
Study on Transparently Extending
Networking Services Framework for

Adaptive Communications

ネットワーク機能を透過的に拡張する適応型通信
のためのフレームワークの研究

Ryota Kawashima

川島 龍太

Dissertation

January, 2010

Submitted in the fulfillment of the requirements for the degree of

Doctor of Philosophy

Department of Informatics,
School of Multidisciplinary Sciences,

The Graduate University for Advanced Studies (SOKENDAI),

Japan

abstract

Since current networking technology is rapidly evolving, many users can now access

information from all over the world without any geographical and temporal constraints.

Networks are now a fundamental infrastructure for social services, such as E-commerce,

online banking, social networking services (SNS), and cloud computing. As a result, cur-

rent networks must provide a flexible service composition and robust system components.

Most networks are currently based on TCP/IP protocol suite, and any application that

supports it can communicate with another application without custom-made protocols.

Networks have evolved by incorporating extended functions on the TCP/IP core functions

that are complementary without actually changing them. Current networks basically have

both old-fashioned systems, and cutting-edge systems.

There is a hierarchical structure referred to as an hourglass based on TCP/IP in

the background of the universality of the fundamental networking capability. The main

idea of this structure is that the TCP/IP ensures there is a logical connectivity between

end-to-end applications. Users can introduce a variety of applied networking services on

TCP/IP and physical access technologies under TCP/IP. However, since there still are

many systems that only support traditional networking services, it is difficult to widely

deploy advanced services in the network, and users may struggle to replace core network

protocols with new protocols to correct a backward compatibility problem.

Generally, it is believed that networking applications and services are evolving as the

network environment expands and diversifies. However, a variety of dedicated systems

that depend on particular platforms and the developing environment have appeared that

lack a higher-level common platform for these advanced networking services and users

have developed their own services, respectively.

In this paper, we would like to discuss a common software platform for diversifying

networking services. Not the only network software, such as the applications, servers, and

protocol stacks, but also the methodologies and implementation techniques are expected

to provide a common software platform. In particular, instead of developing brand-

new network systems, existing software assets and technologies are used to construct the

advanced network environment.

To achieve extensible network softwares, we have focused on a notion of an adap-

tive communication. The adative communication provides a way to adaptively compose

networking capabilities of applications when the surrounding environment is changed.

In practice, each networking function for the application could be added, removed, or

replaced per functional unit, and therefore, a transparent mechanism that dynamically

composes networking functions is required to ensure compatibility with existing systems.

Network applications usually use socket interfaces that abstract the networking func-

tions to communicate over the network. A socket interface generally supports two types

of communication: connection-oriented communications and connectionless-oriented com-

munications, and it allows for the construction of network software that is independent of

the network protocol. So, I am proposing a system that enables networking functions to

be transparently change an application by using the abstraction of the socket interface.

Since the change in networking functions is conducted entirely within the socket interface,

the application can use the socket interface as is.

Many related systems that transparently change the networking functions of appli-

cations. However, there are some platform, performance, developer-oriented behavior,

usability, and flexible functions composition restrictions that exist with these systems.

This study aims at a more pragmatic system compared to these systems in that it

has a component-oriented function, composition mechanism, minimum overhead, multi-

platform support, and a unified usability by taking into account not only the methodology

for transparent extension, but also a common-platform for higher-level services charac-

teristic. In addition, we take into account a user-interface that targets non-professional

users as well as developers in the paper.

In this paper, the proposed system was designed and implemented to work on Windows

and Linux operating systems, and evaluated its functionalities comparing with existing

systems. The result showed following advantages;

• Users can extend and configure their systems as intended

• Non-experimental users also can utilize the proposed system without programming

• The proposed system can be available with more applications and operating systems

• Users can manage the proposed system without difficulty

Therefore, the proposed system allows us to extend applications more concisely and finely

on variety of network environments, and existing software asset can be leveraged to com-

pose advanced network environment.

In addition, performance overhead of the proposed system was measured by comparing

with another application that equips network functions directly. The result showed that

overhead of transmitting/receiving each user data was slightly several thousand clocks,

and this value can be negligible considering that fluctuation time of the packet processing

within the kernel protocol stack and packet transferring on the actual network. As a

result, the proposed system could not be performance bottleneck on practical network

systems.

論文要旨

近年，ネットワーク技術が急速に発展するに連れて，多くのユーザが地理的，時間的

制約を超えて世界中の情報にアクセスできるようになった．また，高速で安全，そしてい

つでもどこでも通信を利用できる環境が整っているため，ネットワークは単なるリモート

間接続のための媒体ではなく，Eコマース，インターネットバンキング，ソーシャル・ネッ

トワーキング・サービス (SNS)，クラウド・コンピューティングなどのより高次のサービ

スを提供するための社会インフラとして利用されている．そのため，現代ネットワークに

は利用者の多様な要求に答えられる柔軟性とシステムの頑強性が広く求められている．

現在では，多くのネットワークがTCP/IPにその基礎を置いており，TCP/IPに対応

したアプリケーションであれば，これらのネットワークに接続して通信を行うことができ

る．TCP/IPは登場以来ほとんど基本機能が変化をしておらず，ネットワーク機能の拡張

は TCP/IPを補完するという形で行われてきた．そのため，従来の機能のままにネット

ワークを利用しているアプリケーションが数多く存在している一方で，ネットワーク技術

の進展に伴い，先進的な機能を実現しているアプリケーションも共存しているというのが

現代ネットワークの実情になっている．

このような現代ネットワークが持つ基本機能の普遍性の背景として，TCP/IPを中心

としたHourglassに例えられる機能階層構造が挙げられる．エンドノード間での通信接続

性をスタンダード技術である IPおよびTCPが保証することにより，ユーザは多様なサー

ビス機能や通信技術を導入することが可能になる．しかしながら，先進的なネットワーク

機能やサービス機能が相次いで登場するため，それらに対応したシステムとそうでないシ

ステムがネットワーク内に共存することになり，普遍性を持つ高次のサービスを展開でき

ないという問題がある．さらには，後方互換性のために，いったん普及してしまった中核

技術の抜本的な転換を行うことが困難になるという懸念もある．

一般に，ネットワーク環境が多様化・高度化するにつれて，それを利用するシステム

やサービスも高度化していくと考えられている．しかし，このような機能を利用するため

の高いレベルでの共通基盤となる仕組みが存在しないため，各利用者がそれぞれの独自の

サービスを提供した結果，プラットフォームや開発言語などの特定環境に依存したシステ

ムが数多く誕生する結果となった．

そこで本研究では，ネットワークを構成するアプリケーションプログラムやサーバプ

ログラム，さらにはオペレーティングシステム内のプロトコルスタックなどのネットワー

クソフトウェアに焦点を当て，ネットワークの拡張性や後方互換性に配慮したソフトウェ

アシステムの実現について，その方法論や実装手法などの考察を行い，多様化するサービ

ス機能を実行するための共通基盤となるソフトウェアシステムの実現を目指す．特に，全

く新規のネットワークシステムの実現を目指すのではなく，既存の枠組みの中で，多くの

ネットワークソフトウェアに拡張性を持たせることによって，先進的なネットワーク機能

やサービスを幅広く利用できるようなネットワークシステムの実現を目標とする．

拡張性を有するネットワークソフトウェアを実現するため，筆者らは適応型通信とい

う概念に着目した．適応型通信では，ネットワークの機能性や通信環境の変化に適応して

アプリケーションのネットワーク機能を構成することができる．具体的には，アプリケー

ションのネットワーク機能を機能単位で追加／削除／置換する必要があるが，既存システ

ムとの親和性を考慮すると，直接的なシステム変更を行わずにネットワーク機能を構成す

るための仕組みが必要になる．

ネットワーク機能を利用するアプリケーションは，通常，ネットワーク機能を抽象化

したソケットインタフェースと呼ばれるAPIを利用する．ソケットインタフェースには基

本的にコネクション型通信，コネクションレス型通信の二種類が提供されており，個々の

プロトコルの詳細には依存しないネットワークソフトウェアの構築が可能になる．そこで

本研究では，ソケットインタフェースが持つ抽象性という特徴に着目し，アプリケーショ

ンが利用するネットワーク機能をアプリケーションからは見えない形で変更可能にする．

このネットワーク機能の変更はソケットインタフェースの内部で行われるため，既存のア

プリケーションやOSに対して透過性がある．提案方式を用いることで，後方互換性を保

ちつつネットワーク環境に応じてアプリケーションの機能構成を変更できる適応型通信を

実現することが可能になる．

これまでにも，本研究で提案するシステムと同様の役割を果たすシステムが数多く提

案されてきた．しかしながら，これらの既存システムには，プラットフォーム依存性，多

大な性能オーバヘッド，開発者指向のユーザビリティ，柔軟性に欠けた機能構成などと

いった問題があった．本研究では，従来研究のように透過的な機能追加を実現するための

方法論だけではなく，高度サービスのための共通基盤という性質に配慮し，コンポーネン

ト指向に基づいたネットワーク機能の可結合性，低オーバヘッド，マルチプラットフォー

ム対応，統一的な操作性などの性質を満たすシステムの実現を目指す．また，開発者だけ

ではなく，専門的知識を持たない利用者を対象としたユーザインタフェースについての考

察も行う．

本研究では，Windowsおよび Linux上で動作するように提案システムの設計・実装を

行った．そこで，提案システムの機能性を既存システムと比較した結果，

• ユーザの思い通りに既存システムを拡張できる

• 専門的な知識が無くても機能拡張を行うことができる

• より多くのアプリケーションやOSに対して機能拡張を行うことができる

• 運用面での負荷が小さい

という利点があることが明らかになった．提案システムを用いることで，ユーザは多様な

ネットワーク環境下で，より手軽に，より詳細に機能拡張を行えるようになるため，既存

のソフトウェア資産を活用して先進的なネットワーク環境を構築することができる．

また，提案方式による性能オーバヘッドを評価した結果，１回のデータ送受信に伴う

オーバヘッドは数千クロック程度であり，これはカーネル・プロトコルスタック内でのパ

ケット処理時間や実ネットワーク上での転送時間の揺らぎと比較すると極めて小さい値で

ある．したがって，提案システムを実システム環境に導入しても性能上のボトルネックに

はならないと考えられる．

Contents

1 Introduction 1

1.1 Present and Issues of Network . 1

1.2 Adaptation of Networking Capability in Software 4

1.3 A Transparent Approach to Compose Adaptive Software 6

1.4 End-to-End Consistency of Adaptive Communication 7

1.5 Purpose and Composition of This Paper 9

1.6 Summary . 12

2 Related Work for Adaptive Systems and Communications 14

2.1 Compositional Adaptive Systems and Their Methodologies 14

2.1.1 Language-based Adaptation . 15

2.1.2 Binary-based Adaptation . 18

2.1.3 OS-based Adaptation . 23

2.1.4 VM-based Adaptation . 24

2.1.5 Proxy-based Adaptation . 26

2.2 Practical Networking Services and Systems 29

2.2.1 Upper-layer Networking Services . 29

2.2.2 Lower-layer Networking Services . 30

2.3 Summary . 31

3 Fundamental Policies for Proposed Systems 33

3.1 Purposes . 33

3.2 Supposed Users and Usage Scenarios . 37

i

3.3 Characteristics . 39

3.4 Network Service Examples . 41

3.5 Summary . 43

4 Architectural Design and User Experience 45

4.1 Network Services Perspective . 45

4.1.1 Service Insertion Mechanism . 45

4.1.2 Flow Handler Structure . 47

4.2 FreeNA Architecture . 49

4.2.1 The FreeNA Client . 50

4.2.2 The FreeNA Server . 54

4.3 Conceptual Approach to Ensure end-to-end consistency 57

4.3.1 Dynamic Service Composition based on Negotiation 58

4.3.2 Transport-Layer Protocol-Free Environment 59

4.4 Configuration Mechanism . 59

4.4.1 Network Service Configuration . 61

4.4.2 Protocol Configuration . 63

4.5 Summary . 64

5 Implementation 65

5.1 FreeNA Client/Server . 65

5.2 Upper-Layer Network Services Insertion 66

5.2.1 Network Services Composition . 66

5.2.2 Transparent Insertion Mechanism 69

5.2.3 Development of Network Services 70

5.2.4 Handling Multiple flows . 74

5.3 The Negotiation Mechanism . 75

5.3.1 The Timing of the Negotiation . 75

5.3.2 Negotiation Channels . 76

ii

5.3.3 Determining Network Services . 79

5.4 Transport-layer Protocol Insertion . 83

5.4.1 Composition of Transport-layer Protocol 83

5.4.2 Development of Transport-layer Protocols in User-space 85

5.4.3 Process Flow from the Application to the Protocol Server 86

5.4.4 Protocol-free Environment . 86

5.5 Summary . 89

6 Evaluation 91

6.1 Functionality Comparison . 91

6.1.1 Reviewing from Users’ Perspective 91

6.1.2 Reviewing from Network Services’ Perspective 95

6.1.3 Reviewing from Applications’ Perspective 98

6.1.4 Reviewing from Platforms’ Perspective 102

6.2 The Manageability of FreeNA . 104

6.3 Security . 106

6.3.1 Access control mechanism . 106

6.3.2 Vulnerability . 106

6.4 Performance Evaluation . 107

6.4.1 Performances of Upper-Layer Service Insertion 108

6.4.2 Performances of Transport-Layer Protocol Insertion 117

6.5 Summary . 122

7 Conclusion 124

7.1 Contributions . 124

7.2 Discussion . 128

7.3 Future Work . 130

7.3.1 Full Fledged Deployment into Practical Environment 131

7.3.2 Full Autonomic Service Insertion 131

iii

7.3.3 Dynamic Updates of the Network Service Composition 131

A Syntax of the Configuration File 144

A.1 The Service Element . 144

A.2 An Example of the Configuration File . 145

B Implementation Notes 146

B.1 Recursive Socket Functions Calling Problem 146

B.2 Supported Socket Functions . 146

B.3 Internal Socket Function Interposing . 147

iv

List of Figures

1.1 The IP hourglass structure . 3

1.2 Parameter adaptation . 5

1.3 Compositional adaptation . 7

1.4 Local adaptation . 9

1.5 Global adaptation . 9

4.1 Perspective view of network service insertion 46

4.2 Flow handler structure for network services 48

4.3 Flow handler chain between the application and OS 48

4.4 Overall FreeNA architecture . 49

4.5 Example of FreeNA client usage . 52

4.6 Perspective architecture of the FreeNA client 53

4.7 Perspective architecture of the FreeNA server 56

4.8 The overview of the negotiation for dynamic service composition 58

4.9 The outline structure of the configuration file 60

4.10 The structure of the service element . 61

4.11 The structure of the using-rule element . 63

4.12 The structure of the protocol element . 63

5.1 The internal service info structure . 67

5.2 Hierarchical Structures of Inserted Services 68

5.3 Execution sequence of the FreeNA-enabled application 70

5.4 Synoptic structure of process image with FreeNA 71

5.5 Example of compression service library’s functions 72

v

5.6 Example of SSL service library’s functions 73

5.7 Internal structure of the shared server and its service library 74

5.8 Timing of conducting the negotiation . 76

5.9 Dual channels for the negotiation and the communication with SIP protocol 77

5.10 Determination of FreeNA existence with IP RR 78

5.11 Extended SDP for FreeNA’s negotiation 79

5.12 Offer message with extended SDP . 82

5.13 Answer message with extended SDP . 82

5.14 A kernel-level new protocol . 83

5.15 A user-level new protocol . 83

5.16 A user-level new protocol for FreeNA . 84

5.17 An implementation structure of transport-layer protocols 85

5.18 An insertion structure of service functions and transport-layer protocols . . 87

5.19 Checking a protocol used by the client at connection time 88

6.1 Experimental Network . 107

6.2 System-call overhead measurement points for the FreeNA-enabled application109

6.3 System-call overhead measurement points for the comparing application . . 109

6.4 Throughput of client on Linux . 115

6.5 Throughput of client on Linux . 115

6.6 Throughput of client on Windows . 116

6.7 Throughput of client on Windows . 116

6.8 Throughput of the receiver application on Linux 119

6.9 Throughput of the receiver application on Windows 119

6.10 Throughputs of the two receiver applications running simultaneously . . . 120

6.11 CPU load average during the communication 121

A.1 A fully example of the configuration file . 145

B.1 Assembly-level socket function call graph 149

vi

List of Tables

1.1 Transparent extension techniques of networking software capabilities 8

4.1 List of major commands of the FreeNA client 51

4.2 Available options of service usage . 62

5.1 SSL service library’s functions and their purposes 72

5.2 The relationship between the essentiality attribute and the configuration

type . 80

5.3 Relationship between the protocol library and server process 86

6.1 Comparison of system usability . 94

6.2 Comparison of network service features . 98

6.3 Comparison of adaptability for application’s features 101

6.4 Comparison of system independency from the platform 104

6.5 Machine specifications . 108

6.6 Sending socket-call overhead on Linux . 110

6.7 Receiving socket-call overhead on Linux . 110

6.8 Sending socket-call overhead on Windows 111

6.9 Receiving socket-call overhead on Windows 111

6.10 Transmission time with light-weight service 112

6.11 Transmission time with heavy-weight services 112

B.1 Supported socket functions (AF INET) . 146

vii

Chapter 1

Introduction

Networks have become social infrastructures that are still evolving. Many people have

innovated advanced capabilities and services for traditional TCP/IP networks. However,

this diversity of networks makes is difficult for users to yield flexible and environment-

adaptable network systems under a unified technology.

In this chapter, the current status and problems of networks are described as a back-

ground for this study. Next, several practical methodologies including the current cutting-

edge studies are discussed for solving these problems, and then our proposed system is

introduced with its advantages over the existing systems. Finally, the organization of this

paper is presented.

1.1 Present and Issues of Network

Since current networking technology is rapidly evolving, many users can access in-

formation from all over the world without any geographical and temporal constraints.

Currently, networks have become a fundamental infrastructure for social services such

as E-commerce, online banking, social networking service (SNS), and cloud computing.

Moreover, the idea of a ubiquitous network[1] has attracted an enormous amount of inter-

est to bring innovation to networks based on our own individual lifestyles. For instance,

people can access networks with their familiar devices to make their life more convenient.

Such higher-level services have to be provided on efficient and flexible network systems.

Most current networks are based on the TCP/IP protocol suite, and any applica-

1

tion that supports it can communicate with another application without custom-made

protocols. However, because the TCP/IP protocol suite provides only a fundamental

connectivity and typical networking services1 between end-to-end applications, additional

protocols are required for practical applications. In practice, networks have evolved by

incorporating extended functions on the TCP/IP core functions complementary without

actually changing them. This implies that current networks simultaneously contain both

old-fashioned and cutting-edge systems.

There is a hierarchical structure referred to as a hourglass based on TCP/IP (See Fig.

1.1) in the background of the universality of fundamental networking capability. The

main idea of this structure is that TCP/IP ensures there is a logical connectivity between

end-to-end applications. Users can introduce a variety of applied networking services on

TCP/IP and physical access technologies under TCP/IP. However, since many systems

that only support traditional networking services, it is difficult to widely deploy advanced

services in the network, and users may struggle to replace core network protocols with

new protocols for backward compatibility problems. As a result, users will continue to use

traditional protocols by exploiting system loopholes (a NAT system is an actual example

of this problem in that it is originally introduced as a temporary solution to cover an IPv4

global address space).

Network applications and networking services are evolving as the network environment

expands and diversifies, but a variety of dedicated systems depending on a particular

platform or the development environment have been developed because of the lack of

a higher-level unified platform for advanced networking services. As a result, advanced

networking services have to be separately developed for many environments without a

unified system interface.

In practice, current network applications need to be able to support upper-layer ser-

vices2, such as security and QoS functions. In addition, rapidly growing mobile applica-

tions also have to also have to be able to support mobility services like location-awareness

1In this paper, a networking service refers to a logical function composed of a set of computation or
communication procedures, and one service mainly corresponds to one network protocol.

2In this paper, upper-layers refers to session-layers, presentation-layers, and application-layers.

2

Figure 1.1: The IP hourglass structure. Applied services are put on IP protocol and
access protocols are located under IP protocol.

and session migration functions. These services often require some expertise for develop-

ing and operating them. As a result, incorporating advanced services into existing user

systems tends to be an experimental work, and this requires too many system modifi-

cations. Some services, such as those for security purposes, require continuous service

upgrades, which can burden users with operations for their systems. Therefore, a scheme

for easily introducing and experimenting on given services is required for current network

systems.

The concept of autonomic computing[2] has recently gathered a lot of attention for

more easily managing computer systems with higher-level human guidance. With an au-

tonomic computing environment, users (administrators) are able to effortlessly integrate

a new component into existing systems. Therefore, this idea could be a key solution to

creating highly-diversified network software that can adapt to a given network environ-

ment.

3

1.2 Adaptation of Networking Capability in Software

In the previous section, the structural problem in current network environments was

referred to as rigidly designed and implemented of network software. To keep up with the

ongoing growth of network environments, network softwares should have the flexibility

mechanism to fit with the surrounding network environments. In this study, we focus on

flexible and composable networking functions that can be used by many existing network

systems. That is, networking service implementations can be added to/removed from

application structures flexibly without any modification of the existing system. If such

service implementations are available for many existing applications on various platforms,

old software assets will not have to be discarded.

The notion of software adaptation[3][4] could be a key technology making network

software more flexible. Software adaptation has been defined as enabling the software

to modify its structure and behavior dynamically in response to environmental changes.

According to Philip et al.[5], there are two general approaches to implement software

adaptation – Parameter adaptation and Compositional adaptation.

Parameter adaptation has been used to alter the behavior of an application by adap-

tively calibrating the necessary parameters in accordance with the environmental changes.

In most network systems, the TCP protocol uses the parameter adaptation mechanism

such that TCP adjusts the transmission rate based on the network congestion or amount

of available buffer amounts. In particular, a window size parameter is used to determine

a balance between the efficiency and fairness of the communication.

Figure 1.2 shows a conceptual diagram for parameter adaptation. The application’s

core module periodically checks the surrounding environments, and it updates the param-

eter settings when the environment is changed. Since these parameters are controlled by

the application under a certain strategy, each parameter can be updated by the application

itself. Due to this simplicity, this adaptation mechanism has already been implemented

in a lot of network software. However, this mechanism has two big drawbacks in that the

application’s behavior cannot be changed drastically like a full-replacement of the algo-

4

rithms or protocols, and the application developers cannot incorporate future functional

requirements into the application during development.

Figure 1.2: Parameter adaptation

On the other hand, the compositional adaptation mechanism can be used to directly

replace the algorithmic or structural system components. TCP can change its behavior

as the environmental changes, but there are some cases where TCP is not suitable. For

example, Tian et al.[6] pointed out that the traditional TCP performs poorly in a wireless

environment due to its inability to distinguish the packet losses caused by network conges-

tion from those attributed to transmission errors. Therefore, such as TCP-Westwood[7]

and TCP-Jersey[8], a revised TCP that has mechanisms for deciding the cause of a packet

loss and for accurately estimating the network bandwidth is needed for creating a more

efficient wireless communication.

Next, let us take the encryption algorithm for another example; encryption is the basis

for current networks and there are many standardized algorithms. However, as there is an

ever-increasing amount of computational power and algorithm analysis, most algorithms

cannot gradually ensure their amount of security. Therefore, more powerful algorithms

need to be created to replace the old ones in many network systems, such as AES[10]

that has replaced DES[9]. Consequently, networking softwares has to use a variety of

functional strategies to suit the individual network environments, and a compositional

5

adaptation mechanism is essential for this purpose.

Figure 1.3 illustrates the conceptual diagram of a compositional adaptation. Compared

with parameter adaptation, additional programs are needed because most applications do

not have a mechanism that can dynamically and automatically replaces some program

components. A common platform is a kind of execution environment for applications.

Functional strategies are realized as components that are stored within the platform, and

these components can be replaced with an application’s default components at runtime.

To support a variety of applications implemented with different API and ABI, a common

platform must provide abstract interfaces to both the users and the applications. An

adaptation mechanism also checks the environment and determines whether the current

component is an adequate strategy. If not, the adaptation mechanism replaces the default

strategy with another one offered by a driver program. Generally, since the application

and adaptive mechanism are structurally divided, a special interface that is like glue

interface is required to attach the adaptation mechanism to the application.

1.3 A Transparent Approach to Compose Adaptive

Software

Adaptive software is an effective method to keep up with the ever-growing network

environment, but it is impossible for every piece of networking softwares to be made

adaptive. As I mentioned before, backward compatibility must be considered in order

to widely deploy new mechanisms in the network. Therefore, a transparent approach

for making existing networking software adaptable must be developed in order to keep

every piece of software up-to-date. In particular, the transparency would mean that the

application’s capabilities would be extended without the developers having to statically

modify the source code. Although this transparency seems difficult to achieve, several

software techniques have been proposed for the transparent extension of the networking

software capabilities.

Table 1.1 lists some transparent extension techniques. Although there are many tech-

6

Figure 1.3: Compositional adaptation

niques, an adequate one has to be used to compose adaptive networking software so that

the effort for introducing the adaptive mechanism will be minimal, and as many systems

as possible can be supported.

1.4 End-to-End Consistency of Adaptive Communi-

cation

Many researchers have thus far proposed various adaptive software and transparent

extension techniques. However, little attention has been given to maintaining end-to-

end consistency during adaptive communications. In particular, the interoperability with

existing networking systems has not been discussed. Since adaptation implies that the

composition of a protocol stack is changed, the other protocol stack must be similarly

7

Table 1.1: Transparent extension techniques of networking software capabilities

Approach Description

Extension programs are implemented within the
source code or runtime component automatically.

Language-based Static extension method like Aspect Oriented
Programming and dynamic extension method like
dynamic binding are commonly used.

An additional system like middleware alters
program’s behavior by modifying API’s internal

Binary-based behavior using interposing techniques, or directly
changes application executables using process
image manipulation mechanism.

The protocol stack is implemented within the
kernel in many OSes. Therefore, every networking

OS-based functions can be manipulated as long as the OS
allows modification of the protocol stack.

Virtual machine provides real network environment
to the guest OS and applications by bridging real

VM-based and virtual network. Since VM can gather network
packets from/to applications, it is possible to
introspect and modify them by software.

Proxy is an independent program located between
end-to-end systems. Proxy has a capability of

Proxy-based analyzing protocol layers, and can act as a
protocol interpreter. There are host type proxy
and network type proxy.

changed at the same time. Therefore, existing studies have implied a local adaptation

where the implementation itself is updated at one end while maintaining the same protocol

interface, or that develops its own control protocol that conveys messages for adaptation.

Local adaptation can be introduced into existing networks because the remote appli-

8

Figure 1.4: Local adaptation

Figure 1.5: Global adaptation

cation does not need to follow the adaptation (See Fig.1.4). On the other hand, global

adaptation requires a mechanism to maintain an end-to-end consistency during the adap-

tation (See Fig.1.5). Considering the interoperability with existing networks, the consis-

tency mechanism should be realized on common protocols or higher-level protocols such

that existing network equipment can deal with the communication flow.

1.5 Purpose and Composition of This Paper

I would like to explore a common software framework in this paper for diversifying the

networking capabilities by focusing on the architectures of networking software, such as

the applications, servers, and protocol stacks. The proposed framework intends on being

used in networking applications or servers to extend their networking capabilities. This

study takes into account the methodologies and implementation techniques for extensible

and interoperable networking softwares. In particular, instead of creating a brand-new

network environment, existing network environments are enhanced such that advanced

9

services are widely introduced by making the network software functions more flexible

within the compatibility constraints.

Network applications usually use socket interfaces that abstract networking functions

to communicate over the network. A socket interface generally supports two types of

communication styles: connection-oriented communications and connectionless-oriented

communications, and it enables for the construction of network software to be independent

from each network protocol. So, I am proposing a system that transparently brings the

composability and adaptability of the networking capabilities to applications by focusing

on the abstraction of the socket interface.

In particular, a generic framework called FreeNA is proposed as an instantiation of

a compositional adaptive system. FreeNA hides the platform-dependent issues like API

and ABI (Application Binary Interface), and also offers an abstract interface to its users

and applications. The networking capabilities of the application are adaptively composed

by transparently alternating the behaviors of the socket functions. Therefore, users can

compose the application’s capabilities in order to meet the networking environment with-

out having to directly modify the application’s code. In addition, since FreeNA provides

a higher-level abstraction such that the users can instruct the networking capabilities and

environmental conditions using a human-readable configuration file, FreeNA can be used

to construct autonomic computing environments.

So far, many related systems have been developed that can transparently change

the networking capabilities of an application. However, the existing systems have some

restrictions on the platform, performance, developer-oriented behavior, usability, flexible

functions composition, backward-compatibility with existing network environment, and

end-to-end consistency. Compared with the existing studies, this study aims at a more

pragmatic system by overcoming the drawbacks of a realistic environment such as the

operating systems, programming languages, and network protocols.

The rest of this paper is organized as follows.

10

Chapter 2: Related Work for Adaptive Systems and Communications

We start by introducing the current studies for adaptive systems, their transparent

approaches, and networking services. First, adaptive systems are categorized by their

transparent approaches. Their characteristics and drawbacks are also described from the

perspective of their flexibility, interoperability, and usability. Next, the practical software

services and support systems are presented as the basis of the adaptive communications.

Finally, the related systems are reviewed from the perspective of the protocol composition

and end-to-end consistency compared with the proposed system.

Chapter 3: Fundamental Policies for Adaptive Communications and System

Usability

The fundamental policies for the proposed system are considered to represent a vision

for the above-mentioned goals. The purposes of FreeNA are clarified first. Based on these

purposes, the expected users and usage scenarios are described. Next, the characteristics

that FreeNA needs are considered. Moreover, some network services examples are also

given to show the usefulness of FreeNA.

Chapter 4: Architectural Design and User Experience

The architectural design of FreeNA is explained in light of the FreeNA characteristics

described in chapter 3. Since FreeNA is composed of several subsystems, the role and rela-

tionship to the other components are clarified for each subsystem. In addition, the actual

usage of FreeNA with the configuration file for the service composition and operational

commands is also described to prove the usability of FreeNA.

Chapter 5: Implementation

The internal architecture of the FreeNA system is clarified. First, the implementations

of the FreeNA client and server are explained, then the mechanism for the service insertion

and the implementation of the flow handler are explained. In addition, the mechanism

for the Transport-layer protocol insertion is also described in addition to that of the

11

upper-layer service insertion.

Chapter 6: Evaluation

The FreeNA system is evaluated on the basis of several diverse perspectives to prove

the fulfillment of FreeNA’s goals. The functionality of FreeNA is compared with that

of other similar systems first. Next, the manageability and security aspects are also

discussed. Furthermore, the system performance of FreeNA is measured. In particular,

the performance overhead of the service inserting mechanism itself is evaluated, rather

than the effects of the network service execution.

1.6 Summary

The characteristics and issues of the current network environment as background of

this paper are described in this chapter. Current networks that are based on TCP/IP

have became social infrastructures that include the Internet, and still evolve with the

introduction of advanced services. However, TCP/IP only provides the fundamental

connectivity on the network, but more practical systems must support advanced and

diversified networking capabilities on their own.

Some key technologies for keeping up with this evolution are autonomous computing

and compositional adaptation. Autonomous computing is a concept where users can easily

manage computer systems using higher-level human guidance. Compositional adaptation

makes software adaptable such that the software dynamically modifies its structure and

behavior in response to changes in its execution environment. If widely-used networking

software becomes compositionally adaptable using higher-level human guidance, a variety

of advanced network services can be incorporated into large-scale networks without incur-

ring the backward-compatibility problem. In addition, we must consider the end-to-end

consistency to leverage these methodologies for adaptive communications.

In this paper, I propose a common software framework for diversifying the networking

capabilities. The proposed framework FreeNA intends the networking applications or

servers to extend their networking capabilities by using the compositional adaptation

12

method. FreeNA hides the platform-dependent issues like API and ABI, and also offers

an abstract interface to its users and applications. The networking capabilities of the

application are adaptively composed by transparently alternating the behaviors of the

socket functions. Throughout this paper I take into consideration the more essential

points for achieving a more practical adaptive communication mechanism by discussing

FreeNA.

13

Chapter 2

Related Work for Adaptive Systems
and Communications

The proposed framework, named FreeNA, is a common platform for a variety of net-

working applications and servers for adaptive communications and autonomous comput-

ing. Since these two methodologies are based on various technological elements and

conventional aspects, many existing studies are related to this research.

In this chapter, the existing studies on adaptive systems, their transparent approaches,

and their networking services are introduced. First, the adaptive systems are categorized

by their transparent approaches. Their characteristics and drawbacks are also described

from the perspective of the flexibility, interoperability, and usability. Next, practical

software services that can be incorporated as higher-level network protocols and support

systems are presented as the basis for adaptive communications.

2.1 Compositional Adaptive Systems and Their Method-

ologies

The automatic transformation of an application’s capabilities is the heart of com-

positional adaptation. Ideally, every application has an adaptive mechanism to fit the

execution environment because it takes a lot of effort for developers or administrators

to keep up with all the necessary changes. However, considerable knowledge and devel-

opment skills are required to develop adaptive systems. For this reason, an additional

mechanism is needed to incorporate an adaptive mechanism into existing systems. So

14

far, many researchers and engineers have developed support systems and techniques for

the necessary adaptation. As a result, several types of recomposition techniques for the

software capabilities have been recognized as the fundamentals of software adaptation.

I describe the existing adaptive systems and recomposition techniques in this paper,

and their characteristics and drawbacks are also discussed.

2.1.1 Language-based Adaptation

Extension programs are automatically implemented within a source code or runtime

component. Generally, there are two types of adaptation, compile-time adaptation and

runtime adaptation. In compile-time adaptation, extended functions are directly inserted

into the source code of the target application using Aspect-oriented Programming (AOP)

method[11] or Subject-oriented Programming. However, runtime adaptation systems in-

sert extended functions using dynamic binding mechanisms provided by the language

itself. In particular, a dynamic object loading mechanism, an introspection method, a

byte-code manipulation technique, and a VM modification technique are used.

Source Code adaptation

AOP was thought up based on the Separation of Concern (SoC) in order to weave cross-

cutting concerns into the specified point automatically at the compile-time. To construct

highly reusable software components, environment-dependent codes (aspects), such as

those for security or logging, have to be separated from the core component. Thus, AOP

enables developers to implement aspect codes as independent components and to specify

the join-point into the core component. As a result, an aspect compiler automatically

weaves the aspects into the join-point before compilation.

Zhang et al.[12] proposed a model-driven approach to introduce an adaptive mecha-

nism to non-adaptive legacy systems while maintaining the use of the AOP mechanism. In

this approach, three conceptual levels are introduced to provide an adaptation with assur-

ance. First, the fundamental adaptation is applied using the UML model of the existing

system. Next, the correctness of the adaptation is checked using the formal method from

15

the perspective of the local properties and global invariants. Finally, an extended code

is implemented and added using the AOP technique. As a result, non-adaptive existing

systems can radically and correctly become adaptable systems.

MetaSockets[13][14] are adaptable communication components that provide a reflec-

tive extension to the existing Java classes. MetaSockets are created from the existing Java

socket classes by absorbing their functionalities and interfaces using Adaptive Java[15].

That is, MetaSockets provides a higher-level abstraction of the networking capabilities, in

contrast to the socket interface only providing a lower-level abstraction similar to the net-

work connectivity. Since MetaSockets provides the same interface as the absorbed socket

classes, the existing Java classes can invoke traditional socket operations using MetaSock-

ets’ functions. Adaptive Java enables runtime adaptation of the internal architecture of

MetaSockets and their behaviors in response to the environmental changes at runtime.

Therefore, users can make their Java applications adaptable without modification of their

core components.

Runtime Environment adaptation

ASM[16] is a Java class code generation and manipulation tool designed to dynami-

cally generate and manipulate Java classes. Although ASM is based on a visitor design

pattern[17], it does not de-serialize the object graph, and directly modifies the serialized

graph directly. In this approach, there are there three objects for instrumentation; one

class analyzer and two visitors, and they collaborate with one another to dynamically

manipulate the instruction sequence. As a result, the runtime applications can be small

and fast because unnecessary de-serialization is not executed per bytecode instruction.

Javassist[18] is a Java bytecode manipulation tool based on the reflection mechanism.

While other similar systems provide a behavioral reflection that interposes the method

invocation to alter its behavior, Javassist supports the structural reflection that can mod-

ify the definitions of the data structures, such as the class, method, and record. Javassist

manipulates the bytecode of the Java class when the class is loaded to Java VM. In par-

ticular, the advantage of this method is that Java VM does not need to be modified.

16

In addition, users can modify the behavior of the specified Java method by replacing

the original method with another one. Therefore, it is possible to introduce an adaptive

mechanism into existing Java programs without modifying them.

Problems and Perspectives

Although these systems enable a granular program enhancement mechanism, users

of these systems are largely limited to developers because the users have to know the

internal architecture of the system and its behavior in detail. Even though there are

experienced developers, it is not easy to analyze a large-scale system and develop an

appropriate adaptation strategy, and normal users obviously cannot involve themselves

in these methods.

In addition, users must use the support system corresponding to the programming

language that is used to implement the target application. Therefore, there are cases

where users cannot find adequate systems for their target applications.

As for the aspect-oriented programming and subject-oriented programming techniques,

there is no unified aspect/subject-oriented system, and the functionality and usability are

different from each other. Therefore, users can only use aspect/subject-oriented system

corresponds to the target language, and it is difficult to widely apply these methodologies

to a variety of existing systems. In addition, users must have the source code of the

application. However, there are common cases where the source codes of the applications

are hidden like many commercial systems.

On the other hand, runtime environment adaptation systems like ASM and Javassist

do not require the source code of the target application. However, these systems target

more experienced developers who have internal knowledge about the language systems in

order to manipulate the intermediate language.

Compared with these systems, the proposed FreeNA system also targets inexperienced

users by offering a highly abstracted interface. That is, there is no need to write a code

to incorporate other components into existing systems. Moreover, the source code of the

target application is not needed to change the existing application’s behavior because

17

FreeNA uses a binary-based adaptation method that will be described later in this paper.

2.1.2 Binary-based Adaptation

In binary-based adaptation, the application’s behavior is altered after compilation

without changing the source code. Two types of manipulation techniques, system-call

interposition and process image manipulation, are commonly used for the modification

process. In both techniques, since the source code cannot be modified, another program

like a middleware system is needed to handle the target application.

System-call Interposition Techniques

Basically, applications have to call system-calls or API to use the OS’s capabilities,

such as the networking and file I/O. That is, any type of application implemented with

different programming languages eventually uses the same system-call as long as the

underlying platform is in the same series. Therefore, it is possible to interpose the system-

call invocation and alter its internal behavior by preparing a hook at certain system-call

execution points.

An Interposition Agent[19][20] is a higher-level or abstracted toolkit for effectively

using the system-call interposition. This toolkit interposes an arbitrary user code ex-

pressed as high-level objects between the target application and the instances of the

system interface, rather than the directly modifying the intercepted system-call. Users

can implement additional codes as objects that have several functions corresponding to

the traditional system-calls. System-call interposition is achievable by using a special

system-call, task set emulation() that is offered by the Mach operating system[21],

which redirects the instruction point to a specified user code when the specified system-

call is invoked. Therefore, the users’ applications can be used as they are as long as they

use the corresponding system-calls.

DITOOLS[22] is an application-level tool that supports the dynamic interposition on

dynamically-linked function call boundaries. DITOOLS appends additional execution

stages, which are the extension and binding stages after a loader’s reference resolution. In

18

the extension stage, the need for extending is checked based on the user configuration file,

then the bindings between the dynamically-linked references and definitions exported by

the modules are changed in the binding stage. To arrange the execution stages and ma-

nipulate the executable images, a customized runtime linker and loaders are introduced.

Therefore, these tools can be applied to not only the system-calls offered by the platform,

but also the library functions that are dynamically linked. In addition, users can use

DITOOLS without privileged user intervention because this tool works in the user-space.

A library preloading technique can be used to replace the entire dynamic-linked library

with a specified one at the time of execution. Many platforms provide some mechanisms

that the runtime linkers can check for specified preloading libraries before linking the

default libraries. For example, the Unix/Linux platforms offer LD PRELOAD or a similar

environmental variable, and the linker checks this variable to determine the involved

libraries. Therefore, this technique can only be applied to dynamic-link libraries, so static-

link libraries or functions cannot be changed. System-calls are invoked by triggering an

architecture dependent software interruption mechanism instructed with an assembler

language. However, since many system-calls are wrapped in a user-level system library,

the library preloading method can be used to modify the internal behaviors of system-calls.

In practice, TESLA[23], Trickle[24], and TCP Stream Filtering[25] use this technique to

interpose socket functions to execute additional user codes.

FUSE[26] is a framework that supports implementation of a new filesystem in the

user-space for the Unix/Linux platforms. FUSE consists of an API and a loadable kernel

module. Users can define their file I/O functions that have the same interface with

traditional system-calls within a fuse operations structure, and it is used by the API

offered by FUSE. FUSE’s kernel module is loaded into the kernel-space to hook into

the Virtual File System (VFS) and redirects the file I/O system-calls to the user-defined

functions. User filesystems are implemented as executable binaries linked with the FUSE

library. Consequently, the applications and underlying kernel can use full-scale additional

filesystems without any modification.

19

Process Image Manipulation Techniques

Instead of system-call interposition techniques hooks between the applications and ker-

nels to intercept a function call, the following systems directly changes the code instruc-

tions or binary executables. Since process image manipulation also allows users to in-

trospect and modify the internal structure of the program, such as the text code and

memory variables, the application’s behavior can be altered more radically. In addition,

not only the dynamic-link functions but also the statically-linked functions can be inter-

cepted. Therefore, it is possible to develop an application-dedicated intermediate system

that finely manipulates the application without the source code.

Vx32[27] is a multipurpose user-level sandbox system for the x86 architecture that

enables any application to safely load and execute extended code. Vx32 traps the I/O

instructions of the host application to prevent malicious codes from being executed, and it

confines guest codes to a particular memory region in order to separate them to the host

application’s memory region. Since Vx32 works entirely within the user-space, it cannot

use a special kernel mechanism or the processor’s privilege-level mechanism. Therefore, it

leverages the dynamic instruction translation techniques like Valgrind[28], which directly

and safely rewrites the code sequence before executing it. Since many operating systems

allow users to access the x86 architecture capabilities like the segmentation mechanism,

vx32 can work on many common kernels, such as Linux, FreeBSD, and Mac OS X with-

out needing special privileges and kernel extensions. Moreover, extended codes can be

executed efficiently because the application’s instruction sequence is directly modified.

Dyninst[29][30] is a C++ class library and API for post-compiler program manipula-

tion. DyninstAPI can change an application’s process image already running on many

platforms, such as Linux, FreeBSD, Solaris, AIX and Windows by dynamically instru-

menting the code into the image. One characteristic is that the C++ classes and the

API are represented as a machine-independent mechanism even though a binary manipu-

lation technique heavily depends on the underlying platforms and machine architectures.

Therefore, users can use the same classes and API irrelevant of their platforms. Similar

20

to Vx32, Dyninst can directly arrange a code sequence so that it introspects/modifies all

the symbols within the image, even for variants, functions, and even dynamically linked

libraries. Moreover, additional code blocks can be inserted into a specified instruction

point, and particular instructions can be removed in their entirety from the image. As a

result, the users can completely control the application’s behavior and internal structures

with Dyninst.

Livepatch[31] is a user-level intermediate tool for applying binary patches to already

running applications on Linux. Livepatch enables users to manipulate the application

process image for setting arbitrary values to specified memory addresses, allocating ex-

tended memory space within the process image, and linking and loading extra shared

libraries. Actually, Livepatch utilizes the ptrace() system-call, which can intercept spec-

ified system-calls before and after execution, and the BFD library[32] that can handle a

variety of binary formats. Since ptrace() has to hook a specified system-call per invo-

cation each time, it causes significant overhead when the system-call is executed many

times.

Problems and Perspectives

Although these systems and tools can be used without the source code of the applica-

tion, recompiling, and relinking, their mechanisms are mostly platform-dependent, and it

is impossible to support so many platforms and machine architectures by using a single

tool even though there are some portable systems like Dyninst. Therefore, several binary-

adaptation techniques should be combined to widely introduce an adaptation mechanism

into existing systems.

Special system-calls for an interposition, such as ptrace() and task set emulation()

are reasonable enough to modify an application’s behavior at runtime. However, the

performance overhead of the invoking user codes is relatively large because the execution

flow is moved from the application to the kernel to redirect the specified system-call.

Consequently, a lot of context switching between the user-space and kernel-space are

needed to execute an extended user-code.

21

Customized runtime linkers and loaders are effective at rebind function calling dur-

ing runtime. However, this binding can only be applied to dynamically-linked functions

not statically-linked functions. In addition, it is difficult to port these systems to other

environments because the runtime linker and loader are core systems of the runtime en-

vironment and so many existing programs depend on them.

The library preloading technique is also a simple method for interposing additional

codes into the execution flow of the library function. However, this technique can only

be applied to shared libraries too. In addition, it is difficult to compose a cascade of

several libraries independent of each other. To do this, a mechanism that can create a

glue library with dependency information is necessary. Moreover, users have to know the

library information, such as the exporting functions and versions.

On the other hand, the process image manipulation technique can directly change the

behavior of the application, and not only the library calls but also the statically-linked

functions can be handled without needing special platform capabilities. In addition,

this technique enables for the efficient execution of the user codes because additional

instructions are not needed for the interposition. Generally, the structure of a process

image varies because of the object format and processor architectures, and advanced

techniques are required for users even though the abstract interface is provided by Vx32

or Dyninst.

In contrast, FreeNA is designed for portable systems even though it uses binary-

adaptation mechanisms. This portability is achieved by separating the platform-dependent

techniques from the core systems of FreeNA, and by implementing a mechanism that can

select an adequate adaptation mechanism depending on the user’s platform. In addition,

FreeNA provides more higher level abstract interfaces to its users, rather than hiding the

platform-dependent issues. Therefore, users can concentrate on interposing user codes

without having to take into consideration the interposition method.

22

2.1.3 OS-based Adaptation

Generally, common operating systems directly manage the resources such as the net-

work access, and hides a low-level mechanism from the users and applications. OS-level

adaptation can control not only an application’s behavior but also the network capabilities

in more detail than other adaptation mechanisms. However, many OSes are not designed

to extend their internal structures and modify their behaviors using users’ operations.

Therefore, dedicated systems are needed to achieve the user-oriented recomposition of

the OS capabilities.

x-Kernel[33][34][35] is a composable OS for network protocols where users can config-

ure and compose the modularized protocols within a kernel during the operation time.

Implementations of network protocols are abstracted as object-oriented designs, and each

protocol object corresponds to a conventional network protocol where the relationships

between protocols are flexibly defined. The relationships between protocols are defined as

a graph structure with user-oriented tools, and C code is automatically generated from the

graph. That is, users can implement their desired protocols as independent modules, and

configure their composition and relationships using the dedicated tools within the kernel.

Currently, x-Kernel is ported to other platforms as a user-level virtual operating system in

order to deploy flexible networking capabilities mechanisms into a practical environment.

Stream[36] is a component-based I/O mechanism on the Unix system V that linearly

connects applications and devices like the pipe mechanism. The stream is composed of

several independent modules that express the communication capability, and each module

receives messages from the previous module, processes them within the module, and

passes them to the next module in both directions. Although the two end modules

in a stream are automatically connected to work as an interface with the application

and the device, intermediate modules can be dynamically attached upon request by the

application. Therefore, network protocols can be implemented as stream modules, and

the users can directly introduce new protocols into the protocol stack within the kernel.

Like the socket interface, an interface to a stream is provided as API – TLI/XLI and the

23

necessary networking capabilities are decided by the application through this API.

Scout[37][38] is a subsequent x-Kernel OS that can also adapt the changes of the

execution status of the kernel. Scout introduced a path concept that expresses —. The

notion of the path enables the dynamic adaptation of a system resource allocation or

scheduling based on the application’s characteristics, such as the IO-intensive.

Problems and Perspectives

Although the operating system supports an effective and efficient way for composing

networking capabilities corresponding to its environment, it is difficult to introduce this

mechanism to widely-spread existing systems. First, the common operating systems cur-

rently in widespread use, such as Windows and Linux, do not have user-level flexible

composition mechanisms for their kernel capabilities. As a result, dedicated composable

mechanisms have to be ported to practical OSes as a kind of middleware in the user-space

like the current x-Kernel, and the host OS’s functions should be diverted to use the low-

level mechanisms. Consequently, it becomes difficult to avoid competition between the

host OS’s capabilities and the user-space OS’s. Moreover, since applications have to use

the specialized API provided by these OSes to configure the compositions of the capabili-

ties, the already existing applications cannot use these mechanisms without modification.

In addition, the composition of the capabilities within the kernel requires a rebooting of

the system, so the application cannot immediately adapt its executing environment.

2.1.4 VM-based Adaptation

A virtual machine provides an abstract and practical machine architecture for the

guest OS. The guest OS’s and applications’ behaviors are dynamically altered such that

particular code instructions are translated to fit with the authentic machine architecture.

Generally, three modification techniques, binary rewriting, para-virtualization, and hard-

ware support, are used to execute the code instructions for the host machine without

modification of the guest OS and applications. Therefore, it is possible to add a hook

into the virtualization mechanisms in order to execute specified user codes. In addition, a

24

virtual machine provides a real network environment to the guest OS and the applications

by bridging the real and virtual networks. Since VM can gather network packets from/to

applications, it is possible to introspect and modify them by using software.

VTL[39] is a framework for composing a virtual traffic layer onto existing virtual

machines. The virtual traffic layer enables for packet modification and creation to trans-

parently modify the network traffic to the VM and its applications. VTL consists of

several types of API, such as packet acquisition, inspection, modification, and serializa-

tion. These APIs are used to implement networking services as independent modules.

VTL uses the libpcap[40] or Winpcap[41] packet capture the libraries to capture packets

transferring from/to the VM and the libnet[42] library to inject additional packets into

arbitrary packet streams. Therefore, VTL can be applied to VMs that provide a virtual

networking interface accessible to pcap and libnet without having to modify of the VMM,

host OS, and applications. Moreover, users can modify the lower-layer networking ca-

pabilities like the TCP protocol because libpcap can capture packets containing whole

headers.

PinOS[43] is an extension system of the Pin[44] dynamic instrumentation framework.

Pin provides user-level code instrumentation APIs to transparently modify the applica-

tion’s behavior. Compared with similar software instrumentation frameworks, PinOS has

two major advantages – it can instrument not only user-level codes but also kernel-level

codes, and it is designed to support multiple platforms including Linux and Windows even

though it can currently support only Linux. In order to achieve both two characteristics,

PinOS is based on software dynamic translation technology using a modified version of

Xen[45] VMM and Intel VT technology[46]. With the virtualization mechanism, PinOS

can use the system facilities of the host OS without any potential re-entrance problems

because the kernel’s instrumented codes and the instrumentation engine are completely

completely separate. In practice, PinOS is inserted between the guest OS and Xen VMM

so that PinOS will be in a position to observe every instruction executed in the subject

system, and a dedicated Xen driver for PinOS is installed into Xen to provide several

25

system functionalities, such as memory stealing, attach/detach, I/O services, and time

virtualization. Therefore, all the system instructions can be fully controlled by PinOS

without any modification.

Problems and Perspectives

Virtual machines (and hardware virtualization mechanism) enable system-wide virtu-

alization. In other words, even the low-level facilities of the kernel and resources can be

controlled as long as VM supports the user’s customization. As described, VM-based

systems interpose user codes where the execution flow or data flow is concentrated.

Packet capturing on VM is a simple method to entirely acquire the intended data be-

cause many VMM have the interface to the physical network and capturing libraries can

attach to it. However, this method has two drawbacks. One is that the analysis and re-

construction of captured packets are required to modify their protocols. The other is that

packet manipulation will be executed at the user-level unless a user-defined capturing and

manipulation mechanism is implemented within the VMM. Therefore, the performance

overhead of packet capturing and manipulation is significant, as shown in VTL system.

Binary instrumentation on VM is one of the few methods that transparently modifies

both the user programs and kernel facilities. Since VMM hides the physical machine

architecture and provides an abstract architecture to the guest OS, a variety of OSes

can be operated on the VMM. That is, the entire system behavior can be altered if

VMM contains arbitrary interposition mechanisms in the user’s configuration. However,

the internal architectures and abstraction mechanisms of VMM vary, and some systems

require hardware virtualization support. Therefore, this method can only be applied to a

confined VMM and physical machine architectures.

2.1.5 Proxy-based Adaptation

Proxy is an independent program located between end-to-end systems, and works as

an intermediate client or server in order to split end-to-end connections or modify the

content of the communication. Therefore, proxy has the capability of analyzing relevant

26

protocol layers, and can act as a protocol interpreter. By using the proxy mechanism, it

is possible to completely modify the networking capabilities of the client or server systems

without modification of the application program and OS.

Stunnel[47] is an independent proxy software that tunnels the TCP connections into

the SSL/TLS connections. Stunnel can work on the client-side or server-side proxies in or-

der to communicate with an SSL-compatible application instead of a non-SSL compatible

application. Therefore, two connections are used to link both applications, a connection

between non-SSL compatible applications and Stunnel, and the other connection between

Stunnel and SSL-compatible remote applications. To achieve this connectivity, Stunnel

has to deconstruct the original messages from a packet stream, and reconstruct the trans-

formed messages into the packet stream. Since Stunnel does not intervene in the internal

structure of the application and the kernel, it ensures the that transparent adaptation of

their behaviors.

A3 (Application-Aware Acceleration)[48] is a middleware that offsets the behavioral

problems of applications, such as thin session control messages or block-based data fetches.

A3 aims to boost the performance of wireless communications by controlling the application-

layer protocols session so that redundant and aggressive retransmissions, prioritized fetch-

ing, infinite buffering, and application-aware encoding are transparently completed, rather

than using the wireless-version TCP protocol. Internally, A3 consists of a user-space soft-

ware module for the mobile clients and a proxy network appliance for the servers. On

the client side, the module captures the incoming/outgoing packets using the NetFilter

utility in Linux[49] or Packet Filtering interface in Windows[50], and the captured pack-

ets are manipulated at the IP-level. Although every packet can be flexibly captured and

manipulated at lower-level, packet capturing methods require a lot of execution time and

result in a lower level of performance in actual environments.

Prometeo[51][52] is a multi-function and extensible modular-proxy system based on the

Internet Daemon[53] concept. Prometeo enables users to incorporate various networking

services, such as the IPv4/v6 transparent support, SSL tunneling, logging, and transpar-

27

ent proxy support, into Prometeo simultaneously in a manageable way. These services

are implemented as independent modules using a dedicated C++ framework. Therefore,

users can flexibly compose their intended networking capabilities without building many

different proxy systems. Actually, Prometeo adds an abstraction layer between the appli-

cation logic and the traditional socket interface within the whole application program by

encapsulating all the required functions in a set of C++ classes, rather than working as

an independent network node or middleware system.

Problems and Perspectives

Rather than changing the software structures and behaviors, the proxy-based approach

attaches data flows to transform the data itself directly. There can be two types of

proxy systems, a fully-independent proxy like Stunnel and a semi-independent proxy like

Prometeo.

A fully-independent proxy can transparently interpose an adaptive mechanism between

the end-to-end systems, and each end system is unaware of the existence of the proxy.

However, there are some cases where this type of proxy cannot be dealt with. One is when

an intermediate proxy splits the end-to-end connection, and does not ensure the end-to-

end connectivity and transparency[54]. To link both end systems, the proxy system

must guarantee their connectivity. For example, the communication port is determined

dynamically like in FTP-data, and the proxy cannot know the port number unless it

analyzes the application protocol directly, and proxy systems do not reflect the special

functionalities of the lower-layer protocols like the flow control even if the end system uses

such functions. In addition, network throughput will be significantly decreased because

the application data are extracted from the packet stream once and recomposed as another

packet stream after the manipulation.

On the other hand, the semi-independent proxy system is weakly attached to the end

system even though the proxy is a different executable program from that of the target

application. For example, end-to-end connectivity and transparency can be ensured by

the proxy controls of the the end application’s network processing. As a result, the proxy

28

properly knows the intended behaviors of the application. However, even though the

extended networking capabilities are not recognized from the end application, the proxy

has to let the application use the proxy’s functionality.

2.2 Practical Networking Services and Systems

By using the transparent adaptation mechanisms described thus far, a variety of net-

working services types can be incorporated into the existing system flexibly. Regarding

the networking services, there are many types of functionalities and working protocol

layers. Here, representative networking services for adaptive communications and their

support systems are described in separate protocol layers.

2.2.1 Upper-layer Networking Services

TESLA[23] is a common platform for session-layer services. One service sets up mul-

tiple TCP connections between end-to-end applications to improve the throughput of a

single logical data transfer. Another service migrates the end-to-end sessions for mobility

when the original session is disconnected. Another service shares congestion informa-

tion across multiple flows sharing the same network path in order to control the network

congestion by using compression, application-layer routing, or traffic shaping.

Trickle[24] provides the portable solution of an ad-hoc rate limiting mechanism in the

user-space. The Trickle library is inserted between the application and the libc library

where the network socket functions are implemented within, by using library preloading

technique. The rate limitation is performed by either using a delay of the I/O process,

truncating the length of the I/O, or a combination of the two according to a scheduler that

controls the transfer rate. In addition, Trickle allows for a collaborative rate limitation

across multiple flows using the global rate limitation and priority rate limitation based

on the communication type.

Agetsuma et al.[55] developed a mechanism that transparently converts one application-

layer protocol to another using mobile codes. When a server supports a new protocol,

for example SMTP is upgraded to SMTP-AUTH, then mobile codes used as a protocol

29

converter are downloaded and automatically converted the old client protocol. Then, the

client can transfer the mail to the server using the SMTP-AUTH protocol. Generally,

mobile code exploiting might incur security problems because malicious programs pre-

tending to be useful could be unawarely executed. Therefore, secure mechanisms are also

introduced to protect the client system. First, the mobile codes to be downloaded are

authenticated using a digital signature or trusted site. At runtime, the mobile codes are

executed within the secure sandbox that controls the resource accesses from the mobile

codes.

2.2.2 Lower-layer Networking Services

Alpine[56] allows for the development of transport-layer protocols within the user-

space instead of the traditional protocols within the kernel. To avoid kernel modification,

Alpine moves all the network stack functions including the socket interface from the kernel

into the user-space libraries. That is, the code of the protocol stack is recompiled as the

user libraries in order to ease the process that the newly developed protocol has incorpo-

rated into the kernel protocol stack. In addition, a software-only network interface driver

is introduced to the transmit/receive raw packets bypassing the kernel protocol stack.

The drawbacks of Alpine are that it can be a highly platform-dependent system even

though it does not modify the kernel codes.In this system, the transport-layer protocol

has to be properly developed to keep within the kernel specifications, such as the kernel

data structures and the synchronization mechanisms. Next, the actual throughput of

Alpine will be highly decreased because the whole networking process is executed within

the user-space, and due to its implementation style.

DR-TCP[57] supports the on-the-fly reconfiguration of the TCP protocol at runtime

by downloading another TCP implementation without compiling the code of the protocol,

and restarting the application and the system. The DR-TCP protocol is designed based

on the recursive state machine model and object delegation in order to model the protocol

functions separable from the states, and delegate the state machine’s event handling to

another state machine. That is, one state machine is seamlessly translated into another

30

state machine that represents different TCP configurations. In that paper, the DR-TCP

protocol was converted to TCP-Westwood by translating the establishment, retransmis-

sion, and fast recovery functions. DR-TCP is implemented in the user-space using a raw

socket mechanism. However, a kernel function that passes the received IP packet to the

TCP processing function is modified to replace the kernel TCP protocol with the DR-TCP

protocol.

2.3 Summary

In this chapter, the existing studies related to adaptive communication systems and

their mechanisms that introduce additional functions were explained. Moreover, the draw-

backs of these systems were pointed out in view of their functionality, implementation,

performance, and practical usage.

So far, many researchers and engineers have developed support systems and techniques

for adaptation techniques. As a result, several types of recomposition techniques of the

software capabilities have been recognized as software adaptation fundamentals.

Language-based adaptation techniques including aspect-oriented programming enable

a granular enhancement of the target applications. However, users of these systems are

largely limited to developers because they have to know the internal architecture of the

system and its behavior in clear detail.

Although binary-based adaptation techniques including system-call interposition do

not require reconstruction of the applications themselves, their adaptation mechanisms

are mostly platform-dependent. The library preloading technique is widely used to inter-

pose additional codes into the execution flow of the library function on many platforms.

However, this technique can only be applied to shared libraries, and it is difficult to

compose a cascade of several libraries independent of each other.

OS-based adaptation techniques support the effective and efficient way to compose

networking functions. However, this approach restricts the available systems and compli-

cates the management of the system.

31

VM-based adaptation techniques can introduce a variety of extended functions includ-

ing low-level to high-level functions by using packet capturing or binary instrumentation.

However, the packet capturing method requires difficult adaptation tasks and performance

overhead. Moreover, binary instrumentation can only be applied to a confined VMM and

physical machine architectures.

Proxy-based adaptation techniques can be used to attach data flows. A fully-independent

proxy can transparently interpose additional codes between the end-to-end systems. How-

ever, end-to-end connectivity and transparency are not ensured, and the network through-

put will decrease. A semi-independent proxy system is weakly attached to the end system.

However, the proxy has to let the application use the proxy’s functionality.

Furthermore, practical networking services and systems that utilize introduced tech-

niques to insert services were also described. These services were included in the upper-

layer networking services, such as for ad-hoc flow controlling and protocol upgrading, and

lower-layer services, such as another transport-layer protocol in the user-space. These

services and system can be useful for creating a FreeNA system.

32

Chapter 3

Fundamental Policies for Proposed
Systems

As described in chapter 2, many methodologies for adaptive systems and networking

services have already been proposed. However, there are still many problems that need to

be overcome in order to apply an adaptive mechanism to current widely deployed network

environments. For example, adaptive systems should support many existing platforms,

a source code of the application should not be required, inexperienced users should be

able to compose systems depending on their environment, and performance degradation

should be avoided. Therefore, FreeNA should be designed by taking into account these

problems in order to achieve a general-purpose framework for adaptive communications

and autonomous computing.

In this chapter, the fundamental policies for the proposed system are considered to

represent a vision for our above-mentioned goals. We clarify the purposes of FreeNA first.

Based on these purposes, the supposed users and usage scenarios are explained. Next, the

characteristics that FreeNA should have are considered. Moreover, some network services

examples are also given to show the usefulness of FreeNA.

3.1 Purposes

In Chapter 1, present issues concerned with the current network environments and/or

systems are explained. It is difficult to restructure the core technology of current net-

works as they evolve and are diversify because a lot of systems depend on traditional

33

technologies. Many businesses are now depending on their existing network environments

and more sophisticated network features are required such as secured and QoS-ensured

communications or fault-tolerant network systems, which indicates that the network sys-

tems should be continually extended to fulfill such requirements while maintaining their

compatibility with numerous traditional systems. The following are the change factors of

the network environment, and network systems will need to be extended in response to

these changes.

Performance Network performance is influenced by certain factors, such as bandwidth,

protocol effectiveness and efficiency, network utilization, or computer performance. In

particular, the network bandwidth and computer performance have been rapidly growing

rapidly, and they are major influences on network performance. Bandwidth of current

networks approximately range from tens of kbps to Gbps. Therefore, network systems

should adapt the amount of data or transfer rates to take full advantage of the available

bandwidth. Moreover, the buffer size of the network system can also be adjustable to

enable for a burst transmission for the high utilization of network or long-term buffering

for avoiding having to discard packets.

Quality of Service Quality of Service has become an important aspect of networks as

because real-time communications or Service Level Agreements (SLA) are now required.

In real-time communications, the packet stream should be continuously and stably trans-

ferred. However, there are interrupting many factors in a stable communication, such as

packet discard, delay, and jitters. Generally, flow control or the intermediate routers or

switches use a priority queuing method to ensure the intended packet stream. On the

other hand, the QoS mechanisms of end systems have also been proposed, such as the

application-level bandwidth shaper[24] and congestion control method[58] over the UDP

protocol.

34

Security Security concern is an imperative issue for networks today. As new services

are deployed on a network, many threads are found and used to attack the network.

Consequently, a lot of security mechanisms are continuously evolving. Typical security

mechanisms are data encryption, access control, and anti-malware technologies. An en-

cryption algorithm is a common security method for user applications, and it is possible

to adaptively select the necessary encryption algorithm depending on the required level

of security. Moreover, other methods are also adaptable by constructing a sandbox envi-

ronment for the application and introspecting the received application data.

Reliability A reliable protocol can be used to ensure the reliability of communications.

Fundamentally, many networks are based on IP protocols that only offer a best-effort

service, and upper-layer protocols like TCP should ensure a reliable communication. In

addition to the TCP, there are other transport-layer protocols such as SCTP[59] and

DCCP[60]. Moreover, session migration technology is also useful for preventing the influ-

ence of a system failure to existing communications.

Scalability Network scalability and the number of service users are larger now than ever

before, and therefore, server systems should be designed to efficiently deal with numerous

client systems. Although upgrading system components is an easy way, it cannot utilize

these components effectively unless the system software and protocols are scalable. In

practice, the application’s processing algorithm can be parallelized, the server system

can be replicated, and the caching mechanisms can be introduced to decentralize the

processing cost and resource usage.

Diversity As the network environment has matured, a variety of network nodes are

now connected to the network via various communication media. Since the character-

istics of communications are vary with the network terminal types and media, network

systems need to adapt to these variations to ensure there are efficient communications.

For example, packet losses from low quality wireless channels are normally treated as

35

network congestion by the TCP protocol, which results in performance degradation. So,

another wireless-ready transport protocol should be used when the user is in a wireless

environment.

Mobility Network mobility has gathered a lot of attention as an important technology

for ubiquitous computing. In mobile networks, the network nodes generally have a lower

machine performance, and are dynamically moved to another network. Thus, the com-

munication flow itself should migrate with the application, and a low-load communication

mechanism should be adopted. In addition, reducing the amount of communication data

or processing time would reduce the amount of power consumption.

Attempts need to be made to enhance existing systems to meet the network envi-

ronment of advanced network systems. Naturally, users can introduce advanced systems

while old systems are discarded, or directly update existing systems. However, these ways

require an enormous workload and cost a lot of money. In particular, important systems

including commercial systems cannot be directly upgraded without careful operational

testing. Therefore, a specialized mechanism is needed in order to make existing network

systems rapidly adaptable to environmental changes saving the effort needed for system

modification and its cost.

This study is an examination of the user-oriented network service framework for ex-

isting network systems named FreeNA. To achieve the above goals, FreeNA has to be

designed as follows.

• A variety of network services are available with FreeNA from the lower-

layer protocols to upper-layer protocols.

• Users can flexibly compose independent network services, and adjust

their behaviors with specified parameters

• FreeNA can work with existing network environment applications with-

out any modification of the application, OS, and protocol specifications.

36

• Not only professional developers but also non-developers including ap-

plication users, system administrators, and network administrators can

leverage FreeNA to use advanced network services.

3.2 Supposed Users and Usage Scenarios

As described in the previous section, non-developers also can use FreeNA because

they use their applications without needing advanced expertise. However, users have to

know what approaches are most useful for their systems even though they do not need

to understand the technical content of the approaches. Therefore, FreeNA is designed for

application users with a certain level of technical knowledge, developers, administrators,

and researchers. They may introduce new features into their existing systems, or cus-

tomize behaviors to fit the surrounding network environments. However, these processes

will require not only the source code of the applications and development environment,

but also their modification. Then, FreeNA enables users to transparently insert additional

functions into their systems without the source codes and any modification.

Developers Developers can utilize FreeNA during development for two reasons. The

first reason is that developers only implement the core functions of the application by in-

corporating the adaptivity mechanism as a structurally different independent component.

Realistically, a variety of network services should be supported for future environmental-

change and required services reasons that cannot be determined during development.

Although it is beneficial to design an application to be easily extended after completing

the development phase, developing flexibly extensible applications requires complicated

structures in many cases. Therefore, FreeNA can be used to provide adaptivity into an

application while maintaining a simple structure. The other reason is that FreeNA en-

ables developers to independently examine network services in actual environments from

the core logic of the application. This can prevent unintended system modifications and

associated program errors. This usage is also useful when developers can only partially

access source codes such as the distributed development, because developers can compose

37

arbitrary stub components instantly for early prototyping.

Administrators System/network administrators can manage the network system rather

than developers. Administrators always have to monitor their systems and transfer data,

deal with sudden trouble, and upgrade systems in response to system usage changes.

Therefore, even during an operational period, network systems should be flexible enough

for the administrators to dynamically add various functions into running systems. FreeNA

facilitates such administrator tasks using utility services such as data introspection, flow

control, and arbitrary protocol composition. In fact, many network tools already exist

that have the above-mentioned functions. However, FreeNA is different from these tools

in that administrators can use the services on a common platform with a unified usage.

Researchers Network researchers have to examine a variety of network features such

as the network architectures, protocols, and traffic data for their research. These studies

usually require the combination of a lot of parameters and data patterns. Therefore, there

should be a dedicated framework that can compose networking functions using arbitrary

parameters, and measure their characteristics. In practice, researchers are using sophisti-

cated network simulators like OPNET[61] or NS2[62] to evaluate intended network models.

Nevertheless, these simulators can forge all the different networking functions and data

patterns, but researchers still have to evaluate their models in a physical environment.

This is because practical performance and detailed behaviors also depend on the phys-

ical network architecture, hardware components, implementation of the protocol stack

and applications, and real data traffic. FreeNA allows researchers to construct supposed

network systems and evaluate them without significantly influencing existing systems.

Application users Generally speaking, mere application users use their applications

as they are, and they do not need to change them. In some cases, the application can-

not work well in certain user environments, and the application has not been carefully

maintenanced. For example, a user wants to watch an online movie on an express train,

38

and the user can tolerate low picture quality, but cannot accept picture and sound in-

terruptions. In such cases, the users can decrease the picture quality by transforming

the video codec and appending an error correction mechanism to the data stream using

FreeNA. Even though users do not know the technical details, they can adjust the appli-

cation’s functionalities if they know the relationship between the intended functionality

and corresponding service component name.

3.3 Characteristics

The purposes of FreeNA and its usage have been explained. One major characteristic

of FreeNA is its general-purposed platform for various types of users, rather than being a

specialized tool for experienced developers. Therefore, FreeNA must be designed taking

into consideration not only its functionality but also its usability or compatibility. To

achieve the goals set for FreeNA, it is designed to providing the following characteristics.

Implementation Form There are many types of implementation forms for realizing

a functionality, such as API, middleware, OS, virtual machine, or proxy server. When

you carefully consider the supposed users of FreeNA, FreeNA should not be in the API-

form because the users have to write a program to call FreeNA’s API for the service

composition. That is, FreeNA should be used as an independent system such that the

users can use it without writing any type of driver program. The next consideration is

that FreeNA should be used in current widespread systems. Consequently, the current

form of operating system is not suitable for FreeNA because commonly used operating

systems cannot be replaced with another one. In addition, FreeNA should be used as

only a compositional adaptivity mechanism, rather than to support a fully completed

functionality like hardware management, memory management, or fundamental network

processing. Therefore, in this study, an executable middleware implementation form is

adopted for FreeNA because the basic functionality is provided by the underlying OS,

and users can attach FreeNA to the intended application in order to flexibly control the

application’s behavior.

39

Usage In general, many similar systems suppose that the system users and network

service developers are one in the same, and technical knowledge and the appropriate

skills are required to use these tools. As a result, it is possible for users directly write an

appropriate glue program between the application and the network service component.

In contrast, since FreeNA is designed for inexperienced users too, its usage needs to be

carefully considered. To create a user-oriented system, the composition of the incorporat-

ing network services and operation of FreeNA itself have to be set by the users without

them incurring any difficulties. For this reason, FreeNA offers configuration-based com-

posability and command-based operability to its users. Users can describe the names

of the intended network services in a readable configuration file for service composition.

Then, FreeNA reads the file and carries out the incorporating specified services by using

operational user commands. It will be possible for even non-experienced users to easily

adapt their applications to the required environment as long as the implementations of

the network services are already available.

Network Service Implementation As previously described, it is better to implement

a network service as an independent component because users can insert the service

component into the application in a structurally-separated manner. Multiple network

services can also be composed together based on the user’s directions because they do not

have to depend on other network services. In addition, users can obtain network service

implementations from third parties. If there are a lot of these types of service distributors,

this process will be even more convenient for many users because they will not need to

implement the intended functionality on their own.

Platforms To deploy FreeNA into existing network environments, it must be designed

to work on the multiple platforms currently being used. In general, it is almost impossible

to develop a portable system that is compatible with a lot of platforms. However, many

platforms currently provide similar network interfaces like the BSD socket interface to

applications including UNIX variant systems and Microsoft Windows, and dynamic mod-

40

ification mechanisms. Consequently, FreeNA can be developed as a portable framework

by using the socket interface and adaptive techniques. In this paper, I describe a FreeNA

I developed for Windows and Linux operating systems, which are the dominant platforms

in the actual environment.

Applications Even though almost all applications are use socket interfaces for net-

work functionality, applications themselves are implemented in different programming

languages. Naturally, FreeNA should not depend on the applications implemented in par-

ticular programming language. Fortunately, common operating systems provide socket

interfaces as system-calls or library functions, and FreeNA can interpose in the socket-

call’s behavior at the binary level. As described in chapter 2, several adaptive techniques

are available to modify an application’s behavior besides the language-based approach.

3.4 Network Service Examples

FreeNA is designed as a general-purposed framework such that a variety of network

functionalities can be composed flexibly at a user’s will. In this section, the assumed

network services incorporated by FreeNA are introduced.

• Compression

A compression service shrinks the data being sent before passing it along to the

underlying operating system on the sender side, and stretches the received data

before passing it along to the application on the receiver side.

• SSL

The SSL service provides a secure network communication to non-SSL-compliant

applications on the PKI platform by overriding the existing TCP connections. Com-

pared with SSL-proxy systems like Stunnel, the proposed service directly connects

both end systems with an end-to-end transparency and better performance.

• Error protection

The error protection service protects the end-to-end communications by hiding

41

the packet error from the application. Some examples of this in practice are the

forward error correction (FEC) codes like the Reed-Solomon code[63] mechanisms

or the packet duplication methods[64] to the packet stream.

• TCP multiplexing

The TCP multiplexing service brings multiple TCP connections together into one

connection. This is effective if there is an already existing TCP connection, because

the actual throughput will be increased by using the same connection instead of

establishing a new one.

• Ad-hoc traffic shaping

The ad-hoc traffic shaping service adjusts the transmission rate of data packets in

the user-space or controls the behavior of the TCP protocol by setting the socket

parameters like TCP MAXSEG. Therefore, users can control the bandwidth utiliza-

tion in an ad-hoc way without needing special tools like Trickle.

• Stateful application-layer firewall

The stateful application-layer firewall is different from common packet filtering

based firewalls in that this service checks the packet content or aggregated content to

inspect the application-layer protocols. This service will be effective for preventing

applications from application-specialized attacks, such as buffer-overflow attacks,

format string attacks, and SQL injection attacks like that of TCP Stream Filtering.

Moreover, it will enhance the security of the P2P node–P2P communications like file

sharing, which has now become the major hotbed for viral infection by inspecting

suspicious content during the communication time.

• Mobility

Mobility services manage the connectivity of the end-to-end applications by migrat-

ing the application-level sessions like TESLA. Moreover, the power consumption of

mobile terminals can be controlled by reducing the transmission of packets like

MetaSockets.

42

• Non TCP/UDP transport-layer protocols

Normally, applications can use the transport-layer protocols offered by the under-

lying operating systems, and in most cases, TCP or UDP is used. However, many

researchers have pointed out that these protocols are not optimal in some network

environments, such as wireless networks, congested networks, and long fat pipe net-

works. Therefore, this service allows for additional transport-layer protocols like

SCTP and DCCP to be transparently installed in existing systems.

In practice, there are dedicated systems that offer one of the above network services,

such as Stunnel for SSL and compression, DummyNet[65] and Trickle for traffic control-

ling, and TCP Stream Filtering or Zorp[66] for application-layer firewalls. The users

can select these tools instead of FreeNA. In particular, users may have no choice but to

use dedicated tools for lower-layer services because FreeNA only limitedly supports such

services.

However, there are still benefits to using FreeNA, for example, users can use many

network services in an unified way on multiple platforms, that is a customized service for

the intended application. Therefore, the major advantage of FreeNA is that it provides a

mechanism to users to more easily customize and combine services without needing special

platform and application support. In other words, FreeNA is a kind of application/user-

oriented network tool when compared with other networking tools.

Note that, although FreeNA can support a variety of network services and applications,

there are cases where some services are not practical for some types of applications. As a

result, users have to consider whether the supposed services are effective enough for their

applications.

3.5 Summary

In this chapter, the fundamental policies for FreeNA were discussed for creating a

general-purpose framework for adaptive communications and autonomous computing.

Many practical networks are currently required to offer more sophisticated network fea-

43

tures such as secured and QoS-ensured communications or fault-tolerant network capa-

bilities. Network systems will need to be continually extended to fulfill such requirements

while remaining compatible with numerous traditional systems.

In this study, FreeNA is designed as a common platform for variety of network ser-

vices, flexible system that users can configure its functionality, portable system for multi-

platforms, and user-oriented system supposing non-experienced users. Therefore, imple-

mentation form, usage, network service implementation, platforms, and applications must

also be deliberated unlike other similar systems.

Compression, SSL, error protection, TCP multiplexing, ad-hoc traffic shaping, stateful

application-layer firewall, mobility, and additional transport-layer protocols services are

examples of the network services that are available on FreeNA. Even though there already

are many networking tools that provide these services, there are benefits to using FreeNA

in that it is a kind of application/user-oriented network tool providing a mechanism to

users for customizing and combining services in an easier way without needing special

platform and application support.

44

Chapter 4

Architectural Design and User
Experience

In the previous chapter, the fundamental policies were clarified for constructing a

FreeNA system. Compared with other similar systems, the major characteristics of

FreeNA systems are that it enables composable network services for existing systems

with higher-level user instructions. So, FreeNA is designed to be implemented as an

independent middleware taking into account the possible implementation properties.

In this chapter, the architectural design of FreeNA as a middleware system is explained

in light of FreeNA’s characteristics. Since FreeNA is composed of several subsystems,

the role and relationships to the other components are clarified for each subsystem. In

addition, actual usage of FreeNA with the configuration file for a service composition and

operational commands is also described to show the usability of FreeNA.

4.1 Network Services Perspective

4.1.1 Service Insertion Mechanism

As has been described, FreeNA enables its users to transparently add arbitrary net-

work services to existing applications. In practice, network services are inserted into the

communication path between end-to-end applications as pictured in Fig.4.1. Generally,

the application transmits the data by invoking the corresponding socket-calls. At this

point, the data is already manipulated by the upper-layer protocols like SSL and RTP

not just the application-layer protocols. Then, the data is passed to the socket interface

45

within the kernel. Inside the kernel, the data is encapsulated as packets or frames by the

lower-layer protocol headers. Finally, these packets are transmitted to the network as a

physical signal by the network card. On the receiver side, the received packets are passed

to the application in reverse order.

Figure 4.1: Perspective view of network service insertion

On the other hand, when FreeNA is used, additional data manipulation mechanisms

are introduced between the application and socket interface within the kernel. The net-

work services are implemented as independent program libraries, and they provide several

functions that have the same interface as the socket-functions. Particular socket-calls are

intercepted by FreeNA, and linearly-linked network service functions are executed instead

of executing the internal socket functions. During transmission, the data passed by the

application is manipulated by the inserted network service functions. For example, the

46

data is encrypted by an encryption network service whenever the application invokes a

socket-call for sending. After that the encrypted data is passed to the underlying op-

erating system by the intercepted socket-call. In contrast, the received data is taken

from the operating system by intercepting the socket-calls for receiving, and then the

data is properly manipulated by the inserted network services. Take the same example

again, the received data remains encrypted, and therefore, is decrypted by a decryption

network service before being passed to the receiver application. Not only the upper-

layer services, but also the transport-layer services can be inserted. In that case, the

traditional transport-layer protocol mechanism within the kernel is deactivated, and the

network-layer protocol mechanism is offered directly to the inserted service. Naturally,

the transport-layer services must be located as the bottom-most inserted network service,

and only one transport-layer service can be used at a time.

Note that inserted network services are completely hidden from both end-to-end ap-

plications because network service functions behaves like corresponding socket-calls. In

other words, applications can enhance their networking functionalities implicitly by just

invoking socket-calls as usual.

4.1.2 Flow Handler Structure

When inserting network services, FreeNA uses a notion of the flow handler[23]. Ba-

sically, the flow handler takes one input data flow and multiple output data flows. In

this research, each network service corresponds to a flow handler instance, and FreeNA

combines one output flow of the upstream handler with the input flow of the downstream

handler in order to achieve the linearly-linked structure of the network services.

Figure 4.2 depicts the fundamental structure of the flow handler in this research. As

described before, each network service is implemented as an independent program library

that has socket-like functions. Therefore, calling these functions can be corresponded to

the input flow of the flow handler, and the input data is passed to the library function

as an argument. The input data is manipulated inside the function as the corresponding

protocol processing. In a normal function call, the manipulated data will be returned to

47

Figure 4.2: Flow handler structure for network services

the caller as a return value of the function. However, in order to linearly concatenate

multiple flow handlers, the manipulated data has to be passed to the downstream library

via another function call. Therefore, the corresponding function of the downstream library

is called within the currently executing function to output the manipulated data. Likewise,

the return value from the downstream library’s function is passed to the upstream library

when the current function is finished.

Figure 4.3: Flow handler chain between the application and OS

In practical usage, several flow handlers are concatenated in line (flow handler chain),

and interposed between the application and OS. Figure 4.3 shows the perspective view of

the flow handler chain structure. In the figure, two network services are inserted between

the application and operating system. These two services execute different manipulation

to the input data, for example, the first service encrypts the data, and then, the second

service compresses the encrypted data. The actual socket-call process is as follows. First,

the application calls a socket function like send() with the data to be transferred. Instead

48

of executing the authentic socket function, the corresponding function of the uppermost

network service library is invoked, and the data is passed as one of the arguments. Within

the network services, the input data is manipulated and passed to the downstream network

service one after another. Finally, the lowermost library function calls the authentic socket

function within the kernel.

Note that, since the corresponding socket call varies from the intended function to the

actual function, each network service provides multiple functions. As a result, multiple

data flows (ex. transmitting and receiving) are used at the actual time, and these data

flows are independently treated by the network services.

4.2 FreeNA Architecture

Figure 4.4: Overall FreeNA architecture

49

In this section, the fundamental architectural design of FreeNA and its usage are

explained. Figure 4.4 shows the overall architecture of FreeNA. As illustrated in the

figure, many components are complicatedly involved in constructing a FreeNA system.

The main FreeNA system can be divided into the FreeNA client and the FreeNA server.

The FreeNA client subsystem is used to provide a mechanism for controlling the FreeNA

system, and the FreeNA server executes the core functionality of FreeNA, such as the

composition and insertion of network services. Strictly speaking, both subsystems are

implemented as executable user-programs, and they only perform utility functions rather

than the network services themselves. Instead, the network services are embedded into the

application process and executed directly at runtime. Since FreeNA consists of complex

components and technologies, the internal architecture and role of each part of FreeNA

is explained in detail in the following sections.

4.2.1 The FreeNA Client

The FreeNA client is a normal executable program that provides a user-interface mech-

anism to FreeNA users. Such a dedicated operational system is needed because FreeNA

uses specialized techniques a lot for creating transparent network service compositions

and insertions on multi-platforms. That is, the FreeNA client absorbs the complexity of

FreeNA by providing user-friendly operational commands to its users. The following is a

fundamental capability of the FreeNA client.

• Command input

Users can input operational commands using terminal emulators or other graphical

interfaces like a Web browser. Command syntax and arguments are also checked.

Multiple commands written in a batch file can also be input at one time.

• Standard-input

Users can specify standard-input data for the application in the same way as the

command input. The input value is directly passed to the FreeNA server.

50

• Standard/Error-output

The output message from the application can be displayed to users.

• Server control

Users can control the FreeNA server via the client even if the users are on different

machines than the server. At first access, the client can be authenticated by the

server.

Table 4.1: List of major commands of the FreeNA client

Command Description
run Execute the specified application
dumpfile Create the executable file
stop Suspend the specified application
continue Reexecute the specified application
terminate Terminate the specified application
detach Detach the specified application
input Input standard-input data to the application
proclist Show a list of running application
cd Change the current directory
ls List all files in the current directory
pwd Show the path to the current directory

Table 4.1 is a list of representative user-operational commands offered by the FreeNA

client. Users can input these commands on their terminal emulators as shown in Fig.4.5.

As you can see, users can easily and agilely use the FreeNA system without special

knowledge of the technical mechanism. Note that the current user-interface is a command-

based interface like a GNU debugger (GDB) or a client system for a database management

system (DBMS). However, another version of the FreeNA client containing a GUI interface

like a browser-interface can be made possible because the core functionality of the FreeNA

system is implemented within the FreeNA server, and an internal protocol architecture

between the client and the server is also defined.

Figure 4.6 depicts an internal architecture of the FreeNA client. Regardless of the

type of interface, each user-operation is processed as an internal command. The main

steps for the command processing are as follows.

51

Figure 4.5: Example of FreeNA client usage

1. An operation command is input by the user using the terminal emulator or browser.

2. The input command is parsed to validate the command format and extracts a cor-

responding command type.

3. The command dispatcher dispatches the appropriate task based on the command

type.

4. If a server’s process like the service insertion is required, the command and its argu-

ments are encapsulated by the protocol composer to be transferred to the FreeNA

server.

52

Figure 4.6: Perspective architecture of the FreeNA client

5. A protocol decomposer receives the data from the server, and extracts the returned

message.

6. The returned message is displayed to the user.

In this way, the input user-command is a trigger to operate the FreeNA system. In to-

tal, the FreeNA system works as an event-driven system based on the internal commands.

Each internal command basically corresponds to one of user-operational commands.

53

4.2.2 The FreeNA Server

The FreeNA server is in charge of the core processes of the FreeNA system, such as

the invocation of the target application and inserts the specified network services based

on a configuration file. The following is a synopsis of the capabilities of the server.

• Application launch

User-specified applications can be launched with command-line parameters and

redirection settings. Technically, the application process is created as a child process

of the FreeNA server. The network services are inserted when the application process

is started.

• Application attachment

Already running applications can also be attached in order to insert network ser-

vices. Note that the consistency of the communication data before and after service

insertion is not automatically ensured.

• Application termination

FreeNA-attached applications can be forcibly terminated by specifying the process

id.

• Network service composition

Specified network services can be composed as the flow handler chain structure for

each socket function.

• Network service insertion

Composed network services can be inserted into the application by intercepting the

socket-calls from the application.

• Configuration parsing

Information from the intended network services and their compositions can be

extracted from the configuration file.

54

• Process management

FreeNA-attached application processes are managed by the process IDs for standard-

input/output of the application.

• User management

The FreeNA server provides a login facility and access control list mechanism to

each user.

• Directory operation

Users can traverse the directory tree using operational commands.

Like the FreeNA client, the FreeNA server is implemented as an independent exe-

cutable program. But the FreeNA acts as a central system that executes various requests

from the client systems. That is, the FreeNA server does not provide user-interface func-

tions, and is controlled via the client systems. This separation of functionality is effective

from the following aspects. First, the FreeNA server and target applications can be man-

aged by administrators in an integrated fashion because general users do not directly need

these systems. This will be useful for constructing thin-client environments, or enforcing

users to use the applications with specified network services. Next, the core components of

the FreeNA system can be implemented as portable systems because their user-interface

functions depend on the users’ platforms and environments. Moreover, it is possible for

the client and server systems to work in different execution modes. Since the FreeNA

server should be able to sufficiently use the platform functions, the FreeNA server has to

work in the privileged mode. On the other hand, the FreeNA client can run in the user

mode to prevent users from being given a privileged right.

Figure 4.7 depicts the internal architecture of the FreeNA server. The FreeNA server

takes on the transaction method, and each server’s process is triggered by the request

command from the FreeNA client. Internally, the structure of the FreeNA server can

be divided into two parts, a platform-independent part and a platform-dependent part,

to ensure the system’s portability. Most functions of the server are implemented in the

55

Figure 4.7: Perspective architecture of the FreeNA server

platform-independent part, such as the command processing, network processing, config-

uration parsing, and network service composition. On the other hand, the application

launch and network service insertion are performed in the platform-dependent part be-

cause these processes require some process manipulation techniques. Practical manipula-

tion techniques will be described in a following chapter. The main steps of launching the

application and service insertion are as follows.

1. A request command and arguments are received from the FreeNA client in a dedi-

cated protocol format.

2. The protocol decomposer is used to decompose the received data, and the command

56

type is identified by the command analyzer.

3. If an application execution is requested, the configuration file, which is one of the

arguments, is parsed by the parser to determine the network services to be inserted,

their composition, and service parameters.

4. The network service composition such as the service order and socket-calls to be

intercepted is calculated by using the application controller.

5. The interposer program corresponding to the underlying platform is invoked.

6. The target application is launched as a child process, and at the same time the

required network services are appended to the process by the interposer.

7. The process ID of the application process is registered to the internal database,

and transmitted to the FreeNA client with a message concerning the success of the

request.

The FreeNA server performs the network service composition and insertion by in-

terlocking the platform-independent and platform-dependent parts in this way. Since

application manipulation techniques vary from platform to platform, several types of in-

terposer programs can be prepared for use as the platform-dependent part. Note that

there are other server components not described above. The system process performs the

user management and directory operations. The user information, like the login name

and access control list, and running process information are registered to the internal

database.

4.3 Conceptual Approach to Ensure end-to-end con-

sistency

In this section, the connectivity and consistency of the network services between end-

to-end applications are discussed. As described before, FreeNA determines the network

57

services to be statically inserted based on the configuration file. That is, both end users

must cooperate with each other so that they configure the same service composition

with the same parameters into the file in advance. However, users of large-scaled server

systems that communicate with a lot of clients have difficulty statically configuring with

each client system. Therefore, FreeNA should provide a mechanism that ensures there is

an end-to-end consistency in the network services without static configuration.

4.3.1 Dynamic Service Composition based on Negotiation

Figure 4.8: The overview of the negotiation for dynamic service composition

To dynamically compose appropriate network services, a negotiation mechanism is in-

troduced into FreeNA. By negotiating the required services between end-to-end FreeNAs

before starting an application-level communication, the end-to-end applications can work

under the same network service configuration (Fig. 4.8). Considering there are so many

network services and parameter settings, it is a desirable approach that users can offer

several candidates for services and the parameter settings so that FreeNA can automat-

ically decide on the required services from the candidates during the negotiation. This

configuration mechanism is explained in section 4.4. The important point is that FreeNA

should take into consideration the remote applications that do not run under the FreeNA

environment in order to transparently deploy the FreeNA system into existing wide-spread

network environments. For this reason, FreeNA should check whether the remote applica-

tion is running with FreeNA before the negotiation. The details of the mechanism for the

58

determination of FreeNA’s existence, and the practical negotiation protocol are described

in section 5.3.

4.3.2 Transport-Layer Protocol-Free Environment

Some network services should work with FreeNA because the service usage under the

network environment is not defined even though the service algorithm itself is standard-

ized. For instance, the AES encryption algorithm is standardized by the National Institute

of Standards and Technology (NIST)[67], however, its usage on the networks varies from

IPsec[68], SSL/TLS[69], or WPA2[70]. When AES is directly applied to the application

messages as ad-hoc encryption, its usage (key-length, encryption mode) should be decided

by FreeNA to ensure consistency. Therefore, general-purposed network services should be

composed by FreeNA’s negotiation scheme.

On the other hand, transport-layer protocols have standardized functions and usage.

So, the FreeNA-enabled application that uses an inserted-version of a protocol can easily

communicate with the traditional application that uses a kernel-provided-version of the

protocol. In this study, the transport-layer protocol to be used can be decided with-

out a negotiation for the upper-layer network services. As a result, the FreeNA-enabled

application can communicate with both the FreeNA-enabled application and the nor-

mal application using the same transport-layer protocol. The details of this mechanism

(transport-layer protocol-free environment) are explained in section 5.4.4.

4.4 Configuration Mechanism

Although users can operate the FreeNA system by using the dedicated client system,

it is inconvenient for users to have to configure the network services whenever executing

applications. Therefore, users are allowed to create the configuration file for each applica-

tion. The configuration file should be written without needing extra programming and the

internal architecture of FreeNA taking into account that considering inexperienced users

also use FreeNA. In this study, the XML-based format is adopted for the configuration

file, and the functional selection approach is taken to describe the network services and

59

Figure 4.9: The outline structure of the configuration file

additional information.

To support the flexible customization feature of the application, the configuration file

has variety of items (elements and attributes in XML-style) available to users. Figure 4.9

shows an outline structure of the configuration file. The configuration file mainly consists

of two elements, a services element and a protocol element. The services element

consists of two parts. The information concerning the network service to be inserted is

described in the network service insertion part. An insertion rule part is used to set

the condition of whether the specified network services are to be inserted or not. The

protocol element is used to specify the alternative transport-layer protocol for traditional

TCP/UDP.

60

4.4.1 Network Service Configuration

Figure 4.10: The structure of the service element

Information on each network service is described with a service element inside the

services element. Figure 4.10 illustrates the structure of the service element. The

practical syntax of the service element is described in A.1, and the important elements

and attributes are explained below.

Identifying service

Each network service is identified by the service element by its name and lib at-

tributes. Basically, the name is used for the user convenience, and the lib specifies the

actual service library path.

Service type

The type attribute of the service element represents the service usage type during

runtime as listed in Table 4.2. These service types influence the negotiation process.

Local typed services are always applied to the application, but they are not seen from

the remote. The logging service or the firewall service will be the local services. Global

typed services can be used between the end-to-end applications synchronously, such as

the compression service or the encryption service. It is better to compose these services

61

according to the negotiation, and the global services must be used during the application-

level communication unless the optional condition is specified.

Table 4.2: Available options of service usage

Type Description
local Specified service is only applied

at one end application locally
global(/required) Specified service must be used

at the communication
global/optional Specified service can be omitted

by the negotiation result

Service parameter

A parameter element is used to set the text-based parameters for the network service.

The parameter can be specified using a parameter name and parameter value pair. The

specified service library itself interprets the specified parameters at the time of execution.

Parameter option

A parameter-option element is used for FreeNA’s negotiation to deal with cases when

the service provides several parameter value candidates, but one of them must be used in

the communication.

Insertion rule

A rule element (local rule) is used to specify the type of packet flow by using a set of

conditions, such as the transport protocol, port number rage, and communication type.

The specified service is only applied if the conditions are satisfied.

While the rule element within the service element (local rule) only works on the ser-

vice, the rule elements of a using-rule element (global rule) can apply to all the network

services written in the file. Figure 4.11 shows the structure of the using-rule element.

Users can set multiple integrated conditions by writing multiple rules in descending prior-

62

Figure 4.11: The structure of the using-rule element

ity order, and an ’*’ symbol can be used to express all of them (protocols, port numbers

and so on). Note that the local rules come before the global rules

4.4.2 Protocol Configuration

Figure 4.12: The structure of the protocol element

Users can configure the transport-layer protocol used by the application. To create

the transport-layer protocol-free environment, which is an automatic mechanism for dy-

namically determining the proper protocol. Therefore, the configuration file has two types

of protocol settings, which are shown in Figure 4.12. A default element expresses the

transport-layer protocol used by the client-type applications at the time of access. On the

other hand, the server-type applications select the appropriate protocol written in one of

the option elements to fit the client protocol. If there is no option protocol that fits the

client protocol, the client access is denied by the server. In this way, users can create a

transport-layer protocol-free environment.

63

4.5 Summary

In this chapter, the architectural design of FreeNA and the user experience were ex-

plained. First, the fundamental mechanism of a network service insertion was described.

The inserted network services are located in the communication path between end-to-end

applications by intercepting particular socket-calls by using FreeNA. Next, the concept

of the flow handler and flow handler chain was introduced for independently composing

each of the network service components. Each network service corresponds to an instance

of the flow handler, and FreeNA combines one output flow of the upstream handler with

the input flow of the downstream handler in order to create the linearly-linked structure

of the network services.

The FreeNA system can be divided into the FreeNA client and the FreeNA server.

The FreeNA client is used to operate the FreeNA server in user-friendly ways. In prac-

tice, the whole FreeNA system acts as an event-driven system based on the operational

commands, and the client supports the command input. The FreeNA server performs the

core functions like the network service composition and service insertion in accordance

with the requests from the client. To ensure the portability of FreeNA, the server divides

its tasks into platform-independent and platform-dependent tasks.

To support the system operations, an XML-formatted configuration file is used for

each application. After taking into consideration that inexperienced users will be using

this system, a functional selection approach was adopted to describe the network services

and any additional necessary information. In the configuration file, information on the

network services to be inserted, their parameters, the global and local insertion rules, and

transport-layer protocols can be written.

64

Chapter 5

Implementation

The fundamental designs of FreeNA, the system compositions, and their relationships

have been explained so far in view of the user experience. In particular, the flow handler

(chain) concept was the key idea for composing network services. However, a practical

method of linking independent network service libraries and how to interpose the flow

handler chain between the application and the operating system have not yet been clari-

fied.

This chapter describes the internal architecture of FreeNA. First, the implementations

of the FreeNA client and server are explained, then the mechanism of the service insertion

and the implementation of the flow handler are explained. In addition, the mechanism of

the Transport-layer protocol insertion is also described as well as that for the upper-layer

service insertion.

5.1 FreeNA Client/Server

Since FreeNA aims to work on multiple platforms, most of it is implemented in the Java

language. In Figs.4.4 and 4.7, the client and the dotted square on the left of the server

(platform independent part) are coded in Java, and the right dotted square (platform

dependent part) is implemented as a library coded in C++, because the interposer directly

manipulates the application process. There are several implementations of the interposer

library because the manipulation techniques vary from platform to platform. In either

platform, the interposer library is accessed via a Java Native Interface (JNI) using the

65

Java-coded part.

5.2 Upper-Layer Network Services Insertion

5.2.1 Network Services Composition

As mentioned in the previous section, the network services are implemented as inde-

pendent shared libraries based on the concept of the flow handler. So, all FreeNA has to

do is to bind the input/output data flows of the service libraries, switch from the socket

function calls invoked by the application to the library function calls of the uppermost

service library, and have the undermost service calling actual socket functions. In this

section, a practical method for composing independent network services is explained.

To compose the flow handler chain, the service info C structure shown in Fig.5.1

is defined. Each network service library has one corresponding service info structure

instance. The structure contains the service parameters and insertion rule information of

the service. Moreover, it contains the function pointers to the functions of the downstream

service library and the pointers are set outside of the service library. Therefore, one

network service can use another service even though the service library itself does not

know the details of another library.

Eventually, FreeNA hierarchically inserts network service libraries between the ap-

plication and the socket library. Figure 5.2 shows the diagram of the hierarchy. As it

can be seen in the figure, not only the service libraries, but also a Control library and

an Interface library are inserted together. The control library dynamically loads all the

underlying libraries into the application process and sets up the service info structures

using the configuration information passed from the FreeNA server. The service info

structures are formed as a linked list and passed down to the downstream library by the

init() functions. The interface library is inserted to access the intrinsic socket library

of the platform. The SSL library is also one of the network service libraries. However,

it differs from the other libraries in that the SSL library is located as the bottom-most

library and used instead of the interface library. We present the implementation details

66

� �
struct service_info

{
/* Pointer to the downstream service’s one */

struct service_info* next;

/* Parameter information of this service */

int num_of_params;

char** params;

char** values;

/* Service insertion rule contains effective port numbers and

communication type */

struct rule tcp;

struct rule udp;

/* Function pointers to initialization/finalization functions

of the downstream service */

void (*service_init)(struct service_info*);

void (*service_exit)(void);

/* Function pointers to corresponding socket-like functions of

the downstream service */

socket_t (*service_socket)(int, int, int);

int (*service_bind)(socket_t, const sockaddr*, socklen_t);

int (*service_connect)(socket_t, const sockaddr*, socklen_t);

...

int (*service_send)(socket_t, const char*, socklen_t, int);

int (*service_recv)(socket_t, char*, socklen_t, int);

...

};� �
Figure 5.1: The service info structure definition. All member variables are set by a
control library.

of the library later.

By comprising FreeNA with the above hierarchical architecture, the arbitrary service

libraries can be inserted transparently into the socket function call flow between the

67

Figure 5.2: Hierarchical Structures of Inserted Services

application and the socket library. Furthermore, FreeNA creates more flexible function

call flows.

The service insertion rules mentioned in section 4.4.1 are used to switch the call flows.

When the condition is satisfied, the control library calls the service library’s function.

Otherwise, the control library bypasses the underlying libraries and directly calls the

68

actual socket functions.

5.2.2 Transparent Insertion Mechanism

So far, the flow of the function call through the control library, service libraries, and

interface libraries has been explained. The remaining concern is how to switch from the

socket function calls invoked by the application to the control library’s function calls.

FreeNA leverages the runtime system-call interposition mechanism to hook the socket

functions. This method is more suitable for creating FreeNA’s mechanism than Proxy-

based interposition and source code level interposition. That is because hooking the socket

functions at the process image can ensure there is abetter performance and end-to-end

transparency than that of Proxy-based interposition. Moreover, users do not need to

have the source code of the application, know the internal structure of the application,

nor consider the programming languages like source code level interposition.

In practice, the dyninst API is used for interposition. The API provides a variety of

methods for dynamically changing the runtime process image to instrument/remove the

CPU instructions into/from the image in an abstract manner.

Figure 5.4 shows a schematic process image of an application using FreeNA. First,

FreeNA launches the application and loads the control library into the process image,

then a ctl init() function and a ctl exit() function of the library are embedded into

the main() function of the application before starting. The configuration information is

also embedded as the ctl init() arguments. Next, FreeNA switches the function call

target from the socket library to the control library by rewriting the process image. The

network service libraries and interface libraries are dynamically loaded by the control

library at the time of initialization.

Here, since the Interposer is independent of the core FreeNA server, it is possible to call

another Interposer library that leverages other interposition mechanisms, such as library

preloading and Detours[71]. This alternation is useful when users have platforms that

Dyninst API cannot support. Instead, other mechanisms for initialization/finalization

and passing configuration information are needed. Therefore, it is better to use Dyninst

69

Figure 5.3: Execution sequence of the FreeNA-enabled application

API for the interposition whenever it supports the platform.

5.2.3 Development of Network Services

In this section, the practical code of network services is introduced by looking at some

examples of compression service and SSL service. The compression service library is a

simple library that processes data during I/O operations. The SSL service library provides

a SSL/TLS compliant secure communication mechanism based on the PKI framework to

the applications. As we can see later, service library developers can leverage the existing

client library, such as OpenSSL[72], libcurl[73], and Zlib[74], to implement the service

libraries for FreeNA.

It should be emphasized that the service libraries do not provide APIs for the appli-

cation developers but instead offer socket-like interfaces. Therefore, the functions of the

service libraries have to be implemented to conform to the purpose of the socket functions.

Figure 5.5 shows the condensed code of a compression sending function. As you can see,

70

Figure 5.4: Synoptic structure of process image with FreeNA

the service send() function has the same interface as a normal send() function. The

data passed from the upstream library is compressed and passed down to the downstream

library using the service info structure of this library.

Likewise, the code of SSL service library is introduced as a more complicated exam-

ple. Since SSL is associated with the socket layer, the SSL service library is defined as

the lowermost library. Table 5.1 lists the functions of the SSL library and their purposes.

service init() is used to initialize a SSL environment just like for loading a certification

file, setting random numbers, and determining encryption methods based on the parame-

ter information. service connect() and service accept() establish a SSL connection

based on the already connected TCP socket. service send() encrypts the data being

sent and passes it down to the socket layer. service recv() gets the received data from

71

� �
ssize_t service_send(socket_t s, const char *data, size_t len, int flags)

{
ssize_t ret;

/* Service applied socket is already registered according to the

local rule */

if (use_this_service(s)) {
size_t new_len = BUF_SIZE - HDR_SIZE;

/* Compress ’data’ and output to ’buf’ */

compress(&buf[HDR_SIZE], &new_len, data, len);

/* Set header information (packet length) */

set_packet_length(buf, new_len);

/* Pass down ’buf’ using ’service_info’ structure of this

library */

ret = info->service_send(s, buf, new_len + HDR_SIZE, flags);

}
else {

/* Do nothing but pass down ’data’ */

ret = info->service_send(s, data, len, flags);

}
return ret;

}� �
Figure 5.5: Example of compression service library’s functions

the socket and decrypts the data. service close() disconnects the SSL connection.

Table 5.1: SSL service library’s functions and their purposes
Library functions Purposes
service init Initialize a SSL environment
service connect Establish a SSL connection as a client

based on the connected socket
service accept Establish a SSL connection as a server

based on the connected socket
service send Encrypt data and send them
service recv Receive data and decrypt them
service close Disconnect the SSL connection

Next, the condensed code example of the SSL service library functions is shown in Fig.

72

5.6. The SSL service library internally leverages the OpenSSL library1 and associates the

socket with the SSL session object.

� �
int service_connect(socket_t s, const struct sockaddr* addr,

socklen_t addrlen)

{
/* Call actual ’connect’ socket function */

int ret = sys_connect(s, addr, addrlen);

/* Setup a SSL object */

SSL_CTX *ctx = setup_client_ctx();

BIO* bio = BIO_new_socket(s, BIO_NOCLOSE);

SSL* ssl = SSL_new(ctx);

SSL_set_bio(ssl, bio, bio);

/* Make a SSL connection */

SSL_connect(ssl);

certification_check(ssl, addr);

/* Associate SSL object with socket */

register_socket(s, ssl);

return ret;

}

ssize_t service_send(socket_t s, const char* data,

size_t len, int flag)

{
/* Get the SSL object associated with the socket */

SSL* ssl = get_SSL(s);

/* Encrypt data and send them */

ssize_t n = SSL_write(ssl, data, len);

return n;

}� �
Figure 5.6: Example of SSL service library’s functions

1Customized OpenSSL library is used so that the library calls our prepared function instead of the
original socket functions to prevent recursive socket functions from calling (See B.1)

73

5.2.4 Handling Multiple flows

Figure 5.7: Internal structure of the shared server and its service library

Some services should be applied to multiple flows across the processes as a group; for

example, a congestion control service may use a shared network status in order to limit the

transmission rates of the communication flows that have the same network path. While

many related systems handle communication flows separately, TESLA[23] supports the

mechanism for handling flows across multiple processes. Network services for TESLA are

separated as independent processes from the application processes, and these processes

are linked by the internal socket communication. However, since this separation structure

is applied to the services that handle single flows, significant performance overhead is

induced.

Therefore, FreeNA supports a combination of the application-specific (local) services

and application-independent (global) services. The local service is a normal service as de-

scribed before that is applied to the communication flows of a single application. While,

the global service is implemented as an independent process appropriately named a shared

server and handles the communication flows across multiple processes like TESLA’s ser-

74

vices. Figure 5.7 shows the structure of the shared server and the relationship to the

application processes. In the figure, service N is the global service, and services N-1 and

N+1 are the local services. When the function of service N is called, this execution flow

is moved to the corresponding shared server using the function parameters through the

internal socket communication. After the service processing, the resultant data is backed

to the service N, and consequently passes down to service N+1. Note that the shared

server should work under the principle of a socket interface.

5.3 The Negotiation Mechanism

The negotiation mechanism is introduced to FreeNA in order to dynamically compose

network services. In this section, when FreeNA conducts the negotiation, what communi-

cation channel is used for the negotiation and how to decide the network services by the

negotiation are described.

5.3.1 The Timing of the Negotiation

Generally, network applications call connect()/accept() socket-calls to establish a

connection before starting a communication. When considering that the establishment of

a connection is the first contact process to the remote application, the negotiation by an

end-to-end FreeNA should be conduced at that time. Since FreeNA has the interception

mechanism for arbitrary socket-calls, it can conduct the negotiation while interrupting

the connect() or accept() socket-call.

Figure 5.8 shows the sequential flow for conducting the negotiation. In processes

(1) and (2), FreeNA interrupts the execution of the socket-calls invoked by the both

applications. In process (3), FreeNA conducts the negotiation to decide on the network

services. After the negotiation, the interrupted socket-calls are executed to establish the

TCP connection. Here, one question arises, why the negotiation is conducted before the

connection establishment process. The reason for this is that the communication channel

for the negotiation can differ from the channel for the application-level communication

75

Figure 5.8: Timing of conducting the negotiation

as described later1. In the process (6), the result of the connection establishment is

returned to the application as a return value of the socket-call. Finally, the end-to-end

applications communicate with each other using the same network services. Note that

if the applications use the UDP protocol, the negotiation should be conducted while

interrupting the firstly-invoked sendto()/recvfrom() socket-calls.

5.3.2 Negotiation Channels

Since the negotiation is conducted before the connection establishment for the application-

level communication, a dedicated communication channel for the negotiation is needed.

This separation of channels is effective when taking into consideration the non-FreeNA-

enabled applications. That is, if one end of FreeNA tries to negotiate with the non-

FreeNA-enabled application through the application-level communication channel, a nor-

mal communication cannot be expected. In this study, the three types of negotiation

channels mentioned below are assumed.

1It is possible to share the TCP connection for the negotiation and the communication.

76

Outer Channels with SIP Protocol

The Session Initiation Protocol (SIP)[75] is widely used to establish the session between

end-to-end systems, and provides a user management function, a location function, a

session management function, and an authentication function. One advantage of SIP is

that it can seamlessly cooperate with other protocols and services. For example, many

multimedia network applications like video streaming often use a Session Description

Protocol (SDP)[76] with an SIP protocol to confirm the media attributes.

Figure 5.9: Dual channels for the negotiation and the communication with SIP protocol

FreeNA leverages the flexibility of the SIP protocol to establish the negotiation channel

depicted in Fig. 5.9. Since the SIP protocol is already standardized, its session estab-

lishment mechanism is available on existing networks. Therefore, only the negotiation

internals can be considered in this study.

Outer Channels under Small Network

When FreeNA is deployed in small autonomous network environments, the SIP pro-

tocol may be a too full-fledged mechanism for session establishment. Consequently, it

is better to establish a negotiation channel by directly specifying another port number

without the SIP protocol.

Inner Channels

The two previously mentioned methods require additional establishment processes

and port numbers for each application. This method enables FreeNA to negotiate with

77

a remote FreeNA using the application-level communication channel while maintaining

a compatibility with the non-FreeNA-enabled applications. To share the channel for

both the negotiation and the communication, the received message must be transparently

distinguished between the negotiation message and the application message. However,

straightforward tunneling techniques that embed the negotiation protocol into the appli-

cation protocol cannot ensure the interoperability.

Figure 5.10: Determination of FreeNA existence with IP RR

In this study, a record route mechanism of the IP protocol[77] is applied to ensure the

interoperability. The IP record route option sequentially records the IP addresses of every

node between the end-to-end systems. Then, the server-side of FreeNA can recognize the

existence of the FreeNA on the client-side by appending the IP address of the FreeNA

78

during the time of the establishment of the connection. As illustrated in Fig. 5.10, FreeNA

is regarded as a node between the communication paths, and it records the IP address

of the underlying host to the head of the record route list. That is, the same IP address

is recorded twice in the list (The first address represents FreeNA and the second address

represents the sender-side node.), and the receiver-side FreeNA compares the first two

addresses in the list. If the two addresses are the same, FreeNA conducts the negotiation.

5.3.3 Determining Network Services

The concern that remains for the negotiation is how to systematically determine ap-

propriate network services. First, a descriptive format for the negotiation message that

will contain the network service information is required. So, the SDP protocol is utilized

to systematically describe the service information. Since the SDP protocol allows for the

extension of one’s own format, the dedicated format for the network service information

is defined as that shown in Fig. 5.11.

� �
v=<version number>

o=<user name> <session id> <version> <nettype> <addrtype> <unicast addr>

s=<session name>

c=<nettype> <addrtype> <connection addr>

t=<start> <stop>

m=application <port number> SERVICE/<service name> <essentiality>

a=fmtp:<parameter name> <parameter value>� �
Figure 5.11: Extended SDP for FreeNA’s negotiation

While the meanings of the v, o, s, c, and t tags are not changed, another interpretation

of the m tag and the a tag is introduced to represent the network service information. In

practice, the name of the service, the local port number of the channel, and an essentiality

attribute are specified in the line of the m tag. The essentiality attribute represents the

importance of the services during the communication, and corresponds to the service type

and parameter block of the configuration file. Table 5.2 lists the relationship between the

essentiality attribute and the configuration type. In the line the of a tag, a parameter

79

Table 5.2: The relationship between the essentiality attribute and the configuration type

Essentiality Service type Description
required global(/required) Specified service must be used

at the communication
In addition to required, one of

selectively-required global(/required) parameter value must be selected
from the parameter blocks

optional global/optional) Specified service can be omitted
by the negotiation result
In addition to optional, one of

selectively-optional global/optional) parameter value must be selected
from the parameter blocks

name and value pair of the service is specified with the fmtp(format-specific parameters)

attribute of the SDP protocol.

The SDP protocol does not provide a negotiation mechanism for the session originally,

but Rosenberg et al.[78] have proposed an offer/answer model using SDP to negotiate

the session attributes. Therefore, FreeNA’s negotiation is conducted in the proposed

offer/answer model. The basic pattern of the negotiation is as follows. First, the client-

side (Offerer) shows the supportable service compositions to the server-side (Answerer)

using the extended SDP protocol. The SDP message is automatically composed from the

client-side configuration file. Next, the answerer compares the offered service composition

with the available composition by the answerer. If all the required services are available

to the answerer, the negotiation ends in success with the answerer responding with its

SDP message that contains the network services to be used during the communication.

If the negotiation failed, FreeNA does not insert any service into the application.

Figures 5.12 and 5.13 show examples of the negotiations in the offer/answer model.

The offer message states that the offerer wants to use a cryptography service and a

compression service during the communication, but the answerer must select a combina-

tion of the parameters for the cryptography service because the selectively-required

essentiality is specified. Moreover, the compression service can be omitted during the

communication because the optional essentiality is specified.

80

Then, the answer message states that the cryptography service is only used during the

communication with a 256-bit AES algorithm in the CBC mode. The answerer denies the

other parameter combination and the compression service by specifying port number 0.

Finally, this negotiation ended in success because all the required services are available

by both the offerer and the answerer.

81

� �
v=0

o=clt 844526 844526 IN IP4 clt.example.com

s=-

c=IN IP4 clt.example.com

t=0 0

m=application 10000 SERVICE/CRYPTO selectively-required� �
a=fmtp:algorithm AES

a=fmtp:key_size 256

a=fmtp:key_size 128

a=fmtp:mode CBC� �
m=application 10000 SERVICE/CRYPTO selectively-required� �
a=fmtp:algorithm DES

a=fmtp:key_size 128

a=fmtp:mode CBC� �
m=application 10000 SERVICE/COMPRESSION optional
a=fmtp:algorithm Deflate� �

Figure 5.12: Offer message with extended SDP

� �
v=0

o=svr 844564 844564 IN IP4 svr.example.com

s=-

c=IN IP4 svr.example.com

t=0 0

m=application 8000 SERVICE/CRYPTO selectively-required� �
a=fmtp:algorithm AES

a=fmtp:key_size 256

a=fmtp:mode CBC� �
m=application 0 SERVICE/CRYPTO selectively-required

a=fmtp:algorithm DES

a=fmtp:key_size 128

a=fmtp:mode CBC

m=application 0 SERVICE/COMPRESSION optional

a=fmtp:algorithm Deflate� �
Figure 5.13: Answer message with extended SDP

82

5.4 Transport-layer Protocol Insertion

5.4.1 Composition of Transport-layer Protocol

From this section, the details of the insertion mechanism of the transport-layer proto-

cols and how to achieve a transport-layer protocol-free environment are explained.

Figure 5.14: New protocol is added within the kernel, and users can specify it by a socket
parameter

Generally, there are two methods for implementing alternative transport-layer proto-

cols in traditional TCP/UDP protocols. One is where the protocols are directly imple-

mented within the kernel, and the users can use them by identifying the proper socket

parameter within the application source codes, as shown in Fig.5.14.

Figure 5.15: New protocol is added within the userland as a library, and users can use it
by calling library functions

83

The other method is where a raw IP mechanism[79] is used to implement the protocol

in the user-space. Raw sockets are different from normal STREAM/DGRAM sockets,

because they allow developers to directly create raw IP packets. Generally, only privileged

users can use raw sockets and developers have to manage the port numbers on their own.

Figure 5.16: New protocol is added within the userland as a library, and users can use it
by just calling traditional socket-calls as they are

On the other hand, FreeNA leverages the raw IP mechanism to implement the ad-

ditional transport-layer protocols. FreeNA is different from similar systems in that the

protocol functions are implemented as independent programs and accessed by the appli-

cations transparently using the socket-call interposition mechanism.

84

Figure 5.17: An implementation structure of transport-layer protocols

5.4.2 Development of Transport-layer Protocols in User-space

Figure 5.17 shows the implementation structure. A protocol server and a protocol

library are implemented in order to construct the transport-layer protocols in the user-

space. The former is an independent program and executes the core processes of the

protocol, such as packet transmission/receiving, connection management, and port man-

agement. An independent protocol server is needed because the raw sockets do not have

the concept of port numbering or multiplexing. The latter bridges the protocol server and

the application process. The interface of the protocol library is shown in Table 5.3.

85

Table 5.3: Relationship between the protocol library and server process

Library function Comm. method Server’s process
protocol socket Inner socket Register socket info.
protocol close Inner socket Remove socket info.
protocol bind Inner socket Specify address info
protocol connect Inner socket Establish a connection
protocol listen Inner socket Listen a port
protocol accept Inner socket Accept a client
protocol send Shared memory –
protocol recv Shared memory –
protocol sendto Shared memory –
protocol recvfrom Shared memory –

The protocol library provides several functions (protocol *) that have the same in-

terface as the socket functions. When the application calls a socket function, it is hooked

by FreeNA and the corresponding library function is executed instead. The control infor-

mation and data packet are passed to the protocol server via the inner socket or shared

memory.

5.4.3 Process Flow from the Application to the Protocol Server

In this section, the practical execution steps of the socket-calls through the applica-

tion to the protocol server are explained. Since FreeNA inserts several libraries into the

application process, the relationship between these libraries should be clarified.

Figure 5.18 extends Fig.5.2, and shows the hierarchical structure of the application pro-

cess when additional transport-layer protocols are inserted. Unlike the previous structure,

the interface library switches the actual socket functions and inserted protocol library’s

functions. When a protocol within the kernel is used, the interface library directly calls

the socket functions just as before. Otherwise, the interface library calls the functions of

the protocol library to access the corresponding protocol server.

5.4.4 Protocol-free Environment

Generally, the socket interface provides two types of functions for the connection-

oriented protocol and the connection-less protocol. Since the socket interface is designed

86

Figure 5.18: An insertion structure of service functions and transport-layer protocols

without any dependency on a certain protocol, the functions of additional protocols other

than TCP/UDP can also be used via the socket interface conceptually. In this study,

the adaptive mechanism for switching the transport-layer protocol used by server-type

applications to another protocol used by the client-type application is implemented by

leveraging the abstract design of the socket interface.

Actual execution steps of the protocol switching are explained as follows by taking

a code example of the service accept function within the interface library shown in

87

� �
socket_t service_accept(socket_t tcp_sock, ...)

{
/* Create and setup a socket for SCTP */

socket_t sctp_sock = protocol_socket(...);

protocol_bind(sctp_sock, ...);

prootcol_listen(sctp_sock, ...);

fd_set rfds;

FD_ZERO(&rfds);

FD_SET(tcp_sock, &rfds);

FD_SET(sctp_sock, &rfds);

select(max(tcp_sock, sctp_sock) + 1, &rfds, ...);

if (FD_ISSET(tcp_sock, &rfds)) {
/* The client connected to the server with TCP */

clt_sock = accept(tcp_sock, ...);

/* TCP is activated */

}
else if (FD_ISSET(sctp_sock, &rfds)) {

/* The client connected to the server with SCTP */

clt_sock = protocol_accept(sctp_sock, ...);

/* SCTP is activated */

}
return clt_sock;

}

� �
Figure 5.19: Checking a protocol used by the client at connection time

Fig.5.19 into account.

• The server-type application uses the TCP protocol as a default, and the SCTP

protocol is also available as an alternative protocol.

• The application executes the socket, bind, and listen socket-calls, and a TCP

socket is in the waiting state.

• The application calls the accept socket-call, and the service accept function

within the interface library is internally invoked.

88

• Another socket for the SCTP protocol is created by executing the appropriate func-

tions of the SCTP protocol library.

• Within the service accept function, a select system call is called to observe both

the TCP socket and the SCTP socket.

• If the client accesses the server using the TCP protocol, a select system call returns,

and the TCP socket is set as the connection message has been arrived.

• If the client accesses the server using the SCTP protocol, the select system calls

returns, and the SCTP socket is set(The SCTP protocol server sends a signal to

the protocol library via the internal socket channel when the SCTP connection is

established).

• After connection establishment, the application can use the same protocol as the

client’s one by calling the socket-calls as usual.

In this way, the transport-layer protocol-free environment for the connection-oriented

protocol can be established. In addition, this mechanism is also applicable to connection-

less protocols. Although these protocols do not require accept socket-call, a recvfrom

socket-call can be the alternative such that the select system-call is called in the first

round of the recvfrom.

5.5 Summary

In this chapter, the practical mechanism of the FreeNA system including the client/server

systems, the flow handler (chain) concept, the transport-layer protocol insertion, and the

protocol-free environment were described.

The entire client and the largess of the server are implemented in Java to ensure

the system portability. The interposer components are implemented in C++, and are

prepared for each platform to directly manipulate the application process. The interface

between the server and the interposer is implemented using JNI mechanism.

89

To compose the flow handler chain structure, each network service library must have

the service info structure instance to access the downstream library. FreeNA inserts not

only the network service libraries, but also the control library and interface library between

the application and the socket interface hierarchically. The control library dynamically

initializes all the underlying libraries at startup. The interface library is used to call the

intrinsic socket functions or protocol library functions.

Internally, the dyninst API is used mainly for the system-call interposition. The API

provides a variety of methods for dynamically changing the runtime process image in an

abstract manner. It is also possible to use another interposition mechanism like library-

preloading by implementing the mechanism to another interposer component.

FreeNA also allows users to insert transport-layer protocols by leveraging a raw IP

mechanism. The protocol library and independent protocol server programs are imple-

mented in order to construct the transport-layer protocols into the userland. The protocol

server executes the core functions of the protocol, and the library works as the interface

between the application process and the server process.

Moreover, the adaptive mechanism of switching the transport-layer protocol used by

the server-type applications to another protocol used by the client-type application is

implemented by leveraging the abstract design of the socket interface. In practice, select

system-call is used to decide on the appropriate protocol for the current communication

at the time of access.

90

Chapter 6

Evaluation

In this chapter, the FreeNA system is evaluated from diverse perspectives to show

the fulfillment of the FreeNA’s goals. The functionality of FreeNA is compared with

other similar systems. Considering FreeNA is implemented as a comprehensive system,

the manageability and security are also discussed. Furthermore, the system performance

of FreeNA is measured. Naturally, the application-level performance can be decreased

compared with the original application because the additional computation processes for

the network services are introduced. Therefore, the performance overhead of the service

inserting mechanism itself is evaluated.

6.1 Functionality Comparison

The functionality of FreeNA is an important result in this study in order to achieve

a flexible, user-oriented, and adaptive communication framework. FreeNA’s functionality

can be viewed from various perspectives, such as the users’ perspective, the applications’

perspective, and the platforms’ perspective.In this section, each aspect of FreeNA’s func-

tionality is reviewed by comparing it with similar systems introduced in Chapter 2.

6.1.1 Reviewing from Users’ Perspective

As described before, FreeNA is designed for both professional and inexperienced users.

Therefore, the usability of FreeNA is evaluated by focusing on the configuration mecha-

nism and system operability.

91

The configuration mechanism is introduced to FreeNA in order to provide a flexible

composition method for the application capabilities, to prevent users from being required

to have technical and programmatic knowledge. In practice, the XML-formatted config-

uration file is offered to specify the network services to be inserted, their composition,

and parameters. It should be noted that the configuration file can be composed by only

selecting the fragmentary functional name. Therefore, users do not need to understand

the internal service composition or insertion mechanisms.

FreeNA also provides a user-friendly system operational method as a dedicated client

program to hide the complexity of FreeNA’s processing. One of the advantages of this

client system is that system operability and functionality can be adjusted based on the

user’s experiences, such that a command-based systems provide finner operations and a

browser-based system provides simple and straightforward operations.

The network services of MetaSockets are implemented as the Filter thread classes,

and they are composed as a pipeline structure in the meta-level socket classes. Users

generally prepare the Decision Maker classes that monitor the environment and dy-

namically arrange the inserted filters based on a simple set of rules. Unlike FreeNA,

these rules have to be reflected to dedicated DM class implementations such that the

DM invokes conditional methods to insert the specified filter. Therefore, programmatic

approaches are required to fundamentally modify the application’s behavior.

TESLA provides a wrapper program (tesla) that sets up the environment for the

users. Basically, tesla has a handler (network service) configuration, which is an ordered

list of handlers, and internally composes the flow-handler chain structure. Users can

specify the network services and parameters as specifying arguments to the command-line

programs. Having said that, tesla only provides on-the-fly usage, rather than providing

finer and persistent system management methods.

DITOOLS can be driven by a configuration file by taking into consideration its in-

terposition mechanism. Since an additional service is inserted with the extension of the

linker/loader, users have to specify which service library is inserted and where the con-

92

figuration file is in the runtime system. In the configuration file, the service library name

and insertion mode (wrapper mode or callback mode) are specified with the command-

based notation. The file itself is specified by an environment variable. Therefore, users

are required to know the extension mechanism, and to manage the environment variable

properly for multiple DITOOLS-enabled applications.

Users can insert interposition agents into the applications by redirecting the specified

system-calls on the BSD/Mach platforms. A C++ toolkit is offered to agent developers

to present the primary system interface abstractions (pathnames, descriptors, and files)

as C++ objects. Agents can change these abstractions by using the class inheritance.

At runtime, an agent loader program loads the user application with the specified agent

using the task set emulation() and execve() system calls.

VTL provides a developer toolset for packet capturing, packet manipulation, packet

creation, and protocol state maintaining. When taking into account that these mecha-

nisms are implemented as API, VTL does not offer a user-level configuration or system

operation mechanisms.

Alpine was designed to allow for network protocol development at the user-level.

Therefore, a user-friendly configuration mechanism or the interface tools are not pro-

vided.

Trickle offers an application-level traffic shaping mechanism to applications by using

the library preloading technique. Users can use the command line utility program to

set-up the runtime environment for trickle-enabled applications, and some parameters are

also passed via the command line options.

DR-TCP dynamically upgrades the TCP protocol to a newer version depending on

the network environment. If the appropriate protocol is not installed on the host, it

automatically downloads and installs the protocol from the web. Therefore, users do not

need to operate the system.

Table 6.1 outlines a comparison of the system usabilities. The user-level config-

uration item evaluates how easily users can configure the network service composition

93

without depending on the direct programmatic configuration. The user-level tools item

evaluates whether the system provides the utility tools for the application invocation and

service insertion. Without such tools, the users are solely responsible for these processes,

which restricts the potential system users to only experienced developers.

In the table, the ’
√
’ mark represents full support, an ’L’ mark means limited support,

and the ’–’ mark expresses no support.

Table 6.1: Comparison of system usability

General-purpose systems

System User-level configuration User-level tools
• XML-formatted file • Client program

FreeNA
√

• Functional selection
√

• Operational commands
• Detailed configuration

Meta- • Adaptation rules • Decision Maker class
Sockets L • Programmatic configuration L • Adaptive Java

• Detailed configuration
• Functional selection • Wrapper program

TESLA L • Service and parameters
√

DIT- • Command-based files • DI runtime program
OOLS L • Service and insertion modes

√

• Environment variables
Inter- • Programmatic configuration • Agent loader
position – • Class inheritance

√

agents
• Programmatic configuration • Network Interface API

VTL – –1 • Packet Access API
• Protocol State API

Single-purpose systems

• Programmatic configuration
Alpine – –

• Command-line options • Utility program
Trickle

√ √

DR- • Programmatic configuration • Autonomous
TCP –

√

1 Users can also use services implemented as executable processes only for
VNET[80] extension.

94

6.1.2 Reviewing from Network Services’ Perspective

Network services are the essential components of this study, and therefore, their diver-

sity and composability have significant influence on the usefulness of the entire system.

Each network service in FreeNA is provided as an independent program library in

view of the separation of concerns, flexible composition, and service deployment. The

separation of concerns is achieved by structurally dividing the application core functions

and service functions.

The application itself is never destructed when introducing extended functions because

the library content is incorporated in the application’s process image not the binary

executable file or the source code.

Given the general-purposed service framework, a variety of network services can be

supported, and in particular, multiple services can be composed concertedly at any one

time even though they are independent of one another. FreeNA supports a range from

transport-layer services to application-specific services, and the flow handler concept al-

lows these services to be flexibly combined.

Service developers can implement the library according to the predetermined library

interface, such as the socket interface and service info structure of FreeNA. Since each

network service does not rely on any other library as a binary program, it is possible for

users to acquire the necessary services from third-party service developers.

The configurability of each network service is also an important aspect. For instance,

a cryptography service should support various combinations of encryption algorithms,

key lengths, and cipher modes, and the users can specify any one of these combinations.

FreeNA enables service libraries to have arbitrary "name=value" formatted parameters.

The semantics of these parameters are interpreted in the service library, and FreeNA just

passes the parameter strings from the configuration file to the library as the arguments

of the service init() function.

MetaSockets also enables the separation of the network services (filters) from the

application, and the inserted filters are combined as a pipeline. Unlike FreeNA, each

95

filter is implemented as an Java object instantiated Filter class. The independence of

the filters is achieved by inter-threading the communication via the shared buffer between

filters. Each filter can be configured by defining the parameter setting methods. Although

complicated parameters can be set, users have to arrange these methods so that Decision

Maker properly invokes them.

TESLA originally takes advantage of the flow handler concept to transparently com-

pose session-layer network services. However, the implementation form of the flow han-

dler is different in that the service for TESLA is implemented as an instance of the

flow handler C++ class, and a couple of handlers are combined in a master process by

the service type. The master processes are chained by the inter-process communication

because some services require multiple flows across the processes. When taking into ac-

count the service deployment, users cannot utilize arbitrary services by just downloading

them from third-parties because each handler C++ object must be statically linked to

the master program in advance.

Extension functions for DITOOLS are implemented as shared libraries like FreeNA,

and the library interface can be assumed to be a socket interface if the network function

is extended. Therefore, a variety of network services can be easily deployed to users.

Although, DITOOLS supports recursive service insertion by DI runtime, the glue inter-

face between inserted services is not provided. In addition, the parameter setting is not

supported.

Since interposition agents are based on the system-call redirection mechanism, agent

programs have to be loaded within the address space of the application. Therefore,

agents should be implemented as libraries that provide system-call-like functions. Inter-

position agents have some restrictions in that they cannot be stacked hierarchy because

htg unix syscall() directly invokes kernel functions. That is, only single agents can be

loaded to the application at a time.

The network services for VTL are based on packet manipulation and packet injection

mechanisms. Therefore, VTL can support data-link layer services to application specific

96

services. A network service is implemented as an executable program for a half duplex

service and two executables for full duplex. However, VTL supposes a single service

composition by design.

Alpine is dedicated to the user-level transport protocol service, and it cannot stack

upper-layer services on the transport protocol. Unlike FreeNA’s method, user-level trans-

port protocols are implemented as shared libraries. Alpine leverages the packet capture

library to multiplex the protocol flows ensuring consistency.

Trickle is used for ad-hoc traffic shaping such as the rate restrictions and prioritized

transferring on TCP connections. That is, Trickle works as a session layer service. The

main functionality of Trickle is implemented as a shared library, and it is transparently

inserted into the application process image by the library preloading technique. The

utility program automatically configures the preloading environment.

DR-TCP only provides downloadable and reconfigurable mechanisms for the tradi-

tional TCP protocol. DR-TCP is offered as a shared library to directly incorporate its

mechanism into the application process. Unlike other systems, the library provides state

machine objects instead of library functions. A customized loader program is offered to

load the library into a specified memory area and appropriately binds the object symbols.

Table 6.2 presents a comparison of the network service features. The protocol ranges

item shows how widely the protocol layers are supported as network services, the com-

position item is how flexibly and easily multiple network services are combined into

the application, and the Ad-hoc use item expresses whether a network service can be

instantly used.

97

Table 6.2: Comparison of network service features

General-purpose systems

System Protocol ranges Composition Ad-hoc use
• Transport to • Multi service • Library style

FreeNA Application
√

• Automatic
√

• No compiling/linking
• Transparent

Meta- • Session to • Multi service • Java object style
Sockets Application1 L • Programmatic L • Programmatic

• Transparent installation
• Session to • Multiservice • C++ object style

TESLA Application1 L • Semi-automatic L • Static link to the
• Transparent driver process3

DIT • Session to • Multiservice • Library style
OOLS Application1 L • Programmatic2

√
• No compiling/linking

• Transparent
Inter- • Session to • Single service • Executable style
position Application1 –

√
• No compiling/linking

agents
• Data-link to • Single service • Executable style

VTL Application –
√

• No compiling/linking

Single-purpose systems

• Transport • Single service • Library style
Alpine –

√
• No compiling/linking

• Session • Single service • Library style
Trickle • Over TCP –

√
• No compiling/linking

DR- • Transport • Single service • Library style
TCP –

√
• Automatic linking

1 Considering the internal implementation, the range of services could be feasible.
2 An additional mechanism that combines arbitrary two service libraries are required.
3 Flow handler classes has to be linked to the master process.

6.1.3 Reviewing from Applications’ Perspective

The implementation characteristics of applications can restrict the network services

to be inserted. For example, some systems leverages the language-inherent capability for

extension, and using this method does not help to extend applications implemented in

98

other languages. Therefore, the difference in service insertion mechanisms influences the

available application environment.

In addition, applications may use network functions in diverse ways, such as mul-

tiple communication flows, a shared communication flow, and asynchronous data com-

munication. It is practical to say that network services are applied to only appropriate

communication flows not every flow.

FreeNA’s service insertion is directly applied to an application’s process image, rather

than a runtime system or the source code. The process image structure is not affected by

the programming language used to implement the application. Some language systems

compile applications as intermediate codes to work on their own virtual machines, like the

Java language. Although FreeNA cannot handle such intermediate program directly, an

interface between the VM and the underlying platform will be accessed. A notable aspect

of FreeNA-enabled applications is that any source code or special compilation process is

not necessary.

The control library offered by FreeNA manages every communication flow expressed as

sockets. The address information, port number, transport-layer protocol, and application

type (client or server) are registered for each socket, and the control library can use these

information to apply different services by their flow types. Network service developers can

implement their libraries as intermediate server processes to handle multiple flows across

different processes for system-wide network services like congestion control.

MetaSockets uses the Adaptive Java language to introduce adaptability to traditional

Java applications. Since Adaptive Java leverages the reflection mechanism to instantiate

the MetaSocket classes, applications must access Java-implemented socket classes to insert

filters. Filters are dynamically composed as a pipeline within the send() or recv() socket

method according to the DM’s decision. The DM considers the communication status

changes such as the error rate, rather than the communication flow types.

The flow handlers for TESLA work as independent processes (master processes) from

the application process, and the tesla wrapper program mediates between these processes

99

by delegating the socket-calls from one process to another. Therefore, any implementation

form of application is available as long as it invokes the native socket-calls. Each master

process can be shared by different processes, which allows for the comprehensive control

of the network functions.

The DI runtime of DITOOLS handles the symbol table within the application’s pro-

cess image, and a module symbol and function symbol pair is manipulated. That is,

applications utilizing native dynamic-link features can be extended by DITOOLS. The

manipulation of the symbols is done once at the time of loading, and DITOOLS does not

provide a manipulation mechanism during application execution.

Interposition agents can be loaded within the application process image directly by the

Mach OS’s features, and interpose an arbitrary user code into the specified system-calls.

However, since agents are driven by the process-oriented approach, they cannot alter their

behaviors based on the to application data.

Since VTL manipulates already transmitted packets at the interface between the guest

OS and VMM, any application running on the guest OS is available with VTL. This packet

manipulation is based on the libpcap/Winpcap library, which implies that VTL enables

a conditional service insertion by using the header information, such as the IP address,

port number, and protocol types.

Alpine’s features are inserted into the application by the library preloading technique.

Therefore, most applications are available without any modification. Since Alpine only

provides a transport-layer service, the socket interface is simply overridden.

Trickle can work with applications that were implemented in many languages by us-

ing the library preloading technique. Trickle provides a common server program that

coordinates among multiple trickle-enabled applications to globally limit the aggregated

transfer rate.

Since DR-TCP is implemented as the shared library and loaded into the application

process by the dedicated loader, most applications are available on this TCP protocol.

Moreover, DR-TCP enables the application to replace the protocol implementation when

100

the environment is changed.

Table 6.3 presents a comparison of the adaptability to applications. The implemen-

tation independence item presents how independent the system is from the implemen-

tation style of the applications. The insertion flexibility item is how flexibly the service

insertion types are supported by the system.

Table 6.3: Comparison of adaptability for application’s features

General-purpose systems

System Implementation independence Insertion flexibility
• Any language • Conditional insertion

FreeNA
√

• Binary-based extension
√

• Adaptable insertion
• No recompilation/relinking • Cross-application insertion

Meta- • Java language • Adaptable insertion
Sockets – • Byte code-based extension

√
• Runtime reinsertion

• Linking to MetaSockets
• Any language • Fixed insertion

TESLA
√

• Binary-based extension L • Cross-application insertion
• No recompilation/linking

DIT- • Any language • Fixed insertion
OOLS

√
• Binary-based extension –
• No recompilation/linking

Inter- • Any language • Fixed insertion
position

√
• Binary-based extension –

agents • No recompilation/linking
• Any language • Conditional insertion

VTL
√

• VM-based extension
√

• Cross-application insertion
• No recompilation/linking

Single-purpose systems

• Any language • Fixed insertion
Alpine

√
• Binary-based extension –
• No recompilation/linking
• Any language • Cross-application insertion

Trickle
√

• Binary-based extension L
• No recompilation/linking

DR- • Any language • Adaptable insertion
TCP

√
• Binary-based extension

√
• Runtime reinsertion

• No recompilation/linking

101

6.1.4 Reviewing from Platforms’ Perspective

As described before, the introduced systems including FreeNA take advantage of the

various insertion mechanisms. Generally, these mechanisms are based on the platform-

intrinsic aspects like API and ABI.

FreeNA leverages the abstractiveness of the socket interface by hiding the interposed

services from the application. Socket-calls are intercepted by altering the addresses of

the socket-calls within the process image if the Dyninst API is used. Since Dyninst API

supports multiple executable file formats including ELF[81] and portable executables for

Windows[82], and socket-calls can be hooked on multiple platforms in the same way. If

inoperable formats are adopted by the platform, other interposing techniques like a library

can be used by replacing the Interposer component of FreeNA server to another.

MetaSockets absorbs features of existing Java classes by using a dedicated compiler,

and then traditional Java objects are finally created. Therefore, MetaSockets can work

with standard JVM implemented on various platforms.

The network services for TESLA work as independent processes, and connect to an

application by using the internal UNIX-domain sockets communication. The tesla wrap-

per program intercepts socket-calls from the application by using the library preloading

technique. TESLA itself is implemented for Unix variant systems, and the abstraction

mechanism of platform-dependent functions is not supported.

The DI runtime of DITOOLS leverages the runtime linker and loader to manipulate

the symbol table of the process image. Linker and loader are deeply associated with the

platform, and therefore, the platforms or the version of these systems are restricted.

Even though interposition agents provide abstraction system interfaces like path names

and file descriptors, they depend on the Mach OS’s memory management, process man-

agement, and system-call redirection mechanisms for loading agents into the application

process and system-call interposing.

Since VTL is applied to packet streams, the packet capturing technologies of the

platform determine its independency is determined. Modern platforms have packet fil-

102

tering/redirection mechanisms such as the BSD packet filter[83] and Windows Packet

filter[84], and VTL can leverage these mechanisms using the libpcap/winpcap libraries.

Alpine moves the entire protocol stack code to the user-space, which allows developers

to incorporate the implemented protocols into the kernel in the future. Since the protocol

stack cannot be independent from the kernel on many platforms, not only the protocol

stack code but also some kernel features, including the timers and data structures, have

to be moved to the user-space.

Trickle was designed to work on Unix-like platforms that provide POSIX interfaces,

and the utility program can set the LD PRELOAD environment variable for library preload-

ing.

Since DR-TCP uses a custom memory allocator, it can only work on limited architec-

tures. Moreover, some kernel functions were also modified for ensuring end-to-end TCP

session identification.

Table 6.4 presents a comparison of the system independences from the platform. The

platform abstraction item represents how the system abstracts the platform-dependent

issues. The target platform item is the platforms on which the system works.

103

Table 6.4: Comparison of system independency from the platform

General-purpose systems

System Platform abstraction Target platforms
• Java-based system • Unix variants2

FreeNA
√

• Replaceable native interposer • Microsoft Windows
• Dyninst API

Meta- • Java-based system • Java VM
Sockets

√
• Adaptive Java

• Library preloading • Unix variants
TESLA L • POSIX interface

DIT- • Symbol table modification • IRIX OS
OOLS –

Inter- • Mach’s memory management • Mach OS (BSD system
position – • Mach’s process management interface)
agents • Mach’s syscall redirection

• Packet manipulation/injection • Xen
VTL

√
• Libpcap/Winpcap • VMWare

Single-purpose systems

• Library preloading • FreeBSD
Alpine – • Moving kernel code to user

space
• Library preloading • Unix variants

Trickle L • POSIX interface

DR- • Custom memory allocator • Linux
TCP – • Kernel modification

1 Other interposing methods are also available for dyninst-unsupported plat-
forms.

2 Other platforms can be supported by just implementing suitable interposer
component.

6.2 The Manageability of FreeNA

As discussed before, FreeNA consists of many components and leverages various soft-

ware techniques, such as the system-call interposition. Therefore, it seems that FreeNA’s

architecture raises the threshold of the system. In this section, the manageability of the

104

FreeNA components is described separately, and compared with other systems.

The FreeNA client is implemented as a fully independent Java program for the user

interface. Therefore, it can be managed in the same way as normal Java programs.

The FreeNA server consists of a Java-coded part and the independent shared library

named the Interposer. The Java-coded part can also be managed like a normal Java

program. Since the Interposer library just calls the Dyninst API for the interposition, it

can be managed like a normal shared library.

Dyninst API has been developed and managed as a part of the Paradyn project at

Maryland University. In the FreeNA system, only the Interposer library of the FreeNA

server uses this API, and FreeNA users and network service developers do not need to

know the existence of the API. Therefore, we can integrate the latest API into the FreeNA

system regardless of the users and service developers.

Since network service libraries are implemented as independent shared libraries with

our-defined interface, and they are dynamically and fully-transparently loaded into the

process image, and FreeNA users and service library developers do not need to always be

the same. Therefore, FreeNA users can download service libraries from third parties, and

manage them independently from the FreeNA client/server.

There are many other systems that leverage tricky interposition techniques. FUSE[26]

hooks the file operation system calls to construct user-space filesystems. Although FUSE

is integrated with the most recent Linux kernel and many distributors support it by

default, the manageability of FreeNA is easy in that users can manage FreeNA in a

unified way on many platforms, and all FreeNA’s components run within the user-space

as independent modules.

Xen[45] is another system that uses a binary rewriting method. In contrast, FreeNA

users do not need to manage the patched version of applications, the modification of

existing systems, nor do they need special CPU support.

105

6.3 Security

In this section, the software security of FreeNA is evaluated in view of the access con-

trol mechanism and vulnerability. The access control mechanism prevents FreeNA users

from accessing other process information and OS resources via FreeNA’s hack mecha-

nisms. Moreover, FreeNA must have a protection mechanism for exploiting the process

manipulation or system-call interposition to prevent malicious codes from taking control

of the process.

6.3.1 Access control mechanism

FreeNA provides the client program for not only the system usability, but also se-

curity reasons. The separation of the FreeNA server and FreeNA client increases the

level of system security of FreeNA because the FreeNA server can only manipulate the

application processes under the internally defined operational commands specified by the

client. Therefore, FreeNA users cannot exploit FreeNA’s features to control the process

behaviors.

To prevent application extension by unauthorized users, the FreeNA server forces an

authentication process to the FreeNA client at the session establishment time. However,

the simple user authentication overlooks the fact that authenticated FreeNA users can

access any application because the FreeNA server runs in a privileged mode. One possible

solution to this problem is that the FreeNA server could checks the permissions of the

requested application with the native OS, and launch the application under the user

privilege by using the setuid() or CreateProcessAsUser() system-calls.

6.3.2 Vulnerability

FreeNA allows users to download network service libraries from third parties, which

can be harmful if an adversary covertly embeds malicious codes into the service library.

However, FreeNA does not provide a protection method for removing malicious libraries.

To solve this problem, FreeNA users should be forced to download from trusted servers

106

only, and a digital signature or checksum should be used to validate the downloaded li-

braries. In addition, users can statically investigate the system-calls invoked by the down-

loaded library using the binary check tools such as GNU Binutils[85] including readelf

and objdump for Linux platform, and dumpbin[86] for Windows platform 1.

Generally, only privileged processes can open the raw socket. FreeNA gives the proto-

col server independence from the application process to run in privileged mode. Consider-

ing the protocol server only executes protocol processing, the risk of program hijacking is

smaller than for other server systems, such as a Web server executing CGI or a database

server executing SQL. To increase the server security, a sandboxing environment[27] can

be applied to the protocol server. On the other hand, since the application process runs

in user mode, it is possible to reduce the damage when the application is attacked.

6.4 Performance Evaluation

In this section, the performance overhead of the service insertion by FreeNA is eval-

uated. Figure 6.1 and Table 6.5 present the experimental network and each machine’s

specifications. In the experiments, the performance overhead of the service insertion was

evaluated on both the Linux and Windows operating systems by comparing the through-

puts of FreeNA-enabled applications to the throughputs of applications where the same

services are directly implemented within the applications. The test applications were

written in the C/C++ languages, and compiled by GNU g++ or Visual Studio 2008

using the best optimization option.

Figure 6.1: Experimental Network

1Many network services do not require OS support, especially, writing system-calls

107

Table 6.5: Machine specifications

Machine1
OS WindowsXP/Linux(2.6.18)
CPU Intel PentiumM 2.13GHz
Memory 512 MByte
Ethernet 1000BASE-T
NIC Chipset BCM95751M
Bus interface PCI Express 1.0
HW Checksum ON
Jumbo frame OFF
Machine2
OS WindowsXP/Linux(2.6.18)
CPU Intel PentiumD 2.8GHz
Memory 4 GByte
Ethernet 1000BASE-T
NIC Chipset Yukon 88E8053
Bus interface PCI Express 1.0
HW Checksum ON
Jumbo frame OFF

6.4.1 Performances of Upper-Layer Service Insertion

FreeNA-enabled Socket-call Overhead

First, the socket-call overhead with FreeNA was evaluated for machine 2. In the ex-

periment, the actual execution time of the send() and recv() socket-calls were evaluated

separately using one service library. The execution time was measured using the RDTSC

instruction[87] of the x86 architecture. In addition, another application that statically

calls a service function was also evaluated for comparison to the FreeNA-enabled appli-

cation.

108

Figure 6.2: System-call overhead measurement points for the FreeNA-
enabled application

Figure 6.3: System-call overhead measurement points for the comparing
application

109

Figures 6.2 and 6.3 show the execution time measurement points. While the FreeNA-

enabled application invokes four functions, the other application only calls two functions

per socket-call because the service function is directly implemented within the application.

The RDTSC instruction was performed before/after the function calls.

Table 6.6: Sending socket-call overhead on Linux
FreeNA-enabled Statically-implemented

No. Clock tick µ sec No. Clock tick µ sec
(1) 1844 0.659 (1)’ 121 0.043
(2) 617 0.221 (2)’ 21598 7.716
(3) 734 0.262 (3)’ 108 0.039
(4) 23503 8.397
(5) 146 0.052
(6) 155 0.055
(7) 222 0.079

Total 27221 9.725 Total 21828 7.798
Total-(4) 3718 1.328 Total-(2)’ 229 0.082

Table 6.7: Receiving socket-call overhead on Linux
FreeNA-enabled Statically-implemented

No. Clock tick µ sec No. Clock tick µ sec
(1) 1969 0.704 (1)’ 113 0.040
(2) 595 0.213 (2)’ 11150 3.984
(3) 467 0.167 (3)’ 104 0.037
(4) 11578 4.136
(5) 110 0.039
(6) 104 0.037
(7) 238 0.085

Total 15062 5.381 Total 11366 4.061
Total-(4) 3484 1.245 Total-(2)’ 216 0.077

110

Table 6.8: Sending socket-call overhead on Windows
FreeNA-enabled Statically-implemented

No. Clock tick µ sec No. Clock tick µ sec
(1) 3497 1.249 (1)’ 1169 0.418
(2) 2332 0.833 (2)’ 71203 25.439
(3) 1895 0.677 (3)’ 911 0.326
(4) 59267 21.174
(5) 730 0.261
(6) 775 0.277
(7) 754 0.269

Total 69250 24.741 Total 73284 26.182
Total-(4) 9983 3.567 Total-(2)’ 2080 0.743

Table 6.9: Receiving socket-call overhead on Windows
FreeNA-enabled Statically-implemented

No. Clock tick µ sec No. Clock tick µ sec
(1) 2333 0.834 (1)’ 965 0.345
(2) 1545 0.552 (2)’ 23471 8.385
(3) 1377 0.492 (3)’ 721 0.258
(4) 16999 6.073
(5) 707 0.253
(6) 708 0.253
(7) 675 0.241

Total 24344 8.697 Total 25157 8.988
Total-(4) 7345 2.624 Total-(2)’ 1687 0.603

The performance overhead results are listed in Tables 6.8 and 6.9. From the results that

the number of function calls affected the socket-call execution time at a microsecond order.

However, since this experiment does not consider the heavyweight tasks, such as packet

copying, data manipulation, and blocking for transmitting/receiving, the overhead of the

socket-call execution with FreeNA will not impact on the overall application throughput.

Transmission Overhead with Light-weight Service

The next experiment evaluates the overall application throughput by continuously

transmitting data packets without intervals. Since continuous data transmission can incur

process blocking, the overhead of the socket-call execution with FreeNA will have less

impact on the overall performance. In this experiment, the application on Machine 1

transmits 300,000 application-packets with aNull service library, which sends data simply

111

without any data manipulation or copying. Each application-packet is 1024 bytes and the

time is measured at the application-level while all the data is transmitted to the receiver.

Table 6.10: Transmission time with light-weight service
Number of services 1 2 3 4 5

Linux FreeNA-enabled 2.635 2.638 2.635 2.637 2.64
Statically-implemented 2.629 2.635 2.636 2.637 2.636

Windows FreeNA-enabled 10.105 10.104 10.12 10.121 10.095
Statically-implemented 10.105 10.076 10.122 10.097 10.141

Table 6.10 lists the time for transmissions on both Linux and Windows at various

null service libraries. Although the transmission times are different for different OSs, the

execution time for the FreeNA-enabled application and for the comparing application that

calls the service directly were almost the same (performance degradation was less than

2% at the most). Therefore, the overhead of a service insertion by FreeNA is negligible

when the application continuously transmits application-packets.

Transmission Overhead with Heavyweight Service

This experiment was conducted under the same conditions as the previous one except

that a cryptography service library and a compression service library were used. The

compression library uses a Zlib library[74] and the cryptography library uses a Crypto++

library[88], and a Sosemanuk stream cipher[89] was used in the experiment. We tested the

cryptography services, compression services, and both the compression and cryptography

services.

Table 6.11: Transmission time with heavy-weight services
Service Name Cryptography Compression Crypto+Comp.

Linux FreeNA-enabled 2.641 26.242 26.785
Statically-implemented 2.641 26.197 26.721

Windows FreeNA-enabled 10.404 23.574 24.141
Statically-implemented 10.389 23.625 24.128

The measurement results are presented in Table 6.11 and indicate that FreeNA does

not affect the performance of the target application when using practical service libraries

112

(performance degradation was less than 1%).

Overhead with practical usage

The third experiment was conducted using a file transfer application like FTP that uses

two connections. A control connection was used to request a file and a data connection

was used to transfer the file itself. The cryptography and compression service libraries

were used again, and the compression service was applied to the data connection and

the cryptography service was applied to both the data and the control connections. We

evaluated the throughput of the client application on Machine 1 while the required file was

transferring through the data connection using various application-data sizes. The size of

the application-data was one of the important factors affecting the system throughput,

because the number of packets is inversely proportional to their size. The number of

packets should generally be reduced to curtail the overheads of the packet processing.

Figures 6.4 and 6.5 show the throughputs of the receiver-side applications on Linux.

Figures 6.6 and 6.7 show the throughputs on Windows. In Fig. 6.4, the throughputs

rapidly increased as the application-data size increased, especially for Application-Normal.

The throughputs for these three schemes were close when the size was larger than 2048

bytes. As Fig. 6.5 shows, if the compression service was used, the throughput was low

even though the actual application-data size was reduced by the compression. However,

the throughput in the four graphs was almost the same. This is because the software-level

compression takes up a lot of execution time, and therefore, the overhead of the service

insertion by FreeNA has no impact on the overall throughput.

Next, on Windows, the throughput of the normal/cryptography clients was less than

that of Linux. In addition, there are some substantial performance drop points including

those of a normal application at data sizes of 2048 bytes, 4096 bytes, and 8192 bytes.

A similar phenomenon can be seen in Gray et al.’s research[90]. According to Gray et

al., the network card driver’s interrupt moderator feature throttles the interrupt requests

when they are being issued at too fast a rate. At lower MTU settings with higher bus

speeds, the number of interrupts thrown by the card would reach the interrupt moderator

113

threshold faster, causing a wide variance in the throughput. However, the question is

that why this phenomenon was not seen in the experiments on Linux despite the fact

that the hardware architecture and software architectures of the applications, network

services, and FreeNA are not changed. One possibility is to assume that the number of

interrupts for notifying of the DMA completion may have been reduced on Linux by the

NAPI just as Jin et al. pointed out[91]. Since the Linux NAPI lets the interrupt handler

poll the DMA completion queue more frequently and handles more packets if there are

some at any one time, the network card worked stably. Therefore, further research on the

internal behavior of the network card and kernel protocol stack is needed to clarify this

phenomenon.

As a whole, there were no significant differences between the FreeNA method and

application-direct method. From the experiment, we can say that there seems to be

no significant influence of the service insertion by FreeNA for practical usage on both

platforms. Therefore, users only have to consider the overhead of the processing of the

service functions themselves.

114

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0 2048 4096 6144 8192

T
h
r
o
u
g
h
p
u
t

[
M
b
p
s
]

Data Size [byte]

Application-Normal
Application-Crypto

FreeNA-Crypto

Figure 6.4: Throughput of client on Linux

 20

 40

 60

 80

 100

 120

 140

 0 2048 4096 6144 8192

T
h
r
o
u
g
h
p
u
t

[
M
b
p
s
]

Data Size [byte]

Application-Compress
Application-Compress+Crypto

FreeNA-Compress
FreeNA-Compress+Crypto

Figure 6.5: Throughput of client on Linux

115

 0

 100

 200

 300

 400

 500

 600

 0 2048 4096 6144 8192

T
h
r
o
u
g
h
p
u
t

[
M
b
p
s
]

Data Size [byte]

Application-Normal
Application-Crypto

FreeNA-Crypto

Figure 6.6: Throughput of client on Windows

 20

 40

 60

 80

 100

 120

 140

 160

 0 2048 4096 6144 8192

T
h
r
o
u
g
h
p
u
t

[
M
b
p
s
]

Data Size [byte]

Application-Compress
Application-Compress+Crypto

FreeNA-Compress
FreeNA-Compress+Crypto

Figure 6.7: Throughput of client on Windows

116

6.4.2 Performances of Transport-Layer Protocol Insertion

Evaluation of transport-layer protocol insertion

To evaluate the overhead of a transport-layer protocol insertion, another UDP pro-

tocol stack consisting of the protocol server/library was implemented. As described in

section 5.4, the protocol server executes the core functions of the protocol as independent

processes, and the library intermediates between the server and the application process.

In the experiment, this UDP implementation was used to compare the traditional UDP

protocols within the kernel-space protocol stack. A test application sends or receives

1,000,000 consecutive packets at a specified data packet size, and the throughput was

measured in the application.

Figure 6.8 shows the effective throughputs of the sender test application (S) and re-

ceiver test application (R) on Linux, and Fig. 6.9 shows the throughputs on Windows.

From the results on Linux, we could see that there was no significant performance dif-

ference between the UDP-FreeNA and UDP-Kernel when the data size was small. This

is because that the overhead comes from the packet processing and transferring within

the OS, which had a relatively big impact. The effective throughput rose as the data size

got larger, and finally peaked at 900Mbit/s because of the bandwidth limitation. When

comparing the both the UDP-FreeNA and UDP-Kernel throughputs, the performance

degradation was a maximum of 25% when the data size was 512 Bytes.

On the other hand, it is obvious that the overall throughputs on Windows are rela-

tively less than those on Linux, and a significant performance degradation to UDP-Kernel

was not observed, since the packet processing within the Windows kernel was inefficient

compared to that of the Linux kernel and the overhead that came from the protocol

insertion was negligible.

In addition, there were some substantial performance drop points when the data size

was around 1024 bytes. This phenomenon was reported on the Usenet[92] as a small

datagram transmission style on Windows that can cause burst packet loss on the receiver

side. In practice, Windows uses a fast I/O path when the datagram is smaller than

117

the threshold size specified by the FastSendDatagramThreshold registry2, and transmits

a couple of datagrams to the NIC at a time. As a result, the receiver side NIC cannot

handle the received packets when the transmission rate is too fast. While Windows cannot

receive bursts of small packets, Linux has a NAPI mechanism that enables an interruption

handler to take multiple packets from the NIC at a time. This is the reason why this

phenomenon was not seen on Linux.

2Default value is 1024 byte[93].

118

 0

 200

 400

 600

 800

 1000

 0 512 1024 1536 2048

T
h
r
o
u
g
h
p
u
t

[
M
b
p
s
]

Data size [byte]

(S) UDP-FreeNA
(R) UDP-FreeNA

(S) UDP-Kernel
(R) UDP-Kernel

Figure 6.8: Throughput of the receiver application on Linux

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 1024 2048 3072 4096 5120 6144 7168 8192

T
h
r
o
u
g
h
p
u
t

[
M
b
p
s
]

Data size [byte]

(S) UDP-FreeNA
(R) UDP-FreeNA

(S) UDP-Kernel
(R) UDP-Kernel

Figure 6.9: Throughput of the receiver application on Windows

119

Performances of dual communication flows

Figure 6.10 shows the results for the performance evaluation of the dual communication

flows. In this experiment, two receiver applications were executed simultaneously on

Linux. When comparing the results shown in Fig. 6.8, a pair of sender and receiver

applications were executed, and each throughput of the receiver application decreased

to one-half. In addition, there was no significant difference between the throughputs of

UDP-FreeNA and UDP-Kernel. These results show that the protocol server of FreeNA

treats multiple communication flows fairly.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 0 200 400 600 800 1000

T
h
r
o
u
g
h
p
u
t

[
M
b
p
s
]

Data size [byte]

UDP-FreeNA 1
UDP-FreeNA 2
UDP-Kernel 1
UDP-Kernel 2

Figure 6.10: Throughputs of the two receiver applications running simultaneously

Discussion

As a result of the experiments, there was obviously some overhead when adding the

protocol using the framework. First, I believe that this overhead came from the insertion of

multiple libraries by the framework, as shown in Fig. 5.18. However, previous experiments

120

showed that the overhead of the library insertion was negligible.

Another reason would be that this performance degradation was assumed to be that

there was frequent process switching between the application and the protocol server.

That is, since the application process and server process communicate with each other as

a one-way IPC using shared memory, the bounded buffer problem was caused. When the

sender application is writing data packets into the shared memory, the protocol server

was waiting. Therefore, the packet transfer rate decreases at that time.

Then, the CPU load average of communication time was evaluated on Linux (Fig.

6.11). The results showed that the load average exceeded 1 and frequently became 2

frequently with FreeNA, while the load average was constantly 1 when the UDP protocol

within the kernel was used. This implies that the two processes competed for CPU

resources during the communication, and the packet transfer rate decreased.

 0

 0.5

 1

 1.5

 2

 0 20 40 60 80 100 120 140

C
P

U
 L

oa
d

A
ve

ra
ge

Time [s]

UDP-FreeNA
UDP-Kernel

Figure 6.11: CPU load average during the communication

121

6.5 Summary

In this chapter, the FreeNA system was evaluated from the perspective of its func-

tionality, manageability, security, and performance overhead.

The functionality of FreeNA was compared with other similar systems in view of its

users, network services, applications, and platforms.

Since FreeNA is designed for both professional users and inexperienced users, the

usability of FreeNA was evaluated by focusing on the configuration mechanism and system

operability. Compared with similar systems, FreeNA provides a detailed and programless

configuration mechanism, and also a user-oriented operation system to its users.

Each network service for FreeNA is implemented in view of the separation of concerns,

flexible composition, and service deployment. As a result, the users can integrate the

desired functionality gathered from various repositories into their applications without

difficulty.

Generally, the implementation characteristics of applications can restrict the network

services to be inserted. However, FreeNA is designed to handle applications written in

various programming languages, as well as applications that use network functions in

diverse ways.

FreeNA leverages the abstractiveness of a socket interface by hiding the interposed

services from the application like in similar systems. However, FreeNA utilizes an abstract

interposing mechanism by design and implementation, instead of directly using platform-

dependent mechanisms. As a result, FreeNA can work on multiple platforms in the same

manner.

Considering FreeNA is implemented as a comprehensive system, the manageability

and security are also discussed.

To extend existing applications without directly modifying their source codes, the

application-level performance will decrease because of the additional overhead. Although

the relationship between the service insertion performance and insertion flexibility is a

trade-off, FreeNA enables for flexible service insertions with relatively lower performance

122

degradation compared with other systems. In practice, the insertion of upper-layer ser-

vices requires less than 2% of a throughput degradation, and a 25% degradation when

inserting transport-layer services.

123

Chapter 7

Conclusion

The purpose of this study is to investigate a practical methodology for promoting net-

work systems’ functionalities. As represented by the Internet, networks have been a social

infrastructure that support real business activities, educational and academic activities,

and many other activities. Existing network systems will continue to be extended to

fulfill users’ requirements. However, most existing network systems have been developed

based on the traditional TCP/IP protocol suite, and it is difficult to introduce innovative

network technologies because of their interoperability issues.

7.1 Contributions

In this paper, the mechanism of adaptive computing was focused on as a key technol-

ogy for keeping up with the progress of networks. First, many practical techniques for

introducing adaptability into existing systems were investigated, including their charac-

teristics and pitfalls. Based on the investigation, the necessary nature of a system that

can make existing systems adaptable was considered from the perspectives of technology

and usability. In practice, the FreeNA framework was designed and implemented as a

concrete adaptable communication system. According to the evaluation results, the pro-

posed methods not only can achieve more users’ requirements than other similar methods,

but also showed considerable efficiency in the communications in a real environment.

The following are the main contributions of this study.

(a) A design and an implementation method was proposed for applying a variety of net-

124

work services into existing systems. FreeNA supports multi-layer network services

including transport-layer protocols up to application-specific services. Transport-

layer protocols for FreeNA-enabled applications are implemented in the user-space

as independent executables using raw socket interfaces. The upper-layer services are

directly incorporated into the application process as dynamic-loading libraries. An

abstract design of the socket interface allows these network services to be utilized

by the application in the same manner.

(b) A mechanism for flexibly composing the network functionality of applications was

proposed. The flow handler concept allows for the flexible composition of net-

work services at runtime by chaining them through the recursive socket interface.

FreeNA utilizes yet another structure of the flow handler concept in order to achieve

application-specific and efficient network services. In addition, the behavior of the

network service can vary at runtime. That is, the network service can be applied to

the specific communication flow when the application uses multiple flows, and con-

versely the network service can handle multiple communication flows across several

applications.

(c) FreeNA was designed to have an affinity with the existing network systems. First,

network services can be incorporated into existing applications without any mod-

ification using the socket-call interposition technique. Although there are many

interposition techniques, FreeNA takes the binary-modification approach for multi-

ple programming languages support, flexible modification, and better performance.

Moreover, FreeNA can work on multiple-platforms in the same manner without

modification of the platform by dividing the platform-dependent issues such as API,

ABI, and interposition methods from the core system. In particular, it is necessary

to emphasize that two major operating systems, Microsoft Windows and Linux, can

use FreeNA’s platform.

(d) The user-oriented approach for extending existing systems was proposed. Generally,

125

programmatic skills and technical knowledge are required to enhance the function-

ality of network systems. However, FreeNA allows inexperienced users to extend

their systems without using the programmatic approach. FreeNA offers front-end

systems that can be customized to their user-interfaces for easy system operation,

and a XML-based configuration mechanism for functional designation of the net-

work services. Since the network services themselves are implemented as indepen-

dent components under the defined system interface, users can take advantage of

the network services developed by third-parties.

(e) FreeNA achieved a low performance overhead when utilizing the network services in-

corporated into applications. Since most network services are directly inserted into

the application process, their mechanisms can be used via a local function call. The

performance evaluation results showed that the functions of the upper-layer services

can be used with two percent of the throughput degradation at worst compared with

the throughput of an application that is extended directly to have the correspond-

ing network services. In addition, the transport-layer protocol inserted by FreeNA

requires 25% of the performance overhead compared with the kernel-implemented

protocol. Considering that the FreeNA-enabled application can achieve a good per-

formance near the gigabit speed under a commodity system environment, FreeNA

can fulfill the performance requirements of a practical network environment.

To summarize this paper for each chapter, in chapter 1, the problems of current net-

work environments and a road map to make a better network environment including the

necessary systems and users was described as the background for this paper. As the

problems, the current network is rapidly evolving based on the traditional mechanisms

and network systems have to keep up with this evolution without losing interoperabil-

ity. The concept of autonomous computing and compositional adaptation are effective

because network systems can be extended while maintaining the system compatibility

without creating more troublesome works for users. Therefore, FreeNA was proposed as

an instance for these concepts.

126

In chapter 3, the fundamental policies for FreeNA were discussed to create a general-

purposed framework for adaptive communications and a usability system. To meet the

various network service requirements, network systems should be flexibly and continually

extended. FreeNA was designed as a flexible system where users can configure their sys-

tems’ functionality using a user-oriented system interface. Therefore, the implementation

form, system usage, network service implementation, platforms, and applications were

discussed in view of a system where FreeNA can be used as an application/user-oriented

network tool providing a mechanism to users for more easily customizing and combining

services without needing platform and application support.

In chapter 4, the architectural design of FreeNA and the user experience were ex-

plained. The inserted network services were located in the communication path between

end-to-end applications. To instantiate the network services, the concept of a flow handler

and flow handler chain that compose the network service components independent of each

other were introduced. The architecture of the FreeNA system was designed composing a

user-friendly client system with a server system. To ensure the portability of FreeNA, the

server divides its tasks into platform-independent tasks and platform-dependent tasks. In

addition, the XML-formatted configuration file was provided taking into account inex-

perienced users by adopting a functional selection approach. This enables for a detailed

configurability of the network functionality of FreeNA-enabled applications.

In chapter 5, a practical mechanism of the FreeNA system including the client/server

systems, flow hander (chain) concept, transport-layer protocol insertion, and protocol-free

environment were described. The interposer components, as the key components of the

FreeNA server, were prepared for each platform in order to ensure the system portability.

Each network service was implemented as a shared library, and combined with other

service libraries by pointer-based abstraction. At runtime, FreeNA also inserts other

network services to control the network service hierarchy and accesses platforms provided

by the network functions. As the engine of service insertion, a system-call interposition

based on a binary modification technique was leveraged. FreeNA also enables a transport-

127

layer protocol insertion using a raw IP mechanism, and a dedicated process was introduced

to handle the communication flows across multiple processes. Moreover, the adaptive

mechanism for switching the transport-layer protocol was implemented to maintain the

network interoperability.

In chapter 6, the FreeNA system was evaluated from various perspectives of function-

ality and performance overhead. The functionality of FreeNA was compared with other

similar systems in view of the users, network services, applications, and platforms. The

advantages of FreeNA’s functionality are as follows. FreeNA provides a detailed and pro-

gramless configuration mechanism, and also a user-oriented operation mechanism to its

users, while many other systems do not provide such mechanisms. With FreeNA, users

can integrate the desired functionality gathered from various repositories into their ap-

plications without needing to perform complex tasks. FreeNA was designed to handle

applications written in various programming languages, rather than depend on language-

specific mechanisms. Moreover, a diversity of usages of the network communication flows

by the applications were also supported. FreeNA can work on multiple platforms in the

same manner by utilizing an abstract interposing mechanism. The results of the perfor-

mance overhead showed that the overhead of a service insertion by FreeNA was relatively

small when considering other insertion methods even though the relationship between the

service insertion performance and the insertion flexibility is a trade-off.

7.2 Discussion

In this section, the aforementioned FreeNA’s contributions are discussed from the

validity point of view. Since many researchers and engineers have proposed similar systems

or practical techniques, FreeNA should be compared with these methods.

(a) Many similar studies can be divided to service-specific systems and general-purposed

systems. Service-specific systems, such as Trickle[24], TCP Stream Filtering[25],

Alpine[56], and DR-TCP[57], have specialized their architectures and system us-

ages to support only a limited functionality. Moreover, they do not provide a

128

more flexible configuration mechanism than FreeNA provides because of the applica-

tion transparent requirement. Next, general-purposed systems, such as TESLA[23],

MetaSockets[13], DITOOLS[22], and VTL[39], provide multi-functional service com-

positions. Other than VTL, they do not support cross-layer network services includ-

ing transport-layer protocols. Even though VTL can handle lower-layer protocols by

using direct packet manipulation under a VM environment, it requires a tremendous

amount of tasks to provide the protocol service because they cannot take advantage

of platform support. However, FreeNA can seamlessly handle cross-layer services as

a bi-directional pipeline over the kernel protocol stack of the platform.

(b) As described above, general-purposed systems can support several types of network

services. However, only a few systems can compose multiple network services in-

dependent of each other. TESLA uses the flow handler concept in its original way

to achieve flexible service composition. However, the network services for TESLA

have to be work separately from the application to handle the cross-application

communication flows. This implementation style makes it difficult to realize the

application-specific services that handle the process resources, and result in a heavy

amount of performance overhead at runtime. On the other hand, FreeNA achieved

a flexible service composition within the application process. Moreover FreeNA can

combine the two service implementation types in the same service pipeline to handle

multiple flows in across-the-board applications.

(c) System-call interposition has been one of the most widely used techniques for ex-

tending an application’s functionality without needing to source code level. As

discussed in Chapter 2, language-based techniques, binary-based techniques, OS-

based techniques, VM-based techniques, and proxy-based techniques are available.

Since each interposition technique has advantages and drawbacks respectively, it is

undesirable to rely on a single technique. FreeNA introduces an abstract interface

to the system-call interposition in order to divide the platform-dependent issues.

Even though FreeNA utilizes a binary-based interposition using Dyninst API (This

129

is available on many OSes and CPU processors), the interposition mechanism can

be replaced in accordance with the platform. Indeed, the introduced similar systems

that have already been introduced do not support multiple platforms at the native

level.

(d) Many similar systems do not provide user-oriented system usability because they

suppose the system users and network service developers are on in the same. For

example, MetaSockets provides adaptable socket classes to users to configure the

network composition at the code-level, and TESLA requires a compilation process

to compose network services. That is, many systems do not provide easy service

compositions and system operation mechanisms, even though they support service

insertion without modification of the application. Considering these systems are

useful to inexperienced users, such as network administrators and application users,

network service developers and users should be treated the same, and should be

able to create an ad-hoc application enhancement mechanism.

(e) Generally, the flexibility of the system and the actual performance are in relation

to the trade-off. Since TESLA is developed to completely divide applications and

network services, the peak throughput of TESLA was decreased over 50 percent

when using a lightweight service. VTL is also developed to support a wide range

of network services on many platforms. However, since it has to capture the trans-

ferring packet stream at the interface between the VM and the host OS, the peak

throughput was decreased to near 80%. Compared with these systems, FreeNA’s

performance is significantly superior even though FreeNA enables a flexible service

composition.

7.3 Future Work

In this paper, the transparent approach to extend existing systems is achieved on major

platforms. FreeNA provides a flexible network service composition mechanism to users in a

user-oriented manner. However, since FreeNA is still a proof-of-concept framework, many

130

challenges still remain in order to achieve FreeNA’s goals, which are dynamically adapted

communications and autonomous computing for widespread network environments. In

this section, the remaining challenges for promoting FreeNA’s effectivity are described.

7.3.1 Full Fledged Deployment into Practical Environment

In practical systems, there are many obstacles for deploying the FreeNA system. For

example, a strict security mechanism on a the platform like SELinux[94] that might restrict

the modification of the applications and available resources, a firewall might block the

communication that one’s own services are used, and FreeNA might require complex set

up processes for the entire FreeNA system for the users of some environments. Therefore,

these practical issues related to the platform have to be investigated to make FreeNA

cross-platform a friendlier system.

7.3.2 Full Autonomic Service Insertion

Even though FreeNA provides user-oriented system usability such as operational pro-

grams and configuration files, users have to recognize the existence of FreeNA, prepare

the desired network service libraries in advance, and compose the services by writing the

configuration file. Ideally, users should use the FreeNA system indirectly, and appropriate

network services should be automatically downloaded from the network environment and

inserted into the application dynamically like in DR-TCP[57] and the application-layer

protocol conversion system[55].

7.3.3 Dynamic Updates of the Network Service Composition

The SDP’s offer/answer model allows for an update mechanism of the session con-

tent after the negotiation. Although network services currently have to be composed by

FreeNA before the communication, this offer/answer model would enable the dynamic

recomposition of network services during a communication, like in MetaSockets. How-

ever, this will require specific definitions of the thresholds and conditions that trigger

the renegotiation by the offer/answer process. In addition, data consistency between the

131

end-to-end applications must be ensured while replacing the network services or protocols.

132

Acknowledgment

本論文をまとめるにあたり，熱心にご指導して頂いた全ての先生方に対して謹んで感

謝の意を表します．

特に，筆者の主任指導教官でいらっしゃいました計 宇生准教授には，３年間もの長き

にわたって懇切なるご指導とご協力を頂きました．岩手県立大学の博士前期課程から進学

してきた筆者を快く受け入れて下さり，さらには博士後期課程での研究テーマにつきまし

ても，筆者の希望のままで自由に研究させて頂きました．また，本研究を進める上で，通

信システムの専門家として有益な助言を何度も頂きました．この様に，先生の寛大かつ献

身的なご指導がありましたからこそ，途中で挫けることなく博士後期課程での３年間を研

究活動に注力することができました．厚く御礼申し上げます．

丸山勝巳教授には，総合研究大学院大学への進学が決定した時に大変有益な文献を紹

介して頂きました．この文献なくしては本研究をこの様な形でまとめることはできません

でした。先生には，本研究が始まった当初から現在に至るまでの間，幾度となく貴重なご

指摘を頂きました．先生のシステムソフトウェアに関する豊富な知識と経験のおかげで，

多角的な視点で本研究を見つめることができ，提案したシステムもより洗練されたものに

することができました．真にありがとうございました．

本論文の審査員を担当して頂いた，国立情報学研究所の中村素典教授，山田茂樹教授，

福田健介准教授，および岡山大学の谷口秀夫教授に厚く感謝の意を表します．論文審査過

程における先生方の鋭いご指摘により，本論文をより質の高いものにすることができまし

た．谷口先生におきましては，論文審査とは別に研究会においても度々筆者の研究に耳を

傾けて下さり，有益なアドバイスもして頂きました。

そして，筆者が学術研究の世界へ足を踏み入れるきっかけを作って頂いた，学部・博

士前期課程での指導教官である岩手県立大学の蔡 大維准教授，阿部芳彦教授にも感謝を

133

申し上げます．先生方のご指導のおかげでここまで来ることができました．

また，計研究室の皆様にも様々なご支援を頂きました．この場を借りてお礼を申し上

げます．

134

Bibliography

[1] Hiroyuki Morikawa and Tomonori Aoyama. Realizing the Ubiquitous Network: the

Internet and Beyond. Telecommunication Systems, Vol. 25, pp. 449–468, 2004.

[2] Jeffrey O. Kephart and David M. Chess. The Vision of Autonomic Computing. IEEE

Computer, Vol. 36, No. 1, pp. 41–50, January 2003.

[3] Jr. G.H. Campbell. Adaptable Components. In Proceedings of the 21st international

conference on Software engineering, pp. 685–686, 1999.

[4] G. T. Heineman. Adaptation of Software Components. In 2nd Annual Workshop on

Component-Based Software Engineering, 1999.

[5] Philip K. McKinley, Seyed Masoud Sadjadi, Eric P. Kasten, and Betty H.C. Cheng.

Composing Adaptive Software. IEEE Computer, Vol. 37, No. 7, pp. 56–64, June

2004.

[6] Ye Tian, Kai Xu, and Nirwan Ansari. TCP in Wireless Environments: Problems and

Solutions. IEEE Radio Communications, pp. 27–32, March 2005.

[7] Saverio Mascolo, Claudio Casetti, Mario Gerla, M.Y. Sanadidi, and Ren Wang. TCP

Westwood: Bandwidth Estimation for Enhanced Transport over Wireless Links. In

ACM Mobicom, pp. 287–297, July 2001.

[8] Kai Xu, Ye Tian, and Nirwan Ansari. TCP-Jersey for Wireless IP Communications.

IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, Vol. 22, No. 4,

pp. 747–756, May 2004.

[9] NIST. Data Encryption Standard (DES). FIPS 46-3, 1999.

135

[10] NIST. Advanced Encryption Standard (AES). Technical report, FIPS 197, 2001.

[11] Kiczales Gregor, John Lamping, Anurag Mendhekar, Chris Maeda, Cristina Lopes,

Jean-Marc Loingtier, and John Irwin. Aspect-Oriented Programming. In Proceedings

of the European Conference on Object-Oriented Programming, Vol. 1241, pp. 220–242,

1997.

[12] Ji Zhang and Betty H.C. Cheng. Towards Re-engineering Legacy Systems for Assured

Dynamic Adaptation. In IEEE International Workshop on Modeling in Software

Engineering, 2007.

[13] S. M. Sadjadi, P. K. McKinley, E. P. Kasten, and Z. Zhou. MetaSockets: design and

operation of runtime reconfigurable communication services. Software Practice and

Experience, 2006.

[14] E. P. Kasten, P. K. McKinley, S. M. Sadjadi, and P. E. K. Stirewalt. Separating

Introspection and Intercession to Support Metamorphic Distributed Systems. In

Proceedings of the IEEE Workshop on Aspect-Oriented Programming for Distributed

Computing (with ICDCSW’02), 2002.

[15] E.P. Kasten and P.K. McKinley. Adaptive Java: Refractive and Transmutative

Support for Adaptive Software. Technical report, Technical Report MSU-CSE-01-

03, 2001.

[16] Eric Bruneton, Romain Lenglet, and Thierry Coupaye. ASM: a code manipulation

tool to implement adaptable systems. In Adaptable and Extensible Component Sys-

tems, 2002.

[17] Gamma E., Helm R., Johnson R., and Vlissides J. Design Patterns. Addison-Wesley,

1995.

[18] Shigeru Chiba and Michiaki Tatsubori. Structural Reflection by Java Bytecode In-

strumentation. IPSJ Journal, pp. 2752–2760, 2001.

136

[19] M.B. Jones. Interposition Agents: Transparently Interposing User Code at the Sys-

tem Interface. ACM SIGOPS Operating Systems Review, pp. 80–93, 1993.

[20] Michael Blair Jones. Transparently Interposing User Code at the System Interface.

PhD thesis, Carnegie Mellon University, 1992.

[21] The mach project home page. http://www-

2.cs.cmu.edu/afs/cs/project/mach/public/www/mach.html.

[22] Albert Serra, Nacho Navarro, and Toni Cortes. DITOOLS: Application-level Support

for Dynamic Extension and Flexible Composition. In Proceedings of the annual

conference on USENIX Annual Technical Conference, pp. 225–238, 2000.

[23] Jon Salz and Alex C. Snoeren. TESLA: A Transparent, Extensible Session-Layer

Architecture for End-to-end Network Services. In Proceedings of the 4th conference

on USENIX Symposium on Internet Technologies and Systems, 2003.

[24] M.A. Eriksen. Trickle: a userland bandwidth shaper for Unix-like systems. In Pro-

ceedings of USENIX Annual Technical Conference, 2005.

[25] K. Kono, T. Shinagawa, and M.R. Kabir. Improving Internet Server Security by

Filtering on TCP Streams. IPSJ Journal, 2005.

[26] FUSE: Filesystem in Userspace. http://fuse.sourceforge.net/.

[27] Bryan Ford and Russ Cox. Vx32: Lightweight User-level Sandboxing on the x86. In

Proceedings of the annual conference on USENIX Annual Technical Conference, pp.

293–306, 2008.

[28] Nicholas Nethercote and Julian Seward. Valgrind: A framework for heavyweight

dynamic binary instrumentation. In ACM SIGPLAN Conference on PLDI, 2007.

[29] B. Buck and J.K. Hollingsworth. An API for Runtime Code Patching. International

Journal of High Performance Computing Applications, 2000.

137

[30] Giridhar Ravipati, Andrew R. Bernat, Nate Rosenblum, Barton P. Miller, and Jef-

frey K. Hollingworth. Toward the Deconstruction of Dyninst. Technical report,

Computer Science Department, University of Wisconsin, 2007.

[31] livepatch – Live Patching for Linux. http://ukai.jp/Software/livepatch/.

[32] Binary File Descriptor Library manual. http://sourceware.org/binutils/docs/bfd/History.html.

[33] N.C. Hutchinson and L.L. Peterson. The x-Kernel: An Architecture for Implementing

Network Protocols. IEEE Transaction on Software Engineering, 1991.

[34] Sean W. O’malley and Larry L. Peterson. A Dynamic Network Architecture. ACM

Transactions on Computer Systems, Vol. 10, No. 2, pp. 110–143, May 1992.

[35] Norman C. Hutchinson and Larry L. Peterson. Design of the x-Kernel. ACM SIG-

COMM Computer Communication Review, pp. 65–75, 1988.

[36] Dennis M. Ritchie. A Stream Input-Output System. AT & T Bell Laboratories

Technical Journal, Vol. 63, No. 8, pp. 1897–1910, 1984.

[37] Allen B. Montz, David Mosberger, SeanW. O’Malley, Larry L. Peterson, and Todd A.

Proebsting. Scout: A Communications-Oriented Operating System. In Fifth Work-

shop on Hot Topics in Operating Systems, 1994.

[38] David Mosberger and Larry L. Peterson. Making Paths Explicit in the Scout Op-

erating System. ACM SIGOPS Operating Systems Review, Vol. 30, pp. 153–167,

1996.

[39] John R. Lange and Peter A. Dinda. Transparent Network Services via a Virtual Traf-

fic Layer for Virtual Machines. In Proceedings of the 16th international symposium

on High performance distributed computing, pp. 23–32, 2007.

[40] The libpcap project. http://sourceforge.net/projects/libpcap/.

[41] WinPcap: The Windows Packet Capture Library. http://www.winpcap.org/.

138

[42] Libnet home page. http://libnet.sourceforge.net/.

[43] Prashanth P. Bungale and Chi-Keung Luk. PinOS: A Programmable Framework for

Whole-System Dynamic Instrumentation. 2007.

[44] Luk C. K., Cohn R. S., Muth R., Patil H., Klauser A., P. G. Lowney, Wallace S.,

Reddi V. J., and Hazelwood K. Pin: Building Customized Program Analysis Tools

With Dynamic Instrumentation. In Pragramming Languages Design and Implemen-

tation 2005, pp. 190–200, 2005.

[45] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neugebauer,

I. Pratt, and A. Warfield. Xen and the Art of Virtualization. In Proceedings of the

19th ACM symposium on Operating systems principles, 2003.

[46] Neiger. Gil, A. Santoni, F. Leung, D. Rodgers, and R. Uhlig. Intel Virtualization

Technology: Hardware Support for Efficient Processor Virtualization. Intel Technol-

ogy Journal, pp. 167?–178, 2008.

[47] Michal Trojnara. stunnel - multiplatform SSL tunneling proxy.

http://stunnel.mirt.net/.

[48] Zhenyun Zhuang, Tae-Young Chang, Raghupathy Sivakumar, and Aravind Ve-

layutham. Application-Aware Acceleration for Wireless Data Networks: Design El-

ements and Prototype Implementation. IEEE Transactions on Mobile Computing,

Vol. 8, No. 9, pp. 1280–1295, 2009.

[49] netfilter/iptables project homepage. http://www.netfilter.org/.

[50] Windows Filtering Platform. http://www.microsoft.com/whdc/device/network/wfp.mspx.

[51] Simone Tellini and Renzo Davoli. Design and Implementation of a Multifunction,

Modular and Extensible Proxy Server. Proceedings of the 4th International Confer-

ence on Networking, 2005.

139

[52] Simone Tellini and Renzo Davoli. Prometeo internals. Technical report, Department

of Computer Science, University of Bologna.

[53] xinetd. http://xinetd.org/.

[54] B. Carpenter. Internet Transparency, 2000.

[55] Masakuni Agetsuma, Kenji Kono, Hideya Iwasaki, and Takashi Masuda. Exploit-

ing Mobile Codes for User-Transparent Distribution of Application-Level Protocols.

IEICE Journal on Information and Systems, 2003.

[56] David Ely, Stefan Savage, and David Wetherall. Alpine: A User-Level Infrastructure

for Network Protocol Development. In Proceedings of the 3rd USENIX Symposium

on Internet Technologies and Systems (USITS ’01), 2001.

[57] Jae-Hyun Hwang, Jin-Hee Choi, Se-Won Kim, and Chuck Yoo. DR-TCP: Download-

able and reconfigurable TCP. ScienceDirect The Journal of Systems ans Software,

pp. 83–99, 2008.

[58] Yunhong Gu and Robert L. Grossman. Supporting Configurable Congestion Con-

trol in Data Transport Services. In Proceedings of the 2005 ACM/IEEE SC—05

Conference, 2005.

[59] R. Stewart, Q. Xie, K. Morneault, C. Sharp, H. Schwarzbauer, T. Taylor, I. Rytina,

M. Kalla, L. Zhang, and V. Paxson. Stream Control Transmission Protocol. RFC

2960, 2000.

[60] E. Kohler, M. Handley, and S. Floyd. Datagram Congestion Control Protocol

(DCCP). RFC 4340, 2006.

[61] OPNET - Making Networks and Applications Platform. http://www.opnet.com/.

[62] The Network Simulator - ns-2. http://www.isi.edu/nsnam/ns/.

140

[63] Jorn Justesen, Tom Hoholdt, (Shojiro Sakata, Masazumi Kurihara, Hajime Matsui,

and Masaya Fujisawa in translation). A Course In Error Correcting Codes. Morikita

Publishing Co., Ltd., 2005.

[64] Man-Keun Seo, Yo-Won Jeong, Jae-Kyoon Kim, and Kyu-Ho Park. A New Packet

Loss-Resilient Duplicated Video Transmission. In IEEE Asia-Pacific Coference on

Communications, 2005.

[65] IP DUMMYNET. http://info.iet.unipi.it/luigi/ip dummynet/.

[66] The Zorp gateway technology. http://www.balabit.com/network-security/zorp-

gateway/.

[67] National Institute of Standards and Technology. http://www.nist.gov/index.html.

[68] S. Kent and R. Atkinson. Security Architecture for the Internet Protocol. RFC 2401,

1998.

[69] T. Dierks and E. Rescorla. The Transport Layer Security (TLS) Protocol Version

1.2. RFC 5246, 2008.

[70] Wi-Fi Alliance. http://www.wi-fi.org/.

[71] Galen Hunt and Doug Brubacher. Detours: Binary Interception of Win32 Functions.

In Proceedings of the 3rd USENIX Windows NT Symposium, 1999.

[72] OpenSSL - The Open Source toolkit for SSL/TSL. http://www.openssl.org/.

[73] libcurl - the multiprotocol file transfer library. http://curl.haxx.se/libcurl/.

[74] Greg Roelofs and Mark Adler. zlib - A Massively Spiffy Yet Delicately Unobtrusive

Compression Library. http://www.zlib.net/.

[75] J. Rosenberg, H. Schulzrinne, G. Camarillo, A. Johnston, J. Peterson, R. Sparks,

M. Handley, and E. Schooler. SIP: Session Initiation Protocol. RFC3261, 2002.

141

[76] M. Handley, V. Jacobson, and C. Perkins. SDP: Session Description Protocol.

RFC4566, 2006.

[77] Jon Postel. Internet Protocol. RFC 791, 1981.

[78] J. Rosenberg and H. Schulzrinne. An Offer/Answer Model with the Session Descrip-

tion Protocol (SDP). RFC 3264, 2002.

[79] W.Richard Stevens (and Yoichi Shinoda in translation). UNIX Network Program-

ming, Vol. 1. Pearson Education Japan, 2003.

[80] A. I. Sundararaj and P. A. Dinda. Towards Virtual Networks for Virtual Machine

Grid Computing. In In Proceedings of the 3rd USENIX Virtual Machine Research

and Technology Symposium, 2004.

[81] Eric Youngdale. Kernel Korner: The ELF Object File Format by Dissection. Linux

Journal, Vol. 1995, No. 13, 1995.

[82] Matt Pietrek. Peering Inside the PE: A Tour of the Win32 Portable Executable File

Format. http://msdn.microsoft.com/en-us/library/ms809762.aspx, 1994.

[83] Steven Mccanne and Van Jacobson. The BSD Packet Filter: A New Architecture

for User-level Packet Capture. In In Proceedings of the USENIX Winter 1993 Con-

ference, pp. 259–269, 1992.

[84] NT Kernel Resources: Windows Packet Filter Kit.

http://www.ntkernel.com/w&p.php?id=7.

[85] GNU Binutils. http://www.gnu.org/software/binutils/.

[86] DUMPBIN Reference. http://msdn.microsoft.com/en-us/library/c1h23y6c.aspx.

[87] Intel Corporation. Using the RDTSC Instruction for Performance Monitoring, 1997.

[88] Crypto++ Library - a Free C++ Class Library of Cryptographic Schemes.

http://www.cryptopp.com/.

142

[89] C. Berbain, O. Billet, A. Canteaut, N. Courtois, H. Gilbert, L. Goubin, A. Gouget,

L. Granboulan, C. Lauradoux, and M. Minier. Sosemanuk, a fast software oriented

stream cipher. In Proceedings SKEW - Symmetric Key Encryption Workshop Net-

work of Excellence in Cryptology ECRYPT, 2005.

[90] Paul Gray and Anthony Betz. Performance Evaluation of Copper-based Gigabit

Ethernet Interface. In Proceedings of the 27th Annual IEEE Conference on Local

Computer Networks (LCN’02). 2002.

[91] Hyun-Wook Jin and Chuck Yoo. Impact of protocol overheads on network through-

put over high-speed interconnects: measurement, analysis, and improvement. The

Journal of Supercomputing, Vol. 41, No. 1, pp. 17–40, 2007.

[92] Usernet.com: User Information Center. http://www.usenet.com/.

[93] Microsoft Windows Server 2003 TCP/IP Implementation Details. Technical report,

Microsoft Corporation, 2003.

[94] Peter Loscocco and Stephen Smalley. Integrating Flexible Support for Security Poli-

cies into the Linux Operating System. In Proceedings of the FREENIX Track: 2001

USENIX Annual Technical Conference, pp. 29–42. USENIX Association, 2001.

143

Appendix A

Syntax of the Configuration File

A.1 The Service Element

service element : service/name service/library service/type [parameters] [parameter op-

tions] [insertion rule]

service/name attribute : network service name

service/lib attribute : network service library name(path)

service/type attribute : local | global[/required | /optional]

parameters : service/parameter [parameters]

service/parameter element : parameter/name parameter/value

parameter/name attribute : parameter name

parameter/value attribute : parameter value

parameter options : service/parameter-option service/parameter-option

service/parameter-option : parameters

insertion rule : service/rule

service/rule element : rule/use rule/service rule/transport rule/port rule/type

144

A.2 An Example of the Configuration File

� �
<?xml version="1.0" encoding="UTF-8"?>

<configuration application="myserver">

<services>

<service name="firewall" lib="libfreena_fw.so" type="local">

<parameter name="SQL-injection" value="ON"/>

<parameter name="Abnormal" value="disconnect"/>

</service>

<service name="SSL" lib="libfreena_ssl.so" type="global">

<parameter name="CA" value="rootcert.pem"

<parameter name="PrivateKey" value="server.pem"/>

<parameter-option>

<parameter name="Version" value="SSLv3:TLS"/>

</parameter-option>

<parameter-option>

<parameter name="Version" value="SSLv2"/>

</parameter-block>

<rule use="true" service="FTP" transport="TCP" port="8020-8021"

type="*"/>

</service>

<service name="compression" lib="libcomp.so" type="global/optional">

<param name="algorithm" value="Deflate"/>

</service>

<using-rules>

<rule use="true" service="HTTP" transport="TCP" port="8080"

type="server"/>

<rule use="false" service="*" transport="*" port="*" type="*"/>

</using-rules>

</services>

<protocol>

<default name="TCP" lib="kernel"/>

<option name="SCTP" lib="libsctp.so">

<parameter name="window-size" value="128K"/>

</option>

</protocol>

</configuration>� �
Figure A.1: A fully example of the configuration file

145

Appendix B

Implementation Notes

B.1 Recursive Socket Functions Calling Problem

In our approach, socket functions called by applications are replaced with functions

of the control library by dyninst API. Dyninst API inserts jump instruction into process

images at the beginning of socket functions’ code. Therefore, when the interface library

calls socket functions, control library’s functions are eventually called again.

We solved this problem by using syscall system call on linux and customizedWinSock

library on windows. syscall can be used to call system calls by specifying function

numbers. Customized WinSock library is almost the same with original WinSock except

that function’s names are slightly changed like send → senX. Since dyninst API identifies

functions by their names, this approach is valid.

B.2 Supported Socket Functions

Common socket functions supported by FreeNA are listed in Tab. B.1. FreeNA user

can modify the behavior of listed functions by preparing network service libraries.

Table B.1: Supported socket functions (AF INET)

socket bind connect

listen accept send

recv sendto recvfrom

close shutdown getpeername

getsockname getsockopt setsockopt

146

B.3 Internal Socket Function Interposing

Figure B.1 shows an assembly-level call graph of socket() function on the Linux

platform. This assembly code was acquired by dumping running process image after

interposing specified socket functions by Dyninst API.

147

148

Figure B.1: Assembly-level socket function call graph

149

List of Publications

Journal papers

• Ryota Kawashima, Yusheng Ji, and Katsumi Maruyama, ”FreeNA: AMulti-Platform

Framework for Inserting Upper-Layer Network Services”, IEICE Transactions on In-

formation and Systems, vol.E92-D no.10, pp.1923-1933, Oct. 2009.

• 川島 龍太, 計　宇生, 丸山 勝巳, ”トランスポート層プロトコルフリーな通信環境

を透過的に実現するフレームワークの開発”, 電子情報通信学会論文誌 B vol.J92-B

no.4, pp.656-666, April 2009.

International Conferences

• Ryota Kawashima, Yusheng Ji, and Katsumi Maruyama, ”Design and Implemen-

tation of Multi-Platform Infrastructure of Extensible Networking Functions”, IEEE

GLOBECOM 2008, New Orleans, LA, USA, 2008.

Refereed Domestic Conferences

• 川島 龍太, 計 宇生, 丸山 勝巳, ”マルチプラットフォームにおけるネットワーク機能

の透過的拡張のためのフレームワークの開発”, FIT2008 情報科学技術フォーラム,

2008.

Domestic Conferences

• 川島 龍太, 計 宇生, 丸山 勝巳, ”既存システムとの親和性を考慮した動的再構成可

能な通信コンポーネントの提案”, 情報処理学会第 7回インターネットと運用技術研

150

究会, 2009.

• 川島 龍太, 計 宇生, 丸山 勝巳, ”透過的かつ適応的にトランスポート層プロトコル

を変更するフレームワークの開発”, 情報処理学会第 3回インターネットと運用技術

研究会, 2008.

• 川島 龍太, 計 宇生, 丸山 勝巳, ”ネットワーク機能を透過的に拡張するミドルウェア

システムの提案”, 電子情報通信学会第 2回ネットワークソフトウェア研究会, 2007.

151

