X

where X.condition

Intuitively, Q1 retrieves all nodes reachable through path satisfying the filter condition.

The variable X is used as a container for these nodes. For example, the following query

selects all the available printers located in room 1:

select X

from floor.room_1 X

where X.(type::printer and status::idle)

Multiple-path Selection – Query Q2

select Xi

from path1 X1, path2 X2, . . . , pathn Xn

where condition1, · · · , conditionn

Intuitively, the schema Q2 binds the variable X1 to the nodes reachable through

path1, it binds the variable X2 to the nodes reachable through path2, and so forth.

The expression X.condition filters the nodes placed in the variable X according to the

Boolean filter condition. Finally, the nodes contained in the focus X are selected. For

example, the following query selects the status of all printers in Room 4:

select Y

from room_4 X, X.status Y

where X.type::printer

Advanced Selection – Query Q3

select Xi

from sexp1, sexp2, . . . , sexpn

where condition1, condition2, . . . , conditionm

60 Application

Each sexpj is a selection expression and each conditionj is a filter expression. A

selection expression is either path X or X.path Y , where X and Y are variables. A

filter expression is either X.condition, or X = Y , or X = Y , where X and Y are

variables and condition is a filter expression as in Q. From example, the following

query selects rooms with at least two persons:

select X

from floor X, X.person Y, X.person Z

where Y <> Z

Ontologies

We could use ontology-based models for describing context as complementary symbolic

location models. Indee, ontology-based models help in defining the vocabulary of use,

as well as inferring higher-level contexts, while the structure of the location informa-

tion encapsulates the semantical and topological relationships within the environment.

The two can be combined to describe both the vocabulary and the structure of the

environment, thus enhancing the expressivity of the queries.

6.3 Implementation

Our framework is implemented using Objective-C. Although the approach is indepen-

dent of any programming language, we chose Objective-C because (i) it compiles native

code and (ii) provides garbage collection.

6.3.1 System Architecture

LocationModel maintains the graph-based data structure that represents the infor-

mation about the physical entities of the environment. LocationModel inputs the

abstract data representation of the underlying sensing devices, and build the corre-

sponding modal structure, i.e., the Kripke structure which:

1. Associates nodes with object entities.

6.3 Implementation 61

Objective-C Runtime

Query Evaluation

Binders Cache

Core Layer

Location
Model

Query
Transform

Model
Checker

Figure 6.2: Layered architecture.

2. Links the entities with their corresponding links.

3. Initialize the object entities with their various attributes.

6.3.2 Model Checking Algorithm

ModelChecker receives:

• A hybrid model M = M,R, V .

• An assignment g.

• A hybrid formula φ (see Table 6.1).

After termination, every node in the model is labeled with the sub-formulas of φ

that hold at that state, i.e. the reachable nodes. Our algorithm uses a bottom-up

strategy; it examines the sub-formulas of φ in increasing order of length, until φ itself

has been checked.

Let R be an accessibility relation; then R− is the inverse of R: Rvu if, and only

if, Ruv. For n ≥ 1, let Rn(w) be the set of states that are reachable from w in n

R− steps, and R−n(w) be the set of states that are reachable from w in n R−-steps.

The states belonging to R1(w) are successors of w, while those belonging to R1(w) are

predecessors of w. Given a model M = M,R, V , we denote by M the model M,R, V .

The length of a formula φ, denoted by |φ|, is the number of operators (Boolean and

62 Application

modal) of φ plus the number of atoms (propositions, nominals, and variables) of φ. Let

sub(φ) be the set of sub-formulas of φ.

ModelChecker updates a table L of size |φ|×|M | whose elements are bits. Initially,

L(α,w) = 1 if, and only if, α is an atomic proposition in sub(φ) such that w ∈ V (α).

When the evaluation terminates, L(α,w) = 1 if, and only if M, g, w |= for every

α ∈ sub(φ). Given α ∈ sub(φ) and w ∈ M , we denote by L(α) the set of states

v ∈ M such that L(α, v) = 1 and by L(w) the set of formulas β ∈ sub(φ) such that

L(β, w) = 1. The engine uses subroutines MCF, MCA, and MC@ to check the respective

sub-formulas of the form Fα, Aα, and @α. The pseudocode for these procedures is

presented in Figure 6.3.

6.3.3 Query Processing

Queries are syntactically analysed and translated into their logic-based versions by

the QueryTransform module. Query evaluations call the ModelChecker, which main-

tains and updates the context and the current expression of the query. Without any

occurrence of binders, queries simply returns Boolean values:

G, b, floor |= E↓Alice

The query evaluation is a matching procedure between the graph-based data struc-

ture G and the logical expression E↓Alice. This relation can be expressed by “is Alice

inside the room?”. The answer would be either “yes” (true) or “no” (false). Binder

operator ↓x (i.e., select X) enriches the relations, so that ModelChecker returns the

locations where the given formulas are satisfied. For example, consider the query:

G, b, floor |= E↓(↓ place.Alice)

The result is Alice’s current location bound to place. The meaning of the relation

changes from “is there a place in which Alice is located?” to “where is Alice?”. Binders

maintains the bound variables in a list of pairs {bound variable, location}.

6.4 Application 63

1: procedure MCF(M, g, α)

2: for w ∈ L(α) do

3: for v ∈ R−1(w) do

4: L(Fα,w)← 1

5: end for

6: end for

7: end procedure

8: procedure MCA(M, g, α)

9: if L(α) = M then

10: for v ∈M do

11: L(Aα,w)← 1

12: end for

13: end if

14: end procedure

15: procedure MC@(M, g, t, α)

16: Let w = [V, g](t)

17: if L(α,w) = 1 then

18: for v ∈M do

19: L(@tα, v)← 1

20: end for

21: end if

22: end procedure

Figure 6.3: Pseudocode of the subprocedures MCF, MCA, and MC@ called by the query
processing engine.

6.4 Application

In this section, we present the contribution of our query language from a software

engineering perspective. We have a project to provide a location/user-aware system

for several museums, that assist visitors. Although the current version has no query

mechanism, a prototype implementation of the next generation of the system is based

64 Application

Query

Model
Checker

1 5

Query
Transform

34

2

Location
Model

Figure 6.4: Query workflow.

on the query language presented in the paper, we discuss how our query language can

enhance the overall system.

6.4.1 Application to RFID-based Systems

Although the proposed query processing framework is general and may be adjusted to

cope with many different location-based services (e.g. through language extensions),

this section highlights its application for indoor environments, along with RFID-based

tracking system. Due to the symbolic location model, the query language obviously

deals with qualitative information about the location tree structure, rather than quan-

titative information (e.g. distances between physical entities). From our point of view,

RFID-based tracking systems are a convenient application domain because they inher-

ently handle the symbolic notion of place, through RFID readers’ coverage areas.

Such systems detect the location of physical entities, and usually deploy services

bound to the entities at proper computing devices near where they are located. A pair

of RFID-reader and RFID-tag thus define the containment relation presented in this

paper, the former being the parent, and the latter, the child. When a RFID-tag is

detected inside a RFID-reader’s coverage area, the underlying hierarchical tree graph

is updated: the tag becomes the reader’s child, and labels its parent (see Fig. 6.5).

However, the language could be applied to geometric-based systems, where a prior

refinement step derives symbolic relations from geometric coordinates.

6.4 Application 65

reader

tag

reader

tag

user

user

■ user

placeuser

place
(detection area)

place

user

step 1

step 2

correlation

correlation

place
(detection area)

Figure 6.5: Correlation between RFID-based tracking system and symbolic location
model.

6.4.2 Location-aware System for Museums

The system is deployed in the National Museum of Nature and Science in Ueno (Japan).

It was constructed with the framework presented in [7]. This system:

• Plays audio-annotations at specified spots when visitors stand at the spots,

• Provides compound document-based GUIs for selecting audio-annotations ac-

cording to visitors and spots. These GUIs visualize the positions of visitor.

Each visitor is provided with a hat equipped embedding active RFID-tags to track

their locations. The exhibition space is augmented with RFID-tag readers that detect

the presence of a visitor within it. When visitors come sufficiently close to some objects

(e.g. fossils of dinosaur), located at several spots in the exhibition, the system selects

and plays sounds about dinosaurs according to the combination of the spot, the visitor

and his/her route in the room. The upper right picture (2) of Fig. 6.6 depicts the

equipment used during the experiment: a loud speaker and a RFID reader positioned

in front of fossils.

The query processing engine is independent of any hardware and computing device.

Within the current system in the museum, the devices are not overloaded with query

66 Application

Service-
provider
software

Virtual
counterpart

object (room)

Virtual
counterpart

object (spot 1)

Virtual
counterpart

object (spot 2)

Virtual
counterpart

object (spot 3)

Virtual
counterpart

object (user 1)

Virtual
counterpart

object (spot 6)

Service-
provider
software

Virtual
counterpart

object (user 2)

Spot 1

Spot 2

Spot 4

Spot 3

Spot 5

Spot 6

User 2

User 1

(1) (2)

RFID reader

Loud speaker

Figure 6.6: (1) Map-based GUI and (2) RFID speaker.

processing tasks, as query processing is performed on proxies where the application

is deployed. Our solution doesn’t make any assumption about the deployment of the

application, that goes beyond the scope of this paper.

6.4.3 Query Language for Middleware Support

Even if the application is fully functional, its future extensions are made difficult from

an engineering point of view. Without any query mechanisms, the current location-

based service (i.e. the appropriate audio-based information) is delivered to the users

(i.e. the visitors) in an reactive manner, i.e. the detection that a user enters a spot

triggers the right loud speaker. This event-based mechanism is dependent on the

underlying sensing systems and it is specifically implemented for that application-

specific. Instead, our query processing framework could be integrated as an available

component at the middleware level. In the current version of the system, developers

need to manually construct the query mechanisms, based on simple events, e.g. entering

or leaving an exhibit spot. Our query processing framework is useful when we want

to extend the functionalities of such a location-based system, without increasing its

complexity.

6.4 Application 67

Activity Monitoring

Collecting information about the activities of visitors is an on-going process that is rel-

evant for museum curators. The information delivered by monitoring is analyzed and

used to improve and enhance the collections. In our location-based service, the query

processing framework could be used to determine visitors’ itineraries inside the muse-

ums. For example, visitors may not visit all the exhibits, or visit some of them more

than one time during his/her course. Our query language can then enhance the existing

information system of the museum, by providing accesses to location information.

Event-based Action Triggers

The reactive location-based service, based on simple location triggers, points out the

lack of a query language. Let us consider the following example. When a visitor enters

a spot S at time t0, the appropriate speaker delivers some sound-based information for

a given amount of time T , i.e. the event trigger is pulled. If a second visitor enters

the same spot S at time t1 < t0 + T , nothing happens because the event triggers has

not been released yet. The information that a spot is already visited can be accessed

by simple location queries using our framework. Our language provides a higher level

of control for the management of event triggers, and eases the development of more

complex behaviors. In the presented system, this management is done in a centralized

way, by a software component that has the knowledge of the whole location model.

Thus, the spot is dedicated to only deliver location information. Our query language

could be used by the spots themselves to get and access location-based information

from a more local view, and then triggers given actions.

Performance Evaluation

Although the system has not been tested in a real environment yet, we made a sim-

ulation of three scenarios, each of them corresponding to a given number of visitors

inside the exhibition rooms of the museum (i.e. number of places in the hierarchical

tree graph). We generated 20 queries of different size. Queries were processed locally,

68 Application

on a Pentium CoreDuo 1.5GHz laptop.

200 5 10 15

200

0

30

60

90

120

150

180

Size of the query

Pr
oc

es
si

ng
 ti

m
e

(m
s)

10 users

50 users

100 users

Figure 6.7: Time to process 20 queries of different size with respectively 10, 50, and 100
users.

The current system was not optimized for performance; however, the cost for eva-

lutating and processing a query is shorter than 200 ms1. We believe that this cost is

acceptable for a location-aware system used in rooms or buildings.

A word on complexity: Franceschet and de Rijke [61] investigated the model-

checking problem for hybrid logics. They obtained lower bounds on the computational

complexity of the model checking problem for hybrid logics with binders. They proved

that the addition of nominals and the @ operator did not increase the complexity of the

model checking task. In contrast, whenever hybrid binders are present in the language,

the running time of the resulting model checker is exponential in the nesting level of

the binders. Finally, they proved that the model-checking problem for hybrid logics

with binders is PSPACE-complete.

Note that our approach does not suffer from the so-called state-explosion problem,

which can occur when the state graph is computed. Since we rely on sensors to acquire

1In a real environment, this evaluation time may be seriously affected by many different parameters

(e.g. network latency).

6.5 Related Work 69

location data from the environment, we do not algorithmically need to construct such a

state graph. The location model is merely an input for the query-processing framework.

6.5 Related Work

Since our approach combines the application of formal methods to context-aware com-

puting on one side, and query-processing mechanisms on the other, we have presented

the work related to both aspects in this section.

Ilarri et al. [39] investigated query processing for location-based services. They

targeted outdoor applications that have to handle a fair amount of moving objects in

real-time. Responsiveness and performance are therefore critical. The authors focused

on geometric location models that provide both quantitative and high-resolution data

on moving objects. Acknowledging that fine-grain GPS coordinates may be inappro-

priate for many location-based applications (high-resolution requires more overhead),

they introduced the notion of location granules. Granules are geographical areas that

can be defined at different scales, e.g. freeways and buildings. However, the semantics

of the granules are rather poor, since relationships between granules are not explicitly

defined. Therefore, the query language used to retrieve the location cannot benefit

from the spatial semantics of the granules.

Aiming at providing contextual-information retrieval that is both scalable and ro-

bust, Roussaki et al. [30] enhanced the database with some location-based retrieval

mechanisms. They implemented a hybrid context model that maintained (i) symbolic

entities like streets and buildings, and (ii) objects located in a coordinate system. The

context database maintained a hierarchy of entities. By combining the semantical ex-

pressiveness of ontologies with the hierarchical structure of tree-based location models,

they could dispatch and route the queries along the context database hierarchy and

obtain a significant increase in information retrieval. The same approach has been

developed further to improve context filtering [32]. However, query processing was

achieved in an ad-hoc manner and the query language was not explicitly defined.

70 Application

Grossniklaus [40] proposed an object-oriented version control to address the chal-

lenges of data management in context-aware services. The query-processing framework

was application-independent. Indeed, as many frameworks are specific to a single ap-

plication domain, their notion of context (in particular the context dimensions e.g.

users, devices, and environmental factors) is only relevant to a subset of applications.

Moreover, the representation and storage are often implied by the context model. Their

approach is general and is not limited to any particular context model. It is similar to

Bolchini et al.’s [13] which emphasizes the importance of context-based data tailoring.

Ranganathan and Campbell [62] proposed a formal approach to describing the

properties and capabilities of pervasive computing environments. The underlying de-

scription language was based upon the ambient calculus which describes the entities

located in the environment, i.e., the ambients, in a tree-based topology of boundaries.

The ambitious goal is provide a framework that empower the designers to prove the

properties of pervasive computing environments. The properties expressed in ambient

logic can encompass mobility, security and interactions between ambients. Such en-

deavors can be related to the work of Franceschet and de Rijke [61] who proposed a

combined model-checking framework that they applied to the specification and verifi-

cation of various properties of mobile systems. Complex spaces would require a model

checker.

Perich et al. [41] proposed a solution for managing data in pervasive-computing ap-

plications. It broadly consisted of two parts: treating the devices as semi-autonomous

entities guided in their interactions by profiles and context, and designing a contract-

based transaction model. The profile was grounded in a semantically rich language

for representing information about users, devices, and data objects each described in

terms of “beliefs”, “desires”, and “intentions” - a model which has been explored in

multi-agent interactions. They introduce data-based routing algorithms and semantic-

based data caching and replication algorithms enabling mobile devices to utilize their

data-intensive vicinities.

In some areas all the steps are equally elegant and interesting,

whereas in other areas we see elegant steps with a lot of dull work

in between, usually suppressed by the author. In such areas people

are likely to hate formal verification.

– N.G. de Bruijn

7
Conclusion

We presented a query-processing framework for location-based services and

demonstrated its applicability to existing symbolic location models. The pro-

posed approach aimed at complementing existing work wherein the location informa-

tion is modeled in a symbolic fashion independently of any sensing technology. Indeed,

current location models lack any mechanism for querying the location of people, ob-

jects, or services, or do so in an ad-hoc fashion. We have shown that formal methods

can be used as the underlying query-processing mechanisms. Indeed, we have built our

query language from model-checking principles. This well-founded language can query

graph-based data structures. We can therefore guarantee that the results of any query

(i) do not miss any information that can satisfy the necessary and sufficient conditions

of the query and (ii) do not contain any information that cannot satisfy the condition.

We would like to emphasize that our approach is not limited to location-aware

71

72 Conclusion

services. The approach we presented is independent of any sensor technologies as it

relies on an abstraction of location information. Also, the proposed query-processing

engine can be implemented in existing middleware. Our contribution is to complement

existing location models such as hierarchical- or graph-based models. We believe that

our system can be easily applied to context-aware services, because the approach itself

can support general contextual information that can be modeled in a graph-structure.

References

[1] T. Strang and C. Linnhoff-Popien. A context modeling survey. In Proceedings
of 1st International Workshop on Advanced Context Modelling, Reasoning and
Management, in coordination with the 6th International Conference on Ubiquitous
Computing (UbiComp 2004), Lecture Notes in Computer Science (Springer, 2004).

[2] M. Weiser. The computer for the twenty-first century. Scientific American pp.
94–100 (1991).

[3] A. Silberschatz, H. F. Korth, and S. Sudarshan. Data models. ACM Computing
Surveys 28(1), 105 (1996).

[4] R. Angles and C. Gutiérrez. Survey of graph database models. ACM Computing
Survey 40(1), 1 (2008).

[5] C. Hoareau and I. Satoh. Query language for location-based services: A model
checking approach. IEICE Transactions on Information and Systems E91(D4),
976 (2008).

[6] Y.-B. Kang and Y. Pisan. A survey of major challenges and future directions
for next generation pervasive computing. In Proceedings of the 21th International
Symposium on Computer and Information Sciences (ISCIS 2006), Lecture Notes
in Computer Science, pp. 755–764 (Springer, 2006).

[7] I. Satoh. A location model for pervasive computing environments. In Proceedings
of the 3rd IEEE International Conference on Pervasive Computing and Commu-
nications (PerCom 2005), pp. 215–224 (IEEE, 2005).

[8] M. Strimpakou, I. Roussaki, C. Pils, M. Angermann, P. Robertson, and M. E.
Anagnostou. Context modelling and management in ambient-aware pervasive en-
vironments. In Proceedings of the 1st International Workshop on Location- and
Context-Awareness (LoCA 2005), Lecture Notes in Computer Science, pp. 2–15
(Springer, 2005).

[9] M. Baldauf, S. Dustdar, and F. Rosenberg. A survey on context-aware systems.
The International Journal of Ad Hoc and Ubiquitous Computing 2(4), 263 (2007).

[10] C. Becker and F. Dürr. On location models for ubiquitous computing. Personal
and Ubiquitous Computing 9(1), 20 (2005).

73

74 References

[11] C. Jiang and P. Steenkiste. A hybrid location model with a computable location
identifier for ubiquitous computing. In Proceedings of the 4th International Con-
ference on Ubiquitous Computing (UbiComp 2002), Lecture Notes in Computer
Science, pp. 307–313 (Springer, 2002).

[12] A. K. Dey. Understanding and using context. Personal and Ubiquitous Computing
5(1), 4 (2001).

[13] C. Bolchini, C. Curino, E. Quintarelli, F. A. Schreiber, and L. Tanca. A data-
oriented survey of context models. SIGMOD Record 36(4), 19 (2007).

[14] A. Schmidt, M. Beigl, and H.-W. Gellersen. There is more to context than location.
Computers & Graphics 23(6), 893 (1999).

[15] D. Salber, A. K. Dey, and G. D. Abowd. The context toolkit: aiding the develop-
ment of context-enabled applications. In Proceedings of the SIGCHI conference on
Human factors in computing systems (CHI ’99), pp. 434–441 (ACM, New York,
NY, USA, 1999).

[16] J. E. Bardram. The java context awareness framework (jcaf) - a service infrastruc-
ture and programming framework for context-aware applications. In Proceedings
of the 3rd International Conference on Pervasive Computing (Pervasive 2005),
Lecture Notes in Computer Science, pp. 98–115 (Springer, 2005).

[17] J. Indulska, T. McFadden, M. Kind, and K. Henricksen. Scalable location man-
agement for context-aware systems. In Proceedings of the 4th IFIP WG6.1 Inter-
national Conference on Distributed Applications and Interoperable Systems (DAIS
2003), Lecture Notes in Computer Science, pp. 224–235 (Springer, 2003).

[18] G. Biegel and V. Cahill. A framework for developing mobile, context-aware appli-
cations. In Proceedings of the 2nd IEEE International Conference on Pervasive
Computing and Communications (PerCom 2004), pp. 361–365 (IEEE, 2004).

[19] G. Chen and D. Kotz. A survey of context-aware mobile computing research. Tech.
rep., Dartmouth College (2000).

[20] B. Schilit, N. Adams, and R. Want. Context-aware computing applications. In
Proceedings of the Workshop on Mobile Computing Systems and Applications, pp.
85–90 (IEEE, 1994).

[21] J. Indulska, R. Robinson, A. Rakotonirainy, and K. Henricksen. Experiences in
using cc/pp in context-aware systems. In Proceedings of the 4th International Con-
ference on Mobile Data Management (MDM 2003), Lecture Notes in Computer
Science, pp. 247–261 (Springer, 2003).

[22] A. Ranganathan, R. E. McGrath, R. H. Campbell, and M. D. Mickunas. Use
of ontologies in a pervasive computing environment. The Knowledge Engineering
Review 18(3), 209 (2003).

References 75

[23] E. Katsiri and A. Mycroft. Applying bayesian networks to sensor-driven systems.
In Proceedings of the 10th IEEE International Symposium on Wearable Computers
(ISWC’03), pp. 149–150 (IEEE, 2003).

[24] K. Henricksen, J. Indulska, and A. Rakotonirainy. Modeling context information
in pervasive computing systems. In Proceedings of the 1st International Conference
on Pervasive Computing (Pervasive 2002), Lecture Notes in Computer Science,
pp. 167–180 (Springer, 2002).

[25] T. Sohn. Context-aware computing support for the educationally disadvantaged.
In Proceedings of the IEEE Symposium on Human Centric Computing Languages
and Environments (HCC 2003), pp. 293–294 (IEEE, 2003).

[26] H. Chen, T. Finin, and A. Joshi. An ontology for context-aware pervasive com-
puting environments. Knowledge Engineering Review 18(3), 197 (2003).

[27] S. W. Loke. Representing and reasoning with situations for context-aware pervasive
computing: a logic programming perspective. The Knowledge Engineering Review
19(3), 213 (2004).

[28] P. Korpipää and J. Mäntyjärvi. An ontology for mobile device sensor-based context
awareness. In Proceedings of the 4th International and Interdisciplinary Confer-
ence Modeling and Using Context (CONTEXT 2003), Lecture Notes in Computer
Science, pp. 451–458 (Springer, 2003).

[29] P. Moore, B. Hu, and J. Wan. Smart-context: A context ontology for pervasive
mobile computing. The Computer Journal pp. 1–17 (first published on March 4,
2007, doi:10.1093/comjnl/bxm104).

[30] I. Roussaki, M. Strimpakou, N. Kalatzis, M. Anagnostou, and C. Pils. Hybrid
context modeling: A location-based scheme using ontologies. In Proceedings of the
4th IEEE International Conference on Pervasive Computing and Communications
Workshops (PERCOMW ’06), pp. 2–7 (IEEE, 2006).

[31] N. Noy. Order from chaos. Queue 3(8), 42 (2005).

[32] C. Pils, I. Roussaki, and M. Strimpakou. Location-based context retrieval and
filtering. In Proceedings of the 2nd International Workshop on Location- and
Context-Awareness (LoCA 2006), Lecture Notes in Computer Science, pp. 256–273
(Springer, 2006).

[33] D. R. McCarthy and U. Dayal. The architecture of an active data base management
system. In Proceedings of the 1989 ACM SIGMOD International Conference on
Management of Data, pp. 215–224 (ACM, 1989).

[34] J. Widom and S. Ceri. Introduction to active database systems. In Active Database
Systems: Triggers and Rules For Advanced Database Processing, pp. 1–41 (Morgan
Kaufmann, 1996).

76 References

[35] I. Satoh. A location model for smart environments. Pervasive and Mobile Com-
puting 3(2), 158 (2007).

[36] E. F. Codd. A relational model of data for large shared data banks. Communica-
tions of the ACM 13(6), 377 (1970).

[37] R. H. Güting. An introduction to spatial database systems. The International
Journal on Very Large Data Bases (VLDB) 3(4), 357 (1994).

[38] M. Levene and G. Loizou. The nested relation type model: An application of
domain theory to databases. Computer Journal 33(1), 19 (1990).

[39] S. Ilarri, E. Mena, and C. Bobed. Processing location-dependent queries with
location granules. In Proceedings of the 2nd OnTheMove Workshop on Pervasive
Systems (PerSys’07), Lecture Notes in Computer Science, pp. 856–865 (Springer,
2007).

[40] M. Grossniklaus. Context-Aware Data Management. An object-Oriented Version
Model (Verlag Dr. Müller, 2007).

[41] F. Perich, A. Joshi, T. Finin, and Y. Yesha. On data management in pervasive
computing environments. IEEE Transactions on Knowledge and Data Engineering
16(5), 621 (2004).

[42] N. Davies and H.-W. Gellersen. Beyond prototypes: Challenges in deploying ubiq-
uitous systems. IEEE Pervasive Computing 1(1), 26 (2002).

[43] P. Dourish. What we talk about when we talk about context. Personal and Ubiqui-
tous Computing 8(1), 19 (2004).

[44] G. Bell and P. Dourish. Yesterday’s tomorrows: Notes on ubiquitous computing’s
dominant vision. Personal and Ubiquitous Computing 11(2), 133 (2007).

[45] B. Brumitt, B. Meyers, J. Krumm, A. Kern, and S. Shafer. Easyliving: Tech-
nologies for intelligent environments. In Springer, ed., Proceedings of the 2nd
International Symposium on Handheld and Ubiquitous Computing (HUC’00), pp.
12–29 (2000).

[46] C. Stahl and D. Heckmann. Using semantic web technology for ubiquitous hy-
brid location modelling. In Proceedings of 1st Workshop on Ubiquitous GIS, in
conjunction with 12th International Conference on Geoinformatics (2004).

[47] N. Marmasse and C. Schmandt. A user-centered location model. Personal and
Ubiquitous Computing 6(5-6), 318 (2002).

[48] T. Tsukiyama. Global navigation system with rfid tags. In Proceedings of the SPIE
International Society for Optical Engineering, pp. 256–264 (2001).

[49] M. Negri, G. Pelagatti, and L. Sbattella. Formal semantics of sql queries. ACM
Transactions on Database Systems (TODS) 16(3), 513 (1991).

References 77

[50] C. Areces and B. ten Cate. Handbook of Modal Logic, chap. Hybrid Logics (Else-
vier, 2005).

[51] U. Leonhardt. Supporting Location-Awareness in Open Distributed Systems. Ph.D.
thesis, Department of Computing, Imperial College, London, UK (1998).

[52] M. Beigl, T. Zimmer, and C. Decker. A location model for communicating and
processing of context. Personal and Ubiquitous Computing 6(5-6), 341 (2002).

[53] J. Hightower. From position to place. In Proceedings of the Workshop on Location-
Aware Computing, pp. 10–12 (2003).

[54] E. M. Clarke, O. Grumberg, and D. A. Peled. Model Checking (MIT Press, 2000).

[55] E. M. Clarke and ernd Holger Schlingloff. Handbook of automated reasoning, chap.
Model Checking, pp. 1635–1790 (Elsevier, 2001).

[56] M. Franceschet, A. Montanari, and M. D. Rijke. Model checking for combined
logics with an application to mobile systems. Automated Software Engineering
11(3), 289 (2004).

[57] O. Wolfson, S. Chamberlain, K. Kalpakis, and Y. Yesha. Modeling moving objects
for location based services. In Proceedings of the US NSF Workshop on Developing
an Infrastructure for Mobile and Wireless Systems, pp. 46–58 (Springer, 2001).

[58] R. H. Güting and M. Schneider. Moving Objects Databases (Morgan Kaufmann
Publishers Inc., 2005).

[59] M. Satyanarayanan. Pervasive computing: Vision and challenges. IEEE Personal
Communications 8(4), 10 (2001).

[60] C. Baier and J.-P. Katoen. Principles of Model Checking (MIT Press, 2008).

[61] M. Franceschet and M. D. Rijke. Model checking hybrid logics (with an application
to semistructured data). Journal of Applied Logic 4(3), 279 (2006).

[62] A. Ranganathan and R. H. Campbell. Provably correct pervasive computing envi-
ronments. In Proceedings of the Sixth Annual IEEE International Conference on
Pervasive Computing and Communications (PerCom 2008), pp. 160–169 (IEEE,
2008).

[63] T. Kindberg, J. J. Barton, J. Morgan, G. Becker, D. Caswell, P. Debaty, G. Gopal,
M. Frid, V. Krishnan, H. Morris, J. Schettino, B. Serra, and M. Spasojevic. People,
places, things: Web presence for the real world. MONET 7(5), 365 (2002).

[64] A. Oulasvirta. When users ”do” the ubicomp. interactions 15(2), 6 (2008).

[65] C. K. Hess and R. H. Campbell. A context-aware data management system for
ubiquitous computing application. In Proceedings of the 23rd International Con-
ference on Distributed Computing Systems (ICDCS 2003) (IEEE, 2003).

78 References

[66] K. Henricksen and J. Indulska. A software engineering framework for context-
aware pervasive computing. In Proceedings of the 2nd IEEE International Con-
ference on Pervasive Computing and Communications (PerCom 2004), pp. 77–86
(IEEE, 2004).

[67] D. Nicklas and B. Mitschang. On building location aware applications using an
open platform based on the nexus augmented world model. Software and System
Modeling 3(4), 303 (2004).

[68] S. Duval and C. Hoareau. Fundamental needs in intelligent environments: Speci-
ficities for older adults. In Workshops Proceedings of the 22nd International Con-
ference on Advanced Information Networking and Applications (WAINA 2008),
pp. 850–855 (IEEE, 2008).

[69] C. Hoareau and I. Satoh. Hybrid logics and model checking: A recipe for query
processing in location-aware environments. In Proceedings of the 22nd Interna-
tional Conference on Advanced Information Networking (AINA 2008), pp. 130–
137 (IEEE, 2008).

[70] S. Duval and C. Hoareau. Design of a ubiquitous system for affective bond-
ing and support within the family. In Workshops Proceedings of the 22nd In-
ternational Conference on Advanced Information Networking and Applications
(WAINA 2008), pp. 844–849 (IEEE, 2008).

[71] C. Hoareau and I. Satoh. A model checking-based approach for location query
processing in pervasive computing environments. In Proceedings of the Second
OTM International Workshop on Pervasive Systems (PerSys 2007), Lecture Notes
in Computer Science, pp. 866–875 (Springer, 2007).

[72] J. Ye, L. Coyle, S. Dobson, and P. Nixon. A unified semantics space model.
In Proceedings of the 3rd IEEE International Symposium on Location- and
Context-Awareness (LoCa 2007), Lecture Notes in Computer Science, pp. 103–
120 (Springer, 2007).

[73] M. Kaenampornpan and E. O’Neill. An intergrated context model: Bringing ac-
tivity to context. In Proceedings of the 1st International Workshop on Advanced
Context Modelling, Reasoning and Management, in coordination with the 6th In-
ternational Conference on Ubiquitous Computing (UbiComp 2004), Lecture Notes
in Computer Science (Springer, 2004).

[74] Y. Cao, R. Klamma, M. Hou, and M. Jarke. Follow me, follow you - spatiotempo-
ral community context modeling and adaptation for mobile information systems.
In Proceedings of the 9th International Conference on Mobile Data Management
(MDM 2008), pp. 108–115 (IEEE, 2008).

[75] K. Cheverst, N. Davies, K. Mitchell, and A. Friday. Experiences of developing and
deploying a context-aware tourist guide: the guide project. In Proceedings of the

References 79

6th International Conference on Mobile Computing and Networking (MobiCom
2000), pp. 20–31 (ACM, 2000).

[76] R. Hull and R. King. Semantic database modeling: Survey, applications, and
research issues. ACM Computing Survey 19(3), 201 (1987).

[77] S. Peters and H. E. Shrobe. Using semantic networks for knowledge representation
in an intelligent environment. In Proceedings of the 1st IEEE International Con-
ference on Pervasive Computing and Communications (PerCom’03), pp. 323–329
(IEEE, 2003).

[78] S. A. Dobson and P. Nixon. More principled design of pervasive computing systems.
In Proceedings of the 9th IFIP Working Conference on Engineering for Human-
Computer Interaction (EHCI’04), Lecture Notes in Computer Science, pp. 292–305
(Springer, 2004).

[79] T. Chaari, D. Ejigu, F. Laforest, and V.-M. Scuturici. A comprehensive approach
to model and use context for adapting applications in pervasive environments.
Journal of Systems and Software 80(12), 1973 (2007).

[80] D. Raptis, N. K. Tselios, and N. M. Avouris. Context-based design of mobile
applications for museums: a survey of existing practices. In Proceedings of the 7th
Conference on Human-Computer Interaction with Mobile Devices and Services
(Mobile HCI 2005), pp. 153–160 (ACM, 2005).

[81] A. Harter, A. Hopper, P. Steggles, A. Ward, and P. Webster. The anatomy of a
context-aware application. Wireless Networks 8(2-3), 187 (2002).

[82] J. Kjeldskov and M. B. Skov. Exploring context-awareness for ubiquitous com-
puting in the healthcare domain. Personal and Ubiquitous Computing 11(7), 549
(2007).

[83] J. Pascoe, N. Ryan, and D. Morse. Issues in developing context-aware computing.
In Proceedings of the 1st International Symposium on Handheld and Ubiquitous
Computing (HUC’99), pp. 208–221 (Springer, 1999).

[84] A. Held, S. Buchholz, and A. Schill. Modeling of context information for perva-
sive computing applications. In Proceedings of the 6th World Multiconference on
Systemics, Cybernetics and Informatics (SCI 2002) (2002).

[85] O. Lehmann, M. Bauer, C. Becker, and D. Nicklas. From home to world - sup-
porting context-aware applications through world models. In Proceedings of the
2nd IEEE International Conference on Pervasive Computing and Communica-
tions (PerCom 2004), pp. 297–308 (IEEE, 2004).

[86] P. J. Brown, J. D. Bovey, and X. Chen. Context-aware applications: from the
laboratory to the marketplace. IEEE Personal Communications 4(5), 58 (1997).

80 References

[87] G. D. Abowd, C. G. Atkeson, J. Hong, S. Long, R. Kooper, and M. Pinkerton. Cy-
berguide: a mobile context-aware tour guide. Wireless Networks 3(5), 421 (1997).

[88] K. Henricksen, J. Indulska, and A. Rakotonirainy. Using context and preferences
to implement self-adapting pervasive computing applications. Software: Practice
and Experience 36(11-12), 1307 (2006).

[89] G. Chen, M. Li, and D. Kotz. Data-centric middleware for context-aware pervasive
computing. Pervasive and Mobile Computing 4(2), 216 (2008).

[90] J. E. Bardram, T. R. Hansen, M. Mogensen, and M. Søgaard. Experiences from
real-world deployment of context-aware technologies in a hospital environment. In
Proceedings of the 8th International Conference on Ubiquitous Computing (Ubi-
Comp 2006), Lecture Notes in Computer Science, pp. 369–386 (Springer, 2006).

[91] M. A. Munoz, M. Rodŕıguez, J. Favela, A. I. Martinez-Garcia, and V. M. González.
Context-aware mobile communication in hospitals. Computer 36(9), 38 (2003).

[92] A. Zimmermann, M. Specht, and A. Lorenz. Personalization and context manage-
ment. User Modeling and User-Adapted Interaction 15(3-4), 275 (2005).

[93] J. Coutaz, J. L. Crowley, S. Dobson, and D. Garlan. Context is key. Communica-
tions of the ACM 48(3), 49 (2005).

[94] J. Ye, L. Coyle, S. Dobson, and P. Nixon. Ontology-based models in pervasive
computing systems. The Knowledge Engineering Review 22(4), 315 (2007).

