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Chapter 1

(General introduction



The importance of the analytical-derivative methods [1-6] has been widely recognized
by the computational quantum chemistry community since Pulay [7] first implemented
the analytical first derivatives of the Hartree-Fock (HF) energy with respect to nuclear
coordinates. The negatives of first derivatives correspond to the forces exerted on the nuclei
by the presence of electrons and other nuclei, and they are essential in locating stationary
points on the potential energy surfaces. The analytical-derivative method developed by
Pulay enabled the evaluation of the forces on the nuclei with increased computational
efficiency and increased numerical precision as compared to the earlier finite-difference
method.

Inherent efficiency and accuracy of the analytical-derivative methods as demonstrated
by Pulay have propelled computational quantum chemists to develop analytical methods
for evaluating the higher-order energy derivatives and derivatives of correlation energies.
Second and higher derivatives of energy are essential in studying the internal motions of
molecular systems in the vicinity of their equilibrium geometries. In many problems, nu-
clear displacements are not very large around the equilibrium geometry, and the potential
energy surface can be suitably expanded in a Taylor series, the coefficients of which are
the energy derivatives with respect to nuclear coordinates. The energy second deriva-
tives correspond to the quadratic force constants and are used in determining the normal
modes of molecular vibrations in the harmonic approximation. Higher-order derivatives
such as cubic and quartic force constants provide direct information about the anharmonic
contributions to the vibrational frequencies.

The first practical implementation of the analytical second derivatives of the HF en-
ergy was reported by Pople et al. [8]. The derivatives of molecular orbital coefficients,
which are required in the analytical evaluation of the energy second derivatives, are ob-
tained as solutions to the coupled perturbed Hartree-Fock (CPHF) equation first derived
by Gerratt and Mills [9]. The use of analytical second derivatives has turned out to be
less expensive than the use of finite differences, contrary to earlier skepticism [1]. So far
the analytical third derivatives of the HF energy have already been implemented by Gaw
et al. [10].

One of the representative methods which are widely used in describing dynamical
electron correlation is based on second-order Mgller—Plesset perturbation theory [11-15].
This method, which is frequently abbreviated to MP2, accounts for typically 90 % of

the dynamical correlation energy and has correct scaling with the size of systems (“size-



Table 1.1 Energy derivatives with respect to external parameters and related molecular properties.

Energy derivatives® Property

aEfaQ Forces Geometry optimization

& E/0Q:0Q; Force constants Harmonic vibrational frequencies
Geometry optimization
Characterization of stationary points

& EJ6Q:0Q;00: Cubic force constants Anharmonic vibrational frequencies
SE[8Q:00;80:8Q: Quartic force constants Anharmonic vibrational frequencies
G E/0Q:0F, Dipole moment derivatives Infrared intensities
G E/80,0F,.8F; Polarizability derivatives Raman intensities

* E denote the energy and @ and F, represent a nuclear coordinate
and an electric field component, respectively.

extensivity” ) [15,16]. The first implementation of the MP2 first derivatives is due to Pople
ef al. [8], and an analytical-second-derivative scheme has also been developed by Handy
et al. [17). Analytical first derivatives are available also for higher-order Mpller-Plesset
perturbation theories [18,19] and other conventional correlated theories such as configu-
ration interaction [20,21] and coupled cluster [22] theories. In the last decade, density
functional theory has proven a very promising correlated method for describing the prop-
erties of molecules in the ground electronic states [23-25]. Density functional theory can
take into account electron correlation with relatively small computational costs, which are
in the same order of magnitude as the costs needed for HF calculations. Analytical first
derivatives of density functional energy were implemented by Satoko [26], who employed
Xa functional. Later Johnson et al. [27,28] developed an analytical-first-derivative scheme
for local, gradient-corrected, and hybrid exchange-correlation functionals. Analytical sec-
ond derivatives of the density functional energy were implemented by Johnson and Frisch
[29,30].

These analytical-derivative methods constitute an essential part of modern molecular
orbital theory, and the structures, dynamics, reactions, and other properties of various
molecular systems are now routinely studied with them. Correlation between the energy
derivatives with respect to external parameters and molecular properties is summarized

in Table 1.1, where electric field components are included among the external parameters.

Constant efforts have been made to extend the applicability of the existing electronic
structure methods to larger molecules than could previously be treated. One of the most

successful examples is the development of crystal orbital theory [31-33], which provides an



ab initio method of calculating the electronic and structural properties of infinite lattices.
The underlying ideas of crystal orbital theory are to fully utilize the periodicity of lattices
and to pre-screen long-range integrals which we can safely expect to give insignificant
contributions to Fock matrix elements and to total energies.

General linear-combination-of-atomic-orbital (LCAO) self-consistent-field formalisms
for infinite lattices have been derived independently by Del Re et al. [34] and by André
et al. [35]. These formalisms correspond essentially to the spin-restricted Roothaan—Hall
formalism [36,37] for closed-shell molecules. These authors have shown that Fock and over-
lap matrices of infinite lattices could be brought to a block-diagonal form by transforming
the basis sets from localized atomic basis functions to delocalized Bloch basis functions.
Therefore, instead of solving a matrix equation of an infinite dimension, we have only to
deal with wavevector-dependent matrix equations of finite dimensions. A crystal orbital
program based on these formalisms has been developed by André [38].

Crystal orbital calculations involve infinite summations of Coulomb and exchange
matrix elements, which pose a considerably difficult problem [31,33]. In practical cal-
culations, these summations are truncated after several neighboring unit cells, and the
long-range contributions are usually neglected. Convergence behavior of these summa-
tions with respect to the number of included neighbors is dependent on the system and
on the method of truncating the infinite summations [39-41]. Considerable progress has
been achieved by Delhalle et al. [42] in treating the Coulomb lattice summations, which
converge in the same manner as do usual Madelung summations. These anthors have
approximated the long-range electrostatic contributions to these summations using mul-
tipole expansion technique. They have also proposed a new method of truncating the
lattice summations, which was not only ideally fit for the multipole expansion technique
but also gave the fastest convergence for the Coulomb and exchange lattice summations
among the truncation methods proposed so far [41]. Convergence of the exchange lattice
summations is strongly influenced by the asymptotics of density matrix elements [31]. For
the systems with nonzero band gaps, the density matrix elements decay exponentially
[43,44], and hence we can expect to obtain converged exchange lattice summations within
several neighbors. A significant amount of numerical data on different systems at the HF
level has been accumulated [39-41], and the convergence behavior of the energetic and
structural properties is now relatively well understood for one-dimensional lattices.

In the molecular orbital formalisms, various approximation methods have been ad-



vocated to account for electron correlation. Among them only the size-extensive [15,16]
methods can be applied to infinite lattices. Configuration interaction, which is one of
the most frequently used correlated theories for molecules, is not size-extensive. This
means that a given level of approximation, e.g., configuration interaction doubles, yields
less and less correlation energy per electron if the number of electrons increases. In the
limit of infinite lattices, the electron correlation energy obtained with any truncated con-
figuration interaction method will vanish. Size-extensive methods include Mgller-Plesset
perturbation theory, coupled cluster theory, and density functional theory.

The use of MP2 theory for describing dynamical electron correlation in infinite lat-
tices was pioneered by Suhai [45]. Correlation energy was obtained by considering localized
excitation between the Wannier functions constructed from different energy bands. An
alternative approach to obtain the MP2 energy for infinite lattices, which used the canon-
ical Bloch functions as zeroth-order wave functions, has also been proposed [45]. Suhai
has further developed a method to obtain one-electron energy bands which incorporated
the electron-correlation effects on the basis of the “electronic polaron™ model of Toyozawa
[46] (see also Refs. [47-50]). It has been shown that these correlation-corrected energy
bands yield significantly better results for the band gaps and photoelectron spectra of
polymers than those obtained from HF theory. So far Mgller—Plesset perturbation theory
for infinite lattices up to the fourth order has been implemented [51-53]. Coupled cluster
theory has also been applied to infinite lattices using the localized Wannier functions or
the delocalized Bloch functions [54-56].

Density functional theory using planewave basis sets and approximate core potentials
has been widely used by solid-state physicists [57]. The method has been used mostly
for metals and only rarely for organic and inorganic polymers and crystals. The crys-
tal orbitals of these latter systems are more suitably described by linear combination of
atomic orbitals rather than by planewaves. Mintmire et al. [68-61] have extensively ap-
plied the LCAQ density functional theory to various hydrocarbon polymers using local
exchange-correlation functionals. Very recently Suhai has implemented gradient-corrected
and hybrid exchange-correlation functionals in LCAO density functional erystal orbital
theory for infinite one-dimensional lattices [63,64).

So far the crystal orbital calculations have been carried out mostly for the purpose of
investigating the electronic structures of infinite lattices at the experimental geometries.

Only a limited number of studies have reported the vibrational frequencies of infinite



lattices on the basis of crystal orbital theory [41,65-71]. This situation is obviously due
to the fact that analytical-derivative methods have not been developed for crystal orbital
theory except for the gradients of HF energy. The analytical gradients for HF crystal
orbital theory have been first implemented by Teramae et al. [68,69]. These authors have
extended the gradient formulas originally derived for molecules by Pulay [7] to infinite
one-dimensional lattices. They have derived compact formulas for the analytical energy
gradients with respect to in-phase (k = 0) nuclear coordinates. Using the analytical-
gradient method at the HF level, Teramae et al. have optimized the geometries and
calculated the frequencies of k = 0 vibrations for several fundamental polymers such as
polyethylene [68] and polyacetylene [69]. Teramae [40,41] has also studied intensively the
convergence of the calculated structural parameters and vibrational frequencies with the
number of neighbors included in the Coulomb and exchange lattice summations. Karpfen
et al. [65-67,70,71] have also reported the structures and vibrations of polymers calculated
at the HF level. Karpfen et al. have employed the pointwise method in which derivatives
have been evaluated by calculating the potential energy surface at a number of points and
fitting an analytical function to the points.

Since no analytical-derivative method has been developed for any correlated level of
crystal orbital theory, the number of vibrational analyses of infinite lattices at correlated
levels is very few. Recently Sun and Bartlett [72] have calculated the frequencies of k = 0
vibrations of anfi-polymethineimine, taking into account the effects of electron correlation
at the MP2 level. These authors have evaluated the force constants by numerically differ-
entiating the total energy twice. Such an approach is apparently inefficient and may lead

to numerically inaccurate results [73,74].

The purpose of the present study is two-fold; one is to develop efficient analytical-
derivative methods for crystal orbital theory of one-dimensional lattices (polymers), and
the other is to apply these methods to the calculations of structural and vibrational prop-
erties of polymers which are of interest from the physical chemistry point of view.

From the side of development of analytical-derivative methods, we have implemented
analytical-gradient methods for hybrid HF /density functional and MP2 crystal orbital
theories and an analytical-second-derivative method for HF erystal orbital theory. Hy-
brid HF /density functional crystal orbital theory encompasses pure HF crystal orbital
theory and pure LCAO density functional crystal orbital theory as particular cases. In

9



the last decade, extensive investigations have been carried out on the energetic [28,75-83],
structural [28,75,80,83,84], and vibrational [28,75,80,83,85,86] properties of molecules us-
ing various ab initio molecular orbital and density functional models. These studies have
concluded that the hybrid HF /density functional models provide comparable or even bet-
ter results for these properties than correlated ab initio molecular orbital models, which
generally require much larger computational resources than density functional models.
This conclusion suggests that hybrid HF /density functional theory can predict energetic,
structural, and vibrational properties of polymers with considerable accuracy, and strongly
encourages us to develop the analytical-derivative methods for hybrid HF/density func-
tional crystal orbital theory.

In spite of excellent performance of modern hybrid exchange-correlation functionals,
there are some important effects, e.g., dispersion energy, which density functional theory
cannot yet treat. There is no technique to systematically improve the exchange-correlation
functionals used in density functional theory. Therefore, if we aim at higher accuracy than
density functional theory, we have to use an alternative method which will lead to con-
verged correlated results. Such an alternative method is offered by Mpller—Plesset pertur-
bation theory. An analytical-gradient method for MP2 crystal orbital theory provides the
basic theory commeon to analytical-derivative methods for all higher-order Mgller—Plesset
perturbation crystal orbital theories.

We have also implemented analytical second derivatives for HF crystal orbital theory.
The analytical-second-derivative method provides a route to obtain the frequencies of the
infrared- and Raman-active vibrations of polymers with increased efficiency and accuracy.
In order to evaluate analytically the second derivatives of HF energy (and first derivatives
of MP2 energy also), we have to know the first derivatives of crystal orbital coefficients.
These latter quantities are obtained as solution to “polymer” CPHF equation, which
is a generalization of the molecular CPHF equation [9]. It is essential to elucidate the
fundamental features of the polymer CPHF equation, because the derivative formulas for
a number of correlated crystal orbital theories are expected to share the same equation.

From the side of application of crystal orbital theory, we have chosen polyacetylene
and polyethylene as one of the most fundamental conjugated and non-conjugated hydro-
carbon polymers. We have evaluated the performance of the crystal orbital models on the
basis of the comparison between the calculated and observed structural parameters and

vibrational frequencies. Polyacetylene and polyethylene are ideal systems for this purpose,
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because the size of the translational repeat unit is relatively small, and their structures
and normal vibrations have thoroughly been investigated experimentally and are relatively
well understood [87-89].

We have also applied crystal orbital theory to polymethineimine, whose structural
and vibrational properties had hardly been elucidated experimentally or theoretically.
Polymethineimine was first synthesized by Wohlre [90,91), who also reported the frequen-
cies of the characteristic infrared bands of this compound. However, the isomeric form
of polymethineimine in the actual samples has not been established experimentally. It
is important, therefore, to clarify this point on the basis of crystal orbital calculations.
It is also of interest to compare the energetic, structural, and vibrational properties of
polymethineimine with those of the isoelectronic analog, i.e., polyacetylene.

Another important target system for crystal orbital theory is consecutively hydrogen-
bonded chains. Cooperativity of the hydrogen bonds renders the binding energies of the
hydrogen-bonded systems in the condensed phase much larger than those in the small
clusters in the gas phase [92-99]. Cooperativity of hydrogen bonds is expected to play
essential roles in many important problems from the biochemistry and physical chemistry
viewpoints, e.g., the folding of polypeptides and proteins, and structures and dynamics of
water molecules in liquid water and ice. We have chosen crystalline hydrogen fluoride as
one of the experimentally best-characterized hydrogen-bonded systems in the condensed
phase and have studied the cooperativity of this consecutively hydrogen-bonded system
quantitatively. Since crystalline hydrogen fluoride consists of planar zigzag hydrogen-
bonded chains of hydrogen fluoride molecules, which have only weak interchain interactions
[100-102], we have employed a single chain approximation and have performed crystal
orbital caleulations on isolated hydrogen fluoride polymers. The emphasis will be on the

effects of electron correlation on the cooperative binding behavior.

The thesis is organized as follows: in Chapter 2, the formulas and computer im-
plementation of self-consistent-field procedure of hybrid HF /density functional crystal
orbital theory are described. The structures and energetics of the geometric isomers of
polyacetylene are studied using local, gradient-corrected, and hybrid exchange-correlation
functionals. In Chapter 3, the formulas and computer implementation of an analytical-
gradient method for hybrid HF /density functional crystal orbital theory are presented.

The structures and frequencies of the infrared- and Raman-active vibrations are calcu-
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lated for the geometric isomers of polyacetylene and polymethineimine and are compared
with the experimental results. In Chapter 4, the structures, frequencies of the infrared-
and Haman-active vibrations, phonon dispersion curves, and inelastic neutron scattering
spectra of all-trans polyethylene are calculated and are compared with the experimen-
tal results. Local, gradient-corrected, and hybrid exchange-correlation functionals are
used. In Chapter 5, the structures, binding energies, and frequencies of the infrared-
and Raman-active vibrations are calculated for an infinite hydrogen fluoride polymer and
are compared with the experimental data obtained from crystalline hydrogen fluoride.
Gradient-corrected and hybrid density functional theory as well as HF theory is used
in conjunction with an extended basis set. In Chapter 6, an analytical-second-derivative
method for HF crystal orbital theory is developed. Polymer version of the CPHF equation
is formulated and an efficient algorithm for solving the equation is described. Dependence
of the vibrational frequencies calculated with the analytical-second-derivative method on
several parameters of calculations is investigated. Ilustrative calculations are carried out
on all-trans polyethylene. In Chapter 7, the formulas and computer implementation of an
analytical-gradient method for MP2 crystal orbital theory are presented. Efficiency of the
analytical-gradient and finite-difference methods is examined on the basis of the execution
times. The effects of electron correlation, as taken into account at the MP2 level, on the
vibrational frequencies of all-trans polyacetylene are investigated. Summary of the thesis

and general conclusion drawn from the present research are given in Chapter 8.
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Abstract

Total energies and optimized molecular structures of the trans-transoid (Tt) and cis-
transoid (Ct) forms of polyacetylene are calculated by the density functional crystal orbital
method. The Slater—Vosko-Wilk-Nusair (SVWN), the Becke-Lee-Yang-Parr (BLYP),
and the Becke3-Lee-Yang-Parr (B3LYP) functionals are used with the 3-21G and 6-
31G(d) basis sets. Potential energy curves of the Ct form along the bond-alternation
coordinate [which represents the transition from the Ct form to the trans-cisoid (Tc) form]
are caleulated with the SVWN, BLYP, and B3LYP functionals. The SVWN and BLYP
functionals seriously underestimate the double-minimum character of the potential energy
curves, so that the calculated potential energy curves have no local minimum at the Tc
structure. The potential energy curves calculated with the BSLYP functional have distinct
shoulders at the Tc structure, and the structural parameters of the Tc form are optimized
with this functional. The structural parameters and ultraviolet photoelectron spectra of
the Tt and Ct forms calculated by using the BILYP functional are in reasonable agreement
with the experimental results. Potential energy curves along the CC-CC dihedral angle
coordinate are calculated with the B3LYP functional. It is found that the calculated
potential energy curve has a shallow local minimum at the cis-gauche (Cg) form. The
B3LYP functional predicts the total energies of the polyacetylene isomers increase in the

order Tt < Ct < Te < Cg.

2.1 Introduction

Density functional theory has been extensively used for the calculations of energetics,
structures, and vibrations of molecular systems [1,2]. This is because density functional
calculations can include electron correlation with relatively small computational costs,
which are in the same order of magnitude as the costs needed for Hartree-Fock (HF)
calculations. Density functional theory is applicable to relatively large systems for which
HF-based correlated calculations are not feasible.

It is therefore natural to adopt density functional theory for the description of the
electronic and structural properties of conjugated m-electron polymers, for which the ef-
fect of electron correlation is essential. Among these conjugated m-electron polymers,
polyacetylene [3] is the most frequently studied material because of its intriguing electri-

cal and spectroscopic behavior. There have been a number of density functional studies
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on polyacetylene [4-15]. Suhai [15] has recently published a paper in which the bond al-
ternation in the trans-transoid (Tt) form of polyacetylene is thoroughly investigated with
various exchange-correlation functionals. Suhai has found that the magnitude of the bond
alternation in the Tt form is reasonably predicted when functionals mixed with exact
exchange are used.

Although the electronic and structural properties of Tt polyacetylene have been re-
peatedly investigated, studies on the other geometric isomers, namely, the cis-transoid
(Ct), trans-cisoid (Tc), and cis-gauche (Cg) [16] forms, are not abundant. The structures
of these four isomers are shown in Fig. 2.1. It is not only of interest but also of importance
to study the structures and energetics of these isomers at an equal theoretical level which
takes the effect of electron correlation into account.

In this chapter, we present the total energies and optimized molecular structures
of the Tt and Ct forms of polyacetylene obtained from density functional crystal orbital
calculations. The local Slater-Vosko-Wilk-Nusair (SVWN), the gradient-corrected Becke-
Lee—Yang-Parr (BLYP), and the hybrid Becke3-Lee-Yang-Parr (B3LYP) functionals are
used in combination with the standard 3-21G and 6-31G(d) basis sets. The role of the

exact-exchange mixing in determining the shape of the potential energy curves along the
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bond-alternation coordinate is discussed. The ultraviolet photoelectron spectra calculated
with the B3LYP functional are compared with the experimental results for the Tt and
Ct forms. Structures and energetics of the Tc and Cg forms are also examined with the

B3LYP functional. The relative energies of the four forms of polyacetylene are discussed.

2.2 Formulas for the self-consistent-field procedure

The density functional erystal orbital method for infinite one-dimensional lattices (poly-
mers) is a combination of the HF crystal orbital method [17-21] and the molecular den-
sity functional method [22,23]. The basic formulas for the self-consistent-field procedure
is described in this section for hybrid HF/density functional crystal orbital theory. The
formulas for pure HF and pure density functional theory are encompassed as particular
cases.

In the framework of spin-restricted hybrid HF /density functional erystal orbital the-
ory of polymers [15], Kohn-Sham crystal (Bloch) orbitals are expressed as linear combi-

nations of atomic orbitals x.(r) in the form
i) = Z Z C¥ exp(ikqa)x{P(r), (2.1)

where a is the translational period, and K is the number of unit cells in the system.
The crystal orbital t.l.'r ](r] and crystal orbital coefficient G‘Lﬂ are characterized by energy
band n and quasi-momentum k, which are indicated by subscripts and square-bracketed
superscripts, respectively. The atomic orbital x{q] (r) is located in unit cell g and bears
the following relation:

X9(r) = xO(r - ga). (22)

By using the above-mentioned symmetry-adapted basis functions and applying Ritz
variation principle to the total energy expectation value, the following k-dependent Hartree-
Fock-Roothaan equation [17-21] is obtained:

FIEIGH = gk Gk (2.3)

where el*! is a diagonal matrix of one-electron energies. The elements of the k-dependent

Fock matrix are defined as
FiYl = %" Fl9 exp(ikga), (2.4)
q
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and

SH‘,,] = ZSLE} exp(ikga), (2.5)
q
where
Fl9 = H@+3 3 D, ( #{mvmh) +my X9
Ae 7
ZE P{a-—r}( EUFAfﬂlyh}l {-!]) (2.6)
Ao T8
and
5 = [ XOxDwyr. @7)

The matrix H in Eq. (2.6) is the one-electron part of the Fock matrix, whose elements are

given by
AY = [x00 (-57) e
—EZ f D ————{,,lxﬁ"‘{r)dr. (2.8)

where 74 is the charge of nucleus A at position RT. The elements of the density matrix
P are defined as

Py = ZZCW*C{H explikga), (2.9)

where the summations are over all the uccupied states in the first Brillouin zone. In
order to minimize the computational tasks concerning the accumulation of the long-range
electron repulsion integrals, we expanded the electron density by auxiliary basis functions
according to the method of Dunlap et al. [24] in Eq. (2.6). The procedure of obtaining

the expansion coefficients D., is given in Appendix. Two-electron integrals are defined as

(1O = [ x‘”l'{rl:ux*ﬂ(rl}—x"}(m}xf”{rz:rdr.dm, (2.10)

and

1 ir
(#{U] l[lﬂh, fo '[“]'{rljx{q}{n]aﬂ.(,}[rz)drldrz (2.11)

where E-{T'J (r) is the auxiliary basis function centered in unit cell . Parameters m; and ma
in Eq. (2.6) denote the mixing ratios of exchange-correlation energy and exact-exchange

energy, respectively. For pure density functional calculations, ie., mg = 0, we can avoid
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the evaluation of four-index electron repulsion integrals completely. We assume that the

exchange-correlation functional has the form

f=rlp, Vo], (2.12)

where p and Vp are electron density and its gradient. The elements of the exchange-
correlation part X (9 of the Fock matrix are given by (see Refs. [22,23])

X0 = [ {xOuxex® + 2 - gxcx® + xPVuxc Vi }dr,  (213)
with
af
o = a. (2.14)
af 1 8f

& - Vo, 2.15

Exc { e | 2 a%ﬂ} P ( )

Yo = VPa:Va, (2.16)

Yo = Vpa:Veg, (2.17)

where & and J denote spins.
The total energy per unit cell is then expressed as

E = Y Y POHD + ZZ S P@D, (#{ﬂ}y{qlh)

pr g T oqns

1
—5 Z Dy Dj (7|86) + m f flp, Vpldr
EZ z ph}p{"“"]' ( [U}Il{f}w{an{B}) + Eng, (2.18)
B Ao @nS
where Eng is the nuclear repulsion energy per unit cell. Two-index electron repulsion are

defined as
(v]6) = }: f f ﬂ‘“*(rlj—E{“’(der1drz- (2.19)

2.3 Computer implementation

We employed the Gaussian basis sets for the expansion of Kohn—Sham orbitals, and hence
the overlap integrals, kinetic energy integrals, and nuclear attraction integrals were ana-
lytically evaluated by the Obara-Saika recursion formula [25]. Electron density was also
expanded by sets of auxiliary Gaussian funections, so that the Coulomb matrix elements

were calculated by the two- and three-index electron repulsion integrals. These integrals
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were analytically evaluated by the Obara—Saika recursion scheme reformulated by Andzelm
and Wimmer [26] for the computation of the two- and three-index electron repulsion in-
tegrals. The expansion of electron density was based on the method of Dunlap et al [24],
which was previously adopted by Mintmire and White [6,8] for the X o calculations of the
Tt form of polyacetylene. It should be emphasized that the approximate total Coulomb
energy calculated by this method is a variational extremum with respect to the expansion
coefficients (see Appendix), and that the errors in the calculated energies introduced in this
treatment will almost cancel each other as far as the total energy difference is concerned.
The lattice sums used in evaluating the Coulomb matrix elements exhibit slow conver-
gence due to the long-range nature of Coulomb interactions [27,28]. We calculated these
lattice sums by evaluating explicitly the relevant two- and three-index electron repulsion
integrals extending to the twentieth neighboring C3Hz unit cells within the Namur cutoff
procedure [29,30]. For the other molecular integrals, we took into account the interactions
up to the fourth to eighth neighboring CoHz unit cells depending upon the basis set used
and upon the translational period of the system.

The exchange-correlation integrals were computed numerically by the method devel-
oped by Becke [31] applying a second-kind Gauss-Chebyshev quadrature for the radial
integration and a Lebedev quadrature [32-34] for the angular integration. The numerical
grid consisted of 50 radial points and 302 angular points. Smaller angular grids were used
for radial shells close to the nuclei (38-point angular grid for radial shells 1-12 and 50-point
angular grid for radial shells 13-25) and the M4 mapping of radial grid points was adopted
according to the recommendation of Treutler and Ahlrichs [35]. The resulting 8656-point
grid was used for carbon and hydrogen, and an error in the integrated electron density of
polyacetylene was typically 1 x 107> per atom.

We employed the standard 3-21G [36] and 6-31G(d) [37,38] basis sets for the expansion
of Kohn-Sham orbitals and 200 evenly spaced wavevectors to describe the first Brillouin
zone (only one of the two points at the zone boundaries was counted). It has been pointed
out [8,11,14] that a sufficiently large number of wavevectors are necessary to accurately
evaluate the magnitude of bond alternation in the Tt form of polyacetylene. Two sets of
auxiliary basis functions were employed: auxiliary basis set I for the 3-21G calculations
and auxiliary basis set II for the 6-31G(d) calculations. Auxiliary basis set I consisted
of uncontracted s-type Gaussian functions and blocks of uncontracted s-type, p-type, and

d-type Gaussian functions with shared exponents. Auxiliary basis set II consisted of
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Table 2.1 Exponents of Lthe auxiliary Gaussian functions
for hydrogen and carbon.

Auxiliary basis set [

Auxiliary basis set 11

Hydrogen Carbon Hydrogen  Carbon
] -]
10.89 344.5 3746 al2.6
3.208 89.63 21.56 170.9
33.21 19.37 56.95
11.07 18.85 18.98
5,651 15.74
3.466 10.80
2,987 6,328
5,399
spd spd
1.089 7.330 1.280 2.699
0.3664 3.525 0.8014
1.175 spdf
03817 0.3226 1.350
0.6749
0.3374

uncontracted s-type, p-type, d-type, and ftype Gaussian functions, some of which have
shared exponents. The exponents of the auxiliary basis functions are given in Table 2.1.

Since the convergence of the lattice sums for the exact-exchange matrix elements
is generally much faster than that for the Coulomb matrix elements [21], the four-index
electron repulsion integrals, which were necessary to compute the exact-exchange matrix
elements, were explicitly evaluated by using the Obara-Saika recursion formula. In the
present study, the Slater local exchange [39], the Vosko—Wilk-Nusair local correlation [40],
the Becke gradient-corrected exchange [41], and the Lee-Yang-Parr gradient-corrected
correlation [42,43] functionals were used. The effect of the exact-exchange mixing was ex-
amined with the BLYP functional [44]. These three exchange-correlation functionals are
widely used in molecular applications, and the performance of these functionals for pre-
dicting thermochemical quantities [23,26,44-51], equilibrium structures [23,26,49,51,52],
and harmonic vibrational frequencies [23,26,49,51,53 54] has been investigated.

The DIIS (direct inversion in the iterative subspace) extrapolation [55] was employed
for the convergence acceleration of the self-consistent-field iteration. The criterion for the
convergence of the density matrix elements was set to 10-%. The geometry optimization
was performed by Powell’s conjugate direction method [36], in which the minimization
along each conjugate direction was based on the three-point parabolic interpolation. As

far as the numerical accuracy in the present optimization method is concerned, the bond



Table 2.2 Optimized structural parameters of polyacetylene
in units of A (bond length) and degrees (bond angle).

SVWN TBLYP BILYP
Structural parameter 3-21G_ 6-31G[d) 3-21G_ 6-31G(d) 3-21G_ 6-31G(d)
Trans-transoid
C'=C bond length 1.383 1.384 1.404 1.308 1.366 1.369
C—C bond length 1.395 1.392 1.410 1.413 1.428 1.426
C-H bond length 1.101 1.102 1.097 1.089 1.090 1.091
COC angle 124.2 124.3 124.3 124.6 124.3 124.5
C=CH angle 118.0 117.9 117.9 117.9 118.5 118.3
Cis-transoid
C=C bond length 1.372 1.375 1.388 1.300 1.366 1.369
C—C bond length 1.414 1.412 1.435 1.433 1.438 1.435
C-H bond length 1.098 1.099 1.093 1.005 1.086 1.087
CCC angle 125.9 126.0 126.6 127.0 126.5 126.7
C=CH angle 117.0 116.9 116.3 116.1 116.7 116.4
Trans-cisoid
C=C bond length a a a a 1.3713 b
C-C bond length 1.429
C-H bond length 1.087
CCC angle 126.9
C=CH angle 117.9

? Mo local minimum corresponding to the trans-cisoid form was found
with the SVWN and BLYP functionals. * See text.

lengths (in A) are accurate to three decimal places and bond angles (in degrees) are

accurate to one decimal place.

2.4 Results and discussion

Optimized structural parameters for the Tt and Ct forms of polyacetylene obtained with
the SVWN, BLYP, and B3LYP functionals are shown in Table 2.2. Structure is optimized
also for the Tc form at the B3LYP/3-21G level. In the present geometry optimization,
the planarity of the polyacetylene molecule was assumed, and all the remaining structural
parameters were optimized. The assumption of planarity of the molecule is partially
supported by the results of the present study, where the potential energies are plotted
along the CC-CC dihedral angle (see below), and by the results of the vibrational analyses
of the polyacetylene isomers [57-59)].

The magnitude of the bond alternation (hereafter designated as Ar) in the Tt form
calculated at the SVWN/3-21G and SVWN/6-31G(d) levels are 0.012 and 0.008 A, re-
spectively, and are much smaller than the experimental value (0.08 A) [60]. It has already
been reported [8,10-12,14] that the calculated values of Ar tend to be too small in the

framework of the local density approximation. Suhai [15] has analyzed the effects of the
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gradient correction and the exact-exchange mixing on the calculated value of Ar. He has
found that the situation is hardly improved by the gradient correction, but the mixing
of exact exchange at the Becke-half-and-half-Lee-Yang-Parr (BHandHLYP) level yields
a reasonable value for Ar. In the present study also, the values of Ar calculated at the
BLYP/3-21G and BLYP/6-31G(d) levels (0.006 and 0.015 A, respectively) are too small,
but the values obtained with the BSLYP functional seems to be reasonable. The C=C and
C—C bond lengths calculated at the B3LYP/3-21G level (1.366 and 1.428 A, respectively)
and at the B3LYP/6-31G(d) level (1.369 and 1.426 A, respectively) are consistent with
the values obtained experimentally (1.3640.01, and 1.4440.01 A, respectively) [60]. The
structural parameters caleulated at the BILYP/6-31G(d) level are close to those obtained
at the B3LYP/3-21G level and hence the basis-set dependence of the structural parameters
is not prominent for this system.

For the Ct form, the calculated C=C and C-C bond lengths are significantly different
from each other with all the functionals used. This result is reasonable in view of the
geometrical non-equivalence of the adjacent CC bonds in the Ct form. However, the
shape of the potential energy curve along the bond-alternation coordinate is strongly
affected by the mixing of exact exchange not only for the Tt form but also for the Ct
form. The potential energy curves of the Ct form along the bond-alternation coordinate
Ar (which represents the transition from the Ct form to the Te form) are shown in
Fig. 2.2, with the sign of Ar being taken to be positive for the Ct structure. The curves
obtained with the 6-31G(d) basis set overlap with those obtained with the 3-21G basis
set, indicating that the basis-set dependence on the potential energy curves along Ar is
again small regardless of the exchange-correlation functionals used. The small basis-set
dependence is expected since the total energies of the structures with different values of
A are lowered by a similar amount by augmenting the basis set. With the SVWN and
BLYP functionals, the potential energy curves deviate only slightly from the harmonic
shape around the region Ar =~ —0.05 A where the local minimum corresponding to the
Te form is expected to appear. When the B3LYP functional is used, a distinet shoulder
appears at Ar = —0.05 A. The curve obtained at the B3LYP/3-21G level has a shallow
local minimum at Ar = —0.05 A, which corresponds to the Tec form. The potential
energy curve calculated at the BJLYP/6-31G(d) level, on the other hand, does not have
a local minimum at the Tc structure. Since the structural parameters are not optimized

at each value of Ar, the present result does not necessarily rule out the existence of the
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local minimum of the Tc form at the BALYP/6-31G(d) level. However, no attempt was
made to locate the local minimum of the Tc form at the BSLYP/6-31G(d) level, because
the convergence of the self-consistent field procedure is much slower in this Ar region,
probably due to the small HOMO-LUMO band gap, than in the other region. Figure
2.2(c) suggests that the energy barrier for the Tc—Ct isomerization is very low and the
Te isomer can easily isomerize to the Ct isomer by interchanging the C=C and C-C bond
lengths even if a local minimum exists for the Tec form. It should be remembered that Tc
polyacetylene has not been experimentally detected as a stable isomer.

The magnitude of the bond alternation in the Ct form calculated with the SVWN
and BLYP functionals are in the range of 0.03-0.05 A, and are smaller than the value
obtained with the BSLYP functional (about 0.07 A). It is considered that the potential
energy curves calculated with the SVWN and BLYP functionals tend to have too weak
double-minimum character. The too small degree of bond alternation calculated with the
SVWN and BLYP functionals for the Tt form suggests that the potential energy curves
calculated with these functionals are not satisfactory also for the Ct form. It should
also be added that the B3LYP calculations reproduced the frequencies of the infrared-
and Raman-active vibrations of the Tt and Ct forms with considerable accuracy [59].
It is, therefore, considered that the potential energy curves caleulated with the BALYP
functional are reasonable.

In our previous study [58|, the structural parameters of the Ct and Te forms were ex-
trapolated from those of the Ct and Tc oligoenes calculated at the B3LYP/6-31G(d) level.
Although the structural parameters of the Ct form obtained by extrapolation are not far
from the result of the present study, the C=C and C-C bond lengths obtained by extrap-
olation (1.374 and 1.429 A, respectively) differ from the values obtained in the present
study (1.369 and 1.435 A, respectively). These differences are due to the overestimation
of the chain-length dependence of the C=C and C-C bond lengths in the extrapolation in
our previous study [58]. Nevertheless, the C=C bond lengths calculated by either of the
above two methods are within the error of the experimental value (1.3740.01 A) [60].

There have been a number of density functional studies which analyzed the con-
formation and internal rotation potential about the C~C bonds in conjugated and non-
conjugated molecules [61-67]. These studies have demonstrated that the relative energies
of conformers predicted by density functional theory are generally in good agreement with

the experimental results and with the results obtained by high-level ab initio molecular
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Figure 2.2 Energy per CzHz unit of the cis-transoid (frans-cisoid) form of polyacetylene calculated with
the (a) SVWN, (b) BLYP, and (c) B3LYP functionals as a function of the degree of bond alternation [Ar).
The results obtained with the 3-21G basis set are represented by filled circles, and those obtained with the
6-31G(d) basis set by solid curves. Energy is zero for the cis-transoid form. The C-H bond length, CCC
angle, C=CH angle, and the sum of the C=C and C-C bond lengths are fixed at the optimized values for
the cis-transoid form.
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Table 2.3 Calculated total and relative energies of polyacetylene. Total energies (E) in hartrees per
CaHsy unit, and energies relative to the trons-transoid form (AE) in kJ mol™" per C3Hz unit.

Functional / Truns-transoid Chs-transoid Trans-cisoid
Basis set E AE E AE E AF
SVWN/3-21G -76.54305 0.0 —76.540010 7.7 a
SVWN/6-31G({d) -76.96314 0.0 -76.95057 04 a
BLYP /321G ~76.94650 0.0 76094206 95 a
BLYP/6-31G(d) 7737123 00 7736708 109 a
BILYP/3-21G —-76.98330 0.0 -76.98017 B85 -T6.97R24 135
_B3LYP/6-31G(d) -77.40782 0.0 —77.40408 9.8 b

® No local minimum corresponding to the trans-ciscid form v:.s found
with the SVWN and BLYP functionals. * See text.

orbital calculations, except for the recent study of Choi et al [67] (see below). In what
follows, the relative stability and internal rotation potentials of the polyacetylene isomers
are examined by making use of the B3LYP functional.

The total and relative energies of the three forms of polyacetylene at their optimized
structures are shown in Table 2.3. With all the functionals used, the relative stability of
the Tt and Ct forms is predicted in the order expected from experiment. The relative
energies of the Ct and Tc forms calculated at the BALYP/3-21G level are 8.5 and 13.5 kJ
mol~!, respectively. These values are comparable to those obtained at the HF /4-31G level
(8.7 and 15.0 kJ mol~", respectively) [28]. The relative energy of the Ct form calculated at
the B3LYP/6-31G(d) level is 9.8 kJ mol™! and is consistent with the result of our previous
calculations on oligoenes at the B3LYP/6-31G(d) level (for example, the corresponding
relative energies is 6.4 kJ mol™! for 1,3,5,7,9,11,13-tetradecaheptaene, and is expected
to increase with increasing chain length) [58]. The present result, on the other hand,
disagrees with the result of a previous linear-muffin-tin-orbital local density functional
study [7], which predicted that the Tec form was more stable than the Ct form.

The energies of the various forms of polyacetylene calculated with the BALYP func-
tional are plotted as a function of the CC-CC dihedral angle in Fig. 2.3. The plot in
Fig. 2.3(a) was obtained by changing the dihedral angle alone with all the remaining
structural parameters fixed at the optimized values of the Tt form. The filled circles rep-
resent the results obtained at the B3LYP/3-21G level and the solid curves represent those
obtained at the B3LYP/6-31G(d) level. The filled circles and solid curves in Fig. 2.3(b)
were likewise drawn by fixing all the structural parameters other than the CC-CC dihedral
angle at the optimized values of the Ct form.

The potential energy curve in Fig. 2.3(a) has minima at the dihedral angles of 0° and
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Figure 2.8 Energies per CzHz unit of (a) the trans-transoid (frens-cisoid} and (b) the eistransoid (eis-
gauche) forms of polyacetylene calculated with the BALYP functional as a function of the CC-CC dihedral
angle. The results obtained with the 3-21G basis set are represented by filled circles, and those obtained
with the 6-31G(d) basis set by solid curves. Energy is zero for the trans-transoid form. Filled circles
and solid curves in {a) and (b) are obtained by changing the CC-CC angles with all the other structural
parameters fixed at the optimized values of the trans-transoid and cis-transoid forms, respectively. Open
circles in (b} are plotted by optimizing the C=C and C-C bond lengths for each CC-CC angle by using
the 3-21CG basis set.
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180° corresponding to the Tc and Tt forms, respectively. The calculated potential energy
curve suggests that the Te form as well as the Tt form has a planar structure. The same
conclusion has been drawn by Teramae et al. [68] on the basis of the vibrational analysis
of the Tc form at the HF/STO-3G level. The potential energy curve calculated with the
6-31G(d) basis set has a slightly higher energy barrier at about 100° than that calculated
with the 3-21G basis set.

The potential energy curves in Fig. 2.3(b) have a deep minimum at 180° (Ct form)
and a shallow minimum at about 60°. At the latter minimum, the conformation about the
C-C bonds is gauche rather than s-cis. It is therefore more appropriate to call this form
cis-gauche (Cg) rather than cis-cisoid (Cc). The potential energy curve rises sharply at 45°
and reaches infinity at 0° due to steric hindrance. The potential energy curve obtained with
the 3-21(G basis set is almost parallel to that obtained with the 6-31G(d) basis set, although
the use of the 6-31G(d) basis set slightly raises the internal rotation barrier for Cg—Ct
isomerization from 6.9 to 7.7 kJ mol™!. Owing to m-electron conjugation, it is expected
that the C=C and C-C bond lengths change significantly with the CC-CC dihedral angle.
The potential energy curve calculated with the 3-21G basis set by optimizing the C=C
and C-C bond lengths at each fixed dihedral angle is shown in Fig. 2.3(b) by open circles.
For all the dihedral angles investigated, the C—C bond lengths are longer and the C=C
bond lengths are shorter than the corresponding optimized values of the Ct form (1.438
and 1.366 A, respectively). The C-C bond is longest (1.484 A) at 100°, which is longer
than that at 180° (Ct form) by as much as 0.046 A. This contrasts with non-conjugated
systems such as polyethylene, for which the variation in the C-C bond length is 0.02 A
at maximum [66]. The internal rotation barrier for the Cg—Ct isomerization is lowered
from 6.9 to 4.8 kJ mol™! by taking the structural relaxation into account, but the local
minimum still exists at the Cg structure. (The present result does not necessarily mean
that polyenes with finite chain lengths can also exist in the Cg structure. For example,
geometry optimizations at the BALYP/3-21G level suggest that 1,3,5,7,9,11-dodecahexaene
in the Cg form is unstable along the internal rotation coordinate about the central C-C
bond, and 1,3,5,7,9,11,13,15-hexadecaoctaene in the Cg form is unstable along the internal
rotation about the Cy—Cs and Cy3—Cj3 bonds.) As a helix, the Cg form has much higher
energy than the other forms. The energy difference between the Cg and Tt forms is larger
than 30 kJ mol~!. This result is a consequence of the fact that the energy lowering due to

the m-electron delocalization is much less in the helical Cg form than in the other planar
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forms.

The present calculations, therefore, conclude that the total energies of the polyacety-
lene isomers increase in the order Tt < Ct < Te < Cg, in accordance with the result of our
previous oligomer calculations [58]. One should also keep in mind that the existence of the
local minimum for the Te form is not confirmed at the B3LYP/6-31G(d) level. Rather, the
B3LYP/6-31G(d) calculations suggest that the Tc form is unstable toward the formation
of the Ct form by interchanging the C=C and C-C bond lengths. This result as well as
the predicted order of total energies is consistent with the experimental results that the
most stable polyacetylene isomer is the Tt form and the second most stable isomer is the
Ct form [69], and that the Tc and Cg forms have not been synthesized or detected with
confidence. The present result, however, disagrees with the results of previous experimen-
tal [70] and theoretical studies [71,72], which suggested that the Cg form is more stable
than the Ct form in solution.

Recently, Choi ef al. [67] demonstrated that the internal rotation potential about the
central C—C bond of 1,3-butadiene calculated by density functional theory was different
from those calculated with the ab initio molecular orbital theory. Internal rotation barrier
between the s-trans and gauche minima predicted by the density functional theory was
higher than those obtained with the HF and second-order Mgller—Plesset perturbation
(MP2) methods as well as the experimental results. Although the internal rotation po-
tential calculated with the B3LYP functional was found to be in the best agreement with
the experimental results among various exchange-correlation functionals examined, there
still existed noticeable differences between them [67]. Choi et al suggested that density
functional theory tended to overestimate the barriers for the internal rotation involving
partial m-bond breaking. In light of these results, the internal rotation barriers between
the Tt and T'¢c minima and between the Ct and Cg minima calculated with the B3LYP
functional may be overestimated. Since the Cg form has a non-planar structure with the
w-electron conjugation being partially broken, the energy differences between the Cg form
and the other three planar forms (Tt, Ct, and Tc) may also be overestimated.

Notwithstanding the above-mentioned limitations, we consider that the order of the
total energies of the polyacetylene isomers predicted with the BALYP functional is reli-
able, because the B3LYP functional correctly reproduced the order of the total energies
of the s-trans, gouche, and s-cis forms of 1,3-butadiene [67]. Oie et al. [64] have also

found that the energy differences between the conformers of various conjugated molecules
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Figure 2.4 Calculated (broken curves) and observed (solid curves) ultraviolet photoelectron spectra of {a)
the trans-transoid and (b) the cis-transoid forms of polyacetylene. The observed spectra are taken from
Ref, [T4].

obtained by gradient-corrected density functional theory are in reasonable agreement with
the experimental results as well as the resulis obtained with the MP2 or MP4 calculations.

Crystal orbital calculations based on density functional theory are helpful in the
interpretation of photoelectron spectra, as has been demonstrated by Springborg and
Lev [73] and by Miao et al. [66] in the case of polyethylene. In Fig. 2.4, the calculated
ultraviolet photoelectron spectra of the Tt and Ct forms are compared with the observed
spectra [T4]. The calculated spectra were obtained by convoluting a band shape function
with the density of states for one-particle orbitals derived from the B3LYP/6-31G(d)
calculations. As the band shape function, an ‘asymmetric’ Lorentzian function, whose
HFHM (half width at half maximum) was 0.25 eV for the low-energy side and 1.35 eV for
the high-energy side, was used. The use of the asymmetric function will be justified by
the presence of vibronic levels, which is expected to make the band profiles broader in the
high energy side than in the low energy side. The overall profiles of the calculated spectra
are in reasonable agreement with the observed, although the calculated peak positions are
slightly higher than those observed for Ct polyacetylene. The agreement is better in the

present study than in the previous one [74], in which the calculated spectra were obtained
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by convoluting a symmetric band shape function with the energy levels of oligoenes. The
observed spectra of Tt and Ct polyacetylene are similar to each other, but the observed
spectrum of Tt polyacetylene is slightly more structured in the 10-20-eV region than that
of Ct polyacetylene. The present calculations reproduce this difference in the spectra.
This result indicates that the energy band structures obtained from the B3LYP/6-31G(d)
calculations are sufficiently reliable for the analysis of experimental results, although some
ambiguity remains in their physical meaning. The spectra calculated at the B3LYP/3-
21G level (not shown) are practically the same as those calculated at the BSLYP/6-31G(d)
level. Thus, the energy band structures are relatively insensitive to the basis set employed.
The use of the SVWN and BLYP functionals also leads to similar spectra for the Tt and Ct
forms, except that the peak positions calculated with the SVWN and BLYP functionals are
lower than those calculated with the BLYP functional by about 1 and 2 eV, respectively.
However, it does not seem to be appropriate to use the energy band structures calculated
with the SVWN and BLYP functionals in analyzing the experimental data at least for
the Tt form, because these two functionals predict too small a band gap for the Tt form.
The underestimation of the band gap is closely related to the underestimation of the bond

alternation |8].

2.5 Conclusion

The results of the present study are summarized as follows. (1) The effect of the exact-
exchange mixing is substantial on the shape of the potential energy curves along the
bond-alternation coordinate. The SVWN and BLYP functionals tend to underestimate
the double-minimum character of the potential energy curves not only for the Tt form
but also for the Ct form of polyacetylene. (2) The optimized structural parameters of
the Tt and Ct forms obtained from the B3LYP calculations are reasonable in comparison
with the experimental results. (3) The potential energy curve of the Ct form along the
bond-alternation coordinate suggests that the energy barrier for the Te—Ct isomerization
is very low. (4) The BALYP calculations indicate that the total energies of the Tt, Ct, Tc,
and Cg forms increase in this order. (5) The B3LYP calculations satisfactorily reproduce

the observed ultraviolet photoelectron spectra of the Tt and Ct forms.
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Appendix: Auxiliary fitting of electron density

Electron density of the whole polymer chain is first partitioned into electron density asso-

ciated with each unit cell:

pP(x) =33 POXxP ) @), (2.20)
[TRTEN: ]

The unit cell density is approximated by a linear combination of auxiliary basis functions
PP (r) =3 Dy (1), (2:21)
T

where 67 (r) is the auxiliary basis function centered in unit cell p with associated expansion
coefficient D,. Here a tilde indicates an approximated quantity. The most accurate

approximation to the Coulomb repulsion energy results from minimizing
5 1 i
A= Zf [piﬂl(rl) - pEUJ{r,]] = [p{cr}(rz} = p{‘”(rgj] oliss i (2.22)
q

which corresponds to the electron repulsion energy due to residual electron density and is a
positive-definite quantity. Using simplified notation for integrals, we can rewrite Eq. (2.22)

as

A = Y {(p1pD) - (15D) - (5V1p) + (615 } (2.23)
q

=y {{p‘“’ o) = 3" D, (94

q

=Y Dy (v®9) + ):DTD‘S{TWHEW)} ; (2.24)
L 1.8

We require that this to be stationary together with the normalization constraint
fﬁ[r]dr - ZD.,-[EL,{r}dr = N (2.25)
b

where N, is the number of electrons per unit cell. This is equivalent to writing

a
3D, {r_\ - A (; Ds f fs(r)dr — Nﬁj } =0, (2.26)

where A is a Lagrange multiplier. The differentiation results in

2573 Dy 916@) -2 3 (O1@) - A [ 6,(x)dr =0, (2:27)
g & q
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or in matrix notation

S-d=t+ An. (2.28)
with

Sy = Z(T{U}Eg{ﬂj, (2.29)
q

i, = D, (2.30)

t, = ZZPE.‘J{#{U}VHHI[?}L (2.31)
Lr R

ny = f 8, (r)dr. (2.32)

In Eq. (2.28), the factor of 2 has been folded into the Lagrange multiplier. Substitution
of Eq. (2.28) into the constraint Eq. (2.25) leads to

N.=fi-d=0-S't+Aa-5"'.n, (2.33)

where fi denotes the transposed matrix of n. By combining this equation and Eq. (2.28),
we obtain the explicit formula for expansion coefficients

.‘\I\,—ﬁ-S‘lﬁtn
-8 1.n ¥

d=5""! (t+ (2.34)

Since we have minimized A, which has been defined by Eq. (2.23), it is most reasonable

to approximate Coulomb repulsion energy % Eq(p{uﬂp{‘ﬂ'} as
1 E: 1 (0} =
5 (01D =3 (o V15'D) - 2 3 (915, (2.35)
g g q

This expression is equivalent to the sum of the second and third terms of the right-hand
side of Eq. (2.18).

References

[1] R. G. Parr and W. Yang, Density-Functional Theory of Atoms and Molecules (Oxford
University Press, NewYork, 1989).

[2] T. Ziegler, Chem. Rev., 91, 651 (1991).

[3] J. C. W. Chien, Polyacetylene: Chemistry, Physics, and Material Science (Academic
Press, Orlando, 1984).

[4] P. M. Grant and I. P. Batra, Solid State Commun., 29, 225 (1979).

[5] R. V. Kasowski, W. Y. Hsu, and E. B. Caruthers, J. Chem. Phys., 72, 4896 (1980).

37



(6] J. W. Mintmire and C. T. White, Phys. Rev. Lett., 50, 101 {(1983).

[7] M. Springborg, Phys. Rev. B, 33, 8475 (1986).

[8] J. W. Mintmire and C. T. White, Phys. Rev. B, 35, 4180 (1987).

[9] J. von Boehm, P. Kuivalainen, and J.-L. Calais, Phys. Rev. B, 35, 8177 (1987).

[10] P. Vogl and D. K. Campbell, Phys. Rev. Lett., 62, 2012 (1989).

[11] J. Ashkenazi, W. E. Pickett, H. Krakauer, C. S. Wang, B. M. Klein, and 5. R. Chubb,
Phys. Rev. Lett., 62, 2016 (1989).

[12] P. Vogl and D. K. Campbell, Phys. Rev. B, 41, 12797 (1990).

[13] M. Springborg, J.-L. Calais, O. Goscinski, and L. A. Eriksson, Phys. Rev. B, 44,
12713 (1991).

(14] J. Paloheimo and J. von Boehm, Phys. Rev. B, 46, 4304 (1992).

[15] S. Suhai, Phys. Rev. B, 51, 16553 (1995).

(16] This form has alternatively been referred to as the cis-cisoid (Cc) form. However, it
has a helical structure with the conformation about the C-C bonds being gauche rather
than s-cis, and therefore, it is more appropriate to call it the eis-gauche (Cg) form.

[17) G. Del Re, J. Ladik, and G. Biczo, Phys. Rev, 155, 997 (1967).

[18] J. M. Andre, J. Chem. Phys., 50, 1536 (1969).

[19] H. Fujita and A. Imamura, J. Chem. Phys., 53, 4555 (1970).

[20] A. Imamura and H. Fujita, J. Chem. Phys., 61, 115 (1974).

[21] M. Kertesz, Adv. Quantum Chem., 15, 161 (1982).

[22] J. A. Pople, P. M. W. Gill, and B. G. Johnson, Chem. Phys. Lett., 199, 557 (1992).
[23] B. G. Johnson, P. M. W. Gill, and J. A. Pople, J. Chem. Phys., 98, 5612 {1993).
(24] B. I. Dunlap, J. W. D. Connolly, and J. R. Sabin, J. Chem. Phys., 71, 3396 (1979).
[25] S. Obara and A. Saika, J. Chem. Phys., 84, 3963 (1986).

{26] J. Andzelm and E. Wimmer, J. Chem. Phys., 96, 1280 (1992).

[27] 5. Suhai, J. Chem. Phys., 73, 3843 (1980).

[28] H. Teramae, J. Chem. Phys., 85, 990 (1986).

[29] J. Delhalle, L. Piela, J.-L. Bredas, and J.-M. Andre, Phys. Rev. B, 22, 6254 (1980).
[30] J. M. Andre, D. P. Vercauteren, V. P, Bodart, and J. G. Fripiat, J. Comp. Chem., 5,
535 (1984).

[31] A. D. Becke, J. Chem. Phys., 88, 2547 (1988).

[32] V. I. Lebedev, Zh. Vychisl. Mat. Mat. Fiz., 15, 48 (1975).

[33] V. 1. Lebedev, Zh. Vychisl. Mat. Mat. Fiz., 16, 293 (1976).

38



[34] V. 1. Lebedev, Sibirsk. Mat. Zh., 18, 132 (1977).

[35] O. Treutler and R. Ahlrichs, J. Chem. Phys., 102, 346 (1995).

[36] J. S. Binkley, J. A. Pople, and W. J. Hehre, J. Am. Chem. Soc., 102, 939 (1980).
[37] W. J. Hehre, R. Ditchfield, and J. A. Pople, J. Chem. Phys., 56, 2257 (1972).

[38] P. C. Hariharan and J. A. Pople, Theor. Chim. Acta, 28, 213 (1973).

[39] J. C. Slater, Quantum Theory of Molecules and Solids, Vol. 4: The Self-Consistent
Field for Molecules and Solids (McGraw-Hill, NewYork, 1974).

[40] S. H. Vosko, L. Wilk, and M. Nusair, Can. J. Phys., 58, 1200 (1980).

[11] A. D. Becke, Phys. Rev. A, 38, 3098 (1988).

[42] C. Lee, W. Yang, and R. G. Parr, Phys. Rev. B, 37, 785 (1988).

[43] B. Miehlich, A. Savin, H. Stoll, and H. Preuss, Chem. Phys. Lett., 157, 200 (1989).
[44] A. D. Becke, J. Chem. Phys., 98, 5648 (1993).

[45] A. D. Becke, J. Chem. Phys., 96, 2155 (1992).

[46] P. M. W. Gill, B. G. Johnson, J, A, Pople, and M. J. Frisch, Chem. Phys. Lett., 197,
499 (1992).

[47] A. D. Becke, J. Chem. Phys., 97, 9173 (1992).

[48] J. M. Seminario, Chem. Phys. Lett., 206, 547 (1993).

[49] H. Chen, M. Krasowski, and G. Fitzgerald, J. Chem. Phys., 98, 8710 (1993).

[50] J. B. Foresman and /E. Frisch, Ezploring Chemistry with Electronic Structure Methods,
2nd ed. (Gaussian Inc., Pittsburgh, 1996).

[61] M. J. Frisch, G. W. Trucks, and J. R. Cheeseman, in Recent Developments and
Applications of Modern Density Functional Theory, edited by J. M. Seminario (Elsevier,
Amsterdam, 1996).

[52] R. M. Dickson and A. D. Becke, J. Chem. Phys., 99, 3898 (1993).

53] M. W. Wong, Chem. Phys. Lett., 256, 391 (1996).

[54] A. P. Scott and L. Radom, J. Phys. Chem., 100, 16502 {1996).

[55] P. Pulay, Chem. Phys. Lett., 73, 393 (1980).

[56] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes
in FORTRAN: The Art of Scientific Computing, 2nd ed. (Cambridge University Press,
Cambridge, 1992).

[57] S. Hirata, H. Torii, and M. Tasumi, J. Chem. Phys., 103, 8964 (1995).

(58] S. Hirata, H. Torii, and M. Tasumi, Bull. Chem. Soc. Jpn., 69, 3089 (1996).

[59] Chapter 3 of the present thesis.

39



[60] C. 5. Yannoni and T. C. Clarke, Phys. Rev. Lett., 51, 1191 (1983).

[61] D. A. Dixon, N. Matsuzawa, and S. C. Walker, J. Phys. Chem., 96, 10740 (1992).
[62] I. A. Topol and S. K. Burt, Chem. Phys. Lett., 204, 611 (1993).

[63] G. 1. Csonka and 1. G. Csizmadia, Chem. Phys. Lett., 243, 419 (1995).

[64] T. Oie, 1. A. Topol, and S. K. Burt, J. Phys. Chem., 99, 905 (1995).

[65] S. Tsuzuki, T. Uchimaru, and K. Tanabe, Chem. Phys. Lett., 246, 9 (1995).

[66] M. 5. Miao, P. E. Van Camp, V. E. Van Doren, J. J. Ladik, and J. W. Mintmire,
Phys. Rev. B, 54, 10430 (1996).

[67] C. H. Choi, M. Kertesz, and A. Karpfen, Chem. Phys. Lett., 276, 266 (1997).

|68] H. Teramae, T. Yamabe, and A. Imamura, J. Chem. Phys., 81, 3564 (1984).

[69] H. Shirakawa, T. Ito, and S. Ikeda, Polym. J., 4, 460 (1973).

[70] F. 5. Bates and G. L. Baker, Macromolecules, 16, 1013 (1983).

[71] M. L. Elert and C. T. White, Phys. Rev B, 28, 7387 (1983).

[72] B. K. Rao, J. A. Darsey, and N. R. Kestner, Phys. Rev. B, 31, 1187 (1985).

[73] M. Springborg and M. Lev, Phys. Rev. B, 40, 3333 (1989).

[74] K. Kamiya, T. Miyamae, M. Oku, K. Seki, H. Inokuchi, C. Tanaka, and J. Tanaka,
J. Phys. Chem., 100, 16213 (1996).

40



Chapter 3

Analytical energy gradients for
density functional crystal orbital
theory: application to normal
vibrations of polyacetylene and
polymethineimine

So Hirata and Suehiro Iwata, “Density functional crystal orbital study on the normal
vibrations of polyacetylene and polymethineimine,” J. Chem. Phys., 107(23), 10075~
10084 (1997).
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Abstract

Optimized molecular structures and k = 0 (Brillouin zone center) vibrational frequencies
are obtained for franstransoid and cis-transeid polyacetylene and for anti-transeid and
sym-transoid polymethineimine by the density functional crystal orbital method with the
Becke3-Lee-Yang-Parr (B3LYP) functional. An analytical-energy-gradient scheme is im-
plemented in the density functional crystal orbital method, and the force constants of the
infinite polymers are evaluated by numerical differentiation of the analytical energy gra-
dients. For the trans-transoid and cis-transoid isomers of polyacetylene, the vibrational
frequencies calculated and then uniformly scaled by a single scale factor are in reason-
able agreement with the observed frequencies. For polymethineimine, it is found that the
calculated frequencies of the anti-transoid isomer completely disagree with the observed
frequencies. In contrast, the calculated frequencies of syn-transoid polymethineimine are
in agreement with the observed, although there are only three observed frequencies avail-
able. The total energy of syn-transoid polymethineimine is found to be lower than that of

the anti-transoid isomer by 15.6 kJ mol=1.

3.1 Introduction

Computational methods that are currently used to derive the vibrational force fields of
polymers can be classified mainly into two categories—the oligomer approach and the
polymer approach. In the oligomer approach, the force constants of oligomers, which
are usually calculated by the ab initio molecular orbital or density functional methods,
are transferred to polymers. Cui and Kertesz [1] demonstrated that this approach led to
reasonable force fields for all-trans polyethylene by making use of the force constants of
their oligomers calculated by the ab initio Hartree-Fock (HF) method and then scaled
by the standard method proposed by Pulay et al. [2]. We [3,4] also examined the force
constants of short oligoenes calculated at the second-order Mgller—Plesset perturbation
(MP2) level and at the Becke3-Lee—Yang—Parr (B3LYP) level for the purpose of obtaining
reliable force fields of polyacetylene. In this case, however, the force constants of oligoenes
could not be transferred to polyacetylene directly, because the force constants of oligoenes
were strongly dependent on their chain lengths. The convergence of the force constants as
a function of chain length was so slow that we had to extrapolate the force constants of

the infinite chains by approximating the chain-length dependence of the force constants by
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some phenomenological functions. This means that the effects of m-electron conjugation
and electron correlation are slowly convergent with conjugation length. Although the
phenomenological functions introduced in our previous study may possess information
about the force constants of oligoenes with intermediate chain lengths, the arbitrariness
of these functions cannot be completely removed.

Alternatively, one can adopt the polymer approach, in which the force constants of
infinite polymers are directly evaluated by the crystal orbital method [5-9]. The polymer
approach takes advantage of the periodicity (translational or screw-axis symmetry) of infi-
nite polymer chains, and hence can be more efficient and accurate than the other approach.
Teramae et al. [8] calculated the k = 0 (Brillouin zone center) vibrational frequencies of in-
finite polyacetylene and polymethineimine chains by using the analytical-energy-gradients
scheme based on the ab initio HF crystal orbital method. The agreement between the cal-
culated and observed frequencies of polyacetylene was, however, not satisfactory, primarily
due to the neglect of electron correlation and to the lack of transferable scale factors. It
is now recognized that electron correlation plays an essential role in determining some
force constants of polyacetylene [3,9]. The effect of electron correlation is particularly
large on the frequencies of the so-called “in-phase C=C stretching modes,” which give rise
to intense Raman bands. HF calculations tend to overestimate the frequencies of these
modes, and this tendency cannot be eliminated by the standard scaling procedure [8,9]. It
is expected that the situation be improved if we use a correlated theoretical level instead
of the HF level. Density functional theory [10,11] is a strong candidate for such a purpose,
because density functional calculations can include electron correlation with modest com-
putational costs. The vibrational frequencies calculated with appropriate functionals are
often in good agreement with the observed frequencies when the calculated frequencies
are uniformly scaled with only one scale factor [12,13].

Density functional theory has been applied to polyacetylene mainly for the analysis
of its electronic and molecular structures [14-26]. Suhai [25] thoroughly investigated the
bond alternation in trans-transoid polyacetylene by using various exchange-correlation
functionals. Suhai found that the magnitude of the bond alternation in trans-transoid
polyacetylene could reasonably be predicted only when the exchange-correlation function-
als mixed with exact exchange were used. We also examined the optimized structures of
the geometric isomers of polyacetylene by using the Slater-Vosko-Wilk-Nusair (SVWN),
Becke-Lee-Yang—Parr (BLYP), and B3LYP functionals [26]. In parallel with the results of
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Figure 3.1 Isomers of polyacetylene and polymethineimine.

Suhai, we found that the optimized structures of trans-transoid polyacetylene were strongly
dependent on the exchange-correlation functionals used. The results obtained with the
SVWN and BLYP functionals were even qualitatively incorrect, while those obtained with
the B3LYP functional seemed to be reasonable. Although the structural parameters of
cis-transoid polyacetylene were found to be less sensitive to the exchange-correlation func-
tionals, the differences in the optimized structures obtained with the SVWN, BLYP, and
B3LYP functionals were not negligible. It is, therefore, less meaningful to calculate the
vibrational frequencies of polyacetylene by using exchange-correlation functionals without
exact-exchange mixing. Judging from the optimized structures, the BBLYP functional is
expected to yield reasonable vibrational frequencies for polyacetylene.

In this chapter, we report the k = 0 vibrational frequencies of trans-transoid and cis-
transoid polyacetylene and their isoelectronic polymers, anti-transoid and syn-transoid
polymethineimine, calculated with the density functional crystal orbital method by using
the B3LYP functional. We implemented an analytical-energy-gradient scheme in the den-
sity functional crystal orbital method, and the force constants of the infinite polymers were
obtained by numerical differentiation of the analytical energy gradients. The structures of
the polymers treated in the present study are depicted in Fig. 3.1. For trans-transoid and

cis-transoid polyacetylene, the vibrational assignments were established for most of the
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observed infrared and KRaman bands [27-39], and hence the comparison between the calcu-
lated and observed frequencies serves as a test for the reliability of the present method. For
polymethineimine, frequencies of only three observed infrared bands were reported [40],
and the structure—the configuration and conformation—in the actual samples has not
been established yet. On the basis of the calculated vibrational frequencies and the total
energies of anti-transoid and syn-transoid polymethineimine, we discussed which isomer

is more likely to constitute the actual polymethineimine samples.

3.2 Formulas for the analytical energy gradients

In this section, we will describe the analytical energy gradient formulas in the framework
of density functional crystal orbital theory [41]. The formulas given below are based on the
analytical energy gradient formulas for ab initio HF crystal orbital theory [7,8] and those
for molecular density functional theory [42-44]. For the self-consistent-field procedures of
the linear-combination-of-atomic-orbital crystal orbital method, the readers are referred

to Refs. [26,45-50]. We start with the following expression for the total energy:
E = Er + Ey + Ej + my Exc + m2Exx + Eng. (3.1)

Here E is the kinetic energy, Ey and Ej are the electron-nuclear attraction and electron-
electron repulsion energies, Exc and Eyy are the electron-correlation and exact-exchange
energies with the mixing ratios m; and mgz [51], and Eng is the nuclear-nuclear repulsion

energy. Er and Evy are given by

Er = Y S POTQ, (3.2)
Mg

By = LY AOND, 33
By oq

where Fm is the density matrix element between atomic orbitals p and v in unit cells 0
and g, whose definition is given in Chapter 2. T and N are the kinetic and electron-nuclear

attraction integral matrices, respectively, and are defined as
) = f X (r) ( ?g) x“’*(r}dr. (3.4)
N = szxm’{ —

where x['ﬂ{r} denotes the atomic basis function centered in unit cell ¢ and Z4 the charge

@
R“‘}I 9(r)dr, (3.5)

of nucleus A at position RE,'::', In order to minimize the computational tasks concerning

46



the accumulation of the long-range electron repulsion integrals, we expanded the electron
density by auxiliary basis functions according to the method of Dunlap et al. [52,53]. The
expression for Ej is then given by

E;= ZZE POD, W — - Z DyDsA.s, (3.6)

TR

where the subscripts u and v specify the orbital basis functions, and the subscripts v and
& the auxiliary basis functions. D. and Djs are the expansion coefficients for the auxiliary
basis functions @, and 85, respectively, and Juiy (@) and A5 are the three-index and two-index

electron repulsion integrals defined as follows:

1
JH}-: = Y f xL“’{rl}xL‘ﬂ(rﬂaﬁ'ﬂ,’}(rsjdndm, (3.7)
1
Ay = Er: f 920}{T1}a9£f]{r2}dr1dra~ (3.8)

The expansion coefficients D can be obtained with these integrals and the normalization
coefficients of the auxiliary basis functions [52,53] (see also Appendix of Chapter 2). The
choice of the auxiliary basis functions in the present study will be described in the next

section. Exn and Exx are given by

Bxc = [ floVeldr, (3.9)
Exx = .._ZZZP{ﬂP{’"‘?} (].LW}AWHU{T} ﬁ-ﬂ) (3.10)
B A g §.TE

where f|p, Vp| is an exchange-correlation functional of electron density p and of electron

density gradients Vp and (,um]'l[q}'|u':’"}cr':’]) is the four-index electron repulsion integrals

(HOUD A1) ffxiﬂl (e )9 rl)—-x"}(rg}x'ﬁﬂi‘{rg}dndrg. (3.11)

In the present implementation, the exchange-correlation energy and the associated ex-
change-correlation integrals were evaluated numerically. Accordingly, the formulation
given below does not involve the auxiliary fitting of the exchange-correlation potential.
The energy gradient with respect to a nuclear coordinate @) is then given by the
following expression with the aid of the energy-weighted density matrix W and the overlap

integral matrix S.

aT{'?] AN E'ﬂ
- (q)
0 = LLA ( 50 * 9 )

gy q
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B g

The elements of the overlap integral matrix are defined as
S = f X (£)x}? (r)dr. (3.13)

The definition of the energy-weighted density matrix elements for crystal orbital theory
is obtained by the straightforward generalization of that for molecular orbital theory.
Equation (3.12) is obtained by assuming that all the nuclei that are equivalent by the
translational (screw-axis) symmetry move in phase [T,8]. It should be noted that the
terms which involve the differentiation of D, with respect to @ cancel with each other
and do not appear in Eq. (3.12) [42]. The primed term (8Exc/8Q) is the first derivative
of the exchange-correlation energy Exc, but it excludes the contribution involving the
differentiation of the density matrix elements with respect to (J, which is already taken
into account in the last term of Eq. (3.12). Thus, this term is given by

' a) (0) (a)
aExc) ( Exu i Ao
- Y'Y P9 f (O)yyge (9) 4 7y (0) .

( 0Q e g { Q" T R VX" BXG aQ

aVxi) avxl®  ay®
+ E'Q - Bxexs? + X{mExc 80 + ngc Ul b dr(3.14)
with
d
ke = ﬁgl
af 1 8f
R L A e Vo,
Yoa = Vpa-:Vpa,
Yap = Vpa-Vpp. (3.15)

Here the subscripts o and § denote spins. In the expression of the exchange-correlation
first derivatives, Johnson et al. [44] included the derivatives of the quadrature weights
with respect to nuclear coordinates. Although the contributions of the quadrature weight
derivatives to the total energy gradients are not negligible for small numerical integration

grids, they can be made insignificant by taking a sufficiently large number of grid points

48



[44,54]. The grids employed in the present study, which are specified in the next section,
are sufficiently large such that the contributions of the quadrature weight derivatives can
safely be neglected.

Teramae et al. [7,8] derived a formula for the energy gradient with respect to the trans-
lational period a in the framework of the HF crystal orbital method. The corresponding
formula for the density functional crystal orbital method is obtained analogously by using

the following relation:

(3.16)

Here Qfm is the z coordinate of nucleus A in unit cell g, and we assumed that the chain
axis is parallel to the z axis. However, attention must be paid to the fact that the region
of numerical integration of exchange-correlation energy Fxc depends on the translational
period. As a result, the exchange-correlation energy contribution to the energy gradient
contains a two-dimensional integral whose region of integration is the boundary plane

between two adjacent unit cells.

(5§:c)’ = (%)Ifm”f[pﬁpldmdydz

= fbﬂundary fle vﬂdedF

+ZZZ¢;P’~“’f{xL“} vxc

T

{q.‘i
a@ﬁil}}

.49} (q)
dxv OVxw
(0) (0) ;
+Vx;, gxc&@ AW + X 8xc 2 ;{q}}da:dydz (3.17)

The two-dimensional integral [the first term in the right-hand side of Eq. (3.17)] can be

transformed to three-dimensional integrals by virtue of Gauss theorem:

Exc
, Vpldzdy = =XE
fbm flp, Vpldzdy

I{-r} axiﬂ}
+ Y Y P@ f {xcm s 35 vxox(@

B g
axLﬂ'} avxiﬂ]
] [

+ Vi 8xc 5 T A - gxoxi!

Vx| axi
+ xPgxc 5 + 5e-8xc - VX { dedydz. (3.18)

The differentiation with respect to z can also be viewed as the differentiation with respect

to a nuclear coordinate with the opposite sign [55]. The right-hand side of Eq. (3.18) can
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Table 3.1 Exponents of the auxiliary Gaussian functions
for hydrogen, carbon, and nitrogen.

_:\uxiliary basis set [ Auxiliary basis set 11
Hydrogen Carbon Hydrogen Carbon

and nitrogen
s o s

37.46 512.6 37.46 5126
21.56 170.9 21.56 170.9
19.37 56.95 19.37 56.95
18.89 18.98 18.89 15.98
5.651 6.328 5.651 15.74
3.466 3.466 10.80
2.987 6.328
5.389

spd spd
2987 15.74 1.280 2.699

1.280 10.80 0.8014

0.8014 5.399 spdf
0.3226 2.699 0.3226 1.350
1.350 0.6749
0.6749 0.3374

0.3374

be evaluated by adding only a few statements to the programs for the evaluation of the
right-hand side of Eq. (3.14).

3.3 Computer implementation

We employed the 3-21G [56] and the 6-31G(d) [57,58] basis sets for the expansion of
the Kohn-Sham orbitals. We prepared two auxiliary basis sets—auxiliary basis set I for
the 3-21G calculations and auxiliary basis set II for the 6-31G(d) calculations. Auxiliary
basis set 1 consisted of uncontracted s-type Gaussian functions and blocks of uncontracted
s-type, p-type, and d-type Gaussian functions with shared exponents. Auxiliary basis
set II included f-type functions in addition to s-type, p-type, and d-type functions. We
summarized in Table 3.1 the exponents of the auxiliary Gaussian functions, which were
determined in a similar manner as proposed by Dunlap et al. [52,53] on the basis of the
exponents of the 6-31G(d) basis set.

The long-range Coulomb interaction was taken into account by explicitly evaluating
the relevant two- and three-index electron repulsion integrals extending to the twentieth
neighboring CoHg and CHN unit cells. The total energies of the polymethineimine isomers
were also calculated by taking into account the two- and three-index electron repulsion

integrals extending to the fiftieth and hundredth neighboring CHN unit cells. For the



other molecular integrals, we took into account interactions up to the fourth neighboring
unit cells for the 3-21G calculations and interactions up to the fifth neighboring unit cells
for the 6-31G(d) calculations.

The exchange-correlation energy and the associated exchange-correlation integrals
were evaluated numerically by using the atomic partitioning scheme developed by Becke
[59]. The single-center integrations were performed by applying a second-kind Gauss-
Chebyshev quadrature for the radial integration and Lebedev quadratures [60-62| for the
angular integration. Numerical grids (for each atom) consisted of 50 radial points and 302
angular points. For radial shells close to the nuclei, 38-point and 50-point angular grids
were employed instead of the 302-point grid, and the total number of the grid points was
8656 per atom.

The geometry optimization was performed by the GDIIS (geometry direct inversion
in the iterative subspace) extrapolation [63] in combination with the steepest-descent
method. The force constants were obtained by the numerical differentiation of the analyt-
ical energy gradients. The step size used in numerical differentiation was 0.04 bohr. The
force-constant matrix was transformed from the Cartesian coordinate system to the mass-
weighted Cartesian coordinate system. Diagonalizing the thus-obtained force-constant ma-
trix, we obtained the k = 0 vibrational frequencies and the corresponding mass-weighted
normal coordinates as the eigenvalues and eigenvectors [64,65].

The computer implementation of the self-consistent-field part of the method is de-
scribed in more detail in Chapter 2. The geometry optimization and vibrational frequency
calculation were performed for frans-transoid polyacetylene by using the 3-21G and the
6-31G(d) basis sets. For the other polymers treated in the present study, only the 3-21G
basis set was used. The results of the BSLYP,/3-21G calculations on oligomers obtained
with the GAUSSIAN 94 program [66] are also discussed in the following.

3.4 Results and discussion
3.4.1 Polyacetylene

The optimized structural parameters of trans-transoid and cis-transoid polyacetylene are
listed in Table 3.2. We have performed the geometry optimization for trans-transoid and
cis-transoid polyacetylene at the B3LYP/3-21G level by the Powell’s method previously
[26]. The structural parameters optimized in the present study at the B3LYP/3-21G
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Table 3.2 Optimized structural parameters of trans-transoid and cis-transoid polyacetylene.
In units of A (bond length) and degrees (bond angle).

Structural parameter Trans-transoid® Trans-transoid”  Cis-transoid®

C=C bond length 1.367 1.369 1.366
C-C bond length 1.428 1.426 1.437
CH bond length 1.089 1.041 1.086
CCC angle 124.3 124.5 126.5
C=CH angle 118.6 118.3 116.7

* Caleulated with the 3-21G basis set. * Calculated with the 6-31G(d) basis set.

level by using analytical energy gradients with a larger auxiliary basis set are almost the
same with the previous values. The structural parameters of trans-transoid polyacetylene
calculated with the 6-31G(d) basis set are in reasonable agreement with those calculated
with the 3-21G basis set. The C=C and C-C bond lengths calculated with the 3-21G and
the 6-31G(d) basis sets are also consistent with the experimental values directly measured
by nutation NMR spectroscopy (1.36 and 1.44 A) [67]. The calculated C=C bond length
(1.366 A) of cis-transoid polyacetylene is also in agreement with the experimental value
(1.37 A) [67]. The structural aspects of polyacetylene obtained by using various exchange-
correlation functionals were discussed in Refs. [25,26].

The experimental frequencies and assignments of the infrared- and Raman-active
modes of polyacetylene are well established [27-39] particularly for the trans-transoid
isomer, and on this basis we can assess the performance of the B3LYP crystal orbital
method as a method of calculating the vibrational frequencies of conjugated polymers. The
calculated k = 0 vibrational frequencies of trans-transoid polyacetylene and its deuterated
analog are shown in Table 3.3. The observed frequencies taken from Refs. [27,33,39] are also
shown for comparison. Although the unscaled frequencies are invariably higher than the
observed frequencies, the frequencies uniformly scaled with a single scale factor (0.964) are
in reasonable agreement with the observed frequencies regardless of the basis set used. As
described in the introduction, the HF calculations tend to overestimate the frequencies of
the in-phase C=C stretching modes even if the calculated frequencies are scaled [8,9]. The
in-phase C=C stretching mode of trans-transoid polyacetylene is the 12 mode. It should
be emphasized that at the B3LYP/3-21G and the B3LYP/6-31G(d) levels the agreement
between the calculated (scaled) and observed frequencies for 12 is as good as that for the
other modes. The largest deviation between the frequencies calculated with the 3-21G
basis set and the observed can be seen for the vy mode. We assigned a weak infrared band
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Table 3.3 Calculated and observed frequencies of the infrared- and Raman-active modes of
trans-transoid polyacetylene and its deuterated analog.

Species Mode®  Obs® Calc. (321G) / cm | Calc. (6-31G(d)) / cm |
fem™! "Unscaled x0.964  Unscaled x0.964

F(CaHz)s @y w1 2090 3139 3026 3146 3033
va 1457 1506 1452 1506 1452

vy 1294 1342 1294 1333 1285

ve 1066 1111 1071 1110 1070

b, w5 3013 3161 3047 3159 3045

v 1170 1260 1215 1212 1168

a. v 1012 1061 1023 1064 1026

by we B34 045 911 922 8RO
t(CaDa)e a, w2230 2328 2244 2336 2252
va 1347 1379 1329 1386 1336

v 120 1226 1182 1233 1189

ve 852 896 864 879 847

be s 2281 2321 2237 2319 2236

ve 861 925 892 890 858

aw v; 746 779 751 781 753

b, wvs 816 849 818 828 798

® The normal modes are classified under the factor group isomorphous
to the point group Can. ® References [27,33,39].

at 1170 cm~! to this mode in a previous study (3|, but other authors [38,39] assigned a band
at 1250 cm ™! instead of 1170-cm™! band (we confine our discussion to undeuterated irans-
transoid polyacetylene for the sake of simplicity). The frequency of this mode calculated
with the 3-21G basis set (1215 cm™!) is halfway between these two values (1170 cm™!
and 1250 cm™!), and cannot confirm either of the assignments. However, the frequency
of the v5 mode calculated with the 6-31G(d) basis set is 1168 em™!, which is very close
to the observed frequency of 1170 em~!. Therefore, the present result renders substantial
support to our previous assignment [3]. The overall agreement between the frequencies
calculated with the 6-31G(d) basis set and the observed is satisfactory, and it is concluded
that the force fields generated by the B3LYP/6-31G(d) crystal orbital method are highly
reliable. Except for the 15 mode, the frequencies calculated at the B3LYP/3-21G level
and then scaled are in agreement with the observed ones to an almost similar extent.
Thus, the caleulated frequencies of trans-transoid polyacetylene are relatively insensitive
to the inclusion of the polarization functions. The same trend was also observed for the
frequencies of trans-transoid oligoenes and polyacetylene calculated at the MP2 level and
then scaled [3]. Therefore, we expect that the calculations with the 3-21G basis set is
tolerable also for the other polymers treated in the present study.

The k = 0 vibrational frequencies of cis-transoid polyacetylene calculated with the 3-



21G basis set are listed in Table 3.4 together with the observed frequencies of the infrared
and Raman bands [27,33,36,37]. Although cis-transoid polyacetylene possesses a two-fold
screw-axis symmetry, we adopted a C4Hy unit as a unit cell (see Fig. 3.1) instead of a CoHs
unit in the calculations of the force constants, in order to obtain the frequencies of all the
infrared- and Raman-active modes. The calculated frequencies were scaled with the same
scale factor (0.964) as that used for {rans-transoid polyacetylene. The agreement between
the scaled and observed frequencies seems to be reasonable again. It should be empha-
gized that the overall agreement between the calculations and experiments is remarkably
improved by using the BILYP functional instead of the HF method [8]. Nevertheless,
there are still discrepancies for some modes. For example, the scaled frequencies of the
in-phase C=C stretching modes (14) are lower than the observed ones, particularly for the
deuterated species. There are also discrepancies for the vyg and 114 modes of the undeuter-
ated species. We calculated the vibrational frequencies of cis-transoid polyacetylene by
using the force field extrapolated from those of oligoenes obtained at the B3LYP /6-31G(d)
level [4]. The calculated frequencies were scaled uniformly by 0.955. The discrepancies
for 11y and 14 are smaller in the previous study using a larger basis set, and hence the
discrepancies in the present study might be attributed to the basis set inadequacy. On
the contrary, the differences between the calculated and observed frequencies of v are
larger in the previous study than in the present one. The larger differences in the previous
study are partly due to the overestimation of the chain-length dependence of some force
constants [26], but another possible origin of this discrepancy was also discussed in the

previous study [4].

3.4.2 Polymethineimine

Polymethineimine was first synthesized by Wéhrle [40] in 1971. He also observed char-
acteristic infrared bands of this compound at 3170, 1620, and 1410 cm™!. There are a
relatively small number of theoretical studies that dealt with the structural properties of
this compound [8,68,69], and all of them assumed the anti-transoid structure (Fig. 3.1).
The actual structure of this compound, however, is not experimentally established yet.
The optimized structures of anti-transoid polymethineimine were obtained by using the
HF crystal orbital method by Karpfen [68] and subsequently by Teramae et al. [8]. Teramae
et al. also calculated the k = 0 vibrational frequencies of anti-transoid polymethineimine

by using the STO-3G basis set. The frequencies calculated at the HF /STO-3G level and
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Table 3.4 Calculated and observed frequencies of the infrared- and Raman-active
modes of cis-transoid polyacetylene and its deuterated analog.

Species Mode®  Observed’ Calculated® / cm™'
Jem™'  Unscaled  x0.964
o(CzHa): ag ! 3090 3191 3076
by 1540 1575 1518
by 1250 1308 1260
by 910 012 A79
ba, g 3030 3153 3040
L sur 1548 1493
Ly 1170 1233 1188
g s B39 809
biw 19 3044 3168 3054
L 1328 1419 1368
11 448 462 445
baw a2 307 3204 30E5
13 1483 1534 1479
114 1246 1328 1280
big s B26 B42 812
bag  tas e a7h 944
ST e 584 563
T A T {933]‘ 1027 450
g (205)¢ 306 205
T 740 TTd 746
e-(CaDz): ag 1y 2315 2357 2272
i 1470 1479 1426
by 976 1017 981
Ly 835 845 815
by s 2260 2326 2242
L4 W4 1388 1338
Ly 1040 1058 1020
g s T40 713
o bw 2275 2326 2243
L 1050 1112 1072
L1 402 417 402
baw L2 2255 2366 2281
L3 se 1513 1458
14 802 047 913
blg 5 GRS 658 673
ba; s e 851 821
T e 475 458
Gy P18 (765)" 793 765
g (270)¢ 281 270
baw L 548 568 548

® The normal modes are classified under the factor group isomorphous to the point group Das.
b References [27,33,36,37). ¢ Calculated with the 3-21G basis set. ¢ The a, vibrations are infrared or
Haman inactive.
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Table 8.5 Optimized structural parameters of anfé-transoid and syn-transoid polymethineimine obtained
with the 3-21G basis set. In units of A (bond length) and degrees (bond angle).

Structural parameter Anfi-transoid Syn-transoid

C=N bond length 1.300 1.301
C~N bond length 1.373 1.400
CH bond length 1.108 1.088
CNC angle 119.3 119.1
N=CH angle 121.9 1186

then uniformly scaled by 0.89 were 3077, 1669, 1351, 1152, and 1001 em™!. The first
three of these frequencies appear to be in qualitative agreement with the observed (3170,
1620, and 1410 em™!). However, it should be remembered that the frequencies of trans
transoid polyacetylene calculated at this level of theory and then uniformly scaled by 0.89
considerably deviated from the observed with the largest deviation being about 340 em™'
[8].

In the present study, the structures were optimized and vibrational frequencies were
calculated at the B3LYP/3-21G level not only for anti-transoid polymethineimine but
also for syn-transoid polymethineimine. The optimized structures for these two isomers
are listed in Table 3.5. It was found that enti-transoid polymethineimine prefers a struc-
ture with alternating CN bond lengths, which is in accord with the results obtained by
Karpfen [68] and by Teramae et al. [8]. It should be remarked, however, that Peierls insta-
bility, which is the origin of the bond alternation in trans-transoid polyacetylene, cannot be
invoked to explain the bond alternation in anti-transoid polymethineimine. Syn-transoid
polymethineimine was also found to have an alternating structure. The CNC and N=CH
angles of syn-transoid polymethineimine are closer to 120° than the CCC and C=CH angles
of cis-transoid polyacetylene. This is because hydrogen-hydrogen nonbonded repulsion in
cis-transoid polyacetylene significantly distorts the sp® hybridization, and replacement of
a CH group in C2Hj unit cell by a nitrogen atom reduces this distortion. The C=N bond
lengths of anti-transoid and syn-transoid polymethineimine (1.300 and 1.301 A, respec-
tively) are longer than the measured C=N bond length of methylenimine CHaNH (1.273
A) [70], and the C-N bond lengths of anti-transoid and syn-transoid polymethineimine
(1.373 and 1.400 A, respectively) are shorter than the measured C-N bond length of
methylamine CHzNH; (1.471 A) [70]. This is a consequence of the m-electron conjugation
in polymethineimine, which renders the single bonds more double-bond-like character and

vice versa, in complete analogy to what was observed for polyacetylene.



Table 3.6 Calculated and observed frequencies of the infrared- and Raman-active modes
of anti-transoid and syr-transcid polymethineimine,

Species Mode®  Observed® / cm ' Calculated® / cm™'
a-(CHN): a 1 3170 2605
1y 1620 1396
12 1410 1275
Loy 916
a’ 1098
=(CHN), a1 14 3153
g 1396
by 1311
(5F] 242
v 550
b o 3170 3160
s 1620 1625
g 1410 1424
1 1148
v 895
az v d 1095
12 d 312
b iz 950
Vig 413

e

* The normal modes are classified under the factor group isomorphous to the point group C, for
anti-transoid polymethineimine and Cy, for syn-transoid polymethineimine. ® Reference [40].
¢ Calculated with the 3-21G basis set.  The a2 vibrations are infrared inactive.

The calculated frequencies of anti-transoid and syn-transoid polymethineimine are
compared with the observed frequencies [40] in Table 3.6. The vibrational modes are
depicted in Figs. 3.2, 3.3, and 3.4. There are only four in-plane modes and one out-of-
plane mode at k = 0 for the anti-transoid isomer. As is clear from the table, it is difficult
to assign the observed bands at 1620 cm™! and 1410 em™" to the calculated modes of anti-
transoid polymethineimine; there are unacceptable differences between the calculated and
the observed frequencies. If we assign the observed band at 1410 em™? to vy (calculated
frequency is 1396 cm™!), the observed band at 1620 cm™' seems to have no counterpart
in the calculation. In contrast, if we assume that syn-transoid polymethineimine is the
one experimentally studied, the three observed bands can be assigned tentatively to the
vg, v7, and vg modes. The differences between the calculated (unscaled) and observed
frequencies of these modes are within 14 em™!. This result suggests the possibility that
polymethineimine takes the syn-transoid structure.

There is another piece of theoretical evidence that support this possibility; the total
energy per CHN unit cell of the syn-transoid isomer is lower than that of the anti-transoid

isomer. The total energies of anti-transoid and syn-transoid polymethineimine and the
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Figure 3.2 The vibrational patterns of ants-transoid polymethineimine. The CH stretching mode is
excluded. The lines represent a N=CH unit, and the numbers indicate the scaled vibrational frequencies.

total energy differences between these two isomers are shown in Table 3.7. It should be
remembered that B3LYP/3-21G calculations reproduced the total energies of the poly-
acetylene isomers in the experimentally correct order [26]. Since the unit cell of polyme-
thineimine has a nonzero dipole moment, the total energies may converge very slowly with
the inclusion of the long-range Coulomb interaction. Thus, we calculated the total ener-
gies of the two isomers by taking into account the interactions (Ev + Ej + Engr) up to the
twentieth, fiftieth, and hundredth neighboring unit cells. The total energies converge at a
value accurate to 5 decimal places when the interactions up to the hundredth neighboring
unit cells are taken into account. The total energy of the syn-transoid isomer is lower than
that of the anti-transoid isomer by 15.6 kJ mol~!. The order of the total energies of the
polyacetylene isomers is the reverse; trans-transoid polyacetylene, which is isoelectronic
with anti-transoid polymethineimine, is more stable than cis-transoid polyacetylene, which
is isoelectronic with syn-transoid polymethineimine [26].

To examine the similarity and difference between an infinite polymethineimine chain
and their oligomers, the geometries of anti-transoid and syn-transoid oligomers of polyme-
thineimine were optimized and the harmonic frequencies were evaluated at the B3LYP/3-
21G level. It turned out that the geometries of anti-transoid oligomers of polymethineimine
with intermediate chain lengths have slightly curved backbones. Thus, strictly speaking,

anti-transoid polymethineimine does not have a translational symmetry. However, the
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Figure 3.8 The vibrational patterns for the in-plane modes of syn-transoid polymethineimine. The CH
stretching modes are excluded. The lines represent a CH=N-CH=N unit, and the numbers indicate the

scaled vibrational frequencies.

Table 3.7 Total and relative energies of anti-transoid and sym-transoid
polymethineimine calculated with the 3-21G basis set.

MNumber of Total energy® Relative energy®
neighbors ~ Anfrtransoid  Sym-transoid

20 —92.91903 —02.92493 -15.5

50 =52.91905 —02.92499 —15.6

100 ‘-Eﬂ'lﬁﬂﬁ —92.82500 —15.6

% In hartrees per CHN unit. * Energies relative to the anti-transoid isomer in kJ mol™! per CHN unit.

59



vy; 1095 cm™ viz 312 cm™

= +
- -
)—- +)——
+
vy3 950 cm™' vig 413 cm™

Figure 3.4 The vibrational patterns for the out-of-plane modes of syn-transoid polymethineimine. The
lines represent a CH=N-CH=N unit, and the numbers indicate the scaled vibrational frequencies.

curvature of the oligomer backbone is small [71], and hence we can safely expect that
the present treatment, which assumes a perfect translational symmetry of an infinite
anti-transoid polymethineimine chain, will not cause serious numerical errors in the total
energies, in the structural parameters, and in the vibrational frequencies. We confirmed
that the total energies of the syn-transoid oligomers with intermediate chain lengths are
lower than those of the anti-transocid oligomers with the same chain lengths. For instance,
the difference in total energy between anti-transoid oligomers with 6 and 7 C=N bonds
is —02.91849 hartree, and the difference between syn-transoid oligomers with 6 and 7
C=N bonds is —92.92336 hartree. The difference between these two values is —12.8 kJ
mol~!, which is comparable to the total energy difference between infinite anti-transoid
and syn-transoid polymethineimine chains (—15.6 kJ mol ™).

The calculations on syn-transoid oligomers with 6 and 7 C=N bonds also suggested
that the vibrational modes which give rise to the most intense infrared bands involve the
in-phase C=N stretching vibrations. The corresponding normal mode for syn-transoid
polymethineimine is probably v, although the correlation between the in-phase modes of
oligomers and the k = 0 modes of polymer is not straightforward in this case (vide post).
The calculated frequency of the vy mode of syn-transoid polymethineimine is 1311 em™!,
but no intense band was reported in this wavenumber region and only three infrared bands
due to vg, v7, and vg were observed [40]. Thus, the agreement between the calculated fre-

quencies of v, v7, and vg of syn-transoid polymethineimine and the observed frequencies
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might possibly be coincidental. The observed frequencies seem to be too few to make a
definite comparison with the caleulations. To conclude that the polymethineimine samples
synthesized by Wahrle consist of the syn-transoid chains, the experimental reexamination
of the vibrational spectra of polymethineimine is required. The present calculations, nev-
ertheless, indicate that polymethineimine is unlikely to take the anii-transoid structure
in the actual samples, and the previous assumption that the polymethineimine samples
consist of the anti-transoid chains is not justified.

It turned out that the vibrational patterns of some k = 0 modes of polymethineimine
were substantially different from those of the corresponding in-phase modes of oligomers.
In other words, the vibrational patterns of some modes change to a great extent with
increasing chain length. The change in the vibrational patterns is particularly large for
the 13 modes of anti-transoid and syn-transoid polymethineimine and for the in-phase
C=N stretching modes of their oligomers. In the in-phase C=N stretching modes of
anti-transoid and syn-transoid oligomers with 7 C=N bonds, the hydrogen and carbon
atoms move nearly in the opposite direction, while in the 14 modes of anti-transoid and
syn-transoid polymethineimine, the displacements of the carbon and hydrogen atoms are
nearly in the same direction (Fig. 3.3). This change in the vibrational patterns of the in-
phase C=N stretching modes between oligomers and polymers will be related to the large
chain-length dependence of the vibrational frequencies of these modes. The frequencies
of the in-phase C=N stretching modes of polymethineimine oligomers exhibit a larger
chain-length dependence than the frequencies of the in-phase C=C stretching modes of

oligoenes.

3.5 Conclusion

The analytical-energy-gradient scheme based on the density functional crystal orbital
method was implemented and applied to the calculations of the normal vibrations of
polyacetylene and polymethineimine. The vibrational frequencies of trans-transoid and
cis-transoid polyacetylene calculated with the B3LYP functional and then uniformly scaled
were in reasonable agreement with the observed frequencies. This result implies that the
present method can reproduce the vibrational spectra of a variety of conjugated poly-
mers with considerable accuracy. The isomeric form of polymethineimine in the actual
samples is discussed on the basis of the calculated frequencies and total energies of the anti-

transoid and syn-transoid isomers of polymethineimine. Because of a very small number
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of observed frequencies available, it is difficult to conclude unambiguously which isomer
the actual samples of polymethineimine consist of. The present calculations, nevertheless,
indicate that the total energy of the syn-transoid isomer is definitely lower than that of
the anti-transoid isomer, and the previous assumption that polymethineimine takes the

anti-transoid structure is ungrounded.
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Structures and normal vibrations
of polyethylene
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Abstract

Optimized structural parameters and frequencies of the infrared- and Raman-active vi-
brations are obtained for all-frans polyethylene by using the analytical-energy-gradient
scheme in the density functional crystal orbital formalism. The Slater—Vosko-Wilk-Nusair
(SVWN), the Becke-Lee-Yang-Parr (BLYP), and the Becke3-Lee-Yang-Parr (B3LYP)
functionals are used with the 3-21G and 6-31G(d) basis sets. The frequencies calculated
with the 6-31G(d) basis set are found to be in better agreement with the observed frequen-
cies than those calculated with the 3-21G basis set regardless of the exchange-correlation
functionals used. The root-mean-square errors between the calculated and observed fre-
quencies are 21, 20, and 15 cm™! for the SVWN/6-31G(d), the BLYP/6-31G(d), and the
B3LYP/6-31G(d) calculations, respectively (the frequencies obtained from the B3LYP/6-
31G(d) calculations are scaled uniformly by 0.966). Optical branches of the phonon dis-
persion curves are calculated at the SVWN/6-31G(d) level by adopting a C7Hj4 unit as a
reference unit cell. The calculated phonon dispersion curves are in reasonable agreement
with the curves experimentally determined and with the curves obtained with an empirical
force field except for the skeletal stretching branches. Inelastic neutron scattering (INS)
spectrum is calculated by using the force field derived at the SVWN/6-31G(d) level and
by taking into account the effects of the Debye~Waller factors and the phonon wings. The
overall intensity profile of the observed INS spectrum is well reproduced by the present

calculations.

4.1 Introduction

All-trans polyethylene (hereafter simply referred to as polyethylene) is one of the polymers
whose structures and vibrations are best characterized experimentally. For this reason,
polyethylene has also been the subject of a number of theoretical studies, whereby the
performance of the theoretical models employed has been evaluated on the basis of the
comparison between the calculations and experiments.

For instance, the ab initio crystal orbital method at the Hartree-Fock (HF) level was
intensively applied to polyethylene for the purpose of elucidating the electronic structure,
equilibrium molecular structure, conformation, and mechanical and vibrational properties
[1-15]. Among these applications, the number of the vibrational analyses of the polymer

is surprisingly small [9,12]. The first attempt was made by Karpfen [9] to calculate some
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vibrational force constants of polyethylene. Fitting with polynomials the total energies of
the polymer computed at 41 different structures, he obtained the equilibrium structure
and some force constants in the internal coordinate basis. Although the force constants
calculated in this manner with roughly double zeta quality basis set were found to be
consistent with the empirical force constants of Schachtschneider and Snyder [16], the
number of the calculated force constants was insufficient to perform a complete vibrational
analysis. Later Teramae et al. derived the formulas for the analytical-energy-gradient
scheme in the ab initio HF crystal orbital method [12,17], and carried out the vibrational
analysis of polyethylene at the HF/STO-3G level [12]. The overall agreement between
the observed frequencies and the frequencies calculated and then scaled uniformly with
an optimum scale factor was good, considering the extremely small basis set used in
the calculation. Nevertheless, the largest deviation between the calculated and observed
frequencies was as large as about 64 cm™! [18], and there is room for improvement by
using more sophisticated theoretical levels and larger basis sets.

A few groups of researchers pioneered the use of correlated theoretical levels in the ab
initio crystal orbital method and performed post-HF calculations on polyethylene [19-24].
Suhai analyzed the effect of electron correlation on the mechanical properties of polyethy-
lene on the basis of the second-order Mpller-Plesset perturbation (MP2) calculations [19-
21]. So far, however, analytical-energy-gradient schemes have not been implemented in
the ab initio crystal orbital method at post-HF levels, and no correlated calculation has
been performed on the vibrational frequencies of polyethylene, although it may appear to
be computationally feasible.

Density functional theory has also been applied to polyethylene for the study of the
electronic structure, conformation, and interchain interactions [25-30]. In the last decade,
density functional theory has proven a powerful tool for the vibrational frequency predic-
tion of a wide variety of molecules [31-33]. Wong [31] calculated the vibrational frequencies
for a set of 122 molecules with various density functional methods and the MP2 method,
and compared them with the experimental frequencies. The overall root-mean-square er-
rors between the observed frequencies and the frequencies calculated and then uniformly
scaled were significantly smaller for the density functional methods than for the MP2
method. The best agreement was obtained with the density functional methods using the
hybrid functionals such as the Becke3-Lee-Yang-Parr (B3LYP) and the Becke3-Perdew86
(B3P86) functionals. Scott and Radom [32] also calculated the vibrational frequencies for
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122 molecules with various theoretical methods and basis sets. The theoretical methods
investigated were semiempirical methods, HF, MP2, quadratic configuration interaction
with single and double substitutions (QCISD), and several variants of density functional
theory. Scott and Radom concluded that the hybrid HF /density functional methods such
as the B3LYP/6-31G(d) method performed best for the frequency calculations. These
results suggest that density functional theory can also predict the vibrational frequency
of polymers with considerable accuracy.

In this chapter, we present the results of the density functional caleculations on
the vibrational frequencies of polyethylene. The force constants of an infinite polyethy-
lene chain are evaluated by numerical differentiation of the analytical energy gradients.
The exchange-correlation functionals employed are the local Slater—Vosko—Wilk—Nusair
(SVWN) functional, the gradient-corrected Becke-Lee-Yang-Parr (BLYP) functional, and
the hybrid B3LYP functional. The basis sets used are the standard 3-21G and 6-31G(d)
basis sets. The combination of these exchange-correlation functionals and the basis sets
constitutes one of the most frequently studied sets of density functional models. The per-
formance of these models is evaluated in terms of the maximum and root-mean-square
ertors between the caleulated and observed frequencies of the infrared- and Raman-active
vibrations. By adopting a C;yH;4 reference unit cell, we also calculate the frequencies of
the modes in the whole range of the Brillonin zone by using the SVWN/6-31G(d) level of
approximation. The optical branches of the phonon dispersion curves are drawn, and are
compared with the curves determined experimentally by Snyder and Schachtschneider [34]
and with the curves obtained by using the empirical force field of Tasumi et al. [35-37].
Inelastic neutron scattering (INS) spectrum of polyethylene is also calculated with the
force field derived at the SVWN/6-31G(d) level by taking into account the effects of the

Debye-Waller factors and the phonon wings, and is compared with an observed spectrum.

4.2 Method of calculations

In the present study, the linear-combination-of-atomic-orbital (LCAQ) density functional
crystal orbital method was applied to the geometry optimizations and vibrational fre-
quency calculations of an infinite polyethylene chain. The formalism and computer imple-
mentation of the SCF procedure and the analytical-energy-gradient scheme were described
previously [38,39]. Polyethylene is a 2; helix, and a translational repeat unit (CaHq) con-

tains two chemical repeat units (CHz). The geometry optimizations of the polymer were
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performed with the analytical energy gradients by adopting a CHgp reference unit cell
and by making use of the screw-axis symmetry. Three exchange-correlation functionals
(SVWN [40,41), BLYP [42-44], and B3LYP [45|) were employed with the 3-21G [46] and
6-31G(d) [47,48] basis sets. Electron density was also expanded by auxiliary basis sets in
order to minimize the computational tasks concerning the accumulation of the long-range
electron repulsion integrals. T'wo sets of auxiliary basis sets were used: auxiliary basis set
I for the 3-21G calculations and auxiliary basis set 1I for the 6-31G(d) calculations. These
two auxiliary basis sets are identical to those used in Chapter 3. The long-range Coulomb
interactions were taken into account by evaluating explicitly the relevant electron repulsion
integrals extending to the fortieth neighboring CHy unit cells. For the other molecular
integrals, interactions up to the eighth neighboring CHz unit cells were considered.

The normal modes of polyethylene can be characterized in terms of the wavevector k
of the vibrations or the phase difference # between two adjacent CHp groups. The normal
modes at k = 0 (or at # = 0 and ) are infrared- or Raman-active for polyethylene.
The frequencies and vibrational patterns of the normal modes at any value of k can be
calculated by diagonalizing the so-called k-dependent dynamical force-constant matrix
D(k), which is defined by the following equation (see Refs. [37,49]):

D(k) = M~ iF(k)M"1, (4.1)

where M is the diagonal matrix of the atomic masses. The k-dependent force-constant
matrix F(k) is constructed by summing the force-constant matrix Fy, associate with the
Cartesian coordinates of atoms belonging to unit cells 0 and n multiplied by a proper set
of phase factors [37,49):

F(k) =) Fnexp(inka), (4.2)
where ¢ is the translational pericd. F‘ur:' the vibrational frequency calculations of the
infrared- and Raman-active modes, we lifted the screw-axis symmetry of the system and
adopted a CoH; reference unit cell. The force constants were evaluated by numerical differ-
entiation of the analytical energy gradients. Since the analytical-energy-gradient scheme
used in the present study assumes that all the nuclei that are equivalent by the transla-
tional symmetry move in phase [12,17,39], the 18 x 18 force-constant matrix thus obtained
corresponds to F(0). The frequencies of the infrared- and Raman-active vibrations were
calculated by diagonalizing the dynamical force-constant matrix D(0) constructed from
F(0).
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The frequencies of the normal modes in the whole range of the Brillouin zone were
calculated at the SVWN/6-31G(d) level by extending the reference unit cell for the crystal
orbital calculations to a C7Hy4 unit. The 9 x 9 force-constant matrices F,,(—3 < n < 3)
were computed by numerically differentiating the analytical energy gradients for the struc-
tures in which the nuclei belonging to the central CHy group were displaced from the equi-
librium positions. The force-constant matrices F,, with |n| greater than 3, whose elements
are expected to have very small absolute values, were neglected in the normal coordinate
analysis. This approximation does not lead to numerical errors in the vibrational fre-
guencies of optical branches; the frequencies of the infrared- and Raman-active vibrations
calculated with this approximation are in agreement within 3 cm~! with those calculated
by the method described in the preceding paragraph. However, F,, with |n| greater than
3 were found to be important for normal modes with almost zero vibrational frequencies,
and hence the present method cannot treat the acoustic vibrations at k = 0. In the present
study, therefore, we concentrate on the optical branches of the phonon dispersion curves,
The frequencies of the modes belonging to the optical branches were calculated by varying
the phase difference # from 0 to 7 at intervals of 0.01x.

The INS spectrum of polyethylene was simulated by using the force field F, (-3 <
n < 3) obtained at the SVWN/6-31G(d) level, and was compared with the high-resolution
spectrum observed by Parker [50]. The method of simulation was outlined in Ref. [51]. By
taking into account the experimental conditions under which the spectrum was measured
[50], we employed the following expression [51-54] for the scattering function Sy(Q,v)
for the fundamental transitions of the high-frequency vibrations (for the separation of the
high-frequency and low-frequency vibrations, the readers are referred to Refs. [55,56]):

Su(Q,v) o exp[—2Wh(Q)]gun(v), (4.3)

where i) is the magnitude of neutron momentum transfer, hv is the neutron energy trans-
fer, and exp|-2Wy(Q)] is the Debye-Waller factor. The hydrogen-amplitude-weighted
density of states guyn(v) for polyethylene was computed as a histogram at 1-cm™! inter-
vals and then convoluted with a Gaussian function with a full width at half maximum
being 30 cm~! to take into account the band broadening due to the recoil of the hydrogen
nuclei. Since only the scattered neutron with a very small final energy (ca. 32 em™!) were
detected in the experiment [50], @ is related to v by

(hQ)?

2my

= hv, (4.4)
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where my; is the mass of a neutron [57]. The effect of phonon wings [55,56] was considered
by convoluting the scattering function 5y(Q, vv) for the high-frequency vibrations with the

scattering function Sp(Q,v) for the low-frequency vibrations:

5(Q,v) = Su(Q,v) @ SL(Q,v), (4.5)

with
S1.(Q, v) o< exp[—2W1(Q)]guL(v). (4.6)

The hydrogen-amplitude-weighted density of states for the low-frequency vibrations gy ()
was approximated by the observed spectrum in the region below 210 em™!. The contri-
bution of the higher-order phonon wings up to fifth order was calculated by repeatedly
convoluting this gui(1#) and then collected after proper normalization to give Sp(Q,v).
Since the observed spectrum was measured at a low temperature (30 K), only the additive
contribution of the phonon wings was included in the calculations. The Debye-Waller

factor was calculated by using the isotropic approximation:
exp[—2Wi(Q)] = exp[-Q*(u*)u], (4.7)

and
exp[—2Wi(Q)] = exp[-Q*(u?),] (4.8)

where (u®)y and (u?);, are the mean square amplitude of the hydrogen nuclei due to the
high-frequency and low-frequency vibrations, respectively. The values of {(u?)y and (u?)y,
used in the present study were 0.012 and 0.020 A2, respectively. The value of (u2)g, (0.020
A?) may be compared to the value determined experimentally by Lynch et al. [58] at 93
K (0.024 — 0.027 A2) and by Myers and Randolph [59] at 77 K (0.012 — 0.018 A?) and at
4.2 K (0.008 — 0.012 A?).

4.3 Results and discussion
4.3.1 Structural parameters

The optimized structural parameters are listed in Table 4.1 together with the experimental
values determined by X-ray diffraction and neutron diffraction techniques [60-64]. The
optimized structural parameters seem to be affected to a greater extent by the choice of
the basis sets than that of the exchange-correlation functionals except for the CC bond
lengths. The CCC angles calculated with the 6-31G(d) basis set (113.6 — 113.7°) are
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Table 4.1 Calculated and observed structural parameters of all-frans polyethylene.
Bond lengths in A and bond angles in degrees,

CC bond length CH bond length CCC angle HCH angle

SVWN/3-21G 1.521 1111 1127 106.6

SVWN/6-31G(d) 1.511 1.110 113.6 105.4

BLYP/3-21G 1.557 1.107 1128 107.0

BLYP/6-31G(d) 1.546 1.108 113.7 106.1

BALYP/3-21G 1.544 1.099 112.8 107.2

BALYP/6-31G(d) 1.534 L.100 113.7 106.1

X-ray diffraction [60] 1.53 112

X-ray diffraction |61) 1.53440.006 112.0+0.4

X-ray diffraction (62] 1.53340.022 1.07£0.022 111.94£1.8 17£1.8

X-ray diffraction [63] 1.52740.007 112108

Meutron diffraction [64] 1.578+0.005 1.06+0.01 107.7£0.5  108.04+1.0
~ L10x0.01

coincident with each other and are invariably larger than those calculated with the 3-21G
basis set (112.7 — 112.87). The measured CCC angles are in excellent agreement with
each other except for the value determined by the neutron diffraction study [64), which is
substantially smaller than the other values. The CCC angles optimized with the 3-21G
basis set (112.7—112.8°) appears to be in a slightly better agreement with the experimental
values (112°) than those obtained with the 6-31G(d) basis set (113.6 — 113.7°). The CC
bond lengths varies substantially with the exchange-correlation functionals and basis sets
employed. The use of the 6-31G(d) basis set decreases the CC bond lengths by about 0.01
A from the values obtained with the 3-21G basis set. The measured CC bond lengths
are generally consistent with each other, although the value determined by the neutron
diffraction study [64| considerably deviates from the other values again. The CC bond
length optimized at the BSLYP/6-31G(d) level (1.534 A) is within the experimental errors
of the bond lengths measured by the X-ray diffraction studies.

4.3.2 Frequencies of the infrared- and Raman-active vibrations

The calculated frequencies of the infrared- and Raman-active vibrations of polyethylene
and polyethylene-dy are given in Table 4.2. The frequencies of the infrared and Ra-
man bands were reported in Refs. [65-7T1] for polyethylene and in Refs. [68,71-74] for
polyethylene-d;. The observed frequencies given in Table 4.2 were taken from Refs. [65—
68,74]. The assignments of the observed bands of the undeuterated species are based on
the studies of Nielsen and Holland |67, of Tasumi et al. [35-37], and of Schachtschneider
and Snyder [16], except for the vy(w) vibration. These groups assigned a band at 1415
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em™! to vy(), but later Snyder revised the assignment of this vibration and reassigned
a weaker Raman band at 1370 cm™! to wy(x) [75,76]. The assignments of the observed
bands of polyethylene-dy are based on the studies of Tasumi et al. [37,72]. The normal
coordinate analyses of polyethylene using empirical force fields were reviewed by Barnes
and Fanconi [77] with emphasis on the interchain interactions.

In Table 4.2, the frequencies calculated with the SVWN and BLYP functionals are
directly (without scaling of the force constants or frequencies) compared with the observed
frequencies. The frequencies calculated at the BILYP/3-21G and B3LYP/6-31G(d) levels
are scaled uniformly with the scale factors determined by a least-squares fitting procedure
(the CH and CD stretching modes were excluded in this procedure). The optimum scale
factors are 0958 for the B3LYP/3-21G leve] and 0.966 for the BALYP/6-31G(d) level. The
scale factor for the BALYP/6-31G(d) level (0.966) is close to the values recommended by
Wong (0.9613) [31] and by Scott and Radom (0.9614) [32].

As can be seen in Table 4.2, the maximum and root-mean-square errors between the
calculated and observed frequencies are larger for the BLYP/3-21G and B3LYP/3-21G
calculations than for the SVWN/3-21G calculation. In other words, as long as the 3-
21G basis set is used, the gradient correction or exact-exchange mixing does not lead to
improved agreement. In contrast, the use of the 6-31G(d) basis set significantly reduces
the deviations between the calculated and observed frequencies, particularly for the BLYP
and B3LYP calculations. The frequencies calculated with the 6-31G(d) basis set are found
to be in good agreement with the observed frequencies with the root-mean-square errors
being 21, 20 and 15 em™! for the SVWN, BLYP, and B3LYP calculations, respectively.
Therefore, these three functionals (SVWN, BLYP, and B3LYP) perform equally well for
the vibrational frequency predictions of polyethylene provided that the 6-31G(d) basis set
is used. The inclusion of polarization function in the basis set has more significant effects
on the vibrational frequencies of polyethylene than the choice of the exchange-correlation
functionals.

The above-mentioned observation for palyethylene contrasts with what we found for
polyacetylene. The SVWN and BLYP predicted the equilibrium structures of trans-
transoid polyacetylene that were substantially different from the result obtained with
the B3LYP functional [38]. The structures optimized with the SVWN and BLYP func-
tionals were found to be even qualitatively incorrect, while the B3LYP functional pre-

dicted the structure and vibrational frequencies of frans-transcid polyacetylene that were
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Table 4.2 Frequencies (in units of em™") of the infrared- and Raman-active vibrations of all-trans
polyethylene and all-trans polyethylene-ds calculated with the SVWN, BLYP, and B3LYP functionals,

Mode® Obs.? SVWN BLYP BaLyp:
191G 631G 321G 631G(d) 321G 631G(d)
all-trans polyethylene

ag  1(0) 2848 2041 2041 2045 2929 2902 2012
12(0) 1440 1482 1445 1514 1478 1484 1465
v4(0) 1131 1143 1153 1094 1107 1087 1108
by  va(m) 1370% 1344 1384 1348 1370 1334 1374
va(m) 1061 1089 1090 1004 1029 1008 1033

brg vl 1295 1207 1268 1324 1301 1302 1289
bs;  ve(0) 2883 2067 2067 2958 2043 2018 2028

wr(0) 1168 1185 1168 1192 1185 1174 1176
oy vsl(D) 1050 1079 1032 1098 1058 1081 1047
biu  vglm) 2919 3025 3014 3016 2094 2073 2076

vl 725 T3 723 726 724 711 T2
baw  b(m) 2851 2964 2960 2963 2046 2919 2927
() 1468 1507 1473 1541 1509 1509 1492

baw  ra(0) 1176 1190 1146 1219 1186 1199 1174
all-trans polyethylene-dq

ag (0] 2103 2141 2146 2140 2134 2111 2124

(0] 1148 1153 1160 1144 1145 1128 1143

3(0) a75 1011 085 997 981 984 975

bip raiw) 1253 1240 1307 1163 1221 1169 1240
() B3l 835 BT 823 Bl16 814 810

bag  wrl(m) 917 918 897 936 920 920 912

bz, (D) 2199 2197 2199 2193 2183 2164 2172

v (0) 9g3 1029 1015 1030 1026 1015 1019

au  wl0) 748 763 730 777 748 764 740
by wgiw) 2195 2240 2232 2234 2218 2202 2204
vg{w) 525 530 523 524 523 513 514

bae 1w} 2089 2152 2151 2150 2140 2119 2126

va(x) 1091 1110 1084 1137 1112 1112 1099

by wg(0) 892 800 867 922 897 807 888
Maximum error” 42 51 90 41 B4 28
Root mean square error® 22 21 42 20 a2 15

® The normal modes are classified under the factor group isomorphous to the point group Day. The
branches of the phonon dispersion curves are numbered in the same way as in Ref, [35]. The v5 and 1y
are the acoustic branches and do not appear in this table. The values in the parentheses are the
vibrational phase difference between the adjacent CHz groups. ¥ The observed frequencies are taken from
Refs. [65-68,74]. ¢ The frequencies calculated with the 3-21G basis set are uniformly scaled by 0.958, and
those calculated with the 6-31G(d) basis set by 0.966. ¢ References [75,76]. © CH and CD stretching
modes are excluded.
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Figure 4.1 Phonon dispersion curves of all-trans polyethylene in the 700-1500-cm ! region. Solid curves:
calculated at the SVWN/6-31G(d) level. Broken curves: obtained with the force field of Tasumi et al
(Refs. [35-37]). Filled circles: the vibrational frequencies of n-alkane molecules measured by Snyder and
Schachtschneider (Ref. [34]) plotted at appropriate vibrational phase differences.

in good agreement with the experimental results [38,39]. Therefore, the choice of exchange-
correlation functionals is of critical importance for trans-transoid polyacetylene. The fre-
quencies calculated at the BSLYP/6-31G(d) level were in better agreement with the ob-
served frequencies than those calculated at the BILYP/3-21G level also for trans-transoid
polyacetylene, but the basis-set dependence on the calculated frequencies seems to be less
significant for polyacetylene than for polyethylene.

As we have seen in the previous paragraphs, the frequencies of the infrared- and
Raman-active vibrations of polyethylene calculated at the SVWN/6-31G(d) level are in
agreement with the observed frequencies to an extent similar to those calculated at the
BLYP/6-31G(d) and B3LYP/6-31G(d) levels. This result suggests that the SVWN cal-
culations, which require much less computational costs than the BYLP and B3LYF cal-
culations, provide a reasonably accurate force field for polyethylene, whereby not only
the infrared and Raman spectra but also other vibrational spectra of the polymer can be
theoretically interpreted. In what follows, the phonon dispersion curves and INS spectrum
of polyethylene calculated with the force field derived at the SVWN/6-31G(d) level are

compared with the experimental results.
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4.3.3 Phonon dispersion curves

The calculated phonon dispersion curves of polyethylene and polyethylene-dy are depicted
in Figs. 4.1 and 4.2, respectively. It is known that the vibrational frequencies of n-alkane
molecules fall on the phonon dispersion curves of an infinite polyethylene chain at the
vibrational phase differences between adjacent CHjy groups. Snyder and Schachtschneider
[34] measured the infrared spectra of a series of n-alkane molecules from C3Hg through n-
Cy9Hy4p and suggested the vibrational phase difference for each of the observed vibrational
modes. The experimental phonon dispersion curves were reproduced in Fig. 4.1 as filled
circles by plotting the frequencies of n-Cy5Hgp through n-CigH4o observed by Snyder and
Schachtschneider [34]. The phonon dispersion curves obtained with the empirical force
field of Tasumi et al. [35-37] are also drawn in Figs. 4.1 and 4.2 (the force constants
tabulated in Ref. [37] were actually used). The phonon dispersion curves of Tasumi et
al. are in excellent agreement with the plot of Snyder and Schachtschneider (Fig. 4.1).
Therefore, they can practically be regarded as the true phonon dispersion curves, except
for the 15 branch of the undeuterated species at # ~ m because these authors based
their force field determination on the wrong assignment of v3(r). Henceforth, the phonon
dispersion curves of Snyder and Schachtschneider and of Tasumi et al. are simply referred
to as experimental curves.

As can be seen in Fig. 4.1, the calculated phonon dispersion curves of the undeuter-
ated species are generally consistent with the experimental ones. The calculated v branch
overlaps the experimental counterpart in the whole region of the Brillouin zone. For the
v, v, and 14 branches also, the theoretical and experimental curves are in reasonable
agreement with each other. However, the calculated v4 branch are found to have substan-
tially higher frequencies than the experimental curve particularly for the phase difference
of @ > w/3 with the largest deviation being about 45 cm™'. Therefore, although the
force field derived at the SVWN/6-31G(d) level is considered to be close to the true
one, there still exist significant differences between them. The deviation found in the 1y
branch cannot be ascribed to the neglect of the force-constant matrices Fy, with |n| greater
than 3, because the vy branch calculated with Fp,(—3 < n < 3) is practically the same
with that calculated with F,(—=2 < n < 2). Similar trend can be seen in the calculated
phonen dispersion curves of polyethylene-dy, as shown in Fig. 4.2. The va, vy, vy, and vy

branches of the calculated phonon dispersion curves are in reasonable agreement with the
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curves: caleulated at the SVWN/6-31G(d) level. Broken curves: obtained with the force field of Tasumi

et al (Refs. [35-37]).

experimental counterparts, but the calculated 1o branch significantly deviates from the
experimental branch in the region of & > /3. It should be pointed out that both the vy
branch of the undeuterated species for # > w/3 and the 1, branch of the perdeuterated
species for # > n/3 mainly consist of the skeletal stretching vibrations [35]. A large part
of the discrepancies observed for these branches are found to be ascribable to the differ-
ence in the diagonal and off-diagonal force constants associated with the z-coordinates of
the carbon nuclei between the calculated and the empirical force fields (the chain axis is

parallel to the z-axis).

4.3.4 Inelastic neutron scattering

In contrast to infrared and Raman spectroscopy, INS spectroscopy can in principle probe
the vibrational modes in the whole range of the Brillouin zone. The intensities of the
transitions in INS spectra are primarily determined by the momentum transfer and the
vibrational amplitudes of hydrogen nuclei [52-54]. INS spectroscopy provides us with infor-
mation about the phonon dispersion curves of polymers through the hydrogen-amplitude-
weighted density of states gy(r). The INS spectra of polyethylene were measured by a
number of groups [50,78-82], and are interpreted by Lynch et al. [58] and by Kitagawa and
Miyazawa [83,84] by making use of the empirical force fields. Recently, high-resolution INS
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Figure 4.3 (a) Inelastic neutron scattering (INS) spectrum of a randomly oriented all-frans polyethylene
sample in the 600-2000-cm™' region observed by Parker (Ref. [50]). The approximate peak positions
were taken from the original figures. (b) Hydrogen-amplitude-weighted density of states caleulated at the
SYWN/6-31G(d) level and convoluted with a Gaussian function whose full width at half maximum is 30
em™ . (c) Calculated INS spectrum in which the effects of the Debye-Waller factors and the phonon wings
are taken into account.
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spectra of polyethylene were observed by Parker [50]. The spectrum observed by Parker
for a randomly oriented sample is reproduced in Fig. 4.3(a).

The gu(v) profile calculated with the force field derived at the SVWN/6-31G(d) level
is shown in Fig. 4.3(b). The gu(v) profile seems to provide a qualitative account of the
overall intensity profile of the observed spectrum. The intense peaks in the observed
INS spectrum at 730, 1070, 1315, and 1465 cm™" are reproduced in the gy(v) profile. The
calculated peak positions are in reasonable agreement with the observed ones, although the
calculated peak position of 1281 em~! seems to be too low as compared to the experimental
result (1315 cm™!). A weak band at about 1400 cm~! and a shoulder band at about 1250
cm™! in the observed spectrum can also be seen in the gy(v) profile. However, a weak
broad band around 900 cm™! and a broad feature in the high frequency side of the 1465-
em~! band in the observed spectrum are not reproduced in the gy (v) profile. The relative
intensities of the peaks in the 1300~ 1500-cm™! region to the peak at 730 cm™! are also too
large in the gy () profile than in the observed spectrum. These deviations are apparently
due to the neglect of the Debye—Waller factors and the phonon wings.

The INS spectrum shown in Fig. 4.3(c) is calculated by taking into account the effects
of the Debye-Waller factors and the phonon wings. The agreement between the calculated
and observed INS spectrum becomes satisfactory. The calculated spectrum accounts for
the observed broad band around 900 cm~! and the broad shoulder above 1500 em™!.
Comparison between the calculated INS spectrum and the gu(v) profile indicates that
the broad band around 900 cm™~! is predominantly due to the phonon wings of the 724
em™! band and that the contribution from the minimum of the v4 branch to this band
is negligibly small. It appears that the phonon wings are at least partly responsible for
the constant level of scattering in the region of 700 — 1700 em™!. However, the level
of scattering in the higher-frequency region cannot be accounted for by the fundamental
transitions and their phonon wings.

In the calculated INS spectrum and the gy(v) profile, there are two bands in the
1000 — 1100-cm™! region, while in the observed spectrum there is only one broad band

in the calculated spectrum is

with an asymmetric shape. The peak at about 1020 em™
primarily due to vg(0) with a smaller contribution from the minimum of the vy branch.
The calculated peak at 1092 cm™! arises from v4(n). The discrepancy in this region is
probably due to a larger difference (58 em~!) in the calculated frequencies between vy ()

and v5(0) than the difference actually observed (11 em™') and to a very small dispersion
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in the calculated vy branch near # = 7.

4.4 Conclusion

The density functional erystal orbital method is found to be useful in theoretically in-
terpreting the vibrational spectra of polyethylene. The frequencies of the infrared- and
Raman-active vibrations calculated at the SVWN/6-31G(d), BLYP/6-31G(d), and B3LYP
/6-31G(d) levels are found to be in agreement with the observed frequencies with the root-
mean-square errors being 21, 20, and 15 ecm™!, respectively. Provided that the 6-31G(d)
basis set is used, not only the gradient-corrected BLYF functional and hybrid B3LYP
functional but also the local SVWN functional provides us with a reasonably good force
field for polyethylene and probably also for the polymers having similar molecular struc-
tures without m-electron conjugation. The phonon dispersion curves and INS spectrum of
polyethylene calculated with the force field derived at the SVWN/6-31G(d) level are also
in reasonable agreement with the experimental results, although the detailed comparison
indicates that there still exist discrepancies between the calculations and experiments. In
the present study, the force-constant matrices Fy, with |n| < 3 were computed by adopting
a larger reference unit cell than the chemical repeat unit. This treatment is apparently
inefficient and is also found to yield inaccurate results for low-frequency vibrations. It is
highly desirable to develop an efficient and accurate analytical-second-derivative scheme
in the framework of crystal orbital theory whereby the force-constant matrices F,, with

an arbitrary n [or equivalently F(k) with an arbitrary k] can be calculated.
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Abstract

Structural parameters, binding energies, and frequencies of the infrared- and Raman-active
vibrations are calculated for an infinite zigzag chain of hydrogen fluoride molecules by ab
initio crystal orbital theory with the analytical-energy-gradient scheme. The Becke-Lee-
Yang-Parr (BLYP), Becke3-Lee-Yang-Parr (B3LYP), and Hartree-Fock (RHF) levels are
used in conjunction with the 6-311++G(d,p) basis set. Molecular orbital calculations at
the BLYP, B3LYP, RHF, and the second-order Mpller-Plesset perturbation (MP2) lev-
els with the same basis set are carried out on linear HF oligomers containing up to six
molecules, in order to examine the chain-length dependence of the energetic and structural
properties. The predicted chain-length dependence is found to be significantly smaller in
the RHF results than in the BLYP and B3LYP results. The RHF level substantially un-
derestimates the downward frequency shifts in the intramolecular H-F stretching modes
on going from the monomer to the polymer, while the shifts calculated at the BLYP and
B3LYP levels are much closer to the experimental findings, although they are slightly over-
estimated. The RHF level strongly underestimates the intramolecular H-F bond length
and overestimates the intermolecular F- - -H and F- . .I' distances of the HF polymer, while
the structural parameters predicted at the BLYP and BALYP levels are in good agreement
with the experimental results. It is concluded that the RHF level seriously underestimates
the cooperative binding effects of consecutive hydrogen bonds, whereas the BLYP and
B3LYP levels slightly overestimate this behavior; but these latter levels provide much
better description than the former. Vibrational assignment of librational modes of HF
crystals is reexamined on the basis of the calculated frequencies. The observed frequencies
of the librational and pseudo-translational modes fall between the corresponding frequen-
cies calculated at the RHF and density functional levels.

5.1 Introduction

It is well recognized that the energetic and structural properties of consecutively hydrogen-
bonded systems X-H-.-X-H---X-H exhibit “cooperative,” or “non-additive” behavior
[1-8]. For instance, the binding energy per hydrogen bond increases as the number of
constituent X-H molecules increases. The intermolecular H.-.X distances shorten and
the intramolecular X-H bonds lenpgthen as the chain becomes longer, which accompa-

nies a decrease in the frequencies of the X-H stretching modes. The dipole moments of
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hydrogen-bonded chains are usually larger than a simple vector addition of the dipole mo-
ment of a monomer would suggest. Quantitative knowledge of the cooperativity is essential
in studying the structures and dynamics of hydrogen-bonded systems in the condensed
phase.

The cooperative behavior is most clearly illustrated by the linear or cyclic hydrogen-
bonded chains of hydrogen fluoride (HF) molecules [3,5,9-17]. The intermolecular binding
in HF clusters is categorized into moderately strong hydrogen bonds [5], and the crystalline
HF is constructed from one-dimensional zigzag chains (HF )., of HF molecules [18-20]. The
intermolecular F---F distance of (HF),, is 2.49 — 2.50 A (18,19], which is substantially
shorter than the F-.-F distance (2.72 — 2.79 A) [21,22] of the neutral dimer (HF)y. The
frequencies of the H-F stretching modes decrease by several hundreds of em™! on going
from (HF)z [23] to (HF) [20,24-30].

The most intensive investigations on the cooperativity of the hydrogen bonds in HF
clusters were carried out by Karpfen and Yanovitskii [14,15]. They examined the chain-
length dependence of the H-F and F.--F distances, frequencies of the H-F stretching
modes, and other properties for neutral, protonated, and deprotonated HF clusters. In
these studies, the authors employed the Hartree-Fock approximation with the 4-31G, 6-
31G(d,p), and 6-311++G(2d,p) basis sets. The calculated chain-length dependence was
found to be systematic, and it turned out that the calculated bond lengths and frequencies
converged very slowly to the corresponding values of (HF)o. Therefore, it is hardly
possible to obtain the structures or vibrational frequencies of (HF )y, by extrapolation from
those of oligomers with reasonably large basis sets or theoretical levels which incorporate
the effects of electron correlation.

An alternative, and in principle more accurate and efficient, method to calculate the
structures and vibrational frequencies of infinite chains is provided by ab initio crystal
orbital theory [31-34]. Several papers have been published so far which have dealt with
(HF)oo on the basis of ab initio crystal orbital theory [35-41] or periodic density func-
tional theory using local exchange-correlation functionals [42,43]. Among them, the paper
written by Beyer and Karpfen [37] has been the only one which reported the optimized
structural parameters and vibrational frequencies of (HF). with reasonably large basis
sets. These authors employed the Hartree-Fock approximation in conjunction with the
Gaussian lobe basis sets. The H-F bond length of (HF ). calculated with the largest

basis set they used was, however, significantly shorter than the experimental results. Cor-
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respondingly, the calculated F---F bond length was much longer than the experimental
values and the calculated frequencies of the H-F stretching modes were overestimated by
more than 700 cm™".

It is probable that these discrepancies are ascribed to the neglect of electron correla-
tion. Recently, Karpfen [17] has extended the investigations of HF clusters to second-order
Mpoller-Plesset (MP2) perturbation theory and several variants of density functional the-
ory with the 6-311++G(2d,p) basis set. However, there seems to be no calculation on
the structure and vibrational frequencies of (HF),, using correlated theoretical levels with
reasonably large basis sets. Such caleulations are of great importance, since they directly
provide us with quantitative information about the cooperativity of consecutive hydro-
gen bonds in the solid state. This is especially true for (HF)., because the structures
and vibrations of the dimer have thoroughly been investigated both experimentally and
theoretically (see, e.g., Refs. [10,17,44,45] and references therein). The performance of a
theoretical method as a means to study the hydrogen-bonded systems will be best judged
on the basis of the crystal orbital calculations, since the cooperative effects are more
pronounced in the condensed phase than in small clusters.

In this chapter, we present the results of ab initio Hartree-Fock and density func-
tional erystal orbital calculations on (HF),. The structural parameters are optimized
and frequencies of the infrared- and Raman-active vibrations are calculated using the
gradient-corrected Becke-Lee-Yang-Parr (BLYP) [46-48] and the hybrid Becke3-Lee-
Yang-Parr (B3LYP) [49] functionals as well as the spin-restricted Hartree-Fock (RHF)
[50] approximation in conjunction with the 6-3114+G(d,p) basis set. Our choice of the
exchange-correlation functionals and basis set has been made on the basis of previous
density functional studies of the HF' dimer [51-53|. In order to examine the chain-length
dependence of the energetic and structural properties, ab initio molecular orbital calcu-
lations at the RHF, BLYP, B3LYF, and MP2 levels using the same basis set are carried
out for HF oligomers up to the hexamer in the linear chain configuration. The effects of
electron correlation, as taken into account at the BLYP and B3LYP levels, on structural
parameters, binding energies, and vibrational frequencies are elucidated. The assignment
of the observed infrared and Raman bands of HF crystals is also discussed on the basis of
the calculated results.
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5.2 Method of calculations

5.2.1 Oligomer calculations

Ab initio molecular orbital calculations on the linear HF oligomers up to the hexamer
were carried out with the GAUSSIAN 94 program [54]. The geometry optimizations and
vibrational frequency calculations were performed at the RHF, BLYP, B3LYP, and MP2
levels with the internally stored 6-311++G(d,p) basis set. We specified the *6d’ option,
which requests that six Cartesian d-type functions instead of five pure d-type functions
be used, in order to make the basis sets used in molecular orbital and crystal orbital
calculations identical. All the electrons were correlated in the MP2 calculations.

In the geometry optimizations of the linear oligomers, we assumed the planarity of the
molecules and optimized all the remaining structural parameters. Anharmonic vibrational
frequencies of the monomer were calculated by the three-term finite-difference method [55]
using one-dimensional potential energy curves computed by changing the H-F distance at
0.04 A intervals in the range of 0.5 — 1.5 A,

The intermolecular binding energy of the dimer (trimer) was obtained at each theo-
retical level as the total energy of the dimer (trimer) minus twice (three times) the total
energy of the isolated monomer at their respective optimized structures. We estimated
the basis set superposition errors (BSSE's) in the binding energies of the dimer and trimer
by the function-counterpoise method of Boys and Bernardi [56], taking into account the
structural relaxation of the monomer upon the dimer or trimer formation [57]. The BSSE
correction to the binding energy of the trimer was estimated by using Eq. (6) in the paper

of Turi and Dannenberg [58].

5.2.2 Polymer calculations

The geometry optimizations and vibrational frequency calculations of infinite zigzag HF
chains were carried out using the analytical energy gradients of ab initio crystal orbital
theory. Density functional theory using the BLYP and B3LYP functionals as well as
RHF theory was employed with the 6-311+4G(d,p) basis set. The formulas for the self-
consistent-field (SCF) procedures of ab initio crystal orbital theories are given in Refs. [31-
34]. Analytical energy gradient formulas for crystal orbital theory were first derived and
implemented by Teramae et al. [59,60] at the Hartree-Fock level, and we extended them

to the density functional and hybrid Hartree-Fock/density functional levels [61). In our
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previous density functional crystal orbital studies [61-63], we expanded the electron den-
sity by auxiliary basis sets and evaluated the Coulomb repulsion energies with two- and
three-index electron repulsion integrals (ERI's) instead of four-index ERI’s [64,65]. In the
present study, however, we evaluated the Coulomb repulsion energies with four-index ERI's
in order that we can compare the results of the crystal orbital calculations directly with
those of the molecular orbital calculations. The contributions of long-range electrostatic
interactions to total energies and to Fock matrix elements were evaluated by the multipole
expansion technique developed by Delhalle et al. [66). Accordingly, we emploved different
formulas for the total energies and analytical energy gradients of density functional crystal
orbital theory from those given previously [61]. For the sake of completeness, the formulas
used in this chapter are given in Appendix.

A translational repeat unit of (HF), contains two HF molecules. The geometry op-
timizations of the polymer were performed with the analytical energy gradients by taking
an HF unit as the reference unit cell and by making use of the screw-axis symmetry. Four-
index ERI's were evaluated by using the eighth, tenth, and sixteenth neighbor approxi-
mations for the BLYP, BILYP, and RHF calculations, respectively. The use of different
cut-off radii for different theoretical levels is justified because the exchange-correlation ma-
trix elements decay more rapidly than the exact-exchange matrix elements. The criterion
for the convergence of density matrix elements was set to 108, The threshold value for
the residual energy gradients was 10~ hartree/bohr.

In the vibrational frequency calculations, we adopted a translational repeat unit, i.e.,
an (HF)z unit, as the reference unit cell in order to obtain frequencies of all the infrared-
and Raman-active modes. Accordingly, we employed the fourth, sixth, and tenth neighbor
approximations for the BLYP, B3LYP, and RHF calculations, respectively. Force constants
were evaluated by numerical differentiation of the analytical energy gradients. Step size
used in the numerical differentiation was 0.04 bohr. We employed the Mamur cutoff
criterion with multipole expansion corrections [66,67], taking into account the dipole-
dipole and charge-quadrupole interaction corrections to total energies and to Fock matrix
elements. The other parameters of calculations such as the number of wavevector sampling
points and the numerical quadratures and grids used in numerical integration were the
same as those used in our previous studies [61-63].

The binding energy of (HF)., was obtained at each theoretical level as the differ-
ence between the total energy of the polymer per HF unit and the total energy of the



n
Figure 5.1 Linear hydrogen-bonded {a) dimer, (b) trimer, and (¢} polymer of hydrogen fluoride molecules

isolated monomer at their respective optimized geometries. The BSSE’s were evaluated
by function-counterpoise method [56-58]. We computed the total energy of the monomer
with the bond length being equal to that of (HF),, using the basis set of the whole polymer
chain. Ghost basis functions were placed within the third nearest HF unit cells at both

sides of the reference unit cell.

5.3 Results and discussion

5.3.1 Structures

In Table 5.1, the equilibrium bond lengths of an HF molecule calculated at the BLYP,
BILYP, RHF, and MP2 levels are compared with experimental results [68]. The H-F bond
length calculated at the RHF level (0.898 A) is significantly shorter than the experimental
value (0.917 A), whereas the bond length predicted at the BLYP level (0.933 A) is too
long. At the BSLYP and MP2 levels, the calculated H-F bond lengths agree reasonably
well with the experimental value. The errors that are visible in the monomer description
at a given theoretical level are carried over to longer oligomers and polymer (vide post).
It has been established by microwave molecular beam experiments [21,22] that the
lowest energy configuration of (HF); is bent Cg structure with nearly linear F-H-.-F
hydrogen bond, as illustrated in Fig. 5.1. All the theoretical models employed in this
study (BLYP, B3LYP, RHF, and MP2) correctly reproduce the bent configuration as the
global minimum, provided that the 6-311++G(d,p) basis set is used (see also Ref. [51-
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Table 5.1 Equilibrium bond length (in units of A) and harmonic and
anharmonic vibrational frequencies (in units of em™') of an HF molecule.

BLYF B3LYP RHF MP2 Experiment

H-F bond length 0933 0922 0808 0917 0.917
Harmonic frequencies 3930 4008 4481 4200 4138®
Anharmonic frequencies 3758 3919 4319 4021 2061°

@ Reference [68]. * Reference [73].

Table 5.2 Structural parameters of an open HF dimer. Bond lengths in A and bond angles in degree.

Structural parameter® BLYP B3LYP RHF MP2 Experiment
Fi-H; bond length 0.941 0.929 0901 0.921 e
H;---F; bond length 1.847 1.832 1933 1.876
Fq-H2 bond length 0.936 0925 0900 0.920 s
Fy---Fz bond length 2,772 2,748 2826 2788 2794 005°2.724+ 003"
FaFH; angle &5 7.9 6.5 6.5 100+£6°7+3¢
F1FzHz angle 113.6 116.6 126.8 121.0 117 + 6,120 + 2¢

* Atoms are numbered as F;—H; - --F3—Hz. * Reference [21]. © Reference [22]. @ Reference [69).

53]). The optimized structural parameters of the HF dimer are compiled in Table 5.2
along with the experimental data taken from Refs. [21,22,69]. It is seen from Table 5.2
that the calculated intramolecular H-F bond lengths increase in the same order (RHF <
MP2 < B3LYF < BLYP) as the calculated bond lengths of the monomer. The calculated
intermolecular H- - -F and F- - -F distances are dependent on the theoretical level employed
to a larger extent. The F---F distance predicted at the RHF level (2.826 A) is longer
than that obtained at the BSLYP level (2.748 A) by as much as 0.078 A, while the F---F
distances calculated at the BLYP and MP2 levels fall between these two values. It is
difficult to judge which theoretical level yields the best F- - -F distance on the basis of the
comparison between the calculations and experiments due to the large uncertainties in the
experimental data. The FoF;H; angles calculated with all of four levels of approximation
are within the range of experimental errors. On the other hand, the caleulated FyFoHs
angles vary substantially with the theoretical levels, and the RHF result seems to be too
large as compared with the experimental values.

The most stable structure of (HF); in the vapor phase is a cyclic configuration with
the Cs,, symmetry, as has been determined by experimental and theoretical studies (see,
e.g., Ref. [17] and references therein). The trimer in the linear open chain configuration
(see Fig. 5.1), therefore, corresponds to either a Jocal minimum or a saddle point on the

potential energy surface. The BLYP and B3LYP levels predict that the linear (HF)3
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Table 5.3 Structural parameters of an open HF trimer.
Bond lengths in A and bond angles in degree,

Structural parameter® BLYF B3LYP RHF MP2
F;-H; bond length 0.944 0932 0.903 0923
Hy -+ -F2 bond length 1.785 1.771 1.879 1.814
Fz-Hz bond length 0848 0935 0905 0.926
Hz- - F3 bond length 1.756 1.743  1.859 1.789
Fa-H; bond length 08937 0926 0801 092

2 Atoms are numbered as Fy—=H; -« -Fa=Hg - -Fa—Ha.

oligomer is a local minimum, whereas the RHF and MP2 levels indicate that this con-
figuration is a first-order saddle point. The calculated bond distances of (HF); are given
in Table 5.3. The calculated intramolecular H-F bond lengths depend on the theoretical
levels in the way parallel to that found in the monomer and dimer results.

At each theoretical level, the calculated hydrogen-bond distances of the trimer are
substantially shorter than that of the dimer. For instance, at the BALYP level, the cal-
culated Hj ---Fy and Hy ---F3 distances of the trimer are 1.771 and 1.743 A, respectively,
which are shorter by 0.061 and 0.089 A than the calculated H: - -F distance of the dimer
(1.832 A] These reductions in the hydrogen-bond distances can be regarded as a mani-
festation of the cooperativity. We observe the similar amounts of reductions at the MP2
(0,062 and 0.087 A) and at the BLYP level (0.062 and 0.091 A). However, the values
obtained at the RHF level (0.054 and 0.074 A) are smaller than the those obtained at the
correlated levels,

In Fig. 5.2, the intramolecular H-F bond lengths and the H- - -F hydrogen-bond dis-
tances are plotted versus the inverse of chain length. Only the longest H-F bond length
and the shortest H- - -F distance of each oligomer are used. The corresponding bond lengths
of the HF polymer directly obtained from the crystal orbital calculations at the BLYF,
B3LYP, and RHF levels are also included. It can be seen that the H-F bond lengths cal-
culated at the BLYP and B3LYP levels change with increasing chain length to a greater
extent than those calculated at the RHF level. The BLYP and B3LYP calculations indicate
that there is a substantial elongation in the longest H-F bond on going from the hexamer
to the polymer, while the RHF calculations show that the bond lengths mostly converge
at the hexamer. The chain-length dependence predicted at the MP2 level seems to be
intermediate between the density functional results and the RHF result. The chain-length

dependence of the H-: - -F hydrogen-bond distances is by an order of magnitude larger than
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Figure 5.2 Calculated (a) intramolecular H-F bond lengths and (b) H---F hydrogen-bond distances of

hydrogen Auoride oligomers and polymer plotted as a function of the inverse of chain length. Crosses:
BLYP; open circles: B3LYP; filled circles: RHF; squares: MP2. Only the longest H-F and the shortest
H:: F distances are used,

that of the intramolecular H-F bond lengths. The H---F distances calculated with the
BLYP and B3LYP levels coincide with each other. The RHF level again predicts smaller
chain-length dependence than the BLYP and B3LYP levels do. The results obtained from
the MP2 calculations seem to be closer to the density functional results than to the RHF
results.

The optimized structural parameters of the HF polymer obtained at the RHF, BLYF,
and B3LYP levels are compiled in Table 5.4 with the experimental data of crystalline HF
taken from Refs. [18,19,70]. In this table, we include the results of previous crystal orbital
calculations of Beyer and Karpfen [37] at the RHF level. They employed three different
basis sets, i.e., basis sets 1, II, and IIl. Size of the basis sets is in the order: III = 6-
3114++G(dp) > 11 > L.

First, we point out that the structural parameters obtained by Beyer and Karpfen
with basis set 1] are in reasonable agreement with our result using the basis set of compa-
rable size, i.e., 6-3114-4+G(d,p). The effects of electron correlation, as taken into account
at the BLYP and B3LYP levels, are profound on the structural parameters. The H-F
bond lengths calculated at the BLYP and B3LYF levels are 0.976 and 0.959 ﬁL, respec-
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Table 5.4 Structural parameters of an infinite HF polymer.
Bond lengths in A and bond angles in degree.

Crystal orbital calculation ~ Experiment
BLYP® B3ILYP® RHF® RHF® RHF® RHF?

H-F bond length 0.976 0.959 0913 0918 0817 0942 0.97%0.02,70.95 4+ 0.037

F---H bond length 1.519 1.524 1.705 1.60 1.660  1.526 1.53 £ 0.02°

F..-F bond length 2.495 2.483 2.618 2.60 2577 2468 250 £ 0017249+ 0.017
FHF angle 178.5 178.6 177.9 1780 1781 17%.7 176"

FFF angle 120.2 122.8 1320 1297 1302 1419 116,% 120.1¢

Lattice constant 4.326 4.361 4.783 4.907 4675 4666 4264 001,°4.3240.01°

® Obtained in this study using the 6-31144G(d,p) basis set. * Obtained by Beyer and Karpfen [37] with
basis set 111 (see text), © Obtained by Beyer and Karpfen [37) with basis set 11 (see text). ® Obtained by
Beyer and Karpfen [37] with basis set I (see text). * Reference [19). / Reference [70]. 9 Reference [18].

tively, which are significantly longer than the RHF value (0.913 A). The measured H-F
bond lengths are 0.97 + 0.02 A from the neutron diffraction study [19] and 0.95 + 0.03
A from the NMR study [70]. The RHF level underestimates the H-F bond length of
(HF )y, as it does for the isolated monomer, while the bond lengths obtained from the
BLYP and B3LYP calculations are within the experimental errors. Similarly, the RHF
level substantially overestimates the F.--H and F.--F distances, whereas the BLYP and
B3LYP levels yield calculated distances which are very close to the experimental data.
The H-F, F---H, and F- . 'F lengths calculated at the RHF level with basis set I are ap-
parently in good agreement with the experiments, but this coincidence is fortuitous, and
is due to the cancellation of the errors arising from the small basis set used and from the
neglect of electron correlation. The FFF angle obtained at the RHF level (132.0 degree) is
much larger than the values determined by X-ray diffraction (120.1 degrees) or by neutron
diffraction (116 degrees) technique. The BLYP and B3LYP calculations reproduce the
experimental angles reasonably well. At the RHF level, the translational period is also
greatly overestimated as compared with the experimental results, owing to the too large
values of the F- - .F distance and FFF angle predicted at this level. The BLYF and B3LYP
levels, in contrast, reproduce the experimental results quantitatively.

If we take the H-F bond length determined by neutron diffraction technique [19] as
a reference value, the discrepancy between the caleculated bond length and the reference
value amounts to about 0.06 A at the RHF level. Since the RHF level underestimates the
H-F bond length of the isolated monomer by about 0.02 A, the remaining discrepancy
of 0.04 A is ascribed to the underestimation of the chain-length dependence of the H-F

bond length. This result indicates that the inclusion of electron correlation is essential
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Table 5.5 Binding energy (in units of kJ mol™

BLYF B3LYPF RHF MP2 Experiment

) of an open HF dimer.

Binding energy 19.9 21.2 182 196 18.1 £1.2°
Binding energy + AZPE® 12.6 13.9 1.3 126 12.74 £ 0.06°
_BSSE® 2.3 2.2 1.7 3.8

* Reference [71]. ® Correction due to the zero-point vibrational energy. © Reference [72).
 Basis set superposition error estimated by the function-counterpoise method.

Table 5.6 Binding energy (in units of kJ mol™') of an open HF trimer.
- BLYF B3LYF RHF MP2

Binding energy 16.2 480 415 45.1
Binding energy + AZPE® 315 340 277 310
BSSE* 4.9 4.8 38 89

® Correction due to the zero-point vibrational energy.  Basis set
superposition error estimated by the function-counterpoise method.

in describing the cooperativity of consecutive hydrogen bonds quantitatively. Likewise
the discrepancy between the F--.F distance of the HF polymer calculated at the RHF
level and the observed value is at least partly ascribable to the underestimation of the

cooperative behavior.

5.3.2 Binding energies

The calculated binding energies of (HF); and (HF)3 are listed in Tables 5.5 and 5.6,
respectively. The RHF level predicts the weakest hydrogen bond for (HF)s and the BLYP
level the strongest hydrogen bond among the theoretical levels employed here. As a
consequence, the H.--F hydrogen-bond distance calculated at the B3LYP levels is the
shortest and that at the RHF level is the longest (vide ante). Since these binding energies
inevitably contain the BSSE's, which amount to a few kJ mol™!, all the calculated values
for (HF)2 may be too small as compared with the experimental results [71,72]. It should
be kept in mind that the calculated structural parameters and vibrational frequencies also
contain errors resulting from the B55E’s in the binding energies.

Binding energies per hydrogen bond increase with increasing chain length, which is
another manifestation of the cooperativity of hydrogen bonds. At each theoretical level,
the calculated binding energy of (HI')3 is substantially larger than twice the calculated
binding energy of (HF)z. The ratio of the binding energy of (HF )2 to that of (HF)z is the
smallest in the RHF result (228 %), whereas the ratios obtained with the BLYP, B3LYP,
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Table 5.7 Binding energy (in units of kJ mol™') of an infinite HF polymer.

BLYP®* B3LYP®* RHF®* RHF®* RHF® RHF?
Binding energy 35.5 36.4 28.5 27.2 J1.8 51.9
_ BSSE* 3.3 3.2 2.5 o ik

* Obtained in this study using the 6-3114++G(d,p) basis set. * Obtained by Beyer and Karpfen [37] with
basis set 111 {see text). © Obtained by Beyer and Karpfen [37] with basis set II (see text). ¥ Obtained by
Beyer and Karpfen [37] with basis set I (see text). ® Basis set superposition error estimated by the
function-counterpoise method.

and MP2 levels are within the range of 230 — 232 %. We consider that this result also
reflects underestimation of the cooperativity at the RHF level.

The calculated binding energies of the HF' polymer are listed in Table 5.7. Again, we
observe a reasonable agreement between the RHF/6-311++G(d,p) result (28.5 kJ mol™!)
obtained in this study and the RHF/basis set II result (27.2 kJ mol™!) of Beyer and
Karpfen. The BLYP and B3LYP levels predict substantially larger binding energies than
the RHF level does. The differences between the density functional results and the RHF
result, which amount to 7 — 8 kJ mol~!, are at least partly traced back to the underesti-

mation of the chain-length dependence of the binding energies at the RHF level.

5.3.3 Vibrational frequencies

The calculated harmonic and anharmonic frequencies of the H-F stretching mode of an HF
molecule are compared with the observed frequencies [68,73] in Table 5.1. The frequencies
calculated at the RHF level are overestimated by about 350 cm™!, which is consistent with
the too short H-F bond length predicted at this level of theory. At the MP2 level, the
calculated frequencies become closer to the observed ones although they are still overesti-
mated by 60 em™!. The frequencies computed at the BLYP level are too low as compared
with the observed frequencies. The results obtained at the BALYP level are between those
obtained at the RHF and BLYP levels, and are in reasonably good agreement with the ex-
perimental results as well as with the MP2 results. The differences between the harmonic
and anharmonic frequencies predicted at the BLYF, BILYF, RHF, and MP2 levels are
181, 179, 172, and 179 em™!, respectively, and are in good agreement with the observed
frequency difference of 177 em™'.

In Table 5.8, the calculated harmonic frequencies of (HF'); are compared with the mea-
sured frequencies [23,74-77). The frequencies of the H-F stretching modes shift downward
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Table 5.8 Vibrational frequencies (in units of em™?) of an open HF dimer,
The values in parentheses are the frequency shifts from the monomer.

Mode BLYP B3LYP RAF MP2  Experiment

vi(A') 3001 (38) 4061 (37) 4455 (36) 4163 (37) 3929 (32)°
va(A") 3785 (154) 3962 (136) 4411 (80) 4106 (94) 3868 (93)°

u(A’) 579 572 503 538 e
va(A™) 455 456 435 421 a70," 400°
vs(A’) 222 210 192 203 189°
us(A) 157 154 141 146 128°

o Reference [23]. * Reference [74). © References [75-77).

on going from the monomer to the dimer. All the theoretical levels reproduce reasonably
well the observed frequency shift for 1 mode (32 cm™!), which primarily consists of the
stretching motion of the proton acceptor molecule. The 14 mode is approximately regarded
as the stretching motion of the proton donor molecule, and the large frequency shift (93
em~ ') observed for this mode reflects the strong hydrogen-bond interactions between the
two HF molecules. The RHF level predicts too small a frequency shift (80 cm™!) as
compared with the experimental value, indicating that this level of theory underestimates
the hydrogen-bond interactions. The frequency shifts predicted at the BLYP and B3LYP
levels are, on the other hand, substantially overestimated. The MP2 level provides the
calculated frequency shift of 94 em~! which is in good agreement with the experimental
value. These results suggest that the BLYP and B3LYP levels tend to overestimate the
hydrogen-bond interactions, while the MP2 level describe these interactions reasonably
well. The calculated frequencies of the intermolecular vibrations increase in the same
order (RHF < MP2 < B3LYP < BLYP) as the frequency shifts increase, except for the
out-of-plane (1) mode. At all the theoretical levels, the calculated frequencies of the in-
termolecular vibrations are higher than the observed [74-77]. It should be noted, however,
that the “BSSE-free” frequencies would be lower than these calculated frequencies.

The convergence behavior of the vibrational frequencies of the HF oligomers is de-
picted in Fig. 5.3. In the 2800 — 4600 cm™! region, the lowest-frequency mode of each
oligomer corresponds to the in-phase H-F stretching vibration, whose infrared intensity
is the largest in each oligomer. These in-phase H-F stretching vibrations approach the
symmetric H-F stretching mode of the polymer as the chain length increases. The highest-
frequency mode of each oligomer, on the other hand, is the localized motion of a terminal

HF molecule, and its frequency is relatively insensitive to the chain length. The corre-
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Figure 5.3 Vibrational frequencies of hydrogen fluoride oligomers and pelymer calculated at the (a) BLYF,
(b} B3LYP, (c) RHF, and (d) MP2 levels plotted as a function of the inverse of chain length.

sponding mode does not exist in the polymer. The absolute values of the H-F stretching
frequencies depend strongly on the theoretical levels and are in the order BLYP < B3LYP
< MP2 < RHF. This order is determined by the errors that already appear in the monomer
results. The chain-length dependence is substantially smaller in the RHF results than in
the results obtained at the correlated levels. The chain-length dependence predicted at
the BLYP and B3LYP levels is almost the same with each other in magnitude, while
that at the MP2 level is again intermediate between the density functional results and
the RHF result. The vibrational frequencies in the region below 1200 cm™! are primarily
determined by the hydrogen-bond interactions. The RHF level yields invariably lower fre-
quencies for these modes than the other three levels. Among the BLYP, B3LYP, and MP2
results, in contrast, not only the absolute values but also the chain-length dependence of
the calculated frequencies in this region agree well with one another.

The calculated frequencies of the infrared- and Raman-active vibrations of (HF ), and
(DF) are compared with the observed frequencies of HF and DF crystals in Table 5.9.
Mormal coordinates of these modes are depicted in Fig. 5.4. Infrared spectra of HF crystals
were first reported by Giguere and Zengin [24], and subsequently by Sastri and Hornig
[20] and by Kittelberger and Hornig [25]. Raman spectra were measured by Anderson
et al. [26,27], and the external-pressure dependence of the spectra has also been studied

by Lee et al. [28], by Jansen et al. [29], and by Pinnick et al. [30]. Boutin et al. [78] and
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Table 5.9 Frequencies (in unit of cm™') of the infrared- and Raman-active
vibrations of an infinite HF polymer,

" Crystal orbital calculation Experiment
Mode BLYP® B3LYP®*  RHF*® RHF" RHF* Infrared® Haman® HRaman’
(P
S(B) 3310 3521 4226 4170 J6TH 3406 3386 J3T6+ 5
S(A1) 2874 3128 4054 3067 3357 3067 3045 02T+ 6
L(B,) 1112 1093 866 1007 1025 975 -1025 943 -
L(Bz) 792 795 665 716 867 792 T2 TT6E1
LiAz) 721 722 585 563 729 inactive G687 72241
L{Ay) 671 GES 537 604 702 553 569 566+ 1
T{B:) 410 409 312 386 490 366 364
T{A1) 203 198 144 150 161 202 188 188+ 2
(DF)ac
S(B;) 2400 2553 3063 3023 2666 2530 2511 2506+ 4
S(A,) 2089 2272 2040 2874 2432 2294 2081 22724 6
L{B1) BO3 790 627 T28 T41 720 703 S
L{Bz) 574 a76 482 519 628 572 5562 964 & 4
L{Az) 511 512 415 399 516 inactive 402 515+3
L(A;) 478 476 383 429 498 403 417 40943
T(B) 402 400 305 378 479 355 359 a5
T(A) 201 196 142 149 160 210 190 19242

® Obtained in this study using the 6-311++G(d,p) basis set. * Obtained by Beyer and Karpfen [37] with
basis set 11 (see text). © Obtained by Beyer and Karpfen [37] with basis set I (see text). ¥ Reference [25].
® Reference [26]. 7 Reference [30)].

Axmann et al. [79] recorded the inelastic neutron scattering from HF crystals in the region
below 600 cm~!. The experimental data in Table 5.9 are taken from Refs. [25,26,30]. The
normal modes are classified into stretching (S), librational (L), and pseudo-translational
(T) vibrations according to their vibrational patterns. Among them, the assignment of the
observed bands has been established for the stretching and pseudo-translational vibrations
[25]. For the librational modes, no consensus on the assignment has been reached among
the authors [25-27,30,79,80].

In Table 5.9, we include the results obtained by Beyer and Karpfen at the RHF level
with basis sets 1 and II. We can find systematic basis-set dependence of the calculated
frequencies in the results of Beyer and Karpfen and our results; as the basis set becomes
larger, frequencies of the stretching modes become higher and frequencies of the librational
and pseudo-translational modes become lower. There are substantial changes in the vibra-
tional frequencies on going from basis set II of Beyer and Karpfen to the 6-311++G(d,p)
basis set.

In the H-F stretching region (3000 — 3600 cm™') of the HF crystals, four infrared
absorption bands have been observed [20,24,25]. Among them, two weaker bands were

105



L | -
\ [ =8 -
./. o+ "
[ b [ o
S(B,) 3521 cm™ L(B,) 795 cm™ T(B,) 409 cm™

L ] L L :
~ " - o+ A i Jd

° .-
S(A,) 3128 cm™ L(Ay) 722 cm™ T(A,) 198 cm™
*r o v
& &
L(B,) 1093 cm™ L(A,) 668 cm™

Figure 5.4 Vibrational patterns of the infrared- and Raman-active modes of hydrogen fluoride polymer.
Larger filled circles represent fluorine nuclei and smaller ones hydrogen nuclei. The numbers indicate the
frequencies calculated at the B3LYP level.

assigned as combination bands of the other two intense fundamental absorption bands
and a lattice band near 200 cm™! [25]. The two fundamental absorption bands in this
frequency region are the symmetric S(A;) and antisymmetric S(B;) intramolecular H-F
(D-F) stretching vibrations, the former being more intense than the latter.

It is seen from the table that the frequencies of S(A;) and S(B;) modes calculated at
the RHF level are too high as compared with the experiments. The deviations between
the calculations and experiments are as large as about 1000 em™! for the S(A;) mode
of (HF),. The splitting of these two modes is also greatly underestimated at this level.
The observed splittings are 340 cm™! for (HF)y, and 230 em™' for (DF)y, whereas the
RHF level yields 172 and 123 cm™!. The predicted too small splittings indicate that the
RHF level underestimates the hydrogen-bond interactions. As expected from Fig. 5.3, the
RHF level also underestimates the downward shift in the stretching frequencies from the
isolated monomer to the polymer. From the experimental side, the frequency shift is 894
(= 3961 — 3067) cm~! for the S(A;) mode of (HF)s. The shift calculated at the RHF
level is 437 em™!, which amounts to only 49 % of the experimental value. The BLYP
level, on the contrary, yields the calculated splittings [436 and 311 em™! for (HF), and
(DF)qe, respectively], which are larger than the experimental values (340 and 230 cm™!).
Therefore, the BLYP level overestimates the hydrogen-bond interactions. Furthermore,
the downward shift in the frequencies of the H-F stretching mode from the monomer
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to the polymer is also overestimated; the BLYP calculations predict too large a shift of
1065 em™! as compared with the experimental value (894 em™"), although the deviation
becomes much smaller at the BLYP level than at the RHF level. The use of the BALYP
functional leads to significantly improved agreements in this frequency region. The cal-
culated frequencies of the S(A;) and S(B;) modes seem reasonable as compared with the
experiments. The calculated splittings of these two modes [393 and 281 em™! for (HF )
and (DF)g, respectively] become much closer to the experimental values (340 and 230
em™1), and the calculated downward shift (970 cm™!) is also in better agreement with
the observed value (894 ¢cm™!) than that obtained at the RHF or BLYP level. Therefore,
the chain-length dependence predicted at the BJLYP level is reasonable although it is still
slightly overestimated.

There are two pseudo-translational vibrations in the region below 400 cm™!. In the
T(A;) mode, the HF units move nearly perpendicular to the chain axis, while in the T(B,)
mode, the displacements are along the chain axis (see Fig. 5.4). The frequencies of these
modes calculated at the RHF level are lower than the experimental values, while those
obtained at the BLYP and B3LYP levels, which agree with each other, are higher than
the observed. As expected from their vibrational patterns, the frequencies of the pseudo-
translational modes are relatively insensitive to the deuteration. The observed frequency of
the T(B,) mode of (DF) is slightly lower than that of (HF). The calculated frequencies
are consistent with this observed small downward shift upon deuteration. In contrast to
T(B,) mode, the frequency of T(A;) mode becomes higher upon deuteration. This upward
shift cannot be explained by the single chain approximation employed in this study; the
interchain interactions probably play a role in this upward shift.

The T(A;) mode can be regarded as the in-phase stretching motion of the H---F
hydrogen bonds. This motion is expected to couple strongly with the intramolecular
H-F stretching (S) modes, because the changes in the H..-F hydrogen-bond distances
substantially affect the shape of the potential energy curves along the H-F stretching
coordinates. The weak bands observed in the 2000 — 4000 cm™! region of HF and DF
crystals are combination tones of S(A;) and T(A;) and of S(B;) and T(A,) [25]. Marechal
and Witkowski [81] have analyzed the broad and complex infrared spectral band profiles
of general hydrogen-bonded systems in terms of the coupling between the intramolecu-
lar high-frequency X-H stretching modes and the low-frequency X-H---Y hydrogen-bond
stretching modes. The theoretical model developed by Marechal and Witkowski is capa-
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ble of predicting the spectral band profiles and their changes upon isotopic substitution,
and Wéjcik has successfully applied the model to various hydrogen-bonded complexes and
crystals [82,83]. We point out that this model can also be invoked to explain the observed
behavior of the combination bands in HF and DF crystals. For instance, the phenomena
that the combination bands in DF crystals are much less intense than in HF crystals and
that the combination bands associated with T(B;) modes are not observed are readily
accounted for by this model.

Four fundamental normal modes are expected in the librational (400 — 2000 cm™!)
region. However, there have been found more than four peaks in the observed infrared and
Raman spectra in this region, and some of these peaks are very broad, which complicates
the assignments. The frequencies of the librational modes calculated at the BLYP and
B3LYP levels are in good agreement with each other, while those calculated at the RHF
level are significantly lower than the density functional results. The assignment made on
the basis of these calculated frequencies is given in Table 5.9. The observed frequency
of each librational mode falls within the frequency region bracketed by the density func-
tional and RHF results. The RHF level invariably underestimates the frequencies of the
librational modes. The frequencies calculated at the BLYP and B3LYP levels are in rea-
sonable agreement with the observed frequencies, although some of them are significantly
overestimated. These results are consistent with our previous conclusion that the RHF
level underestimates the chain-length dependence of the frequencies, whereas the BLYP
and B3LYP levels slightly overestimate it.

Our assignment generally agrees with the previous one made by Anderson et al. [26,27)
except for a few modes. In the paper published in 1980, Anderson et al. [26] assigned
a Raman band at 742 cm™! to L(B,) and a band at 943 em~! to L(B3) for (HF)u
and likewise for (DF)... Pinnick et al. [30] supported this assignment. Our calculations
indicate that the frequencies of L(B;) modes are higher than those of the L(B3) modes,
and accordingly in the table we have reversed the assignment of these modes made by
Anderson et al. In the paper of 1981, Anderson et al. [27] changed their assignment in the
librational frequency region, such that the assignment of L(B;) and L(Bgz) modes is the
same as ours. However, they also reversed the assignment of L(A;) and L{A2) modes on
the basis of their normal coordinate analysis. Our calculations suggest, however, that their
previous assignment for L(A;) and L(A2) modes is more reasonable. The intensities of the

infrared bands at 792 cm~! of HF crystals and at 572 cm™! of DF crystals are strongly
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dependent on the conditions of crystallization. Kittelberger and Hornig [25] suggested that
these bands manifested itself due to the formation of imperfect crystals and are disorder-
induced modes. Pinnick et al. [30], however, argued that these modes are true fundamental
librational modes on the basis of the morphology of the crystal growth. The frequencies
of L(B3) modes calculated at the B3LYP level are 795 em™! for (HF)o, and 576 em™! for
(DF)., respectively, and are in good agreement with the observed frequencies of these

modes. This result seems to support the view of Pinnick et al.

5.4 Conclusion

Optimized structures and vibrational frequencies are obtained for linear HF oligomers and
an infinite zigzag HF polymer using ab initio molecular orbital and crystal orbital theories.
It is demonstrated that electron correlation, as taken into account at the BLYP and B3LYP
levels, has profound effects not only on the absolute values of the structural parameters,
binding energies, and vibrational frequencies but also on their chain-length dependence,
which results from the cooperativity of the consecutive hydrogen bonds. The RHF level
significantly underestimates the cooperativity. Too short an H-F bond length, too long
F.--H and H---H distances, and too high frequencies of the H-F and D-F stretching
modes of (HF)w and (DF)., predicted at the RHF level are at least partly ascribable to
this deficiency. The chain-length dependence of the structural parameters and vibrational
frequencies predicted at the BLYP and B3LYP levels is reasonable as compared with the
experimental data or the results obtained from the MP2 calculations. The BLYP level
yields too low frequencies for the H-F stretching mode of the isolated monomer, and this
tendency is carried over to the results for (HF)e and (DF)e. The B3LYP functional
reproduces the H-F stretching frequencies of the monomer and polymer reasonably well.
The downward frequency shifts in the stretching modes are overestimated at the BLYP and
B3LYP levels, but the agreements are significantly better at the BLYP and B3LYP levels
than at the RHF level. The BLYP and B3LYP levels reproduce the structural parameters
of (HF)s with considerable accuracy. On this basis, we conclude that the BLYP and
B3LYP levels describe reasonably well but slightly overestimate the cooperativity of the
consecutive hydrogen bonds, whereas the RHF level greatly underestimates this property.

Vibrational assignment of the infrared and Raman bands in the librational frequency
region is reexamined on the basis of the present calculations. We reversed the assignment

of L(B,) and L(B3) modes made by Anderson et al. [26]. The frequencies of the librational
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and psendo-translational modes calculated at the RHF levels are lower than the observed.
The BLYP and B3LYP levels reproduce the experimental results reasonably well, but
they tend to overestimate the frequencies of some modes. Consequently, the observed
frequency of each mode falls between the corresponding frequencies calculated at the RHF
and density functional levels. These results are consistent with the underestimation of the
chain-length dependence of the vibrational frequencies at the RHF levels and the slight
overestimation at the BLYP and B3LYP levels.

Appendix: Analytical energy gradient formulas without
auxiliary fitting of electron density

In the framework of spin-restricted hybrid Hartree-Fock/density functional crystal orbital
theory of polymers [63,84], Kohn-Sham crystal (Bloch) orbitals are expressed as linear

combinations of atomic orbitals xE,F]'{r} in the form
LT O exp(ikqa) v @ (r 51
Pii(r) \H—(?Eq: I exp(ikga)x;? (r), (5.1)

where a is the translational period, and K is the number of unit cells in the system.
The crystal orbital ka] (r) and crystal orbital coefficient CE;. are characterized by energy
band n and quasi-momentum k, which are indicated by subscripts and square-bracketed
superscripts, respectively. The atomic orbital xff}{r} is a real spatial function centered in
unit cell g.

By using the above-mentioned symmetry-adapted basis functions and applying Ritz
variation principle to the total energy expectation value, we obtain the following k-
dependent Hartree-Fock-Roothaan equation [31-34]:

FlE G = Ik (5.2)

where €% is a diagonal matrix of one-electron energies. The elements of the k-dependent

Fock and overlap matrices are defined as

FM =% F{9 exp(ikqa), (5.3)
q
and
S =3~ 5% exp(ikga), (5.4)
q
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where

F;‘Eﬁ] _ H{qj + ZZ P{’ r) (#{u] 9|\ g {al) +my X{q}

Ag TF
ZZ Pis—r} ( 0 () |,(@) ts)) + M9, (5.5)
Mo T8
and
518 = [ XX w)ar. (5.6)

Lattice summations in Eq. (5.5) are truncated after several terms, and the long-range
electrostatic contributions M (9) {0 the Fock matrix elements are estimated by the multipole
expansion technique [66]. The matrix H in Eq. (5.5) is the one-electron part of the Fock

matrix, whose elements are given by
HY = f ©)(r) (--vz) m{r}dr

-ZE f X (r) Fo RO x40 (r)dr, (5.7)

where 7,4 is the charge of nucleus A at position RE,::]'. The elements of the density matrix
PLY are defined as

@ = 2§52 okl ot
P = EZZC C,; exp(ikga), (5.8)
ik

where the summations are over all the occupied states in the first Brillouin zone. Two-

electron integrals (,u.':ﬂ] y':'”|l'{’]'cr{":') in Eq. (5.5) are

(KOO ) = [ [ O e —xP P rdrndrs. (59)

Parameters m; and mgy in Eq. (5.5) denote the mixing ratios of exchange-correlation
energy and exact-exchange energy, respectively. In practice, more than one exchange-
correlation functional is used in hybrid exchange-correlation functionals such as in the

B3LYP functional [49]. We assume that the exchange-correlation functional has the form

f=rflp. Vo], (5.10)

where p and Vp are electron density and its gradient. The elements of the exchange-

correlation part X (9) of the Fock matrix are given by [85,86]

X9 = f {xPvecxd® + V- g + xPgec VxiP} dr, (5.11)
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with

a
Uge = ‘a_‘i:-: {512]
df 1 af
= Y Vo, 5.13
Bxc {a']’m::r 2r4-":ﬁ’l"fl"|:|r,|£l'} P { )
Yoa = Vpa-:Vpa, (5.14)
Tag = Vpa-Vpg, (5.15)

where a and ( denote spins.

The total energy per unit cell is then expressed as

= Y3 POHD + & z Y. Y R p(" r} (#{ﬂ}p{q” A, {s})

g .r-i.l" J.,,ur §,r.3
+my f e, Vpldr — — Z z Z P{Q}PES ) (#{DBAIr}Iv{q}a{a})
B A g7 8
+EME + EnRg, (5.16)

where Eyg and Eng are multipole expansion correction and nuclear repulsion energy per

unit cell, respectively. The energy gradients with respect to an in-phase (k = 0) nuclear
coordinate () can be obtained by directly differentiating Eq. (5.16). The evaluation of the

derivatives of orbital coefficients can be avoided by using the orthonormality condition of

crystal orbitals [59-61].

ﬁQ

OH (s-r) O r
= Y 3r J' m* - ZZZP{?JP" Q( p(@p el :u,,m)

ayoq #rl’ Ao @8
(0) (a)
P o) 0 O’
st Pl Oy, + 2 X + VX -
av (ay av L‘I} axiﬂl
+ —a%-— Bk e a:é' + 50 B VP pdr
i B WY ) 9 (KOAO Do) 4 9Enr
by X g q.r,s Q aQ
fr:]'
=S w{a]' (5.17)
T

where W is the energy-weighted density matrix, whose elements are defined as

W = _zz Hol oM explikga). (5.18)

Since the first (and higher) derivatives of total energy are expected to converge much

faster than the total energy itself, we neglect the gradient contributions from the multipole
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expansion correction. For instance, the leading term in the expression for the dipole-dipole
interaction energy is proportional to 1/r® with r being the distance between the centers of
two dipoles. The forces resulting from the dipole-dipole interaction are then proportional
to 1/r?, and hence they converge more rapidly than the interaction energy itself with
increasing r.

The analytical energy gradient with respect to the translational period a can be
calculated by using Eq. (5.17) and the following relation [59-61]:

EZ@'

aQAm (5.19)

Here Qfm denotes the z-coordinate, which we assume to be parallel to the chain axis, of
nucleus A in unit cell g. The differentiation of exchange-correlation part of the energy with
respect to a gives rise to a two-dimensional (surface) integral [61]. This two-dimensional
integral can be transformed to three-dimensional (volume) integrals by virtue of Gauss
theorem [61], and these three-dimensional integrals are conveniently evaluated by using
the atomic partitioning scheme of Becke [87].
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Abstract

In the framework of ab initio Hartree-Fock crystal orbital theory of polymers, the for-
mulas for the analytical second derivatives of energy with respect to in-phase (k = 0)
nuclear coordinates are derived. The coupled perturbed Hartree-Fock (CPHF) equation
is iteratively solved by using the direct (recomputation of two-electron integrals) atomic-
orbital-based algorithm. Frequencies of the Brillouin zone center (k = 0) vibrations of
all-trans polyethylene are calculated by using the STO-3G, 3-21G, and 6-31G(d) basis
sets. The dependence of the frequencies on the number of neighbors included in the lat-
tice summations, on the number of momentum sampling points in the first Brillouin zone,
and on the convergence criterion for the CPHF solutions is examined. In our implemen-
tation, the use of analytical second derivatives is more efficient than the use of the finite

differences of analytical first derivatives.

6.1 Introduction

Analytical first and second derivatives of the electronic energy with respect to nuclear
coordinates are essential in the calculations of equilibrium geometries and vibrational
frequencies of molecules on the basis of ab initio molecular orbital theory [1-5]. Force
constants of a molecule can be obtained either as the finite differences of analytical first
derivatives or as analytical second derivatives. At the Hartree-Fock (HF') level of theory,
the use of analytical second derivatives has turned out to be less expensive than the use
of finite differences, owing to the efficient algorithms for solving the coupled perturbed
Hartree-Fock (CPHF) equation [6-11] and for evaluating the derivatives of two-electron
integrals [12-20]. The second-derivative method has become the standard approach and
the vibrational analyses of molecules based on this method are now routinely carried out.

In ab initio crystal orbital theory of polymers, however, only the analytical-first-
derivative scheme has so far been implemented in the framework of HF theory [21,22].
Very recently, we have developed the analytical-first-derivative scheme for density func-
tional and hybrid HF /density functional theories, and applied it to the vibrational analyses
of polyacetylene, polymethineimine, and polyethylene [23,24]. No work has been carried
out on the higher-order analytical derivatives at the HF level or the analytical deriva-
tives at HF-based correlated levels. The objectives of the present study are to describe

the formulas and computer implementation of the analytical-second-derivative scheme in
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the framework of ab initio HF crystal orbital theory and to study the dependence of the
frequencies calculated with this scheme on several parameters, namely, the number of
neighbors included in the lattice summations, the number of momentum sampling points
in the first Brillouin zone, and the convergence criterion for the CPHF solutions. Equi-
librium geometries and vibrational frequencies are calculated for all-frans polyethylene
(hereafter simply referred to as polyethylene) by using the STO-3G, 3-21G, and 6-31G(d)
basis sets. Polyethylene is an ideal polymer for our purpose, because the size of the
translational repeat unit is small and the normal vibrations have thoroughly been studied
both experimentally and theoretically, and are well understood [25-27]. Efficiency of the
second-derivative method and the finite-difference method is also discussed in terms of the
execution times.

There have been only a limited number of vibrational analyses for polymers, based on
crystal orbital theory, in which the force constants have been evaluated by the numerical
differentiation of the analytical first derivatives [21-24] or by the double numerical dif-
ferentiation of the total energies [28-32]. These studies are primarily concerned with the
frequencies of the Brillouin zone center (k = 0) vibrations, which can directly be compared
with the positions of the lines appearing in the infrared and Raman spectra of polymers.
Since k = 0 vibrations do not lift the translational symmetry of the system, we can take
full advantage of the symmetry throughout the calculations. In fact, the frequencies of
k = 0 vibrations are conveniently calculated by taking the smallest translational repeat
unit as a reference unit cell. The evaluation of the frequencies of k # 0 vibrations is, on the
other hand, computationally much more demanding than that of k = 0 vibrations, since
the translational period becomes much longer if the nuclei are displaced along the normal
coordinates of k # 0 vibrations. In principle, the frequencies of k # 0 vibrations cannot be
observed by infrared or Raman spectroscopy, and hence they are usually studied by other
experimental techniques such as inelastic neutron scattering spectroscopy. Therefore, the
separate treatment of k = 0 and k # 0 vibrations is justified both in the experimental and
theoretical viewpoints.

In this chapter, we confine ourselves to the second derivatives of the electronic energy
with respect to in-phase (k = 0) nuclear coordinates. Thus, we are primarily concerned
with the frequencies of the infrared- and Raman-active vibrations of polymers. The fre-
quencies of k # 0 vibrations can also be obtained by the second-derivative method de-

scribed here by taking a chain of several repeat units ( “supercell”) as a reference unit cell.
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We have already employed the supercell approach in combination with the finite-difference
method to study the phonon dispersion curves and inelastic neutron scattering of polyethy-
lene [24]. However, the finite displacement of a nucleus in a supercell significantly lowers
the translational symmetry, and the entire calculation becomes highly redundant and re-
quires much more computational resources than the calculation of k = 0 frequencies. In
the second-derivative method, the nuclei are fixed at the equilibrium positions, and hence
the notion of the supercell may be introduced at a later stage of the calculation, e.g., at
the process of solving the CPHF equation. Although we focus our attention on k = 0
vibrations in this chapter, we hope that the second-derivative method described here will
be the first stage of a program to develop an efficient supercell approach, whereby the

frequencies of k # 0 vibrations can be computed with minimum redundant work.

6.2 Formulas for the analytical second derivatives

In this section, we describe the formulas for the analytical second derivatives of energy in
the framework of ab initio HF crystal orbital theory. Since the derivation of the formulas
for infinite polymer chains and that for molecules [6,7] have much in common, we shall
make as much use of the results for molecules as possible without showing the derivation.

In the crystal orbital method [33-36], the crystal orbitals of an infinite polymer chain
are described as linear combinations of atomic orbitals xLﬂ (r):

W) = T} Y37 Ol exp(ikga)xP (x), 6.1)

Boq

where a is the translational period, and K is the number of unit cells in the system and it
approaches infinity. We assume here that the system under consideration is a closed-shell
system and xL'ﬂ{r] is a real spatial orbital. The crystal orbital wﬁf ] (r) and crystal orbital
coefficient C;[ﬂ are characterized by energy band n, which is indicated by subscripts, and
by quasi-momentum k, which is specified by square-bracketed superscripts. The atomic

orbital ){Ef}{r] is located in unit cell ¢ and bears the following relation:
XP(x) = x{(r - qa). (6.2)

The use of the above-mentioned symmetry-adapted basis functions and the periodic
boundary conditions reduces the Hartree-Fock equation of an infinite polymer chain to a

set of k-dependent pseudoeigenvalue equations:

FlEiclk = [Kgklick, (6.3)
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The k-dependent Fock and overlap matrices are constructed from the corresponding molec-

ular integrals in the atomic orbital basis:

Fl = 3" Fl9) exp(ikqa), (6.4)
q
and
Skl = $™ 5 exp(ikqa). (6.5)

q
The elements of the Fock and overlap matrices between the atomic orbitals xm}{r} and
x\9(r) are given, respectively, by

FO=HDQ+3 % gt (“Iﬂ}u{q” | )‘{r}g{a}) 1 (6.6)
Ag T8
and
510 = [ PP ). (6.7)

The matrices introduced in Eq. (6.6) are the one-electron core Hamiltonian matrix

) = [x00(-3%) x”](r]dr

> [0 m [,,ix“’ (r)dr, (6.8)
and the density matrix
occ. BEZ "
Py = ZEC[H'C[ J exp(ikqa). (6.9)

Here the summation }_; is over occupied energy bands and 3 is over k points in the first
Brillouin zone. Note that the number of k points in the first Brillouin zone is equal to K.

Two-electron integrals over atomic orbitals in Eq. (6.6) are antisymmetrized, namely,
( pOyta)) ;,L{r}c,{a}) ( (0) {q}L pig Ea]l) | ( {0},:,-{=1| Ay, [n}l) (6.10)
with
(#m},_,{q” Atr}ﬁtan f f x‘“’(n]t‘“-"{rl}r K (2)x8) (r) dr 1 drs. (6.11)
By using the matrices defined above, the total energy per unit cell can be obtained

E=3Y%" PROHD 4 - EZ }: F':‘i'-l'}?"[”""”j ( O, (@A) 5 [a]) + Bt (6.12)

Mg U' Lo W,
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where Eyp is the nuclear repulsion energy per unit cell. Direct differentiation of the total
energy with respect to a nuclear coordinate T gives the expression which contains the
derivatives of density matrix elements. However, at this point the explicit evaluation of
these derivatives can be avoided by making use of the orthonormality condition of the

crystal orbitals, and the final expression is written as [21,22]

Zzpmﬁffw Bl ZZZ Pfﬂ'}P{" nd ( [Dllu(!i'l'lul'r]ﬂ,h]')

e oq ﬂﬂ.k.urqf-#

aE"‘“ ZZWW}&S“" (6.13)
BY g

where we introduced the energy-weighted density matrix
Wm =— EE [EIG[E] Clkl exp(ikga). (6.14)

It should be emphasized that Eq. (6.13) is derived on the assumption that the nuclear
displacement along the coordinate = does not lift the translational symmetry. In other
words, nuclei in the whole polymer chain move in-phase along the coordinate x. Differen-
tiation of Eq. (6.13) with respect to a second in-phase coordinate y leads to an expression

for the second derivatives of the total energy:

8°E 82 HY) 9° :
55 ~ LT e 3 ZZZP“:'F{’ " 0y (KON )

sy g ;.l.ﬂ' A 4TS
oy ;%: W aady Zz o ox
+ZZZ 3Puv F{a—r] d ( (ﬂ]ly{q]l||},(f}¢i=})
B A TS 9%
(#j aS{?}
B LZ _ (6.15)
TR

This expression involves the derivatives of density matrix BP,EE.:’ /8y and energy-weighted
density matrix 9WLY /8y. Evaluation of these derivatives can no longer be avoided.

In order to evaluate the derivatives of density matrix and energ;y-weighted density
matrix, we have to know the derivatives of the crystal orbital coefficients 5{3‘ fﬂy The
complete set of these derivatives ﬁdmfay is obtained as a solution to the CPHF equation.
The molecular CPHF equation was first derived by Gerratt and Mills [6], and has been
described by a number of authors {2,3,5,7-11]. Following the notation of Pople et al. 7],
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we can write the equation as
virt. oce.
(r-eﬂ‘”-£P+22523u$'mmwr+@?mmﬁn. (6.16)
J

This equation has to be solved to find ui?, which can be used to give the derivatives of

the molecular orbital coefficients by the following relation:

. o
By = 2 Cumttan (6.17)

The superscript ‘(1)" has been retained in this chapter in order to keep our notation in
accordance with that of Pople et al. [7]. In Egs. (6.16) and (6.17) and in what follows, we
represent the occupied molecular orbitals by i, j, h,! and virtual molecular orbitals by a,b.
We also use m,n for the entire set of molecular orbitals. Thus, 'u[ ) is a vector of length
V % O with V being the number of virtual orbitals and O being the number of occupied

1) and uﬂ} are not determined uniquely (nor

orbitals. Note that the vectors of the type u;;
required) since the HF wave function is invariant to the linear transformations among
the occupied orbitals [5]. Two-electron integrals in Eq. (6.16) are defined over molecular
orbitals.

We can formally regard Eq. (6.16) as the CPHF equation for infinite polymer chains
by simply considering that { is a composite index of energy band i and momentum k;,
and likewise for j, a, and b. If we use capital letters I, J, A, and B for these composite

indices, we can write the CPHF equation for polymers as
(er —ea)ull) = Q) + 2 ): Z{ W* (AI|BJ) + ), (AI||JB)}, (6.18)

with
OCL.
QY =HY + I - erSE) -2 S, (An|LH). (6.19)
H.L

This matrix equation is, however, highly redundant in that the dimension of the matrices
can be reduced considerably by making use of the translational invariance of molecular
integrals as we will show below.

The matrices H'™ and 7" in Eq. (6.19) are the one- and two-electron part, respec-
tively, of the so-called skeleton (core) first derivative Fock matrix [5] in the crystal orbital
basis. The definitions of these matrices are obtained from the molecular counterparts [7]
by simple replacements,

Oy = %;EG‘*” e SR ) (6.20)
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and so forth. Hereafter the crystal orbital coefficients and one-electron energies for com-

posite indices are understood, respectively, as

Cupe = ), (6.21)
ey = ebkml, (6.22)
The definition of H'" is written as
) {r;-p]
Hyn = = Z Z C‘MCuN exp{i(kng — kmp)a}
g &y
a H fg—p) .
- Ny C;MCuN# exp{ikn(q — p)a}
By pg
1

X exp{i(kn — km)pa}. (6.23)

As indicated by the last line, the summation over p can be carried out separately. Since
both k;, and ky, are confined in the first Brillouin zone, the summation (1/K) 2p exp{i(k,—
km)pa} gives a non-vanishing result only if ky, = ky,. Therefore, Eq. (6.23) can be simpli-
fied to

aH.)
H =Y CuCin 2 5 = exp(iknga)  (for kn = km), (6.24)
e q
and
HU =0 (for ky # k). (6.25)

In a similar way, we can show that J and &Y vanish if kn # km. Thus, their definitions

are given by

Toin =223 MGPNP,{:,"’ (WA exp(iknga), (6.26)
B Ag .78
and
S{'?J ;
MN =3 ComCun By expliknga), (6.27)
e g
for kn = km, and
v =0 6.28
MN 1 (6.28)
e =5 (6.29)
for kyn # km-
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Two-electron integrals over crystal orbitals are obtained by the integral transforma-
tion of two-electron integrals over atomic orbitals as

1 -
(AIIMN) = 3. Y CiaCuCinCan

Ao Pa,TS

x exp{i(—kap + kig — kmr + kns)a} (p{P}pIQHMEr}Iafs})

1
= 250 expli(~ka+ ki = km + ka)pa} 3 > CuaCurCimCon
B

FTRER W, 3 Kt

x expli{ki(g — p) — km(r — p) + kn(s — p)}al
it (ptplu{q]"_ﬂrlais}) L (6.30)

The summation 3, exp{i(—ks + ki — km + kn)pa} gives a non-vanishing result only if
(=ka + ki — km + kn)a is an integral multiple of 27r. Since we confine k points in the first
Brillouin zone, there is always one and only one kg which satisfies this condition for any

given ki, km, and k, [37,38]. For example,
S exp{i(—ka+ ki — km + ka)pa} = K (for ko =k; and km =kn),  (6.31)
and ’
S expli(—ka+ ki—km +kn)pa} =0 (for ko # ki and k= kn).  (6.32)
7

It follows from Eqs. (6.29) and (6.32) that the summation in Eq. (6.19) vanishes if k; # k;.
Remembering that HEE, j;}, and .S(ﬂ also vanish if k; # k;, we can show that

QW =0 and uff)=0  (for ki # k). (6.33)

This is expected since the perfect translational symmetry is retained if the nuclei move
along the normal coordinates of k = 0 vibrations, and hence the Fock and overlap matrix
elements between crystal orbitals with different k's remain always zero. However, this
does not imply that the CPHF equation for an infinite polymer chain can be solved
separately for each k. The two-electron integrals (A[l||BJ) and (AI||JB) in Eq. (6.18)
survive if k, = k; and ky = k;, and hence ug} with momentum kg can influence uf,_i} with
momentum k, (which may differ from k;) through two-electron integrals.

It follows from these considerations that the two-electron integrals required in the
CPHF equation are only of the type

(attermblntial) = % S 3 el clblol it
o TS

x exp{i(kig — kar + kzs)a} (WOVD|XDo ) | (6.34)
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where we explicitly specify the energy band (a,i,m,n) and momentum (k;,k2) indices
instead of using the composite indices (A,J,M,N). Thus, the dimension of the two-electron
integrals is reduced by a factor of K* on going from Eq. (6.18) to Eq. (6.34). The lengths
of ui,‘l} and Qﬂ; vectors are likewise reduced from V x O x K2 to V x O x K. We may

rewrite the CPHF equation for polymers in a more useful form as

(b1 _ i) 0 0 +2¥°§§ {ulel (gl gl 1)
+ uf Ikl (gl jikalpleal) | (6.35)
with
Qii]llhl - Hil‘_l[h]+‘jf=1il[k|]_£‘[k1]5£1ilfhl
95Ty sl (gl gl (6.36)

bl ka

MNow the definitions of the skeleton (core) derivative matrices are

l
HWK C,-lk]-clkl £ exp(ikqa), (6.37)
mn
and
JUE = S5 3 clkciMpim
B oo T8
a
(00,0 ) 3 (r) 4 8) i
xay (p || AN )exp{ikqa], (6.38)
and

(q)
S =5 S REOE
Y oq 9y

Once Eq. (6.35) is solved to find uﬂ"’“] vector, the derivatives of density matrix can

P exp(ikqa). (6.39)

be obtained with the aid of the expression

(q)
8B /e 1)[K] ~[K]* [K] j
3; = -—E E E 5 C; C,; explikqa)

l't-
%f 2 Z (V™ el + u{WCll ) explikga).  (6.40)
i a

This expression is obtained by straightforward generalization of the molecular counterpart

[7], and hence we do not describe its derivation here. The expression for the derivatives
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of energy-weighted density matrix can be obtained by similar generalization as

S.W[E]' 0 9EC. oeC. BZ " ;
oD 2SS (1, ) ) ol Bt

t 35 k
2 & ' .
% 3. ). Ef,ﬂ (uf;"k] Cﬂf,]’ C’Ei + uﬁw‘]q[ﬁ] C-‘E,.'fl]) exp(ikga), (6.41)
a k
with

occ. BE
_;cg}[h] s }{E;}lkﬁ o J'ﬁ][h]- Ezz Sﬁr]{hl (.i[fn:lj[h]“_;[kn]h[h:])
hi ka

virt. oce, BZ

49 Z Z Z { uﬂ}[h}' (_i{h] j[h] | |u[k=]g[k2])
a 1 ks
+ ulDika] (ifh] k) glkal a[kzl) } ; (6.42)

For infinitely long polymers, there is an extra in-phase nuclear coordinate arising
from the periodic boundary conditions, namely, the translational period a. The first
derivative of energy with respect to the translational period plays an important role in
the geometry optimization of polymers [21-23]. In this chapter, we do not deal with
the analytical second derivatives involving this degree of freedom, because they are not
required in the vibrational analyses of polymers. They may, however, be useful as elements
of the Hessian matrix in the geometry optimization or in analyzing the experimental data

such as longitudinal elastic moduli [39,40].

6.3 Computer implementation

The straightforward implementation of the analytical second derivative formulas described
in the previous section will lead to the crystal-orbital-based algorithm, which involves the
transformation of two-electron integrals from the atomic-orbital basis to the crystal-orbital
basis. The transformation requires storage for two-electron integrals over atomic orbitals
as well as those over crystal orbitals. Because the number of two-electron integrals easily
exceeds several gigabytes even if we deal with a polymer with a relatively small unit cell
and a modest basis set, it is particularly important in ab initio crystal orbital theory to use
the direct algorithm [41] and avoid the use of external storage and 1/O operation involving
two-electron integrals completely.

As in the direct atomic-orbital-based analytical-second-derivative method for mole-
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cules [8,10], the summation of the form
BZ
28 = 53 Xkl (gl mlkalp i) (6.43)
m n kg
appearing in Egs. (6.35), (6.36), and (6.42) can be accomplished by using two-electron
integrals over atomic orbitals. In the above equation, X,ﬂ["] denotes either usﬁffk] in
Eqs. (6.35) and (6.42) or S&i* in Eqs. (6.36) and (6.42). Using Eq. (6.34), we can rewrite
this equation with two-electron integrals over atomic orbitals as

1 B i "
Z = gX XY Y Y xpckiciicn! el

m R ok ope e @Ta

x expli(kig — kot + kzs)a} @V DA )] . (6.44)
At first sight, this summation appears to be hopeless, but it can be carried out in three
separate steps, namely,
78 = 53 kil cllly (@ exp(iki ga), (6.45)
[T
and
Y‘Jﬁ} = Ez Vﬁ_r} (ﬂm}yfﬂ”ll:"]g{ﬂ}) , (6.46)
Agr T8
and 8z
o 1 k kals .
e = g L L L XRIIC" O explikals ~ r)a) (6.47)

Likewise the summation in Eq. (6.38) is decomposed into two separate steps in actual
calculations.

The CPHF equation is solved in an iterative manner using a set of trial vectors
{tlal ) o 4%} [7]. The initial trial vector is given by
QW]

[k1]

tai(n) = Jal _ )

(6.48)

and other vectors are generated consecutively by

9 virt. occ, BZ

(k1] _ [eals ( [ka)a[ka]j plka) skz]
tain+1) = E[h}_EEkl gzg{tbﬂ“} (a ] et )
i a k]
" tg’;ﬂﬂ (a[klii[#-]" jsz]b[kzl)} : (6.49)
The number of the trial vectors is increased stepwise until a solution vector obtained by

a linear combination of the trial vectors satisfies the CPHF equation within a predefined

Error:

o) =l + iy -+ el (650

ai(n)”
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The coefficients ¢, cg, -+, cn are determined by the direct inversion in the iterative sub-
space (DIIS) method [7,42], such that the norm of the residuum vector in the CPHF
equation [left-hand side minus right-hand side of Eq. (6.35)] becomes the smallest. The
summation in Eq. (6.49) is carried out by the direct algorithm just described, and hence
two-electron integrals over atomic orbitals are repeatedly evaluated every time a new trial
vector is generated.

We employed the standard STO-3G [43], 3-21G [44], and 6-31G(d) [45,46] basis sets as
atomic orbitals. Geometry optimization was performed for polyethylene in the Cartesian
coordinate basis with the aid of the analytical energy gradients. In the geometry optimiza-
tion processes, we adopted a CHy unit as a reference unit cell and took into account the
screw-axis symmetry of the system. One- and two-electron integrals over atomic orbitals
were evaluated by using the sixth neighbor approximation for the STO-3G calculations
and the twelfth neighbor approximation for the 3-21G and 6-31G(d) calculations. The
Nth neighbor approximation means that we consider the basis functions in N unit cells at
each side of the central (reference) unit cell. We employed the Namur cutoff procedure
[47,48] without long-range correction. Teramae demonstrated that the Namur cutoff cri-
terion gave the fastest convergence in the total energy of polyethylene calculated at the
HF/STO-3G level [49]. The criterion for the convergence of density matrix in the SCF
iteration was set to 1078, Two-electron integrals were calculated repeatedly in every self-
consistent-field (SCF) iteration. At the optimized geometry, the largest absolute value of
the energy gradient was less than 3 x 10~° hartree/bohr.

In the vibrational analyses of polyethylene, we took a CgHy unit, which is the smallest
translational repeat unit, as a reference unit cell. The force constants were evaluated by
the analytical-second-derivative method. At the HF/STO-3G level, force constants were
obtained by the finite-difference method as well. The step size used in the numerical
differentiation of the analytical first derivatives was set to 0.04 bohr (nuclei are displaced
from the equilibrium positions by +0.02 bohr in the z, y, and z directions). The lattice
summations were taken up to the sixth and eighth neighboring C2Hy units for the 3-21G
and 6-31G(d) calculations, respectively. For the STO-3G calculations, we examined the
dependence of the frequencies on the number of neighboring C2Hy units (V) included in the
lattice summations, on the number of momentum sampling points (K ) in the first Brillouin
zone, and on the convergence criterion (10~°) for the CPHF solutions. For the 3-21G and

6-31G(d) calculations, K and C were set to 20 and 9, respectively. The momentum
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sampling points were evenly spaced, and we counted only one of the two sampling points
at the Brillouin zone boundaries (k = £ /a). This definition of K exactly matches the
formulas given in the previous section. It should be noted that K must be larger than 2N

to obtain correct total energies [49].

6.4 Illustrative calculations

6.4.1 Optimized structures of polyethylene

As is well recognized, it is important to obtain fully optimized structural parameters before
carrying out the vibrational frequency calculations. The optimized structural parameters
of polyethylene are listed in Table 6.1 along with the experimental data obtained by X-ray
diffraction studies [50-53].

At the HF/STO-3G level, several groups have already reported the structural param-
eters of polyethylene obtained by using the crystal orbital method [21,39] or the oligomer
(cluster) method [54]. Karpfen optimized the structural parameters by computing total
energies at 41 different structures by the crystal orbital method and fitting the thus-
obtained potential energy surface with a polynomial [39]. The structural parameters of
Karpfen are generally in good agreement with those estimated from the calculations of
n-C7Hi6 molecule by Crist et al. [54], although there can be seen a slight difference in the
CC bond length. Teramae et al. implemented the analytical gradients in ab initio HF
erystal orbital theory and optimized the structural parameters of polyethylene with them
[21]. The structural parameters of Teramae et al. are, however, significantly different from
those of Karpfen and of Crist et al.

We repeated the geometry optimization at the HF/STO-3G level by using both the
crystal orbital method and the oligomer method. The optimization by the crystal orbital
method was carried out with the aid of the analytical gradients starting from the geom-
etry of Karpfen. The geometry optimization of oligomers (n-CisHaz and n-CigHss) were
performed with the GAUSSIAN 94 program [55]. The structural parameters near the center
of n-CygHaq are converged at least to first six significant figures with the chain length of
oligomers and with the position of the structural parameters. As can be seen in Table
6.1, the structural parameters obtained by the crystal orbital method and by the oligomer
method are in agreement with each other to first four significant figures, and hence the

structural parameters obtained in this study are considered to be reliable. The CC bond
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Table 6.1 Structural parameters of all-frans polyethylene. Bond lengths in A and bond angles in degree.
CC bond length  CH bond length  CCC angle HCH angle

HF/5T0-3G
This work® 1.545 1.088 112.4 107.1
This work” 1.545 1.088 112.4 107.1
Reference [21] # 1.565 1.102 115.3 104.7
Reference [39] * 1.547 1.089 112.6 107.0
Reference [54] 1.543 1.089 112.4 107.1
HF /3-21G
This work® 1.541 1.087 112.5 107.2
HF/6-31G(d)
This work® 1.530 1.089 113.3 106.2
Experiments
Reference [50] 1.53 112
Reference [51] 1.534 £ 0.006 112.0+ 0.4
Reference [52) 1.533 & 0.022 1.07 £ 0.022 1119+18 107T+18
Reference [53] 1.527 £ 0.007 112+ 0.8

® Crystal orbital calculations. ® Oligomer (cluster) calculations.

lengths calculated in this study are between the values obtained by Karpfen and by Crist
et al.

The basis-set dependence of the structural parameters obtained at the HF level is par-
allel to that found in our previous density functional results [24]: the CC bond length and
the CCC angle increase and the HCH angle decreases on going from the 3-21G basis set to
the 6-31G(d) basis set. The optimized structural parameters obtained at the HF /6-31G(d)
level are in good agreement with the experimental results except that the calculated CCC
angle is slightly larger than the experimental values. Vibrational frequency calculations of
polyethylene discussed below are based on the optimized structural parameters obtained
by the crystal orbital method in this study.

6.4.2 Frequencies of k£ = ( vibrations of polyethylene

The convergence behavior of k = 0 frequencies with the number of neighboring C;Hj
units (V) is shown in Table 6.2. The frequencies are calculated at the HF/STO-3G level
by using the second-derivative method. The values of K and C indicated in the table
are sufficiently large, and the frequencies are practically converged with these parameters
(see below). The frequencies obtained with V = 1 are not converged, but the differences

between them and those obtained with N = 3 are less than 5 cm™!.

The frequencies
calculated with N = 2 are already in agreement with those obtained with N = 3 within

1 em™}, and they can be regarded as being converged. The total energies of polyethylene
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Table 6.2 Dependence of the k = 0 frequencies of all-truns polyethylene on the number of neighbors (N}
ineluded in the lattice summations. Frequencies calculated at the HF /STO-3G level in units of cm ™.

Mode® Finite-difference  Second-derivative method (K = 8,C = 9)°

method N=1 N=%2 N=3

a;  wi(0) 3601 3601 3601 3601
v2{0) 1826 1826 1827 1827

v4(0) 1342 1341 1342 1342

by walm) 1766 1771 1766 1766
va(m) 1261 1264 1261 1261

bag  yim) 1566 1566 1565 1565
bag  ws(0) 708 3708 3708 3708
v (0) 1435 1436 1436 1436

aw  vsl(0) 1277 1276 1277 1277
b wglm) 3732 3732 vz 3732

va(m) 833 832 834 834

bz (W) 60T 3604 3606 3607
va{w) 1855 1855 1855 1855

bae  1a(0) 1437 1440 1438 1437

® The normal vibrations are classified under the factor group isomorphous to the point group Dgs. For
the labeling of the normal vibrations, see Ref. (24]. ® N and K represent the number of neighbors (CzHq
units) included in the lattice summations and the number of momentum sampling points in t,he first
Brillouin zone, respectively. The convergence criterion for the CPHF solutions is set to 107

calculated with ¥ = 1, 2, and 3 are —77.15798, —77.16042, and —77.16041 hartree per
CgH, unit, respectively. It should be noted that the total energy calculated with N =1is
accurate to only two decimal places in hartree. Thus, the N-dependence of the frequencies
is much smaller than that of the total energy.

Teramae also examined the N-dependence of k = 0 frequencies of all-trans polyacety-
lene at the HF/STO-3G level by using the finite-difference method [49]; if the Namur
cutoff was employed, the frequencies of polyacetylene converged within 1 cm™! at N = 3,
but there could be seen considerable differences (12 em™! at maximum) between N = 2
and N = 3. Therefore, the convergence of the frequencies is slightly faster for polyethylene
than for polyacetylene. This is probably due to the 7-conjugation in polyacetylene, which
renders the force constants considerably long-range.

In Table 6.2, £ = 0 frequencies of polyethylene calculated by the finite-difference
method are also given. They are in good agreement with those obtained by the second-
derivative method (with N = 3) with the largest deviation being less than 1 cm™'
Therefore, the numerical accuracy of the finite-difference method used in our previous
calculations [23,24] is no less high than that of the second-derivative method.

The dependence of the frequencies on the number of momenturn sampling points

(K) is shown in Table 6.3. It is seen immediately that the frequencies of polyethylene at
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Table 6.3 Dependence of the k = 0 frequencies of all-trans polyethylene
on the number of momentum sampling points (K') in the first Brillouin zone.
Frequencies calculated at the HF/STO-3G level in units of cm™".

Mode" Second-derivative method (N = 3,C = 9)°
K=8 K=12 K=20
ag  1(0) 3601 3601 3601
v2(0) 1827 1827 1827
vg(0) 1342 1342 1342
by valw) 1766 1766 1766
va(n) 1261 1261 1261
bey weim) 1565 1565 1565
bag  vs(0) 3708 3708 3708
v{0) 1436 1436 1436
au  vsl0) 1277 1277 1277
bie  v(m) 3732 3732 3732
vglw) 834 834 834
baw  wa(w) 3607 3607 3607
va{w) 1855 1855 1855
baw  va(0) 1437 1437 1437

8¢ See the corresponding footnotes of Table 6.2.

the HF /STO-3G level are already converged at K = 8. The K-dependence of the total
energy is also negligibly small as long as K is larger than 2NV; the total energy calculated
with K = 8 is accurate to 5 decimal places in hartree. Thus, it is normally adequate to
take K which is only slightly larger than 2NV, in order to obtain the converged results for
the frequencies and total energies of polymers. It should be noted, however, that there
are cases where the equilibrium structures (and hence the vibrational frequencies also) of
polymers are strongly dependent on K and a small K leads to numerically incorrect results.
For example, it was demonstrated that the bond alternation in all-trans polyacetylene was
dependent on K if some kinds of density functionals were used [56-58]. These density
functionals tended to predict unrealistically small band gaps, and it was necessary to take
a large number of momentum sampling points in the vicinity of the band gap in order to
calculate correctly the magnitude of the bond alternation, which was strongly coupled to
the band gap.

Table 6.4 gives the dependence of the frequencies on the convergence criterion of the
CPHF solutions. The frequencies calculated with C = 6 and C = 9 are the same within
1 em~!. The differences between frequencies calculated with C = 3 and C = 6 are not
negligible with the largest deviation being 12 cm™!. Thus, it is sufficient to take C = 6 in
the frequency calculations. The number of trial vectors required to obtain the convergence

of 10~ for the CPHF solutions is roughly proportional to C. For example, the number
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Table 6.4 Dependence of the k = 0 frequencies of all-trans polyethylene on the convergence criterion
(10™%) for the CPHF solutions. Frequencies calculated at the HF /ST'O-3G level in units of em ™'

Maode® Second-derivative method (N = 3,K = B}E

=3 C=6 =%

ag i{0) 3599 3601 3601
v2(0) 1826 1827 1827

14(0) 1342 1342 1342

big  va(m) 1765 1766 1766
va(x) 1261 1261 1261

by wel(m) 1565 1565 1565
bag wel0) kT Ivo8 aros
vr{0) 1436 1436 1436

aw  val(0) 1277 1277 1277
biw  wslm) araz ari2 3raz
ve(m) 846 834 83

bau  2aim) 3807 3607 3607
va(x) 1854 1855 1855
) 1439 1437 1437

ab Gee the corresponding footnotes of Table 6.2.

of trial vectors is 2, 5, and 8 for C = 3, 6, and 9, respectively, for the calculations
on polyethylene at the HF/STO-3G level. Since in the direct algorithm, two-electron
integrals are repeatedly evaluated as the trial vectors are added to Eq. (6.50), the time
required to solve the CPHF equation increases linearly with increasing C.

The frequencies of k = 0 vibrations calculated with the STO-3G, 3-21G, and 6-31G(d)
basis sets are compared with the experimental data [59-63] in Table 6.5. The calculated
frequencies are scaled uniformly by a single scale factor for each basis set. The scale
factors, which are given in the table, are determined by a least-squares fitting procedure,
such that the root-mean-square errors between the scaled and observed frequencies become
the smallest.

It can be seen that the unscaled frequencies are larger by 10 to 30 % than the ob-
served ones regardless of the basis set used. Uniform scaling of the calculated frequencies
significantly improves the agreement between the calculated and observed frequencies,
and the root-mean-square errors between the scaled and observed frequencies are 37, 33,
and 23 cm™! for the STO-3G, 3-21G, and 6-31G(d) calculations, respectively. The use of
larger basis sets systematically improves the agreement between the calculated and ob-
served frequencies. In fact, the scaled frequencies obtained with the 6-31G(d) basis set
are in reasonably good agreement with the observed frequencies. It was also found in
our previous density functional results [24] that the basis-set dependence of the calculated

frequencies of polyethylene was larger than the dependence on density functionals.
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Table 6.5 Basis-set dependence of the k = 0 frequencies of all-trans polyethylene
caleulated at the HF level. Frequencies in units of cm™'.

Mode® Obs.” STO-3G 321G 6-31G(d)

Unscaled x0.70952 Unscaled x0.8991 Unscaled x0.8095
normal species
a;  ni0) 2848 3601 2864 3189 2867 3186 2866
v2(0) 1440 1827 1453 1657 1490 1638 1473
va(0) 1131 1342 1067 1207 1085 1236 1112
byg  wa(mw) 1370 1766 1404 1510 1358 1571 1413
vglm) 1061 1261 1003 1098 987 1138 1024
bag  we(m) 1295 1565 1244 1459 1312 1444 1299
bag  wel0) 2883 aros 2948 3200 2877 3193 2872
vz (0) 1168 1436 1142 1314 1181 1318 1186
au  val0) 1050 1277 1015 1205 1083 1162 1045
bo  ve(r) 2919 araz 2068 3257 2928 3246 2020
va(r) 725 834 663 789 709 781 703
baw  walm) 2851 3607 2868 3201 2878 3194 2873
va() 1468 1855 1475 1676 1507 1661 1494
by ra(0) 1176 1437 1143 1350 1214 1314 1182
perdeuterated species

ag  w1(0) 2103 2644 2102 2323 2089 2329 2005
)] 1148 1425 1133 1262 1135 1284 1155
v3(0) 975 1172 932 1089 979 1080 972
big valw) 1253 1620 1288 1310 1178 1417 1275
reafm) a3 972 773 806 806 853 803
bay  wefm) 917 1107 880 1032 0928 1021 g18
bag  wve(0) 2199 2765 2199 2377 2137 2372 2134
vz (0) 0993 1232 980 1133 1019 1138 1024
ay  va(0) 748 903 718 852 766 822 739
biw  vg(m) 2195 2767 2200 2413 2170 2404 2163
vaim) 525 602 479 570 513 564 507
baw wifm) 2089 2623 2086 2323 2089 2321 2088
valw) 1091 1365 1085 1235 1110 1223 1100
baw  wa(0) 802 1087 B64 1022 919 994 894
424 37 187 33 185 23

root-mean-square error

® See the corresponding footnote of Table 6.2, * Taken from Refs. [59-63].
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Table 6.6 Execution times (CPU + /O times in seconds) for all-trans polyethylene at the HF /STO-3G
level (N =3, K =8, C = 6). All the calculations were performed on an HP Exemplar workstation of our
laboratory. The compile options were “4+D532.0a +DAZ.0N 403 +Onolimit +0Odataprefetch”.

Step first derivatives Second derivatives®
_____conventional® direct®

SCF 3032 287 3032

First derivatives of

tw].rcruelam.mn integrals 2864

Two-glectrop integral

tT&nE?D?m;{éﬁl;L g e 839

F{irst. and second ﬂerivﬂiuﬁ

of two-electron integra 23791 24032

CFHF fes 210 3587

total 5908 25288 31341

2 Dnly the symmetrically distinct force constants were calculated. ® Crystal-orbital-based algorithm
involving the transformation of two-electron integrals. © Atomic-orbital-based algorithm in which
two-electron integrals are recomputed in every SCF and CPHF iteration. 4 Total execution times include
small steps which have not been tabulated separately.

6.4.3 Comparison of the execution times

The execution times (the sum of the CPU and I/O times) for the various steps of first
and second derivative calculations on polyethylene at the HF/STO-3G level are given
in Table 6.6. The second derivative calculations were carried out using butp the di-
rect atomic-orbital-based algorithm and the conventional erystal-orbital-based algorithm,
which involves the integral transformation.

It is sufficient to calculate the symmetrically distinct force constants to obtain all the
k = 0 frequencies. Those force constants are obtained by a single calculation using the
second-derivative method with the total times given in the table. If the finite-difference
method is used, it is necessary to carry out first derivative calculations at 11 different
structures to obtain all the symmetrically distinct force constants. Therefore, the total
time required to obtain all the k = 0 frequencies by the finite-different method is about
65000 (== 11 x 5908) seconds, which is about twice as long as the times required in the
second-derivative method. This result indicates that the vibrational frequency calculations
using the second-derivative method are efficient and practical for polymers, as has already
been proved for molecules [7,10].

The second derivative calculation using the direct algorithm is only 1.3 times as costly
as that using the conventional algorithm. We are currently using old algorithms for integral
evaluation, and more than 80 % of the total execution times of the second derivative

calculations are consumed by the step of the integral second derivative evaluation. If
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efficient algorithms for integral evaluation are used, the CPHF step will become relatively
more important and the ratio of the cost of the calculation using the direct algorithm
to that using the conventional algorithm may become slightly larger [10]. Nevertheless,
because of the intensive use of the external storage in the conventional algorithm, there
seems to be no advantage in using the conventional algorithm instead of using the direct

algorithm for the vibrational frequency calculations of polymers.

6.5 Conclusion

We have developed the analytical-second-derivative scheme for ab initio HF crystal orbital
theory of polymers. We have found that the frequencies of k = 0 vibrations of polyethylene
calculated by using this scheme converge fast with the number of neighbors included in the
lattice summations and with the number of momentum sampling points. We can safely
expect that the frequencies are practically converged if we take sufficiently large values for
these parameters that the total energies converge to 5 decimal places in hartree. It has also
been found adequate to take 10~% as the convergence criterion for the CPHF solutions.
Comparison of the total execution times has indicated that the second-derivative method
is more efficient than the finite-difference method for the vibrational frequency calculations

of polymers.
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Chapter 7

Analytical energy gradients for ab
initio second-order Mgller—Plesset
perturbation crystal orbital
theory

So Hirata and Suehiro Iwata, “Analytical energy gradients in second-order Mapller-Plesset

perturbation theory for extended systems,” J. Chem. Phys., in press.
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Abstract

The spin-restricted formulas for the analytical gradients of the second-order Mgller-Plesset
perturbation (MP2) energy are presented within the framework of ab initio erystal orbital
theory of infinite one-dimensional lattices (polymers). The coupled perturbed Hartree-
Fock equation for polymers is solved iteratively using the atomic-orbital-based algorithms.
The MP2 energy and its gradient contributions are evaluated by the disk-based algorithms
with the aid of the two-particle density matrix. The analytical-gradient method at the
MP2 level as well as the analytical first- and second-derivative methods at the Hartree—
Fock (HF') level is applied to calculate the equilibrium structures and harmonic vibrational
frequencies of all-trans polyacetylene. The deviations of the calculated frequencies from
the observed ones for the in-phase C=C stretching modes are reduced by about 70 % on
going from HF/6-31G to MP2/6-31G theory.

7.1 Introduction

Vibrational spectra of a number of polymers and some crystalline materials can be inter-
preted theoretically in terms of the normal vibrations of isolated chains of infinite lengths
[1]. Among these normal vibrations, of particular importance are those with wavevector
k = 0, since they give rise to infrared absorption bands and Raman scattering lines [1]. In
k = 0 vibrations, the corresponding atoms in all the unit cells vibrate in phase with each
other. In other words, the perfect translational symmetry is retained in these vibrations.
Because of this property of k = 0 vibrations and the selection rules of infrared and Raman
spectroscopy, ab initio crystal orbital theory [2-5], which takes full advantage of the pe-
riodicity of polymers, is an ideal means to interpret and predict the infrared and Raman
spectra of polymers.

In fact, it has been demonstrated by Teramae et al. [6,7] that the frequencies of the
infrared- and Raman-active vibrations of polymers could be evaluated efficiently with the
aid of the analytical gradients of Hartree~Fock (HF) energies with respect to in-phase
(k = 0) nuclear displacements. At the HF level of approximation, we have recently
implemented the analytical second derivatives of energy with respect to in-phase nuclear
displacements [8]. In addition, we, and also Sun and Bartlett, have carried out the crystal
orbital calculations on the normal vibrations of polymers, in which the effects of electron

correlation have been explicitly taken into account [9-11]. We have derived the formulas
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for the analytical energy gradients in density functional and hybrid HF /density functional
crystal orbital theories, and have developed an efficient code based on these formulas [9].
The method has been applied to the vibrational frequency calculations of polyacetylene,
polymethineimine, and polyethylene [9,11]. On the basis of second-order Mgller—Plesset
perturbation (MP2) crystal orbital theory, Sun and Bartlett [10] have recently carried out
a vibrational analysis of anti-transoid form of polymethineimine. However, these authors
have evaluated the force constants by double numerical differentiation of the total energies
without using an analytical-derivative method.

In this chapter, we describe the formulas and computer implementation of analytical
gradients of MP2 energy within the framework of ab initio crystal orbital theory. The
formulation consists of three parts. The first part reiterates briefly the gradient contri-
butions from the HF energy. The original derivation of this part can be found in the
papers of Teramae et al. [6,7]. The second part involves the polymer version of the cou-
pled perturbed Hartree-Fock (CPHF') equation, which we have already implemented in
the analytical-second-derivative codes of ab initio HF crystal orbital theory [8]. In the
third part, the formulas for the MP2 correction and gradient contributions due to this
correction are described. The formulas for MP2 energy for infinite systems were first de-
rived and implemented by Suhai [12] and MP2 single point calculations have already been
performed for a number of polymers by him [12-19] and other authors [10,20-27]. Here we
present the results of vibrational analyses based on the MP2 analytical-gradient method,
taking all-frans polyacetylene [28] (hereafter simply referred to as polyacetylene) as an
example. The vibrational spectra of polyacetylene have been studied intensively [29-38]
and the assignments of the infrared and Raman bands have been established [29,30,39].
It is known that some of the structural parameters and normal modes of polyacetylene
are strongly affected by electron correlation [9,12,18,40-42]. We shall demonstrate that
the differences between the calculated and observed frequencies for these normal modes
are significantly reduced on going from HF theory to MP2 theory. The efficiency of the
present implementation of the analytical-gradient method is also discussed in terms of the

execution times.
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7.2 Formulas for the MP2 gradients
7.2.1 HF part of the total energy and gradients

In the spin-restricted HF crystal orbital method [2-5|, the total wave function of an infinite
one-dimensional lattice is a Slater determinant built from doubly occupied crystal (Bloch)
orbitals. Each crystal orbital is then expressed as a linear combination of atomic orbitals

x\?(r) in the form
1 £
P (r) = 7z );%ZCL’:I explikga)x'®(r), (7.1)

where a is the translational period, and K is the number of unit cells in the system and
it approaches infinity. The crystal orbital w,bf,k] (r) and crystal orbital coefficient C}ﬂ are
characterized by energy band n and quasi-momentum k, which are indicated by subscripts
and square-bracketed superscripts, respectively. The atomic orbital xi,'”[r} is a real spatial
function centered in unit cell g.
Applying Ritz variation principle to the HF energy expectation value with the or-
thonormality condition
[ @ E)ar = b, (7.2)

we obtain the following k-dependent Hartree-Fock-Roothaan equation:
FICl = gkl k) (7.3)

where ¢l¥l is a diagonal matrix of one-electron energies. The elements of the k-dependent
Fock and overlap matrices are Fourier lattice sums of the corresponding molecular integrals

in the atomic orbital basis:

Fi¥ = 5" Fl9 exp(ikqa), (7.4)
q
and
St =5 80 exp(ikga). (7.5)
q

The elements of the Fock and overlap matrices between the atomic orbitals xﬂn(r] and

xi(r) are defined, respectively, as

F9 =HE + 33 P (WO 2060), (7.6)
Ao T.F
and
59 = [ X0 x)dr. (7.1
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The elements of the one-electron part of the Fock matrix are given by
1
Y = [x0) (——vi‘) ‘“{r)dr

—ZZ[x‘“’{ T - g X9 (r)dr, (78)

where 74 iz the charge of nucleus A at position RE:}. The density matrix elements P,E'LJ

are defined by summation over all the occupied states in the first Brillounin zone:
Pl = L % Z C[k]'CEk] exp(ikqa). (7.9)
WK & '
J

Note that the number of k points in the first Brillouin zone is equal to K. Two-electron
integrals (pf“}'u{"'llll'[‘"ja{*’}) in Eq. (7.6) are antisymmetrized combinations of regular two-

electron integrals over atomic orbitals
(HOVDIAD) = (UOUD A - _:'?; CRZCICPON (7.10)
with
(WO = [ [ O ) x O ex eaddrade. (71)

Using the matrices defined above, we can write the expression for the HF total energy
per unit cell as
r=3 S PWHY + - EZ b3 P{U}p':’ r} ( 0 (@} A g {s}) + e  (RI9)
e g # VoA g, E
where Eng is the nuclear repulsion energy per unit cell. The expression for the HF energy

gradients with respect to an in-phase nuclear displacement x is written as [6,7)

SE oHY ad v (s
a:F = Y3 P9 ; EZZZPW}P{’ ) & ( (0, ()| AL o ])

wy g n.v).,.:rqrs

aE”“ -y 3wl (7.13)

B g

where W) is the energy-weighted density matrix [43,44], whose elements are defined as

oce. BE
Wi =%ZZ ek Cl explikga). (7.14)
ik

In Eq. (7.13), the terms involving the derivatives of density matrix elements are eliminated

by making use of the orthonormality condition (7.2).
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In-phase nuclear displacements include the translational period a. The first derivative
of energy with respect to a can be calculated by using Eq. (7.13) and the following relation
[6,7,9]

d d

— = i—, T.15

= % % 0 o
where zﬂ']' denotes the z-coordinate of nucleus A in unit cell g and we assume that the

chain axis is parallel to the z-axis.

7.2.2 CPHF equation

As we shall show in the next subsection, the formula for the MP2 gradients has depen-
dence on the first derivatives of crystal orbital coefficients E?C,Eﬂf&m. These derivatives are
obtained as solutions to the polymer version of the CPHF equation [8], which is an exten-
sion of the molecular CPHF equation first derived by Gerratt and Mills [45]. Following
the notation of Pople et al. [44], the molecular CPHF equation is written as

(&~ €a) u “’—QE:’HZZ{u‘”' (ail[bg) + ufy) (ail|j0)}. (7.16)

Here the derivatives of molecular orbital coefficients are expanded by the molecular orbital
coefficient vectors with the expansion coefficients being the solution vectors um of the

CPHF equation [44-46]

8Cun
= _Ecm LB (7.17)

Here we use i,j,h,! for occupied orbitals and a,b,c for virtual orbitals. We also use m,n
for the entire set of molecular (or crystal) orbitals. The polymer version of the CPHF
equation can be obtained from Eqgs. (7.16) and (7.17) by the replacements

Cun = ;,-—-q{ﬁiexpﬁkqn}. (7.18)
Pn(r) — YH(r), (7.19)
xu(r) — xi2(r), (7.20)

and so forth. The CPHF equation obtained by these replacements is, however, highly re-
dundant; because of the translational invariance of molecular integrals we can substantially
reduce the dimension of the matrices and vectors appearing in the equation. Eliminating

the redundancy, we obtain the polymer CPHF equation in the following form:

(Eyn] _ ﬁi[f-:]) HE}[’E:I - {I}Ek:] i QZ EZ{ (1)[kz2]+ ( [kﬂi[k:]”hlkﬂjlkzl)
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+ ug;}[kﬂl ( gkl (k] ”jl-'r'.:]h[kﬂ)} (7.21)
with
k 1)[k k k k S
Qflll 1 _ H{m_}[ 1] J::I[EH[ 1] _ ‘51[' 1]5;[“1,}[ 1] _ Ezzsﬁilhl (a[*ﬂi[kﬂ||£[*=}h"‘2]) . (7.22)
hi ks
The readers can find in Chapter 6 the derivation of these equations starting from the
molecular counterparts. Equation (7.17) is likewise generalized to give the derivatives of
crystal orbital coefficients as
[k] all
ECLJ:L (1lk] (7.23)
where z denotes an in-phase nuclear dmplanement. Note that the two-electron integrals
over crystal orbitals appearing in Eqs. (7.21) and (7.22) have only two independent k-
indices, and are of the type
1 *
( ﬂ[n]t;[kl;elmlk:]ﬂikzl) = = Z Z ngﬂtﬂﬁiicﬁﬁl cg:]ﬂ

e o 4,78

x exp{i(kiq — kar + kzs)a} (mﬂ}ufﬂ||1.i*lgm) . (7.24)

The matrices introduced in Eq. (7.22) are the so-called skeleton (core) derivative integral

matrices [46], whose elements are defined as [8]

w}
HUE =5"%" clr ol —~ Lot e = explikga), (7.25)
wy g
and
WK _ (ke otk ple=) 9 ( (0, (@)1 (r) o) :
T = ;%;ﬂfm CHPG™ o (WO ) explikga), (7.26)
and
{l}[ki = z Zglﬂ*clk}asﬂ“ exp(ikqa). (7.27)
By g

It may be adequate to define here another skeleton (core) derivative integral matrix for

later use:

. BZ
FORL = k] 4 g0 933 sk (Il etel

hi ka
R R [, (el )]y lhal
R (i
u{uillih:] (m[e.1ﬂim||,[k=1a[k=r)} , (7.28)
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7.2.3 MP2 part of the total energy and gradients

According to Rayleigh-Schrodinger perturbation theory, the exact ground-state wave func-
tion ¥ and energy E for a system described by the Hamiltonian A 4+ AH’ can be expanded

in powers of A,

U o= 9O oag) 4 a2g@ ... (7.29)
= EO Lyl 4 2@ ... (7.30)

The complete Hamiltonian is a sum of two parts—the zeroth-order Hamiltonian H and
the perturbation AH'. Employing the Moller--Plesset partition scheme [47], we take the
zeroth-order Hamiltonian as a sum of Fock operators. Truncating the energy expression,
Eq. (7.30), at second order and setting A = 1, we obtain the expression for the MP2 energy
as
Eyps = E® + EW 4 E@ (7.31)
where E@ + EW) js identical to the HF energy Enr.
In the molecular orbital formalism, the MP2 correlation correction E'?) is written as

[48,49]

oee. virt. s doani2 . 1 o
ED=%"Y" 2|(ialjb)|” — (ialjb) (iblja) (7.32)
7 ob €+ € — € — €
The corresponding expression for infinite one-dimensional lattices is obtained by replace-
ments (7.18)—(7.20) as

uee. virt., BE

- 23> X

17 ab ki kzkska
~ e Kiik:]ﬂlha” j[ks}blh]) (ﬂk;]b[kqimlks]u[kz})‘]} ﬁgjﬁ(khkg, ks, kq), (7.33)

{2 (it a2 j[katblm)f

with
A ko b, k) = (e 4 - el — ) e

Here E'2) denotes the MP2 correlation correction per unit cell, and two-electron integrals

over crystal orbitals are defined as

. 1 - »
(ifhla[tﬂ”ﬁz]b[h]) = = E Z CL,:I] Cﬂzﬂcﬁﬂ G’l?]

[TRESN. § LBt

x exp{i(~kip + kaq — ka7 + kas)a} (1P DA Mo )

1 .
= 3 2 expli(—k1 + k2 — ks + ky)pa)
P
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k)= ks
C ¥ ¥ dboiicil

L AT 4TS
x exp[i{ka(g — p) — ka(r — p) + ka(s — p)}q
5 (ﬂip} vl9)] ;g[f}g{-f}) : (7.35)

The summation Y-, exp{i(—ki + k2 — k3 + k4)pa} can be carried out separately, and it
gives K if (—k; + k2 — ks + k4)a is an integral multiple of 27; otherwise the summation
vanishes. If we confine k-points in the first Brillouin zone, there is always one and only
one k;, which gives a non-vanishing result for this summation, for any given kg, k3, and
ks. Thus, we can drop one of the four k-indices in the summation in Eq. (7.33). This is
equivalent to writing [12]

oce, virt. BZ

£ — %ZE y {2|(iik1]ﬂlk=]|jlha]b[l=-:])|2

i ab kzkaka
T [(.,;ucﬂﬂlm | jlka]b[kql) (t-[m];,:m” j{h]alkn])'] } A (ky, ks, ka), (7.36)

with
=1

A (ka, ks, ka) = (i) 4 elfs) — eflal — fhal) (7.37)

Now the definition of two-electron integrals over crystal orbitals becomes

(it lalka| i) = % T 3 cll gl ik

b Ao 9,78
x exp{i(kzq — kar + kys)a} (.um-" u'[‘ﬂM{’:'u-'[""J) . (7.38)
In these equations, k; is determined uniquely for each set of (kg, ks, kq) by

ki =ko—ky+ ky, {?,39]

and if k; is out of the first Brillouin zone, we can move it back into the zone by the

replacements
ky —ky — 2m/a (if k&1 > w/a), (7.40)
ki+—k +2n/a (if k1 < —w/a). (7.41)
The expression for the gradients of E'2) with respect to an in-phase nuclear displace-

ment z can be obtained by generalizing the corresponding expression for molecules [44]

as

aE[j} 4'0(!3.“
dr EZZ

irt.
iJ ab

BZ
S Re[a(ky, ks, ke) X2 (ka, ka k)| (7.42)
ka.ka.kq
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where we used the first-order Mgller—Plesset wave function coefficients
af (ka, ka, ka) = (ilJala)| slpleal)” A iy, ks, k), (7.43)
and

1 Ll -
Xk ks k) =2 3 chclaclcly

jr e QTS

x exp{i(kag — ks + kis)a} o (HOUD o)

+§ {Qufj][h] (,:[h];[kzl| j[hib[h]) _ ( F;{‘l}[h] I EEkl] Sf:”[*‘])

X (‘E{kllalkzl | _f[ka]alhl) ﬁﬂ?(k?, ks, ks) — S'_’fil:l[h] (;{kl] alka] | jgk_..,i b{‘“T)}

+ ﬁzn {Euﬂ:l[m]- (glh]a[kz” jika]b[h}) 4 ( FiDlkal _ lka] g1 J.M,,)

X (Z[h]c[fiz”j[k;;]b[k 1l) &f}{kg,kg,k,,] — S{Dikz): (i[-'“]c!h] | j[kalblk.])} . (7.49)

The occupied-virtual-block vectors uﬁ}{h] in Eq. (7.44) are obtained from the solution
vectors of the CPHF equation uﬁ}{h’] by virtue of the relation [44-46]

ule] - _y(lbale _ gkl (1.45)

Equations (7.42)-(7.44) can be derived alternatively by directly differentiating Eq. (7.36).
The derivation is parallel to that of the molecular counterparts, which can be found in the
paper of Salter et al. [50]. However, considerable care must be exercised not to confuse
the complex quantities with their conjugate values, since in the formulation for molecular
systems molecular orbital coefficients and molecular integrals are usually assumed to be
real. With the aid of Eq. (7.15), we can also compute the gradients with respect to
the translational period 8E?) /8a without modifying the CPHF equation (7.21) and the
gradient formulas (7.42)-(7.44) just described.

7.3 Computer implementation

We used the standard STO-3G [51] and 6-31G [52] basis sets as atomic orbitals. One-
and two-electron integrals and their first derivatives were evaluated by using the sixth
and ninth neighbor approximations, respectively, for the STO-3G and 6-31G calculations.
We employed the Namur cutoff procedure [53,54] without long-range correction. Only the

two-electron integrals and their derivatives whose absolute values were larger than the
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threshold of 10~® were computed, and then stored in the external storage. The criterion
for the convergence of density matrix was set to 107%. The number of evenly spaced
momentum sampling points in the first Brillouin zone was 20 (only one of the two points
at the zone boundaries was counted).

The CPHF equation was solved in an iterative manner using a set of trial vectors [44].
The solution vectors were expanded by these trial vectors, and the expansion coefficients
were determined by the DIIS (direct inversion in the iterative subspace) method [44,55].
The convergence criterion for the solutions was set to 1079, and typically 9 to 11 trial
vectors were necessary to obtain this convergence. In each iteration of DIIS, we had to
form the product vectors of two-electron integral over crystal orbitals and a trial vector.
This product formation was carried out conveniently by using the atomic-orbital-based
algorithm [56,57], the details of which have been given in Chapter 6. Thus, we could
avoid, at this point, the integral transformation of two-electron integrals. As we shall
show in the next section, the step of solving the CPHF equation requires only a small
fraction of the total execution time, and hence we did not employ here more advanced
algorithms such as the Z-vector method of Handy and Schaefer [58]. Therefore, the CPHF
equation was solved for each of 3n + 1 nuclear degrees of freedom, where n is the number
of nuclei in the unit cell and one degree of freedom is associated with the translational
period a.

The MP2 correlation correction E(® and its gradient contributions dE®) 8z were
evaluated in the following three steps. (1) The two-electron integrals over atomic orbitals
were transformed to those over crystal orbitals. Transformation was performed stepwise.
Outermost loop was over the virtual crystal orbitals w!,k“i[r], and the transformed two-
electron integrals of the type (m[’“]n["ﬁilﬁ‘“!b“‘*]) were stored in core memory. This step
required @(N3K?) memory, where N is the number of basis functions per unit cell and K
is the number of momentum sampling points. T'wo-electron integrals over atomic orbitals
were restored from the external storage for each pair of b and k4. Thus, the I/0 operations
in this step totaled V K, where V' is the number of virtual energy bands. (2) By using
the current transformed integrals (mf’”]n[*’]|j“‘33ﬁ““]) for a (b, k4) pair, we incremented
E?) and obtained the first-order Maller-Plesset wave function coefficients Ef_'?b{kz, ks, kq).
Here we have included the carbon 1s orbitals among the occupied orbitals; the frozen
core approximation was not used. With the current transformed integrals, the second

and third terms of Eq. (7.44) were computed and contracted with af?(ks, k3, ks) to give



gradient contributions. The CPHF solutions and the skeleton (core) derivative matrices
were O(VOK) and O(N?K) quantities, respectively, and were stored in core memory. (3)
The final step was to obtain the gradient contributions due to the two-electron integral
derivatives over atomic orbitals, i.e., the first term of Eq. (7.44). This has conveniently
been accomplished by using the (non-separable) two-particle density matrix [59-61]:

occ. virt.  BE

Lurol@ir8) = — Z Z Z C{ki]'c[kzlcr[kal*c[h] “b{kg,kg ks)
LI ab kg kaky
% exp{i(keg — kar + kqs)a}. (7.46)

Since we had aj (kz.kg k) only for a (b, k) pair, we could obtain I',,,(q,7,ks) by
carrying out three quarter back-transformations for pairs (i,k;), (a,ks2), and (j,ks):

oce., virt, BZ

Dl k) =Y 3 3 CRICEICE" o (ky, ks, ks) expli(kag — ksr)a}.  (7.47)
L, 0 kaks

This step again required O(N®K?) memory. The fourth quarter back-transformation for
a (b,k4) pair was performed last:

wvirt. BE

Tuinalgim8) = ZEGE... Tlasl(, 7, ks) exp(ikysa). (7.48)

The contribution of the current (b,ks) pair to I'ya0(g, 7, 5) was obtained and was immedi-
ately contracted with two-electron integral derivatives to give gradient contributions [61].
Two-electron integral derivatives were restored from the external storage for each (b,ky)
pair, and hence the total number of I/0 operations in this step was again VK.
(Geometry optimizations were carried out for all-frans polyacetylene by using the
analytical energy gradients at the HF and MP2 levels. Threshold for the residual energy
gradients was set to 2 x 10~* hartree/bohr. GDIIS extrapolation [62] was adopted to
accelerate the convergence of the geometry optimizations. At the HF level, vibrational
frequency calculations were performed by using the analytical second derivatives [8]. At
the MP2 level, the force constants were evaluated by numerical differentiation of the
analytical energy gradients. The step size for the numerical differentiation was 0.02 bohr
(each nucleus was displaced from the equilibrium position by £0.01 bohr in the z, y,
and z directions). In order to obtain all the symmetrically distinct force constants, we
have carried out energy gradient calculations at 10 different structures. The frequencies
of k = 0 vibrations were computed with these force constants in the Cartesian coordinate

basis according to the method described in Refs. [63,64].
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7.4 Illustrative calculations

The analytical-derivative methods at the MP2 level as well as at the HF level have been
used to calculate the equilibrium structures and harmonic vibrational frequencies of all-
trans polyacetylene. The results are given in Tables 7.1 and 7.2.

In order to obtain correct MP2 energies, it is essential to use a suitably converged
HF wave functions and energy band structures. In the first two columns of Table 7.1, the
structural parameters and total energies calculated at the HF /STO-3G level by using our
crystal orbital program are compared with those estimated from the oligomer (cluster)
calculations. We have carried out geometry optimizations for oligoenes with 28 and 26
carbon atoms using the GAUSSIAN 94 program [65]. The structural parameters given in
the second column of Table 7.1 are extracted from the central part of the longer oligoene,
and the total energy is obtained as the energy difference between these two oligoenes.
The results obtained by these two different methods agree with each other completely. We
point out that the numerical accuracy of the crystal orbital calculations at the HF/STO-3G
level is strongly influenced by the cutoff criterion of the long-range Coulomb and exchange
summation [66]. The Namur cutoff criterion [63,54] adopted here has been shown to
give the fastest convergence for total energy and other properties [66]. In his thorough
investigation of this convergence behavior [66], Teramae has optimized the geometry of
all-trans polyacetylene using several different cutoff criteria. The structural parameters
and total energy obtained with the Namur cutoff criterion by Teramae are also in complete
agreement with our results. Optimized geometry obtained in this study as well as that
obtained by Teramae is also in reasonable agreement with the results previously reported
by Karpfen and Petkov [67], by Karpfen and Héller [68], and by Teramae [69].

In the third and fourth columns of Table 7.1 are given the structural parameters
and total energies calculated at the MP2/STO-3G level using the crystal orbital and the
oligomer (cluster) methods. The structural parameters obtained by these two methods
agree with each other to the first four significant figures. This result not only ensures the
accuracy of the present analytical-gradient method but also indicates that the structural
parameters of oligoenes with 28 carbon atoms converge at the corresponding values of an
infinite chain. The MP2 correction E(2) obtained from the crystal orbital calculations is
in agreement within 2 x 1075 hartree with the value obtained as the finite difference of the

oligomer results. The structural parameters obtained from our MP2/STO-3G calculations
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Tahble 7.1 Optimized structural parameters and HF and MP2 energies of all-trans polyacetylene. Bond
lengths in A bond angles in degrees, and energies in hartree.

STO-3G - 6-31G

HF®™  HF° MP2* MP2° HF® MP2®

C=C length 1.326 1.326 L3711 137 1.339 1.377

C-C length 1.477 1.477 1.485 1.485 1.451 1.440

C-H length 1.084 1.084 1.103 1.103 1.077 1.097

CCC angle 124.0 124.0 123.7 123.7 124.3 124.2

C=CH angle 119.8 119.8 119.3 119.3 119.1 118.5
® —75.94793 -75.94794 —75.94459 —T75.94458 —76.86132  —76.85045
E? -0.12325 -0.12323 ~0.17990

® Crystal orbital calculations. * See also Refs. [66-69]. © Oligomer (cluster) calculations.

are also in reasonable agreement with those reported previously by Suhai [14], but the
=CH angle he obtained is smaller than our optimized value by about 1 degree.

The structural parameters and total energies obtained at the HF /6-31G and MP2/6-
31G levels are also given in Table 7.1. The results obtained at the HF/6-31G level are
consistent with the structural parameters of a long oligoene (CppHp4) reported by Villar
et al. [70]. As has already been established [12], electron correlation reduces the degree
of bond alternation (C-C bond length minus C=C bond length). From the results of
the 6-31G calculations, it is seen that the C=C bond length increases substantially upon
inclusion of electron correlation, while the C-C bond length decreases only by 0.002 A.
The C=C and C-C bond lengths optimized at the MP2/6-31G level (1.377 and 1.449
A) are in reasonable agreement with the values (1.36 and 1.44 A) measured by nutation
NMR technique [71]. Effects of electron correlation on the bond alternation of all-trans
polyacetylene have also been investigated by Suhai [12,18].

In Table 7.2, the calculated frequencies of the infrared- and Raman-active (k = 0)
vibrations are compared with the observed frequencies taken from Refs. [29,34,72]. Here
we assign weak infrared bands at 1170 and 861 em™! to the vg modes of normal and
perdeuterated species, respectively, according to our previous studies [9,41]. Teramae [G6]
has reported the caleulated frequencies of k = 0 vibrations at the HF /STO-3G level using
the analytical energy gradients. The frequencies given in Table 7.2, which are calculated
by using the analytical second derivatives, agree with those obtained by Teramae within
2 em~'. At the HF/6-31G level, Cui et al. [73] extrapolated the vibrational frequencies
of an infinite chain from those of a long oligoene (CyzHaq). The frequencies estimated by

Cui et al. are also in agreement with our results within 5 cm™.
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Table 7.2 Calculated and observed frequencies (in units of cm™') of the infrared- and Raman-active
modes of all-trans polyacetylene and its perdeuterated analog. The values in parentheses are the
percentage deviations from the observed frequencies.

Species Mode® Obs? STO-3G 6-31C

HF* MP2 HF MP2
1y 2990 3713 (24) 3490 (1T) azzo (1) 322 (4)
v 1457 2005 (38) 1720 (19) 1846 (27) 1569  (8)
vs 1204 1547 (20) 1418 (10) 1464 (13) 1344 (4)
Ly
vs

-(CeHz): ay

1066 1352 (27) 1247 (17} 1306 (23) 1180 (12)

by 3013 3693 (22) 3490 (16) 3330 (11) 3133 (4)
ve 1170 1380 (18) 1281 (9) 1340 (15) 1253 (7)

aw w1012 1255 (24) 1146 (13) 1172 (16) 1017 (0)
b, ws 884 1086 (23) 926 (5) 1090 (23) 825 (-T7)
H{CaD2)e @y w2230 2777 (25) 2603 (17) 2472 (11) 2319  (4)
v 1347 1950 (45) 1662 (23) 1789 (33) 1480 (11)

vs 1201 1387 (15) 1283 (7) 1332 (11) 1237  (3)

ve  B52 1037 (22) 962 (13) 995 (17) 918  (8)

be ws 2231 2711 (22) 2563 (15) 2445 (10) 2300  (3)
ve 861 1013 (18) 941 (9) 984 (14) 920 (7)

aw wvr  T46 921 (23) 841 (13) 861 (15) 747  (0)
b, wvs BI6 974 (19) 830 (2) 978 (20) 740 (-9)

® The normal modes are classified under the factor group isomorphous to the point group Can.
* References [29,34,72]. © See also Ref. [66].

The frequencies calculated at the HF level are invariably higher than the observed
with the deviations being 15 — 45 % in the STO-3G result and 10 — 33 % in the 6-31G
result. The largest deviations can be found for the 14 modes of the normal and perdeuter-
ated species. These modes are the so-called “in-phase C=C stretching modes,” which
give rise to intense Raman bands. The in-phase C=C stretching mode is approximately
regarded as a linear combination of the C=C bond stretch and the C-C bond shrinkage.
Since the highest occupied orbital of polyacetylene has bonding character for the C=C
bonds and antibonding character for the C—C bonds and the lowest unoccupied orbital is
C=C antibonding and C-C bonding, the energy levels of these orbitals strongly couple
with the in-phase C=C stretching vibrations. Electron correlation has profound effects on
the frequencies of these vibrations since correlation mixes the HF ground-state wave func-
tion with the double-excitation configuration in which electrons are promoted from the
highest occupied orbital to the lowest unoccupied orbital. Specifically, electron correlation
lowers the frequencies of the in-phase C=C stretching modes [9,40,41]. The reduction of
the magnitude of bond alternation upon inclusion of electron correlation can likewise be
accounted for in terms of the highest occupied and lowest unoccupied orbitals.

It iz seen from Table 7.2 that the inclusion of electron correlation at the MP2 level
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significantly lowers the frequencies and improves the agreement between the calculations
and experiments. The differences between the frequencies calculated at the MP2/STO-3G
level and the observed are roughly one half of those found in the HF/STQO-3G results.
As expected from the above consideration, the largest improvement can be seen in the
in-phase C=C stretching (1) modes; the calculated frequencies of v, modes of the normal
and perdeuterated species shift to lower frequencies by as large as 276 and 288 em™!,
respectively, on going from HF theory to MP2 theory. Nevertheless, the frequencies of these
modes calculated at the MP2/STO-3G level are still overestimated by about 20 %. The use
of 6-31G basis set leads to substantially improved agreement between the calculated and
observed frequencies. At the HF/6-31G level, the percentage deviations for the in-phase

=C stretching modes are 27 and 33 % for normal and perdeuterated species, respectively.
Inclusion of electron correlation at the MP2 theory accounts for about 70 % of these
errors and as a result the calculated frequencies at this level of theory are in reasonable
agreement with the observed frequencies for all the normal modes including the in-phase
C=C stretching modes. Electron correlation effects are larger on the frequencies calculated
with the 6-31G basis set than those obtained with the STO-3G basis set, probably because
the number of virtual orbitals used in correlation correction increases as the basis set
becomes larger. The percentage deviations of the frequencies calculated at the MP2/6-
31G level are not uniform unlike the results obtained with hybrid HF /density functional
theory with a comparable basis set [9]; overall, the MP2/6-31G theory overestimates the
frequencies of the in-plane modes by 3 — 12 %, while it underestimates the frequencies
of the out-of-plane modes by 0 — 9 %. This is consistent with the results of the MP2
calculations on all-trans oligoenes [41,74].

The execution times for the various steps of MP2 energy and gradient calculations
are given in Table 7.3. The evaluation of energy gradients takes 8.6 times the execution
time required to calculate the total energy alone. This ratio is substantially larger than
those obtained by using the disk-based [44] or semi-direct [75) MP2 gradient schemes for
molecules, primarily because we are currently using old algorithms for the evaluation of
two-electron integral derivatives and the transformation of integrals. Nevertheless, the
analytical-gradient method, as implemented in this study, has the advantage over the use
of finite differences of total energies in the vibrational frequency calculations of polymers.
The number of total energy calculations required to obtain energy gradients at a given

structure by using the finite-difference method is 6n where n is the number of nuclei in
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Table 7.3 Execution times {the sum of CPU and [/O times in seconds) for all-trans polyacetylene at the
MP2/5T0-3G level. All the calculations have been performed on an HP Exemplar workstation of our
laboratory with the compile options “+D52.0a +DA2.0N +03 +Onolimit +Odataprefetch”.

Step Energy Gradients
Two-electron integrals 148 148
SCF 13 13
First derivatives

of two-electron integrals =i 2327
CPHF equation o 359
D intion of B and 0E® )0z 582 3403
Total® 745 6393

® Total execution times include small steps which have not been tabulated separately.

the unit cell. Therefore, for the vibrational frequency calculations of polyacetylene at
the MP2/STO-3G level, our analytical-gradient method will be roughly twice as efficient
as the finite-difference method. It is also expected that higher accuracy is obtained for
the force fields and vibrational frequencies by the analytical-gradient method than by the
finite-different method [49,76).

7.5 Conclusion

We have developed an analytical-gradient method in ab initio MP2 crystal orbital theory
of polymers. We have applied the method to the geometry optimizations and vibrational
analyses of all-trans polyacetylene. Inclusion of electron correlation at the MP2/6-31G
level accounts for about 70 % of the differences between the frequencies calculated at the
HF /6-31G level and the observed ones for the in-phase C=C stretching modes. Compar-
ison of the execution times between the single point energy calculation and the gradient
calculation indicates that the analytical-gradient method is more efficient than the finite-
difference method in the vibrational frequency calculations of polymers. In order to extend
the applicability of the MP2 analytical-gradient method to polymers with larger unit cells,
we will have to invoke the direct [61,77] or semi-direct [75] techniques, which will require
less disk space than the present algorithm. The authors believe that the present imple-

mentation serves as a basis for such extension.
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Chapter 8

Summary and general conclusion
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In the present study, analytical-derivative methods have been developed within the frame-
work of ab initio crystal orbital theory of one-dimensional lattices (polymers). Analytical
energy gradients of hybrid HF /density functional energy and second-order Mgller-Plesset
perturbation energy and analytical second derivatives of the HF energy have been formu-
lated and implemented for the first time. The analytical-derivative methods developed
in this study have proven useful in determining the equilibrium structures and studying
the normal vibrations of m-electron conjugated and non-conjugated hydrocarbon poly-
mers and a consecutively hydrogen-bonded polymer. Since the structural parameters and
vibrational frequencies of conjugated oligomers and hydrogen-bonded oligomers strongly
depend on the chain length, crystal orbital theory is virtually the only means to derive
reliable energetic, structural, and vibrational information for the infinite analogs of them.
The results of the present study are summarized in the following.

In Chapter 2, we have implemented the self-consistent-field procedure of LCAO
density functional crystal orbital theory. We have examined the exchange-correlation-
functional dependence of the structures of polyacetylene isomers. The crystal orbital
calculations indicate that exact-exchange mixing is essential in describing the electronic
and structural properties of polyacetylene; the exchange-correlation functionals with-
out exact-exchange mixing lead to unrealistic potential energy curves along the bond-
alternation coordinate. The structural parameters and photoelectron spectra of trans-
and cis-polyacetylene calculated using the BALYP functional, in which the exact-exchange
matrix elements are admixed, are in reasonably good agreement with the experimental re-
sults. The B3LYP functional correctly predicts the total energies of polyacetylene isomers
in the order expected from experiment.

In Chapter 3, we have described the formulas and computer implementation of
analytical-gradient method for density functional and hybrid HF /density functional crys-
tal orbital theories. We have found that the formula for the energy gradient with respect
to the translational period contains a two-dimensional integral. This two-dimensional
integral can be transformed to three-dimensional integrals by virtue of Gauss theorem,
and the latter integrals are evaluated conveniently by Becke’s atomic partitioning scheme.
We have carried out geometry optimizations and harmonic vibrational frequency calcula-
tions of trans- and cis-polyacetylene and anti- and syn-polymethineimine using the BALYP
functional. The calculated frequencies of polyacetylene agree very well with the experi-

mental results. This result implies that the density functional calculations using the hybrid
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exchange-correlation functionals can reproduce the vibrational spectra of a variety of con-
jugated polymers with considerable accuracy. We have found that the total energy of the
syn isomer of polymethineimine is lower than that of the anti isomer by 15.6 kJ mol~!.
The caleulated frequencies also appear to be in reasonable agreement with the observed
frequencies if we assume that the polymer samples synthesized by Wahrle consist of the
sym isomer. However, because of a limited number of observed frequencies available, we
could not conclude unambiguously which isomer the actual samples of polymethineimine
consist of. The present calculations, nevertheless, indicate that the previous assumption
that polymethineimine takes the anti form is ungrounded.

In Chapter 4, we have applied the analytical-gradient methods to the calculations of
the infrared- and Raman-active vibrations, phonon dispersion curves, and inelastic neutron
scattering spectra for all-trans polyethylene using SVWN, BLYP, and B3LYP function-
als. We have found that the basis-set dependence is more important for the calculated
structural parameters and vibrational frequencies than the choice of exchange-correlation
functional. This result is in striking contrast with the results obtained for polyacetylene
{Chapters 2 and 3). The calculated frequencies, phonon dispersion curves, and inelastic
neutron scattering spectra are in reasonably good agreement with the experimental re-
sults. In the simulation of inelastic neutron scattering spectra, we have taken into account
the effects of Debye-Waller factors and phonon wings.

Crystalline hydrogen fluoride consists of planar zigzag hydrogen-bonded chains of
hydrogen fluoride molecules, which have only weak interchain interactions. In Chapter 5,
we have presented the structural parameters, binding energies, and vibrational frequencies
of an infinite hydrogen fluoride polymer calculated by using the BLYP and B3LYP density
functional theory as well as HF theory with the 6-311++G(d,p) basis set. We have
concluded that the HF level seriously underestimates the cooperative binding effects of
consecutive hydrogen bonds, whereas the density functional methods slightly overestimate
this property. Assignment of the librational modes of crystalline hydrogen fluoride has
been made with greater certainty on the basis of the calculated frequencies.

In Chapter 6, we have introduced an analytical-second-derivative method for ab initio
HF crystal orbital theory of polymers. We have derived the polymer version of coupled
perturbed Hartree-Fock (CPHF) equation, which has been implemented in the direct
atomic-orbital-based algorithms and in the conventional crystal-orbital-based algorithms.

We have shown that the number of independent wavevector indices of two-electron inte-
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grals in polymer CPHF equation can be reduced to two. Our analytical-second-derivative
method has turned out to be less expensive than the finite-difference method in the vi-
brational frequency calculations of polymers. The second derivative calculation using
the atomic-orbital-based algorithm is only 1.3 times as costly as that using the erystal-
orbital-based algorithm. Considering the intensive use of the external storage in the latter
algorithm, we conclude that there is no advantage in using the crystal-orbital-based al-
gorithm instead of using the atomic-orbital-based algorithm for the vibrational frequency
calculations of polymers.

In Chapter 7, we have described the formalism and computer implementation of an
analytical-gradient method for ab initio MP2 crystal orbital theory. The CPHF equa-
tion has been solved iteratively using the atomic-orbital-based algorithms. Although the
two-electron integrals and their first derivatives have to be stored externally, the integral
transformation of the first derivatives has been avoided with the aid of the two-particle
density matrix. The method has been applied to the geometry optimization and vibra-
tional frequency calculations of trans-polyacetylene. The inclusion of electron correlation
at the MP2/6-31G level accounts for about 70 % of the differences between the frequencies
calculated at the HF level and the observed frequencies.
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