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Preface: Motivation and outline of this thesis

With the advent of information age, huge amount of data has been collected in laboratories

and hospitals. It includes not only clinical data such as age, laboratory test values, the size

of internal organ; but also genomic data such as gene expression patterns, single nucleotide

polymorphism (SNP) and proteome. Based on the information, we want to predict as

accurately as possible the condition of the subject (diseased or non-diseased), who comes

to a hospital and has gone through some clinical tests. However, it is often difficult to

analyze these variety of medical data within a traditional statistical framework. Moreover,

there exist criteria that are suitable for medical and clinical sciences. Hence, we have tried

to develop a new statistical method that can deal with these data and provide us with a

useful information for the discrimination, based on a criterion that is widely used by medical

doctors or clinical researchers.

In medical and biological sciences, the receiver operating characteristic (ROC) curve and

the area under the ROC curve (AUC) have gained in popularity. The ROC curve originated

from the signal detection theory, where the performance of the radar operator who monitors

enemy warplanes is measured or compared using the curve. It is also applied in psychology,

and now is used in a variety of discrimination problems. Its appealing points are that the

false positive rate (FPR) and the true positive rate (TPR) are both measured in the ROC

curve, and that the curve is independent of the population prevalence of disease. FPR and

1-TPR express different aspects of the classification performance, so it is important to report

the values separately, when evaluating the goodness of the classification. The independence

also is suitable for quantifying the inherent accuracy of classification, and this property

makes the AUC different from other accuracy measures such as the error rate, the relative

risk or the odds ratio.

In this thesis, we have developed a new statistical method that is designed to optimize

the AUC based on a boosting technique, which is widely used in the machine learning

community. The method can deal with both usual low dimensional settings as well as

high dimensional settings. The main concept of boosting is that a strong classifier (score

function) is constructed by combining many various “weak classifiers”. The weak classifier
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means that its discriminant ability is slightly better than random guessing. The method

includes an implicit procedure of marker selection in its boosting algorithm, and produce a

score function after an appropriate number of iterations. The resulting score plots are shown

to be useful for understanding how each marker is associated with the outcome variable, say,

the status of the subjects (non-diseased or diseased). Hence, our method put importance on

the classification accuracy as well as the interpretation of the result. We also have extended

this AUC-based boosting method to pAUCBoost, which focuses on the partial area under

the ROC curve (pAUC) that is often more relevant in some clinical or medical situations.

In Chapter 1, we review other accuracy measures than the AUC and pAUC, which are

also important in clinical evaluation of markers; we investigate the properties and consider

why the AUC and pAUC are getting popular in recent years. In Chapter 2, we also review

the status of progress and development in machine learning community, and characterize

the property of boosting from an objective viewpoint. We propose a new statistical method,

termed AUCBoost, in Chapter 3 and discuss the statistical properties and demonstrate its

utility. In Chapter 4, we focus on PSA data analysis. This is a collaborative research with

medical doctors in Keio University Hospital. PSA is an abbreviation of prostate specific

antigen, and is a primary marker for prostate cancers. The subject with PSA larger than

4 ng/ml is usually recommend to undergo biopsy; however, the value is affected by the

age and the size of the prostate gland and other clinical covariates. Hence, we consider a

optimal combination of these markers as well as the association to the prostate cancer, using

AUCBoost. As a result, we present a “nomogram”, by which medical doctors determine

whether they perform biopsy in consideration of PSA, age, the volume of prostate gland

and the number of biopsy undergone. The point of this nomogram is that the cutoff points

are determined so that the sensitivity is at least 95 percent. This idea is quite different from

existing nomograms that are based on a probability of having the cancer, and much more

suitable for practical medical diagnosis. In Chapter 5, we extend AUCBoost to pAUCBoost,

which focuses on the partial area under the ROC curve. We show that pAUCBoost is

preferable to AUCBoost in some clinical situations. In Chapter 6, we mention ongoing and

future work that I am engaged in now. Finally, we close this thesis with acknowledgements
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to all persons who supported me during my hard and pleasant doctor course.
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Chapter 1

Classification in medical sciences

The purpose of medical data analysis is to detect useful markers or diagnostic tests, and

properly combine them to increase classification performance between diseased subjects and

non-diseased ones. It leads to improvement of quality of medical care and alleviation of the

mental or financial burden of patients; hence, it is needed to develop a statistical method

that not only has a good classification performance but also suits for medical and clinical

sciences. In this chapter, we review fundamental points or terms that we should know before

analyzing real data actually.

1.1 Medical diagnostic tests

1.1.1 Several types

Medical doctors diagnosis a subject or a patient by checking his temperature or listening

to the heart with a stethoscope, which we call simple physical examinations. On the other

hand, more sophisticated medical treatments are often needed such as X-rays for lung can-

cers or kidney stones, MRI (Magnetic Resonance Imaging) for brain diseases and muscle

abnormalities. Originally, diagnostic tests are conducted for detecting disease; however, it

includes tests for prognosis in a broad sense. In this case, the condition to be detected is not

disease but a clinical outcome several months after diagnosis. Tests of disease screening are

also included in this category. Usually, screening tests are performed on subjects who have
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no symptoms of disease; hence, they require high specificity with acceptable sensitivity to

avoid adverse effects such as unnecessary follow-up treatment and over-diagnosis. We will

refer to the importance of specificity and sensitivity later.

1.1.2 Necessary conditions for medical diagnostic tests

Pepe (2003) and Obuchowski and others (2001) suggests several important conditions that

medical diagnostic tests should satisfy as follows.

1. The target disease should be mortal or severe.

• If the target disease is not severe, nobody comes to a hospital to be examined.

This is from a cost-effectiveness standpoint.

2. The prevalence rate of the disease should be relatively high.

• Even if the diagnostic test has high sensitivity and specificity, say, 95% both of

them, the probability of disease conditioned on positive test result is just about

16% if the prevalence rate is 1%. On the other hand, we have 50% probability if

the prevalence rate is 5%. These are easily calculated by Bayes’ theorem.

3. The medical diagnostic tests, especially, screening tests should discriminate disease

from pseudo-disease.

• Pseudo-disease means a disease that never progress or progress so slowly that

it does not affect negatively the patient’s condition. It is common in diseases

that has a long period between onset of disease and the appearance of the signs

or symptoms the patient has, or we can see it among patients with short life

expectancies. This is the case for prostate cancer screening, in which the progress

of the cancer is relatively slow and most of the patients are elderly adults. We

address this problem by proposing a new medical tool termed a PSA cut-off

nomogram in Chapter 4.

4. Screening should be performed before critical point.
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• A critical point is a boundary point, after which the patient need medical care.

For example, the point of metastasis of primary tumor. Hence, a effective treat-

ment is possible before the critical point.

5. The medical test should be harmless.

• The diagnostic test must not inflict mortality (death due to the disease) or mor-

bidity (being sick with the disease) on those screened.

6. The charge for the diagnostic test should be affordable and available to the patients.

• More patients are examined, more beneficial and effective the diagnostic test are.

7. Treatment for the disease should be already established.

• The diagnostic test is meaningful only if the target disease is curable. Note

that Parkinson’s disease or Alzheimer’s disease are well known, but there is no

treatment for these diseases.

8. Treatment after the diagnostic test should not be life-threatening nor fatal.

• In the case that false positive rate is high, this requirement is indispensable.

Moreover, note that earlier treatment means that the patient suffers the detri-

mental effects of the treatment earlier and for a longer time than usual.

9. The accuracy of the diagnostic test should be as high as possible.

• The patient’s burden is alleviated and the benefit is increased if we can grasp

and understand the patient’s condition accurately and appropriately. This last

necessary condition of diagnostic test is the most important in implementing

effective treatment for the patients. In Chapter 3 and 5, we propose a new

statistical method that is designed to combine various diagnostic tests in order

to increase the total accuracy of classification performance.
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1.1.3 Case control study and cohort study

There are two types of study designs: case-control study and cohort study. The first one is

also called retrospective study, because the subjects are selected on the basis of known true

disease status. Usually, we collect a number of diseased subjects under investigation: the

cases; then, we collect the counterparts: the controls who are healthy and free of disease.

The latter study is also called prospective study, because we fix a target population and

observe what happens during a specific period for the selected subjects. The status of the

subject is determined by a gold standard definitive test, which is often invasive such as

surgery or biopsy. We next consider the advantages and disadvantages of the two studies.

Advantages of case-control study

1. Case-control study is easily executable and inexpensive in comparison with cohort

study, because we can use existing data and collect them much quicker than the follow-

up study. This is very suitable for rare diseases or those that have long incubation

periods.

2. We can easily keep the balance of the two groups: the controls and the cases. This

leads to much smaller sample size needed for accurate results, especially when the

prevalence rate is very low. With balanced design, we can also evaluate confounding

and interaction more precisely (see Subsection 1.1.5).

Disadvantages of case-control study

1. Case-control studies do not meet one of conditions of causality principle (see Subsection

1.1.4). For example, consider a causal effect of drinking upon stomach cancer. We

may assume that the habit of drinking causes the stomach cancer. However, there is

a possibility that the stomach cancer patients have begun drinking to be comforted

and relaxed. We can not take time factor into consideration in case-control studies.

2. The cases in case-control studies may not be appropriate samples that do not represent

the targeted population. If there exists a strong association between drinking and a
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heavy disease, the collected cases may have tendency to be less drinking-associated

because the most of them have already died of its severity of the disease. This gives

major impact on the results of the case-control study.

3. Since we start a case control study after fixing a target disease, we can get results

regarding only the disease. We can rarely obtain other epidemiological evidences that

leads to a further expansion of the study.

4. Case-control studies easily suffer from bias error, because of its way of collecting

samples and the accuracy of reports from the two groups is different. The information

about the case is more accurate in general, because it is researched more thoroughly.

This disadvantage often quoted in the criticism of the case-control approach.

1.1.4 Principles of causality

These principles are suggested by Sir Austin Bradford Hill and cited by Woodward (2005).

1. There should be evidence of a strong association between the risk factor and the

disease. Weak relationships may be due to chance occurrence and are more likely to

be explained by confounding.

2. There should be evidence that exposure to the risk factor preceded the onset of disease.

3. There should be a plausible biological explanation.

4. The association should be supported by other investigations in different study settings.

This is to protect against chance findings and bias caused by a particular choice of

study population or study design.

5. There should be evidence of reversibility of the effect. That is, if the cause is removed,

the effect should also disappear, or at least less likely.

6. There should be evidence of a dose-response effect. That is, the greater the amount

of exposure to the risk factor is, the greater is the chance of disease.
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7. There should be no convincing alternative explanation. For instance, the association

should not be explained by confounding.

1.1.5 Confounding and interaction

When the relation of the risk and the disease can be explained by the third factor, it is called

confounding factor. A typical example is the age of the subjects. When the relation of the

risk and the disease can be modified by the third factor, it is called interaction factor. A

typical example is difference of sex: men or women. It is widely known that some diseases

are closely related to sex.

1.2 Criteria for diagnostic accuracy

The diagnostic accuracy can be measured by sensitivity, specificity, odds ratio and likelihood

ratio when the test result is binary such as positive or negative. On the other hand, if it

takes ordered or continuous values, it is more appropriate to use the receiver operating

characteristic curve (ROC).

1.2.1 Sensitivity and specificity

Let x ∈ R be a marker or test result, y be a class label indicating non-diseased (y = 0) or

diseased (y = 1), and F (x) be a score function. Given a value of score function calculated

from a subject having x, we classify him to be positive (diseased) or negative (non-diseased)

as follows:

if F (x) ≥ c ⇒ positive

else F (x) < c ⇒ negative,

where c is a threshold value. Then we have two resulting probabilities

sensitivity = P (F (x) > c|y = 1)

specificity = P (F (x) < c|y = 0).
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Table 1.1: Display of result of PSA test

patient status positive (PSA≥4) negative (PSA<4) total

diseased 127 3 130
non-diseased 251 19 270

total 378 22 400

They are also called true positive rate and false positive rate, respectively. Table 1.1 shows

a summary table about prostate specific antigen (PSA) data provided by Keio University

Hospital. The total sample number is 400, where the number of diseased and non-diseased

subjects are n1 = 130 and n0 = 270, respectively. In this case x is a value of PSA, F (x) = x

and c = 4 ng/ml, where 4 ng/ml is widely used in urology. The sensitivity and specificity

of this PSA data are

sensitivity = 127/130 = 0.977,

specificity = 19/270 = 0.07.

The confidence interval for sensitivity proposed by (Agresti and Coull, 1998) is

sen + z21−α/2/(2n1)± z1−α/2

√
[sen(1− sen) + z21−α/2/(4n1)]/n1

1 + z21−α/2/n1
,

where sen is the estimate of sensitivity; z21−α/2 is the upper α/2 percentile of the standard

normal distribution. The confidence interval for specificity is calculated in the same way.

In this case with α = 0.95, they are (0.934,0.992) for sensitivity and (0.045, 0.107) for

specificity, respectively.

1.2.2 The likelihood ratio

There is another index for diagnostic accuracy called the likelihood ratio. The definition for

positive result is

LRP =
P (F (x) ≥ c|y = 1)

P (F (x) ≥ c|y = 0)
,
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and that for negative result is

LRN =
P (F (x) < c|y = 1)

P (F (x) < c|y = 0)
,

The likelihood ratio reflects the magnitude of the test’s evidence indicating disease compared

to non-disease. If we have LRP > 1, then it means that positive results are more likely for

diseased subjects than non-diseased subjects. On the other hand, if LRD < 1, then negative

results are more likely observed for non-diseased subjects than the others. Based on Table

1.1, we have

LRP = 127/251 = 0.51,

LRN = 3/19 = 0.16.

Bayes’ theorem gives us post-test probability called positive predictive value (PPV) and

negative predictive value (NPV) as follows:

PPV ≡ P (Y = 1|F (x) ≥ c) =
sen× P (Y = 1)

sen× P (Y = 1) + (1− spe)× P (Y = 0)

NPV ≡ P (Y = 0|F (x) < c) =
spe× P (Y = 0)

spe× P (Y = 0) + (1− sen)× P (Y = 1)

They are interpreted as the probability of the subject with positive result to be diseased and

the probability of the subject with negative result to be non-diseased. They are clinically

meaningful; however, note that they are not measures of the intrinsic accuracy of the test

because they include the prevalence rates P (Y = 1) and P (Y = 0). We can also calculate

post-test odds from pre-test odds using likelihood ratio:

PPV

1− PPV
=

P (Y = 1)

1− P (Y = 1)
× LRP

NPV

1−NPV
=

P (Y = 0)

1− P (Y = 0)
× 1/LRN .
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Using the PSA data, we have

PPV

1− PPV
= 130/270× 127/251 = 0.24

NPV

1−NPV
= 270/130× 19/3 = 13.2

15



Chapter 2

Statistical methods in machine

learning deriving from surrogates

of the 0-1 objective function

In this chapter, we review several typical boosting methods that originate from approxima-

tion of the 0-1 objective function, and investigate the some statistical properties, including

Bayes risk consistency. The Figure 2.1 illustrates the several surrogates of the 0-1 objective

function. Note that the all functions but the normal cumulative function are convex, and

this convexity leads to nice statistical properties (Lugosi and Vayatis, 2004; Bartlett and

others, 2006). On the other hand, the properties of non-convex approximation function

have yet to be investigated fully. In the next chapter, we investigate it and propose a new

boosting method based on the result.
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Figure 2.1: Plots of the 0-1 objective function and its various surrogates. The curve

labeled “Exponential” is the exponential loss, exp(−yF ); “Logistic” is the negative scaled

binomial log-likelihood, log(1+exp(−2yF ))+1− log(2); “Hinge” is the piecewise-linear loss

in SVM, (1− yF )+; “Squared Error” is (y−F )2(= (1− yF )2) and “Normal Cumulative” is

the normal cumulative function with variance 1/10. All the functions are monotone in yF ;

All the surrogates except for “Normal Cumulative” are convex.

2.1 Typical methods

2.1.1 AdaBoost

AdaBoost was proposed by Freund and Schapire (1997), and has become the most popular

boosting method in machine learning community. We assume that a sequence of n training
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examples (x1, yn), . . . , (xn, yn) is drawn randomly according to a distribution P on Rp ×
{0, 1}. Define D over the training examples, and this distribution is set to be uniform so

that D(i) = 1/n for i = 1, . . . , n. The algorithm of AdaBoost is as follows.

1. Initialize the weight vector: wt
i = D(i)

2. For t = 1, ..., T

(a) Set

pt =
wt∑n
i=1w

t
i

, (2.1.1)

where, p and w are in Rn.

(b) Fit a weak classifier ft(x): R
p → [0, 1], to the training data using weights wt

i .

(c) Compute the error of ft

εt =
n∑
i=t

pti|ft(xi)− yi| (2.1.2)

(d) Set βt = εt/(1− ε)

(e) Set the new weights vector to be

wt+1
i = wt

iβ
1−|ht(xi)−yi|
t (2.1.3)

3. Finally, output a final score function F :

F (x) =

⎧⎪⎨
⎪⎩

1, if
∑T

t=1(log 1/β)ft(x) ≥ 1/2
∑T

t=1 log 1/β

0, otherwise.
(2.1.4)

The next theorem gives the reason why AdaBoost performs well on the training data.

Theorem 2.1.1 (Freund and Schapire (1997)). Given errors ε1, . . . , εT in the algorithm of

AdaBoost, the training error defined by ε = Pi∼D(F (xi) �= yi) is bounded above by

ε ≤ 2T
T∏
t=1

√
εt(1− εt). (2.1.5)
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For the details of the proof, see Freund and Schapire (1997). Since the value of εt can be

taken to be smaller than 0.5 at every step t, the value of ε goes to 0 if we take T to infinity.

2.1.2 LogitBoost

Friedman and others (2000) showed that AdaBoost can be viewed to approximately max-

imize the Bernoulli log-likelihood, and derived a new boosting method, called LogitBoost,

which aims to directly maximize the Bernoulli log-likelihood. Let y ∈ (0, 1) be a class label

and parametrize the binomial probabilities by

log
p(x)

1− p(x)
= 2F (x)

⇔ p(x) =
expF (x)

expF (x)+exp−F (x)
.

Then the binomial log-likelihood is

l(y, p(x)) = y log(p(x)) + (1− y) log(1− p(x))

= − log(1 + exp−2ysF (x))(
= 2y − log(1 + exp2F (x))

)
,

where ys = 2y − 1 ∈ (−1, 1). Hence, the maximization of the likelihood is equivalent to

the minimization of the exponential loss, exp−ysF (x). The update process of LogitBoost is

based on Newton-Raphson method. Let f(x) is a weak classifier used for updating, then

define the expected log-likelihood:

El(F + f) = E
[
2y(F (x) + f(x))− log(1 + exp2F (x)+2f(x))

]
.
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The first and second derivative at f(x) = 0 are

s(x) =
∂El(F (x) + f(x))

∂f(x)

∣∣∣∣
f(x)=0

= 2E

[
y − expF (x)+f(x)

expF (x)+f(x)+exp−F (x)−f(x)

]∣∣∣∣∣
f(x)=0

= 2E(y − p(x))

H(x) =
∂2El(F (x) + f(x))

∂f(x)2

∣∣∣∣
f(x)=0

= −4E

[
expF (x)+f(x) exp−F (x)−f(x)

(expF (x)+f(x)+exp−F ()−f(x))2

]∣∣∣∣∣
f(x)=0

= −4E[p(x)(1− p(x))].

Hence, the updated score function F (x) has the form:

F (x)new = F (x)−H(x)−1s(x)

= F (x) +
E(y − p(x))

2E[p(x)(1− p(x))]

So, we choose a weak classifier among a predetermined set of weak classifiers that satisfy

min
f(x)

Ew

(
y − p(x)

2p(x)(1− p(x))
− f(x)

)2

,

where w(x) = p(x)(1− p(x)) and

Ew[·] ≡ E[w(x)·]
E(w(x))

.

Note that the absolute value of the coefficient for f(x) is 1, so it can be regarded as one

of ε-Boost proposed by Rosset and others (2004), in which they recommend a very small

value of ε for the coefficient rather than the one that is determined by greedy line-search as

implemented in AdaBoost.
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2.1.3 GAMBoost

Tutz and Binder (2006) proposed a boosting method that extends the general additive

model (GAM) to the one that can work well in high-dimensional data setting. It works for

all simple exponential family distributions, including binomial, Poisson and normal response

variables (y1, y2, . . . , yn). That is, they consider the following probability density function:

g(yi, ηi) = exp
[
(yiηi − b(ηi))/φ+ c(yi, φ)

]
, i = 1, 2, . . . , n, (2.1.6)

where yi ∈ R is a response variable, not a class label; ηi is the natural (or canonical)

parameter and φ is a dispersion parameter. Note that

E(Y )(= μ) =
∂b(η)

∂η
(= h(η))

V ar(Y )(= σ2) = φ
∂2b(η)

∂η2
= φ

∂μ

∂η
.

Here, we define a function called a canonical (natural) link:

ν(μ) ≡ h−1(μ) = η.

We call η the natural parameter because it is related naturally to the response variable y

in Equation (2.1.6). Tutz and Binder (2006) fitted basis functions of the B-splines to the

mean of the j-th marker (j = 1, 2, . . . , p) in the t-th step of the boosting method:

μ =

⎡
⎢⎢⎢⎢⎣
μ1
...

μn

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣
h
(
η̂t(x1j) + {B(j)

1 (x1j), . . . , B
(j)
M (x1j)}γ

)
...

h
(
η̂t(xnj) + {B(j)

1 (x1j), . . . , B
(j)
M (xnj)}γ

)

⎤
⎥⎥⎥⎥⎦ (2.1.7)

=

⎡
⎢⎢⎢⎢⎣
h
(
η̂t(x1j) + z′

1jγ
)

...

h
(
η̂t(xnj) + z′

njγ
)

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣
h(η1)

...

h(ηn)

⎤
⎥⎥⎥⎥⎦ (2.1.8)
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where η̂t is an estimator that is estimated until the t-th step; z′
ij = (B

(j)
1 (xij), . . . , B

(j)
M ) is

a set of the B-spline basis functions for the j-th element of a marker vector x ∈ Rp; γ is

a M dimensional coefficient vector for the B-spline. The log-likelihood to be maximized is

given by

l(γ) =

n∑
i=1

log g(yi, ηi)

=

n∑
i=1

(yiηi − b(ηi))/φ+ c(yi, φ).

Hench, the penalized log-likelihood is given as

lp(γ) = l(γ)− λ

2
γ ′Λγ,

where Λ is a penalty matrix constructed such that γ ′Λγ penalizes first-order differences∑M−1
k=1 (γk+1 − γk)

2 or higher order differences of parameters, which correspond to basis

functions of adjacent knots. The penalized score function is

sp(γ) =
∂lp(γ)

∂γ
=

n∑
i=1

∂l(γ)

∂ηi

∂ηi
∂γ

− λΛγ

=
n∑

i=1

yi − b′(ηi)
φ

zij − λΛγ

=

n∑
i=1

yi − μi
V ar(yi)

∂μi
∂ηi

zij − λΛγ

= Z ′
jD(γ)Σ(γ)−1(y − μ)− λΛγ,

where Z ′
j = (z1j , . . . , znj); D(γ) = diag(∂μ1/∂η1, . . . , ∂μn/∂ηn) is the variance function

that connects E(Y ) to V ar(Y ) using φ; Σ(γ) = diag(σ21, . . . , σ
2
n). With the weight function

W (γ) = D(γ)Σ(γ)−1D(γ), it is rewritten as

sp(γ) = Z ′
jW (γ)D(γ)−1(y − μ)− λΛγ.
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The penalized Fisher matrix (the mean Hessian matrix) is

Fp(γ) = E

(
− ∂2lp(γ)

∂γ∂γ ′

)

= E

(
−

n∑
i=1

−b′′(ηi)
φ

zijz
′
ij + λΛ

)

=

n∑
i=1

E

(
(∂μi/∂ηi)

2

V ar(yi)
zijz

′
ij

)
+ λΛ

= Z ′
jW (γ)Zj + λΛ

Hence, Fisher scoring is given by

γ̂new = γ̂ + Fp(γ̂)
−1sp(γ̂)

So, GAMBoost is different from the method of iterative reweighted least squares (IRLS),

because it uses only the Newton-Raphson method. That is, the process of the least square

approach is not included in GAMBoost. Moreover they actually update the coefficient vector

as

γ̂new = Fp(0)
−1sp(0).

This is because in a boosting algorithm, we add the updated coefficient to the already fitted

value; hence, we take γ̂ to be 0 in each boosting step. As a result, the weak classifier that

consists of a set of the B-spline basis function is calculated as

fj,new = Zjγ̂new, j = 1, . . . , p.

Then, set fj = fold,j + fj,new yielding η̂j,new. The best j is selected among {1, . . . , p} based

on the likelihood, and the j-th component of the score function is updated. This process is

iterated in GAMBoost.
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2.1.4 SVM

Define a hyperplane by

{x : f(x) = β′x+ β0 = 0}.

The unit vector normal to the plane is

β∗ = β/||β||,

because β′(x1 −x2) = 0 for any two points x1,x2 lying in the plane. With any point x0 in

the plane, the signed distance of a x is

β∗′(x− x0) =
1

||β||(β
′x− β′x0)

=
1

||β||(β
′x+ β0)

In this setting, consider a optimization problem:

max C
β,β0

subject to yi(β
′xi + β0)/||β|| > C, i = 1, . . . , n,

where, yi ∈ {−1, 1} is a class label; n is a sample size. Note that we can keep ||β|| = 1/C

without loss of generality in the maximization process, because the hyperplane is invariant

to the scale constrain. Hence, it can be rewritten as

max 1
||β||

β,β0

(
= min ||β||

β,β0

)

subject to yi(β
′xi + β0) > 1, i = 1, . . . , n.

In more general setting, we consider the slack variables ξ = (ξ1, . . . , ξn) to relax the con-

straint condition as follows.

min ||β||2
β,β0

subject to yi(β
′xi + β0) > 1− ξi, ξi ≥ 0,

∑
ξi ≤ constant, i = 1, . . . , n. (2.1.9)
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The corresponding Lagrange primal function is

LP =

{
1

2
||β||2 + γ

n∑
i=1

ξi

}
+

n∑
i=1

αi{(1− ξi)− yi(β
′xi + β0)}+

n∑
i=1

μi(−ξi). (2.1.10)

The necessary condition for the existence of a local minimum of (2.1.10) (Karush-Kuhn-

Tucker condition) is there exist constants αi and μi (i = 1, . . . , n) such that

• Stationarity

∂LP

∂ζ
= 0,

⇔

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

β =
∑n

i αiyixi

0 =
∑n

i=1 αiyi

αi = γ − μi, i = 1, . . . , n.

where ζ′ = (β′, β0, ξ′).

• Primal feasibility

yi(β
′xi + β0) ≥ 1− ξi,

ξi ≥ 0, i = 1, . . . , n.

• Dual feasibility

αi ≥ 0,

μi ≥ 0, i = 1, . . . , n.

• Complementary slackness

αi{(1− ξi)− yi(β
′xi + β0)} = 0

μiξi = 0, i = 1, . . . , n.
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The Lagrangian dual objective function to be maximized is

LD =
n∑

i=1

αi − 1

2

n∑
i=1

n∑
j=1

αiαjyiyjx
′
ixj ,

which gives a lower bound on the objective function (2.1.9). The standard software is

available for this simple form of the convex optimization problem. The conditions above

uniquely characterize the solution to the primal and dual problem. From the condition of

β in Stationary condition, the solution for β has the form

β̂ =

n∑
i=1

α̂iyixi,

where αi that is non-zero must satisfy the first equation exactly in Primal feasibility condi-

tion. That is,

yi(β
′xi + β0) = 1− ξi.

Hence, the important samples that are used to determine the solution to (2.1.9) are on

the boundary of classification. They are called the support vectors. The objective function

(2.1.9) of SVM can be rewritten as

min ||β||2
β,β0

+ γ

n∑
i=1

ξi

subject to yi(β
′xi + β0) > 1− ξi, ξi ≥ 0, i = 1, . . . , n. (2.1.11)

The two constraints above can be summarized into

ξi ≥ max{0, 1− yi(β
′xi + β0)}

This means that the minimum of ξi is max{0, 1− yi(β
′xi + β0)}. Hence, the minimization

statement of (2.1.11) is rephrased as

min
β,β0

[ n∑
i=1

max{0, 1− yi(β
′xi + β0)}+ 1

γ
||β||2

]
, (2.1.12)
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where the first term is called Hinge loss.

2.1.5 RankBoost

RankBoost (Freund and others, 2003) is a well known boosting algorithm for ranking prob-

lems. In this subsection we make clear the difference between AUCBoost and RankBoost.

In particular we focus on each objective function and show the two boosting methods have

different optimal discriminant function.

In general each objective function can be regarded as one of the objective function for

ranking (RU ):

RU (F ) =

∫ ∫
U(F (x1)− F (x0))g0(x0)g1(x1)dx0dx1,

where U is a function we choose on our own. If we take a Heaviside function as U , then it

becomes AUC and if U(x) = exp(−x), then it becomes the objective function of RankBoost.

Theorem 2.1.2. Let U be a convex function with negative derivative U ′. Then the function

that minimizes RU is written as:

F = m

(
g1
g0

)
,

where m is a monotonically increasing function.

Proof. For Fε = F + ε η

∂

∂ε
RU (Fε)

∣∣∣∣
ε=0

=

∫ ∫ (
η(x1)− η(x0)

)
U ′(F (x1)− F (x0)

)
g0(x0)g1(x1)dx0dx1

=

∫ ∫
η(x)U ′(F (x)− F (y)

)
g0(y)g1(x)dydx

−
∫ ∫

η(x)U ′(F (y)− F (x)
)
g0(x)g1(y)dxdy

=

∫
η(x)

[
g1(x)

∫
U ′(F (x)− F (y)

)
g0(y)dy − g0(x)

∫
U ′(F (y)− F (x)

)
g0(y)dy

]
dx

= 0.
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Because η is arbitrary, we have

∫
U ′(F (y)− F (x)

)
g1(y)dy∫

U ′(F (x)− F (y)
)
g0(y)dy

=
g1(x)

g0(x)
, (2.1.13)

and we define

ψ
(
F (x)

)
=

∫
U ′(F (y)− F (x)

)
g1(y)dy∫

U ′(F (x)− F (y)
)
g0(y)dy

.

Hence we have

∂ψ
(
F (x)

)
∂F (x)

= −
∫
U ′′(F (y)− F (x)

)
g1(y)dy

∫
U ′(F (x)− F (y)

)
g0(y)dy{∫

U ′(F (x)− F (y)
)
g0(y)dy

}2

−
∫
U ′(F (y)− F (x)

)
g1(y)dy

∫
U ′′(F (x)− F (y)

)
g0(y)dy{∫

U ′(F (x)− F (y)
)
g0(y)dy

}2

> 0.

So a monotonically increasing function m exists such that

F = m

(
g1
g0

)
.

Corollary 2.1.1. The optimal function for RankBoost is written as:

argmin
F∈F

RU (F ) =
1

2
log

g1
g0

+ c,

where c is an arbitrary constant and U(x) = exp(−x).

Proof. From (2.1.13) in Theorem 2.1.2 we have

∫
exp

(
F (x)− F (y)

)
g1(y)dy∫

exp
(
F (y)− F (x)

)
g0(y)dy

=
g1(x)

g0(x)
,

and it is equivalent to

F (x) =
1

2
log

g1(x)

g0(x)
+

1

2
log

∫
exp

(
F (y)

)
g0(y)dy∫

exp
(−F (y))g1(y)y .
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Hence we have

F (x) =
1

2
log

g1(x)

g0(x)
+ c, (2.1.14)

where c is an arbitrary constant.

As a result of Corollary 2.1.1, we see that RankBoost also maximize the area under the

ROC curve (AUC), because the optimal discriminant function for RankBoost is a special

case of that for AUCBoost in (3.7.6). And it is worth noting that the optimal discriminant

function for RankBoost is much similar to that for AdaBoost, because

FAda =
1

2
log

g1
g0

+
1

2
log

π1
π0
,

where π0 and π1 are the prior probability of the population 0 and the population 1, respec-

tively. Hence RankBoost is almost the same as AdaBoost.

2.2 Bayes risk consistency for convex loss functions

The most important property of score function F (x) is that a score function optimizing a

given objective function must satisfy Bayes-risk consistency. We review a theorem proven

by (Lugosi and Vayatis, 2004) that shows Bayes-risk consistency of convex cost functions

under some assumptions.

Consider a class of score functions F : X → [−1, 1]:

F =

{
F (x) =

N∑
i=1

wifi(x) : N ∈ N, w1, . . . , wN ≥ 0,

N∑
i=1

= 1

}
,

which is the convex hull of C: a class of weak classifiers f(x) ∈ {−1, 1}’s. Denote the Bayes

risk by L∗ and define as follows:

L∗ = inf
F
P (sgn(F (X)) �= Y ), (2.2.1)
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where Y is a class label taking values of {−1, 1}, and sgn(z) is a function defined by

sgn(z) =

⎧⎪⎨
⎪⎩

1, if z > 0

−1, otherwise.
(2.2.2)

Note that the formal definition of sign function is given by

sgn∗(z) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1, if z > 0

0, if z = 0

−1, otherwise.

(2.2.3)

The loss function L is expressed using the indicator function I(·), as

L(F ) ≡ P (sgn(F (X)) �= Y )

=

∫ ∫
I(sgn(F (x)) �= y)p(x, y)dxdy

=

∫ ∫
I(sgn(F (x)) �= y)p(y)p(x|y)dxdy

=

∫ {
π−1I(sgn(F (x)) �= −1)p−1(x) + π1I(sgn(F (x)) �= 1)p1(x)

}
dx

=

∫ {
(1− η(x))I(sgn(F (x)) = 1) + η(x)I(sgn(F (x)) = −1)

}
p(x)dx

= E
[
(1− η(x))I(sgn(F (x)) = 1) + η(x)I(sgn(F (x)) = −1)

]

where p1(x) = p(x|y = 1), p−1(x) = p(x|y = −1), p(x) = π1p1(x) + π−1p−1(x) and

η(x) = P (Y = 1|X = x) =
π1p1(x)

π1p1(x) + π−1p−1(x)
. (2.2.4)

Hence, we find that the Bayes classifier

I(η(x) > 1/2)− I(η(x) ≤ 1/2) (2.2.5)

minimizes the loss function:

L∗(F ) = L(FB) = E[min(η(X), 1− η(X))].
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Instead of minimizing L(F ) itself, Lugosi and Vayatis (2004) consider an appropriate smooth

loss functional to simultaneously avoid overfitting and become computationally feasible in

may cases:

A(F ) =

∫ ∫
φ(−F (x)y)p(x, y)dxdy,

and the empirical loss

An(F ) =
1

n

n∑
i=1

φ(−F (x)y),

where φ : [−1, 1] → R+ is a positive nondecreasing convex function such that φ(0) = 1, and

the estimator F̂n minimizes the empirical quantity An(F )

Assumption 2.2.1. Let φ be a differentiable strictly convex, strictly increasing cost function

such that φ(0) = 1,limx→−∞ = 0.

Theorem 2.2.1 (Lugosi and Vayatis (2004)). Assume that the cost function φ satisfies

Assumption 2.2.1 and that the distribution of (X, Y ) and the class C are such that

lim
λ→∞

inf
F∈λF

A(F ) = A∗,

where A∗ = inf A(F ) over all measurable functions F : X → R. Assume that C has a finite

VC dimension.

Let λ1, λ2, . . . be a sequence of positive numbers satisfying

λn → ∞andλnφ
′(λn)

√
lnn

n
→ 0, as n→ ∞,

where ln is the logarithm natural and define the estimator Fn = 1
λn
F̂n ∈ F . Then sgn(Fn(x))

is strongly Bayes-risk consistent, that is,

lim
n→∞L(sgn(Fn)) = L∗, almostsurely.

Example 2.2.1. The exponential loss φ(z) = exp(z) of AdaBoost satisfies Assumption
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2.2.1, and therefore the Bayes-risk consistency holds. The optimal socre function is

FAda(x) =
1

2
ln

η(x)

1− η(x)
.

Example 2.2.2. Friedman and others (2000) proposed LogitBoost, where φ(z) = logit(z) =

log2(1 + exp(z)). This case also satisfies Assumption 2.2.1, so the Bayes-risk consistency

holds.

FLogit(x) = ln
η(x)

1− η(x)
.
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Chapter 3

A boosting method for

maximization of the are under the

ROC curve

Abstract

We discuss receiver operating characteristic (ROC) curve and the area under the ROC curve

(AUC) for binary classification problems in clinical fields. We propose a statistical method

for combining multiple feature variables, based on a boosting algorithm for maximization

of the AUC. In this iterative procedure, various simple classifiers that consist of the feature

variables are combined flexibly into a single strong classifier. We consider a regularization

to prevent overfitting to data in the algorithm using a penalty term for non-smoothness.

This regularization method not only improves the classification performance but also helps

us to get a clearer understanding about how each feature variable is related to the binary

outcome variable. We demonstrate the usefulness of score plots constructed componentwise

by the boosting method. We describe two simulation studies and a real data analysis in

order to illustrate the utility of our method.

Keywords: AUC; Boosting; Classification; ROC curve; Smoothing.
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3.1 Introduction

The receiver operating characteristic (ROC) curve has been widely used in medical and

biological sciences (Zhou and others, 2002; Pepe, 2003), for applications in which the classi-

fication performance can be measured by the area under the ROC curve (AUC). This curve

has three primary appealing properties. First, it does not assume any specific distributional

model, so a method based on the ROC is distribution-free, in contrast to logistic regression

analysis or classical linear discriminant analysis under normality assumption. Second, it is

independent of the prior probabilities of group membership, so it is able to accommodate

case-control studies. Third, the AUC is not influenced by the choice of thresholds that

may be changed according to each decision-maker’s objective; hence, the AUC expresses the

intrinsic accuracy of classification performance. The advantages of the AUC over the odds

ratio or relative risk when evaluating the classification performance are discussed by Pepe

and others (2004).

A procedure for maximizing the AUC using a linear combination of multiple feature

variables has been proposed (Pepe and Thompson, 2000) in order to improve on diagnostic

accuracy of a single feature variable, and Pepe and others (2006) have shown that the AUC-

based method can be far superior to logistic regression in certain situations. Ma and Huang

(2005) extended this strategy to high-dimensional data by adopting a sigmoid approximation

for the AUC. The assumption of linearity gives us easily interpretable results of the analysis,

and allows us to get the rough characteristics of each feature variable. However, this strict

assumption is often unable to capture informative nonlinear structures in the real world.

Moreover, it has been proved that the optimal combination of feature variables that

maximizes the AUC is constructed based on the likelihood ratio (Eguchi and Copas, 2002;

McIntosh and Pepe, 2002). This implies that even under a simple setting such as a normality

assumption with unequal covariance matrices, the optimal combination is not linear but

quadratic. Further details are described in Subsection 4.2.

In this paper, we propose a new statistical method to detect a more essential association

between feature variables and a binary outcome variable using a boosting technique, and

apply the method to the combination of the feature variables for better classification. A
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typical one of the boosting methods is AdaBoost (Freund and Schapire, 1997), which is

designed to minimize the exponential loss. An AdaBoost-based boosting method for the

AUC is presented by Long and Servedio (2007), along with its theoretical justification. The

purpose of boosting methods is to construct a strong classifier by combining various weak

classifiers. Recently, a variety of loss functions other than the exponential loss have been

proposed and discussed in several contexts (Murata and others, 2004).

On the other hand, the generalized additive model (GAM) proposed by Hastie and

Tibshirani (1986) has wide applications in a variety of research fields. This is mainly because

this model can detect the nonlinear effects of feature variables on the objective function

flexibly, without sacrificing interpretability:

η(E(y|x)) = F1(x1) + · · ·+ Fp(xp),

where x = (x1, . . . , xp)
′, η is a link function and Fk, k = 1, . . . , p, are unspecified functions

of xk. Thus, GAM is also well suited for binary classifications in medical and biological

fields, in which the association of the feature vector x with an outcome variable y is of great

interest. We consider a model, similar to GAM, that attaches importance to interpretability

as well as flexibility, maximizing the AUC for a score function F (x) by a boosting algorithm.

As a result, we obtain F (x) of the form

F (x) = F1(x1) + · · ·+ Fp(xp),

in which we consider score plots of Fk(xk) against the k-th feature variable xk. These

plots are useful in association studies, for looking at how each feature variable works in the

classification and for detecting which feature variable is the most effective one.

This paper is organized as follows. In Section 2, we give a brief review of the ROC curve

and discuss the relationship between the AUC and the approximate AUC. In Section 3,

we propose AUCBoost, a new boosting method based on the maximization of the AUC. In

Section 4 we present two simple simulation studies to investigate the efficiency of AUCBoost,

and in Section 5 we demonstrate the application of AUCBoost to a real data set. We close
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Section 6 with concluding remarks and ideas for future work.

3.2 Receiver operating characteristic curve

3.2.1 Area under the ROC curve

Let y be a binary class label (y=0, 1), x ∈ Rp be a feature vector, and g0(x), g1(x) be

probability density functions for each class. We classify a subject with feature vector x into

class 1 if a score function F (x) is greater than or equal to a threshold value c, and into class

0 otherwise. Then, the false positive rate (FPR) and true positive rate (TPR) are defined

as

FPR(c) =

∫
F (x)≥c

g0(x)dx, and TPR(c) =

∫
F (x)≥c

g1(x)dx. (3.2.1)

By pairing these probabilities, the ROC curve is given as

ROC = {(FPR(c),TPR(c)) |c ∈ R},

which is illustrated in Figure 3.1. From (3.2.1), the area under the ROC curve (AUC) is

written as

AUC(F ) =

∫ −∞

∞
TPR(c)dFPR(c). (3.2.2)

The large separation of g0(x) and g1(x) could make the AUC close to 1. However, note that

it is also dependent on a score function F (x), which we must determine in the analysis of

data. Only after employing an adequate F (x) for the two probability density functions can

we obtain the best value of the AUC. Equation (3.2.2) can be expressed in another manner:

AUC(F ) = P (F (X1) ≥ F (X0)),

where X0, X1 are independent p-dimensional random vectors from class 0 and class 1,

respectively (Bamber, 1975). The empirical AUC for given observations {x0i : i = 1, . . . , n0}
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Figure 3.1: The left panel illustrates the definition of FPR and TPR with two probability
density functions of F (x) for class 0 (black) and 1 (gray), and a threshold c. The right panel
is the corresponding ROC curve.

of the class 0 and {x1j : j = 1, . . . , n1} of the class 1 is given by

AUC(F ) =
1

n0n1

n0∑
i=1

n1∑
j=1

H(F (x1j)− F (x0i)), (3.2.3)

where H(z) is the Heaviside function: H(z) = 1 if z ≥ 0 and 0 otherwise. In the case that

F (x) is discrete or there are tied values between F (x0i) and F (x1j), H(z) is replaced with

H∗(z) that is defined to be 1 if z > 0,12 if z = 0 and 0 if z < 0.

3.2.2 Approximate AUC

We would like to obtain an optimal score function in the sense of maximizing the AUC in a

class of score functions. It is known that the error rate is minimized by Bayes rule (McLach-

lan, 2004), which can be expressed using a strictly increasing function of the likelihood ratio.

Similarly, the Neyman-Pearson Lemma establishes that the ROC curve for an arbitrary score
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function is everywhere below the ROC curve for the likelihood ratio (Eguchi and Copas,

2002; McIntosh and Pepe, 2002). That is, the optimal score function that maximizes the

AUC is given as

F (x) = m
(
Λ(x)

)
, (3.2.4)

where Λ(x) = g1(x)/g0(x) and m is a strictly increasing function. In this way, we observe

that the maximization of the AUC is equivalent to the minimization of the error rate in the

sense of Bayes rule.

In practice, the maximization of the empirical AUC presents some difficulties because

it consists of a sum of nondifferentiable functions, as seen in equation (3.2.3). This feature

prevents us from using gradient-based methods and requires a time-consuming search for

the optimal score function (Pepe and Thompson, 2000; Pepe and others, 2006). However,

such a method becomes impossible to implement as the number of feature variables increases

greatly. Therefore, as a means of maximizing the empirical AUC, it has become common to

use smooth-function approximations. Eguchi and Copas (2002) used the standard normal

distribution function, and Ma and Huang (2005) proposed a sigmoid approximation for this

purpose. In this paper, we consider the former approximation:

AUCσ(F ) =
1

n0n1

n0∑
i=1

n1∑
j=1

Hσ(F (x1j)− F (x0i)),

where Hσ(z) = Φ (z/σ), with Φ being the standard normal distribution function. A smaller

scale parameter σ means a better approximation of the Heaviside function H(z). The choice

of the approximation function of H(z) does not matter so much; the important property is

that the first derivative of the approximation function must be symmetric, which is satisfied

in both Hσ(z) and the sigmoid function. This property is essential for the proof of Theorem

3.2.1.

Next, we discuss the relationship between the AUC and the approximate AUC. We note

that the AUC for a score function F (x) has an integral formula given as

AUC(F ) =

∫ ∫
H(F (x1)− F (x0))g0(x0)g1(x1)dx0dx1.
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Similarly, the approximate AUC is given as

AUCσ(F ) =

∫ ∫
Hσ(F (x1)− F (x0))g0(x0)g1(x1)dx0dx1.

Hence, we observe that AUCσ(F ) almost surely converges to AUCσ(F ) as n0 and n1 both

increase to infinity.

Theorem 3.2.1. Let

Ψ(c) = AUCσ

(
F + c m

(
Λ
))
,

where Λ(x) = g1(x)/g0(x) and m is a strictly increasing function. Then, Ψ(c) is a strictly

increasing function of c ∈ R, and

sup
F

AUCσ(F ) = lim
c→∞Ψ(c) = AUC

(
Λ
)
. (3.2.5)

Proof. Let ζ(x) = m
(
Λ(x)

)
. Then, the first derivative of Ψ(c) with respect to c is given as

∫ ∫ (
ζ(x1)− ζ(x0)

)
H′

σ

(
F (x1) + c ζ(x1)− F (x0)− c ζ(x0)

)
g0(x0)g1(x1)dx0dx1,

which can be rewritten as

∫ ∫ (
ζ(x0)− ζ(x1)

)
H′

σ

(
F (x1) + c ζ(x1)− F (x0)− c ζ(x0)

)
g0(x1)g1(x0)dx1dx0,

by the exchange of x0 for x1 because of the symmetry: H′
σ(−z) = H′

σ(z). Hence, we conclude

that

2
∂

∂c
Ψ(c) =

∫ ∫ (
ζ(x1)− ζ(x0)

)
H′

σ

(
F (x1) + c ζ(x1)− F (x0)− c ζ(x0)

)
× g0(x0)g0(x1)

(
Λ(x1)− Λ(x0)

)
dx0dx1,

which is always positive because of the assumption that m is a strictly increasing function.

Hence, the function Ψ(c) is strictly increasing.
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From the discussion above, it follows that

AUCσ(F ) < lim
c→∞Ψ(c)

= lim
c→∞AUCσ

[
c

{
F

c
+ ζ

}]

= lim
c→∞AUCσ

c

(
F

c
+ ζ

)
= AUC(ζ)

= AUC(Λ).

Considering the fact that

lim
c→∞Ψ(c) ≤ sup

F
AUCσ(F ),

we have

lim
c→∞Ψ(c) = sup

F
AUCσ(F ),

which concludes (3.2.5).

From Theorem 3.2.1, we observe that

AUCσ(F ) < AUC
(
Λ
)
,

and that no score function F (x) can attain the equality above when σ > 0. Hence, we can

perform the supremization of AUCσ(F ) instead of the maximization. This property is not

preferable in building an iterative algorithm for maximization of AUCσ(F ); therefore, we

propose a regularization scheme for F (x) in a subsequent discussion.

3.3 AUCBoost

3.3.1 Objective function

We investigate a classification problem based on a boosting method. The key concept is to

construct a powerful score function F (x) by combining many various weak classifiers (Hastie
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and others, 2001). Any single weak classifier itself has a very poor ability for classification,

whose performance is almost equal to random guessing; however, the combination of a

number of them produces a very flexible and strong score function. We aim to construct

F (x) in such a way based on the AUC.

At first, we prepare a set Fk for each k-th component of x ∈ Rp:

Fk =
{
f(x) = aH(xk − b) + (1− a)/2 | a ∈ {−1, 1}, b ∈ Bk

}
, k = 1, . . . , p,

where Bk is a finite discrete set, which is determined by taking every intermediate point of

samples or a number of sample quantiles. As seen in the definition, f(x) is a simple step

function taking one of the two values {0, 1}. Then, we combine the sets into

F =

p⋃
k=1

Fk, (3.3.1)

called the decision stump class, among which we choose weak classifiers to construct F (x).

The set F can be modified to include interaction terms that may improve classification

performance. However, the interpretation becomes difficult and unclear especially when the

number of feature variables is large. Hence, in this paper we focus only on the main effects

of feature variables.

In this setting, F (x) can be decomposed as the same way as GAM:

F (x) =
∑
f∈F ′

1

αff(x) + · · ·+
∑
f∈F ′

p

αff(x)

= F1(x1) + · · ·+ Fp(xp),

where F ′
k is a subset of Fk, k = 1, . . . , p, whose elements f ′s are selected in a boosting

algorithm in Subsection 3.2, and αf means a corresponding coefficient of f . Using these

notations, the objective function we propose is given as

AUCσ,λ(F ) =
1

n0n1

n0∑
i=1

n1∑
j=1

Hσ(F (x1j)− F (x0i))− λ

p∑
k=1

∑
xk∈Bk

{
F

(2)
k (xk)

}2
, (3.3.2)
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where λ is a smoothing parameter and F
(2)
k (xk) denotes the second-order difference of

Fk(xk): F
(2)
k (xk) = Fk(x

(−1)
k ) − 2Fk(xk) + Fk(x

(+1)
k ) with x

(−1)
k < x

(+1)
k . The first term

is the approximate empirical AUC based on the standard normal distribution function; the

second term gives a penalty for redundant behavior of F (x), which focuses on points in

Bk for each k because Fk(xk) has discontinuities only at the points. Thus, the modeling of

F (x) is similar to that of GAM. The difference is that the proposed method is based on

maximization of the AUC in place of the likelihood, and that we use the second-order dif-

ference of Fk(xk) instead of the second derivative of Fk(xk) because of its non-smoothness.

The iteration method is also different: we maximize the objective function by a boosting

method, whereas GAM is implemented by a backfitting algorithm (Hastie et al., 2001). We

investigate the difference in detail using numerical simulation data in Section 4.

We note that there is a special relation between the scale parameter σ and the smoothing

parameter λ. Equation (3.3.2) can be rewritten as

AUCσ,λ(F ) =
1

n0n1

n0∑
i=1

n1∑
j=1

Hσ(F (x1j)− F (x0i))− λσ2
p∑

k=1

∑
xk∈Bk

{
F

(2)
k (xk)

σ

}2

.

Hence, we have

AUCσ,λ(F ) = AUCσ′,λ′

(
σ′

σ
F

)
,

if λσ2 = λ′σ′2. This implies that the maximization of AUCσ,λ(F ) is equivalent to that of

AUC1,λσ2

(
F
σ

)
. Therefore, we have

max
σ,λ,F

AUCσ,λ(F ) = max
λ,F

AUC1,λ(F ).

From this consideration, we can fix σ = 1 without loss of generality. Henceforth, we discuss

AUCλ(F ) =
1

n0n1

n0∑
i=1

n1∑
j=1

Φ(F (x1j)− F (x0i))− λ

p∑
k=1

∑
xk∈Bk

{
F

(2)
k (xk)

}2
,

which is rewrite of AUC1,λ(F ) for notational convenience. This discussion not only leads

to a drastic reduction of the computational cost for the implementation of our method,
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but also has consistency with Theorem 3.2.1. The scale parameter σ, which controls the

accuracy of the approximation of the AUC, is not an essential factor in the sense of the

supremization of the approximate AUC. On the other hand, the smoothing parameter λ

has another important role. As mentioned after Theorem 3.2.1, the approximate AUC has

no maximum in itself. The penalty term for smoothness in AUCλ(F ) also guarantees the

existence of the maximum of AUCλ(F ), and makes the numerical maximization stable.

Ma and Huang (2005) and Wang and others (2007) approximated the empirical AUC by

a sigmoid function, and followed a rule of thumb to determine a scale parameter. That is

to say, the accuracy of approximation of the empirical AUC is already fixed before running

their algorithm. In contrast, we do not impose such a strict condition; we vary only the

smoothing parameter λ and select the best value by cross-validation (see Subsection 3.3).

3.3.2 AUCBoost algorithm

Let us give a brief explanation of how the score function F (x) is constructed by sequentially

selecting f(x)’s in the set F defined in (3.3.1). Our approach is based on a boosting learning

algorithm to maximize AUCλ(F ) in the linear hull of F , with the number of iterations T .

1. Start with a score function F0(x).

2. For t = 1, . . . , T

a. Find the best weak classifier ft and calculate the coefficient αt as

ft(x) = argmax
f∈F

∂

∂α
AUCλ(Ft−1 + αf)

∣∣∣∣
α=0

,

αt = argmax
α>0

AUCλ(Ft−1 + αft).

b. Update the score function as

Ft(x) = Ft−1(x) + αtft(x).
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3. Finally, output the final score function:

F (x) = F0(x) +

T∑
t=1

αtft(x).

If we have no prior information about the data, we set F0(x) = 0. In step 2.a, we search F
for a ft(x) which maximizes the first derivative of AUCλ(F ) at the point Ft−1(x) + αf(x).

This argument is similar to that of Hastie and others (2001) and Takenouchi and Eguchi

(2004). Next, we calculate the coefficient of ft(x) using the Newton-Raphson method, and

add αtft(x) to the previous score function. We repeat this process T times and output the

final score function. Thus, the resultant score function is an aggregation of ft(x)’s with

weights αt’s. Further details of this algorithm are as follows.

In step 2.a, we search F for ft that satisfies

ft(x)

=argmax
f∈F

∂

∂α
AUCλ(Ft−1 + αf)

∣∣∣∣
α=0

= argmax
k∈{1,...,p}
a∈{−1,1}

b∈Bk

1

n0n1

n0∑
i=1

n1∑
j=1

φ
(
Ft−1(x1j)− Ft−1(x0i)

){
aH(x1jk − b)− aH(x0ik − b)

}

− 2λ
∑

xk∈Bk

{Fk(x
(−1)
k )− 2Fk(xk) + Fk(x

(+1)
k )}{aH(x(−1)

k − b)− 2aH(xk − b) + aH(x
(+1)
k − b)},

where φ is the standard normal density function, Fk(xk) is the k-th component of Ft−1(x)

(a score function of xk at an iteration number t− 1), and x0ik, x1jk are the k-th component

of x0i,x1j , respectively.

Then, the second term in the equation above is calculated into

− 2λ

[{
Fk(b

(−2))− 2Fk(b
(−1)) + Fk(b)

}
a−

{
Fk(b

(−1))− 2Fk(b) + Fk(b
(+1))

}
a

]

=− 2λa
{
Fk(b

(−2))− 3Fk(b
(−1)) + 3Fk(b)− Fk(b

(+1))
}
,

where an element with a smaller superscript number than that of the minimum element in

Bk is set to the minimum one. Similarly, an element with a larger superscript number than
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that of the maximum element is set to the maximum one. In regard to the coefficient (αt)

of ft(x), we seek it by the Newton-Raphson method using

∂

∂α
AUCλ(Ft−1 + αft)

=
1

n0n1

n0∑
i=1

n1∑
j=1

φ
(
Ft−1(x1j)− Ft−1(x0i) + α{ft(x1j)− ft(x0i)}

)(
ft(x1j)− ft(x0i)

)

− 2λ

[
at

{
Fkt(b

(−2)
t )− 3Fkt(b

(−1)
t ) + 3Fkt(bt)− Fkt(b

(+1)
t )

}
+2α

]
,

and

∂2

∂α2
AUCλ(Ft−1 + αft)

=− 1

n0n1

n0∑
i=1

n1∑
j=1

φ
(
Ft−1(x1j)− Ft−1(x0i) + α{ft(x1j)− ft(x0i)}

)(
ft(x1j)− ft(x0i)

)2

× (
Ft−1(x1j)− Ft−1(x0i) + α{ft(x1j)− ft(x0i)}

)− 4λ, (3.3.3)

where

ft(x) = atH(xkt − bt) + (1− at)/2.

The first term in (3.3.3) is usually negative for an appropriate value of α. However, it

happens to be positive in the Newton-Raphson process. Our objective is to obtain α that

maximizes AUCλ(Ft−1+αft), so the sign of (3.3.3) should be always negative. We find that

the smoothing parameter λ stabilizes the algorithm of AUCBoost.

3.3.3 Tuning parameter selection

In our method there are two parameters to be determined: a smoothing parameter λ and

the iteration number T . We use the following K-fold cross-validation. At first, we partition

the whole data set into K subsets of almost equal sizes, and evaluate an objective function

such as

AUCCV(λ, T ) =
1

K

K∑
i=1

AUC
(i)
λ (F (−i)),
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where F (−i) is a score function constructed by AUCBoost using the data set without

the i-th subset, and AUC
(i)
λ is the AUCλ calculated on the i-th subset alone. We give

a typical example of results of AUCCV in Figure 3.2, assuming X0 ∼ N(μ0,Σ0) and

X1 ∼ N(μ1,Σ1), where μ0 = (0, 0, 0, 0)′, μ1 = (0, 0.5, 0, 0.5)′, Σ0 = diag(1, 1, 1, 1) and

Σ1 = diag(1, 1, 4, 0.25). In this case, the best pair of the parameters seems to be λ = 0.01

and T = 200. The curve with λ = 0.0001 increases rapidly at the beginning and starts to

decline around T = 20. The second curve denoted by triangles has a peak around T = 70

and shows a moderate tendency to decrease after that point. On the other hand, the best

curve with λ = 0.01 shows that the score function hardly suffers from overfitting to the

data. This fact also can be confirmed by observing the corresponding score function F (x).

The true score function in this setting is a smooth function; however, we observed that

the score function with λ = 0.0001 clearly lacked the smoothness (not shown here). This

also indicates overfitting to the data. With an appropriate value of λ and a relatively-large

iteration number T , this slow learning process contrasts starkly with the usual regulariza-

tion technique, i.e., early stopping (Zhang and Yu, 2005). We set the value of K to 10 for

simulation studies and 5 for a real data analysis, according to the sample size.
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Figure 3.2: Results of AUCCV corresponding to different values of λ, as a function of the
number of iterations T .

46



3.3.4 Score plot and score ROC

We discuss the AUCBoost algorithm to select classifiers in the decision stump class F . The

choice of the class provides us with useful information regarding the feature variables in a

post-analysis of classification. The final score function F (x) is decomposed as

F (x) =

p∑
k=1

Fk(xk).

The utility of the plot of Fk(xk) against xk (score plot of xk) is referred to by Friedman and

others (2000) and Kawakita and others (2005). Observing each score plot very carefully, we

are able to not only understand how each feature variable xk influences the classification

performance, but also know which feature variable is the most effective and informative one.

We discuss this utility more in detail in simulation studies. Another useful way to gauge

the efficiency of each feature variable is to draw the ROC curve for Fk(xk) (score ROC) and

calculate the corresponding AUC (score AUC). Fk(xk) represents the contribution of xk to

the total classification performance; hence, the value of the score AUC shows the utility of

xk. These measurements are more convenient for comparing the utilities of feature variables

because we can order them according to their values.

3.4 Simulation studies

3.4.1 Setting

In this section, we present two simulation studies. One is intended to demonstrate that

the score function F (x) generated by AUCBoost provides a good approximation to the

optimal score function, and that score plots are useful for evaluating each feature variable’s

contribution to F (x). The other is designed to show that, in cases where several outliers

exist, AUCBoost is much more powerful and robust than other classification methods such

as AdaBoost, GAM and the generalized linear model (GLM). The iteration number for

AdaBoost is also determined by cross-validation where the objective function is based on

the empirical AUC. Cubic splines are used for GAM, and these simulation studies are done

47



using Splus 8.0. Throughout these simulations, the training sample size is set to be 500

(n0=250, n1=250) and we evaluated the quality using a test sample of size 200 (n0=100

n1=100). Summary statistics are based on 1000 repetitions.

3.4.2 Comparison with the optimal score function

Consider the same situation as that of Subsection 3.3: X0 ∼ N(μ0,Σ0) andX1 ∼ N(μ1,Σ1),

where μ0 = (0, 0, 0, 0)′, μ1 = (0, 0.5, 0, 0.5)′,Σ0 = diag(1, 1, 1, 1) andΣ1 = diag(1, 1, 4, 0.25).

From equation (3.2.4), the optimal score function in this setting is given as

FN(x) = x′(Σ−1
0 −Σ−1

1 )x+ 2(μ′
1Σ

−1
1 − μ′

0Σ
−1
0 )x,

which coincides with a linear score function proposed by Su and Liu (1993) if Σ0 = Σ1. The

score plots constructed by AUCBoost track FN(x) very well as seen in Figure 3.3, where

the rug plots at the bottom of each graph depict the data distribution. Clearly, it shows

nonlinearity of F (x), especially F3(x3) and F4(x4). From the shape of F3(x3) we see that

x3 with class label 0 has a tendency to concentrate around the origin, compared to x3 with

class label 1. On the other hand, in regard to F4(x4), we see the opposite tendency of

x4. The flatness of F1(x1) means that x1 is useless for discriminating subjects with class

0 from those with class 1, because weak classifiers for x1 are rarely chosen, and the weight

coefficients are calculated to be very small in the AUCBoost algorithm. Judging from the

heights of score plots, x4 seems to be the most informative one.

Table 3.1 shows the results of the score AUCs and the AUCs calculated by AUCBoost and

F̂N, where F̂N denotes the estimator of FN. As expected, F̂N achieves superior performance

for all AUCs. It is because F̂N is derived based on the underlying probability distributions; on

the other hand, the score function of AUCBoost is constructed by the sample distributions.

We also notice that the values of the score AUCs for AUCBoost are in accordance with the

heights of the score plots. The utility of x4 is confirmed again.
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Figure 3.3: Score plots for AUCBoost. The black lines indicate mean score plots and the
gray lines indicate the 95 percent pointwise confidence bands.

3.4.3 Comparison with other methods

Next, we relax the conditions of the probability distribution a little, and consider a multivari-

ate t-distribution. This is a more practical setting because it contains several outliers which

we often observe in real data. While there are several forms of multivariate t-distribution,

we use the most common one. The density function of p-dimensional t-distribution with ν

degrees of freedom, mean vector μ and precision matrix Σ−1, is given as

g(x) =
Γ(p+ν

2 )
√

|Σ−1|
Γ(ν2 )(νπ)

p
2

[
1 +

1

ν
(x− μ)′Σ−1(x− μ)

]− p+ν
2

.

We use the same parameters as those in the previous subsection: μ0 = (0, 0, 0, 0)′, μ1 =

(0, 0.5, 0, 0.5)′, Σ0 = diag(1, 1, 1, 1) and Σ1 = diag(1, 1, 4, 0.25). To focus on the investiga-

tion of the robustness of F (x) constructed by AUCBoost, we consider an extreme situation

Table 3.1: The mean score AUCs and the AUCs with 95 percent confidence bands in
parentheses

x1 x2 x3 x4 total

AUCBoost 0.501 0.628 0.700 0.736 0.828
(0.429,0.579) (0.548,0.707) (0.617,0.774) (0.670,0.799) (0.772,0.879)

F̂N 0.500 0.638 0.703 0.742 0.840
(0.425,0.583) (0.565,0.714) (0.633,0.779) (0.668,0.809) (0.780,0.887)
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(ν = 1). Figure 3.4 shows score plots and score ROCs of x3 for AUCBoost, AdaBoost, GAM

and GLM. The range of score plots has been adjusted for a better view. Interestingly, the

shape of score plots of AUCBoost and AdaBoost are almost the same. This is because both

of the boosting methods focus only on points that are useful for the classification. On the

other hand, GAM is sensitive to uninformative samples such as outliers, which causes the

GAM’s performance instability (Kawakita and others, 2005). In regard to GLM, it does

not capture the useful information about x3 at all, which is observable from the value of

the score AUC (0.496) as well as the shape of the score ROC. The concavity of the shape

of ROC is known to be a necessary condition of the optimality (Pepe, 2003). In the last

column of Table 3.2, we can see that the corresponding 95 percent confidence band of the

AUC for AUCBoost is much narrower than the others. Among all of them, the result for

AUCBoost is the most stable with the largest mean AUC value (0.787). The smoothing

parameter λ contributes to the stable result of AUCBoost.
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Figure 3.4: Results of score plots (upper panels) and score ROCs (lower panels) for x3

of AUCBoost, AdaBoost, GAM and GLM. The black lines indicate mean score plots and

score ROCs, and the gray lines indicate the 95 percent pointwise confidence bands. The

confidence band of the score plot for GAM is omitted, and the minimum values of axises of

score plots are set to 0 for a better view.

Table 3.2: The mean score AUCs and the AUCs with 95 percent confidence bands in
parentheses

x1 x2 x3 x4 total

AUCBoost 0.501 0.616 0.633 0.697 0.787
(0.425,0.578) (0.541,0.694) (0.547,0.711) (0.620,0.764) (0.723,0.839)

AdaBoost 0.501 0.601 0.625 0.690 0.776
(0.428,0.579) (0.522,0.685) (0.553,0.696) (0.610,0.761) (0.705,0.834)

GAM 0.497 0.618 0.599 0.672 0.738
(0.418,0.583) (0.543,0.699) (0.487,0.694) (0.603,0.748) (0.661,0.804)

GLM 0.501 0.601 0.496 0.649 0.648
(0.434,0.572) (0.388,0.690) (0.427,0.555) (0.340,0.744) (0.533,0.737)
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3.5 Application to spinal disease in children data

We apply AUCBoost to a real data set, which can be seen in Statistical Models in S edited

by (Chambers and Hastie, 1991). The label is the outcome of corrective spinal surgery of

81 children: whether kyphosis is present or absent. The feature variables are as follows:

Age, the age of the child in months; Number, the number of vertebrae in the operation; and

Start, the beginning of the range of vertebrae involved in the operation. We used the first

70 samples as training data, and the others as test data. Figure 3.5 shows the score plots

for AUCBoost, AdaBoost, GAM and GLM, respectively. We find clear nonlinearity of score

plots for Age, except for that of GLM. The peak appears around 100 months. A child of Age

200 is estimated by GLM to have the highest risk of a postoperative deformity; on the other

hand, the risk at this age is estimated by GAM to be the lowest. AUCBoost gives results

intermediate between these two extremes. The smoothness of score plots for AUCBoost is

quite different from that of AdaBoost. This result makes it easy to understand how each

feature variable affects the outcome after surgery and to interpret the results of the analysis.

It also contributes to preventing the score function F (x) from overfitting to the data. The

values of the AUCs based on training data are 0.926, 0.997, 0.949 and 0.869 for AUCBoost,

AdaBoost, GAM and GLM; however, the values based on test data are 0.777, 0.666, 0.666

and 0.666, respectively.
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Figure 3.5: Score plots for AUCBoost, AdaBoost, GAM and GLM from top to bottom.

The minimum values of each score plot are set to 0 for better view.
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3.6 Conclusions and future work

AUCBoost offers a flexible combination of multiple feature variables, which is optimal in

the sense of the maximization of the AUC. The smoothing parameter λ in the objective

function not only contributes to improvement of the classification performance, but also

gives us smoothed score plots, which are very useful in clinical studies. By observing the

score plots very carefully, we can understand how each feature variable is associated with a

disease or other endpoint, and also evaluate its efficiency by calculating the corresponding

AUC.

From the setting of F which consists of component-based simple classifiers, the score

function of AUCBoost has a similar form to that of GAM. However, there are two major

differences between them. First, we maximize the AUC instead of the likelihood. Second,

we update the score function by sequentially adding weak classifiers, whereas GAM is based

on a backfitting algorithm (Hastie and others, 2001). The forward stagewise additive mod-

eling gives AUCBoost robustness to distributions of data as seen in Subsection 4.3. Thus,

AUCBoost is expected to show stable classification performance in various situations. This

property also makes it easy to take discrete or ordered categorical data into consideration,

which is difficult or impossible for the backfitting algorithm.

A weak point of AUCBoost is that the selection of the tuning parameter λ and T is

time-consuming because we apply a simple cross-validation method. In order to avoid such

a computational cost and make it easy to use, a more sophisticated procedure is necessary.

Recently, (Ueki and Fueda, 2009) proposed an effective method for determining tuning

parameters of maximum penalized likelihood estimator. The idea is based on likelihood, not

the AUC; however, it could be modified into AUCBoost and help it reduce its computational

costs.

AUCBoost can also be applied to a high-dimensional data analysis, in which variable

selection is much more important than in the low-dimensional data analysis we consider in

this paper. The AUCBoost algorithm implicitly includes a selection process at each iteration

stage, so that informative feature variables are selected as a result after applying AUCBoost.

This property is similar to GAMBoost (Tutz and Binder, 2006), which circumvents GAM’s
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restriction to low-dimensional setting. The concept of the partial AUC (pAUC) is also of

great interest in the analysis of genetic data. Pepe and others (2003) showed the biological

utility of the pAUC for ranking informative genes. We will work on developing partial

AUCBoost as one of the appealing extensions of AUCBoost.

3.7 Complementary properties of the AUC

Optimal score function for the AUC

In this subsection we derive the optimal discriminant function F ∗(x) for which the ROC

curve lies over any other ROC curves. Suppose p-dimensional random variables X0 and X1

for each population have probability density functions g0 and g1, respectively.

At first we fix FPR as

∫
g1(x)
g0(x)

>c
g0(x)dx =

∫
F (x)>c′

g0(x)dx, (3.7.1)

where F (x) is an arbitrary discriminant function. For simplicity we define

R =

{
x

∣∣∣∣g1(x)g0(x)
> c

}
, S =

{
x |F (x) > c′

}
.

Then we can rewrite (3.7.1) as

∫
R\S

g0(x)dx+

∫
R∩S

g0(x)dx =

∫
S\R

g0(x)dx+

∫
R∩S

g0(x)dx,

where R\S = R∩ (R∩S)c and Rc is a complement set of R. From (3.7.1) and the definition

of R we have

∫
R\S

g1(x)dx ≥ c

∫
R\S

g0(x)dx

= c

∫
S\R

g0(x)dx (3.7.2)

≥
∫
S\R

g1(x)dx.
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Finally we have an inequality with respect to TPR as

∫
R
g1(x)dx =

∫
R\S

g1(x)dx+

∫
R∩S

g1(x)dx

≥
∫
S\R

g1(x)dx+

∫
R∩S

g1(x)dx

=

∫
S
g1(x)dx.

As a result the optimal discriminant function becomes

FAUC = argmaxF AUC(F )

= m

(
g1
g0

)
, (3.7.3)

where m is a monotonically increasing function. This proof is the same as that of Neyman-

Pearson fundamental lemma (Neyman and Pearson, 1993), and the fact of (3.7.3) has been

implicitly pointed out by Eguchi and Copas (2002) and McIntosh and Pepe (2002). As

you see form (3.7.3), the optimal discriminant function could be linear only on the special

occasion. For example the each two random variable is normally distributed and the each

variance matrix is equal. In the medical research, however, they usually use the linear

discriminant function based on the logistic regression. It is very problematic and much of

useful information is dismissed.

The derivation of optimal discriminant function above is indirect way, because we have

shown the optimality by the fact that TPRs for optimal discriminant function are always

above those for the others. But we can also derive the optimal discriminant function by

directly maximizing AUC.

Using probability density function g0 and g1, AUC can be expressed as

AUC(F ) =

∫ ∫
H(F (x1)− F (x0))g0(x0)g1(x1)dx0dx1,
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where H is a Heaviside function. Then we define

Fε = F + ε η

and differentiate AUC(Fε) by ε as follows:

∂

∂ε
AUC(Fε)

∣∣∣∣
ε=0

=

∫ ∫ (
η(x1)− η(x0)

)
H′(F (x1)− F (x0)

)
g0(x0)g1(x1)dx0dx1

=

∫ ∫
F (x0)=F (x1)

(
η(x1)− η(x0)

)
g0(x0)g1(x1)dx0dx1

=

∫ ∫
F (x1)=F (x0)

(
η(x0)− η(x1)

)
g0(x1)g1(x0)dx1dx0

= 0.

Hence we have

∫ ∫
F (x0)=F (x1)

(η(x1)− η(x0))(g0(x0)g1(x1)− g0(x1)g1(x0))dx0dx1 = 0.

The function η(x) is arbitrary, so we choose η(x) = g1(x)
g0(x)

:

∫ ∫
F (x0)=F (x1)

g0(x0)g0(x1)

{
g1(x1)

g0(x1)
− g1(x0)

g0(x0)

}2

dx0dx1 = 0. (3.7.4)

From (3.7.4) it holds that: for ∀c ∈ R, c′ ∈ R+ exists such that

Ac ⊂ Bc′ , (3.7.5)

where

Ac = {x |F (x) = c}, Bc′ =

{
x

∣∣∣∣g1(x)g0(x)
= c′

}
.

From the definition above, we have

⋃
c ∈R

Ac =
⋃

c′ ∈R+

Bc′ ,
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and

Ac ∩Ad = φ (c �= d), Bc′ ∩Bd′ = φ (c′ �= d′),

so (3.7.5) becomes

Ac = Bc′ .

Finally we have

F = m

(
g1
g0

)
, (3.7.6)

where m is an arbitrary monotonically increasing function.

Theorem 3.7.1. The discriminant function which Su and Liu proposed (Su and Liu, 1993)

is a linear approximation of F ∗
n(x) at a special point xs as below.

xs = Σ0(Σ0 +Σ1)
−1μ1 +Σ1(Σ0 +Σ1)

−1μ0.

Proof. Suppose X0 ∼ N(μ0,Σ0), X1 ∼ N(μ1,Σ1), then the optimal discriminant function

is written as

F ∗(x) = x′(Σ−1
0 −Σ−1

1 )x+ 2(μ′
1Σ

−1
1 − μ′

0Σ
−1
0 )x− μ′

1Σ
−1
1 μ1 + μ′

0Σ
−1
0 μ0.

Here we fix

x0 = Σ0(Σ0 + Σ1)
−1μ1 +Σ1(Σ0 + Σ1)

−1μ0,

and the derivative at the point is

∂dn(x0)

∂x
= 2[(Σ−1

0 − Σ−1
1 ){Σ0(Σ0 + Σ1)

−1μ1 + Σ1(Σ0 + Σ1)
−1μ0}+Σ−1

1 μ1 − Σ−1
0 μ0 ].

By the following equation

(Σ0 + Σ1)
−1 = Σ−1

0 − Σ−1
0 Σ1(Σ0 + Σ1)

−1
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we have

∂dn(x0)

∂x
= 4(Σ0 + Σ1)

−1(μ1 − μ0)

Next we consider F ∗(x0). Using the equation

(Σ−1
0 − Σ−1

1 )x0 + Σ−1
1 μ1 − Σ−1

0 μ0 = 2(Σ0 + Σ1)
−1(μ1 − μ0)

we have

dn(x0) = x′
0{2(Σ0 + Σ1)

−1(μ1 − μ0) + Σ−1
1 μ1 − Σ−1

0 μ0} − μ′
1Σ

−1
1 μ1 + μ′

0Σ
−1
0 μ0

= 2x′
0(Σ0 + Σ1)

−1(μ1 − μ0) − μ′
1Σ

−1
1 μ1 + μ′

0Σ
−1
0 μ0

= −2μ′
1(Σ0 + Σ1)

−1Σ1(Σ0 + Σ1)
−1(μ1 − μ0)

−2μ′
0(Σ0 + Σ1)

−1Σ0(Σ0 + Σ1)
−1(μ1 − μ0) + μ′

1Σ
−1
1 μ1 − μ′

0Σ
−1
0 μ0

= (μ1 − μ0)
′(Σ0 + Σ1)

−1(Σ0 − Σ1)(Σ0 + Σ1)
−1(μ1 − μ0).

Hence，the tangent line of F ∗(x) at x0 becomes

4(μ1 − μ0)
′(Σ0 + Σ1)

−1(x − x0)

+(μ1 − μ0)
′(Σ0 + Σ1)

−1(Σ0 − Σ1)(Σ0 + Σ1)
−1(μ1 − μ0).

This is equivalent to the linear discriminant function Fl(x) (See below) proposed by Su

and Liu, because ROC curve is invariant to the increasing monotone transformation of

discriminant function.

Fl(x) = (μ1 − μ0)
′(Σ0 + Σ1)

−1x.

3.7.1 Convexity of the ROC curve for the optimal score function

The optimal score function is given as

F (x) = m

(
g1(x)

g0(x)

)
.
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Thus, the corresponding FPR and TPR are written as

FPR(c) =

∫
m
(

g1(x)
g0(x)

)
>c
g0(x)dx, TPR(c) =

∫
m
(

g1(x)
g0(x)

)
>c
g1(x)dx.

Then, we have

dTPR(c)

dFPR(c)
= lim

Δc→0

∫
c<m

(
g1(x)
g0(x)

)
<c+Δc

g1(x)dx∫
c<m

(
g1(x)
g0(x)

)
<c+Δc

g0(x)dx

= lim
Δc→0

∫
c<m

(
g1(x)
g0(x)

)
<c+Δc

m(c)−1g0(x)dx∫
c<m

(
g1(x)
g0(x)

)
<c+Δc

g0(x)dx

= m−1(c).

Since m is a monotonically increasing function, the inverse function m−1 is also monotoni-

cally increasing. Hence, the ROC curve for the optimal score function is always convex.
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Chapter 4

PSA cut-off nomogram

This section is about the results of the cooperative work with Kent Kanao, Jun Nakashima,

Takashi Ohigashi, Eiji Kikuchi, Akira Miyajima, Ken Nakagawa, Mototsugu Oya belonging

to a department of urology of Keio University Hospital. The major part of this paper is

written by Kent Kanao.

4.1 Introduction

Prostate-specific antigen (PSA) screening for prostate cancer is now widespread but the

benefit of PSA screening is still controversial. Recently PSA-based screening has raised

concerns that lead to overdetection and overtreatment of some patients (Lin and others,

2008). Several studies have shown that the rate of overdetection is increasing especially

on elderly men with limited life expectancies (Walter and others, 2006; Stangelberger and

others, 2008). Currently the American Urological Association (AUA) strongly supports that

men be informed of the option of active surveillance in lieu of immediate treatment for men

who diagnosed with clinically insignificant, since many screen-detected prostate cancers may

not need immediate treatment (Greene and others, 2009). Therefore, especially for an elderly

man who diagnosed with clinically insignificant prostate cancer and has the indication of

active surveillance, immediate diagnosis by needle biopsy might be unnecessary.

Now most screening guidelines do not recommend PSA screening in elderly men because

of the potential harms of screening (Thompson and others, 2007; Luboldt and others, 2004).
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However, PSA screening is common among the elderly more than age 70, and there is not

a little elderly patient with elevated PSA detected by PSA screening or others. AUA rec-

ommends the decision to prompt prostate biopsy should take into account multiple factors

including free and total PSA, patient age, PSA velocity, PSA density, family history, eth-

nicity, prior biopsy history and comorbidities (Greene and others, 2009). But there is no

obvious policy for these elderly men who should prompted prostate biopsy. Therefore it is

very important to develop a methodology which can distinguish significant cancer efficiently

from the elderly men with elevated PSA using multiple factors and to set an appropriate

indication for prostate biopsy. However, the best methods to combine these factors most

effectively have not yet been developed. For improved discrimination ability on diagnosis,

it is necessary to use multiple factors effectively and get high sensitivity and specificity. To

solve this problem, we use AUCBoost, which is the latest boosting algorithm, and we de-

veloped PSA cut-off nomogram that avoids overdetection of prostate cancer and decreases

unnecessary biopsy in elderly men.

4.2 Methods

From 2004 to 2008, 400 patients over 70 years, with PSA levels of 20.0 ng/ml or less and

normal digital rectal examination (DRE) had undergone prostate biopsies in our institute.

All cases were diagnosed by systemic needle biopsy (10 cores or more) and graded histolog-

ically using the Gleason scoring system. All of the needle biopsy specimens were analyzed

by pathologists with special interest in uropathology. The patients who were diagnosed as

prostate cancer were divided into clinically significant cancer and insignificant cancer. Clin-

ically significant cancers were defined as having more than two positive cores or Gleason

sum of seven or higher and insignificant cancers were the other.

At first the distributions of PSA, F/T ratio, TZ volume and the number of biopsy sessions

were estimated. Next receiver operating characteristics (ROC) analysis was performed and

the area under the receiver operating characteristics curve (AUC) was used to assess the

ability of PSA, F/T ratio, TZ volume and the number of biopsy sessions to discriminate

significant cancer.
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Figure 4.1: The sketch of the AUCBoost algorithm

Furthermore, AUCBoost was used to obtain the most effective combination of these

markers. As illustrated in Figure 4.1, AUCBoost combines various weak classifiers f(x)’s

(x=PSA, F/T ratio, TZ.vol or Nbx) to produce a score function F (x), by which we diagnosis

a patient as having significant cancer or not, according to a cut-off value. The conventional

and simplest one is F (x) = f(PSA) and the cut-off value is 4 ng/mL but it has low

discrimination ability. The weak classifier itself is just a step function; however, the resulting

score function has a flexible form so that it can achieve the optimal value of the AUC. The

details of the way to calculate the values of the weights α’s and to determine the number of

the weak classifiers T are described in previous paper (Komori, 2009). Finally we developed

nomogram which shows PSA cut-off values with ensuring 95% of sensitivity for significant

cancer based on 200 bootstrap resampling repetitions. We used the median to show the

results. All tests were carried out with R software version 2.9.0.
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4.3 Results

One hundred ninety seven patients were diagnosed with prostate cancer by needle biopsy,

130 were diagnosed with significant and 67 were diagnosed with insignificant cancer. Patient

characteristics were shown in Table 4.1. The distribution of PSA, F/T ratio, TZ volume

and number of biopsy showed in Figure 4.2. As a result of ROC analysis discriminating

significant cancer, the AUC of PSA, F/T ratio, TZ volume and number of biopsy sessions

were 0.63, 0.73, 0.79 and 0.60, respectively.(Figure 4.3) Score plots of AUCBoost that depict

the relationship between each variable and the type of the cancer (significant of not) were

shown in Figure 4.4. The higher value means the stronger tendency to have significant

cancer. The height of the score plots indicates the relative importance among the variables;

hence, Tz.vol seems to be the most useful for discrimination. The AUC of combination

model of PSA, F/T ratio, TZ volume and the number of biopsy by AUC boost was 0.86.

PSA cut-off nomogram was developed using AUCBoost to obtain the PSA cut-off value

determined by the other three values. (Table 4.5) By use of the nomogram, for example, the

PSA cut-off value is 7.4 ng/ml for a 73 y/o man whose TZ volume is 28cc and F/T ratio is

0.20 on first biopsy session. The sensitivity and specificity of the nomogram was 0.95 and

0.45. By use of the nomogram and diagnostic algorithm shown in Figure 4, 122 patients

(31%) may avoid prostate biopsy with 5% or less significant cancer overlooked.

4.4 Discussion

In this study we developed PSA cut-off nomogram that avoids overdetection of prostate

cancer and decrease unnecessary biopsy in elderly men. Recently the ERSPC trial has

demonstrated that PSA-based screening reduced the rate of death from prostate cancer by

20% but indicated that overdetection and overtreatment are probably the most important

adverse effects of prostate cancer screening (Schroder and others, 2009). Although it is shown

that the rate of overdetection is increasing in elderly men, clinically significant cancer with

high grade and large volume is also included in such patients. Therefore, it is important to

set an appropriate indication for prostate biopsy decreasing overlooked significant cancer as

64



0 5 10 15 20

0
20

40
60

80
10

0

PSA

co
un

ts

0 5 10 15 20

0
20

40
60

80
10

0

PSA

0.0 0.2 0.4 0.6 0.8

0
20

40
60

80

F/T ratio

co
un

ts

0.0 0.2 0.4 0.6 0.8

0
20

40
60

80

F/T ratio

0 20 40 60 80 100 120

0
20

40
60

80
10

0

TZ vol

co
un

ts

0 20 40 60 80 100 120

0
20

40
60

80
10

0

TZ vol

1.0 1.5 2.0 2.5 3.0

0
50

10
0

20
0

30
0

NBx

co
un

ts

1.0 1.5 2.0 2.5 3.0

0
50

10
0

20
0

30
0

NBx

Figure 4.2: The distribution of PSA, F/T ratio, TZ volume and number of biopsy

well as overdetected insignificant cancer. This nomogram was developed for the purpose of

decreasing unnecessary biopsy with 5% or less significant cancer overlooked.

In this study clinically significant cancers were defined as having more than two positive

cores, Gleason sum of 7 or higher. There is currently no universally accepted definition

of clinically significant or insignificant prostate cancer. The gold standard for insignificant

disease used is ¡0.5mL of cancer with a Gleason score of 6 or less in the radical prostatectomy

specimen (Epstein and others, 1994). However, the criteria using post treatment variables

and it cannot be used for an informed discussion that might obviate unnecessary or aggressive

therapy in certain patients. The most common clinical criterion of low-risk prostate cancer

using pretreatment variables is defined as a Gleason score of 6 or less, PSA ¡ 10, and T1c to

T2a (Thompson and others, 2007). More recently, investigators have shown that the number
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Figure 4.3: The AUC of PSA, F/T ratio, TZ volume and number of biopsy

of biopsies showing cancer may both be helpful in assessing the likelihood of insignificant

disease (Antunes and others, 2005; Cheng and others, 2005; Ochiai and others, 2005). In

general, active surveillance protocols attempt to identify men with low-risk prostate cancer

who are most likely to be safely watched for a period of time and then treated when necessary

(Dall’Era and others, 2008). Therefore, we define significant cancer using pretreatment

variables on the assumption immediate diagnosis by needle biopsy may be unnecessary for

elderly men who has the indication of active surveillance.

To develop this nomogram we used FT ratio, TZ volume and number of needle biopsy

as well as PSA. In recent years, multiple variables have been taken into account in the risk-

estimation for prostate cancer: free and total PSA, patient age, PSA velocity, PSA density,

family history, ethnicity, prior biopsy history and many more. A recent studies showed
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Figure 4.4: Score plots for PSA, F/T ratio, TZ volume and number of biopsy

free/total PSA ratio and PSATZD contribute more effectively as an adjunct to primary

prostate screening with total PSA (Catalona and others, 1995; Catalona and Slawin, 1998).

Additionally, prior biopsy history is also showed to have its predictive power. The predictive

power of these variables to discriminate significant cancer is reflected by the AUC. In this

study, the AUC of PSA, F/T ratio, TZ volume and number of biopsy sessions were 0.63,

0.73, 0.79 and 0.60, respectively. AUA states that the current policy no longer recommends a

single, threshold value of PSA which should prompt prostate biopsy. The decision to proceed

to prostate biopsy should be based primarily on PSA and DRE results but should take into

account multiple factors. In this study, using AUCBoost these variables contributed to

gain high AUC (0.86) in this model. The model might gain higher AUC if it added other

variables: family history, PSA kinetics and more, which we did not access in this study.
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In this study we used AUCBoost which is the latest boosting algorithm based on a

boosting technique which is widely used in the machine learning community. AUCBoost

is designed to optimize the AUC in ROC analysis using multiple variables. By use of

AUCBoost, most effective combination of these variables can increase 45% of specificity with

ensuring 95% of sensitivity for significant cancer. This is considerably higher than previous

reports, for instance, Prospective multicenter European trial for patients with PSA levels

between 4 and 10 ng/mL showed the specificity of PSA, FT ratio and PSATZD on 95% of

sensitivity is 4.2%, 7.7% and 22.3%, respectively.

Nomograms are now considered to be accurate and practical tool for explaining predicted

probabilities to patients and several nomograms have already been developed in the fields

of urology (Partin and Lamm, 2001; Kattan and others, 1998; Kanao and others, 2006,

2009). These conventional nomograms were developed to show the prognostic probability

not threshold value. In this study, by fixing the sensitivity to 95% and using AUCBoost,

we can develop this nomogram which shows cut-off values varying according to the other

values of variables. Therefore, this nomogram may be more useful for doing decision making

than conventional nomogram. This nomogram take into account multiple variables to help

determine the need for prostate biopsy of elderly men, rather than relying on an arbitrary

threshold value, and this nomogram may be useful to facilitate discussion of a patient ’s

individualized risk.

In Figure 4.5 we show the diagnostic algorithm of prostate cancer for elderly men using

this nomogram. By use of the algorithm 122 patients may avoid prostate biopsy with 5% or

less significant cancer overlooked. Of course the determination of prostate biopsy depends

on the individual doctor, but this nomogram informs a criterion that does not prompt

immediate prostate biopsy.

In this study the sensitivity of this nomogram is fixed to 95%. Theoretically the sensi-

tivity can change into 90% or 80% and it follows that the specificity increases. Now there is

no consensus of diagnostic criteria on potential tradeoffs between sensitivity and specificity.

Therefore, it become the judgment of the individual doctor how much allows overlook of

significant cancer.
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In general, the sensitivity and specificity of this nomogram depend on the patient popula-

tion. Therefore, validation study is need for other population. Before use of this nomogram,

it recommends testing ROC analysis and estimate sensitivity and specificity of this nomo-

gram.

This nomogram is new concept nomogram in a point to use AUCBoost and show cut-off

value. It is thought that this concept may be useful in the other various clinical fields.

Although further validation is necessary to estimate the safety of this nomogram whether

mortality increases for patients whose diagnosis are delay by use of this nomogram, it may

be accepted a standard diagnostic tool for elderly men with elevated PSA.

4.5 Conclusion

This nomogram may be useful when urologists decide on an indication of prostate biopsy

after trans-rectal ultrasonography and F/T ratio test for outpatients who are older than

70 years and have elevated PSA. This nomogram is different from conventional nomogram

because it can show a cut-off value not a probability. Therefore, this nomogram may be

more useful and practical for doing decision making than conventional nomogram.
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Table 4.1: The patient characteristics

(mean ± SD)

Patients 400
significant cancer 130
insignificant cancer 270

Age 74.5±3.8
PSA (ng/ml) 8.33±3.86
F/T ratio 0.24±0.12
TZ vol (cc) 24.9±18.5

Gleason score
5 or less 54

6 46
7 73

8 or more 74
Number of NBx

initial 297
2nd 69
3nd 34

Positive core
1-2 98

3 or more 99
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Chapter 5

A boosting method for maximizing

the partial area under the ROC

curve

Abstract

The receiver operating characteristic (ROC) curve has attracted wide attention for its utility

in the medical and biostatistical fields. Given a set of multiple markers obtained from a

clinical test or an examination, the area under the ROC curve (AUC) is measured for its

ability to discriminate between the controls and cases. Recently, the partial area under

the curve (pAUC) has been gaining in popularity, because the pAUC is more suitable for

clinical settings in which a high true positive rate is required with a very low false positive

rate. Moreover, the pAUC is more sensitive to the effects of markers in clinical evaluation,

compared with the AUC, which is often criticized for not properly reflecting these effects. In

this context, we have developed a new statistical method that focuses on the pAUC based on

a boosting technique. The markers are combined componentially in the boosting algorithm

using natural cubic splines or decision stumps (single-level decision trees), according to the

types of markers used. We show that the resulting score plots are useful for understanding

how each marker is associated with the outcome variable (affected or unaffected). We
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compare the performance of our boosting method with those of other existing methods, and

demonstrate its utility using a real data set.

Keywords: Boosting; Classification; Partial area under the ROC curve; Smoothing.

5.1 Introduction

The receiver operating characteristic (ROC) curve has been widely used in various scientific

fields, in situations where the evaluation of discrimination performance is of great concern for

the researchers. The area under the ROC curve (AUC) is the most popular metric because

it has a simple probabilistic interpretation (Bamber, 1975) and consists of two important

rates used to asses classification performance: the true positive rate (TPR) and the false

positive rate (FPR). The former is a probability of a affected subject being correctly judged

as positive; the latter is that of a unaffected subject being improperly judged as positive.

Since the two probabilities characterize different aspects of classification performance, they

should be reported separately (Baker, 2003). Hence, the AUC has an advantage over a

single measures of performance such as the odds ratio or relative risk (Pepe and others,

2004). However, the AUC has been severely criticized for inconsistencies arising between

statistical significance derived from the AUC and the corresponding clinical significance

when the usefulness of a new marker is evaluated (Cook, 2007). Recently, Pencina and

others (2008) propose a criterion termed integrated discriminant improvement, and show

its advantage over the AUC in the assessment of a new marker. In this context, the partial

AUC (pAUC) has been gaining more popularity relative to the AUC in a number of fields

(Walter, 2005; Qi and others, 2006).

Dodd and Pepe (2003) propose a regression modeling framework based on the pAUC,

and apply this framework to investigation of a relationship between multiple markers and

the outcome variable. Cai and Dodd (2008) make some modifications to improve the effi-

ciency of the estimation of parameters, and provide graphical tools for the model checking.

In regard to classification problems, Pepe and Thompson (2000) propose a method for de-

riving a linear combination of two markers that optimizes the AUC as well as the pAUC.
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However, as recognized by Pepe and others (2006), more general approaches are required

when the number of markers is quite large; in these cases, marker selection procedure is also

indispensable.

In this paper, we propose a new statistical method designed to maximize the pAUC

using a boosting technique and the approximate pAUC. The approximation-based method

makes it possible to nonlinearly combine more than two markers, based on basis functions

of natural cubic splines as well as decision stumps. The resultant score plots for each marker

enable us to observe how the markers are associated with the outcome variable in a visually

apparent way. Hence, our boosting method attaches importance not only to the classification

performance but also to the interpretation of the results, which is essential in clinical and

medical fields.

This paper is organized as follows. In Section 2, we give a brief review of the AUC and

pAUC, and show a relationship between the pAUC and the approximate pAUC in Theorem

5.2.1. We present a new boosting method, pAUCBoost, in Section 3, and compare it with

other existing methods such as SDF (Pepe and Thompson, 2000), AdaBoost (Freund and

Schapire, 1997), LogitBoost (Friedman and others, 2000) and GAMBoost (Tutz and Binder,

2006) in Section 4. In the next section, we demonstrate the utility of pAUCBoost using a

breast cancer data set, in which we use both clinical and genomic data. In Section 6, we

summarize and make concluding remarks.

5.2 pAUC and approximate pAUC

5.2.1 Partial area under the ROC curve

Let y denote a class label for cases (y = 1) and controls (y = 0), and x be a vector of

markers as x = (x1, x2, . . . , xp). Given a score function F (x) and a threshold c, we judge

the subject as positive if F (x) ≥ c, and as negative if F (x) < c. The corresponding false

positive rate (FPR) and true positive rate (TPR) are given as

FPR(c) =

∫
H(F (x)− c)g0(x)dx, TPR(c) =

∫
H(F (x)− c)g1(x)dx, (5.2.1)
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where H is the Heaviside function: H(z) = 1 if z ≥ 0 and 0 otherwise, and g0(x) and

g1(x) are probability density functions for each class. Note that FPR and TPR are also

dependent on the score function F ; however, for the sake of simplicity, we abbreviate it

when the abbreviation does not cause ambiguity.

Then, the ROC curve is defined as a plot of TPR against FPR when the threshold c

moves on a real number line:

ROC(F ) = {(FPR(c),TPR(c))| c ∈ R}, (5.2.2)

and the area under the ROC (AUC) is given as

AUC(F ) =

∫ −∞

∞
TPR(c)dFPR(c). (5.2.3)

In this setting, we consider a part of the AUC by limiting the value of FPR between α1 and

α2, which are determined by thresholds c1 and c2, respectively:

α1 =

∫
H(F (x)− c1)g0(x)dx, α2 =

∫
H(F (x)− c2)g0(x)dx, (5.2.4)

where 0 ≤ α1 < α2 ≤ 1 (c2 < c1). In this paper, we set the values to be 0 and 0.1,

respectively. However, it is also worth considering to take α1 > 0 and choose α2 − α1 to be

small enough, so that we essentially maximize TPR for fixed FPR. Then, the pAUC can be

divided into a fan-shaped part and a rectangular part:

pAUC(F, α1, α2) =

∫ c2

c1

TPR(c)dFPR(c) (5.2.5)

=

∫ c2

c1

∫
c2≤F (x)≤c1

H(F (x)− c)g1(x)dxdFPR(c) + TPR(c1)(α2 − α1).(5.2.6)

Its probabilistic interpretation is offered by Pepe (2003) as

pAUC(F, α1, α2) = P (F (X1) ≥ F (X0) | c2 ≤ F (X0) ≤ c1). (5.2.7)

This means that the observation of F (X1) is correctly ordered above that of F (X0), on
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the condition that the FPR is between α1 and α2. Given samples from class 0 {x0i : i =

1, 2, . . . , n0} and class 1 {x1j : j = 1, 2, . . . , n1}, its empirical form is expressed as

pAUC(F, α1, α2) =
1

n0n1

∑
i∈I

n1∑
j=1

H(F (x1j)− F (x0i)), (5.2.8)

where α1 and α2 are empirical values that are the closest to α1 and α2, respectively; I =

{i| c2 ≤ F (x0i) ≤ c1}, where c1 and c2 are thresholds determined by α1 and α2.

5.2.2 Approximate pAUC

As seen in (5.2.8), the empirical pAUC is non-differentiable. Eguchi and Copas (2002) use

the standard normal distribution function to approximate the AUC, and applied algorithms

in order to maximize the AUC. We extended the method to a new one for maximizing the

pAUC, using the approximate pAUC:

pAUCσ(F, α1, α2) =

∫ c2

c1

∫
c2≤F (x)≤c1

Hσ(F (x)− c)g1(x)dxdFPR(c) + TPR(c1)(α2 − α1),(5.2.9)

where α1 and α2 are defined in (5.2.4), and Hσ(z) is an approximation of H(z) by the stan-

dard normal distribution function, that is, Hσ(z) = Φ(z/σ). Similarly, the corresponding

empirical pAUC is defined as

pAUCσ(F, α1, α2) =
1

n0n1

∑
i∈I

{ ∑
j∈Jfan

Hσ(F (x1j)− F (x0i)) +
∑

j∈Jrec
H(F (x1j)− F (x0i))

}
,

(5.2.10)

where Jfan = {j| c2 ≤ F (x1i) ≤ c1} and Jrec = {j| c1 < F (x1i)}.
A smaller scale parameter σ implies a better approximation of H(z). Before discussing

a boosting method for the pAUC, we give a theoretical justification of the use of the ap-

proximate pAUC in the following theorem.

Theorem 5.2.1. For a pair of fixed α1 and α2, let

Ψ(γ) = pAUCσ

(
F + γ m

(
Λ
)
, α1, α2

)
, (5.2.11)
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where γ is a scalar, Λ(x) = g1(x)/g0(x) and m is a strictly increasing function. Then, Ψ(γ)

is a strictly increasing function of γ, and

sup
F

pAUCσ(F, α1, α2) = lim
γ→∞Ψ(γ) = pAUC

(
Λ, α1, α2

)
. (5.2.12)

As proved by Eguchi and Copas (2002) and McIntosh and Pepe (2002), the likelihood

ratio Λ(x) is the optimal score function that maximizes the AUC as well as the pAUC.

However, the approximate pAUC does not exactly share the same property as the pAUC,

because the pAUCσ(F ) is not a concave functional with respect to F . In general the Bayes

risk consistency has been well discussed under an assumption of convexity for a variety of

loss functions (Lugosi and Vayatis, 2004). Theorem 5.2.1 suggests a weak version of the

Bayes risk consistency in the limiting sense.

We also have a following corollary from Theorem 5.2.1.

Corollary 5.2.1. For any score function of F , let

Fγ(x) = F (x) + γ η(x), (5.2.13)

where η is a score function, and γ is a scalar. If the FPR of Fγ is fixed to α, then the TPR

of Fγ is a increasing function of γ if and only if η = m
(
Λ
)
, where m is a strictly increasing

function.

See Appendix 2 for the proof of Corollary 5.2.1. Note that the corollary holds for any

α in the range of (0,1); hence, we find that the score function that moves every and all

TPR’s upward from the original positions, is nothing but the optimal score function derived

from likelihood. This fact is not derived from the Neyman-Pearson fundamental lemma

(Neyman and Pearson, 1933), from which m(Λ) is proved to maximize the AUC. This

corollary characterizes another property of the optimal score function.
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5.3 pAUCBoost with natural cubic splines

5.3.1 Objective function

We construct a score function F (x) in an additive model for the maximization of the pAUC.

The set of weak classifiers that we use here consists of component basis functions for repre-

senting natural cubic splines, and their standardization factors:

F = {f(x) = Nk,l(xk)/Zk,l| k = 1, 2, . . . , p, l = 1, 2, . . . ,mk}. (5.3.1)

The basis functions of the natural cubic spline for xk are defined as

Nk,l(xk) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1, l = 1,

xk, l = 2,

dl−2(xk)− dmk−1(xk), otherwise,

(5.3.2)

where

dl(xk) =
(xk − ξk,l−2)

3
+ − (xk − ξk,mk

)3+
ξk,mk

− ξk,l−2
, (5.3.3)

and z+ denotes the positive part of z. The standardization factor Zk,l for Nk,l(xk) is given

as

Zk,l =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1, l = 1,

ξk,mk
− ξk,1, l = 2,

Nk,l(ξk,mk
)−Nk,l(ξk,l−2), otherwise,

(5.3.4)

and ξk,l is one of mk knots (ξk,1 < ξk,2 < . . . < ξk,mk
) for xk. The knots are set to the

observed values of xk or the quantiles depending on the sample size and the number of the

components of x. We take a moderate number of quantiles for computational cost.

81



Based on the weak classifiers above, the objective function we propose is given as

pAUCσ,λ(F, α1, α2) =
1

n0n1

∑
i∈I

{ ∑
j∈Jfan

Hσ(F (x1j)− F (x0i)) +
∑

j∈Jrec
H(F (x1j)− F (x0i))

}

−λ
p∑

k=1

∫ {
F ′′
k (xk)

}2
dxk, (5.3.5)

where F ′′
k (xk) is the second derivative of the k-th component of F (x), and λ is a smoothing

parameter that controls the smoothness of F (x). The penalty term prevents F (x) from

overfitting to the data, as well as ensures the existence of the maximum of the objective

function. Hence, it leads to a numerically-stable maximization procedure introduced in the

next subsection.

On the other hand, we have

pAUCσ′,λ′
(σ′
σ
F, α1, α2

)

=
1

n0n1

∑
i∈I

{ ∑
j∈Jfan

Hσ′
(σ′
σ
(F (x1j)− F (x0i))

)
+

∑
j∈Jrec

H
(σ′
σ
(F (x1j)− F (x0i))

)}

−λ′
p∑

k=1

∫ {σ′
σ
F ′′
k (xk)

}2
dxk (5.3.6)

=
1

n0n1

∑
i∈I

{ ∑
j∈Jfan

Hσ(F (x1j)− F (x0i)) +
∑

j∈Jrec
H(F (x1j)− F (x0i))

}

−λ′σ
′2

σ2

p∑
k=1

∫ {
F ′′
k (xk)

}2
dxk. (5.3.7)

Note that c1 and c2 that are determined by α1 and α2 become σ′/σ c1 and σ′/σ c2 in

pAUCσ′,λ′
(
σ′/σ F, α1, α2

)
; however, the sets of I, Jfan and Jrec remain unchanged. Hence,

we have

pAUCσ,λ(F, α1, α2) = pAUCσ′,λ′
(σ′
σ
F, α1, α2

)
, (5.3.8)

if λσ2 = λ′σ′2. This implies that the maximization of pAUCσ,λ(F, α1, α2) is equivalent to
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that of pAUC1,λσ2(F/σ, α1, α2). Therefore, we have

max
σ,λ,F

pAUCσ,λ(F, α1, α2) = max
λ,F

pAUC1,λ(F, α1, α2), (5.3.9)

for any σ > 0. We remark that the scale parameter σ in the definition of pAUCσ,λ in (5.3.5)

can be fixed to 1 because of equation (5.3.9). Hence, we rewrite the objective function as:

pAUCλ(F, α1, α2) =
1

n0n1

∑
i∈I

{ ∑
j∈Jfan

Φ(F (x1j)− F (x0i)) +
∑

j∈Jrec
H(F (x1j)− F (x0i))

}

−λ
p∑

k=1

∫ {
F ′′
k (xk)

}2
dxk, (5.3.10)

without loss of generality, where Φ is the standard normal distribution function.

Note that there exists the maximum value of pAUCλ(F, α1, α2) if the penalty term is

not zero. The maximum value that is attained by p sets of differential functions can take

the larger value by replacing the functions with p sets of natural cubic splines. This can be

proved in the same way as the result of generalized additive models (Hastie and Tibshirani,

1990), because the penalty term is the same. Hence, we find that the maximizer of the

pAUCBoost objective function is the natural cubic splines.

5.3.2 pAUCBoost algorithm

Here is a boosting algorithm with iteration time T , which is designed to maximize the

pAUC.

1. Start with a score function F0(x) = 0 and set each coefficient β0(f) of weak classifiers

to be 1 or −1.

2. For t = 1, ..., T

(a) Calculate the values of thresholds c1 and c2 for each Ft−1 + βt−1(f)f .

(b) Update βt−1(f) to βt(f) with a one-step Newton-Raphson iteration.
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(c) Find the best weak classifier ft

ft = argmax
f

pAUCλ(Ft−1 + βt(f)f, α1, α2) (5.3.11)

(d) Update the score function as

Ft(x) = Ft−1(x) + βt(ft)ft(x). (5.3.12)

3. Finally, output a final score function F (x) =
∑T

t=1 βt(ft)ft(x).

The dependency of the pAUCλ(Ft−1 + βt(f)f, α1, α2) on thresholds c1 and c2 makes it

necessary to pick up the best pair of (βt(ft), ft) at the same time in step 2.c. This process

is quite different from that of AdaBoost, in which βt and ft are determined independently.

Because of the dependency and the difficulty of getting the exact solution of βt(ft), the one-

step Newton-Raphson calculation is repeated during the whole boosting process. This is

based on a natural assumption that the one-step previous situation in the boosting algorithm

is not so different from the current one, because ft is assumed to be a weak classifier. The

pAUCBoost algorithm with natural cubic splines is detailed in Appendix 3.

5.3.3 Tuning procedure

We conduct K-fold cross validation to determine the smoothing parameter λ and the it-

eration number T . We divide the whole data into K subsets, and calculate the following

objective function.

pAUCCV(λ, T ) =
1

K

K∑
i=1

pAUC
(i)
λ (F (−i), α1, α2), (5.3.13)

where F (−i) denotes a score function that is generated by the data without i-th subset;

pAUC
(i)
λ is pAUCλ calculated by the i-th subset only. The optimal parameters are obtained

at the maximum value of pAUCCV(λ, T ) in a set of grid points (λ, T ). In the case where

the values of the pAUCCV(λ, T ) are unstable, we calculate the pAUCCV(λ, T ) 10 times and

take the average to determine the optimal parameters. In our subsequent discussion, we set
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K = 10 and explicitly demonstrate the procedure in the section regarding real data analysis.

5.4 Simulation studies
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Figure 5.1: Illustration of four different type of sample distributions for class 0 (black)

and class 1 (gray).

5.4.1 Setting

In this section, we compare the performance of pAUCBoost with that of the smooth

distribution-free (SDF) method proposed by Pepe and Thompson (2000) in a two-dimensional

setting, and with those of other existing boosting methods: AdaBoost, LogitBoost and

GAMBoost in a higher-dimensional setting. The simulation setting is similar to that of

Pepe and others (2003). Suppose that there are four types of sample distributions for each

class, y = 0 or y = 1, as shown in Figure 1. The first panel shows an ideal situation,

where we see very little overlap between the two class-conditional distributions. The second

situation is of practical interest for disease screening, where FPR must be restricted to be

as small as possible, in a case where invasive or costly diagnostic treatments will follow. A

small portion of samples from class 0 (controls) is clearly distinguishable from the bulk of
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samples from class 1 (cases). On the other hand, in the third situation, cases are completely

within the range of controls, and therefore not useful for disease screening. The fourth situ-

ation is similar to the second one, but some of the samples from cases deviate from controls

clearly on both side of the distribution, rather than only on one side. This situation could

be worth consideration in a case where high TPR is required with very low FPR in the same

way as in the second situation.

In the simulation study, we apply pAUCBoost with α1 = 0 and α2 = 0.1. The training

data set contains 50 controls and 50 cases; the accuracy of the performance is evaluated using

a test data set of size 1000 (500 for each class). The results are based on 100 repetitions.

5.4.2 Comparison with SDF

First, we consider the second situation, where we assume normality distributions such as

X20 ∼ N (0, 1) and X21 ∼ πN (0, 1) + (1 − π)N (3, 1) with mixing proportion π = 0.9, and

the last situation: X40 ∼ N (0, 1/100), X41 ∼ N (0, 4/100). The mean value (and the 95

percent confidence interval) of the pAUC based on pAUCBoost is 0.017 (0.012, 0.020); that

of SDF is 0.011 (0.005, 0.017). This difference is because SDF assumes linearity of the

score function of F (x), and the coefficient of x4, say γ4, is estimated by SDF to be around

0 as shown in Figure 2 (a), where the coefficient of x2 is fixed to 1. On the other hand,

pAUCBoost captures the nonlinearity of F (x) as shown in Figure 2 (b), where the score

plot is a component function of F (x) for each marker. Although we should first apply a

nonlinear transformation of x4 in this example, it is not practical to examine all marginal

distributions and decide the appropriate transformations in general situations.

We have also confirmed that the performance of pAUCBoost is compatible with that

of SDF, in a setting where the linearity of the score function is reasonable. We have an

average of 0.013 (0.007, 0.017), and 0.013 (0.011, 0.015) for pAUCBoost and the SDF

method, respectively, assuming that both of the markers are distributed as X20 ∼ N (0, 1)

and X21 ∼ πN (0, 1) + (1 − π)N (3, 1) for controls and cases. Almost the same results are

obtained by these quite different statistical methods. SDF uses the estimated values of

pAUC to derive a score function; on the other hand, pAUCBoost directly uses the empirical
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value of the approximate pAUC in its algorithm.
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Figure 5.2: (a) Illustration of the estimated value of pAUC by SDF method, where γ∗4 = γ4

if −1 ≤ γ4 ≤ 1 and 2 − 1/γ4 otherwise; (b) the resultant score plots by pAUCBoost. The

rug plot along the bottom of each graph describes the observation from class 0; the rug plots

along the top of each graph describe those that class 0.
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5.4.3 Comparison with other boosting methods

Second, we focus on only the most practical situation in disease screening: the second sit-

uation in Figure 1. Pepe and others (2003) show the utility of the use of the pAUC, in

selection of potential genes that are useful for discrimination between normal and cancer

tissues. The point is that the value of pAUC reflects the overlap of two distributions of

controls and cases, so that we can select genes that are suitable for the purpose of further

investigation. For example, some overexpressed genes encourage us to investigate the cor-

responding protein products. However, the task of how to combine the selected genes for

better discrimination is still pending.

Suppose there are 50 independent genes that are informative in the sense of the pAUC,

such that X
(i)
20 ∼ N (0, 1) and X

(i)
21 ∼ πN (0, 1) + (1 − π)N (3, 1), where π = 0.9 (i =

1, 2, . . . , 50). The assumption of the independence is mainly for simplicity and for making the

comparison of pAUCBoost with existing methods clearer. The performance of pAUCBoost

in a more realistic situation is demonstrated in Section 6. Figure 3 (a) shows plots of

the average of the pAUC against iteration number T for five boosting methods. For all the

boosting methods, the values of the pAUC based on the training data reach the upper bound

values 0.1 after a number of iterations; however, the values based on the test data show clear

differences. The pAUCBoost properly detects the small difference of the two distributions

illustrated in the second panel in Figure 1, and shows the best performance. That is, it is

the closest to the value of the true pAUC of this setting. On the other hand, AdaBoost,

LogitBoost and GAMBoost cannot distinguish the two groups at all. The performance of

AUCBoost (pAUCBoost with α1 = 0 and α2 = 1) is between the two extremes.

Next, we added some noninformative genes to the 50 genes above, i.e., genes that are

assumed to be distributed uniformly: X
(i)
20 , X

(i)
21 ∼ U(−3, 3), (i = 51, . . . , 100). The results

in the left panel in Figure 3 (b) are the almost the same as those in (a); however, we

can find a clear difference between the right panels. The performance of AUCBoost goes

down on a large scale, measured by the value of pAUC. This is mainly because of “false

discovery”, or selection of noninformative genes by chance. Figure 4 shows the resistance

of pAUCBoost to false discovery. The horizontal axis denotes the identification number

88



of genes (i = 1, . . . , 100), and the vertical axis is the average number of selected genes,

which correspond to the selected spline components, in the five boosting methods during

the iteration process with T = 100. The total number of genes we use here is 100, so if a

boosting method selects informative and noninformative genes equally, the average number

is 1 over all genes. On the other hand, if the boosting method selects only the informative

genes, the average numbers are expected to be 2 and 0 for informative (i = 1, . . . , 50) and

noninformative (i = 51, . . . , 100) genes, respectively. The boosting methods other than

pAUCBoost clearly suffer from false discovery. pAUCBoost has an advantage because it

focuses on the essential part of the sample distribution in the sense of the pAUC.
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Figure 5.3: (a) The results of the pAUC with FPR between 0 and 0.1 for training data

(left panel) and test data (right panel) with only informative genes; (b) the results of the

pAUC with noninformative genes added.
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Figure 5.4: Average number of selected genes during the boosting process for five methods.

The horizontal axis denotes the identification number of the genes.

5.5 Application of pAUCBoost to breast cancer data

The breast cancer data of van’t Veer and others (2002) contains not only gene expression

profiles but also clinical markers such as Age, age of patients; Size, diameter of breast cancer;

Grade, tumour grade; Angi, existence or nonexistence of angioinvasion; ERp, ER expression;

PRp, PR expression; and Lymp, existence or nonexistence of lymphocytic infiltrate. First,

we apply AUCBoost to these clinical markers and investigate their utility. The weak clas-

sifiers we use are natural cubic splines for continuous markers (Age and Size), and decision
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stumps to discrete markers. The decision stumps for xk are defined as

Sk,l(xk) = H(xk − ξk,l), (5.5.1)

where ξk,l is a knot defined in Section 3. Next, we apply pAUCBoost with α1 = 0 and

α2 = 0.1 to the gene expression data after a pAUC-based filtering process proposed by Pepe

and others (2003). The training data set and the test data set are the same as those in

van’t Veer and others (2002), that is, 44 patients with good prognosis and 34 patients with

distant metastases for training data, and 7 and 12 patients for test data, respectively.

Figure 5 shows the results of the score plot generated by AUCBoost with λ = 0.01 and

T = 20, which are determined by a 10-fold cross validation. The Age and Size show almost

linear association with the outcome variable; a tendency to develop metastases increases

as the value of Grade; patients with negative ER and negative PR are estimated to have

high risk of metastases, which are consistent with the result of van’t Veer and others (2002).

We have found that the values of the AUC for training and test data are 0.846 and 0.964,

respectively. These results are comparable to those of van’t Veer and others (2002) that

are derived from the gene expression data: 0.882 and 0.869, respectively. This means that

clinical markers, not gene expression profiles, also have the ability to discriminate to some

extent the patients with good prognosis from those with metastases.

Next, we analyze the gene expression data as follows. The informative genes were selected

from the total of 25000 genes according to the criteria that the genes are two-fold regulated

and that the significance of regulation p < 0.01 in more than 3 patients, which is the same

condition as that of van’t Veer and others (2002). Next, the approximately 5000 filtered

genes are ordered based on their values of the pAUC with α1 = 0 and α2 = 0.1. We assessed

the variability using the probability of gene selection proposed by Pepe and others (2003).

That is

Pg(k) = P (gene g ranked in the top k),

where k is set to 100 in this analysis. Table 1 shows the results of the top 30 genes based on

1000 bootstrapped samples, along with the values of pAUC and AUC calculated from the
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Figure 5.5: Score plots of clinical markers. The rug plot at the bottoms of each score
plot shows the observation from patients with good prognosis; the rug plot for patients with
distant metastases is described at the top of each score plot.
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Table 5.1: The top 30 genes ranked by the probability of gene selection, and the values of
the pAUC and AUC

No gene name Pg(100) pAUC AUC

1 Contig41613 RC 0.728 0.036 0.666
2 NM 006931 0.728 0.035 0.678
3 Contig40831 RC 0.706 0.037 0.672
4 Contig55574 RC 0.639 0.035 0.654
5 AB023173 0.636 0.034 0.684
6 Contig63649 RC 0.626 0.034 0.749
7 NM 018964 0.586 0.034 0.660
8 AL137615 0.571 0.033 0.655
9 NM 006201 0.541 0.032 0.664
10 NM 001710 0.520 0.032 0.638
11 AA555029 RC 0.519 0.032 0.708
12 NM 020386 0.490 0.030 0.699
13 Contig7558 RC 0.488 0.032 0.659
14 Contig51464 RC 0.482 0.030 0.668
15 NM 014246 0.474 0.032 0.613
16 NM 007359 0.463 0.032 0.696
17 NM 006148 0.450 0.029 0.661
18 NM 004163 0.442 0.029 0.729
19 Contig37562 RC 0.423 0.031 0.630
20 Contig55377 RC 0.416 0.029 0.726
21 Contig47405 RC 0.404 0.029 0.718
22 NM 012261 0.393 0.029 0.721
23 NM 014400 0.379 0.028 0.681
24 Contig44409 0.368 0.029 0.692
25 AL080059 0.364 0.027 0.801
26 Contig60864 RC 0.358 0.029 0.637
27 NM 003748 0.353 0.025 0.793
28 AL080110 0.349 0.026 0.652
29 AL122101 0.343 0.028 0.708
30 NM 018120 0.336 0.026 0.671

original data. As seen in the table, the order of Pg(100) is almost in accordance with that

of the pAUC; however, it is quite different from that of the AUC. We picked up significant

genes with Pg(100) > 0.5, and applied pAUCBoost to the 11 genes. The score plots in

Figure 6 describe the association between genes and the outcome variable. Among the 11

genes, Contig41613 RC shows a nonlinear association. That is, the gene expression of the

patients with metastases has large variance as shown by the rug plot, compared with that
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of controls, which has a tendency to take small absolute values and concentrate around the

origin. The nonlinearity of the associations can be captured by pAUCBoost in this way.

The values of tuning parameter λ and T are determined to be 10−6 and 65 by 10-cross

validation, as described in the left panel in Figure 7. The right panel shows the pAUC for

training (solid) and test (dashed) data, as a function of T with λ = 10−6. We see that both

of the values for training and test data are more than 3 times larger than those of van’t

Veer and others (2002): 0.025 and 0.0084, respectively.
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Figure 5.6: Score plots of the selected 11 genes. The rug plot at the bottoms of each score

plot shows the observation from patients with good prognosis; the rug plot for patients with

distant metastases is described at the top of each score plot.
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Figure 5.7: The results of 10-fold cross validation with different values of smoothing pa-

rameter λ and iteration number T (left panel); the results of the values of pAUC for training

data (solid) and test data (dashed) by pAUCBoost, as a function of T with λ = 10−6 (right

panel).

5.6 Conclusions

We have developed the pAUCBoost algorithm, which is designed to maximize the pAUC,

based on the approximate pAUC in the additive model. The use of the approximate pAUC

is justified by showing a relationship with the non-approximate pAUC in Theorem 5.2.1.

The resultant component functions, termed score plots, are useful for understanding the

associations between each marker and the outcome variable, as shown in Section 4 and

5. Depending on the types of markers, we employ natural cubic splines, which are the

maximizers of the pAUCBoost objective function, as well as decision stumps.

We have also provided a consistent way to analyze gene expression data in the sense of
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the pAUC, as shown in Section 5. The pAUC is shown to be useful by Pepe and others

(2003) for selection of informative genes, some of which are overexpressed or underexpressed

in cancer tissues. However, how to combine the selected genes and how to discriminate the

cancer tissues from normal tissues, have not been addressed. We nonlinearly combined the

genes ranked by the pAUC in order to produce a score function, by which the classification

of controls and cases is done. Interestingly, we have found 4 genes in common with the 70

genes of van’t Veer and others (2002): Contig63649 RC, AA555029 RC, Contig40831 RC,

NM 006931; 6 genes among the selected 11 genes are related to protein coding. We also

applied pAUCBoost to the 70 genes for comparison with the result from the 11 genes. We

found that it yielded a poor result, especially about the value of pAUC for test data. Hence,

pAUCBoost with FPR restricted to be small should be applied to the genes or markers that

have gone through a pAUC-based filtering process beforehand. In the usual analysis setting,

in which markers do not have especially high values of the pAUC, AUCBoost is preferable

because of its stable performance due to the comprehensive information it can take into the

algorithm.

Mainly, there are two types of weak classifiers: smoothing splines and decision stumps.

Bühlmann and Yu (2003) proposed to use smoothing splines in the L2Boost algorithm, and

Tutz and Binder (2006) used B-splines in GAMBoost. However, the way of fitting the weak

classifiers in pAUCBoost is different from those methods. Our algorithm updates a score

function with a basis function of a natural cubic spline for one marker; on the other hand,

their algorithms update a score function with a set of basis functions for one marker. Hence,

our resultant score functions have tendency to have simpler forms, which also leads to simple

interpretation of the association between the markers and outcome variable.

In AdaBoost and LogitBoost, decision stumps are used as weak classifiers (Ben-Dor and

others, 2000; Dettling and Bühlmann, 2003). The advantage of using decision stumps is

that we can apply the boosting methods independently of the scale of the marker values.

Hence, the decision stump-based method is resistant to outliers, which often occur in real

data. However, it easily suffers from false discovery, as clearly shown in Figure 4; this causes

poor performance in a setting where non-informative genes are mixed with informative ones.
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We have also confirmed that pAUCBoost with decision stumps for weak classifiers shows

worse performance than that of pAUCBoost with natural cubic splines. Hence, we have to

be much careful about which weak classifiers to be employed; it depends on the types of

markers or the purpose of the analysis we are engaged in.
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Chapter 6

Ongoing and Future work

Abstract

This paper discusses a boosting method to minimize an index of integrated sensitivity and

specificity for density estimation.

6.1 Introduction

Let X and Y be a p-dimensional feature vector and a binary label in context of discriminant

analysis. We discuss a new index for assessing performance of a score function S(X) defined

by

L(S) =
δ(S)

σ(S)
, (6.1.1)

where δ(S) = E{S(X)|Y = 1}−E{S(X)|Y = 0} and σ(S) = [E{S(X)−ES(X)}2]1/2. The
empirical form is given by

L(S) =
1

σ(S)

{ 1

n1

n∑
i=1

I(yi = 1)S(xi)− 1

n0

n∑
i=1

I(yi = 0)S(xi)
}
, (6.1.2)

where I is a definition function, ny =
∑n

i=1 I(yi = y) for y = 0, 1 and σ(S) is the sample

standard deviation. For y = 0, 1, integrated ‘one minus specificity’ and sensitivity (Pencina
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et al, 2008) are expressed as

∫
P(S(X) ≥ u|Y = y)du = E{S(X)|Y = y}. (6.1.3)

On the other hand, we observe a relation to the correlation coefficient ρ(Y, S(X)) such that

L(S) =
ρ(Y, S(X))√
π(1− π)

, (6.1.4)

where π = P(Y = 1). We note that for any constants α > 0 and β that

L(αS + β) = L(S). (6.1.5)

6.1.1 Bayes consistency

We assume that there exists a score function S∗(X) such that

L(S∗) = max
S∈S

L(S), (6.1.6)

where S is the space of all score functions. Let Sε = S∗ + ε η for arbitrarily fixed function

η. Then, we observe that

∂

∂ε
L(Sε)

∣∣∣
ε=0

= 0. (6.1.7)

The gradient of L(Sε) is given by

∂

∂ε
L(Sε) =

δ(η)

σ(Sε)
− δ(Sε)

σ3(Sε)
E
[{Sε(X)− μ(Sε)}{η(X)− μ(η)}], (6.1.8)

where μ(Sε) = ESε(X) and μ(η) = Eη(X). Using the conditional density of X given Y = y:

gy, and the marginal density of X: g, it is rewritten as

1

σ(Sε)

∫
η(x)

[
g1(x)− g0(x)− δ(Sε)

σ2(Sε)
{Sε(x)− μ(Sε)}g(x)

]
dx, (6.1.9)
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where g = πg1 + (1− π)g0. Hence, we get

∂

∂ε
L(Sε)

∣∣∣
ε=0

=
1

σ(S∗)

∫
η(x)

×
[
g1(x)− g0(x)− δ(S∗)

σ2(S∗)
{S∗(x)− μ(S∗)}g(x)

]
dx. (6.1.10)

We conclude that

S∗(x)− μ(S∗) =
σ2(S∗)
δ(S∗)

g1(x)− g0(x)

g(x)
(6.1.11)

because (6.1.7) must hold for any η. Finally, from (6.1.5) we obtain a simpler expression,

S∗(x) =
g1(x)− g0(x)

g(x)
(6.1.12)

=
Λ(x)− 1

πΛ(x) + (1− π)
, (6.1.13)

where Λ(x) = g1(x)/g0(x) and we assume δ(S∗) > 0. Note that the existence of S∗ is unique

except for scale transforms in the sense of (6.1.5). It is clear that S∗ is an increasing function

of Λ, so we investigate the second derivative in order to confirm the Bayes consistency. It

follows from (6.1.8) that

∂

∂ε
L(Sε) =

σ(Sε)δ(η)− L(Sε)cov(Sε, η)

σ2(Sε)
. (6.1.14)

Then, the second derivative of L(Sε) becomes

∂2

∂ε2
L(Sε)

= −2σ−3(Sε)σ
′(Sε)

{
σ(Sε)δ(η)− L(Sε)cov(Sε, η)

}
+σ−2(Sε)

{
σ′(Sε)δ(η)− L′(Sε)cov(Sε, η)− L(Sε)cov

′(Sε, η)
}
, (6.1.15)
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where

σ′(Sε) = σ−1(Sε)cov(Sε, η), (6.1.16)

cov′(Sε, η) = σ2(η). (6.1.17)

Hence, the latter term in (6.1.15) is given

σ−2(Sε)
{
σ−1(Sε)cov(Sε, η)δ(η)− L′(Sε)cov(Sε, η)− L(Sε)σ

2(η)
}
. (6.1.18)

As a result, we have

∂2

∂ε2
L(Sε)

∣∣∣
ε=0

= σ−2(S∗)
{
σ−1(S∗)cov(S∗, η)δ(η)− L(S∗)σ2(η)

}
= σ−4(S∗)L(S∗)

{
cov2(S∗, η)− σ2(S∗)σ2(η)

}
, (6.1.19)

because Equation (6.1.14) is zero for S∗. Hence, the second derivative is negative under an

assumption of L(S∗) > 0.

Through the discussion above, we conclude that the score function S∗ given by (6.1.12)

attains a maximum of L(S) over S, and the maximum is given as

max
S∈S

L(S) =
δ(S∗)
σ(S∗)

=

∫ {g1(x)− g0(x)}2
g(x)

dx
/√∫ {g1(x)− g0(x)}2

g(x)
dx

=

√∫ {g1(x)− g0(x)}2
g(x)

dx. (6.1.20)

which is invariant with all one-to-one transformations of X. Thus we observe the Bayes

consistency for the proposed function L(S).
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6.1.2 Linear score function

We discuss a simple situation in which a score function is linear: Sβ(x) = βTx. The

corresponding objective function is written by

L(Sβ) =
βT(μ1 − μ0)√

βTV β
. (6.1.21)

where μy is the conditional mean of X given y and V is the variance matrix of X; the

empirical form is

L(Sβ) =
βT(x1 − x0)√

βTV β
. (6.1.22)

where xy is the conditional sample mean given y and V is the sample variance matrix. We

can maximize it by

β∗ = V
−1

(x1 − x0), (6.1.23)

where the maximum is the Mahalanobis distance:

max
β∈Rp

L(Sβ) = L(Sβ∗) =

√
(x1 − x0)TV

−1
(x1 − x0). (6.1.24)

Thus, the optimal linear score function is the same as the Fisher linear score function except

for the threshold.

6.2 Boosting algorithm for maximization of t-value

We discuss a boosting learning algorithm to maximize the empirical correlation function

L(S) in a stage-wise manner. Let us prepare a dictionary of classifiers as

D = {sω : ω ∈ Ω}. (6.2.1)
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For example, the dictionary D is taken by a family of all decision stumps. Henceforth we

assume that D is negation closed, that is, ∀s ∈ D,−s ∈ D.

Boosting algorithm

(i). Take appropriately an initial candidate, S1(x) in D as a classifier.

(ii). For any t = 1, · · · ,M − 1 we get αt+1, st+1, St+1 from αt, st, St as follows:

(αt+1, st+1) = argmaxα∈R,s∈DL(St + αs), (6.2.2)

St+1 = St + αt+1st+1. (6.2.3)

Hence we obtain Ŝ = SM as the final solution.

We investigate a property associated with αt+1, st+1, St+1 as defined above to maximize

the empirical correlation function L(S). Here and hereafter we use a notation δ defined by

δ(S) =
1

n1

n∑
i=1

I(yi = 1)S(xi)− 1

n0

n∑
i=1

I(yi = 0)S(xi). (6.2.4)

We get the gradient by

∂

∂α
L(St + αs) =

δ(s)

σ(St + αs)
− L(St + αs)

cov(St + αs, s)

σ2(St + αs)
, (6.2.5)

where cov denotes the sample covariance, for example,

cov(S, T ) =
1

n

n∑
i=1

{(S(xi)− S)(T (xi)− T )}. (6.2.6)

We pursue more tractable form for the pair of st+1 and αt+1. For this we first find an

exact solution,

αt+1(s) = argmaxα∈RL(St + αs), (6.2.7)

which is a solution of (∂/∂α)L(St + αs) = 0 with respect to α; that is

δ(s) = δ(St + αs)
cov(St + αs, s)

σ2(St + αs)
, (6.2.8)
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which is

δ(s) =
{δ(St) + αδ(s)}{ cov(St, s) + ασ2(s)}
σ2(St) + 2α cov(St, s) + α2σ2(s)

, (6.2.9)

which, noting that the terms of α2 cancel, is

δ(s)σ2(St) + 2αδ(s) cov(St, s)

= δ(St)cov(St, s) + α{δ(s)cov(St, s) + δ(St)σ
2(s)}. (6.2.10)

Hence, we obtain the solution,

αt+1(s) =
δ(St)cov(St, s)− δ(s)σ2(St)

δ(s)cov(St, s)− δ(St)σ2(s)
. (6.2.11)

Secondly, substituting the value into L(St + αs) in (6.2.2), we get st+1 as

st+1 = argmaxs∈DL(St + αt+1(s) s), (6.2.12)

which needs only a light computational burden. Thus we get the updating pair (αt+1, st+1)

by two-stage of the maximization,

L(St + αt+1st+1) = max
s∈D

{max
α∈R

L(St + αs)}. (6.2.13)

We evaluate one step improvement from St to St+1 = St + αt+1st+1 in the boosting

algorithm as follows:

L(St + αt+1st+1)
2 − L(St)

2 =
δ
2
(St + αt+1st+1)

σ2(St + αt+1st+1)
− δ

2
(St)

σ2(St)

=
δ
2
(St + αt+1st+1)σ

2(St)− δ
2
(St)σ

2(St + αt+1st+1)

σ2(St)σ2(St + αt+1st+1)
(6.2.14)
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of which the numerator is

{δ(St) + αt+1δ(s)}2σ2(St)− δ(St){σ2(St) + 2αt+1cov(St, st+1) + α2
t+1σ

2(st+1)}(6.2.15)

= 2δ(St){δ(st+1)σ
2(St)− δ(St)cov(St, st+1)}αt+1

+{δ2(st+1)σ
2(St)− δ

2
(St)σ

2(st+1)}α2
t+1 (6.2.16)

= 2δ(St){δ(St)σ2(st+1)− δ(st+1)cov(St, st+1)}α2
t+1

+{δ2(st+1)σ
2(St)− δ

2
(St)σ

2(st+1)}α2
t+1 (6.2.17)

= {δ2(st+1)σ
2(St)− 2δ(St)δ(st+1)cov(St, st+1) + δ

2
(St)σ

2(st+1)}α2
t+1

= σ2
(
δ(st+1)St − δ(St)st+1

)
α2
t+1

= σ2
(
δ(St+1)St − δ(St)St+1

)
. (6.2.18)

As a result, we have

L(St+1)
2 − L(St)

2 = σ2
(
L(St+1)

St
σ(St)

− L(St)
St+1

σ(St+1)

)
. (6.2.19)
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Appendix

A.1 Proof of Theorem 5.2.1.

At first, we fix the value of α1 and α2 using thresholds c1,F and c2,F as

∫
H(F (x0)− c1,F )g0(x0)dx = α1,

∫
H(F (x0)− c2,F )g0(x0)dx = α2, (A.1)

where α1 < α2 (c2,F < c1,F ). For simplicity, we write

HF,i(x) = H(F (x)− ci,F ), (A.2)

Hi,F (x) = H(ci,F − F (x)), i = 1, 2. (A.3)

Then, the pAUC with FPR being between α1 and α2 has an integral formula:

pAUC(F, α1, α2)

=

∫ ∫
HF,2(x0)H1,F (x0)H(F (x1)− F (x0))g0(x0)g1(x1)dx0dx1

=

∫ ∫
HF,2(x0)H1,F (x0)HF,2(x1)H(F (x1)− F (x0))g0(x0)g1(x1)dx0dx1

=

∫ ∫
HF,2(x0)H1,F (x0)HF,2(x1)

{
H1,F (x1) + HF,1(x1)

}
H(F (x1)− F (x0))g0(x0)g1(x1)dx0dx1

=

∫ ∫
HF,2(x0)H1,F (x0)HF,2(x1)H1,F (x1)H(F (x1)− F (x0))g0(x0)g1(x1)dx0dx1

+

∫ ∫
HF,2(x0)H1,F (x0)HF,2(x1)HF,1(x1)H(F (x1)− F (x0))g0(x0)g1(x1)dx0dx1

=

∫ ∫
HF,2(x0)H1,F (x0)HF,2(x1)H1,F (x1)H(F (x1)− F (x0))g0(x0)g1(x1)dx0dx1

+

∫
HF,2(x0)H1,F (x0)g0(x0)dx0

∫
HF,1(x1)g1(x1)dx1. (A.4)
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Similarly, the approximate pAUC is given as

pAUCσ(F, α1, α2)

=

∫ ∫
HF,2(x0)H1,F (x0)HF,2(x1)H1,F (x1)Hσ(F (x1)− F (x0))g0(x0)g1(x1)dx0dx1

+

∫
HF,2(x0)H1,F (x0)g0(x0)dx0

∫
HF,1(x1)g1(x1)dx1. (A.5)

In this setting, we will prove Theorem 5.2.1 as follows.

Proof. For simplicity, we define some notations:

ζ(x) = m
(
Λ(x)

)
, (A.6)

Fγ(x) = F (x) + γζ(x), (A.7)

ci,γ = ci,Fγ , i = 1, 2, (A.8)

c′i,γ =
∂ci,γ
∂γ

, i = 1, 2. (A.9)
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Then, the first derivative of Ψ(γ) with respect to γ is given as

∂

∂γ
Ψ(γ)

=

∫ ∫
H′

Fγ ,2(x0)(ζ(x0)− c′2,γ)H1,Fγ (x0)HFγ ,2(x1)

×H1,Fγ (x1)Hσ(Fγ(x1)− Fγ(x0))g0(x0)g1(x1)dx0dx1

+

∫ ∫
HFγ ,2(x0)H

′
1,Fγ

(x0)(c
′
1,γ − ζ(x0))HFγ ,2(x1)

×H1,Fγ (x1)Hσ(Fγ(x1)− Fγ(x0))g0(x0)g1(x1)dx0dx1

+

∫ ∫
HFγ ,2(x0)H1,Fγ (x0)H

′(Fγ(x1)− c2,γ)(ζ(x1)− c′2,γ)

×H1,Fγ (x1)Hσ(Fγ(x1)− Fγ(x0))g0(x0)g1(x1)dx0dx1

+

∫ ∫
HFγ ,2(x0)H1,Fγ (x0)HFγ ,2(x1)

×H′(c1,γ − Fγ(x1))(c
′
1,γ − ζ(x1))Hσ(Fγ(x1)− Fγ(x0))g0(x0)g1(x1)dx0dx1

+

∫ ∫
HFγ ,2(x0)H1,Fγ (x0)HFγ ,2(x1)

×H1,Fγ (x1)H
′
σ(Fγ(x1)− Fγ(x0))(ζ(x1)− ζ(x0))g0(x0)g1(x1)dx0dx1

+

∫ {
H′

Fγ ,2(x0)(ζ(x0)− c′2,γ)−H′
Fγ ,1(x0)(ζ(x0)− c′1,γ)

}
g0(x0)dx0TPR(Fγ , c1,γ)

+

∫
HFγ ,2(x0)H1,Fγ (x0)g0(x0)dx0TPR

′(Fγ , c1,γ), (A.10)

where

TPR(Fγ , c1,γ) =

∫
HFγ ,1(x1)g1(x1)dx1. (A.11)
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And the first derivative is rewritten such as

∂

∂γ
Ψ(γ)

=

∫
H′

Fγ ,2(x0)(ζ(x0)− c′2,γ)g0(x0)dx0

∫
HFγ ,2(x1)H1,Fγ (x1)Hσ(Fγ(x1)− c2,γ)g1(x1)dx1

+

∫
H′

1,Fγ
(x0)(c

′
1,γ − ζ(x0))g0(x0)dx0

∫
HFγ ,2(x1)H1,Fγ (x1)Hσ(Fγ(x1)− c1,γ)g1(x1)dx1

+

∫
H′(Fγ(x1)− c2,γ)(ζ(x1)− c′2,γ)g1(x1)dx1

∫
HFγ ,2(x0)H1,Fγ (x0)Hσ(c2,γ − Fγ(x0))g0(x0)dx0

+

∫
H′(c1,γ − Fγ(x1))(c

′
1,γ − ζ(x1))g1(x1)dx1

∫
HFγ ,2(x0)H1,Fγ (x0)Hσ(c1,γ − Fγ(x0))g0(x0)dx0

+

∫ ∫
HFγ ,2(x0)H1,Fγ (x0)HFγ ,2(x1)

×H1,Fγ (x1)H
′
σ(Fγ(x1)− Fγ(x0))(ζ(x1)− ζ(x0))g0(x0)g1(x1)dx0dx1

+

∫ {
H′

Fγ ,2(x0)(ζ(x0)− c′2,γ)−H′
Fγ ,1(x0)(ζ(x0)− c′1,γ)

}
g0(x0)dx0TPR(Fγ , c1,γ)

+

∫
H(Fγ(x0)− c2,γ)H1,Fγ (x0)g0(x0)dx0TPR

′(Fγ , c1,γ),

= FPR′(Fγ , c2,γ)

∫
HFγ ,2(x1)H1,Fγ (x1)Hσ(Fγ(x1)− c2,γ)g1(x1)dx1

−FPR′(Fγ , c1,γ)

∫
HFγ ,2(x1)H1,Fγ (x1)Hσ(Fγ(x1)− c1,γ)g1(x1)dx1

+TPR′(Fγ , c2,γ)

∫
HFγ ,2(x0)H1,Fγ (x0)Hσ(c2,γ − Fγ(x0))g0(x0)dx0

−TPR′(Fγ , c1,γ)

∫
HFγ ,2(x0)H1,Fγ (x0)Hσ(c1,γ − Fγ(x0))g0(x0)dx0

+

∫ ∫
HFγ ,2(x0)H1,Fγ (x0)HFγ ,2(x1)

×H1,Fγ (x1)H
′
σ(Fγ(x1)− Fγ(x0))(ζ(x1)− ζ(x0))g0(x0)g1(x1)dx0dx1

+
{
FPR′(Fγ , c2,γ)− FPR′(Fγ , c1,γ)

}
TPR(Fγ , c1,γ)

+TPR′(Fγ , c1,γ)

∫
H(Fγ(x0)− c2,γ)H1,Fγ (x0)g0(x0)dx0. (A.12)
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Since FPR(Fγ , c1,γ) and FPR(Fγ , c2,γ) are fixed, we have

∂

∂γ
Ψ(γ)

= TPR′(Fγ , c2,γ)

∫
HFγ ,2(x0)H1,Fγ (x0)Hσ(c2,γ − Fγ(x0))g0(x0)dx0

+TPR′(Fγ , c1,γ)

∫
HFγ ,2(x0)H1,Fγ (x0)

{
1−Hσ(c1,γ − Fγ(x0))

}
g0(x0)dx0

+

∫ ∫
HFγ ,2(x0)H1,Fγ (x0)HFγ ,2(x1)

×H1,Fγ (x1)H
′
σ(Fγ(x1)− Fγ(x0))(ζ(x1)− ζ(x0))g0(x0)g1(x1)dx0dx1. (A.13)

Next, we investigate the behavior of TPR′(Fγ , c2,γ). The value of FPR(Fγ , c2,γ) is fixed, so

we have

FPR′(Fγ , c2,γ) =

∫
H′

Fγ ,2(x0)(ζ(x0)− c′2,γ)g0(x0)dx0 = 0. (A.14)

If
∫
H′

Fγ ,2
(x0)g0(x0)dx0 = 0, we have

∫
H′

Fγ ,2
(x1)g1(x1)dx1 = 0; moreover, we have TPR′(Fγ , c2,γ) =

0. Otherwise, we have

c′2,γ =

∫
H′

Fγ ,2
(x0)ζ(x0)g0(x0)dx0∫

H′
Fγ ,2

(x0)g0(x0)dx0
. (A.15)

By substituting it into TPR′(Fγ , c2,γ), we have

TPR′(Fγ , c2,γ)

=

∫ ∫
K(x0,x1)ζ(x1)g0(x0)g1(x1)dx0dx1 −

∫ ∫
K(x0,x1)ζ(x0)g0(x0)g1(x1)dx0dx1∫

H′
Fγ ,2

(x0)g0(x0)dx0
,

(A.16)

where

K(x0,x1) = H′
Fγ ,2(x0)H

′
Fγ ,2(x1) (A.17)
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Then, the numerator becomes

∫ ∫
K(x0,x1)

(
ζ(x1)− ζ(x0)

)
g0(x0)g1(x1)dx0dx1

=

∫ ∫
K(x1,x0)

(
ζ(x0)− ζ(x1)

)
g0(x1)g1(x0)dx1dx0

=
1

2

∫ ∫
K(x0,x1)

(
ζ(x1)− ζ(x0)

)(
g0(x0)g1(x1)− g0(x1)g1(x0)

)
dx0dx1

=
1

2

∫ ∫
K(x0,x1)

(
ζ(x1)− ζ(x0)

)(
Λ(x1)− Λ(x0)

)
g0(x0)g0(x1)dx0dx1

> 0. (A.18)

Hence, we have

TPR′(Fγ , ci,γ) ≥ 0, i = 1, 2, (A.19)

because we can replace c2,γ with c1,γ , and have the same result.

By looking at the third term in (A.13), we find

HFγ ,2(x0)H1,Fγ (x0)HFγ ,2(x1)H1,Fγ (x1)H
′
σ(Fγ(x1)− Fγ(x0)) (A.20)

is invariant to the exchange of x0 for x1 like K(x0,x1). Hence by the same argument above,

we have

∫ ∫
HFγ ,2(x0)H1,Fγ (x0)HFγ ,2(x1)

×H1,Fγ (x1)H
′
σ(Fγ(x1)− Fγ(x0))

(
ζ(x1)− ζ(x0)

)
g0(x0)g1(x1)dx0dx1

=
1

2

∫ ∫
HFγ ,2(x0)H1,Fγ (x0)HFγ ,2(x1)H1,Fγ (x1)H

′
σ(Fγ(x1)− Fγ(x0))

(
ζ(x1)− ζ(x0)

)
×
(
Λ(x1)− Λ(x0)

)
g0(x0)g0(x1)dx0dx1

> 0. (A.21)

As a result, we have

∂

∂γ
Ψ(γ) > 0. (A.22)
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Finally, we have

pAUCσ(F, α1, α2) < lim
γ→∞Ψ(γ)

= lim
γ→∞ pAUCσ

[
γ

{
F

γ
+ ζ

}
, α1, α2

]

= lim
γ→∞ pAUCσ

γ

(
F

γ
+ ζ, α1, α2

)
= pAUC(ζ, α1, α2)

= pAUC(Λ, α1, α2). (A.23)

A.2 Proof of Corollary 1

Proof. Under the condition that FPR(F +γ η, cF+γ η) = α, the first derivative of TPR(F +

γ η, cF+γ η) regarding to γ is given from (A.18):

TPR′(F + γ η, cF+γ η)

=
1

2

∫ ∫
K∗(x0,x1)

(
η(x1)− η(x0)

)(
Λ(x1)− Λ(x0)

)
g0(x0)g0(x1)dx0dx1/∫

H′(F (x) + γ η(x)− cF+γ η)g0(x0)dx0, (A.24)

where

K∗(x0,x1) = H′(F (x0) + γ η(x0)− cF+γ η)H
′(F (x1) + γ η(x1)− cF+γ η), (A.25)

and when the denominator is not zero. Note that if the denominator is zero, we have

TPR′(F + γ η, cF+γ η) = 0 as shown in Appendix 1. The domain of the integration in the

numerator is determined byK∗, which is dependent on an arbitrary score function F . Hence,

TPR′(F + γ η, cF+γ η) ≥ 0 only if η = m(Λ), where m is a strictly increasing function. The

sufficiency is confirmed easily.
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A.3 Details of the pAUCBoost with natural cubic splines.

For predetermined values of α1 and α2, calculate the corresponding thresholds c1 and c2

for all score functions Ft−1 + βt−1(f), where f is in F . The first and second derivative of

the objective function, which are used in the Newton-Raphson iteration, are given as:

D1(βt−1(f))

=
∂

∂βt−1(f)
pAUCλ(Ft−1 + βt−1(f)f, α1, α2)

=
1

n0n1

∑
i∈I

∑
j∈Jfan

φ
(
F (x1j)− F (x0i) + βt−1(f){f(x1j)− f(x0i)}

)(
f(x1j)− f(x0i)

)

− 2λ

∫ {
F ′′
k (xk) + βt−1(f)f

′′(x)
}
f ′′t (x)dxk, (A.26)

and

D2(βt−1(f))

=
∂2

∂βt−1(f)2
pAUCλ(Ft−1 + βt−1(f)f, α1, α2)

=− 1

n0n1

∑
i∈I

∑
j∈Jfan

φ
(
F (x1j)− F (x0i) + βt−1(f){f(x1j)− f(x0i)}

)

×
(
F (x1j)− F (x0i) + βt−1(f){f(x1j)− f(x0i)}

)(
f(x1j)− f(x0i)

)2

− 2λ

∫ {
f ′′(x)

}2
dxk, (A.27)

where xk is the k-th component of a p-dimensional marker vector x; f(x) is one ofNk,l(xk)/Zk,l’s

(l = 1, 2, . . . ,mk). The rectangular part of the objective function can be ignored because

the first derivatives of TPR’s can be approximated to zero by the same argument that the

equation of (A.18) becomes zero, when we replace g0(x0) and g1(x1) with 1/n0 and 1/n1,

respectively. This consideration reduces the amount of calculation by n∗0×n∗1, where n∗0 and

n∗1 are the cardinalities of I and Jrec, respectively. Then, we apply the Newton-Raphson
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method to get a set of coefficients at iteration time t:

βt(f) = βt−1(f)− D1(βt−1(f))

D2(βt−1(f))
. (A.28)

We observed that the value of βt(f) is unstable, especially when the cardinalities of I and

Jrec are very small. So, we restricted the maximum absolute value to be 1. Using βt(f), the

best weak classifier is chosen as

ft = argmax
f

pAUCλ(Ft−1 + βt(f)f, α1, α2). (A.29)

We repeat this process T times to get a final score function F (x).

The penalty term for xk consists of a linear combination of Pk,l,l′ ’s (k = 1, . . . , p; 1 ≤
l, l′ ≤ mk), where

Pk,l,l′

=

∫
N ′′

k,l(xk)N
′′
k,l′(xk)/(Zk,lZk,l′)dxk

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0, l ≤ 2 or l′ ≤ 2,

6
(2ξk,mk

−ξk,mk−1−ξk,l−2)(2ξk,mk
−ξk,mk−1−ξk,l′−2)(ξk,mk

−ξk,l′−2)(ξk,mk−1−ξk,l−2)(ξk,mk−1−ξk,l′−2)

×{
(ξk,mk

−ξk,mk−1)(ξk,mk−1−ξk,l−2)+(2ξk,mk−1+ξk,l′−2−3ξk,l−2)(ξk,mk−1−ξk,l′−2)
}
, otherwise.

(A.30)

Note that Pk,l,l′ depends on the scale of xk. It means the penalty term also depends on the

scale. Hence, by adjusting the scale, we make the maximum value of Pk,l,l′ in accordance

for each k so that each xk is penalized almost equally:

max
1≤l, l′≤mk

Pk,l,l′ = Pk,mk,mk
= 1. (A.31)

On the other hand, a penalty term for xk in the case where we use decision stumps as weak

classifiers is given as: ∑
xk∈Ξk

{
F

(2)
k (xk)

}2
, (A.32)
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where F
(2)
k (xk) denotes the second-order difference of Fk(xk): F

(2)
k (xk) = Fk(x

(−1)
k ) −

2Fk(xk) + Fk(x
(+1)
k ) for x

(−1)
k < x

(+1)
k , and Ξk is a set of ξk,l (l = 1, 2, . . . ,mk). In a similar

manner to (A.30), the penalty term for xk is given as a linear combination of Qk,l,l′ ’s:

Qk,l,l′ =
∑

xk∈Ξk

S
(2)
k,l (xk)S

(2)
k,l′(xk) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

2, l = l′,

−1, |l − l′| = 1,

0, |l − l′| ≥ 2,

(A.33)

where S
(2)
k,l (xk) is a decision stump Sk,l(xk) = H(xk−ξk,l). The values of Qk,l,l′ are necessary

when we use decision stumps together with natural cubic splines as weak classifiers.
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