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Chapter 1

General Introduction

Water is the most omnipresent material on earth as well as the most indispensable element
for all living things. Its physical properties are very different from other liquids.[F 72a]
For example, most liquids expand by about 10% on melting, while water shrinks about
10% on melting and has the density maximum at 4°C. Its boiling and melting points
are about 1.5 times higher than those of other hydrides in the same family. These are
ascribed to the hydrogen bonding (HB) but are by no means unique, as other hydrogen
bonding liquids show similar tendency. The uniqueness of water among hydrogen bonded
molecular liquids is due to the fact that water forms the three-dimensional HB network
structure. The structure and dynamics of liquid water are strongly controlled by the HB
network. The latent heat of melting, about 1.43kcal/mol, means that only 10% of HB are
broken, while 90% of them are retained, upon melting from ice to liquid water. Water thus
can be regarded as the mixture of the normal component and the anomalous component.
The latter anomalous component, arising from three-dimensional HB formation, dominates
in the low temperature. For most liquids, the isothermal compressibility yr, which is
proportional to the density fluctuation, decreases with decreasing temperature. This is
also true for water at high T', but yr has a minimum at 46°C and actually increases as T
decreases.[F 72b] In addition, the constant-volume specific heat C,, which is proportional
to the energy fluctuation, is extremely large in case of liquid water.

Dynamical properties of liquid water show also the dramatic difference from normal
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liquids. The self diffusion coefficient becomes almost 10° times larger when melting, and this
ratio is 10 times larger than argon.[F 72a] Moreover, the self diffusion coefficient decreases
as the density is lowered on the contrary to normal liquid motion.

These anomalies of water become distinct at low temperature, especially at supercooled
region. Numerous studies on supercooled liquid water has been made and found di-
vergence of various thermodynamic properties, including isobaric specific heat,[AST 73]
density,[AST 73, RM 73] isothermal compressibility,[SA 76] velocity and absorption of sound,
[RLC 77] relative permittivity,[HS 76, HA 78] density fluctuation, [BTS 81], structural re-
laxation times of shear viscosity[H 63] or spin-lattice relaxation time[LH 82]. Angell indi-
cated that these properties are going to diverge at unreachable temperature T, ~ —45°C,

and assumed there is a phase transition from fragile liquid to strong liquid at the temper-

ature. [A 82, SA 76, A 93]

Each water molecule is binded to about four water molecules, forming very directive
HBs. The HB network in water is well percolated but topologically distorted. Strong
and weak HB regions are marbly mixed in the network and its distribution alters in time.
In the short time scale ( about pico second order ), water is found to yield intermittent
collective motions and large energy fluctnations associated with HB network rearrangement
(HBNR).[OTW 88, TO 89] It is of the current interest to explore the physical origin of these

cooperative motions.

Many models have been proposed to describe the properties of water from spectroscopic
and thermodynamics data. Bernal and Fowler studied the irregular tetra-coordinated struc-
ture in liquid water by the X-ray diffraction analysis of liquid water, and constructed the

psendo crystalline model.[BF 33] X-ray diffraction data by Morgan and Warren clearly

"There are also negative observations by Xie et al [XLMHS 93] and Dings el al [DME 92] where small
angle X-ray diffraction results show that the density fluctuation does not diverge at T, and concluded that
there is no spinodal line or critical point. The discrepancy between the experiments are arisen from the
fact that water is very difficult to be supercooled. Any observation under deeply supercooled condition is
made in small micropore, where the surface effect may not be negligible.
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showed the tetrahedral order in liquid water, which led to the filling-in model.[MW 38]
Pople treated the structure of liquid water as the distorted hydrogen bond network in his
continuum model[P 51] and Bernel extended his model to the random bond model.[B 64]
While Némethy and Sheraga extended the idea of flickering cluster model by Frank and
Wen[FW 57, F 58] and proposed their 5 state description.[NS 62] There have been many
other n-state description used by experimental chemists.[B 78, GLS 88, GLS 86, HS 90,
AR 84] These models are, however, mainly based on phenomenological assumptions.

Rahman and Stillinger’s computer simulation marked a new epoch in the theory of
liquid water.[RS 71, RS 73, SR 74] Their Molecular Dynamics (MD) study clarified many
essential features of the dynamic properties as well as the structure of liquid water. It was
shown that HBs are strongly deformed and there do not exist distinctive cluster structures
in liquid water. It was also found that some kinds of cooperative molecular motions are
involved in liquid water. However, it has not been clear what are the spatial, fime and
energy scales of the cooperativity involved in the dynamics. The main difficulty in dealing
with liquid dynamics is how to extract the core structural changes in dynamics (e.g., the
fundamental changes in the hydrogen bond network rearrangement in liquid water), which
is buried in the thermal noise (ie vibrational movements). Stillinger and Weber introduced
the concept of inherent structure and exposed the intrinsic dynamics of simple liquids and
clusters.[SW 83a] They regarded the dynamics of the system as the motion of phase point
on the potential hypersurface, and separated the motion into two components, the intrinsic
reaction path from one minimum to another minimum and the vibration perpendicular to
the reaction coordinate. The structures at those minima are called inherent structures.
This inherent structure analysis was applied to water by Tanaka and Ohmine[TO 89],
where water potential hypersurface was surveyed and its undulation was discussed.

The origin of the large local energy fluctuation in liquid water was investigated by Tanaka
et al .[TO 87, OTW 88, OT 93, O 95] Although the binding energy per hydrogen bond is

as strong as —20kJ/mol, the hydrogen bond is sometimes easily disconnected and make
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another connection with a neighboring water molecule. The cooperative molecular motion
requires less total energy to rearrange the hydrogen bonds. By this mechanism, energy
is quickly transferred from one molecule to another. They termed this energy transfer
mechanism “flip-flop mechanism”. Their observations extract another layer of collective
dynamics, where tens of water molecules move intermittently and collectively.? Sasai et
al connected these intermittent structural rearrangement with 1/ f type energy fluctuation
in liquid water.[SOR 92] On the other hand, Giguére called the series of rearrangement
motion via bifurcated hydrogen bond as the collective motion.[G 87]

The effect of the collective dynamics is very important for the chemical reaction in the
aqueous solution.[BGWH 86, GBWLH 86, GWH 88, WL 88] Ohmine pointed out that the
vibrational energy dissipation of a photoexcited solute in liquid water is very fast and the
excess energy of the solute molecule is quickly transferred to surrounding solvent water
molecules.[O 86] Such a quick energy dissipation is due to the existence of strong energy
exchange mechanism of the flip-flop type and the large energy fluctuation in water.

The recent progress in the theory of liguid also backs up in studying liquid water and
aqueous solutions. Particularly, the extended RISM ( Reference Interaction Site Model
) and its derivatives are applicable for many static phenomena in liquid water.[HR 81,

HRP 83] Its dynamic extension is also proposed by Hirata.[H 92]

Water has been a prototype liquid, where a lot of approaches are applied for. The idea
of percolation is introduced to liquid water by Geiger et al .[GSR. 79] Stanley et al applied
the site percolation model to show that the icelikeness in liquid water are arisen from the
four bonded patches in the hydrogen bond network and the homogeneous distribution of
hydrogen bond results in the inhomogeneous distribution of patch.[ST 80, GS 82]

Speedy et al discussed the stability of five-membered ring structure in the hydrogen bond

2Jump diffusion of water molecule is detected by Bellissent-Funel et al using inelastic incoherent neutron
diffraction.[MBCLT 93] It may be an evidence of intermittent structural rearrangement.

3The definition of the collective motion is not united. For example, Green ¢t al regarded that the
exiension of the tetrahedrally hydrogen bonded region in the hydrogen bond network is detected as the
magnitude of collective band in the Raman spectroscopy.[GLS 88, GLS 86, HS 80]
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network.[S 84, SM 85, SMJ 87] ¢

Grunwald first paid attention to water molecule with five hydrogen bonds.[G 86] Giguére
pointed out the existence of the bifurcated hydrogen bond from X-ray diffraction data, and
showed that when liquid water is supercooled, the ratio of bifurcated bond comes to zero
around —45°C, [G 87] Stanley et al regarded that the five-coordinated water molecule
works as the catalyst on rearranging the hydrogen bond network.[SGS 91]

A large number of computer simulations have been performed for supercooled water.
[MSG 87, P 92, PSES 93, PSGSA 94,R 83, S 90, SPSH 90, S 84, SAEIIPF 94, S 80, SW 83a)
Poole et al did enormous computation to determine the phase diagram. They predicted
the coexistence of low- and high-density amorphous states, and the existence of the second
critical point in water phases.[PSES 93, PESS 93, SAEHPF 94, P 92]* By computer sim-
ulations, however, it is difficult to reproduce the hehavior near the critical point or glass
transition, where very long time or large scale fluctuation are very important. Many lattice
models are also proposed to reproduce the phase diagram of water. Sasai applied a lattice
model utilizing the method of polymer physics to reproduce the water phase diagram at
low pressure®.[S 90, S 93] Stanley et al also proposed a lattice gas model and discussed the
existence of spinodal and the second critical point.[SSS 93] Many more intense studies are
being made for the supercooled state of water.

Ruocco et al defined the index of asphericity of the Voronoi polyhedron and analyzed
the relationship of the shape of the polyhedra to the structure[RSV 92, SSM 94] and to
the dynamics[RSTV 93] of the hydrogen bond network. They indicated that the four-
coordinated water molecule diffuses slower than three- or five coordinated molecules.[RSTV 93]
This is one of the known most reliable evidences of relationship between the local structure

and the local dynamics.

“Mausbach et al could not find any evidence of special properties in the ring structure.[MSG 87]

STanaka recently made very long time simulation at snpercooled state and pointed that the second
critical point should be placed at negative pressure region.[T 95] It is an issue of current debate.

SAs far as our knowledge concerns, we do not know any model to deal with water under higher pressure,
where many polymorphs of ice appear.
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These topological indices are determined from the instantaneous structures and indi-
cate the topological inhomogeneity in the hydrogen bond network. Describing this type
of correlation between local structure and local dynamics is, however, not sufficient to un-
derstand the water dynamics because there is no information of cooperativity in it. We
rather need to know the method to analyze the collective motions directly. By treating the
water system as the dynamic network system, we can extract the essential information of
the structure and dynamics of water. Many methods and theories of the network systems
have already been developed in the fields other than chemistry; especially useful are the

theories of graph, information, percolation and probabilistic automaton.

In this thesis, we have mainly focused on the relationship between the motions of in-
dividual water molecules and the dynamics of the hydrogen bond network. Experimental
results can provide us with only a distant view of the microscopic dynamics, whereas the
molecular dynamics simulation gives us much detailed information. The raw information
obtained is, however, too complicated to understand the essential element of the dynamics.
Although the statistical mechanics and the theory of liquids have been developed for several
decades, there are only few theories directly dealing with the multidimensional dynamics.

Chapter 2 describes the methods used in the present work, the simulation and the anal-
ysis methods, including the molecular dynamics method, the quenching, and the Voronoi
polyhedra tessellation. Detailed algorithms are also given in Appendix C. In Chapter
3, the static properties of liquid water are re-examined from the view point of network
topology. Roles of the molecules in the first, second and farther coordination shells are
clearly assigned assuming the network topology. The dynamic properties of liquid water
are examined in Chapter 4. In Section 4.1, we introduce various indices of collective mo-
tion to show how the collective motions occur in liquid water. In Section 4.2, the local
and short time rule of the hydrogen bond network rearrangement is extracted from the
molecular dynamies calculation. Based on the rule, the network defect is defined, and then

the collective motions are simply represented by the motions of network defects. This rule
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is further used to construct a lattice dynamics model which reproduces the hydrogen bond
rearrangement. The last section of this chapter describes the various other models and

methods applied for water dynamics.



Chapter 2

Simulation Methods

The simulation methods utilized for this work are overviewed in this chapter. In order to
determine important topological indices expressing the hydrogen bond rearrangement dy-
namics, we have first performed the molecular dynamics (MD) calculations for supercooled

water systems.

2.1 Molecular Dynamics

The simulation is mainly performed for the system with 216 water molecules contained in
a cubic box.! The periodic boundary condition is applied for the simulation cell. To keep
the pressure of the system constant, Andersen’s constant-pressure method [A 80] is imple-
mented. The temperature is also kept constant by Nosé’s constant-temperature method
[N 84]. The trajectory calculation is done by integrating the Newton-Euler’s equations of
motion for rigid body. There are many choices for the integration method. In this work,
Gear’s Predictor-Corrector method is used.[G 71] In the molecular dynamics simulations.
the calculation of the force is usually the most CPU consuming step. Popular integration
methods like Runge-Kutta method or symplectic integration method requires many force
calculations to advance one step of the simulation. On the contrary, in Gear's algorithm,

the calculation of the forces is only once at a step. TIP4P potential function [JCMIK 83]

1Some caleulations are performed for 64-particle system.

16
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is used and the intermolecular interactions are smoothly truncated at around 9A. Any cor-
rection for long range interaction (ie Ewald sum) is not applied. Trajectories are recorded

for about 100 to 1000 ps, depending on temperature.

2.2 Inherent Structure of Water

An instantaneous structure of the system is expressed by a phase point in the config-
urational space. The trajectory runs on the potential hypersurface, which consists of
many potential wells. By quenching the system, any instantaneous structure in the same
basin comes to one local minimum energy structure, called inherent structure. Still-
inger and Weber first introduced the concept of inherent structures to analyze the liquid
dynamics.[SW 83a] By projecting the instantaneous structure into each inherent structure,
the dynamics of the system is easily understood as the repetition of stagnation and tran-
sition. In applying the inherent structure to water dynamics, most “bifurcated” or “half-
binded” hydrogen bonds are assigned to the distinct hydrogen bonds and the ambiguity of
the structure is removed. Tanaka and Ohmine applied Elber and Karplus’s method[EK 83]
to determine the reaction coordinate between the successive inherent structures and calcu-
late the barrier height distribution of the transition states.[TO 89]

In our calculation, the quenching is performed by the steepest descent method solving

the equation

ds ar ’

which denotes the overdumped motion on the potential hypersurface. s is the virtual time

dr _ _Ei'qfu(r) (2.1)

variable.

2.3 Voronoi Polyhedra

When a set S of N points in space is given, we can always make a region around a point

p; in which any point is closer to p; than any other points in the given set S.
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Take a set of points which are nearer to a molecule 7 than to any other molecules. Such
a set of points form a polyhedron around the molecule i. The polyhedron is called the
Voronoi polyhedron (VP) of the molecule 1.

VP is equivalent to Wigner-Seitz cell in the crystal and includes all information of neigh-
borhood relations. As the tessellation is determined only by the positions of points, it is
useful to understand the local structure on the molecular system.

There have been a lot of applications of Voronoi polyhedron for the analysis of the simple
liquid with topological randomness,[F 70, HR 79a, HR 79b, CFW 81, T 86, NY 86, WT 87]
and some for liquid water and ice.[RSTV 93, R 83, RSV 92, SSM 94]

The detailed algorithm to determine the Voronoi polyhedra in the system with periodic

boundary condition is given in Appendix.



Chapter 3

Static Properties of Hydrogen Bond
Network

Liquid water and ice form three dimensionally percolated network of the hydrogen bonds.
Each water molecule is binded to four adjacent water molecules on the average. This
number of the first neighbor molecules is much smaller than that of a simple liquid (
about ten). Two of them, on the average, are ‘donating’ or ‘outgoing’ hydrogen bonds
(ie hydrogen atom is donated to create a hydrogen bond with oxygen atom of another
water molecule), and the other two, on the average, are ‘accepting’ or ‘incoming’ hydrogen
bonds (ie hydrogen atom of another water molecule is accepted to create a hydrogen bond).

The spatial distribution of neighboring molecules around a water molecule is depicted in
Fig. 3.1. The neighborhood molecules occupy tetrahedral positions. The distribution lobes
at oxygen side of the central water molecule are broadened.

The static structure of the hydrogen bond network has been well investigated by many

authors. In this chapter, the characteristics of the static structure is briefly introduced.

3.1 Hydrogen Bond

Before discussing the detailed structure of the hydrogen bond network, the definition of
the hydrogen bond should be given. The short range structure of a water molecule is

tetrahedral. The criteria for the hydrogen bond should, therefore, satisfy the condition so

19
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that each water molecule has about four hydrogen bonds under normal thermodynamic
condition. There are various possible definitions of the hydrogen bond satisfying such a

criteria. Following are the examples:
e Belch and Rice[BR 87]

1. Hydrogen-Lone Pair distance < 2A

2. Suitable configuration of two molecules

3. If there are some combinations for hydrogen and lone pair, most linear bond is
chosen and other choices are neglected.

o Geiger/Mausbach/Stanley/Teixeira|BSGM 84]

1. Pair interaction energy< Vyg
2. Oxygen-oxygen distance < 3.5A
3. Upper limit of the number of hydrogen bond is 4

e Rahman/Stillinger[RS 73]

Pair interaction energy< Vyp
e Speedy(S 84]

1. Pair interaction< Vyg
2. Upper limit of the number of hydrogen bond is 4
3. Hydrogen bonds are searched iteratively so as not fo bind more than four hy-

drogen bonds at a water molecule.

Among these, we have chosen the simplest definition in this study; two water molecules
are hydrogen bonded if their interaction energy is lower than Vjp, and the value of Vg is

determined to —10kJ/mol from the distribution of the pairwise interaction energy shown
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in Fig. 3.2. This threshold value is nearly equal to the value obtained from Raman spec-
troscopy and other experiments.[WC 91, WFHW 86, WI 66, W 72] Such a definition of
the hydrogen bond gives rise to “bifurcated” hydrogen bonds. By quenching, the hydrogen
bonds are assigned more definitely; these bifurcated bonds reduce to either of the hydrogen
bonded or not. The pair distribution function between the hydrogen and oxygen shows the

sharp separation of the hydrogen-bonded peak in Fig. 3.3.

3.2 Structure

Let us now analyse the static structure in terms of the hydrogen bond network. Local
configuration of a water molecule is tetrahedral, that is, molecules in the first coordinate
of a water molecule occupy only four of the eight vertices of a cube and other four vertices
are vacant. It is of interest here to know how the cavity in liquid water are structurized.
A water molecule in ice makes four large Voronoi faces with first neighbor molecules and
small faces with third and fourth neighbor molecules, but does not make Voronoi face (ie is
not adjacent) with the second neighbor molecules'; a molecule is surrounded solely with
four water molecules and four large cavities. The radial distribution function (RDF) of
water is shown in Fig. 3.4. In the figure, RDF is decomposed into peaks according to the
path length (ie n-th neighbor) along the hydrogen bond network. RDF of ice has sharp
distinct first peak and well-separated layers of hydration shell. The wide gap between
the first and the second peak shows the existence of the cavity. On the other hand, each
RDF component forms asymmetrically broadened peak in liquid water, that is, the cavities
around the central molecule are distorted and the third and fourth neighbor molecules
approach. These configurations arise from the distortion of the 0-0O-0 angle in water.
The spatial distribution of the water molecules classified by the path length along the

hydrogen bond network is shown in Fig. 3.5. In ice Ic, the second neighbor (ie path

't is the case of hexagonal ice (ice Th). There is no face with fourth neighbor molecule in ice Ic. The
degree of neighbor is here defined along the hydrogen bond network.
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length= 2) molecules are located at the symmetric 12 positions. The distribution is slightly
broadened by the libration of the central molecule. On the other hand, the distribution
lobe of the second neighbor molecules in liquid water forms continuous tori around the four
axes through the first neighbor molecules. The outline of the third neighbor lobe is more
ambiguous. The distribution of the third neighbor still holds high anisotropy.

The pair interaction distribution has been already shown in Fig. 3.2. A separated peak
exists at —20kJ/mol, which represents the hydrogen bonded pairs. There seem to exist two
shoulders at the both side of this main peak. In order to obtain further information, the pair
interaction distribution is classified by the path length along the hydrogen bond network
as shown in Fig. 3.6. It looks that the second neighbor molecules mainly contribute to the
shoulders, ie some of pairwise stable configurations unstabilize the second neighbor. In the
case of ice, the distribution of the pair interaction with the second neighbor forms definite
peaks at the both side of the ordinal. The spatial distribution of the second neighbor
molecules with the positive interaction energy coincide with the distribution of the whole
second neighbor molecules.? The third and further neighbor molecules yield only small
contribution.

As a summary, the roles of the pairwise interactions are clearly classified by the path
length along the hydrogen bond network. The first neighbor molecules are no doubt im-
portant for the stability of the central molecule, and the second neighbor molecules also

affect to the stability of the central water molecule.

2Li and Ross showed that there are two types of configuration for a hydrogen-bonded pair of water
molecule in ice, where a configuration is twice as strong as the other.[LR 93] In our calculations, however,
Only a slight constriction at the hydrogen bond peak (left peak) is found and such a dramatic difference
in the first neighbor interaction cannot be seen in Fig. 3.6.
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(a) (b)

Figure 3.1: Tllustrations of the water molecule distribution around a water molecule by
molecular coordinate. Relative density threshold is 1.0 (ie the region where relative density
is higher than the average is filled). (a) Liquid water at 300K; (b) Supercooled water at
240K; (c) Ice Ic at 240K. Only the first hydration shell is shown.
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Figure 3.2: The pair interaction distribution for water; upper: liquid state at 240K and
300K; lower: ice at 240K and 100K. Second peak around —20kJ/mol corresponds to hy-
drogen bond.
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Figure 3.3: The radial distribution function of oxygen-hydrogen pair quenched from liquid
state at 298K.
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Figure 3.4: The radial distribution function between centers of mass of (a) ice Ic at 100K,
(b) ice Ic at 240K, (c) liquid water at 240K, (d) liquid water at 300K. The distribution is
decomposed into path length along the hydrogen bond network.
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Figure 3.5: The spatial distribution of the hydration shell. The lobe indicates the higher
probability region than average. (a) second neighbor in liquid water at 240K; (b) second
neighbor in ice Ic at 240K; (c) third neighbor in ice Ic at 240K. The distribution is split in
the molecular plane of the water and a half is displayed.
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Figure 3.6: The pair interaction distribution classified by the path length along the hy-
drogen bond network in (a) liquid water at 300K; (b) liquid water at 240K; (c) ice Ic at

100K.



Chapter 4

Dynamic Properties of Hydrogen
Bond Network

The motion of water molecules is described by the motion of a phase point in a 12N
dimensional phase space, where N is the number of molecule.! In order to deal with the
dynamics with very many degrees of freedom as in the present case (N = 216 in our study),
it is essential to separate the fundamental motions from other stochastic motions.

Many ideas of understanding high dimensional motion have been proposed. Traditional
thermodynamics gives the viewpoint of regarding the high dimensional motion as the mo-
tion of phase point in the 6N dimensional configuration space. The motion of the phase
point is ruled by the undulation of the potential energy hypersurface. The stagnation and
the transition of the phase point are detected as the intermittent structure rearrangement.
To explain the motion of the phase point, it is required to characterize the profile of the
potential energy hypersurface.

Despite of its fluctuating nature of water, the network appears to be homogeneously
distorted. Many efforts have been thus made to describe the relationship between local
structure and its dynamics in liquid water.

In Section 4.1 of this chapter, we will show how the water molecules move collectively, in-

troducing various indices of collective motion. In Section 4.2, local rules for network motion

!Degrees of freedom of intramolecular vibration are not included in our calculations.

29
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is carefully extracted and a new approach to describe the rearrangement of the hydrogen
bond network is suggested, where the transport mechanism of the network frustration is
related to the collective dynamics of water. The last section is spent for describing various

methods applied on related topics.

4.1 Collective Motions in Water

In this section, various indices are introduced to define the collective motions in liquid water.
The cooperative nature of water is distinctly described by these indices. The motion of
water molecules is diffusive in long time, but intermittent in short time around tens of pico
second. These intermittent motions occur everywhere in the system. The spatiotemporal

relationship of local motions in the large systems should be clarified.

4.1.1 Hydrogen Bond Rearrangement Map

The most primitive point of view of the intermittent molecular motion may be given by
listing the frequency of hydrogen bond forming-breaking at each molecule. The HBNR
map is indicated in Fig. 4.1, where ‘#’ is put when any hydrogen bond of a water molecule
7 is rearranged (ie connected or disconnected ) at time ¢. The vertical white gap implies
that the molecule is not active for a long time. The simultaneous appearance of ‘#’ marks
on the horizontal line indicates how many water molecules are simultaneously rearranged
their hydrogen bonds. As the total number of molecule is relatively larger ( 216 molecules
) than the cluster size of the collective motion, the intermittency is hard to be seen in this

map.
4.1.2 Distance Matrix

To understand the molecular motions in liquid, the “distance” between two configurations

at different times is a very useful measure. Euclidean distance is defined by

N
D(t,t) = (X In(t) — m(t")*)?, (4.1)

i=1
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where r;(t) is the position of the center of mass of ith water molecule at time ¢. The
element d;; of the distance matrix denotes the distance between time t; and ¢;, that is, the
change of the system. If the structure of the molecular system changes continuously, the
distance matrix forms band structure. It is case for gas or simple liquids well above the
melting point. On the other hand, the island structure appears as the intermittent change
in the system.[TO 89|

The distance matrices of the liquid water with 64 molecules are shown in Fig. 4.2-4.3.2
There exist clear island structures at supercooled region, that is, the system keeps a similar
structure for few tens of pico second and then suddenly change its structure. As the tem-
perature rises, or as the system becomes larger, many rearrangements occur simultaneously
in the system. Even individual structure rearrangements occur intermittently in different
regions forming the independent island structures, these island structures are overlaid in
the overall (ie total system) distance matrix, and the total distance matrix seemingly yields
the band structure expressing the diffusive molecular motion.

In order to extract the localized rearrangement of the structure embedded in the band
structure, we define the “partial distance”, ie the measure of the structure change in the

partial volume of the system:

D(t, ) = (3 |rit) — r(#) )2, (4.2)

where the summation is taken over the particles which are in the partial volume at time ¢. In
this definition, the distance matrix is no longer symmetric. In Fig. 4.4, the partial distance
matrices of one eighth of the system with 216 molecules are depicted. Each system includes
27 molecules in average. Although the original distance matrix looks totally diffusive, we
can clearly see the island structure in the partial distance matrices indicating that the
structure change is localized and intermittent. Overlaying the 8 partial distance matrices

reduced to the original distance matrix.

?In this context, no quenching is applied. Intermittence of structure change therefore becomes a little
ambiguous.
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4.1.3 Network Distance Matrix

In order to understand the collective motions and relate them to the hydrogen bond rear-
rangement, it is very useful to redefine the distance matrix based on the topology of the
network.

The instantaneous topology of the HBN in the system with N water molecules can be
expressed as the binary N x N symmetric adjacency matrix, where each element {i,;}
gives 1 if molecule 7 is binded with molecule j and 0 otherwise.®> We define the state of
the system by the adjacency matrix. Suppose there are only three water molecules a, b
and ¢ in the system. The total number of states is 2 = 8, where » = N(N — 1)/2. Thus
the state of the system can also be expressed by v bits binary sequence, ie a vertex of
v dimensional hypercube. The change of the network is identical to the walk on the v
dimensional hypercube.

Then the “Hamming distance”, a term from information theory, can be defined as the
path length of the walk along the hypercube, ie number of different elements between two

adjacency matrices as

Dy (t,t) =3 |aij(t) — aii(t)], (4.3)

i#]
where the value of a;;(t) is 1 if the nodes ¢ and j are connected by a bond at time ¢ and
otherwise 0. The correlation between Euclidean distance and Hamming distance in Liquid
water is shown in Fig. 4.5. We can see in the figure that they are mutually linear for wide
range of temperature.
The island structures similar to those in the Euclidean distance matrix are reproduced
in Hamming distance matrix as seen in Fig. 4.6 The partial Hamming distance matrix can

be defined by restricting the summation over the nodes in the partial volume at time .

9Here the hydrogen bond network is treated as a undirected graph without multiply connected nodes,
te direction of the hydrogen bond or illegally connected hydrogen bonds are not considered.
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4.1.4 Indices for Collective Motions

The collective motion is characterize by the size, shape or coherence of the group of

molecules. Following are two indices proposed to characterize the collective motion.

Moment ratio

Suppose all molecules diffuse by a jump motion. The total square displacement, say Dj.
of the molecules in short time At is denoted by the product of the number of jumped

molecules n and the square average jump distance J* as
Dy= Y Art=n.J% (4.4)
i
The equation could be rewritten in quadratic form
By =Z:&r’“ O (4.5)

where N stands for the total number of molecules. Thus the number of jumped molecules

in short time At is simply written as

Do D
n = ‘W: (4.6}

which is also denoted by the averaged form

n _ (|Ar[")(JAr™)

N (AP (4.7)

For the case of in = 2, the equation coincides to the moment ratio of displacement.[SW 83a]
Rigorously, it is not the scale of collectivity but rather the scale of simultaneous motions.
Moreover, this index should be used carefully because it sometimes fails to measure the

scale when no molecule jumps.

Coherency index

In order to extract the magnitude of the local structure rearrangement, another index of

collective motion is introduced. The procedure is enumerated as follows:
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1. Pick up a pair of adjacent water molecules® and calculate their displacement, say v,

and vs, in the short time, say At.

2. If the inner product of the displacement vectors is larger than the threshold value, ‘e

V1 * V2 2 Tthreshold: (48)

they are regarded to move coherently, and connect the two water molecules by a

bond.

3. Repeat the procedures above for all pair of the molecules in the system. The bonds
form cluster. The magnitude of collective motion in At is defined by the size of the

connected graph, say “coherency index”.

The threshold should be chosen appropriately. Too small threshold will cause percolation
of coherent cluster, while too large threshold will miss any collective translational motions.

An example is shown in Fig. 4.7. The structure rearrangements of the system with 64
water molecules at 240K are visualized for 600ps. The large rearrangement around 200ps
can be seen in the distance matrix, which are detected by the coherency index clearly,
where about half of the water molecules are moved collectively. The stagnation around
100ps, 300ps, and 500ps are also detected as the blank in the coherency index.

As this index indicates, the structure rearrangement in liquid water occurs intermittently
and locally. The simultaneous rearrangements in the large system can be separated by this
index. The definition of this index is very heuristic but gives a quite clear sign of the

collective motion.

4.1.5 Global Topological Indices

The time scale of the network rearrangement cannot be directly inferred from the shape

of island structures in the distance matrices. We thus need to introduce some topological

“Practically, the two water molecules are regarded as adjacent if they are closer than 4.0A
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indices of the total network, which are determined by the global network structure at an
instance. The long time fluctuation of the network is expected to be seen as the time depen-
dence of these topological indices. Many topological indices are proposed for QSAR (quanti-
tative structure-activity relationship).[LMD 91, R 92]. Their physical meanings have been
examined by some authors,[LMD 91] but the analyses on these indices are still very heuris-
tic. We enumerate some topological indices in Table 4.1. To clarify the relationship between
physical properties and these indices, the following correlation is calculated. The simulta-

neous correlation coefficient between two time sequences {z(t,), -+, z(%),---,z(tx)} and

{y(t1),---,y(t:), -+, y(tn)} is defined by
n L a(t) - y(t:)
(7 Za(t:) (% Lu(t)

_ (x-y)
= @ (49)

This coefficient indicates the strength of linear correlation between two sequences and has

Cl{=z}{y}) =

a value between —1 to 1. Correlations of these indices with the potential energy fluctuation
are shown in Table 4.2. There are only weak correlations between them. The larger number
of hydrogen bonds implies the larger topological indices. This is trivial and does not bring

us any new information.
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Table 4.1: Various indices for global network structure rearrangement. We denote the
element of the distance matrix D(G) of the graph G as d;; and adjacency matrix A(G)
as a;;. The “distance matrix” here means the matrix whose {7, 7}th element denotes the
length of the path along the network between node ¢ and j. This should not be confused
with the Humming or Fuclidean distance matrix defined before.

The
polarity number,
n-step number

Wiener index

Complexity

The information
content(I)

The information
content(II)

The polarity number, ps, is defined as the total number of d;; = 3
elements, ie the number of node pairs which take 3 hops to reach
along the network. n-step number, p,, is the general extension of the
polarity number to any natural number n.

The Wiener index,[W 47a, W 47b] w, is given by

w= 1Y dd; € D(G). (4.10)
i
The summation is over the number of edges between all pairs of ver-
tices in G.
The complexity, C(G),of a graph  is defined as the number of span-
ning tree, ie partial graph of the graph G, which is spanning over all
nodes and has the form of a tree.

The complexity of a graph G is easily counted by the following
theorem:[T 89]

Theorem: The complexity K(G) is equal to the cofactor of the matrix
M, which is the adjacency matrix whose diagonal elements are
replaced by d;(ie adjacency number of node i) and the signs of
all off-diagonal elements are inverted.

The information content, 1)}, and the mean information content, TLV,
on the realized distances in G are:

I}y =wlogyw— Y ig;log,i (4.11)

and w
15 =2 (4.12)

w

where ¢; indicates the incidence of distance i in G.

The information content, I£, and mean information content, IZ, on
the distribution of distances in G are defined as

n(n —1 nin—1
fg — {‘ 2 )1{153 ( B ) “Egt lOgE g, (413)
and
T 2g: 2gi n(n—1)
Ib e = BN T .
b=l oy oy - B/ (1Y)

where n stands for the number of vertices in G.
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Table 4.2: The simultaneous correlation of the total potential energy E with various global
topological indices.

Topological index Correlation with £

Total number of incoming hydrogen bonds 0.163
Total square displacement of centers of mass -0.129
Wiener index 0.219

Complexity 0.211
1-step number (total number of hydrogen bonds) —0.187
2-step number —0.193
3-step number —0.230
4-step number —0.143

Information contents(I), I} 0.219
Average information contents(I), Tf —0.170
Information contents(II), If 0.211

Average information contents(II), T4 0.211
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4.2 Local Structure and Dynamics

As mentioned above, the structure rearrangements occur intermittently and locally, where
several molecules move cooperatively. In this section, we introduce some localized indices
of structure and motion, and inspect how the structure and dynamics are coupled in short

time dynamics of the hydrogen bond network.

4.2.1 Topological and Dynamic Parameters

In order to analyse the HBN rearrangement, topological indices of the network should
be defined. They might be “rings”[S 84] or “polyhedra”[S 80] of the HBN. However, these
indices defined with more than two molecules are difficult to trace and may cause ambiguity.
We thus choose only unimolecular topological indices, as the structural indices. Examples
are listed in Table 4.3. We here use a right arrow (—), to indicate a donating ( ie “outgoing”
) hydrogen bond of the specified water molecule, a hydrogen of the water molecule making
HB with the oxygen of another water molecule. A left arrow (+) to indicate an accepting
( ée “incoming” ) hydrogen bond, the oxygen of the water molecule making HB with a
hydrogen of another water molecule. We also choose the local indices of dynamics in Table
44. Each index Az(l) is defined as Az(t) = z(t + At) — z(t), except D. They depend
strongly upon the choice of At; we choose 1ps and 100fs for At.
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Table 4.3: Various topological indices. Some of them are not utilized or not mentioned in

this paper.

ZA Number of adjacent molecules, defined as the number of molecules
nearer than r¢ = 3.54
zup Number of IIBs of a molecule
Zus, Zug Number of the accepting / donating HBs
zy Number of adjacent molecules, defined as the number of faces of
Voronoi polyhedron
Vy Volume of Voronoi polyhedron
Sy Surface area of Voronoi polyhedron
2B Number of weak HBs, defined as the difference of zyp with the
threshold value of —10kJ/mol and that with —5kJ/mol.
Eg Binding energy
Table 4.4: Various indices of structure rearrangement.
D Local diffusion coefficient calculated from the displacement between
1 to 2ps after the moment.[RSTV 93]
Ar?  Square displacement of the center of mass just after the moment.
Ab Rotation angle just after the moment.
Azygp  Change of the number of HBs.
AZ'yg  Change of the number of the donating HBs.
AZyp Change of the number of the accepting HBs.
A'?:B Increment of the number of the donating HBs.
AZ yg Increment of the number of the accepting HBs.
AZyg Decrement of the number of the donating HBs.
.f‘_\{z_l: g Decrement of the number of the accepting HBs.
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A simultaneous linear correlation coefficient is already defined in Eq. 4.9. If the two
sequences correlate nonlinearly, however, another type of correlation should be used. In
addition to the simultaneous correlation we here utilize the mutual information I({z} :
{v}). The probability of taking the value z; can be denoted as P(z;). The information of
the data set is defined as

H({z}) = -EP ) log P(z;). (4.15)

The information H({y}) can also be defined for another sequential data set {y}. The
joint probability P(z;,y;) is the probability that = is @; and y is y; at the same time. Its
information is calculated in the same manner as follows:
H({I}:{y}) = _Z:P(ziayj]]-ogp{xh y_f}s (416)
1l

Then the mutual information is defined as

I({z}: {y}) = H({z})+H{y}) — H({=},{y}), (4.17)

which indicates the excess information produced by the correlation of two sets. It becomes
0 if there is no correlation between = and y. As there is any averaging operation in the
definition, this index is applicable even when x does not take ordered values. Mutual infor-
mation is not utilized for continuous topological indices in this work. Although there are
various ways to take the time correlation, for examples, delayed correlations, correlations
between distant points and many body correlations, we take only simultaneous correlations
in this work.

Let us now look at these correlations in detail. The correlations among topological
indices at 240K are listed in Table 4.5. The correlation between 7 yg ( the number of
the accepting HBs ) and Z'yg ( the number of the donating HBs ) is strikingly small
(C(Z uB, z up) = 0.0397); the number of incoming HBs does not correlate with the number
of outgoing HBs. Relatively large negative correlation between zyg and Eg simply indicates

the fact that the more HBs a water molecule has, the lower its binding energy becomes.
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The correlations at 300K are listed in Table 4.6. The correlation coefficient between Z g

and Z'yp is still small and all other indices indicate similar tendencies to those at 240K.

Table 4.5: Various correlation between two topological indices at 240K. Upper: correlation
coefficient. Lower: mutual information. H is a single information content.

H =7} ZHB ZHB 2 HB Eg
H 1.1319 0996 0.574  0.740

Zp 0.0543 0.0158 0.0722 0.0974
1.319 0.0533 0.0198 0.0494

ZHB 0.6459 0.7616 —0.3378
0.996 0.2365 0.4014

Z'HB 0.0397 —0.1558
0.574 0.0015

Z HB —0.3278

0.740

Table 4.6: The correlation coeflicients between two topological indices at 300K.

ZA Zas ZHB  ZHB Eg

L 0.1198 0.0862 0.1084 0.0066
ZHB 0.6695 0.7409 —0.6182
HB 0.0410 —-0.3602

HB —0.5316
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Table 4.7 shows the relation between topological index and its change at 240K. There are
strong correlations between (?HB,A?;B[ increment of the number of the donating HBs
) (Z' 1, AZ ygp( decrement of the number of donating HBs )), (Z us, .&?;B( increment
of the number of the accepting HBs )), (‘Z up, A7 yg( decrement of the number of the
accepting HBs )). On the other hand, Z’'yg yields small correlation with .&?;H and with
ﬂ.?;m . The negative large correlation between A# ( rotation angle ) and zyp simply
implies that the water molecule can rotate easily when the number of HBs is small. Those
indices at 300K are listed in Table 4.8. Although intensive molecular motions reduce the

correlations with Af or Ar, overall tendencies are kept even at the room temperature.

Table 4.7: Various correlations between topological index and dynamic index at 240K, At is
100fs. Upper: correlation coefficient. Lower: mutual information. H is a single information
content.

H =7\ ZHB Z'uB Zus Eg
H 1.346  1.022 0589  0.765

AZ'up 0.1660 —0.2154 —0.2995 —0.0479 0.2712
0.765 0.0152  0.0454  0.1190  0.0013

AT yg 0.1773 —0.0859  0.0041 —0.1272 0.0575
0.754 0.0164  0.0313  0.0002  0.0607

A 0.1033 —0.4082 —0.6358 —0.0201 0.2024
0.488 0.0070  0.0853  0.1802  0.0005

AT in 0.1050 —0.3352  0.0152 —0.4730 0.0417
0.487 0.0060 0.0612  0.0002  0.1131

A7 g 0.1445  0.0876  0.1897 —0.0424 0.2024
0.487 0.0105  0.0068  0.0348  0.0009

AT g 0.1482  0.2137 —0.0094  0.2929 0.0404
0.486 0.0117  0.0305  0.0001  0.0502

Ar? 0.0262 —0.0915 —0.0589 —0.0779 0.1580

Ab 0.0729 —0.5703 -0.2908 —0.5228 0.2957
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Table 4.8: The correlation coefficients between topological index and dynamic index at

300K. At is 1ps.

—) -
ZA ZHB 2 HB Z HB Eg
AZug 0.1090 —0.0808 —0.0517 —0.0675 0.1793
A% g 0.1153 —0.0325 —0.0249 —0.0626  0.0344
AZpp 00536 —0.3270 —0.4366 —0.0671  0.2850
a‘?;’m 0.0424 —0.2875 —0.0312 —0.3781  0.2385
AZhg 01267 01944  0.3526 —0.0445  0.0108
AZgs 01389  0.3362 —0.0081  0.4732 —0.1826
Ar? 0.0301 —0.0579 —0.0442 —0.0443  0.1179
A8 0.0551 —0.1240 —0.0924 —0.0901  0.2332
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The relation between two indices of structural change is also interesting. Table 4.9
shows that the decrement of the number of outgoing HBs strongly causes the simultaneous
increment of the number of outgoing HBs, C (ﬂ_z’:B,ﬂ?;B] = 0.5169, and so that the
number of outgoing HBs does not much change from 2 even when bond alternations take
place. There is also significant correlation between increment and decrement of the number
of incoming HBs C(.&(z_:;ﬂ, AT yp) = 0.2689, which is but less than C(A?:[H, ?;B] =
0.5169 because three incoming hydrogen bonds per a water molecule is possible. On the
other hand, there is only small correlation between simultaneous change of the number of
incoming and outgoing HBs (O(&?;B, ﬁ‘?:m} = 0.0948, C(ﬁ?;s, Zup) = 0.0663,
C(AZ gy, AT 1) = 0.0632, C(AZqg, AT 5g) = 0.0989). The large correlations with
Ar? ( square displacement of the center of mass ) or Af shows that any kind of HBNR
causes translation or rotation of the molecule. These tendencies are kept even at 300K,

shown in Table 4.10.
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Table 4.9: Various correlation between two dynamic indices at 240K. At is 1ps. Upper:
correlation coefficient. Lower: mutual information. H is a single information.

H AZus AZus A7ng A%ns AZpg ATws Ar? Al
H 0.765 0789 0504 0499 0504  0.499

AZus 0.1165 0.8706 0.0907 0.8712 0.0949 0.3459 0.5199
0.765 0.0077 0.3734 0.0043 03735 0.0045

A 0.1011 0.7965 0.1018 0.7965 0.3764 0.3600
0.789 0.0053 0.3206 0.0055 0.3204

A7 s 0.0948 0.5169 0.0663 0.3052 0.4536
0.504 0.0041 0.1118  0.0021

AT g 0.0632  0.2689 0.2953 0.2839
0.499 0.0019  0.0304

AZ'm 0.0989 0.2972 0.4518
0.504 0.0045

A un 0.3043 0.2896

0.499
Ar? 0.5212

Table 4.10: The correlation coefficients between two dynamic indices at 300K. At is 1ps.

AZup ATus A7ns ATws AZgs ATy Ar? A8
s 0.0306 0.8270 0.0598 0.8257 0.0671 0.2406 0.3678
AT s 0.0758 0.7851 0.0575 0.7890 0.2625 0.2632
A7 s 0.0662 . 0.3657 0.0532 0.2003 0.3064
N 0.0325 0.2389 0.2016 0.2013
i 0.0578 0.1973 0.3014
A% g 0.2115 0.2130

Ar? 0.3112
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There is a certain relation between the average square displacement Ar? and the co-
ordination number z,.[RSTV 93, SGS 91] However, the direct correlation between the
square displacement before averaged, Ar?, and the coordination number, z4, is very small
(C(za,Ar?) = —0.0659 for At = lps, 0.0262 for At = 100fs). This is because the dis-
tribution of Ar? is very broad. Ar? is an inadequate index to perform the correlation
analysis.

As a summary, the MD calculation reveals that:
¢ Four HBs are not equivalent.

e The number of incoming and outgoing HBs are independently controlled to be around
2. As the result, the total number of HBs per one water molecule becomes to about

4.

It should be noted that these rules are intrinsically exist even in the room temperature.
Turning now into the time dependencies of these local topological indices by power
spectra, interesting tendencies can be observed. In Figs. 4.8-4.9, power spectra of various
local topological indices are indicated in log-log. All indices have the smooth slope in the
short time scale and flat “white” spectra in the longer time scale, as has already been found
in the fluctuation of the potential energy by Sasai et al .[SOR 92] The crossover point of

the short- and long-time behavior is 0.5cm™" at 240K and 5cm™! at 300K.

4.2.2 Graphical Analysis

In this section, we propose a new graphical representation of the hydrogen bond network,
which leads naturally to a new concept of defects. Correlated motion of the hydrogen
bonds is described in terms of the network topology and the defect.

The topology of the HBN of water can be represented by a graph, where nodes and
bonds correspond to water molecules and hydrogen bonds, respectively. In liquid water,

there are several water molecules which surround an individual water molecule, but not
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making HBs with thaf central water molecule. These non-HB surrounding water molecules
easily turn to create HBs with the central water molecule. We introduce here the ’virtual
HB’ to represent the non-HB bond between the adjacent water molecules, which is ready
to change to HB. The new topological graph of the network, constructed with HBs and
virtual HBs is able to describe the geometrical information for possible HB alternations,
thus can treat the HB rearrangement dynamics. We use the term ‘adjacency bonds’ to
indicate both real and virtual bonds.

Let us consider the graphical representation of HBN. The HBN, indicated in Fig. 4.10(a),
can simply be represented by a directed graph, shown in Fig. 4.10(b). Each node and arrow
corresponds to the water molecule and HB, respectively. Here an incoming arrow to a node
indicates that a hydrogen of another water molecule makes a HB with the oxygen of that
node (water molecule). An outgoing arrow from a node, a water molecule, indicates that
a hydrogen of that node (water molecule) makes a HB with an oxygen of another water
molecule. Dashed bonds are added to denote the virtual HBs. Each node nearly has 2
incoming and 2 outgoing HBs. Each arrow is further replaced by a bond with white and
black circles at the head and the tail of the arrow, respectively. The diagram of HBN
obtained after this operation is shown in Fig. 4.10(c). As we have seen in the previous
section, the events of incoming bonds are nearly independent from the events of outgoing
bonds; the white circles and the black circles are not mutually exchangeable. Three white
circles in a node can then be put together into one white circle and three black ones to one
black one, as shown in Fig. 4.10(d). Each node is separated into two seminodes.; one for a
donating part of the node (black circle) and the other for an accepting part (white circle).
The bonds are then no longer necessarily to be represented with ’directed’ allows. By this
operation, HBN is converted into an undirected infinite graph. The number of seminodes
is twice of that of nodes and thus the number of edges at each seminode becomes half.
Here, we use the notations of “seminode” and “edge” in the undirected graph whereas we

have used “node” and “bond” in the directed egraph, respectively.
grapl, P 3
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Each edge is either of “occupied” or “vacant” state. An occupied edge is called a “hydro-
gen edge (HE)”. A vacant edge is an virtual HE. Each seminode is assumed to have not less
than 2 virtual HEs. We assume that the number of HEs attached to one seminode takes
the value between 1 to 3. This is a reasonable assumption because water molecules having
0 or 4 incoming [ outgoing HEs are quite rare in real water. We draw the state transition
among HB states at a node using the MD data in the previous section. Fig. 4.11 shows
the changes of HIBs at 220K. Each arrow denotes the transition probabilities to various HB
states in a step. Infrequent transitions are omitted from the diagram. The large probability
Py; and Psy indicates that water molecule with 1 or 3 donating HB will changed to have
2 donating HB quickly. The lower loop P35 denotes that one of the two HBs is diminished
and another HB is created at a time. Most probable total number of the donating HBs is
thus 2. The same is true for the accepting HBs.

We call a seminode with more or less than 2 HEs as “defect”. There are oversatisfied (
having more than 2 HEs; denoted by @ ) and dissatisfied ( less than 2 HEs; & ) types of
defects. A state transition of an edge always causes one of the three types of the motion
of defect, propagation, pair creation and pair annihilation, as illustrated in Fig. 4.12. The
defects occupy 9% at 220K, 22% at 240K, or 36% at 300K of the seminodes. It should be
noted that the percentage of the defect decreases rapidly around 220K.

A HB annihilation probability is enumerated by the number of HBs attached to each
seminode. When both seminodes are @ defects, the HB (and thus both defects) annihilates
with a probability, say, p. When one end is @ defect, the HB annihilates with a probability ¢
and the other end becomes & defect. While both ends are not @& defects, the HB annihilates
with a low probability r. p, ¢ and r should be called as “pair annihilation probability”,
“propagation probability” and “pair creation probability”, respectively. In Table 4.11, p,
g and r extracted from MD data are 0.72, 0.29 and 0.10, respectively.
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Table 4.11: The probabilities, P,, of disconnecting a hydrogen bond (HB) under various
states of the terminal seminodes, extracted from MD data at 220K. The terminal seminodes
are two water molecules linked by the HB. The state of the terminal seminodes is specified
by the numbers of HEs attached to both terminal seminodes, 2z yp ( the number of the

donating HBs ) and Z g ( the number of the accepting HBs ).

— —

ZHB ZHB Pa
1 1 0.098
1 2 0.117
1 3 0.352
2 1 0.083
2 Z 0.100
2 3 0.294
3 1 0.226
3 2 0.294
3 3 0.727
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[t 1s important to know the defect dynamics that once a defect is created, it can never
cease until it reaches a partner defect to annihilate with. This situation is very close to so
called “domino phenomenon”; once one defect passes over a path, another defect never can
pass the same path and defect stops when it meets another defect. In another word, the
defect motion of the defect leaves a trace on the network structure and so that the defect’s
walk is far from random. This memory effect restricts defect’s walk more as the average
number of virtual HBs at a seminode is lowered. If there are only two virtual HBs at a
seminode, a single defect cannot pass the seminode and is sometimes confined in a small
region of the network. More detailed discussions are given in Appendix A. Such a property
of defects restricts the propagation of HBNR in the structured water.

Average number of molecules, whose hydrogen bond is rearranged in short time At,
is plotted against temperature in Fig. 4.13. At low temperature region, the number of
molecules grows slowly even At becomes longer. This tendency is enhanced in supercooled
water. It denotes the fact that the same molecule changes its hydrogen bonds again and
again. Each line linearly decreases as the temperature becomes lower. When At is chosen
as very short value, its line seems to reach zero at about 160K, which is nearly equal to T},
ie glass transition temperature of water.[JHM 90] On the other hand, when At is longer.
its line crosses with the line of shorter time around 220K and the system seems to be frozen
in higher temperature. As already shown in Fig. 4.5, the total motion of the center of mass
is always proportional to the total number of hydrogen bond rearrangements. If hydrogen
bonds are rearranged homogeneously anywhere in the system, diffusion should occur above
160K. The actual diffusion, however, becomes too slow to look out around 220K. These
paradoxical results coincide with the observation by Giguére[G 87], that is, the hydrogen
bond rearrangement is localized before each hydrogen bond is really frozen as the tempera-

ture becomes lower.® The self-diffusion coefficients calculated from our MD simulations are:

Vilgis gave a simple explanation to Angell’s phenomenological classification of fragile and strong
liquid[V 93]. He asserted that the difference between them is found in the coordination number of a
molecule, where the distributions of the coordination number in strong liquids are narrower than those
in fragile liquids. As mentioned before, the percentage of the defective seminode seems to approach to
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0.4216 x 10~%cm?sec™! at 200K, 1.3960 x 10~%cm?®sec! at 220K, 4.6837 x 10~%cm?sec™! at
240K, and 28.68 x 10~%cm?sec™! at 300K. These results also indicate that the system is
almost frozen around 220K.

4.2.3 Lattice Model

Based on the decomposition scheme of the HBN graph and the HB state transition proba-
bilities extracted from the trajectory calculations shown in the previous section, we are now
ready to construct a lattice model of the HBN rearrangement dynamics in the supercooled

water.

1. Let us choose a simple ( or body centered ) cubic lattice. Each node of the lattice
has 6(8) neighborhoods. and the lattice bonds represent the adjacency bonds of the

water.

2. Each bond has a directionality, an arrow, representing the incoming or outgoing
hydrogen bond. Each node has 3(4) incoming and 3(4) outgoing arrows. we call

these arrows as “adjacency edges”.®

3. HEs are placed on the edges of the adjacency edge network. HEs occupy some fraction

of the adjacency edges.

Then the next problem is how to propagate the network change. It is desirable to
reproduce the network dynamics by a model with a minimum set of parameters. We
choose two sets: The first is based on the state transition probabilities of the seminodes
shown in Fig. 4.11 and the other is based on that of the edges shown in Table 4.11. We
call them methods A and B, respectively. We separate the donating HBs and accepting
HBs at individual node, ie using undirected graph representation, and impose the state

transitions rule described in the previous section.

zero around 220K. Referring the assertion by Tanaka[T 95], it is possible to regard the phenomenon in
supercooled water at 220K as the transition from fragile liquid to strong liquid.

®Although all the nodes have the same number of incoming and outgoing arrows, topological randomness
is intrinsically embedded in terms of the connectivity along the directed graph.
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The following is the procedure to advance one simulation step.
Method A:

1. Choose randomly some adjacency edges and switch their HE occupancy from

the occupied to vacant state, or conversely (we call this “flip the edge”)

2. Compare the modified network with original one. Repeat random HB flips until
the transition probabilities Py, Pay, P21, Pas and P55 of the whole change of the

HB network coincide with a set of given values.

For actual application we have used Py, = 0.4, Ps; = 0.3, Py; = 0.030, Py =
0.0041, P = 0.05 as transition probabilities; these probabilities are a little
smaller than those values listed in Fig. 4.11, because this procedure becomes
very time consuming as these probabilities get larger. Fach simulation step

contains several thousands of edge flips, and we performed 4096 steps.
Method B:

1. Randomly choose one edge.
2. Count the number of HEs attached to each end seminodes of the chosen edge.

(a) If the chosen edge is not occupied:
i. If both end seminodes are & defects, flip the edge with probability p.
1. If one end seminode is © defect, flip the edge with probability gq.
iil. If both are not & defects, flip the edge with probability r.
(b) If the chosen edge is occupied:
1. If both end seminodes are @ defects. flip the edge with probability p.
ii. If one end seminode is @& defect, flip the edge with probability ¢.

iil. If both are not @& defects, flip the edge with probability r.
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Where p, ¢, and r are pair annihilation, propagation and pair creation proba-
bilities, respectively.

3. Repeat the above procedure n, times, where n, is the number of nodes in the
lattice.
Here we assumed that the HB disconnecting probabilities p, ¢, and r are equiv-
alent to the HB connecting probabilities, viz the state transition diagram in
Fig. 4.11 is symmetric. For actual simulation, we have used 0.72, 0.29 and 0.10

for p, ¢, and r, respectively.

By both methods, the average number of the HBs at an individual node is kept nearly to
be 2+2. It should be noted here that some features of the real water are ignored in these
lattice models. Water molecules can not translate, that is, there is no diffusion of the center
of mass, and the lattice structure does not change. These assumptions will breakdown at
high temperature and long time dynamics of water.

To compare the magnitude of energy fluctuation, we divided the total system into sub-
lattices, each of which includes 6 x 6 x 6 = 216 nodes. We assume that the total potential
energy of a sub-lattice is equal to the total number of HBs in the sublattice multiplied
by a constant. Fourier transform of the potential energy fluctuation of sub-lattice thus
obtained is plotted in Fig. 4.14. Both methods reproduce the 1/f* spectra with o = 0.6
( f is the frequency ), which is very close to the previous MD result with the exponent
a = 0.75.[SOR 92] If HBs are randomly picked up and flipped, an energy fluctuation
behaves as 1/ f2.

The distribution of HB lifetime is also analyzed. It is found that the HB lifetime calcu-
lated by MD behaves as 1 in short time and decays exponentially in long time (not shown
in figures). This behavior of HB lifetime was already pointed by Stanley et al [SPSH 90].
As shown in Fig. 4.15, our lattice model well reproduces this HB life time distribution.
Of course, if each HB flips with a single relaxation time, HB lifetime distribution must be

exponential in all time scale.
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In order to make a further analysis, we introduce the heterogeneity index for HBNR.
The frequencies of HBNRs at nodes during n steps are counted and then averaged over
the nodes. The average frequency in n steps is expressed by 7, and its spatial standard

deviation by o,. The heterogeneity index is defined as

H, = (4.18)

s

M, is expected to grow proportionally to n. If the HBNRs are homogeneous process, o, is

proportional to n# and thus H, decays with n~%. If HBNR are heterogeneous, the decay

. 1
18 slower than n~32

as shown in Appendix B. The heterogeneity index obtained by MD
calculations is plotted against time in Fig. 4.16(a). At high temperatures (260-300 K), the
heterogeneity index initially decays slower than the homogeneous case, with the exponent of
a < 0.5, but turns to be homogeneous for the time longer than 10ps. At lower temperatures
(200-220 K), the index has three slopes. The curve decays slowly in the middle time domain,
meaning that there is very long-lived heterogeneity. The time scale where the heterogeneity
index shows the slope with the exponent of @ = 0.5 is almost the same as the time scale
when various local topological indices indicate white power spectra. The heterogeneity
index is also calculated for a sublattice with 6 x 6 x 6 nodes in the lattice model, and is
shown in Fig. 4.16(b). Our models can reproduce the gentle slope as the MD curve in
short time, a < (.5, indicating the temporal correlation of HBs is described by our models.
They can not, however, reproduce the decay in long time dynamics, because translational
motions, which causes large scale structural rearrangements of the HB network, are missing
in the lattice models. For example, if a closed ring” is formed by the seminodes and the
adjacency edges, the external defect can never intrude into the ring. The frequency of
hydrogen bond rearrangement becomes, therefore, always lower in the closed ring. Such a

structure is, however, broken after a long time in the real system.

"Note that this ring differs from the ring of Speedy’s proposal. He did not pay attention to the direction
of the hydrogen bond and that the ring structure exists everywhere in the network. [S 84] On the other
hand, the ring defined here is made of seminodes with two adjacency edges only. Such a structure is rarely
found in the hydrogen bond network.
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4.2.4 Discussion

We have analyzed the HBNR dynamics by performing MD calculations and constructing
the lattice model. The simple lattice model based on state transition diagram was shown
to well reproduce all of the HB lifetime, the HBNR pattern (in Hamming matrix) and the
energy fluctuation, obtained from MD calculation of supercooled water. Change of the
propagation rule or of the lattice structure is expected not to make qualitative difference of
the results. The properties found in the present system are expected to be found in many
other systems whose dynamics is coupled to defects as in the spinglass.

The analysis of the heterogeneity index indicated that the HBNRs are very heteroge-
neous. The HBNR was shown to be the motions of defects. The defect walks along
the undirected graph, which is reduced from the three-dimensionally percolated directed
graph. Even when the directed graph is constructed homogeneously and well percolated,
the spatial edge (ie HB) connection among seminodes in the undirected graph can be very
heterogencous. The motion of defects on the undirected graph is thus heterogenized by
the global network topology. Moreover, that the traces of the defect movements on the hy-
drogen bond network remain for a considerable time, inevitably localize the HBNR. When
defects exist at some locations of the network, they rearrange HB connections in that local
area (ie a subsystem of water). After defects leave that area, the local network is rarely re-
arranged. A subsystem, therefore, exhibits the energy fluctuation of 1/f* type, and yields
domain structures in the distance matrix.[TO 89, SOR 92)

These observations lead to the conclusion that the existence of the defects and the net-
work topology produce the spontaneous spatiotemporal fluctuation of the HBNR. The
hydrogen bond network consequently becomes heterogeneous. The heterogeneity of the
hydrogen bond network is, thus, not the origin of the heterogeneous HBNR, but the result
from the latter.

As mentioned before, the defect cannot go through the seminode with few adjacent

nodes. Suppose hydrophobic molecules are solved in water. Water molecules in the first
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coordinate of the solute are the case. Reduction of the number of adjacent HB formers
leads to the decrement of HB rearrangements. In special case, all water molecules contact
with guest molecules in the clathrate hydrate. If the guest molecule is hydrophobic, the
hydrogen bond network is hardly rearranged. While if the guest molecule is somewhat
polarized, the guest molecule also composes the hydrogen bond network. Such a coupling
between the guest molecule and the lattice gives rise to cause complicated HBNR dynamics.
Koga et al showed that the lifetime of hydrogen bonds indicates similar shape as in liquid

water.[KT 95, SPSH 90] It is interesting to apply our lattice model to aqueous solutions.

Table 4.12: The probabilities of the @ defects to be created (r), annihilated (p), and
propagated (¢) at various temperature. At is 1ps.

T P q T
220K 0.730 0.296 0.100
240K 0.719 0.355 0.161
260K 0.715 0.422 0.240
280K 0.739 0.496 0.339
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The probabilities of defect motion, p, g, and r at various temperatures are listed in Table
4.12. The pair annihilation probability p is always large but does not indicate temperature
dependence, while the pair creation probability ¢ becomes larger as the temperature is
raised. As is already seen in the previous section, overall tendencies of correlation coefli-
cients (see Tables 4.6, 4.8, and 4.10) are conserved even at the room temperature. You may
think the defect motion at the room temperature can be also reproduced by our lattice
model. At the supercooled region, the number of HEs at a seminode is almost 1 to 3.
This fact simplifies the rule of defect motions. At higher temperature, however, the state
transition rules indicated in Fig. 4.11 becomes too complicated to apply the similar logics.

The picture presented in this work is valid only for the short-time dynamics of supercooled
water. Large displacements of molecules, which rearrange the topology of adjacency bonds (
ie reconstruct the lattice) are missing in our model. These large displacements make HBNR

more homogeneous, resulting to the 17 slope of the heterogeneity index for very long time
dynamics, as seen in Fig., 4.16. As the temperature becomes lower, however, correlated
HBNR becomes dominant. The heterogeneity index curve indicates that heterogenization
contends with homogenization below 240K.

Real energy fluctuation observed in MD result is slower than that of lattice dynamic
model. There will be slower layers in the hierarchy of real dynamics which are not taken
in the model. As the water molecules have only four neighborhoods nearby, there won’t
be so many configuration of water molecules in local structures. In this story, the state
of water is classified only by the number of hydrogen bonds. But even if all the second
neighbor molecules are taken into consideration, possible network patterns will not become
too many to count. Classifying the local topology by taking higher order topological indices
into account will lead to more reliable approximations, where the information theory gives
useful measure for the task.

There found to exist localized collective motions, involving large network rearrangement,

in liquid water even at the room temperature.[TO 89] In the current model, however, such
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collective motions can not be treated because our present model only deals with adjacent
correlations. It is important to construct the models which are applicable in all temperature

range.

4.3 Some Other Analyses and Remarks
4.3.1 Survey of the Potential Hypersurface

Let us now consider a configuration of liquid water as a phase point on the potential
hypersurface. The geometry of the potential energy hypersurface may be characterized
by the number of adjacent inherent structures around an inherent structure, distance and
barrier height between them, or the curvature of the hypersurface.

The shape of the potential energy surface can be revealed by examining the quenching of
the phase point by Eq. 2.1. If the undulation of the potential surface is relatively mild and
smooth, the shape of the basin is approximated by a parabola. In this case, the potential
energy change along the quenching yields an exponential decay.® If the potential surface
has abnormal pleats near the bottom of a basin, such an approximation is no longer valid.
The quenching of the phase point passes through a deep, narrow, and folded groove before
reaching a distant minimum

The potential energy profile in the quenching process is plotted in Figs. 4.17 and 4.18, At
240K, energy decays smoothly and no point of inflection exists. On the other hand, there
are several points of inflection in the quenching process at 300K. The numbers over the
potential energy profile denotes the number of instantaneous normal modes with imaginary
frequency, which increases around each point of inflection. It implies that the trajectory
of quenching is approaching to the saddle point and may bifurcate or kink near the point.
The visualization of the quenching process indicates that large collective motions occur

near each point of inflection. The potential energy profile of inherent structures along the

SHere, the time step of quenching is fixed as a constant value.
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real trajectory thus becomes abnormally rough by such hierarchical structural relaxations.?

The potential energy profile in the quenching process from successive instantaneous struc-
tures is shown in Fig. 4.19 and 4.20. At the low temperature, quenching leads to the bottom
of the basin immediately. On the other hand, a lot of stumbling occur in the quenching
process from the structure at high temperature. It should be pointed that the potential en-
ergy fluctuation of slightly quenched structures is small compared to the original trajectory
or deeply quenched structures. Three Euclidean distance matrices are shown in Fig. 4.21.
First one is made from the original trajectory (potential energy profile is indicated by the
label (0) in Fig. 4.20), the second is from the slightly quenched trajectory ( indicated by
(3) in the same figure), and the last is from inherent structures ( ie completely quenched
trajectory, indicated by (50) in the same figure). Slight quenching reveals distinct island
structures in the distance matrix, while deep quenching makes fine structures in it. It is
one expression of the multivalley structure of the potential surface.

These results show that the de facto potential energy hypersurfaces along trajectories are
smoother than those along the reaction coordinates connecting adjacent inherent structures.
The system does not feel a curvature of the bottom of a basin, but may rather feel the
moderate undulation of the plateau. On the other hand, the rules of HBNR described
in Section 4.2.1 prevent from rearranging the connectivity of the hydrogen bonds freely,
ie there are many structures which are geometrically close to those along the trajectory but
energetically separated by the high energy barrier. The phase space around the trajectory
is narrowed by these forbidden structure rearrangements. In other words, the structure
rearrangements in liquid water is not “energy-driven mechanism” but rather “entropy-
driven mechanism”. This condition has similarity to the binary mixture of hard sphere

liquid near the glass transition point.

“LaViolette and Stillinger has revealed a similar stepwise potential energy profile in the quenching pro-
cess of the simple liquids.[LS 86] They attributed it to the high vibrational anharmonicity of the potential
hypersurface and suggested that the hierarchical structural relaxation occurs in the quenching process.
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4.3.2 Probabilistic Automaton, Spinglass and Water

A probabilistic cellular automaton is a useful model of collective dynamics and phase
transition of a system. Our lattice model described in Section 4.2.3 is a probabilistic
automaton, where the state of a hydrogen bond at f + At is determined by the state
of surrounding hydrogen bonds in some probabilities. Although the number of incoming
and outgoing adjacency bonds at a node is all the same, the network has topological
randomness in our model. A PCA with fixed spatial randomness yields a new universality
class where the critical exponents are different from the homogeneous system without
randomness.[N 88] It is, however, still unknown whether our PCA with the topological
randomness belongs to another universality class or not.

Turning now into comparison with spinglass. Let us now compare water with spinglass
systems.

The following characteristics are observed in the real spinglass system:

1. Linear magnetic susceptibility and specific heat have a cusp at the spinglass transition

temperature T}.
2. Slow dynamics around T.
3. Hysteresis below T,.

Many lattice models are also proposed, where intrinsic randomness is installed in the short
range interaction. Edwards and Anderson’s mean field approximation model reproduced
the characteristic behavior of thermodynamic properties. On the other hand, Sherrington
and Kirkpatrick’s model revealed the ultrametric structure of the potential hypersurface.
There are interesting coincidence of these spinglass properties with the behavior of liquid
water around 7, = —45°C. A spin flip in the spinglass model corresponds to a hydrogen
bond creation/annihilation in the hydrogen bond network. As the spin flip probability

varies by the circumstance, wait time distribution of spin flip becomes 1/f*. Marginal
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stability of the spinglass phase is also observed in the hydrogen bond network. The spin
configuration can be largely modified with small energy by flipping spins in appropriate
order. While, available spin configurations, ie reachable region of phase space, are altered
by a small change in network topology.

Sasai, Stanley and others have proposed lattice models of liquid water, which are in-
tended to reproduce the phase diagram. Their models have, however, not yet to include
the intrinsic topological randomness of the network, which is essential in the short time
dynamics of liquid water. The water dynamics might be well characterized by using the

spinglass dynamics.

4.3.3 Comparison with Random Bond Percolation

Let us now look at the pattern of network rearrangement by comparing the network struc-
ture at time £ and itself at time £+ At. If there is a hydrogen bond between molecules ¢ and
J at time ¢, and if the hydrogen bond also exists at another time ¢ + At, it is called “sur-
vived” ! Tllustrating the survived hydrogen bond after 20ps in Fig. 4.22, many chain-like
clusters can be observed.

The diameter of a connected graph with size n is defined as
D = max(pi;), (4.19)

where p;; denotes the path length between nodes i and j of the connected graph. D
expresses the shape of the connected graph; if the graph is a straight chain, D is equal to
the chain length, and if it is branched, D is small.

The distributions of the diameter of the survived cluster at various observation time
are calculated from MD simulations and plotted against the number of nodes in a graph
(cluster size’) n in Fig. 4.23. It shows that small survived graphs (‘o-clusters’) tend to

form chain-like structure.

YThis definition does not require the bond to exist throughout the two observation time.
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For comparing with liquid water, various lattices are chosen and bonds are randomly
placed on the latiice in the manner of random bond percolation model for various bond
occupation probabilities p below percolation threshold.! This lattice model is called “Ran-
dom Bond Lattice Model (RBLM)”. The diameter distributions for RBLM are calculated
and plotted against the ’cluster size’ n in Fig. 4.24. We can see that the distributions
are almost independent of p or lattice. There are many chain-like clusters. These diame-
ter distributions obtained from the random bond lattice model are similar to that of the
o-clusters in MD calculation.

The cluster size distributions obtained from the random bond lattice model are plotted
in Fig. 4.25. For larger p, we find larger clusters. Shape of the cluster in liquid water
should be compared with these “reference” systems. The size distribution of the o-clusters
(in MD) is shown in Fig. 4.26 for two temperatures. At the lower temperature, the survived
hydrogen bonds percolate even after 25.6ps.

Instead of the “survived clusters”, we have examined the changes of the network in MD
by comparing the network structure at time ¢ with later structure at ¢ + At. An“altered”
cluster (a-cluster) is defined as the cluster of hydrogen bonds being altered to be connected
or disconnected after At. Here we denote the a-cluster with the size= n “a,-cluster”. The
size distribution of a-clusters is shown in Fig. 4.27. There is no distinct difference in this
distribution between liquid water and random bond percolation model.

Let us examine the shape distribution of the clusters in more detail. The diameter
distributions of the size n = 6 cluster in the random bond lattice model (RBLM) are shown
in Fig. 4.28. The distribution does not depend on the value of p or the type of lattice.
More than half of these clusters are with D = 4, and about 40% with D = 5. The diameter
distribution of the size n = 6 o-cluster ( og-cluster ) in liquid water is shown in Fig. 4.30.
The distribution is similar to that of RBLM with the diamond lattice. On the other hand,

the diameter distribution of a-cluster shows some difference from RBLM distribution; the

' Bond percolation thresholds pc are 0.179 for body-centered cubic lattice, 0.249 for simple cubic lattice,
and 0.388 for diamond lattice.
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portion of D = 5 cluster reduces and that of D = 3 cluster increases. The same tendency
is observed for size n=7,8 a-clusters. (Figs. 4.31-4.36) This fact that the a-cluster has
smaller D value indicates that the network rearrangement take place in compact area, as
already mentioned in Section 4.2.1, ie the hydrogen bonds are rearranged cooperatively.
The analysis of a-cluster is for the shot-time dynamics. There seems, however, not to exist
the robust chain-like long-lived backbone in the hydrogen bond network of liquid water. It
is not conclusive yet, since we have only examined it through the cluster shape distribution.
The higher-order topological indices must be introduced in order to analyze the long-time
and long-ranged fluctuation. We might find more sharp difference from the random bond
lattice model there.

The snapshot of the hydrogen bond network is well represented by RBLM, as found
by Stanley et al . It is, however, more important to extract the dynamic heterogeneity
from the water dynamics, Our lattice model in Section 4.2.3, not RBLM, can deal with it.

Further study is required for such analyses.
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|
0 1000ps

Figure 4.2: The distance matrices of liquid water at 248K for various time ranges are
indicated. 64 molecules are in the system.
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1
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Figure 4.3: The distance matrices of liquid water at 273K for various time ranges are
indicated. 64 molecules are in the system.
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Figure 4.4: The distance matrices of liquid water during 40ps at 240K. 216 molecules are
in the total system. Center is the total distance matrix, surroundings are partial distance
matrix of 1/8 system.
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Figure 4.5: The Hamming distance is plotted against Euclidean distance. They are calcu-
lated from successive MD configurations in 1ps interval.
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Figure 4.6: The Hamming distance matrices of liquid water during 40ps at 240K, made
from the same trajectory as 4.4. 216 molecules are in the total system. Center is the total
distance matrix, surroundings are partial distance matrix of 1/8 system.
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Figure 4.7: The coherency index of 64 water molecules at 240K for 600ps is indicated with
the distance matrix.
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Figure 4.8: The power spectra of various local topological indices at 240K. The labels
correspond to: ZA: Number of adjacent molecules, defined as the number of molecules
nearer than r¢ = 3.54; ZHB: number of HBs of a molecule; Zd: number of the donating
HBs; Za: number of the accepting HBs; EB: binding energy; P2, P3, P4: number of nth
neighbor along the network; Vv: volume of Voronoi polyhedron; dZd+, dZd-: increment /
decrement of the number of the donating HBs; dZd+, dZa-: increment / decrement of the
number of the accepting HBs; dZd:=(dZd-)+(dZd+); dZa:=(dZa-)+(dZa+); dx: square
displacement of the center of mass just after the moment. Vertical axes are arbitrarily
shifted. 216 molecules are in the system.
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Figure 4.9: The power spectra of various local topological indices at 300K. Labels are the

same as in Fig. 4.8. Vertical axes are arbitrarily shifted.
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(b)

(c)

(d)

Figure 4.10: The separation scheme of the HB network. (a)The original HBN in liquid
water; (b) The same network represented by digraph (ie directed graph). Virtual HBs are
added; (c) Arrows are replaced by the bond with black and white circles; (d) Black and
white circles are gathered and the network reduces to an undirected graph.
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Figure 4.11: The state transition diagram of a node at (a)200K, (b)220K, extracted from
the MD data. The state (:) of the node is specified by the number (i) of the donating
HBs from that node. P;; denotes the transition probability from state i to state j. P35 is
the probability that one HB is detached and another is connected at the same time. The

numbers in parentheses are raw occurrence number in the simulation. Af is 1ps.
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(b)

Figure 4.12: Three types of defect motion. (a) creation and annihilation of defect pair; (b)
propagation of a defect. Dashed line denotes the virtual HE and solid line the HE. “+”
and “—7 indicate the oversatisfied and dissatisfied types of the defect, respectively.
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Figure 4.13: The number of hydrogen bonds which are connected or disconnected in the
short time At, indicated on the lines, are plotted against temperature. 216 molecules are
in the system.
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Figure 4.14: The energy fluctuations in the model lattice systems are plotted in log-log
scale. Upper lines are obtained by method B and lower by method A.
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Figure 4.15: The HB lifetime distribution obtained for the models under various setting.
From top: Result by method A with simple cubic lattice (SCL); method B with SCL;
method A with body centered cubic lattice (BCC); method B with BCC. Vertical axis is
in arbitrary unit.
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Figure 4.16: The heterogeneity index defined in Eq. 4.18. (a) MD results; (b) Lattice
model. Straight dotted lines indicate n=% (t~%) for eye guide.
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Figure 4.17: The potential energy profile in the quenching process from an instantaneous
structure at 240K. The number above the line denotes the number of instantaneous normal
modes with imaginary frequency. 64 molecules are in the system.
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Figure 4.18: The potential energy profile in the quenching process from an instantaneous
structure at 300K. The number above the line denotes the number of instantaneous normal
modes with imaginary frequency. 64 molecules are in the system.
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Figure 4.19: The potential energy profile in quenching processes from successive instanta-
neous structures at 240K. The ordinate is real simulation steps by 2fs and the abscissa is
the potential energy profile along the steepest descent path. Potential is plotted at intervals
of several virtual steps.
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Figure 4.20: The same graph as Fig. 4.19 but at 300K. The numbers beside the graph
correspond to the labels in the distance matrix, Fig. 4.21
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Figure 4.21: Various distance matrices in the quenching process; (0) before quenching; (3)
slightly quenched trajectory (50) deeply quenched trajectory. The degree of grayness in
the figure indicates the similarity between two configurations; the darker mark means that
the configurations are closer in distance.
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Figure 4.22: The illustration of survived hydrogen bond clusters at 240K. The hydrogen
bonds connecting the same pair of molecules as 20ps before are indicated. Water molecules
are omitted. Each bond is colored in two tones to distinguish its direction.
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Figure 4.23: The average diameter of o-clusters in liquid water at various observation time
and temperatures. Solid line indicates the upper limit of diameter. Temperature and At
are labeled in the graph.
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Figure 4.24: The average diameter of clusters in random bond lattice model with various
lattices. Solid line indicates the upper limit of diameter. Various p are chosen below p,,
the bond percolation threshold.
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Figure 4.25: The cluster size distribution of the random bend latfice model with various
lattices. bee: body centered cubic lattice; cubic: simple cubic lattice; diamond: diamond
lattice. Each number denotes p, the bond occupancy probability.
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Figure 4.26: The size distribution of the o-clusters in liquid water. Temperature and At
are labeled in the graph. Square dots indicate that the bond occupancy probability is above
the percolation threshold and that the system is percolated. The cluster size distribution
is, however, truncated around n=150 because of the limitation by finite lattice size.
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Figure 4.27: The size distribution of the a-clusters in liquid water. Temperature is 240K.
At 1s 0.1ps, 0.2ps, and 0.4ps.
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Figure 4.28: The diameter distribution of the size=6 cluster in random bond lattice model
with various lattices.
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Figure 4.29: The diameter distribution of the ag-clusters in liquid water. Temperature and
At are labeled in the graph.
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Figure 4.30: The diameter distribution of the gg-clusters in liquid water. Temperature and
At are labeled in the graph.
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Figure 4.31: The diameter distribution of the size=7 cluster in random bond lattice model

with various lattices.
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Figure 4.32: The diameter distribution of the a;-clusters in liquid water. Temperature and
At are labeled in the graph.
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Figure 4.33: The diameter distribution of the o7-clusters in liquid water. Temperature and

At are labeled in the graph.
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Figure 4.34: The diameter distribution of the size=8 cluster in random bond lattice model
with various lattices.



CHAPTER 4. DYNAMIC PROPERTIES OF HYDROGEN BOND NETWORK 98

0-45 |} l!-'l T T

AN 240K,0.1ps ——
240K,0.2ps -+ A
240K,0.4ps -a--

0.4

0.35

0.3

0.25

P(D)

0.2

0.15

0.1

0.05

0, 1 1 1 1

5
HBR Cluster diameter (cluster size=8)

Figure 4.35: The diameter distribution of the ag-clusters in liquid water. Temperature and
At are labeled in the graph.
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Figure 4.36: The diameter distribution of the os-clusters in liquid water. Temperature and
At are labeled in the graph.



Chapter 5

Conclusions

In this thesis, the topological randomness in liquid water was examined in terms of distor-
tion in hydrogen bond network and the dynamics of hydrogen bond network rearrangement
was analyzed by network topology. A number of topological and dynamical indices were
introduced and the cmrela.tiﬁns between them were carefully examined. We have shown
that there exist characteristic correlations in the local structure and its change. The local
rule of the hydrogen bond network rearrangement led naturally to a new concept of de-
fects. Based on the local rule, the lattice dynamic model was created and various dynamic
properties of the hydrogen bond network were reproduced by the model.

If enough correlations are known, the dynamics of a system can be represented in terms
of correlations. (The representation is not necessary to be deterministic. Perfectly proba-
bilistic representation can be a choice, if it is simple enough.) The basis for the correlation
function can be arbitrarily chosen. An appropriate choice of the basis reduces uncertainty
with low-order approximation. The spatial correlation of liquid is generally well approxi-
mated by the radial distribution function, while the van Hove function provides us with rich
information of spatiotemporal correlations. But they are not necessarily the best choice.
The topological indices are another choice for the dynamic network system like liquid water
because multi-body correlations are easily included.

How can we predict the motion of a molecule? One extreme case is the deterministic

description; full variables are traced and no ambiguity is left in time axis. The state
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of a system at any time is described by the variables. The other extreme case is the
expression by the time development of one variable; any information of motion is convoluted
in the time correlation function of the variable. In the experiments, as it is easier to raise
the time resolution than the scale resolution, many information is served in the spectral
form. In the computer simulation, however, we can choose any level between the extremes.
The deterministic description is too fine to treat the whole output at once. we need
not predict the far future precisely in such a strongly chaotic system like liquid water.
Comprehensibility is attainable by reducing variables. It is rather desirable to denote
moderate future by moderately small number of variables. The spatial correlation is rather
intelligible than the time correlation because the spatial correlation can be recognized as a
pattern. It is therefore desirable to leave complexity in spatial correlations and make the
time correlations simpler.

There are a lot of layers between order and disorder in physical phenomena. Both the
perfect disorder and the perfect order are nothing but the perfect boredom. The complexity
of a system should therefore be defined as the number of independent correlations in the
system.

In this thesis, the short time and short range correlations are extracted from MD re-
sults and realized in the lattice model, which is Markovian in time. Larger scale and
longer time correlations, however, still remain unknown. Extracting the higher order cor-
relation will draw more strict sketch of the hydrogen bond network dynamics in liquid

water.



Appendix A

Defect Motion on Sparse Network

In liquid water, coordination number of each molecule is fairly smaller than simple liquid.
Let us suppose the case that hydrogen bond network is more sparse. Such a case may
correspond to water in stretched or much supercooled state, where the number of adjacent
molecules 1s smaller.

If each node has less than 6 adjacency bonds ( in digraphic expression ), the undirected
graph consists of z, = 2 and z, = 3 seminodes. All possible motion along the z, = 2 and
z, = 3 seminodes are shown in Fig. A.1. In any case, a defect cannot pass through the
za = 2 seminode. Increasing the number of z, = 2 seminodes will cause segmentation of
the wandering region of defects.

Here we indicate that the two graphs are identical; the graph with z=2 and z=3 nodes,
and the graph with all z=3 nodes and two kinds of bonds. The percolation threshold
can be calculated as well. The node with 2 bonds (z=2) is represented by black circle
® and the node with 3 bonds (2=3) by white circle @ , respectively. The chain of black
circle >-‘_._< can be replaced by a “defect-opaque” bond represented by a wave

line : : . With the replacement, network is reconstructed from all z=3 nodes
and opaque VMVVVW a5d transparent e honds. Total number of nodes is N
and the ratio of black circle is p,. The ratio of white circle @ becomes ps = 1 — p,, then

total number of bonds is &(3 — p;). Choose a node in a random manner. The probability
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that the node you choose is black ® and two adjacent nodes are both white © is

P2 - Pi. (A1)

We define n-chain as the linear chain composed by n connected black nodes and termi-
n

) T, (
nated both end with two white nodes, ie . In the same manner, the
n

) P, (
probability that the node you choose is one of n-chain is

np3pl. (A2)
Each n-chain includes n + 1 bonds. Total number of bonds included in the chain is
N -2pp5 + N -3pap3 + - + N(n + 1)pip3 + -+ = N(1 + ps)pa, (A.3)
On the other hand, total number of chains is
N -pop3 + N -pap3 + -+ Npip + - = Npspa. (A.4)

If each chain is replaced by an “opaque” bond MVNMWAY | {ota]l number of bonds

reduces to

N
‘2,_{3—?’2) — N(1+ pa)pz + Np2ps, (A.5)
while the ratio of the opaque bond VWMV 505105t total number of bonds becomes

Npapa 2
= —p,. A6)
2(3 —p) — N(1 + ps)p2 + Npaps 372 (

Network with black circles is reconstructed to the network with opaque bonds at last.
For example, the bond percolation threshold of the z, = 3 network is pg = 0.6527
for honeycomb lattice and pc = 0.6666 for Bethe lattice. When the transparent bond

— nercolates, defect disclosed. The critical ratio of black circle is

9 9
p=1~§pz>pc%‘— (A7)
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> = >
e = e
e = >

—e——0< a——"ao—< —

—e-—e( ;'40—(

Q

—e --a—— 2 O

Figure A.1: Possible motions of a defect on the network. The oversatisfied defect seminode.
dissatisfied defect seminode, normal seminode, hydrogen edge, and adjacency edge are
indicated by a @ circle, a & circle, a white circle, solid line, and dashed line, respectively.
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and that
pe < 0.5 (A.8)

That is, defect is enclosed when the ratio of black circle ® exceeds that of white node @ .



Appendix B

Heterogeneity Index

The heterogeneity index of random events occur on the network is calculated as follows.
Suppose there are N bonds in the system. The ith event occurs at a randomly chosen
bond. It is convenient to define the variable z;(a), which is 1 if an event occurs at the bond
a at 7th trial.

After n trials, average occurrence of events at a bond is simply denoted as

Tiia(a) = ix;(a] = % (B.1)

Spatial fluctuation of the occurrence of events is evaluated by the dispersion as:

o, = “Z(Zrt(a P

n_l i=1
n

= <(Cwla)— ) >

i=1

= < w0~ ) Dlesle) - ) >

1

= < Z(ml(a — —}2 - 222(31(3 (z;(a) — =) >,
1=1 iy N
where the second term of the last formula becomes 0 because each event is independent.
1

= <Yl -2 mle) g+ g >

= < 3 oBhree 1 TR

- N N N  N?

1 1
= el .
(=) (B2)
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It comes that % is proportional to time n~%. While if the events does not occur fairly

in space, 7i,(a) differs for each bond and that Z- converge to non-zero value after a long

time.



Appendix C

Simulation Methods and Algorithms

In this section, some useful algorithms and programs are explained.

C.1 Voronoi Polyhedra Tessellation

Suppose there is a set S consists of N sites {p; --- py}. Here the procedure to determine

the Voronoi polyhedra is sketched.

1. Each vertex of the Voronoi polyhedron is equidistance r to four “constructor” sites,
{pi;pj P, pi}. When the sphere at vertex v with radius r is denoted by S(v), no
other site should exist in the S(v). When four sites are arbitrarily chosen, a vertex
v is determined algebraically. If the S(v) does not include any other sites, v is a
Voronoi vertex. All Voronoi vertices are stored with its coordinate and label of four

constructor sites.

2. Each edge of the Voronoi polyhedron is terminated by a pair of Voronoi vertices
which has three common constructor sites. All edges are stored with the label of two

terminator vertices and three three constructor sites.

3. Each face of the Voronoi polyhedron is enclosed by several edges which has two

common constructor sites. All faces are stored with the label of two constructor
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sites, list of enclosing edges in cyclic order, and the distance from the face to a

constructor.

4. The Voronoi polyhedra V(p) is made of the set of Voronoi faces with common con-

structor site p.

The volume of a Voronoi polyhedron is now easily calculated. Note that if the density is
too low, or the sites are too much clustered, a site sometimes form Voronoi face with itself
in the image cells under the periodic boundary condition. In addition, small edges or faces

are sometimes reduced to a vertex to clarify the outline shape of the polyhedron.

C.2 Voronoi Grid Tessellation

It is sometimes convenient to take statistics in partial system rather than the whole system.
Instantaneous physical properties of the partial system is given by averaging them over
the molecules in the partial system. The number of the molecules in the partial system,
however, alters time by time and that the time dependence of the property cannot be
determined uniquely. Moreover, if the cell size of partial system is smaller than unit
volume, the cell sometimes becomes empty. To avoid such trouble, the content ratio ¢; of

a molecule ¢ in the small partial system is defined in terms of Voronoi polyhedra as

Partial volume of the Voronoi polyhedron of the molecule i included in the system
§ = )

Volume of the Voronoi polyhedron of the molecule i
(C.1)

When a molecule come into the cell, ¢; continuously grows from 0 to 1.
The local average of a physical quantity X, defined per a molecule, is then easily defined

with ¢; as
LN i
YN

where summation is performed over all molecules.

<X = (C.2)

Partial Voronoi polyhedron is defined as the intersection of the cell of the partial sys-

tem and the Voronoi polyhedron. The shape of the cell is usually a convex polyhe-
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dron. As the Voronoi polyhedron is always convex, the intersection also becomes a convex
polyhedron.[PI 85]

Practically, the intersection convex polyhedron is simply attained by the following pro-

cedure:
1. Pick up the all vertices, edges and faces concerned with the Voronoi polyhedra V(p).

2. Consider a set of sites which are mirror images of the site p by each face of the cell,

ie each face of the cell bisects one of the additional sites and site p.

3. Intersection of the Voronoi polyhedron and the convex cell is attained by adding these
additional constructor sites and remake the list of Voronoi elements (ie vertices, edges,

and faces).

By keeping the whole list of vertices, edges, and faces of the original Voronoi polyhedron

V(p), this procedure can be executed by only a few additional calculations.

C.3 Number of n-rings in the Network

The number of ring in the network is sometimes useful order parameter (e.g. melting of ice).
Here we introduce an algorithm to count the number of ring in the network by algebraic
method.

The number of 3-member ring in the network is algebraically given by the following

theorem.[T 89]

Theorem: When the adjacency matrix of graph (7 is expressed as A, the total number of

triangles made of edges in GG is equal to
1 3
Etr(A 1 (C.3)

where tr(A?) denotes the sum of the diagonal element of A42.
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The ith diagonal element, say er?], of A? denotes the number of cyclic paths starting from

the node ¢ and return to 7 after 3 hops along the network. By summing up a‘!? :', each
triangle is counted 6 times, because there are three start points and two directions for
counting one triangle cyclic path, say “3-cycle”.

The number of 4- or 5-membered ring can be counted up in a somehow complex way.

Here we show the procedure to count the number of 4- or 5-membered rings in which the

specified node belongs, instead of total number of 4- or 5-membered rings.

¢ Four membered rings
The total number of 4-cycle is counted with tr(A*) in the same way as the number
of triangles. The number of 4-ring is taken by subtracting the number of reduced
quadrilaterals from the total 4-cycles. There are two types of reduced quadrilateral,
=0 @ d; denotes the adjacency number of the vertex V;. If the
{1, j}th element of A" is denoted by af?], d; is equal to aﬁaj.

The number of reduced 4-cycles passing the initial vertex V; two times is d?, which

by W . On the other hand,

includes bot the number of reduced

4-cycles that passes the initial vertex only once is

>_(d; —1), (C.4)

..

where the summation is performed over the adjacent vertices of V.

The number of 4-ring is thus expressed by elements of adjacency matrix as
N =(aff) - d? = Y (d; - 1))/2, (C.5)
where the last 2 indicates the symmetry.

e Five membered rings

The total number of 5-cycle is counted with tr(A%), but it also counts the number of
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the whiskered triangles : and the heavy triangles ; other than
the right pentagon Q

Here we enumerate all cases that a vertex belongs to a 5-cycle. White circle denotes

the initial vertex.

Case 1; the initial vertex is on the the right 5-ring Q:

Symmetry number is 2.

Case 2; the initial vertex is a quadruply connected vertex of the whiskered triangle

: or the heavy triangle ; :

The path of 3-cycle : and 2-cycle ®—®can be chosen independently.

The number of : passing the vertex V; is a::?]j& while the number of

<85 a,[? ). Thus the total number of : and ; is

(3 (2
a.:’ - a;
S— C.6
Symmetry number is 4.

Case 3; The initial vertex is on the triangle of the whiskered triangle : r
The whisker grows from a adjacent vertex of the initial vertex. Therefore, the

number of the whiskered triangle is

Y la? - (¥ —2)]. (C.7)

Symmetry number is 2.

Case 4; The initial vertex is on the doubly connected vertex of the heavy triangle

The total number of the heavy triangle is the same as the number of normal

triangle in this case, thus -
3
@
- (C.8)
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Symmetry number is 2.

Case 5; Theinitial vertex is on the whisker of the whiskered triangle .::D.:::o:
The total number of the whiskered triangle is counted by summing up the total
number of the triangles, which are passing an adjacent vertex of the initial vertex
but not passing the initial vertex.

(3)

It (C9)

a.v.

Symmetry number is 2.

Here the symmetry number is the number of route passing all the vertex of the

polygon.

The number of 5-ring is given by subtracting the number of these reduced polygons
(5.

from a;;":

5 at®) 43 i 2 2 5 atd) al?) 2

ag:'] —4. Sl — z'Eu.v,[agj) ) (ﬂ_E:j} -2)] -2 =i Zu,‘,‘[—t’f— — a:;j) (C.10)
2 *

N =

The number of larger rings can be counted in a similar way. As you can guess, however,

the way to count 6- or higher membered ring is too complex.’

C.4 Block Diagonalization of the matrix

In the network analysis, it is important to know the network connectivity. For example,
the size distribution of connected graph in the percolative system show us the existence of

spatial correlation.

'In the real analysis of the hydrogen bond network, this algorithm is not useful by some reason. First,
the definition of the number of n-ring is not independent to the number of n — 1-ring, ie the n-ring should
not be the composition of n’-ring and n”-ring. Therefore, we must mark from small ring fo large ring
checking not to count then twice. Second, as the system is not so large, larger ring sometimes go across
the periodic boundary. To avoid this, the coordinate as well as the topology of the network should be in
mind.
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The simplest way to separate the disconnected graph into connected clusters is to multi-

(o0)
17

ply the adjacency matrix many times. a;; ' is non-zero if the vertices ¢ and j are connected,
ie there is more than one path between node 1 and j, and is zero if not connected.
However, this algorithm takes much time by the order of O(N*), where N stands for the
total number of vertices, since it includes multiplication of matrix. In addition, if an edge
is added to or removed from the graph, we must perform the whole protocols again.
We here introduce the progressive construction method. This method is useful especially
when treating dynamically reconstructing network.

This method is based on the following facts:

¢ Addition of an edge affects the connectivity of at most two clusters to which the

terminal vertices belong.

e Removal of an edge divides the cluster to which the edge belongs into at most two

fragments.
The procedure is

1. Number all vertices. A connected graph (cluster) is identified by the lowest label of
the composing vertices. Each vertex V; has an attribute of ID of the cluster to which

it belongs, g;. If there is no bond between nodes, g; is identical to 1.

2. If an edge is added between vertices V; and V;, compare ¢; and g; and align all g of
the vertices in the two groups to the lowest value. This requires time proportional
to average cluster size, which is usually independent to NV for random bond lattice

model.

3. If an edge is removed from a cluster, the cluster may be divided into two fragments.
Connection matrix of the fragments is made by repeating step 2 again and again.

This requires time proportional to square average cluster size, but independent to V.

Consequently, this algorithm only takes of order O(N) to construct the whole network.
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C.5 Visualization

Computer graphics technology helps us to understand the informations embedded in the
structure. According to the study on pattern recognition, human sight can detect the
difference of two textures where the second order statistical values® are different. It is more
sensitive for localized mobile patterns. Such an intuition is sometimes useful, because
we have only a few tools to sift out localized motions in space and time, like wavelet
transformation.
The following serves as an example:

The density fluctuation in liquid water is easily understood by visualizing the cavity distri-
bution. Fig. C.1 is made from a snapshot of the system with 216 water molecules at 298K,
by coloring the unoccupied space. Each water molecule is simply expressed by a sphere
with a radius of 2.5A. There is a large cavity in the middle of the cell. Such cavities are

also visualized as the contour surface of the distance field
é(r) = min |r — r;, (C.11)

where r; is the position of ith molecule.

Another way to visualize the density fluctuation is exemplified here. In Fig. C.2, the
Voronoi polyhedra whose volume more than 120% or less than 83% of the average volume
are shown. Total number of molecules in the system is 216. The molecules with large local
volume are gathering. The time dependence of the local volume is discussed in Section

4.2.1.

*Statistical values (average, standard deviation, etc.) of two-point correlations(distance, difference of
the density, ete.)
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Figure C.1: The cavity in liquid water is visualized. Spherical regions with radii=2.5A,

which represent the volume occupied by water molecules, are cut out from the simulation
cubic cell and the left unoccupied volume is colored.
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Figure C.2: The local density is indicated by the Voronoi polyhedra. Upper: the polyhedra
whose volume is more than 120% of the average value; lower: those smaller than 83%. The
two figures are drawn from the same configuration. The configuration is taken from the
quenched structure from 298K. The number of water molecules is 216.
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