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The eukaryotic cells contain different types of organelles like the nucleus, mitochondria,
cytoplasm, etc those are surrounded by the biomembrane.! Also, some organelles such
as nucleus, mitochondria etc are surrounded by the biomembrane. The biomembrane is
not a solid wall. The ion and biomolecules can pass through the biomembrane by
membrane proteins.? In addition, cells and organelles can exchange their inner contents
by membrane fusion. The biomembrane is consists of phospholipids bilayers made by
different phospholipids, proteins, carbohydrates, etc.® The phospholipid has two parts,
hydrophilic headgroup, and hydrophobic tail. The headgroup of the phospholipids is
strongly connected with water. Thus, the phospholipid bilayer in the biomembrane is

surrounded by water molecules as shown in Figure 1.
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Fig. 1. Phospholipid bilayer in biomembrane is surrounded by water



A recent study suggests that the amount of water is responsible for the phospholipid-
protein complex dynamics.> Another study suggests that phosphatidylethanolamine
(PE), one of the major phospholipids in the biomembrane are responsible for membrane
fusion.* To understand this process clearly simplification is necessary because real
biomembrane is too complex. Thus, studying model membranes, by using the
phospholipid, water, protein, etc is essentially important to understand the different
types of biological functions in the real biomembrane. Last few decades, various studies
have been done on the phospholipid-water model membrane by various experimental
techniques. The phospholipids in water easily form lamellar and/or multilamellar
vesicle (MLV). The details are shown in Figure 2.
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The water molecule in phospholipids interacts with the headgroup of the phospholipids
which is known as hydration water (HW). Investigations by the different techniques
suggest that bonding, dynamics, and orientation of the HW molecules varied in the
different parts of the headgroup of the same phospholipid. In addition, the dynamics of

HW varied depending on the headgroup structure of the phospholipids.®



Hishida et al. investigated phosphocholine (PC) and PE phospholipid mixed with water
by the small angle X-ray scattering (SAXS), Grazing-incidence small-angle X-ray
scattering (GISAXS), and Tera-hertz (THz) spectroscopy.® SAXS confirmed that
number of HW between a fully hydrated PE bilayers is lower than that the PC bilayers.
GISAXS experiment confirmed that PE phospholipid easily undergo lamellar to inverted
hexagonal phase (intermediate process of membrane fusion) due to its different
hydration state than the PC phospholipid. THz spectroscopy revealed that HW in PE is
approximately three times faster than the bulk water while the HW in PC is slower than
the bulk water. But the THz spectroscopy is unable to clarify the origin of the fast HW
in PE. The only difference between PC and PE is their headgroup structure. Figures 3
(a) and (b) show the structure of 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC,
a type of PC phospholipid) and 1,2-dimyristoyl-sn-glycero-3-phosphatidylethanolamine

(DMPE, a type of PE phospholipid), respectively.
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FIG. 3. Chemical structure of (a) DMPC and (b) DMPE phospholipid



Recently, Yamada et al. investigated DMPC by quasi-elastic neutron scattering
(QENS).® They observed three different types of HW classified as free HW (similar
dynamics to bulk water), loosely bound HW (10 times slower than bulk water), and
tightly bound HW (100 times slower than bulk water). In addition, by adding MgCl>
and FeCl; cationic salt in the headgroup of DMPC, they clarified that the hydration state
in DMPC was changed.” This study suggests that for the small change of headgroup
between two phospholipids, the hydration state between them could be significantly
different. However, the origin of fast HW in DMPE still not clarified. In addition,
comparison of the full hydration state between DMPC and DMPE is also still not
revealed. As the only difference between DMPC and DMPE is their headgroup structure
and the headgroup is strongly connected with the HW. Thus, origin of the headgroup
dynamics of DMPE may able to explain different hydration state in DMPE. However,
the headgroup dynamics of DMPE and their origin are still not clarified.

To investigate the HW dynamics in DMPE, QENS is a powerful tool.? In this thesis,
two samples are measured by QENS as tail-deuterated DMPE(dsaDMPE)-10D20 and
dssDMPE-10H20. At first, the headgroup dynamics of DMPE were investigated for the
mixture of dssDMPE-10D.0O by QENS and the QENS profiles were interpreted as
consisting of three modes as slow, medium speed and fast. But QENS was not able to
clarify the origin of the medium speed and fast dynamics of the DMPE headgroup. Thus,

molecular dynamics (MD) simulation was performed to reveal the origin of those



dynamics. Finally, QENS and MD simulation revealed that the fast mode comprised the
rotation of hydrogen atoms in —NHs" and —CH>— groups in the headgroup of DMPE, the
medium speed mode comprised fluctuations in the entire DMPE molecule, and the slow
mode comprised fluctuations in the membrane.

Finally, the dynamics of HW in DMPE were investigated by QENS via the dssaDMPE-
10H.0 sample after separating the headgroup dynamics of DMPE. The QENS profiles
were analyzed in terms of three modes: (1) a slow HW, similar to the loosely bound HW
in DMPC (10 times fewer diffusion than bulk water),® (2) medium speed HW that is
faster than free HW in DMPC (similar diffusion with bulk water),® and (3) fast HW,
identified as a rotational motion. The relaxation time for the fast HW was approximately
six times shorter than that in DMPC,° and approximately three times faster than the bulk
water,® consistent with the results of THz time-domain spectroscopy.

QENS reveals that the activation energy of the medium speed HW (similar to bulk
water) in DMPE is lower than that in DMPC. For this reason, the medium speed HW in
DMPE is faster than that in DMPC. Thus, this thesis concludes that due to the low
activation energy of HW molecules in the phospholipid, the HW molecules can move
fast.

Three different types of DMPE headgroup dynamics are observed. Among them, the
medium speed mode was observed for the fluctuation of the entire DMPE molecule. It

could be a major reason for the different hydration state in DMPE than that of DMPC.



In general, only for the small difference in the headgroup between DMPC and DMPE,

the hydration state between them is significantly different.
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