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Chapter 1

General Introduction

Polyenes are versatile compounds with linear conjugated chain of carbon
atoms joined by alternating double and single bonds. Long polyenic chains
appear in many important organic molecules, including light-harvesting chro-
mophore, vitamins, fatty acid and antibiotics. Their diverse reactivities with
the special selectivities are intriguing subjects of investigations. The funda-
mental importance of ultra fast cis-trans lisomeriza.tinn in photochemistry is
distinctive. Biologically, photoisomerization plays a major role in the visual
system and the photosynthetic bacteria. [1, 2]

In the Born-Oppenheimer description, the investigation of the ultra fast
photoisomerization process involves two steps. The first step is to deal with
static aspect of the electronic structure of the polyene chromophore. The
electronic structure calculations are performed to obtain the potential energy
surfaces (PES) and the nonadiabatic couplings involved in the isomerization.
Locating the funnel of PES with intense nonadiabatic coupling is of special
impnri:a.nce. We then need to analyze the nonadiabatic dynamics of the
process as the second step. When the system approaches the locus where the
potential energies of two or more electronic states get mutually very close, it
yields the mixing of these adiabatic electronic states. This mixing is described
as the nonadiabatic transition. The nonadiabatic dynamics simulation is

needed to the relaxation mechanism and the time evolution of the state



occupation probability.

The photoisomerization dynamics is multidimensional in nature. The elec-
tronic structure and the dynamics should be treated in multi-dimensional
conformational space. The polyene isomerization involves simultaneous multi-
7 bond torsions and many electronic configuration state functions are nec-
essary to describe the electronic structures. Until recently, the full multi-
dimensionality has not be taken accounted in almost all trajectory calcula-
tions. The isomerization shifts the conjugated = bonding character and thus
alters the electronic structures of the low lying states. To describe these
states, a careful choice of the electronic configurations in the configuration
interaction (CI) method is required.

Along the whole isomerization paths, the m-electron states of polyenes are
specified as either Ag or Bu symmetry which are of the irreducible represen-
tation of the planar polyene with the Cy, symmetry. There are three low
lying states involved in the photoisomerization, 1' Ag, 1! Bu, and 2'Ag. The
1! Bu state is optically allowed at the planar geometry while the 2! Ag state
is optically forbidden. Although the lowest excited state at the planar geom-
etry is the 1! Bu state in the simple molecular orbital (MO) description, the
experiments and theoretical investigations have revealed that the 2! Ag state
locates below the 1! Bu state in polyenes. 3, 4,- 3,6, 7, 8

There have been numerous investigations to study the mechanism of the
polyene photoisomerization. A proposed mechanism is; the isomerization
of ethylene or very short polyenes proceeds through 1' Bu state, which de-
generates with an ionic 'Ag state and becomes so called a sudden polar-
ization state at 90° C=C twisted geometry and then decays to the ground
state. The hydrogen migration path at 90° C=C twisted geometry was also
proposed. [9] Another mechanism suggested is that a polyene is initially

excited to the optically allowed 1! Bu state, then makes a rapid transition



to 21 Ag state through the efficient internal conversion, and finally decays
to the ground state by a nonadiabatic transition. Recent experiments have
shown that the internal conversion from 1! Bu to 21 Ag is very fast (in tens of
femto seconds).[10] This internal conversion occurs so fast that the polyene
structure is still being nearly planar. The polyene then stays on the 2! Ag
state until it makes the nonadiabatic transition into the ground state (1' Ag).
Thus the 2' Ag, and 1' Ag states dominantly control the photoisomerization
process. Recently Yoshihara and his coworkers have performed the ultra-
fast time resolved flash photolisys on polyenes both in the condensed phase
and in the jet-cooled condition and examined the mechanism of the internal
conversion and the intramolecular vibrational relaxation in the hexatriene
photoisomerization.[11, 12] The observed delayed response of their transient
absorption signals in the condensed-phase shows that the vibrational energy
redistribution in the 2'Ag state occurs in less than 500 fs and this redis-
tribution is due to the intrinsic nature of the excited state rather than the
solvent-induced interaction. They attributed the first component of tran-
sient bleach recovery signals to the internal conversion from 2'Ag to 11Ag
and concluded that it occurs in ~ 1 ps. The second component is attributed
to the vibrational relaxation process in 1! Ag and the process occurs in 15 ~
20 ps.

By using a model calculation, Zerbetto and Zgierski. have proposed that a
nonadiabatic transition from 2! Ag to 1'Ag is induced by the CC torsions.[13]
Robb and his coworkers have proposed that the triple CC torsion which leads
to the conical crossing of 2! Ag to 1! Ag states is the major path to yield a
very fast nonadiabatic transition. [14, 15, 16] Their complete active space
self consistent field(CASSCF)/4-31G calculation have scanned an entire con-
formational space over all three CC bond torsional degrees, and found that

2! Ag degenerates with 1’ Ag at the conformations where three CC bonds are
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partially twisted. [14]

Numerous ab-initio calculations have performed on the potential surfaces
of butadiene, and the various isomerization paths have been proposed. (9,
13, 14, 15, 17] These decay mechanisms must play an importlemt role also in
photoisomerization processes of longer polyenes. The fluorescence measure-
ment of octatetraene and its derivatives by Peteck et al. showed that there
exists a very fast disposal channel at about 2000em ™' above the bottom of
the 2'Ag planar minimum. [11] This disposal channel was also attributed
to the fast internal conversion from 2'A4g to 1' Ag state at a triply twisted
CC bond conformation. [16] Kohler et al. have suggested that there exist
adiabatic CC torsional isomerization paths on the 2! Ag surface not involving
the nonadiabatic transition. [18]

In this thesis, we focus our attention on the dynamical aspects of this in-
ternal conversion process from 2! Ag to 1 Ag of s-trans butadiene, especially
the intramolecular mode dynamics promoting this conversion. We examine
the multidimensional nature of the 2! Ag and 1' Ag potential energy surfaces
and their nonadiabatic coupling in detail. We develop a model Hamiltonian
describing these two covalent states and perform the trajectory calculations
including the nonadiabatic transitions. In order to investigate various iso-
merization paths, the model Hamiltonian is simple enough for the efficient
evaluation of the potential energy surfaces and the nonadiabatic coupling.
Besides, the model must include all internal degrees of the molecule in order
o treat the energy relaxation dynamics properly.

There have been considerable numbers of studies on model Hamiltonians.[19,
20, 21, 23, 24, 25] Malrieu, Maynau and coworkers have investigated the po-
tential energy surfaces for the CC bond stretching and torsion by employ-
ing Heisenberg Hamiltonian.[19, 20, 21, 22] Bernardi et al. transformed the

CASSCF wavefunction into the Heitler-London valence bond space via the
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construction of an effective Hamiltonian.[24] Based on this simplified model,
they could allocate the locus where 2'Ag degenerates with 1' Ag.[26] They
also combined their Valence Bond (VB) model with Molecular Mechanics
(MM) force field to optimize the geometry [25] and investigate the relaxation
dynamics from the excited state of Benzene and Azulene[27, 28]. In the
present calculation, we employ a similar model; a VB Hamiltonian is used
to describe the localized 7 orbital interactions and is combined with the o
orbital description by a modified MM force field method.

A considerable number of calculations have been performed to investigate
the photoisomerization processes of polyenes including nonadiabatic transi-
tions [29, 30, 31, 32, 33, 34] ; the Golden-rule model of Gelber, Free and Rice
[29], the phenomenological damped oscillator model of Bagchi, Fleming and
Oxtoby [30], and the surface-hopping trajectory of rhodopsin by Warshel and
his coworkers [31]. Since these treatments are often based on models which
only include a part of internal molecular degrees of freedom, they might not
fit to treat the irreversible character in the nonadiabatic transitions of the
polyene photoisomerization processes, as indicated by the study of Domcke
and collaborators. [34] |

In this thesis we investigate the photoisomerization dynamics of polyene
by generating the model Hamiltonian yielding the realistic potential energies
and nonadiabatic coupling vectors. The CASSCF/DZ+d calculation is used
to evaluate the 1'Ag and 2' Ag potential energies at various conformations
in order to fit the parameters in the model Hamiltoman. The CASSCF
level calculation is required to balance the description of these states along
isomerization paths.

In part I of this thesis, we develop the model Hamiltonian based on the
VB description of the = bond. The nature of the 1' Ag and 2! Ag PES along

various isomerization -aths is examined by using the model Hamiltonian.
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The shape of each PES is interpreted in terms of the simple configurational
interactions in the model Hamiltonian. The results are compared with the
ab-initio calculation.

Potential energy surfaces of butadiene, hexatriéne and octatetraene and
the nonadiabatic couplings of butadiene are analyzed in detail.

In part II, we investigate the photoisomerization dynamics of butadiene
by using the model Hamiltonian, which is parametrized in the full dimension
with the ab-initio potential-energies and nonadiabatic coupling vectors. The
mechanisms of the nonadiabatic transition and the energy relaxation in the

isomerization dynamics are analyzed in detail.
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Chapter 2

Introduction

To understand the mechanism of polyene photoisomerization processes, a
detailed knowledge of the electronic structures and the potential energy sur-
faces of the polyene molecules is required. The shape of the potential energy
surfaces such as the position of minima, funnels, and barriers is the key fac-
tor to determine the isomerization paths including the nuclear tunneling and
the nonadiabatic transition. The nonadiabatic transitions take place near
the intersection among the potential energy surfaces.

The photoisomerization dynamics is strongly controlled by the internal
conversion process. It is known that butadiene and hexatriene has much
shorter fluorescence lifetime than octatetraene. The 2! Ag state planar con-
formations of butadiene and hexatriene are not stable and thus undergoes
a facile CC torsion followed by the nonadiabatic transition, while that of
octatetraene is stable. The octatetraene has the longest fluorescence lifetime
among all linear polyenes.

Numerous ab-initio calculations have performed on the potential surfaces
of butadiene, and the various isomerization paths which causes the large
nonadiabatic transition have been proposed.[l, 2. 3, 5, 4] The CASSCF/4-
31G calculation of M. Olivucci et. al. have scanned an entire conformational
space over all three CC bond torsional degrees, and found that 2Ag degen-

erates with 1Ag at the conformations where three CC bonds are partially

19



twisted. [3, 5]

Recently ultra-fast time resolved experiments have found the existence of
the strong excess energy dependence in the fluorescence and the internal
conversion rates of hexatriene. Petek et al. have demonstrated that cis-
hexatriene has a nonradiative decay channel involving an activation energy
between 71.3 and 157.7 em ™!, Ohta et al. have measured the transient bleach
signals of trans-hexatriene and shown that the internal conversion from 2' Ag
to 1'Ag takes place within ~ 1 ps.

These experiments suggest that hexatriene in 2' Ag state isomerizes with
only a very small activation energy to the conformation where the energy
gap between 2! Ag and 1! Ag is quite small and thus the facile nonadiabatic
transition can take place. Olivucci et al. have used the CASSCF/4-31G or
DZ+d and CASPT?2 calculations to demonstrate that the conformation re-
sponsible for the facile nonadiabatic transition involves three partially twisted
CC bonds and a sharp “kink” at a —(CH)3;— segment in the middle of the
molecules. [6] |

By the florescence measurement of all trans-octatetraene and its deriva-
tives, Petek et al. showed that Octatetraene also has an very fact in-
ternal conversion channel with a considerable activation energy barrier (~
2200cm ') above the 2! Ag planar minimum ,[7] yielding the longest fluo-
rescence lifetime among all polyenes. Kohler et al. have suggested that
Z/E-photoisomerization yield of octatetraene is explained on the basis of the
adiabatic CC torsional isomerization paths on the 2! Ag state. (8]

An extensive ab-initio calculation does provide the precise potential energy
surfaces, but its wavefunction involves numerous determinants, which is hard
to interpret in a simple physical picture. If one requires some explanation,
reduction of information must be necessary. Such a rational reduction of

information is a goal of theoretical chemistry, and this must proceed through

20



physical grounded simplified schemes.

The 7 system in the ethylene molecule can be described through a simple
model as a prototype of a # bond. The o electrons are treated only at the
SCF level, having a nonpolarizable time-averaged charge distribution. For
describing the 7 electron, we use here only a pair of nonorthogonal atomic
orbitals (Fig.2.1).

The ethylene photoisomerization process is well described by the simplified
3 x 3 Hamiltonian.[9] Although the MO picture without the configuration
interaction quantitatively fails to predict the ethylene isomerization from the
planar conformation, it is still possible to understand the roughly shape of

the potential energy curves (Fig.2) by considering the MO energies alone.

(b)

Figure 2.1: Localized 7 orbitals as the minimum basis for the  system

A valence bond based picture also gives similar interpretation, and a con-
siderable number of dynamic simulation [10, 11, 12, 13, 14, 15] has been per-
formed to investigate the photoisomerization process of ethylene like molecules
on the basis of this picture. The sudden polarization and the hydrogen mi-
gration at the 90° twisted conformation is easily interpreted by this picture
though no realistic dynamical simulation including these processes has been
performed so far. -

This picture bases on the electronic state correlation along a reaction path
is useful for many other reactions. For example, the ground state selectivities
of pericyclic reactions are well explained on this picture, i.e. Woodward-
Hoffman rule.[16]

This picture is, however, not well applicable for a description of the polyene

21



photoisomerization dynamics, since a large number of configurations are in-
volved in the polyene electronic states. Instead, numerous studies based on
various model Hamiltonians have been performed to describe the potential
energy surface (PES) of the polyene electronic states.[17, 18, 19, 20, 21, 22]
The models are generally parametrized from experimental data or ab-initio
calculations. They would involve the semi-empirical Hamiltonians of solid
state physics (Hiichel, Hubbar&, Pariser-Parr-Pople (PPP), Heisenberg, our
VB type Hamiltonian, - - -). The effective Hamiltonian is also useful for the ra-
tional reduction of information obtained from the ab-initio calculations. The
term ’effective Hamiltonian’ denotes for Hamiltonian obtained by projecting
a exact wavefunction onto a finite model space. The corresponding theory is
well established and various practical procedures are well documented.

Malrieu and Maynau applied the quasi-degenerate many body perturba-
tion theory to the VB-CI matrix and the procedure result in a very simple
Heisenberg Hamiltonian dominated by effective exchange interaction between
adjacent atoms.[17] They have investigated the potential energy surfaces for
the CC bond stretching and torsion of the polyene molecule by.cmploying
this Hamiltonian.[17, 18, 19, 23| Bernardi et al. transformed the CASSCF
ﬁvam;functicu into the Heitler-London valence bond space b}'-conatructing an
effective Hamiltonian.[21] They used the resulting Heitler-London parameters
Q and Kj; for a posteriori rationalization of the bonding effects in molecu-
lar structures. In particular, their procedure enabled the diabatization of the
adiabatic potential surface in a rigorous way. Based on this simplified model,
they could allocate the locus where 2'Ag degenerates with 1' Ag.[24]

They also combined their Valence Bond (VB) model with Molecular Me-
chanics (MM) force field to optimize the geometry [22] and investigate the
relaxation dynamics from the excited state of Benzene and Azulene[25, 26].

In the present work, we employ a similar Heisenberg model; a VB Hamil-
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tonian is used to describe the localized 7 orbital interactions and is combined
with the o orbital description by a modified MM force field method. We have
examined if the Heisenberg Ha.mill.onian‘can describe the electronic structure
of various isomerized polyene conformations. For longer polyenes, many VB
structures are necessary to describe the electronic states and numerous iso-
merization paths exist. We have found that various features of the polyene
potential energy surfaces are easily rationalized in this model. Especially for
s-trans butadiene we can construct the model Hamiltonian which is accurate
enough to be used in a nonadiabatic dynamics simulation. For hexatriene, we
only examine the Heisenberg model to fit PES along the CC isomerizations.
The SA-CASSCF calculation is used to evaluate the 1! Ag and 2! Ag potential
energies at various conformations in order to fit the parameters in the model
Hamiltonian. The CASSCEF level calculation is needed for the balanced de-
scription of these states along the isomerization paths. The characteristics

of octatetraene PES is also analyzed by the ab-initio calculation.
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Energy

Torsional Angle

Figure 2.2: State diagram for ethylene as a function of the torsional angle.
112 > is the ground state configuration with the bonding orbital |1 > doubly
occupied. !|1 — 1 > is the singly excited configuration where one electron
is in the bonding orbital |1 > and the other is in the anti-bonding orbital
| =1 >. |12 > is the doubly excited configuration.
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Chapter 3

Model Hamiltonian-

The model electronic Hamiltonian consists of the 7 and o parts. [27]

The 7 part describing the 7 electronic structure change along the isomer-
ization is approximated by Heisenberg Hamiltonian. The ¢ part is assumed
to be independent of the 7 part, and a simple function of the internal molec-

ular degrees of freedom.

3.1 Description of 1Ag and 2Ag states

Heisenberg Hamiltonian is based on the VB description of the electronic wave
functions.[17, 18, 19, 23] Since 1' Ag and 2! Ag states are covalent states, their
electronic wavefunctions along the isomerization are approximately expanded
with neutral VB bases and the effect of ionic VB bases is effectively incorpo-
rated into the model Hamiltonian through the spin dependent interaction.
In a system with four 7 electrons, there are two ways of the spin coupling
to construct a singlet spin function [28](Fig.3.1), the perfect pairing o} ?
which dominates in the 1! Ag state at the planar conformation and so called

the double triplets ¢% ? which dominates in the 2' Ag state;
NP = %{;ﬂm — |1234| — |1233] + |1234]) (3.2)
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1 . . i i<t
¥E = —=(2|1234) - |1234) — |1234| — |1239] -
P2 g7 A 2y = {1204 125

|1234| + 2|1234]) . (3.3)

Perfect Paring

Figure 3.1: Two spin couplings to construct a singlet spin function

3.2 The Effective Interactions in the Model
Hamiltonian

The model Hamiltonian accounts for effective interactions among a pair of
the 7 electrons on ¢#'th and the 7'th carbon atoms in the neutral VB bases

with the interaction strength g; ;. The numbering of carbon atoms are shown

in Fig.3.2.
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The parallel spins in a neutral VB base cannot interact with an ionic
VB base, that is, an electron can not jump into an orbital occupied by an
electron with the same spin, and thus the model Hamiltonian includes only

the interactions among anti-parallel spins,

H, = Zg,-d(a}a;a;a.- +alala;a; — alala;a; — alalaza,)
i<j
= 3 gis (7)) + i) Gl — [N = [a)id) - (3.4)
i<j

We assume that this Hamiltonian contains the two terms, the interaction

between the neighboring orbitals (H?) and that between the next neighbors
(H3),

H, =H!+H. . (3.5)

The neighbor interaction contribution to the Hamiltonian elements are

represented in VB basis (Eq.3.2 and 3.3) as

Hl,, = gi2+®a, (3.6)
gz
H31,2 = —7% ; (3.7)
2g23— 01,2 — Y34
H})yy = : d (3.8)

gii+1 is assumed to be a product of functions of individual internal degrees
and its functional form is determined by the nature of the bonding character,
mainly related to the C;C;;; stretching and the C'.-C,—H torsion. It is thus

assumed to be given by
v ;1
Gii+1 = 07 exp(—pir€C) (E + k2 cos 20; + k! cos day;) (3.9)

where rCC is the distance and o is a torsional angle of the C;Ci4; bond.
The parameterized Hamiltonian only including the neighbor interaction

are fitted with the CASSCF/DZ+d energies to well reproduce the excitation

energy changes and the potential energy surface landscape when the CCC

bond angles are not so small.
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It was found that the CCC bending yields a significant contribution to the
2! Ag energy when all three CC bonds are partially twisted. This is due to a
large orbital overlap between the next neighbor 7 orbitals at this conforma-

tion as shown in Fig.3.3. To take account this effect, the Hamiltonian must

include the next neighbor interactions.

H

Figure 3.3: Next neighbor interaction between 1,3 localized m orbitals

The Hamiltonian matrix elements for the next neighbor interactions in VB

basis are

Hy,, =0, (3.10)
913+ 92,

Hppp _13ﬁ__2_4 ; (3.11)
2(g13+ 92,4

Hi,p = —[—1—3————) (3.12)

We use an ad hoc function to represent g;;.» which satisfies the follow-
ing conditions. The bending and torsional angle dependence must be taken
into account. As the nodal properties of the localized = orbitals, the sign of
their overlap changes at a small bending angle #; the interaction is zero

at that bending angle. Furthermore, the interaction must also be small
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if the geometry is far from the triple twisted conformation; these require-
ments are implemented by multiplication of the attenuating terms, sin®#6;
and sin? g, sin® ai+1. The functional form of the next neighbor interaction is

thus assumed to be

Gii+2 = (@; + by cosb; + ¢ cos® 0; + d; cos® 6;) sin* 8, sin? a; sin® a;4; . (3.13)

3.3 The o bond potential function

The ¢ bond potential function is assumed to be the sum of the functions of

individual internal molecular degrees,

z VCHair:tch( C'C) + Z VCCatrch:h[ CH _+_ z and{e ) +
z: v armgn(ak} + z: V;wtaj'plnne + vagnnnrd —Jones nonbor(?ci}l)
1
The Morse potential is used for the CC stretching,[29]

YOO treteh(:0C) = DFC (exp(~2nfC (rFC —rfO=T))~2 exp(—nfC (rf°-r7"1)))
(3.15)

re@ corresponds to the equilibrium CC bond length when the CiCiyy =

bond is completely broken.

the harmonic potential is used for the CH stretching. [29]

Y CH stretch((CHY — [CH (zCH _ rCHeay? (3.16)

4 corresponds to the equilibrium CH bond length.
The potentials related to angles are expanded in the Fourier series[30], and

only the dominant terms are retained,

Vierd(g;) = k(1 + cos 6;)? (3.17)

Vlorsion(ﬂl_) e klﬂr.!l'o‘ﬂ. cos 20!,' g (318)
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vﬂ‘“f ofFJ‘l"E{x‘-] = koul.'ofpfﬂﬂt COsS X, - (319‘}

For the non-bonded interaction separated by three or more bonds, the
Lennard-Jones potential is used whose parameters are adopted from the force

field of Kollman et al. [31]

3.4 Parameter fitting

To fit the parameters in the model Hamiltonian (Eqgs.3.9, 3.13, 3.15, 3.16,
3.17, 5.3, and 3.19), from the ab-initio calculations, a nonlinear least square

fitting procedure in the program SALS|32] is employed.

3.4.1 Conformation Sampling

The potential energies at various conformations are calculated by state aver-
aged complete active space self consistent filed (SA-CASSCF) with Dunning-
Huzinaga double-¢ + d-type polarization function basis set (DZ+d). [33]
MOLP RO |34} is employed for these calenlations. The active space of bu-
ta.cl.iene comprises four 7 electrons and four 7 orbitals (4e,40). For a balanced
description of 1! Ag and 2! Ag states, 4he state average orbitals with the equal
weight are used. This level of calculation yields a fairly good agreement with
more extensive calculations in potential enesgies of 17 Ag and 2' Ag states.
[5]. CASSCF in GAUSSIANO4[35] is mainly employed for the geometry opti-
mization. Sampled conformations are; Twisting CC bonds along the various
isomerization paths with relaxing CC bond lengths generates 513 conforma-
tions which include the planar s-traps, the planar s-cis conformations, and
conformations with a 90° twisted CC bond, with two 90° twisted CC bonds,
and with three 90° twisted CC bonds. Stretching CC bonds ranging from
1.254 to 1.65A for each state generates 239 conformations.

F';}r determining the parameters of the next neighbor interaction (Eq.3.13),

we arbitrary select 11 conformations with triply twisted CC bonds and with
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small excitation energies. Bending CCC of these conformations generates
603 conformations. The CCC bending ranges from 70° fcu 150°. As total, we
generate 1355 conformations for the 7 parameters fit. In these conformations,
the bond angles (H-C-C, H-C-H etc.) and CH bond lengths are fixed as the
average of 1! Ag and 2'Ag equilibrium values at the planar conformations

obtained by CASSCF/DZ+d

3.4.2 The nonlinear least square fit

The parameters of the  part are estimated from the excitation energies
calculated at sampled conformations, generated by twisting and stretching
the CC bonds and bending the CCC angles, i.e. by varying those inducing
large m electron energy changes.

We employ the SALS program [32] to perform the nonlinear least square

fit, in which the square sum of the deviation of the excitation energies
S(k) = 3 _(AEP — AE)?

is minimized. Here, & is the set of 7w parameters. AE® is the excitation en-
ergy at the i’th conformation calculated by SA-CASSCF/DZ+d and AE™ed!
is the excitation energy calculated by the model Hamiltonian.

To determine the parameters of the o part, we use the averaged ener-
gies of 11Ag and 2'Ag states evaluated by SA-CASSCF /DZ+d at various
conformations (see Appendix A. for the parameter fitting).

In addition to the conformations used for the m parameter fit, further
sample conformations are generated to fit the parameters of CH stretching,
bending, and out-of-plane bending in the neighbor of the s-trans conforma-
tion. The nonlinear least square fitting procedure is used for determining the
o parameter, where the square sum of the deviations of the averaged energies
of the 1! Ag and 2' Ag states among 1558 conformations is minimized.

The parameters thus obtained are listed in Table 3.1 and 3.2

32



Table 3.1: 7 parameters. Values are in the atomic unit.

P 2.01
g -0.0835
1 1.18
po  0.0840
k2 0523
k2 0530
kA -0.101
kst 0138
a;  -0.0633
by -0.0190
a 0126
d;  -0.00887

Table 3.2: ¢ parameters. Values are in the atomic unit.

P 0.0920
i . 378
nCl:C? 1.68
ypea-Gn 0.908
TC'I:CQchr 268
TCE—CS,eq 27
pei-fla 0.372
kC2-H2eq 0.364
rCl—-Hlu,eq 2_0?
TC‘2—H2.eq 207
kﬂ]nmCluCﬁ 0.0665
O=08=03 0.0668
jtttied 0.0718
i -0.001016
kwtofpl'ﬂﬂe 0.0320

33



Chapter 4

Potential Energy Surfaces and
Nonadiabatic Coupling of
s-trans butadiene

4.1 Model Eigen Energies and Nonadiabatic
couplings

The eigen state of the model Hamiltonian are expanded with the VB bases

wYB(R(t)) and are determined by the diagonalization.
¢a(r,R(t) = 3_ Cinpd "(R(Y)) , (4.1)

H(r, R(t))¢n(r, R(t)) = Ei ¢a(r, R(2)) . (42)

The nonadiabatic coupling vectors are obtained by differentiating the time-
independent Schrodinger equation. Since the wave function is expanded with

the VB bases (Egs.4.1), the coupling consists of two terms,

<¢.,.|BR|¢H>—Z,,“3R +2 LG VPl G (43)

The first term is readily calculated by the equation which resembles the

Hellmann-Feynman theorem,

o II'IJ
z m aR = _E E 1mn a}'{ CJ"‘ (44}

hl]

34



Evaluation of the second term requires the knowledge of the conformational
dependencies of the VB base ¢Y?. This term is, however, in general very
small and can be neglected because the nonadiabatic coupling strength is
proportional to the abrupt change of the wavefunction, but the nature of the
VB bases only changes gradually along the isomerization. Many ab-initio
caleulations indeed show that the orbital term, corresponding the second
term, is generally much smaller than the first term (CI term). We thus use

only first term in the following model calculation.

4.2 Interpretation on the characteristic of
the 1!Ag and the 2'Ag potential energy
curves

4.2.1 Torsional isomerization

In order to examine the quality of the model Hamiltonian obtained, potential
energy curves calculated by the present model and SA-CASSCF along various
CC torsions are plotted in Fig.4.1. We can see that the potential curves of the
model Hamiltonian are in a very good agreement with SA-CASSCF curves
in almost all isomerization paths. In these figures the CC bond lengths are
optimized along given CC torsions. The bonds angles (H-C-C, H-C-H etc.)
and CH bond lengths are fixed as the average of 1! Ag and 2! Ag equilibrium
values at the planar conformations obtained by SA-CASSCF/DZ+d.

The present model gives simple interpretation on the characteristic of the
1'Ag and the 2! Ag potential energy curves and their nonadiabatic coupling
along the CC torsional isomerization, considering only the neighbor interac-
tion in 2 times2 Hamiltonian.

In the parameter set of Eq.3.9, the term cos 2a dominates cos 4 as seen
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in Table 3.1 of Appendix A, and thus

1+ cos2a;

s (4.5)

Giip1 ~ —b;

b; = —g? exp(—picC) (b: > 0) .

where «; is the torsional angle of C;C;;; bond. The m bonding strength
gradually decreases from the maximum at a; = 0° to zero at a; = 90°. Sub-
stituting this to Eqs.3.10-3.12, we can predicts the 1' Ag and 2! Ag potential
curves along various CC isomerization paths.

When a double bond (C; = C3 or C3 = Cy) is twisted to 90° from the
planar conformation, H?, ;, the VB energy of ¢} ? increases by about be_c,
while H?,,, the energy of ¢}'# decreases by about bo—c/3. Consequently,
the 1! Ag state energy rapidly increases while the 2! Ag state energy slightly
decreases as seen Fig.4.1(b). |

When the single bond Cy — Cj is twisted, HY,, significantly increases by
about 2/3bc_c and HY,, slightly increase because the C-C bond becomes
longer (see Fig.4.1(a)), whereas the coupling H}, , decreases. This is indeed
reflected to the 2! Ag and the 1! Ag potential energy curves. It is noted that
single bond twisting causes the largest unstabilization among the all combi-
nation of bond twistings (Table 4.1). It is also noted, however, the agreement
between our model and SA-CASSCEF is poor in the 2! Ag state potential en-
ergy at this 90° C-C bond twisted conformation. Tt may be attributed that
the ionic component, not included in our model, becomes important when
the 2! Ag state approaches upper singlet states and mixes with their jonic
characters. This does not much affect our dynamics simulation because the
trajectories of 2! Ag state in the simulation scarcely reach such high energy
conformations.

When the two double bonds are twisted but the single bond is not, since

the energy of the VB bases, H},, stabilizes about 2/3bc_c, HEM unstabi-
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lizes about 2bc—c and they mutually cross, but the coupling element HY, ,
remains to be significant. It thus yields a strong avoid crossing; the adi-
abatic 2! Ag potential surface is largely separated from the adiabatic 1' Ag
potential surface even near at 90° C=C twisted conformation. (see Fig.4.1(d)
and (e)). It is noted that the torsions alone can not cause the SA-CASSCF
potential energy difference between the disrotatory and conrotatory paths of
two double bond torsions, and our VB model does not predict the- electronic
structure difference between the disrotatory and conrotatory paths of two
double bond torsions (Figs.4.1(d) and (e), and Table 4.1). Although the re-
action selectivity between these paths in the excited state is not completely
elucidated, the fully geometry relaxation along these paths might anticipate
the disrotatory propensity.[3, 5]

When a single bond and two double bonds are simultaneously twisted,
H?,, (thus the 2' Ag state energy) slightly increases whereas HY,, (thus
the 1! Ag state energy) rapidly incfeaaes, whereas the coupling element HY, .,
about diminishes; 2! Ag nearly degenerates with 1} Ag states nearly at the

triply twisted conformation.
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(c) C=C C-C simultaneous twisting
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(e) C=C C=C disrotaotry twisting
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Figure 4.1: Potential energy curves along the various twisting paths. The
11 Ag state energy from SA-CASSCF calculation (open diamond dot <), 2! 4g
SA-CASSCF (+), 1' Ag Model Hamiltonian (solid line), 2! Ag Model Hamil-
tonian (long dashed line), Hy1; + V, (dotted hine), H, 25 + V, (long dashed
dotted line), V, (short dashed dotted line) The CC bond lengths are opti-
mized along given CC torsions. The bonds angles (H-C-C, H-C-H ete.) and
CH bond lengths are fixed as the average of 1' Ag and 2’ Ag equilibrium val-
ues at the planar conformations obtained by SA-CASSCF/DZ+d. (a)C-C
twisting (b)C=C twisting (¢)C=C C-C simultaneous twisting (d)C=C C=C
conrotatory twisting {(e)C=C C=C disrotatory twisting (f)C=C C-C C=C
conrotatory twisting
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Table 4.1: The energy increase of each state by twisting various CC bonds
to 90° from the planar s-trans conformation

CASSCF Model
twisted bond AE(1"Ag) AE(2'4g) AE(1'Ag) AE(2'Ag)
CG 0.0329 0.0620 0.0398 0.0501
C=C 0.0617 0.0008 0.0620 -0.0080
C=C C-C 0.1035 0.0357 0.1033 0.0280
C=C C=C* 0.1024 0.0375 0.1031 0.0336
C=C C=C* 0.1022 0.0375 0.1029 0.0335
C=C C-C C=C* 0.1698 0.0138 0.1674 0.0094
C=C C-C Cc=C* 0.1698 0.0138 0.1674 0.0094

@ Conrotatory Path ® Disrotatory Path
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4.2.2 The locus of the degeneracy

Whether two or more states with same symmetry can mutually cross or not
is one of the most important informations to understand the mechanism of
photochemistry. The non-crossing rule in diatomic molecules (with one di-
mensional coordinate of the bond length) was first proved by von Neumann
and Wigner.[36] One variable (coordinate) can at most satisfy one of two
conditions need to have the degeneracy. So, unless the other condition is
satisfied by the symmetry, the state energies can not degenerate. For a case
of M coordinates, however, two conditions can be always satisfied in (M — 2)
dimensional space; a molecular geometrical symmetry is not necessarily re-
quired. Therefore, Teller,[47] Herzberg and Longuett-Higgins[38] concluded
that two state even with same symmetry will intersect along a (M —2) dimen-
sional hyper-line as the energy is plotted against the M nuclear coordinates.
Herzberg and Longuett-Higgins demonstrated that in a triangular system
of three dissimilar atoms the lowest doublet state is linked with an excited
doublet by a conical intersection.

Recently, Olivucci, Celani, Garavelli, and coworkers dcmonsl;rated that the
1'Ag and 2’ Ag states of butadiene, hexatriene and octatetraene degenerate
when three CC bonds are partially twisted.[3, 5, 6, 39, 40]

The present model can briefly predict the locus where 2'Ag states de-
generates with 1' Ag, by considering only the neighbor interactions in the
Hamiltonian (Eqs.3.6, 3.7 and 3.8). [21, 24] The condition of the degeneracy

is HEH = H,urzz 3 HE,; = 0,which is satisfied when
12 = —034,

23 = 0. {46)

From Eqs. 4.5 and 4.6, it occurs at the triply twisted conformation where

all three bonds are twisted to 90°. The energy difference between 1' Ag
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and 2! Ag states is indeed very small at this conformation; 0.010a.u. in the
present model and 0.005a.u. in SA-CASSCF.

Although the twisting of all double bonds to 90° puts the VB energies
of 1'Ag and 2'Ag closer, the adiabatic curves strongly avoid each other
(Figs.4.1(d) and (e)) and it is not expected to causé a very fast nonadia-
batic transition. On the other hand, the simultaneous twisting of all double
bonds and single bond involves the degeneracy at 90° CC bonds, but the
nonadiabatic coupling along the torsion is rather small. Besides, the confor-
mation at 90° is higher in energy in comparison with that with all double
bonds twisted to 45°. Therefore the conformation with triple torsion alone
is expected not to paly a significant role in the fast internal conversion.

Olivucel and Celani et al. have performed a geometry optimization along
the conical intersection seam and found that the 1' Ag and 2' Ag degeneracy
occurs at local minimum when three carbon atoms get close in distance by
forming the “kink” structure.[3, 40]

We here also examine the 2! Ag potential energy surface along the CCC
bending around the triply twisted conformations in our model. In these
conformations, the overlaps among the next neighbor localized 7 orbitals are
large (Fig.3.3) and the difference between the diagonal elements of model
Hamiltonian is small, and thus the potential energy surfaces are strongly
modified by the next ncighbor interactions.

The next neighbor interaction expands the hyperspace volufne of the de-
generacy and lowers the 2! Ag state energy. Let M be the total number of
the internal molecular degrees of freedom. If one considers only the neighbor
interactions, the dimensionality of the degeneracy region M — 2 is acciden-
tally reduced into M — 3 through the three conditions, a; = 90°, ay = 90°,
and a3 = 90° in Eq.4.6, while, if we include the next neighbor interactions,

the dimensionality remains to be M — 2. In other words, the next neighbor
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interaction yields the degeneracy at the conformations where the neighbor

interaction alone can not cause the degeneracy.

4.2.3 CCC bending

In addition, Eqs.3.10 and 3.12 show that the next neighbor interaction ex-
clusively lowers the energy of @) #. Consequently, 1' Ag and 2! Ag potential
energy surfaces intersect each other.

We have calculated the potential energy surfaces along CCC bending at a
certain geometry with triply twisted CC bonds, which are shown in Fig.4.2.
We can see that the system is indeed near crossing at a CCC bending angle of
110°. Along the simultaneous two CCC bendings, the weakly avoided cross-
ing occurs at a larger bending angle (115° as in Fig.4.2(b)). Since the next
neighbor interaction contributes to Hy 5 in the opposite sign of the neighbor
interaction, H,, » is decreased as reducing the CCC bending angle. It dimin-
ishes when the cancelation becomes perfect at a certain CCC bending angle.
The accidental degeneracy of 1'Ag and 2'Ag states therefore exists when
this cancelation occurs at the exact intersection of the ; # and ¢} ? energy
curves. Although we have not tried here to find the exact location of such
degeneracy, Fig.4.2 shows a very weakly avoided crossing at the intersection

point of the VB state energy curves.
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(a) C-C-C bending path
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Figure 4.2: Potential energy curves along the CCC bending paths in the
neighbor of the conformation with partially twisted CC bonds, a; = 75°,
az = 90°, ag = 75° . The 1! Ag state energy from SA-CASSCF calculation
(open diamond dot <), 2! Ag SA-CASSCF (+), 1'Ag Model Hamiltonian
(solid line), 2! Ag Model Hamiltonian (long dashed line), H,1; + V, (dotted
line), Hy2+V, (long dashed dotted line) Geometrical parameters other than
CCC bending angle are fixed. (a) C-C-C bending path (b) simultaneous two
C-C-C bending path
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4.3 CC stretching

The potential energy curves for the CC stretching at the planar conformation
are shown in Fig.4.3. A double bond stretching alters the energy gap between
@YVF and @Y ®, and consequently induces a large excitation energy change, in

comparison with a single bond stretching.

(a) single bond stretching around the 2! Ag equilibrium geometry
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b) double bond stretching around the 1! Ag equilibrium geometry
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Figure 4.3: Potential energy curves along CC stretching path around the
equilibrium structures of 2' 4¢g and 1'Ag. The 1'Ag state energy from SA-
CASSCEF calculation (open diamond dot ©), 2! Ag SA-CASSCF (+), 1'Ag
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around the 1! Ag equilibrium geometry

47



The present simple model certainly has the limitations. Although the
present model can produces the basic feature of the 2! Ag and 1'Ag state
potential energy surfaces, it misses some of their charactenstics in compared
with the very accurate butadiene potential surfaces calculated by Celani et
al.[5] Celani et al has shown that the out-of-plane bending (pyramidalization)
is important in the geometry of the lowest conical intersection and in the 21 4g
relaxed isomerization paths around the “kink” structure. The present model
assumes, however, that this out-of-plane bending is not responsible for the
electronic character change and does not account for its effect on potential
energy surfaces. Celani et al. has also found that there is no metastable 2! Ag
state conformation on the isomerization path toward the conical intersection,
although the present model predicts its existence; the conical intersection
is the lowest2! Ag energy configuration in the accurate calculation.[5, 40]
The present model includes only a part of the molecular freedoms as the
active modes inducing the strong electronic character changes, and thus yields
the conical intersection seam energy higher than that obtained with a more

accurate calculation.

4.4 Nonadiabatic coupling

The present model Hamiltonian can also reproduces the nonadiabatic cou-
pling in good agreement with those computed by the finite difference of the
SA-CASSCF wave function.

The nonadiabatic coupling values along the twisting paths are illustrated
in Fig.4.4, where the SA-CASSCF results are calculated by including both
1st (the CI) and 2nd (the orbital and overlap) terms in Eq.4.3. We can see
only the significant nonadiabatic coupling between adiabatic 2! Ag and 11 Ag
states exists along the doubly and the triply torsional path. The nonadia-

batic coupling becomes zero at a; = 90° of any C-C twisting paths. This
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is explained from a following simple consideration. The model Hamiltonian
can be described mainly by the neighboring interactions, g; 41, along the CC
torsional paths. From Eqs.4.3 and 4.4, the nonadiabatic coupling between
the adiabatic 2' Ag and 1! Ag states is proportional to 9¢;;y;/0a;. This is
zero at «; = 90° from Eq.4.5.

Along a double bond torsion, the potential energy curves of the VB bases
mutually get closer while their coupling H, ;> remains finite, and thus the
nonadiabatic coupling between the adiabatic states gradually increases, but
is not significant.(Fig.4.4(a))

The-simultaneous two double bond torsion induces the mtersection of two
VB energies, so a nonadiabatic coupling strenth yields a peak at this inter-

secting point around a; = az = 60° (Fig.4.4(b)).
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(b) C=C C=C conrotatory twisting
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Figure 4.4: Nonadiabatic coupling curve along the twisting path
(emu~2bohr=1). SA-CASSCF calculation (open diamond dot ©), Model
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The torsion alone does not cause a large nonadiabatic coupling. The CCC
bending is required upon the triple torsion. Fig.4.5 illustrates how the nona-
diabatic coupling is enhanced along the CCC bending at a partial triply CC
twisted conformation. When the CCC bending angle decreases, the coupling
Hy 5 in the VB bases gra.dua.ll:,r decreases and the energy difference between
two VB states becomes very small. Hence the wavefunction of each adiabatic
state rapidly switches between the VB bases at the intersection points, and

the sharp peak of the nonadiabatic coupling appears.
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(b) simultaneous two C-C-C bending
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Chapter 5

trans-hexatriene

Hexatriene has a short fluorescence lifetime due to the facile nonadiabatic
transition induced by the isomerization. The ultra fast laser experiment
indicates that an internal conversion requires the activation energy between
71.3 and 157.7cm™". In this chapter, we investigate the hexatriene internal
conversion mechanism by constructing a simplified model Hamiltonian which-

depends solely on the CC bond torsional angles.

5.1 Model Hamiltonian

As we have discussed above for butadiene, the covalent state 1' Ag and 2' Ag
can be approximately expanded with neutral VB bases and the effect of ionic
VB bases is effectively incorporated into the model Hamiltonian.

The system with six 7 electrons has more spin couplings to form singlet
spin functions than butadiene. We employ the Yamnouchi-Kotani basis set
as the VB basis of the model. It consists of five orthogonalized spin functions
which provide irreducible representations of the permutation group Sy and
are generated by the branching diagram method.(Fig.5.1)

We employ a simplified model Hamiltonian including the neighbor inter-
actions g; which only depend on the CC bond torsional angles.

gi = % + kfg’ cos 2a; + kf’lcostlﬂ,' (5.1)
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The numbering of the torsional angles and the atoms are shown in Fig.5.2
The o bond potential function is also assumed to depends only on the CC

bond torsional angles,

V, = Z V;:ﬂ"im(&k) (5.2}
k

Vio”im(ﬂf"J - ktﬂrsion cos 2ﬁ'i : (5.3)
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Figure 5.1: The five distinct sequences of the coupling

Figure 5.2: Numbering of atoms and torsions
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5.1.1 Parameter fitting

We fit the parameter of this simplified model Hamiltonian with the data
obtained from the SA-CASSCF/STO-3G calculation along the various iso-
merization paths. To fit the parameters, a nonlinear least square fitting
procedure in the program SALS|[32] is employed.

The potential energies at various conformations are calculated by SA-
CASSCF with the minimum STO-3G basis set.[42] To calculate numerous
samplés of various conformational energies of hexatriene, the minimum ba-
sis set is used. It is found that this level of calculation can reproduce the
characters of the potential energy surfaces obtained from the more exten-
sive calculations.[6] The active space of hexatriene comprises six 7 electrons
and six 7 orbitals (6¢,60). MOLPROY4 is employed for these calculations.
GAUSSIAN94 is mainly employed for the geometry optimization. Sampled
conformations are generated by twisting each CC bond by 15°, simultane-
ously two CC bonds and three CC bonds with all kinds of their combinations;
1733 conformations are generated. We here did not include other internal
coordinates ( CCC bendings, CC stretchings, CH stretchings, out-of-plane
bendings) in hexatriene.

The fitting procedure is the same as that in butadiene. The energies ob-
tained from this model are mostly in the good agreement with those obtained
from SA-CASSCF, Their correlation is shown in Fig.5.3. The large devia-
tions are seen in the right below. The seemingly consistent deviation of 1Ag
and 2Ag in Fig.5.3 are due to the relatively high energy conformation with
the doubly twisted single bonds and those with triply twisted CC bonds near
the Z-isomer. The agreement between the ab-initio energies and the model
eigen energies is also rather poor for a single bond torsion. Thi_s is because
1'Ag and 2'Ag mixes with the ionic character of the upper states as their

energies increase along this torsion.
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The parameters thus obtained are listed in Table 5.1.

Table 5.1: trans-Hexatriene parameters. Values are in the atomic unit.

9 -0.0857
g5 -0.1022
a3 -0.0781
ki? 0.468
5 0.502
ke 0.496
ke -0.090
ks -0.133
kg -0.066

ktersion _().00394
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5.2 Potential Energy Surfaces

The potential energy curves along a single torsion of the terminal C5=C3
are shown in Fig.5.4(a) (see Fig.5.2 for the numbering of atoms). The 2' Ag
state energy is almost unchanged along the isomerization path, while the
1! Ag state energy is increased. The flat potential energy curve of the 2! Ag
state also means that the planar conformation is not so stabilized. The
feature agrees with the experimental investigation.

Along the single bond C3-C1 isomerization path, the 2! Ag state energy is
rapidly increased, while the 11 Ag state energy is slightly increased. As we
discussed about the butadiene, the bonding character of 2' g is opposite to
that of 2! Ag. It reflects on the different behavior of the state energies along
a single torsion. |

Along the central double bond C1=C2 isomerization path, both the 1! Ag
and 2'Ag state energies are monotonically increased. In. 'cnntrast to the
butadiene, the 2! Ag state of a longer polyene has remaining anti-parallel
spin pairs. Hence the isomerization in the 2! Ag state of a polyene is not so
facile. Later we see the same tendency of the octatetraene.

The potential energy curves along the double torsional paths are shown in
Fig.5.5. Along the double torsional paths the 2' Ag and 1' Ag state energies
are increased, though the 2' Ag isomerization barriers of double torsions of

the C=C bonds are lower than that of single torsion of the C-C bond.

5.2.1 Degeneracy

Olivucci et al. found that the degeneracy occur at the C5=C3 C3-C1 C1=C3
twisted conformation.[6] Added to this, we show that there are another sym-
metry distinct way of twisting which induce a degeneracy and other way of
twisting does not induce a degeneracy. The triple torsion, which divides the

7 electron conjugation into four parts consisting odd carbon atoms, yields
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the degeneracy between the 1'Ag and 2'Ag states.(see Fig5.6(a) and (c))
These kind of triple torsions induce the tetra-radical character.[3, 6] On the
other hand, the other way of triple torsion does not induce a degeneracy as

shown in Fig.5.6(b) and (d).

5.2.2 Internal conversion

The present model qualitatively represents the ab-initio potential energy sur-
faces whose global feature gives the intuitive interpretation of the internal
conversion mechanism of hexatriene. The planar conformation of the 2! Ag
state is not stable against the terminal C=C torsion. And if the molecule

has a certain excess energy, the facile nonadiabatic transition is induced.

5.2.3 Further improvement of the model

The activation energy obtained from the present model is too high to re-
produce the experimental internal conversion rate through the nonadiabatic
dynamics simulation. The present model has three unsatisfactory points.
First, the CASSCF with the minimum basis set is employed to determine
the parameters and the geometry relaxation effect is not fully incorporated.
More extensive ab-initio calculation and the geometry optimization lowers
the degenerated energy level and the resultant conformation inducing the
degeneracy has the kink —(CH)3— structure. Secondly, the Hamiltonian
should depend on other important nuclear coordinates, i.e. CC bond lengths,
out-of-plane bendings, and CCC bendings. It is also required for the model
to follow the ab-initio optimized geometry. Thirdly, the next neighbor in-
teraction and more higher interaction involving more than two electrons are

required to reproduce the more quantitative energies.
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(¢)Central C1=C2 twisting
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(b)C5=C3 C3-C1 twisting

-228.8 T —T —T" T T
CASSCF 1Ag ¢
CASSCF 2Ag +
-228.85 | Model 1Ag T
Model 2Ag ----- s
g -228.9
=
]
< .228.95
=
=g
2
5  -229
-229.05
-229.1 = . . - -
180 195 210 225 240 255 270
Torsional Angle (deg)
(c)C5=C3 C2-C4 twisting
-228.8 T T T T T
CASSCF 1Ag ©
CASSCF 2Ag +
-228.85 Model 1Ag — . 3
Model 2Ag ----- """
© 2289 — e -
= s ¥
o
= 22895 | E
=
&
2
5 220 b |
-229.05 1 4
_2291 1 L 1 1 L
0 15 30 45 60 75 90

Torsional Angle (deg)

63



(d)C5=C3 C4=C6 twisting
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(e)C3-C1 C2-C4 twisting
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(¢)C5=C3 C2-C4 C4=C6 twisting
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(d)C5=C3 C1=C2 C4=C6 twisting
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Chapter 6

all trans-octatetraene

Octatetraene is known to yield the longest fluorescence life time among
polyenes. Extensive experimental studies have been performed on this molecule
including the measurement of the Z/E-photoisomerization yield and the flu-
orescence decay rates of vibrational modes in the 2! Ag state.[8, 7] In this
section, we have performed the ab-initio calculation to investigate the pho-

toisomerization and the internal conversion mechanism of octatetraene.

6.1 Computational Details

The CASSCF method in GAMESS[41] is used to calculate the potential en-
ergy surfaces of octateiraene 1' Ag, 2'Ag, and 1'Bu states. The complete
active space (CAS) is generated by occupying eight electrons in eight active
orbitals for CASSCF wavefunction in all possible way. The total number of
CSF’s are 1764. These CASSCF eight orbitals are the 7 orbitals delocalized
over the whole molecule. The basis set we employed are the minimal STO-
3G[42] and the Dunning/Hay double zeta basis set (DH). The STO-3G set
was used for both the geometry optimization and the force constant calcu-
lation. The geometry optimization were carried out by using the analytic
gradient method for the CASSCF wavefunction. The force constants were

obtained from the numerical differentiation of the energy gradients. The
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optimization within the (avoided) crossing seam is performed by employing
GAUSSIAN94.[35]

In order to get more reliable estimation of the energies and to incorporate
the o — 7 electron correlation, we performed the MRSDCI calculation whose
reference configurations are selected from those of the CASSCF wavefunc-
tions. MELD[43] is used. The natural orbitals of the CASSCF wavefunctions
are used as the one-particle basis functions in the MRDCI calculation. A set
of configurations are chosen as a zeroth order space so that they compromise
more than 85% of the MRDCI wave functions at all conformations in order
to achieve the balanced description of the low-lying state PES along the iso-
merization paths. The electronic Hamiltonian is diagonalized over this small
set of configurations and the first 3 roots are chosen.

All single excitations (o and 'n‘)- and all double excitations, each of which
involves at least one 7 electron, from the reference configurations are included
in the CI.(See Fig.6.1) The second order Rayieigh-s.chijdinger perturbation
energies to the average (i.e. one third of the sum) of the eigen vectors of these
three lowest roots from all configurations outside the zeroth order space on
these roots were calculated and those configurations having large values of the
second order energies were selected as CSF’s included in CI.[45] The thresh-
old value for this second order Rayleigh-Schodinger perturbation selection of
CSF’s is 3.Tphartree and the number of selected CSF’s are 31000 ~ 44000.
Inclusion of the remaining configurations is made in an extrapolation proce-

dure,

6.2 Properties of the representative isomers
at each equilibrium geometry

The equilibrium bond lengths and angles of three isomers in 2! Ag state are

listed in Table6.1. We can see that their values are almost same among all
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isomers, indicating the 2! Ag electronic characters in these isomer conforma-
tions are essentially mutually same. The C-C single bonds are longer than
the double bonds by 0.04 ~ 0.06 A. The central single bond is a slightly
longer than the other single bonds. All bond angles are almost equal to 120°
with the carbon sp? hybridization. The CCC bond angles are slightly larger
and the CCH bond angles are less than 120°.

Table 6.1: 2Ag optimized geometries of representative isomers

coordinate | all-trans® | cis,trans | cis,cis

C2-Cl1 | 14l6 1.426 | 1.416
C3-C1 1.456 1.460 | 1.461
C4-C2 1.456 1.457 | 1.461
C5-C3 1.392 1.392 | 1.391
C6-C4 . 1.392 1.391 | 1.391
C7-C5 1.453 1.454 | 1.453
C8-C6 1.453 1.452 | 1.453

C3-C1-C2 123.51 126.0 | 125.5
C4.C2.C1 123.51 1229 | 1255
C5-C3-C1 123.70 126.2 | 126.4
C6-C4-C2 123.70 123.7 | 126.4
C7-C5-C3 123.81 123.3 | 123.2
C8-C6-C4 123.81 123.8 | 123.2
H9-C1-C2 118.72 117.6 | 118.6
H10-C2-C1 118.72 119.7 | 118.6
H11-C3-C1 117.40 116.0 | 115.9
H12-C4-C2 117.40 1174 | 115.9
H13-C5-C3 118.70 119.6 | 119.7
H14-C6-C4 118.70 118.7 | 119.7
H15-C7-C5 120.84 120.9 | 120.9
H16-C8-C6 120.84 1209 | 1209
H17-C7-ChH 120.99 121.0 | 121.0
H18-C8-C6 120.99 121.0 | 121.0

Bond lengths are in angstrom, and bond angles and torsional angles are in

degree.
%Aoyagi,M.; Ohmine,l.;Kohler,B.E. J.Phys.Chem.1990,94,3922.
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The vibrational frequencies of the 2! Ag electronic state are calculated for
all-trans and cis,trans-isomers and listed in Table6.2. The frequencies are
almost same for these two isomers, since their electronic structures are al-
most same. The calculated frequencies yields the best fit (giving the least

deviation) to the experimental values by scaling them by a factor,0.905.

Table 6.2: 2Ag vibrational frequencies (¢cm™!) of all-trans and cis,trans-
1somers

sym | all-trans® cis, trans expl.”
a’ | 3836 1490 (| 3836 1520 1509
3836 1464 (| 3836 1475 1499
3715 1419 || 3729 1454 1479

3713 1415 || 3720 1379
3713 1371 || 3711 1355

3710 1303 || 3709 1261 1226
3708 1157 || 3695 1124 | 3583

3702 1107 || 3691 1093 1080
3659 1072 || 3649 1056

3650 1014 | 3648 996 968
2290 601 || 2281 732 628
1861 580 || 1850 533 | 1789 538
1738 403 || 1746 430 364
1732 359 || 1738 353 338

1688 234 || 1723 228 | 1662 210
1572 92 | 1585 100 | 1621

1503 1553 . 1516
a” | 1124 681 | 1009 327
1117 653 || 996 278 236

1087 349 || 878 174
1057 218 | 771 156
891 169 || 758 139
891 135 638 121 | 623 49
847 56 || 420 84 | 448 33
821 411

®Aoyagi,M.; Ohmine,l.;Kohler,B.E. J.Phys.Chem.1990,94.3922.
*Buma W.J.;Kohler B.E.;Shaler T.A. J.Chem.Phys.1992,96,399.

Table6.2 lists the the total and relative energies of the lowest singlet states
at the 1'Ag, 2' Ag, and 1' Bu equilibrium geometries. CASSCF/DH and
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MRSDCI/DH methods were used. The energies are compared with those of
Cave and Davidson.

One particle orbital basis used in the present MRSDCI calculation are gen-
erated from the CASSCF calculation for a certain state indicated in the third
column (the 1'Ag, 2' Ag, or 1' Bu). The CASSCF orbitals are transformed
to the natural orbitals and then used in the MRSDCI. They are thus not so
called state averaged orbitals. The state energies in MRSDCI depends on for
which state CASSCF is converged and the natural orbitals are generated.

The 11 Ag-2' Ag 0-0 transition energies of CASSCF/DH and MRDCI cal-
culations (3.68eV and 3.24eV, respectively) are in a reasonable agreement
with the experimental energy (3.60 eV), yielding almost same quality with
much more sophisticated Cave and Davidson calculation (4.15 ev).

There is a large difference in the equilibrium geometry between the 1! Ag
and 2'Ag states, and the 1! Ag-2! Ag vertical transition energy (5.72 eV in
CASSCF and 4.31 €V in MRSDCI) is much larger than the 0-0 transition
energy (3.68eV and 3.24eV, respectively) and is also far off from the experi-
mental value. Without including either of the diffuse or the Rydberg basis,
MRSDCI calculation can not lower the absolute 2! Ag state energy drastically.
On the other hand, the 1’ Ag-1' Bu vertical transition energy is drastically
improved by including the dynamical correlation through MRSDCI (6.79eV
in CAS to 5.71 eV in MRSDCI).
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Table 6.3: Total and Relative Energies of the lowest singlet states at the
1Ag,2Ag,1Bu equilibrium geometries.

CASSCF /DH results

state geometry? MO’s” energy (hartree)] AE (eV)® expl (eV)

1Ag 1Ag 1Ag -308.7300

2Ag 1Ag 1Ag -308.5201 5.72

1Bu 1Ag 1Ag -308.4804 6.79 4.40
2Ag 2Ag 2Ag -308.5946 3.68 3.60
1Bu 1Bu 1Bu -308.5021 6.20 4.40

*CASSCF/STO-3G optimized geometries are used. *Converged State.
‘Relative to the 1Ag result at the ground state equilibrium geometry.

MRSDCI/DH results
state geometry MO’s® energy (hartree) AE (eV) expl (eV)

1Ag 1Ag  1Ag -308.9729

2Ag 1Ag  1Ag -308.8145 4.31

1Bu 1Ag  1Ag -308.7632 5.71 4.40
2Ag 2Ag  2Ag -308.8538 3.24 3.60
1Bu 1Bu  1Bu -308.7979 4.76 4.40

4CASSCF Natural Orbital.

Cave R.J.;Davidson R.E. J.Phys.Chem.1988,92 2173
MRCI/Basis set C(3s2p),H(2s) + C(d) exp:0.55 + C(p) exp: 0.021

state geometry MO’s energy (hartree) AE (eV) expl (eV)
1Ag 1Ag 1Ag KO ~309.0470
1Bu 1Ag 1Bu ANO -308.8708 4.79 4.40
2Ag 2Ag 1Ag KO -308.6103¢ 4.15 3.60
1Bu 1Bu 1Bu KO -308.8794 4.56 4.40

“r(QCI Calculation



6.3 Adiabatic isomerization in the 2! Ag state

The measurements of the Z/E-photoisomerization by Kohler et.al suggests
that the isomerization is adiabatic.[8] On the other hand, the florescence mea-
surement of all trans-octatetraene and its derivatives t by Petek et al. shows
that there exists a very fast internal conversion channel about ~ 2000cm ™!
above the 2' Ag planar minimum.[7] We show here that the isomerization
along a double bond isomerization does not induce the nonadiabatic transi-
tion where as the triple twisted conformations can induce the facile nonadia-
batic transition in octatetraene, as we have seen in butadiene and hexatriene.

The potential energy curves along a single torsion of the central C1=C3 are
shown in Fig.6.3(a) (see Fig.3.2 for the numbering of atoms). All geometrical
parameters other than the dihedral angle C5-C3=C1-C2 are optimized for
the 2' Ag state. The geometry change along the isomerization is shown in
Table6.4. The CC single bonds are stretched, the CC double bonds shorten,
and consequently the bond alternation becomes indistinct at the transition
state on this isomerization path. The bond angles are almost unchanged
except the C3-C1-C2 bending angle adjacent to the -isted CC bond. All
dihedral angles other than C5-C3=C1-C2 are also almost unchanged, whereas
the out-of-plane bending of the terminal —CH, by 7.6° is induced. The
energies of 1 Ag, 2' Ag, and 1! Bu states are monotonically increased along
this single C=C isomerization. The energy gap between 1'Ag and 2'Ag
is slightly decreased but can not become small enough to induce the facile
nonadiabatic transition.

In Fig.6.3(b), we plot the potential curves along the same single C=C
torsional motion but the geometrical parameters other than the dihedral
angle C5-C3=C1-C2 are optimized for the 1! Bu state. The 1' Bu state energy

is gradually decreased along the isomerization, while the energies of the other



two states are increased. Consequently there is a weakly avoided crossing
between the 1! Bu and 2' Ag states at 105°. Unlike ethylene the 1! Bu state
and the 1' Ag state does not get close each other to form so called sudden
po!&fized states, and the facile nonadiabatic transition can not take place at
the 90° twisted conformation.

The potential energy curves along the terminal C=C torsional path are
shown in Fig.6.3(c). All geometrical parameters other than the dihedral
angle H17-C7=C5-C3 are optimized for the 2! Ag state. The barrier height
of the terminal C=C bond isomerization in 2! Ag state is the lowest among all
isomerization paths. The nonadiabatic transition is not significantly induced
along this isomerization path.

The potential energy curves along the simultaneous two central C=C bond
torsional path are shown in Fig.6.3(d). All geometrical parameters other
than the dihedral angles, C5-C3-C1-C2 and C6-C4-C2-C3, are optimized
for the 2! Ag state. This isomerization drastically decreases the energy gap
between 1! Ag and 2! Ag states. The double torsional motion thus might play

a significant role in the internal conversion.



Table 6.4: Optimized Geometric Parameters of all-trans isomer and the Tran-

sition State for C1=C3 isomerization.
coordinate | all-trans TS || - coordinate | all-trans TS

C2-C1 1.416 | 1.465 C4-C2-C1-C3 180.00 | -176.61
C3-C1 1.456 | 1.500 C5-C3-C1-C2 180.00 | -93.54
C4-C2 1.456 | 1.415 C6-C4-C2-C1 180.00 | -179.60
C5-C3 1.392 | 1.408 C7-C5-C3-C1 180.00 | -179.82
C6-C4 1.392 | 1.414 C8-C6-C4-C2 180.00 | 178.95
C7-C5 1.453 | 1.397 H9-C1-C2-C3 180.00 | 173.61
C8-C6 1.453 | 1.461 H10-C2-C1-C4 180.00 | -179.29
C3-C1-C2 123.51 | 122.57 | H11-C3-C1-C5 180.00 | -179.65
C4-C2-C1 123.51 | 123.39 | H12-C4-C2-C6 180.00 | -179.79
C5-C3-C1 123.70 | 123.40 H13-C5-C3-C7 180.00 | -179.94
C6-C4-C2 123.70 | 123.88 || H14-C6-C4-C8 180.00 | -178.45
C7-C5-C3 123.81 | 124.02 | H15-C7-C5-C3 0.00 0.06
C8-C6-C4 123.81 | 123.56 || H16-C8-C6-C4 0.00 6.69
H9-C1-C2 118.72 | 118.40 || H17-C7-C5-H15 180.00 | -179.98
H10-C2-C1 118.72 | 117.89 || H18-C8-C6-H16 180.00 | 166.76
H11-C3-C1 117.40 | 118.02
H12-C4-C2 117.40 | 118.05
H13-C5-C3 118.70 | 117.92
H14-C6-C4 118.70 | 118.59
H15-C7-C5 120.84 | 121.26
H16-C8-C6 120.84 | 120.39
H17-C7-C5 120.99 | 121.44
H18-C8-C6 120.99 | 120.48
Bond lengths are in angstroms, and bond angles and torsional angles are in
degree.
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(a)The C1=C3 torsion minimum energy path in 2Ag state
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(b)The C1=C3 torsion minimum energy path in 1Bu state
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(¢)The C5=C7 torsion minimum energy path in 2Ag state
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(d)The C1=C3 C2=C4 double torsion minimum energy path in 2Ag state
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Figure 6.3: Potential energy curves along the isomerization paths

(CASSCF/DH). (a)The C1=C3 torsion minimum energy path in 2Ag state
(b)The C1=C3 torsion minimum energy path in 1Bu state (c)The C5=C7
torsion minimum energy path in 2Ag state (d)The C1=C3 C2=C4 double
torsion minimum energy path in 2Ag state
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Table6.5 summarizes the barrier height of the 2* Ag adiabatic isomerization
and the energy gap between the 2'Ag and 1'Ag states. Any isomerization
along a double bond can not '.bring the 2! Ag and 1! Ag state potential en-
ergy curves close enough to cause the facile nonadiabatic isomerization, thus
is 'adiabatic’. The single bond isomenzation in the 2* Ag state involves a
considerably higher barrier as we have seen in butadiene and hexatriene.
The experiments of Kohler et. al and Petek et. al suggest that the adi-
abatic isomerization barrier is lower than the internal conversion channel
(~ 2400em™'). Our calculation agrees with these experiments in that the
barrier for the central double bond (C1=C3) isomerization is relatively lower
than the barrier for the internal conversion. The isomerization barrier is de-
creased by including the dynamic correlation through MRSDCI calculation,
while the energy gap between 2! Ag and 1' Ag is unchanged.

Table 6.5: Total and Relative Energies of the lowest excited state at the 90°

C=C twisted geometries®.
CASSCF /DH results

twisted bond energy AE(2Ag)® AE(1Ag)°
C1=C3 -308.5733  0.0213(4670)¢ 0.0777
C1=C3(1Bu)* -308.5542 0.0306(6720) 0.0944
C5=C7 -308.5815  0.0131(2880) 0.0695

C1=C3,C2=C4 -308.5514 0.0432(9480) 0.0163
*CASSCF/STO-3G Optimized excited state geometry used in the calcu-
lation. °Relative to the 2Ag energy at the planer equilibrium geometry.
“Relative to the 1Ag energy at the twisted geometry. “In cm™. “Optimized
in the 1Bu state.

MRSDCI/DH results

twisted bond energy  AE(2Ag)® AE(1Ag)°
C1=C3 -308.8454 0.0129(2830) 0.0688
C1=C3(1Bu)  -308.8413 0.0084(1840)  0.0734
C5=C7 -308.8453 0.0098(2150) 0.0708

C1=C3,C2=C4 -308.8120 0.0418(9170) 0.0342
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6.4 The isomerization inducing the nonadi-
abatic transition to 1'Ag

As we discussed earlier in butadiene and hexatriene, the triple torsion, which
divides the 7 electron conjugation into four parts consisting odd carbon
atoms, yields the degeneracy between the 1'Ag and 2' Ag states in octate-
traene. The potential energy curves along two such isomerization paths are
shown in Fig.6.4, and the lowest energy conformation in the crossing seam
between the 1'Ag and 2! Ag states is shown in Fig.6.5. Other types of the
triple torsion, which results in the molecular segments with even carbon
atoms, yield the strongly avoided crossing.
(a)The C1-C2 C1=C3 C2=C4 torsion
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(b)The C1-C2 C2=C4 C5=C7 torsion
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Figure 6.4: Potential Energy Curves along the Path to the Lowest Energy
Conformation in the Avoided Crossing Seam. (CASSCF/DH) (a)The C1-C2
C1=C3 C2=C4 torsion (b)The C1-C2 C2=C4 C5=CT torsion
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(a)The C1-C2 C1=C3 C2=C4 torsion

Figure 6.5: The Lowest Energy Conformations in the Crossing Seam. (a)The
C1-C2 C1=C3 C2=C4 torsion (b)The C1-C2 C2=C4 C5=CT torsion
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6.5 Fluorescence decay

From the global feature of the potential energy surfaces calculated here, we
may predict the internal conversion mechanism involved in the octatetraene
photoisomerization. After the very fast internal conversion from 1'Bu to
2' Ag, which is expected to take place within some tens of femto seconds.
a near planar octatetraene begins to undergoes the isomerize on the 2Ag
surface. If it has only small excess energy not enough to induce the triple
torsion at this stage, the molecule must stay on 2! Ag state around all trans-
isomer which is most stable in the 2'Ag state for long time. If it has the
excess energy high enough to induce the triple torsion, the facile nonadiabatic
transition can take place.

The fluorescence life time of 2! Ag thus must show the strong excess energy
dependence; the steep rise of the internal conversion rates in the free jet
expansion experiment is attributed to this nonadiabatic transition at the
triply twisted conformation. The low Z/E-photoisomerization yield of the
condensed phase experiments is also explained in the same manner. As the
excess energy is dissipated in the condensed phase, the system can not induce

the the triple torsion causing the facile nonadiabatic transition.
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Chapter 7

Conclusion

We have developed the model Hamiltonian based on VB picture, which re-
produces the potential energy surfaces and nonadiabatic coupling of the 1! Ag
and 2! Ag states of butadiene along various isomerization paths. The agree-
ment between the model and SA-CASSCF calculation is remarkable and the
first-principle nonadiabatic dynamics simulation could be performed with
this model Hamiltonian. The model also provides a simple interpretation for
the electronic structures of the 1' Ag and 2! Ag states of butadiene. At the
planar conformation, the VB state with the perfect pairing character domi-
nates the 11 Ag state and that of the double triplet character dominates 21 Ag.
The mixing of VB states is taken place by the change of 7 bonding character
along isomerization paths. The intense nonadiabatic coupling occurs when
the energies of two VB states get mutually close and the Hamiltonian off-
diagonal element between the VB states becomes small. The model can also
predict the locus of the degeneracy between 1’ Ag and 2! Ag states in a simple
" manner. The degeneracy occurs, when the isomerization induces the exact
cancelation between the effective spin interaction contributions to the Hamil-
tonian off-diagonal element and the energies of two VB states agree with each
other exactly.

The present model was shown to be also applicable for hexatriene. The

ab-initio potential energy surface of hexatriene is reproduced qualitatively
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by the present simplified model, although the quantitative accuracy is not
enough to be employed in a dynamics simulation yet. Further improvement
of the hexatriene model is in progress.

Although the present model calculation explains the qualitative feature of
the PES’s of the 1' Ag and 2'Ag states and their nonadiabatic couplings, a
more elaborate model is required for quantitative analysis of the photoisomer-
ization dynamics. As expected from that no fluorescence has been detected
in experiments, t he decay of the 2! Ag state occupation probability should
be much faster than that calculated by the present model.[46] This is due
to that only CC bond stretching, bending and torsion are treated to induce
the electronic character change of the 1! Ag and 2' Ag states in the present

model and other coordinates must involves the nonadiabatic transitions.
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Chapter 8

Introduction

The fluorescence decay of butadiene and hexatriene is very fast, whereas
octatetraene and longer polyenes yield the intense fluorescence. Their fast
decay is due to the C-C torsional isomerization involving the efficient nona-
diabatic transition to the ground state. As we discussed earlier, the polyene
molecules have the electronic structure and the shape of potential energy
surfaces essentially different from ethylene.

A few models have been proposed to deal with the internal conversion
from the 2'Ag to 1'Ag state, which are based on the analysis of the po-
tential energy surfaces obtained from the ab-initio calculations. By using a
model calculation, Zerbetto and Zgierski have proposed that a nonadiabatic
transition from 2! Ag to 1! Ag is induced by the CC torsions.[1] Robb and
his coworkers have proposed that the triple CC torsion is the major path
to yield a very fast nonadiabatic tramsition.[2, 3, 4] Their CASSCF/4-31G
calculation have scanned an entire conformational space over all three CC
bond torsional degrees (2]

A considerable number of investigations of the polyene photoisomerization
processes have been performed on the basis of the intuitive picture of the
ethylene isomerization. [6, 7, 8, 9, 10, 11] ; the Golden-rule model of Gelbert,
Freed and Rice (6], the phenomenological damped oscillator model of Bagcehi,

Fleming and Oxtoby [7], and the surface-hopping trajectory of rhodopsin by
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Warshel and his coworkers [8]. Since these treatments are often based on
models which only include a part of internal molecular degrees of freedom,
they might not fit to treat the irreversible character in the nonadiabatic
transitions of the polyene photoisomerization processes, as indicated by the
study of Domcke and collaborators. [11]

For simulating a nonadiabatic dynamics of the photoisomerization, we use
employ the model Hamiltonian based on the Heisenberg Hamiltonian. As we
discussed earlier, it can well describe the multidimensional feature of the 2! Ag
and 1' Ag potential energy surfaces and their nonadiabatic coupling. In order
to investigate various isomerization paths, this model is simple enough for
the efficient evaluation of the potential energy surfaces and the nonadiabatic
coupling. Besides, the model can includes all internal degrees of the molecule
in order to treat the energy relaxation dynamics properly.

In the present work, we focus our attention on the dynamical aspects of
this internal conversion process from 2! Ag to 1'Ag of s-trans butadiene, es-
_pecially the intramolecular mode dynamics promoting this conversion. We
have chosen here the photoisomerization of butadiene by three reasons; We
already have obtained the set of parameters which reproduce fairly realis-
tic potential energy surface and nonadiabatic coupling term along various
intramolecular degrees of freedom. The short time scale dynamics of butadi-
ene internal conversion [12] makes it possible to perform extensive molecular
dynamics simulations. The 1'4g and 2! Ag potential surfaces of butadiene,
hexatriene, and octatetraene have the common feature that they degenerate

at the triple twisted CC conformations.[4]
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Chapter 9

Method of Nonadiabatic
Dynamics Simulation

9.1 Propagation of the classical and quan-
tum subsystems

A semiclassical surface hopping treatment is applied to investigate the nona-
diabatic transition and the relaxation dynamics in the photoisomerization of
butadiene. The nuclei are assumed to follow a classical equation of motion,
and represented by coordinates R(t). The electronic Hamiltonian H(r, R(?))
parametrically depends on time through R(t). The electronic wave func-
tion ¥(r,t) of the system is nonstationary and satisfies the time dependent
Schrodinger equation. It is expanded in terms of a set of instantaneous adi-

abatic states ¢,(r,R),

Y(r,t) = 3 aa(t)gn(r, R(1)) (9.1)

m%w(r,t) = H(r, R(1))9(r, 1) (9.2)

where we assume only two states, 1' Ag and 2' Ag (n=1 and 2, respectively),
are involved in the dymanics. The adiabatic bases are the eigenstates of the
electronic model Hamiltonian specified by the classical coordinates R(¢) at

time t.
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Substituting this expansion of the electronic wavefunction v¥(r,t) into the
time-dependent Schrodinger equation results in the evolution of the expan-

sion coefficients a,(t),

a(t) = Ut)a(t) , (9.3)
VO = | iniauibion) R “mw?;l@ﬂ'n] L4

The nuclear coordinates are driven by the Hellmann-Feynman force of

either 1. antaneous adiabatic state ¢,(r, R(t)),
mR(t) = Z Z Cm aI;‘J CJ"I ? . (95)

Here H; ; is a Hamiltonian matrix element between two VB bases, pY ?(R(t))

and ) #(R(t)).

9.2 A semiclassical surface hopping trajec-
tory method

The adiabatic state whose force drives the nuclear coordinates is switched on
the way of the trajectory calculation, so that the averaged dynamics satisfies
the statistical requirement.

Since the average of dynamical quantities of the system is obtained by prop-
agating swarm of N trajectories, the number of trajectories on the surface
of adiabatic state n at time ¢ must be equal to a}(t)a,(t)N from the sta-
tistical requirement. In order to satisfy this condition, we employ so called
the “Fewest Switch” algorithm. [13] The system intermittently makes the
stochastic hops between the 2! Ag and the 1'Ag states depending on the
occupation probability change.

When a hop occurs, the velocity components parallel to the nonadiabatic
coupling vector are adjusted to conserve the total energy. [14, 15, 16] In

the case when the transition occurs to the upper state, it requires a velocity
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reduction and thus restricts a hop. If the velocity change cannot compen-
sate for the adiabatic energy difference, the velocity components are just
reversed.[16]

The force vectors driving the nuclear coordinates are given in the internal
coordinates and are transformed into the Cartesian vectors. The equation of
motion for the nuclear coordinates in the Cartesian coordinate are integrated
by the Verlet method. This method conserves the total energy in the second
order of the time step At.

On the other hand, Webster et al. argued that the integration of the
quantum force conserves the energy only through the first order in At [17].

The total energy of the system is
1 .
E = (¢a|H|¢n) + 3 smiliy. (9.6)

Applying the Hellmann-Feynman theorem and assuming that the electronic
state is always n'th state, we have dE /dt = 0 . In the simulation, however, a
time-stepping algorithm is employed, hence the total energy is only approx-
imately conserved. To demonstrate the total energy change for a finite time

step size, we consider the following time-dependent Hamiltonian.
H(r,R(t:11)) = Hq(r,R(t:)) + AtH'(r) (9.7)

for small At = t,;1 —t; . Since the H' is assumed to be independent of R,
the Hellmann-Feynman force is time-independent. The energy change of the

nuclei due to this force is

9Hg

— At <¢,, o

%) R = — At ]H|n) (9.8)

This corresponds to the first-order perturbation energy. Thus, for finite time
steps the simulation conserves the total energy only through the first order
in At . It is largely due {o neglect of changes of the wavefunction of the

electronic state. We thus use a very small time step, At =0.01fs, to trace
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the rapidly varying nonadiabatic coupling and conserve the total energy up
to the fifth decimal.

At each time ? evolving the classical coordinates, the wave function is
propagated to determine the switch probability between two adiabatic states.
Since the expansion coefficients a,(t) rapidly oscillate, a smaller time step is
required to integrate its equation of motion accurately. So we divide the clas-
sical time step At into four parts 6f and approximate the system propagator

by the linear interpolation.

U(t + kbt) = U(t) + %{U(t + At) - U(1)), (9.9)
k=1..-4.

The quantum time step 6t is 1/48 of the smallest period calculated from the
maximum energy fluctuation(~0.2 hartree) by the uncertainty principle.

We use the split time operator method by dividing the propagator U(t)
(Eq.9.4) into the diagonal (energy) part and the off-diagonal (nonadiabatic)
part in order to avoid the numerical error in diagonalization of the propaga-
tor. [18, 19, 20]. This method is known to well conserve the norm; the error
due to the non-commutability of the energy and the nonadiabatic coupling

is of the second order of § in this method.
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Chapter 10

Nonadiabatic Transition and
Energy Relaxation Dynamics

The semiclassical calculation is performed to simulate the butadiene photoi-
somerization process, including nonadiabatic coupling.

The initial configurations of the trajectories are prepared by performing a
classical trajectory of the ground state, 1' Ag, where the averaged kinetic en-
ergy of the system is equal to the room temperature T' = 298 K. The system
is then excited at randomly chosen time #;,; from the ground state to 21 Ag
state through the Frank-Condon transition, by keeping the positions and ve-
locities of all atoms in butadiene unchanged. Numerous initial configurations
(geometries and velocities) on the 2! Ag state potential surface are generated
by choosing different ¢,,;;. Among them, we select the configurations whose
total energies are 0.0311 ~ 0.0361 hartree higher than the 2! Ag potential
energy at the planar equilibrium structure.

Then we monitor the following semiclassical surface hopping trajectories
in 5ps. The total number of the trajectories calculated in the present work

is 515.
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Energy (hartree)
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0O 05 1 15 2 25 3 35 4 45 5
Time (ps)

Figure 10.1: State energies and the tatal energy as functions of time after
excitation into 2! Ag state in a nonadiabatic dynamics trajectories. The 1! Ag
potential energy (solid line), 2' Ag (long dashed line), the total energy (short
dashed line) The total energy is shown to indicate the accuracy of the energy
conservation.
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10.1 Nonadiabatic transitions in the repre-
sentative trajectories

The time evolution of the wavefunction is sensitive to the difference of the
energy gap and the nonadiabatic coupling. We have found two typical types
of the nonadiabatic transitions in the trajectories.

In the first type (shown in Fig.10.2), the trajectory passes through a cross-
ing point between 1'Ag and 2'Ag potential energy surfaces and then the
occupation probability |ax(t)|? of the 2! Ag adiabatic state in wavefunction
and that of the second VB state suddenly diminish within 20 fs (Figs.10.2(b)
and (c), respectively). The surface hop between the adiabatic states occurs
in this 20fs. As seen in Fig.10.2(c), the occupation probability of the second
VB state yields large oscillation as the coupling between the VB states alters
along the isomerization before the surface hop takes place. The oscillation
then becomes faster due to the complex phase difference change between
ay(t) and ap(t) as the wavefunction becomes the superimposed state of ¢,
and ¢. The phase change rate is proportional to the energy of the adiabatic
states(Eq.9.4). When the CCC bending is enhanced (Fig.10.2(d)), the large
peak of the nonadiabatic coupling appears (Fig.10.2(e); the inner product of
the nonadiabatic coupling and the velocity vector 1s plotted.)

In the second type (shown in Fig. 10.3), the occupation probability of
2! Ag adiabatic state in the wavéfunctiou and that of the second VB state
only gradually decrease, since the difference between the 1'Ag and 2'Ag
potential energies does not get so small by their strong aveiding. The oc-
cupation probability of the second VB state exhibits also a rapid oscillation
(Fig.10.3(c)) as in the first type after the wavefunction becomes the super-
imposed state of ¢; and ¢,. The nonadiabatic coupling also appears when

the CCC bending is enhanced (Fig.10.3(d) and (e)). But the enhancement
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is not so large as in the first type and the 2! Ag state occupation probability

change is small due to the finite energy gap.
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(¢) That of second VB state in the wavefunction
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(e) The inner product of the nonadiabatic coupling and the velocity vectors
as functions of time after excitation into 2! Ag state, in a trajectory
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Figure 102: (a)The state energies and the total energy (in hartree), The
1' Ag potential energy (solid line), 2' Ag (long dashed line), the total energy
(short dashed line) (b)the occupation probability of 2' Ag in the wavefunc-
tion, (c)that of second VB state in the wavefunction, (d)the CCC bending
angles (in deg), 6, (solid line), #;(long dashed line), and (e)the inner product
of the nonadiabatic coupling and the velocity vectors as functions of time
after excitation into 2! Ag state, in a trajectory.
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(a) The state energies and the total energy (in hartree)
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(c) That of second VB state in the wavefunction
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(e) The inner product of the nonadiabatic coupling and the velocity vectors
as functions of time after excitation into 2! Ag state, in a trajectory
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Figure 10.3: (a)The state energies and the total energy (in hartree), The
1' Ag potential energy (solid line), 2! Ag (long dashed line), the total energy
(short dashed line) (b)the occupation probability of 2! Ag in the wavefunc-
tion, (c)that of second VB state in the wavefunction, (d)the CCC bending
angles (in deg), 6, (solid line), #(long dashed line), and (e)the inner product
of the nonadiabatic coupling and the velocity vectors as functions of time
after excitation into 2! Ag state, in a trajectory. '
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10.2 Swarm dynamics

Let us consider the averaged behavior of the system as the swarm dynamics
of all trajectories in the conformational space of the CC bond torsions. The
probability density of the molecular conformations of the ¢’th state being at

given CC bond torsional angels in trajectories is defined as

Li(a, 02,05,1) = ﬂ—\/‘; <‘ a;(t)[* exp (—Elag ((al(f) —ap)’+
(a(t) — a2)? + (as(t) — a3)?)) ) (10.1)

The Gaussian function with the exponent —1/Aq? is used instead of Dirac’s
delta function for drawing contour surfaces with finite number of grid points.
The contour surface of I';(ay, a, a3, t) is shown in Figs.10.5 and 10.6, where
a window width Aa = 5.0° is used. The coordinates system of (aq, as, a3) is
indicated in Fig.10.4.

The swarm dynamics can be divided into three parts.

In the first stage of the dynamics (about 100fs), the swarm is quickly
diffused over the CC double bond torsions (Fig.10.5(a), (b) and (c)). This
double bond isomerization induces the 7 electron energy decay and the weight
of pY? state rapidly decreases (Fig.10.8(a) and (b)).

Along various C=C torsional paths, the avoided crossing between the 1' Ag
and 2! Ag states produces local minima, as we have seen in Fig.4.1(d) and
(e). Fig.10.5(d), (e) and (f) show that the swarm spreads over this low
energy region of 2' Ag in the next 600fs (the second stage). This double
bond isomerization induces the 7 electron energy decay and the weight of
@Y B state gradually decreases (Fig.10.8(a) and (b)).

In the third stage, after 700 fs from the Frank-Condon excitation, the
swarm starts spreading over the region of the partially twisted three CC
bonds (The left hand side of Fig.10.6), and this leads to the decrease of the
occupation probability of the adiabatic 2! Ag state (Fig.10.8(a)) The swarm
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of the ground state I';(a;, as, a3, t) is shown in the right hand side of Fig.10.6.
We can see that the swarms initially appear around the triply twisted CC
conformations. Although butadiene in 2! Ag state travels through the large
conformational space, the nonadiabatic transition to 11Ag state exclusively
takes place near this three partially twisted CC bond conformations. Other
nonplanar conformations, which was considered to be responsible for the in-
ternal conversion in previous studies, scarcely induce the nonadiabatic tran-

sit*~a,
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Figure 10.4: Conformational space over all three CC bond torsional degrees,
(e, a9, @3) used to plot the contour surface of probability change in Fig.10.5-
10.7. 1/4 of the entire region is shown. The coordinates a;,a3 (C=C torsion)

span a half of the full range [—180°, 180°].
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(d) 156fs

Figure 10.5: The time evolution of the 2'Ag state occupation probability
density Ts(ay, as, @z, t). See Fig.10.4 for the coordinates. (a)t =0 fs, (b)t =
39 fs, (¢)t = 78 fs, (d)t =156 fs, (e)t = 313 fs, (f)t = 625 fs
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Figure 10.6: The time evolution of the 2! Ag and 1'Ag state occupation
probability densities y(ay, a9, a3,t), I'\(ay, a2, a3,t). See Fig.10.4 for the
coordinates. (a)jt = 1.25ps, (b)t = 2.50ps, (c)t = 5.00 ps The figures in the
left hand side are for 2! Ag and those in the right hand side are for 1' Ag.
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In order to determine the exact locus where the facile nonadiabatic tran-
sition takes place, we define the transition density function Ji(ay, as, a3) for
the CC bond torsional angles «; as

| _ Ao fTfd 2 1 5

Jilay, a2,03) = —ﬁ <]; (Eiﬂi{t” )CXP (—3:;5 ((ﬂflm — o)+

(@a(t) — a2)® + (as(t) — @3)?)) it ), (10.2)

which indicates the molecular geometries where the system makes an nona-
diabatic transition from an adiabatic state to the other in the trajectories.
Here, «;(t) is the torsional angle of the molecular conformation in a trajecto-
ries. The Gaussian function with Aa = 3.0° is used instead of Dirac’s delta
function. The contour surface of Jy(ay,aq, o3) averaged over all 515 trajecto-
ries is plotted in Fig.10.7. We can see that 73 % of the state transition mainly
occurs around at three partially twisted CC bonds conformations and only
occasionally takes place at two CC double bonds twisted conformations. At
the latter conformations, although a significant nonadiabatic coupling exists,
the energy gap is not small (see Figs.4.1(d) and (e)). Hence, the phase of
the expansion coeflicients a;(1) changes so rapidly that the total effect of the

nonadiabatic coupling becomes small, a,(t + 6t) — a;(t) ~ 0.

(a) 96.3 %
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(b) 76.6 %

P, {

Figure 10.7: The contour surface of Ji(a,, @3,a3). See Fig.10.4 for the co-
ordinates. (a)The threshold value is 1.0 x 107° . The summation of the
probability change within the iso-surface is 96.28 % of the total probability
change. (b)5.0 x 1075, 72.62 %
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10.3 Energy Relaxation

The energy flow among various modes in the nonadiabatic trajectories is
shown in Fig.10.8(b). We here deal with the energies averaged over all 515
trajectories. The relaxation process can be divided into three stages and each
of them corresponds to that of the swarm dynamics.

In the first stage, the weight of y} ¥ state in the total wave function rapidly
decreases in the first 100 fs as shown in Fig.10.8(a). The excited 7 electron
energy flows into the bendings and the CC stretching potential, as well as its
small portion goes to the o torsions.

In the second stage of the next 600fs, the remaining 7 electron energy
flows into the ¢ bond energies. The CC stretching potential energies shown
in Fig.10.8(b) oscillates rapidly during the first and the seclond stages when
the vibrations of all trajectory are almost in phase. While the CH stretching
shows the monotonic increasing in that period.

After these induction periods (¢ > 700{s), the third stage starts. The occu-
pation probability of the 2! Ag state gradually and monotonically decreases:
the CC stretching, CCC bending and torsional modes are the promoting
modes enhancing the nonadiabatic transitions. The CH stretching and the
CCH and HCH bending modes act as the accepting modes, not directly
inducing the nonadiabatic transition. The irreversibility of the state occu-
pation decay arises from the multidimensional nature of the nonadiabatic
transition dynamics. Although the hopping from 2'Ag to 1'Ag state can
take place whenever the probability change, |a;(t + 61)|% — |ai()|?, exceeds a
certain random number generated in the surface hopping method, the hop-
ping back to the higher energy 2'Ag state hardly occurs, since it requires
that the energy gap should be compensated with the velocity components

change parallel to the nonadiabatic coupling vector. Besides, the kinetic
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energy is very swiftly distributed among many internal degrees of freedom
in the ground state, and the volume of the conformational space where the
system can fravel through is expanded. Consequently the probability that
the system pass through the region of the strong nonadiabatic coupling is

relatively reduced. so that the nonadiabatic transition scarcely occurs.
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Figure 10.8: (a)The averaged occupation probabilities of 2' A4g and second
VB state, and (b)the 7 electrons energy of the occupied state, the stretch-
ing potential, the bending potential and the torsional potential energies as
functions of time after excitation into 2! Ag state averaged over all 515 tra-
jectories. Energy values are arbitrary shifted in (b).
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Chapter 11

Conclusion

The energy distribution relaxation among various modes and the mechanism
of the nonadiabatic transition were carefully analyzed. The photoisomeriza-
tion through the partially triply twisted conformations assisted by the CCC
bendings, which brings the system close to the conical intersection, is con-
firmed to be the dominant channel of the internal conversion from the 2! Ag
state to the 1! Ag state, and the 7 electron energy is shown to flow to other
modes preceding the decay of the 2! Ag state occupation probability.
Although the present model calculation explains the qualitative behavior
of the relaxation process, a more elaborate model is required for quantita-
tive analysis of the photoisomerization dynamics. The decay of the 2! Ag
state occupation probability should be much faster than that calculated
by our model, as expected from that no fluorescence has heen detected in
experiments.[12] This is due to that only CC bond stretching, bending and
torsion can induce the electronic character change of the 1'Ag and 2'Ag
states in the present model. This restriction acquires the 2! Ag state poten-
tial energy surface higher than that obtained from the CASSCF calculation

with the fully geometry relaxation near the triply twisted CC conformations.
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