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Abstract

The International Linear Collider (ILC) is a next-generation high-energy
electron-positron linear collider whose design and development are being pro-
moted through international collaboration and has been proposed to study physics
at the tera-scale and beyond. In the ILC, electrons and positrons, which are ele-
mentary particles, collide with each other, thus enabling clean initial conditions.
This clean initial state is ideal for high-precision measurements and is expected
to extend and complement the results of the Large Hadron Collider (LHC). This
thesis consists of two major parts. The first part is tau reconstruction and tau
polarisation measurements at the International Large Detector (ILD) which is
one of the detector concepts at the ILC. The second part is about the Time
Projection Chamber (TPC), which is the central tracker of the ILD which plays
a central role in the measurements and about the optimisation of Gas Electron
Multiplier (GEM), one of the Micro Pattern Gaseous Detector (MPGD).

In the first part of the thesis, the reconstruction of tau lepton pair and the
measurement of the tau polarisation at the ILC operation at 250 GeV with po-
larized electron and positron beams with and an integrated luminosity of were
investigated using Geant4 simulation in ILD. Collision of electron and positron
generates tau lepton pair in the ILC and this process can be used to search for
new interactions, also making use of our ability to measure the tau polarisation.
Correct reconstruction of the tau decay mode is important for the tau polarisa-
tion measurement. In the Standard Model (SM), the properties of the fermion
pair production process can be precisely predicted both within the SM including
extensions to describe new physics. This thesis describes the reconstruction of
the tau pair at a high-energy electron-positron collider and the use of the tau
decays to measure their polarisation.

In the last half of the thesis, the optimisation study of the TPC equipped with
a GEM is described. The physics program at collider experiments requires es-
sentially perfect efficiency to reconstruct charged particles produced in collisions
to measure their direction, their origin with respect to the interaction vertex to
identify displaced vertices and to estimate their momentum. The analysis of tau
leptons, as described in the first part of the thesis, relies on the good performance
of the charged particle tracking system. In the ILC, MPGDs such as GEMs are
used in the TPC endplate to amplify and detect ionized electrons in the recon-
struction of charged particle trajectories. In the GEM-based module currently
under development, Gas gain non-uniformity was found by measurement. The
difference is about 50% at maximum. If the applied voltage is increased to ob-
tain a sufficient signal even at a place where the gas gain is small, the gas gain
becomes too large at a place where the gas gain is large, and the possibility of
discharge will be too high. This discharge causes a part of the GEM to car-
bonize, resulting in a short circuit and making it impossible to apply voltage
and to form the high voltage necessary for gas amplification. In this thesis, the
study of GEM design optimization has been performed by theoretical approach
to find the conditions under which the thickness dependence of the gas gain is
minimum. Derived is an analytic equation of the gas gain variation and found
the stability condition for the first time in this thesis.
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CHAPTER 1

STANDARD MODEL OF PARTICLE PHYSICS

Contents
1.1 A theoretical framework . . . . . . . . . . . . . . . . 4

1.1.1 U(1) gauge symmetry and Electromagnetic Interaction 5

1.1.2 SU(2) gauge symmetry and Weak Interaction . . . . . 6

1.1.3 SU(2)× U(1) gauge transformation . . . . . . . . . . 7

1.1.4 The Higgs mechanism . . . . . . . . . . . . . . . . . . 8

1.1.5 The mass of fermions . . . . . . . . . . . . . . . . . . 10

1.1.6 Precise measurement of Higgs boson and the Beyond
the Standard Model . . . . . . . . . . . . . . . . . . . 10

1.1.7 Physics beyond the Standard Model . . . . . . . . . . 11

The Standard Model (SM) of strong and electroweak interactions is so far the
most successful theory in particle physics, describing a wide range of properties
of elementary particles.

In the SM, all known elementary particles are classified as quarks, leptons,
gauge bosons and scalar bosons. There are three generations of leptons and
quarks to constitute all matter, four gauge bosons that mediate strong and elec-
troweak interactions, and scalar bosons (Higgs) that break electroweak symmetry
and give mass to all elementary particles. Figure. 1 shows the particles in the
SM [1].

In 2012, at the Large Hadron Collider (LHC) [2] in CERN, two experimental
groups ATLAS [3, 4] and CMS [5] discovered a Higgs-like particle, which was
a missing piece of SM particles. Figures. 1.2 shows the event display of the
candidate reaction of h→ 4e [6].
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Figure 1.1: Standard Model particles.

Figure 1.2: Event display of the candidate reaction of h→ 4e.

1.1 A theoretical framework

The following theoretical description of elementary particle physics are referred
from several textbooks [7, 8].
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1.1.1 U(1) gauge symmetry and Electromagnetic Interaction

Maxwell equations describes the classical mechanical definition of the electro-
magnetism. As an extension of this, Quantum Electrodynamics (QED) describes
the electromagnetic interaction.

In particle physics, the symmetry of the elementary particle field is fully
specified by the Poincare invariance. The translational invariance of spacetime
and the Lorentz invariance of spacetime satisfy the symmetry of rotation and
boost, and the Lorentz invariance defines the symmetry of the field spacetime.
Assuming a Dirac field describing a fermion ψ, the interaction with the gauge
boson is naturally introduced when these invariances of a field are obtained by
local transformations.

Dirac introduced an equation describing the free propagation of fermions
with mass m by making the Schrödinger equation relativistic.

iγµ∂µψ −mfψ = 0 (1.1)

where γµ are the Dirac matrices and ψ is the four component spinor representing
the fermionic field as a function of spacetime coordinates xµ = (t, x, y, z).

The Lagrangian density L of the Dirac equation can be written as

L = iψ̄γµ∂µψ −mf ψ̄ψ (1.2)

where ψ̄ = ψ†γ0 is the adjoint spinor. The locally given phase transformation is
described as follows.

ψ(x) → ψ′(x) = e−iQχ(x)ψ(x) (1.3)

where Q represents charge of U(1) symmetry and χ(x) denotes a spacetime
coodinates.

The Lagrangian to which the local transformation is applied can be described
as

L = iψ̄γµ∂µψ −mf ψ̄ψ → iψ̄′γµ∂µψ
′ −mf ψ̄′ψ′

= iψ̄γµ∂µψ + ψ̄Q∂µχ(x)ψ −mf ψ̄′ψ′

̸= L

This Lagrangian is not invariant under the local phase transformation. How-
ever, the invariance can be achieved by introducing a covariant derivative and
replacing with the partial derivative ∂µ,

∂µ → Dµ ≡ ∂µ + iQAµ(x) (1.4)

where the new vector field Amu(x) is the electromagnetic field and required to
transform as

Aµ(x) → A′
µ(x) = Aµ(x) + ∂µχ(x) (1.5)

This local invariance leads to conservation of current, as suggested by Noether’s
theorem.

Jµ = Qψ̄γµψ. (1.6)

With this new vector field and set of local invariant transformations, the
given new Lagrangian, which is

L = iψ̄γµDµψ −mf ψ̄ψ (1.7)
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can keep the invariance. The following Lagrangian density can be used to obtain
Maxwell’s equations:

L = −1

4
FµνF

µν − JµAµ, (1.8)

where F µν is the electromagnetic field tensor or field strength tensor defined
as F µν = ∂µAν − ∂νAµ. The first term −1

4
FµνF

µν gives the kinetic energy of
electromagnetic field.

Due to the requirement of local gauge invariance, it is necessary to introduce
a vector particle γ, described by the field Aµ(x), whose form of interaction is au-
tomatically given. Adding the kinetic term of the γ just described to the above
Lagrangian establishes a Lagrangian that can describe quantum electrodynam-
ics:

LQED = iψ̄γµ∂µψ
︸ ︷︷ ︸

fermion kinetic term

− mf ψ̄ψ
︸ ︷︷ ︸

fermion mass term

− Qψ̄γµAµψ
︸ ︷︷ ︸
interaction term

− 1

4
FµνF

µν

︸ ︷︷ ︸

field kinetic term

(1.9)

It might seem that the field Aµ can take mass term as a coefficient of a
quadratic term of the field like m2AµAµ. However, this would break gauge
invariance, is not invariant under the local transformation. Thus, the mass of
the Aµ must be 0 and this is consistent with experimantal result that the mass
of the photon is 0.

1.1.2 SU(2) gauge symmetry and Weak Interaction

Let’s assume that the Dirac Lagrangian is given.

L = iΨ̄γµ∂µΨ (1.10)

where Ψ is Dirac spinor which is regarded as a doublet consisting of two compo-
nent Dirac fields e, νe by considering the internal space symmetry of a fermion.

SU(2) transformation can be applied to the Dirac spinor as

Ψ → Ψ′ = e−iλ⃗(x)·τΨ(x) (1.11)

with λ⃗ and τ being a real vector and the Pauli matrices, respectively.

λ⃗ · τ = λ1

(
0 1
1 0

)

+ λ2

(
0 −i
i 0

)

+ λ3

(
1 0
0 −1

)

(1.12)

The invariance of the Dirac Lagrangian under the transformation for a mass-
less fermion is

L = iΨ̄γµ∂µΨ → iΨ̄′γµ∂µΨ′

≈ (1 + iλ⃗(x) · τ)iΨ̄γµ∂µ(1 − λ⃗(x) · τ)Ψ

= iΨ̄γµ∂µΨ + Ψ̄γµ∂µλ⃗(x) · τΨ

̸= L

The covariant derivative is introduced in order to preserve the invariance
under local SU(2) transformations:

∂µ → Dµ ≡ ∂µ + i
1

2
g2Wµ(x) (1.13)
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where a SU(2) coupling g2 is introduced and the three vector fields Wµ(x)
are massless and required to transform as

Wµ(x) → W ′
µ(x) = U(x)W (x)U(x)† +

2i

g2
(∂µU(x))U(x)† (1.14)

where U(x) is the SU(2) transformation.
The Lagrangian being invariant under local SU(2) transformations can be

written as
LSU(2) = iΨ̄γµ∂µΨ − ig2Wµ(x)Ψ̄γµΨ (1.15)

1.1.3 SU(2) × U(1) gauge transformation

In the SM, the weak interaction is coupled only to the left-handed doublet and
there are no right-handed neutrinos. Therefore, different gauge transformations
must be applied to left- and right-handed particles. Let’s consider the doublet
of left-handed electrons and electron-neutrinos and the singlet of right-handed
electrons.

L =

(
νL
eL

)

→ L′ = exp(− i

2
β(x)Y ) exp(− i

2
α(x) · τ)L

∼ (1 − i

2
β(x)Y − i

2
α(x) · τ)L

eR → e′R = exp(− i

2
β(x)Y )eR

∼ (1 − i

2
β(x)Y )eR

where α(x), β(x) are functions of time and space, and Y is called the weak
hypercharge which is a generator of U(1). The covariant derivatives for both the
doublet and the singlet are given as

L : ∂µ → Dµ = ∂µ +
ig1
2
BµY +

ig2
2
Wµ · τ

eR : ∂µ → Dµ = ∂µ +
ig1
2
BµY

where Bµ and Wµ are the gauge fields corresponding to the U(1) and SU(2)
gauge transformations and τ is the three generator of SU(2) transformation.
Then,

Bµ(x) → B′
µ(x) = Bµ(x) +

∂µβ(x)

g1

Wµ(x) → W ′
µ(x) = U(x)Wµ(x)U †(x) +

2i

g2
(∂µU(x))U †(x)

The SU(2) × U(1) gauge invariant Lagrangian with the kinematic term of
Bµ and Wµ is given as

LSU(2)×U(1) =iγµL†(∂µ +
ig1
2
BµY +

ig2
2
Wµ · τ)L+ iγµe†R(∂µ +

ig1
2
BµY )eR

− 1

4
BµνB

µν −
∑ 1

4
W i
µνW

µν
i

(1.16)
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where Wµν is the field strength tensor:

Wµν = ∂µWνi − ∂νWµi −
∑

jk

ϵijkWµjWνk.

Bµ and Wµ are mixed after the spontaneous symmetry breaking. The fields
of photon and Z boson, Aµ and Zµ can be described as

Aµ → Bµ cos θW +W 3
µ sin θW

Zµ → Bµ sin θW −W 3
µ cos θW

where θW is the weak mixing angle (so-called Weinberg angle) which has the
following relationship with the couplings g1 and g2:

sin θW =
g1

√

g21 + g22

cos θW =
g2

√

g21 + g22
.

1.1.4 The Higgs mechanism

There are no mass terms for fermions and gauge fields in the Lagrangian intro-
duced in the previous section. The local gauge invariance requires the massless
particles and is no longer valid when the mass terms are inserted into the La-
grangian by hand. However, it is experimentally confirmed that the fermions
and W,Z bosons have masses, which violates the requirement of the local gauge
invariance. This problem can be solved by introducing the spontaneous symme-
try breaking where the electroweak symmertry is broken without introducing a
massterm in the Lagrangian. The Higgs mechanism which is the simplest choice
for this symmetry breaking can naturally give masses to the fermion fields and
the gauge boson fields by introducing a SU(2)L doublet Φ which is composed of
four real scalar fields ϕ1, ϕ2, ϕ3, ϕ4.

Φ =

(
ϕ1 + iϕ2

ϕ3 + iϕ4

)

(1.17)

Then, the corresponding Lagrangian with the kinetic term and the potential
term is given by

LH = (DµΦ)†(DµΦ) − V (Φ†Φ) (1.18)

where Dµ is the electroweak covariant derivative:

Dµ = ∂µ +
ig1
2
BµY +

ig2
2
Wµ, (1.19)

and V (Φ†Φ) is the potential term:

V (Φ†Φ) = µ2(Φ†Φ) + λ(Φ†Φ)2 (1.20)

where µ2 and λ are real parameters. If µ2 is negative, the non-zero global
minimum can be found at (Figure.1.1.4 [9])

Φ†Φ = (ϕ2
1 + ϕ2

2 + ϕ2
3 + ϕ2

4) = −µ
2

2λ
(1.21)
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Figure 1.3: The Higgs potential of a scalar field ϕ.

The ground state of the vacuum, which is the minimum of the potential,
has an infinite solutions, so any point on the 4-dimensional hypersphere can be
chosen. Let us choose the point:

ϕ2
1,min = ϕ2

2,min = ϕ2
4,min = 0 (1.22)

and

ϕ2
3,min = −µ

2

2λ
= v2 (1.23)

with the vacuum expectation value (VEV) of the field

v =

√

−µ
2

2λ
(1.24)

The VEV of the complex scalar double can be written as

Φ0 ≡ ⟨0|Φ |0⟩ =
1√
2

(
0
v

)

(1.25)

This leads to the spontaneous SU(2) symmetry breaking. We can write

Φ(x) =
1√
2

(
0

v +H(x)

)

(1.26)

where H(x) is the Higgs field. This equation gives

(DµΦ)†(DµΦ) =
1

2
(∂µH)(∂µH)
︸ ︷︷ ︸

kinetic energy term of the Higgs field

+
1

4
g22W

−
µ W

+µ(v +H)2

︸ ︷︷ ︸

interaction term with W boson

+
1

4
(g21 + g22)ZµZ

µ(v +H)2

︸ ︷︷ ︸

interaction term with Z boson

(1.27)
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The masses of the vector bosons can be described as the corresponding coeffi-
cients of the quadratic terms of the fields:

mW =
vg2
2
, mZ =

v
√

g21 + g22
2

. (1.28)

1.1.5 The mass of fermions

The Lagrangian of the fermion mass term can be written as

L = −mf ψ̄ψ = −mf (ψ̄LψR + ψ̄RψL) (1.29)

where ψL is the left-handed SU(2) double

ψL =

(
uL
dL

)

(1.30)

and ψR is the right-handed singlet.
This Lagrangian is not invariant under SU(2)L gauge transformation. In

order to make the Lagrangian gauge invariant, the interactions between the
Higgs boson and the fermions are introduced. These terms are called Yukawa
couplings. The Lagrangian can be written as

LfYukawa = − λf√
2

(v +H)ψ̄LψR − λf√
2

(v +H)ψ̄RψL

= −λfv√
2

(ψ̄LψR + ψ̄RψL)

︸ ︷︷ ︸

fermion mass term

− λf√
2
H(ψ̄LψR + ψ̄RψL)

︸ ︷︷ ︸
interaction term

The corresponding coefficient gives mass to each of the fermions:

mf =
λfv√

2
. (1.31)

where λf are Yukawa couplings for each of the fermions. This term indicates
that the masses of the fermions are generated from the couplings to the Higgs
field. The second term, the interaction term, indicates that the couping strength
between the fermions and the Higgs boson gHff is proportional to the masses of
the each of the fermions:

gHff =
mf

v
. (1.32)

The masses for quarks are also described in the same way. The introduction
of the Yukawa coupling is necessary to explain the experimental observations of
fermion masses, however, there is no mechanism in SM to determine this Yukawa
couping, which is left as a free parameter in SM. For this reason, it is particularly
interestring to study the coupling between the Higgs boson and fermions.

1.1.6 Precise measurement of Higgs boson and the Beyond the Stan-
dard Model

SM is an effective theory that can describe a lot of phenomena at the low energy
region (O(100) GeV). However, there are still a number of phenomena, such as
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gravity, neutrino mass, dark matter, and dark energy, that cannot be explained
within the framework of SM. Therefore, it is obviously clear that a new theory,
Beyond the Standard Model (BSM), is needed to describe these phenomena.

As described previous section, the couplings of matter fermions and gauge
bosons to the Higgs boson are proportional to the masses of the particles in the
SM. If there is a new physics beyond the SM, these coupling constants can be
deviated from the SM predictions, and the Higgs potential is unique for the SM,
so the verification of these two things are crucial to the search of BSM physics.

In addition, the pattern of deviations from the SM expectation of coupling
between SM particles and Higgs is possible to give an indication of how the
Higgs sector should be extended, such as Supersymmetry model, Composite
Higgs model, and so on. These deviations are predicted to be small. Therefore,
the precise measurements of the Higgs properties are crucial. Figures.1.4 show
an examples of deviation patterns predicted by each model and the power of the
ILC precision to distinguish different models of BSM [10].
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Figure 1.4: The deviation patterns of the Higgs couplings at ILC. (Left) A
supersymmetric model. (Right) A composite Higgs model.

1.1.7 Physics beyond the Standard Model

Thanks to the low background in the ILC compared to the LHC because of
collisions between elementary particles and the fully reconstructed final state
environment, the study of final states in fermion pairs has excellent sensitivity
to a wide range of phenomena, and is a strong test for several theories beyond
the SM. While LHC directly finds new particles, ILC can indirectly indicate the
existence of new particles by observing the deviation from the Standard Model
caused by heavy particles, such as heavy spin-1 gauge boson Z ′.

The Z ′ boson is a new neutral gauge boson that couples to fermions in
the SM and appears in extended gauge group models as a heavy gauge boson
corresponding to U(1) symmetry, and appears as a resonance in the invariant
mass spectrum of the lepton pair.　There are several models that propose the
Z ′ boson, all inspired by grand unified theory. Deviations from the SM can be
tested for the Kaluza-Klein mass scale up to 15 TeV in the early stage of ILC.
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Seqential Standard Model (SSM)

In the SSM model [11], the coupling constant of Z ′ to fermions is the same as
the gauge boson Z in the standard theory.

Alternative Left-Right symmetric model (ALR)

The ALR model [11] is a minimal extension of the SM gauge symmetry, derived
from the E6 model, in which SU(2)R is added to SM SU(2)L:

SU(3) × SU(2) × U(1) × SU(2)R (1.33)

The E6 model

The E6 model [11, 12, 13] is on the special U(1) that arises by decomposing E6
into

E6 → SO(10) × U(1)Ψ → SU(5) × U(1)χ × U(1)Ψ → SM × U(1)β (1.34)

The Z ′ is represented by a linear combination of two special U(1) gauge bosons.

Z ′ = Zχ cos β + ZΨ sin β (1.35)

where β is the mixing angle defining the spontaneous breaking of E6. Depending

on the specific value of each β, β = 0, β = π
2
, β = − arctan

√
5
3
, different

scenarios Z ′
χ, Z ′

ψ, and Z ′
η can be defined, respectively.

The Gauge-Higgs Unification Model (GHU)

One of the fundamental problem of the SM is that there is no principle that
regulates the Higgs interactions. One answer to this problems is the Gauge-
Higgs Unification model [14]. In the Gauge-Higgs Unification model (GHU),
Higgs boson is a part of extra-dimensional components of the gauge potential
and appears as a fluctuation mode of Aharonov-Bohm (AB) phase θH in the
fifth-dimension. The relevant parameter for SM is the θH

The Gauge-Higgs Unification model predicts that the Z ′ boson can be iden-
tified as the Kaluza-Klein (KK) excited neutral vector bosons (γ, Z, ZR). Fig-
ure. 1.5 shows the tau polarisation and cross-section as a function of centre-
of-mass energy on SM and Gauge-Higgs Unification model with polarised and
unpolarised beam. For the cross-section only, large deviation from SM can be
observed at > 1 TeV. However, for the tau polarisation, large deviation can be
observed even in ILC-250.
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Figure 1.5: Tau polarisation (Left) and Cross-section (Right) on SM and Gauge-
Higgs Unification model with polarised and unpolarised beam as a function of
the centre-of-mass energy.
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INTERNATIONAL LINEAR COLLIDER PROJECT
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2.1 Introduction

The most exciting subject at the energy frontier of experimental high energy
particle physics is the detailed investigation of the Higgs boson’s properties. As
explained in the previous chapter, physics beyond the currently directly-probed
energy scale is expected to leave its imprints on the properties of the Higgs, so
the Higgs can be used to probe the nature of this new physics.

The Higgs boson was discovered at the Large Hadron Collider (LHC) (a
proton-proton collider at 14 TeV), which continues to operate, making Higgs
measurments with ever-increasing precision. The forthcoming luminosity up-
grade to HL-LHC will provide further significant improvements in our under-
standing of the Higgs boson. After this experimental program, Higgs couplings
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to other SM particles will typically be measured to the several-% level. Such
precision will be able to confirm the general pattern of Higgs coupling strengths,
e.g. that the coupling is proportional to the particle mass, but is not sufficient
to resolve the small, typically %-level, variations in couplings expected to be
induced via the virtual effects by new physics at the TeV-scale or higher. To
probe the Higgs boson with the precision required to probe such effects requires
a new experimental approach.

A collider of leptons has certain advantages over a proton collider such as
LHC for precision measurements. The elementary nature of the initial state par-
ticles provides hard collisions with rather uniform initial conditions, in contrast
to the extraction of partons from a certain Distribution Function within the
composite proton. The absence of strong interactions between the inital parti-
cles reduces the total interaction cross-section by many orders of magnitude, so
“signal” events in which the Higgs boson is produced via electro-weak interac-
tions make up a reasonable fraction of all hard interactions; it also essentially
removes the effect of pile-up interactions, in which several paricles from the same
bunches collide.

Several electron-positron colliders are being proposed to enable high-precision
measurements of the Higgs boson, all of which make use of the “Higgs-strahlung”
process e+e− → HZ, whose cross-section is maximised at a centre-of mass energy
of ∼250 GeV. The ILC, CLIC [15] and CCC projects [16] propose a collider
consisting of linear accelerators, using different technologies to accelerate the
beams; on the other hand the FCC [17] and CEPC projects [18, 19] propose
large circular electron-positron colliders. The collider geometry (linear or circu-
lar) has a significant effect on the luminosity available at different centre-of-mass
energies. Assuming similar power consumption, the above proposals give similar
luminosity at the optimal Higgs-strahlung energy of 240∼250 GeV. The lumi-
nosity of circular colliders depends strongly on energy, being much higher at
lower energies, such as at the Z-pole 91 GeV, but limited at higher energies due
to synchrotron radiation losses. The luminosity of linear colliders, on the other
hand, tends to rise rather slowly with increasing energy.

Linear colliders in addition allow the use of longitudinally polarised beams,
providing initial particles which are dominantly left- or right-handed. Given
the maximal parity violation of electro-weak physics, this provides an important
additonal tool to probe the structure of many interactions.

The different “Higgs Factory” collider options listed above have similar po-
tential to measure Higgs boson physics at the Higgs-strahlung threshold; where
they differ is in the remainder of their physics program: either extremely high lu-
minosity running at lower energies, or the possibility to directly produce electron-
positron collisions at higher energies of 1 TeV or above.

2.2 ILC

The International Linear Collider (ILC) is a future linear electron-positron col-
lider that will begin operation as a Higgs factory (ILC250) at a center-of-mass
energy of 250 GeV. Its two linear accelerators are based on Superconducting Ra-
dio Frequency (SCRF) technology, which can provide an accelerating gradient
of ∼ 35 MV/m. Both electron and positron beams are polarised, to 80% and
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30% respectively.
The ILC is conceived as a staged project starting at 250 GeV, and designed to

be upgraded in both luminosity and energy. A luminosity ugrade would involve
the installation of more RF power to accelerate the beams, while an energy
upgrade involves the lengthening of the the accelerator tunnels and installation
of additional accelerating structures, potentially using an improved technology
with higher accelerating gradient. Upgrades to 1 TeV or higher are envisioned
after the conclusion of the lower-energy stages. A baseline running scenario has
2 ab−1 delivered at 250 GeV, 0.2 ab−1 at 350 GeV, and 4 ab−1 at 500 GeV. The
main focus of the 250 GeV run is the Higgs-strahlung process, at 350 GeV a scan
of the top quark pair threshold, and at 500 GeV (or better 550 GeV) Higgs–top
quark and double Higgs production. This luminosity is split among different
combinations of the beam polarisations.

Figure. 2.1 shows a schematic image of the ILC [20].

 

 

 

    Damping Ring

   

 

 Electron Accelerater

Figure 2.1: Schematic image of the ILC

A strained GaAs/GaAsP photocathode illuminated with circularly polarised
laser light produced a beam of polarised electrons, which are collected, collimated
and bunched into a small phase-space region within the damping ring at 5 GeV.
They are then transferred to the end of the electron linear accelerator, within
which they are accelerated to 125 GeV in niobium superconducting RF cavities
operating at a frequency of 1.3 GHz and accelerating gradient of 35 MV/m. Ev-
ery second bunch of high energy electrons is used to create polarised positrons:
the bunch is passed through a helical undulator, which produces circularly po-
larised X-rays. These are then converted in a tungsten target, and the emitted
positrons collected. The positrons are collected within the damping rings, before
being passed to the positron linear acclelerator and accelerated to the nominal
beam energy. The beam bunches are focussed to nanometer size in the Beam
Delivery System before colliding at the Interaction Point. Detectors installed at
the IP record the collisions.

Basic ILC machine parameters at the different energy points are presented
in Tab. 2.1 [21].
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Table 2.1: ILC basic machine parameters
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The ILC beam structure is shown in Figure 2.2. A single train consists of
1312 bunches each separated by 554 ns, and is repeated at 5 Hz.

0.73 ms

200 ms

554 ns

timeOne train = 1321 bunches

1 bunch

Figure 2.2: Bunch structure of ILC

2.3 ILC detectors

The ILC is designed with a so-called push-pull system, which allows two detectors
to share a single collision point. Detectors are mounted on movable platforms
which allow one detector to be moved onto the collision point, and the other
moved out into a maintainence position. This will allow two experimental groups
to profit from the data produced at ILC. Two detector concepts are currently
being developed for the ILC: the International Large Detector (ILD) and the
Silicon Detector (SiD), shown in Fig. 2.3 [21]. The Japanese group is mainly
involved in the development of the ILD, which is the focus of this thesis.

Figure 2.3: Schematic image of detector concepts ILD (left) and SiD (right)

2.4 International Large Detector

ILD is designed as a general-purpose detector to fully harvest the physics po-
tential of the ILC. Consideration of the various expected physics processes have
lead to the requirements which inform its design.
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Momentum resolution

The Higgs-strahlung process e+e− → HZ has the great advantage that, thanks
to the well-known initial four-momentum – the presence of a Higgs boson can
be inferred by measuring the Z boson four-momentum and computing the mass
recoiling against it. The precision on this “recoil mass” depends on two factors:
the initial beam energy spread and the precision with which the Z is measured.
The most sensitive channel is Z → µ+µ−, in which the experimental precision
depends on the tracker momentum resolution. The required momentum reso-
lution of the ILD was chosen so as to give similar contributions to the “recoil
mass” resolution from these two effects: it results in a transverse momentum
resolution requirement of δpT/pT ∼ 3 × 10−5pT [GeV ].

Jet Energy measurement

Many of the final states to be measured at ILC involve the decays of interme-
diate bosons W, Z, H. Their dominant decay mode is into quarks which further
hadronise into systems of hadronic jets. The ability to distinguish the hadronic
decays of on-shell W and Z bosons is a major aim of ILC detectors. ILD has
chosen to use the “Particle Flow Analysis” (PFA) approach to jet reconstruc-
tion to achieve this goal. PFA is a method that identifies each particle in a
jet and measures the momentum and energy of each type of particle with the
most appropriate instrument. Electromagnetic calorimeters measure the en-
ergy of photons, and neutral hadrons measure their energy with electromagnetic
calorimeters and hadron calorimeters. Since charged particles are measured by
the calorimeter, clusters are separated and the energy of the charged particle
clusters is not used in the jet energy reconstruction, so the PFA must accurately
separate the charged particle showers in the calorimeter. Thus, by measuring the
particle energy of each final state with the appropriate sub-detector, sufficient
jet energy resolution can be achieved to reconstruct and distinguish between the
W, Z, and Higgs particles decaying into the jet and their invariant masses.

Vertex performance

The identification of the relatively long-lived hadrons produced in heavy quark
decays require a very precise vertexing system, which can identify the production
vertices of stated decaying just 10s of microns from the main interaction point.
The ability to tag charmed hadron decays is significantly more challenging than
b-quark decays, and is therefore a good aim for detector design.

Hermeticity

To identify physics signatures with a missing momentum signature, excellent
coverage of the solid angle around the interaction point is needed. The design
of individual parts of the detector are designed to avoid dead regions through
which a particle could escape detection, and special emphasis has been put to
the forward regions of the detector to ensure maximal coverage.
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Particle identification

In general, a detector for ILC should be able to identify and measure the direction
and energy of the wide range of particles produced in ILC collisions. It should
have excellent ability to distinguish electrons from muons from charged hadrons,
and photons from neutral hadrons. The ability to separate different hadrons
(pions, kaons, protons) would be an added advantage.

2.4.1 ILD design

The cross-sectional view of the ILD shown in Fig. 2.4 [21]. It has a radius of
∼ 8 m and a total length of ∼ 14 m. A superconducting solenoid with an inner
diameter of ∼ 3.5 m and a length of ∼ 4 m can generate a 3.5 T magnetic field.

Figure 2.4: Cross-sectional view of the ILD

We next briefly describe the various sub-detectors which make up the ILD.

2.4.2 Vertex detector

The vertex detector is the innermost, multi-layered pixel detector in the ILD
for measuring precise vertex information, with an array of pixel sensors [21].
When a particle with a lifetime measurable by the vertex detector, the charged
tracks from this particle decay are displaced from the nominal interaction point.
By reconstructing the tracks of those decay products, the decay vertex is recon-
structed. This is accomplished by measuring very precisely the track parameters
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of the charged particles near the interaction point, to enable the identification
of heavy quarks (charms and bottoms) and tau leptons.

The performance goal of the ILD vertexing system is to achieve a track impact
parameter resolution, the minimum distance from a track to the beam axis,
σ > 5 ⊕ 10

p sin
3

2 θ
µm. To meet these specifications, the vertex detector is designed

with three double-layers of silicon pixel sensors, placed ∼ 17, 40, 60 mm from the
beamline. A single-hit spatial resolution of 3 µm satisfies the requirements. To
accomodate the shape of the beam-pipe, the inner-most double layer is a little
shorter than the others. Special emphasis is put on a low-mass design which
minimises the effect of multiple scattering on low-momentum particles.

Figure 2.5: Layout of the vertex detector

2.4.3 Silicon trackers

The vertex detector is complemented by additional silicon tracking detectors,
shown in Fig. 2.6 [21]. The Silicon Intermediate Tracker (SIT) consists of two
silicon tracker layers in the barrel region, which serve to link the main TPC
tracker to the vertex detector.
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Figure 2.6: Layout of the silicon trackers

The Forward Tracker Disks (FTD) extend the silicon tracker coverage in the
forward region. It consists of seven silicon pixel/strip sensors on each side of the
IP, filling the gap between the conical beam pipe and inner radius of the TPC.
The inner-most pair of disks are considered a part of the vertex detector system,
providing precise track measurements near the IP. A visualisation of the FTD
system and beampipe are shown in Fig. 2.7 [21].
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Figure 2.7: Structure of the forward tracking detector system. The beampipe is
shown in light grey and the suppot cylinder in dark grey. Seven disks are placed
on each side of the IP. The inner-most pairs of disks, and the vertex detector,
are shown in brown. Cable paths are also shown.

2.4.4 Time Projection Chamber

The Time Projection Chamber (TPC) is the central tracker of the ILD [21]. TPC
can measure the momenta of charged particles precisely using up to 224 space
points per track. The inside of the TPC is filled with gas, Ar-CF4-iC4H10 (so-
called T2K gas) is used in the ILD. Ionised electrons are produced when charged
particles collide with gas molecules as they pass through the TPC. Electric fields
and magnetic fields are applied in the axis direction, and it consists mainly of a
field cage that forms the electric field and endplates for amplifying and collecting
electron signals. For PFA performance, the TPC is required to have a very low
material budget and precise momentum resolution of 1 × 10−4 GeV/c at 3.5 T
magnetic field.
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Figure 2.8: Layout of the Time Projection Chamber

2.4.5 Silicon Envelope Tracker

The Silicon Envelope Tracker (SET) is a silicon tracker layer which envelops the
outer barrel surface of the TPC. It serves to give a very precise track position
measurement at the end of each track. When combined with the precise inner
silicon hits and the large number of TPC hits, the required momentum resolution
δpT/pT ∼ 3 × 10−5pT [GeV ] can be attained.

2.4.6 Electromagnetic calorimeter

The electromagnetic calorimeter (ECAL) is a sampling calorimeter installed out-
side the tracking system to measure the energy of electrons and photons through
electro-magnetic shower [21]. It is made by tungsten absorber layer and sili-
con/scintillator as active layers. The tungsten absorbing layer causes a cascade
shower of incident particles. Tungsten has a small radiation length (3.5 mm)
and Molière radius (9.3 mm), enabling compact and accurate electromagnetic
calorimeters. To achieve an required energy resolution, the ECAL is longitudi-
nally segmented into about 30 layers and the active layers are segmented into
cells with a size of 5 to 10 mm in the horizontal direction, which can achieve the
pattern recognition performance needed by PFA reconstruction.
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Figure 2.9: General layout of the ECAL. The barrel detector (bottom left) is
made of 40 identical modules (right). The structure of an endcap is shown (top
left).
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Figure 2.10: Layout of the ECAL sensitive layer for the two technologies being
considered for ILD: silicon (left) and scintillator strips (right).

2.4.7 Hadron Calorimeter

The hadron calorimeter (HCAL) is a sampling calorimeter installed outside the
ECAL to measure the energy of hadrons through hadronic shower. It is made by
48 sensitive layers with steel absorber and schintillator tiles or gaseous devices
as an active medium. HCAL accurately measures the energy of neutral hadrons
while separating energy loss between charged and neutral hadrons.
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Figure 2.11: General layout of the HCAL. Two different geometrical layouts are
proposed (left and right).
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Figure 2.12: Layout of the HCAL sensitive layer, for the scintillator (top) and
gaseous RPC (bottom) readout technology options

2.4.8 Forward detectors

The forward detectors – LumiCal, BeamCal and LHCAL – are installed close to
the beam axis. Figure. 2.13 shows the layout of the forward detectors [21].
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Figure 2.13: Layout of the forward detectors

LumiCal is an electromagnetic calorimeter made of silicon and tungsten. It
is positioned around the beam axis and aims to measure luminosity by count-
ing Bhabha scattering, which has an extremely large cross section in electron-
positron collisions. A compact readout scheme is needed to provide thin showers
which help meet the extremely good understanding of angular acceptance re-
quired. The current prototype design is shown in Fig. 2.14 [21].
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Figure 2.14: Layout of the LumiCAL

The role of the BeamCal and LHCAL is to ensure that calorimeters cover
all solid angle in the forward region, with the exception of the in- and out-going
beampipes, which each have O(cm) radius.

2.4.9 The coil, return yoke, and muon system

Both the tracker momentum resolution and Particle Flow performance depend
on a strong magnetic field. ILD is designed to have a 3.5 T field produced by a
large superconducting solenoid placed outside the calorimeters. The solenoidal
field is returned by a thick iron return yoke, dimensioned to reduce the stray field
leaking outside the detector (and thereby allowing work on the second detector
in the same experimental hall), as shown in Fig. 2.15 [21]. The iron return yoke
is instrumented with 10 layers of sensitive detectors (e.g. scintillator bars) which
can be used as a muon detection system.
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Figure 2.15: Layout of the iron yoke

2.5 ILD performance

This ILD design is implemented in DD4hep software [22], and interfaced to
Geant4 [23] to simulate physics events within it. The Geant4 simulation pro-
duces collections of “simulated hits” in each sub-detector. These are then digi-
tised to correctly describe the expected properties of the electronics circuits used
to collect and record detector signals. The digitised hits are then passed to re-
construction algorithms which identify particle tracks in the tracking detectors,
clusters in the calorimeters, and produce an overall reconstruction of the event
based on Particle Flow reconstruction, producing a list of final state particles
whose parameters are determined by the most appropriate sub-detectors (usually
the one providing the most precise measurement).

2.5.1 Particle Flow Analysis

The PandoraPFA algorithm is used to reconstruct particles within an event,
as illustrated in Fig. 2.16 [24]. The resulting jet energy resolution is shown in
Fig. 2.17 [25]. The figure shows the purely calorimetric resolution in blue, and the
results of PFA in the solid black line. PFA resolution is a significant improvement
over the calorimeter-only result at all jet energies. At jet energies above 100 GeV
the largest contribution to the resolution is the “confusion” term, which is due
to calorimeter deposits being mis-assigned to the wrong particle; at smaller jet
energies the largest contribution is due to the single-particle calorimeter energy
resolution.
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Figure 2.16: A display of a section of an event reconstructed by PFA. Charged
particle tracks (lines) impinge on the electromagnetic (cyan) and hadronic (light
grey) calorimeters. The PFA reconstruction assigns calormeter hits to clusters,
and if appropriate these clusters to charged particle tracks.

Figure 2.17: Jet Energy Resolution performance of PandoraPFA in ILD.
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CHAPTER 3

MEASUREMENT OF THE TAU POLARISATION

3.1 Introduction

The fermion–pair production reaction e+e− → ff is the simplest process which
occurs at an electron-positron collider. In the Standard Model, it proceeds at
leading order via s-channel exchange of a photon and Z boson for the charged
leptons and quarks; in the case of an electron final state, additional t-channel
diagrams contribute. Thanks to its simplicity, its properties can be precisely
predicted both within the SM including extensions to describe new physics.

Since the Z couples differently to left- and right-handed fermions, the fermion-
pair reaction is different for fermions of different chirality. The precise exper-
imental verification of these chiral couplings to the Z boson is one of the key
aspects of the Electro-Weak program at future Higgs-Top-Electroweak–factory
colliders such as the ILC. This study of Z couplings can be done either at a
dedicated collider run at the Z-pole, or at higher centre-of-mass energies by
making use of the “radiative return”, in which Initial State Radiation returns
the effective centre-of-mass energy to the Z mass.

How to control the chirality of the fermions in the e+e− → ff process? In
the case of linear colliders such as the ILC, the initial electron and positron
beams can be longitudinally polarised: i.e. the majority of beam particles are
in a particular helicity state, positive or negative. Since the fermions involved
in the e+e− → ff process have – with the exception of the top quark – masses
much smaller than the O(100) GeV centre-of-mass energy, the helicity state of a
fermion corresponds almost exactly to its chirality under the weak interactions.
By using spin-polarised beams, one can therefore enrich the initial colliding beam
particles in a particular chiral state. By flipping the polarisation, the contribu-
tion of the other chiral state can be enhanced, allowing the chiral couplings to be
extracted. Since the initial particles are electrons/positrons, this provides direct
measurement of the electron’s chiral couplings.

The angular distribution of the final state fermions in this process is de-
termined by the conservation of angular momentum. In the case of polarised
beams, there is an average net angular momentum along the z (beam) axis. If
left- or right- handed final-state fermions are preferentially produced in the reac-
tion, then a forward-backward asymmetry (AFB) is be introduced: the final state
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fermion will more (or less) often be produced in the forward direction, depending
on the initial beam polarisation. A measurement of AFB can be combined with
the known beam polarisation to extract the Left-Right Asymmetries (ALR) of
the electron and final state fermion couplings.

An additional handle is to reconstruct the helicity of the final state fermions.
In the case of a collider without longitudinal beam polarisation, as is typical
at high-energy circular colliders, this is the only handle on the chiral couplings.
The helicity of fermions is not directly measurable, and is accessible via their
interactions or decays. At collider experiments, consideration of particle decays
is the only viable approach. Electron and muon decays are not registered with
the experiments, due to their long decay length, while lighter quarks are either
essentially stable (u, d, s) or hadronise before they decay (c, b) thereby greatly
complicating the extraction of helicity information. The two remaining fermions,
the τ lepton and top quark, do allow the reconstruction of their helicity. The
top is produced in very high energy collisions above 350 GeV, while the τ gives
access to a very wide range of centre-of-mass energies.

In this chapter we describe the reconstruction of the process e+e− → τ+τ− at
a high-energy electron-positron collider, and the use of the τ decays to measure
their polarisation.

3.2 Tau lepton

The tau is the most massive of the SM fermions, at 1.77 GeV, and decays via
the weak interaction to a tau neutrino and a virtual W boson with a relatively
short lifetime of 2.9 × 10−13 s. The many possible final states of the decay are
summarised in Fig. 3.1 [26]. The largest fraction is to τ+ → π+π0ντ (∼ 26%),
followed by the leptonic decays τ+ → (µ+, e+)ν(µ,e)ντ (∼ 17% each), and the
simplest hadronic decay τ+ → π+ντ (∼ 11%).

The kinematics of τ decay is strongly influenced by the initial τ helicity. This
is most easily understood in τ+ → π+ντ , in which the spin- 1

2
τ decays to a spin- 1

2

anti-neutrino and a scalar π+. Since the anti-neutrino must have positive helicity
due to the maximal parity violation of the weak interaction, it is preferentially
produced in the same direction as the initial τ spin. If the tau has positive
helicity, the neutrino tends to be produced along the tau momentum, while if it
has negative helicity, the neutrino goes in the opposite direction. In this case,
the angle the neutrino (or, equivalently, the pion) momentum makes with the
τ momentum direction, defined in the τ rest frame, has optimal sensitivity to
the underlying τ helicity. In the case of other hadronic decay modes, more
complex functions of final particle momenta in the τ rest frame can give the
same sensitivity to the helicity.

We can define “polarimeter vectors”, functions of the tau decay products’
momenta, which are sensitive to the tau spin orientation. In the case of τ → πν
and τ → ρν → π±π0ν decay modes, optimal polarimeters P, which maximise
the sensitivity, are

Pπ = pν (3.1)

Pρ = 2(q · pν)q−m2
qpν (3.2)

where q = pπ± − pπ0 , and pν ,pπ± ,pπ0 are the 3-momenta of the neutrino,

35



17.85 ± 0.05 % 

0

20

40

60

80

100

0

2

4

6

8

10

   10.08 %

e–νeντ

μ–νμντ
17.36 ± 0.05 %

π–ντ
10.91 ± 0.07 %

π–π0ντ

π–2π0ντ

π+2π–ντ

25.51 ± 0.09 %

  9.00 ± 0.06 %

  9.29 ± 0.11 %

25 modes

h–ωντ
1.99 ± 0.08 %

π+π02π–ντ
2.70 ± 0.08 %

π–3π0ντ
1.04 ±!0.07 %

K–ντ
0.696 ±!0.023 %

K0π–ντ
0.84 ± 0.04 %

B
ra

n
ch

in
g

 f
ra

ct
io

n
  

(%
)

K–π0ντ

K0π–π0ντ

h–ωπ0ντ

K–π+π–ντ

K–2π0ντ

K–ηντ

K–π+π–π0ντ

K–3π0ντ

K–K+π–π0ντ

2K
S
π–ντ

K–K+π–ντ
K–K0π0ντ
K–K0ντ

2h–h+3π0ντ
3h–2h+π0ντ
h–4π0ντ
2h–h+2π0ντ
3h–2h+ντ

π–π0ηντ

–

–

–

–×10

•

K
S
K
L
π–ντ

Figure 3.1: Branching fraction of tau lepton.

charged, and neutral pion in the tau lepton rest frame. The cosine of the angle
this polarimeter vector makes to the tau momentum direction is the optimal
estimator of the tau helicity, which we call the “polarimeter”. Example dis-
tributions of the polarimeter in these two decay modes, calculated using the
MC-truth momenta of tau decays products, are shown in Fig. 3.2.

In the case of fully-leptonic decays, the τ decays to three fermions, two of
which cannot be observed. The momentum of the visible lepton does have some
sensitivity to the τ helicity, although it is reduced with respect to the hadronic
decays. For this reason we do not consider these decays for measurement of the
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Figure 3.2: MC polarimeter for τ → πν decay (left) and τ → ρν decay (right).
Distributions for positive (negative) helicity taus are shown in green (magenta).

tau polarisation.

3.3 Tau reconstruction method

As mentioned above, the reconstruction of optimal estimators of the tau helicity
requires the knowledge of decay products’ momenta in the tau rest frame. In
the case of the process e+e− → τ+τ−(γ), the two τ rest frames are not directly
reconstructible due to the presence of undetected neutrinos.

In this section we first describe the traditional “cone” method to explicitly
reconstruct the tau momenta in the case of back-to-back taus, and the closely
related “mid-point” method. We then describe our newly-developed “impact
parameter” method which can be applied to a wider range of τ+τ− kinematics.

We discuss the case of single-prong τ decays, in which a single charged par-
ticle is produced in the decay. Multi-prong decays are relatively rare, however
they provide additional constraints thanks to the possibility of explicitly recon-
structing the tau decay vertex.

3.3.1 Simulation setup

To develop and study the performance of these methods, samples of e+e− →
τ+τ− events were generated using the WHIZARD event generator (version 2.85) [27].
The samples took account of the expected beam energy spread expected at ILC-
250 due to the intrinsic accelerator energy spread as well as the spectrum in-
duced by beamstrahlung. Samples were produced with 100% polarised beams,
and mixed with appropriate weights to simulate the expected ILC-250 beam
polarisations of ±80%(∓30%) for the electron (positron). The effects of initial
and final state radiation were included, and the tau leptons were decayed using
TAUOLA [28], taking account of their helicities.

3.3.2 Cone method

If we can assume the τ energy Eτ and that the tau has decayed to a single neu-
trino, then the tau mass constraint can be used to constrain the tau momentum
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pτ to lie at a well-defined angle β to the visible tau momentum pvis on the surface
of a cone around the visible tau momentum

cos β =
p⃗2vis + |Pvis|Eνcosα

|p⃗τ ||p⃗vis|
, (3.3)

where cosα is

cosα =
(Evis + Eν)

2 −m2
τ − p⃗2vis − E2

ν

2Eν |p⃗vis|

=
E2
vis + 2EνEvis −m2

τ − p⃗2vis
2Eν |p⃗vis|

(3.4)

If we consider the reaction e+e− → τ+τ− in its centre-of-mass frame, and
without any initial state radiation, then the two taus have known energy (half
the centre-of-mass energy) and are produced back-to-back. The momentum of
each tau lies on a cone around its visible momentum. A consistent solution in the
event can be found by “flipping” one cone (i.e. reflecting it in the plane normal
to its axis and containing the nominal interaction point (IP)), and finding the
intersections of the two cones, as illustrated in Fig. 3.3 In the ideal case, these
two cones intersect along two (possibly degenerate) directions.

If some of the assumptions are not exactly satisfied (e.g. there is Initial State
Radiation (ISR) or Final State Radiation (FSR), or significant beam energy
spread) the cones may not intersect, and no solutions can be identified.

⃗P
τ+

vis

β1

⃗P
τ−

vis

β2

⃗Pτ+

flip one of tau visible daughter
flip

 cone-cone angleβ
cc

:

⃗Pτ−

β
cc

Figure 3.3: Illustration of the “cone” reconstruction method.

To study the efficiency of the method, we first apply it using the MC-truth
momenta of visible tau decay products as input. The fraction of events in which
the two cones intersect – in other words the efficiency – is shown in Fig. 3.4 as
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Figure 3.4: Left: distribution of mττ for all events, and for those in which the
cone method found at least one solution. Right: Cone method efficiency as a
function of mττ .

a function of the true invariant mass of the tau lepton pair.
The efficiency is ∼ 70% for events with mττ ∼ 250 GeV, drops to around 20% by
240 GeV, and falls further at smaller invariant. This is because events with small
mττ must have had significant ISR, which invalidates both the back-to-back and
Eτ assumptions.

For events for which “Cone method” cannot find a solution, i.e. the two
cones do not intersect, we can define an approximate solution as the vector
midway between the two cones at their points of closest approach, as illustrated
in Fig. 3.5. We call this “Midpoint method”.

ta

⃗P
τ+

vis

β1

−

⃗
P τ −

v
is

β2

Figure 3.5: Illustration of the “midpoint” method.

Once the tau lepton momenta have been reconstructed, the decay products
momenta can be boosted into the tau rest frame, and the polarimeters calculated.

3.3.3 Polarimeter reconstruction

Here we restrict ourselves to events with mττ ≥ 240 GeV in which at least one
of the τ has decayed to either πν or ρν. The cone method gives two possible
solutions, which we treat equally. For each solution, we calculate the polarimeter
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for each τ which decays into one of the above modes, using the MC-truth mo-
menta of visible particles as input. A comparison between the true polarimeter,
which uses the MC τ momentum as an input, and the polarimeter using mo-
menta reconstructed by the cone method, is shown in Fig. 3.6, separately for the
two decay modes. The general reconstruction of the polarimeter is quite good,
particularly for decays to πν. The ρ decay mode shows some more significant
migrations.
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Figure 3.6: Comparison of the polarimeter calculated using the tau momentum
reconstructed by the cone method that using the MC-truth tau momentum, for
τ → πν (left) and τ → ρν decays (right).

Events for which the cone method found no solutions for the tau momenta
were passed to the midpoint method. The polarimeters calculated using the
results of the mid-point method are compared to the MC-truth polarimeter in
Fig. 3.7. The extracted polarimeters are less precise than for the cone method,
since the method is used only if the kinematic assumptions are significantly
violated, resulting in less accurate reconstruction.
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Figure 3.7: Comparison of the polarimeter calculated using the tau momentum
reconstructed by the midpoint method that using the MC-truth tau momentum,
for τ → πν (left) and τ → ρν decays (right).
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3.3.4 Impact parameter method

We have seen that the traditional “cone” method has only limited applicability at
high energy electron-positron collider experiments, mostly due to the significant
probability of initial state radiation which invalidates the assumptions behind
the method.

To improve the situation, we have developed a new method to reconstruct
di-tau events which removes the troublesome assumptions, replacing them with
information which will be available at the future generation of Higgs factories.
The key aspects which allow new constraints are the extremely good impact
parameter resolution provided by the experiments (at the µm level, significantly
smaller than the typical impact parameters of tau decay products), coupled
with the “nano-beam” scheme used in the colliders to enhance the luminosity,
which ensures that the transverse size of the beam-beam interaction region is
small compared to both the tau decay length and the typical impact parameter
resolution of the detectors.

tau decay length 

    ~ few mm

neutrino

charged trajectory

σ
d0

IP
Figure 3.8: Schematic image of the impact parameter in a tau decay.

Collinear ISR

We first assume that the two taus are produced back-to-back in the plane trans-
verse to the beam-line. This assumption allows the presence of ISR, provided
that it is collinear with the beam-line, as it indeed dominantly is. We can then
define a tau-tau production plane which contains the beamline and both tau mo-
menta, which is oriented at some azimuthal angle ϕ, which is to be determined.

Charged particle trajectories

The charged decay products of the tau lepton are precisely measured by the
tracking system of the detector. The vertex detector in particular precisely re-
constructs the particle trajectory close to the interaction point. For simplicity
we assume that the tau decays to a single charged particle in addition to some
number of neutral particles. The intersection of the charged decay product of
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the tau with the tau-tau production plane can be calculated. A linear approxi-
mation for the trajectory in the vicinity of the IP is appropriate given the typical
momenta and magnetic field, which makes the math trivial: Let d be the position
of a point on the trajectory of the charged particle with respect to the nominal
interaction point (IP), and p the particle momentum at that point. It is conve-
nient to define d as the point of closest approach (PCA) to the IP. Neglecting
the track curvature, a general point r on the trajectory close to the PCA can be
approximated by

r = d+ αp̂ (3.5)

where p̂ is a unit vector parallel to p and α a real number. The intersection of
the approximated trajectory with a plane containing the z axis at an azimuthal
angle ϕ occurs when

tanϕ =
ry
rx

=
dy + αp̂y
dx + αp̂x

, (3.6)

or when

α =
dy cosϕ− dx sinϕ

p̂x sinϕ− p̂y cosϕ
(3.7)

This intersection represents the point at which the tau lepton decayed.

Production vertex

The transverse size of the interaction region is very small (nm ∼ µm), so we
can assume that the taus are produced at a point somewhere along the nominal
beam line, whose position we assume is very precisely known by analysis of
the vast majority of events containing promptly produced particles. We cannot
directly reconstruct the production position along the beamline so we leave it as
a parameter zIP to be determined. 1

A particular choice of the two parameters ϕ and zIP determines the produc-
tion and decay vertices of the two taus, and also the direction of their momenta
(in the assumption of negligible bending in the experiment’s magnetic field within
the short tau flight path). This is illustrated in Fig. 3.9.

Energy and momentum conservation and mτ

Given the two tau directions, we can calculate the tau energies if we make
additional assumptions: that the centre-of-mass energy is the nominal one, that
any 4-momentum lost to ISR can be modeled as that of a single photon collinear
to the beamline, and the tau lepton mass.

The transverse momentum pT is assumed to be the same for each tau in
order to conserve the event’s transverse momentum; the magnitude of the total
tau momenta are then given by pi = pT/ sin θi, and the z momenta by pz,i =
pT/ tan θi, where θi is the polar angle of the tau direction. Conservation of
energy gives Eτ,1 + Eτ,2 + EISR = ECM , where Eτ,1(2) is the energy of tau 1(2),
EISR the energy carried by ISR photons, and ECM is the centre-of-mass energy.
Assuming one ISR photon collinear with the beam, momentum conservation in
the z directions gives EISR = |pz,1 + pz,2|.

1We note that a particularly long-lived tau which travels several cm before decaying may
have its trajectory directly reconstructed within the vertex detector: a very rare case which
we do not address here.
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Figure 3.9: Schematic image of calculating tau direction.

We can then write

ECM = Eτ,1 + Eτ,2 + EISR

=
√

p21 +m2
τ +

√

p22 +m2
τ + |pz,1 + pz,2|

≈ p1

[

1 +
m2
τ

2p21

]

+ p2

[

1 +
m2
τ

2p22

]

+ |pz,1 + pz,2| (3.8)

in the limit pi ≫ mτ . Rewriting in terms of pT , θ1,2

0 ≈ p2T (| cot θ1 + cot θ2| + csc θ1 + csc θ2)

− pTECM

+
1

2
m2
τ (sin θ1 + sin θ2)

(3.9)

which is a quadratic equation in pT , with solutions

pT ≈ ECM
2A

(

1 ±
√

1 − 4AC
m2
τ

E2
CM

)

,

A = | cot θ1 + cot θ2| + csc θ1 + csc θ2

C =
1

2
(sin θ1 + sin θ2)

(3.10)

Since AC(mτ/ECM)2 ∼ 10−3 → 10−4 over the whole range of θ1, θ2, we can
safely ignore the solution with pT ≈ 0 and approximate

pT ≈ ECM
A

. (3.11)

Neutrino mass

We have shown that, given a choice of the two parameters ϕ and zIP , the trajecto-
ries of charged tau daughters can be used to calculate the tau 4-momenta and the
energy lost to (collinear) ISR. The question is now how to choose the parameters
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ϕ and zIP ? The measured 4-momenta of the visible tau jets provide additional
information. By comparing the calculated tau 4-momentum with the measured
visible tau jet 4-momentum, the 4-momentum of the invisible part of the tau
decay can be extracted, which should correspond to the 4-momentum carried by
the neutrino(s) produced in the decay. Since we are considering hadronic tau
decays, it should be consistent with a single neutrino, so the invariant mass of
the invisible 4-momentum (the “missing mass”) should ideally be zero.

Figure 3.10 shows the result of a scan of the zIP − ϕ for a single event. The
left (centre) plots show the absolute value of the squared invariant mass of the
invisible 4-momentum for the two tau jets. A good solution would be one at
which these two lines intersect, and both neutrinos have a mass consistent with
zero. To find these, we consider the sum of the squared masses, shown on the
right-hand figure. We search for well-separated local minima in this distribution.
If such a minimum corresponds to a mass of less than 5.0 GeV, it are considered
as a potential event solution.

Figure 3.10: Choosing the values of z, ϕ. The horizontal and vertical axes are
z ([mm]) and ϕ [rad], and the colour scale represents the sum of the absolute
squared neutrino masses for the negative (positive) tau on the right (center), and
their sum (right). The two triangles, identified as local minima of the right-hand
plot, are the selected solutions.
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Additional events are show in Figs. 3.11 and 3.12. The number of identified
solutions varies from event-to-event. Sometimes no good solutions are found, in
others 10 or more can be identified.

Figure 3.11: Example event with 3 and 4 solutions. The horizontal axis and the
vertical axis are z and ϕ, respectively. The colour scale represents the invariant
mass of neutrino. ed triangles show the position of identified solutions.
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Figure 3.12: Example event with 5 to 6 solutions. The horizontal axis and the
vertical axis are z and ϕ, respectively. The colour scale represents the invariant
mass of neutrino. ed triangles show the position of identified solutions.
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Number of solutions

Figure 3.13 shows the number of solutions found per event. The first plot consid-
ers all tau-pair events, and shows that there is a significant fraction of events for
which zero solutions are identified. For reasons which are explained in the next
section, we also plot the number of solutions in the subset of events in which the
pT of ISR photons is below 5 GeV, and in which no FSR photons are emitted. In
this subset, the fraction of events with no solutions is very significantly reduced.
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Figure 3.13: The number of solutions for all events (left) and for events with no
FSR photon and ISR photon which has low transverse momentum pT < 5 GeV
(right).

It is difficult to distinguish which of multiple solutions is the correct one: they
all satisfy the various constraints to a similar degree. One could imagine using
additional information to distinguish them. For example, zIP should typically
follow a particular distribution of well-defined size determined by the collider
parameters (at ILC, nominally a Gaussian with width ∼ 200 µm and mean 0);
if one of the solutions falls far from this distribution, it could be deweighted
or discarded. Other ways to select solutions could depend on the solutions
with more probable tau decay kinematics or mττ , however this depends on the
assumed physics model, which is what we are trying to measure. In the analyses
shown in this thesis, we give equal weight to all identified solutions.

Figure 3.14 shows the angle between the MC-truth tau direction and the
direction reconstructed by this method. Since multiple solutions are possible,
the distribution includes all solutions. The angle is typically rather small, with
most solutions being within a few mrad of the true direction, showing that the
results are reasonable. We note that there is a relatively long tail extending to
several 10s of mrad, due to “incorrect” solutions.
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Efficiency

Figure 3.15 shows the distribution in the invariant mass of tau-tau for all events
containing at least one tau decay to π or ρ (red), and for the subset of those
events in which the impact parameter method identifies at least one solution.
We can clearly see peaks both at high mass and at the Z pole around 91 GeV.
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Figure 3.15: Comparison with MC mττ for events with at least 1 τ decay to π or
ρ. The red line represents all events and the blue line represents for events for
which the impact parameter method can find at least one solution.

Figure 3.16 shows the method efficiency as a function of MC mττ for these
same events. The black line corresponds to all events without any additional
cut. The efficiency is above 95% at high mass, and reduces to 60 ∼ 70% at lower
masses. There is an intriguing feature around the Z-pole.

We try to understand the drop in efficiency by cutting events with large
initial or final state radiation. Removing events containing ISR with a total
transverse momentum greater than 5 GeV results in the blue curve. Such events
invalidate the assumption of collinear ISR, and are therefore expected to cause
problems to the method, particularly at lower mττ where the amount of ISR is
larger. The absolute efficiency indeed increases by 20 ∼ 30% for mττ below the
nominal centre-of-mass energy. The structure around mZ remains.

Removing events in which the tau-pair emit final state radiation results in
the green curve, in which the efficiency is generally increased, and the feature
around mZ has disappeared. Final State Radiation is typically emitted close to
one of the tau directions, and is therefore typically included into the visible tau
jet momentum. This will cause the τ mass constraint to be invalidated, since it
it the tau system after FSR which has the mass mτ . A significant FSR therefore
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Figure 3.16: Impact parameter efficiency as a function of MC mττ .

results in decreased efficiency. The structure around mZ is due to the fact that
FSR causes events to migrate to lower values of mττ (defined as the tau-tau
mass after the emission of FSR). The range immediately below mττ contains
no-FSR events with the addition of events originally at higher mass which have
migrated to that mττ thanks to the emission of FSR. Since the Z peak contains
so many events, even the small fraction of them which migrate to lower mττ due
to FSR can make a significant contribution to lower masses, causing them to
have a smaller average efficiency.

Applying both the ISR and FSR cuts, we obtain the red curve, which shows
an efficiency above 95% for all mττ above ∼ 50 GeV.

α method

In ϕ method, we search the zIP − ϕ plane for local minima. The range of ϕ
which contains reasonable solutions is often very narrow, and it can sometimes
be difficult to discover good solutions in this very narrow range by brute-force
methods. This gives rise to some inefficiency to find a good solution.

In a variation of the above method, using the same assumptions and con-
straints, we replace the ϕ free parameter by α of one the taus. α is the parameter
defined in Eq. 3.5, the distance along the charged daughter trajectory from the
point of closest approach (PCA) at which the tau decays. Choosing a particular
value of α for the first tau, r1 = d1 + α1p̂1, α2 can be calculated by imposing
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back-to-back-ness in the transverse plane:

r1,x
r1,y

=
r2,x
r2,y

=
d2,x + α2p̂2,x
d2,y + α2p̂2,y

α2 =
r1,yd2,x − r1,xd2,y
r1,xp̂2,y − r1,yp̂2,x

(3.12)

A choice of zIP and α1 thus defines both the azimuthal and polar angles of the
two tau momenta, and we proceed as in the zIP − ϕ method described above.

zIP back-to-back

α
2

⃗p

z

charged trajectory

tau direction

PCA

α ⃗p

 : unit vector ⃗p

  : real numberα

Figure 3.17: Alpha method

Polarimeter

Each event may have several solutions, which will result in different estimates
of the polarimeter. In addition, each solution may result in two polarimeter
measurements, one per tau, in the case that both taus decay into a decay mode
we consider. Since the helicities of the two taus in an event are very strongly
anti-correlated, we consider measurement from different taus to be estimators
of the same quantity, the chirality of the tau lepton current. A single event
therefore provides between 0 and 20 estimates of the tau chirality. As discussed
above, it is not trivial to rank the solutions in a way that will not bias the results,
so we treat each of them equally. For each event we fill a histogram with these
estimators, which is then normalised to unity. It can be considered a probability
density function for the polarimeter.

These single-event histograms are then summed over the whole sample. In
this sample histogram, each event provides a weight of 1. Figure 3.18 shows the
polarimeter distributions for taus of positive and negative helicity

The polarimeter distributions are close to the “triangular” distributions of
the MC truth polarimeters in Fig. 3.2, however some small distortions are seen.
These are due to the inclusion of the polarimeters calculated at the incorrect
solutions.
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Figure 3.18: Impact parameter polarimeter as a function of MC mττ for τ → πν
decay (left) and τ → ρν decay (right).

Comparisons of the reconstructed polarimeter distribution with the MC-truth
polarimeter is shown in Fig. 3.19. There is a sharp band with excellent agree-
ment, and a broad region with no correlation due to the incorrect solutions.
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Figure 3.19: Polarimeter reconstructed using the impact parameter method com-
pared to the MC-truth for τ → πν (left) and τ → ρν decays (right).

3.3.5 Polarisation measurement

To measure the polarisation of a sample of events, we should fit distributions such
as those in Fig. 3.20 to the sum of contributions from Left- and Right-handed
taus. Each event contributes a weight of unity to the distribution, however this
weight may be spread across several polarimeter values. The several polarimeters
measured in a single event may well be statistically correlated, since they are
based on the same experimental inputs. A simple fit of the distribution (e.g.
by a χ2 or likelihood method) will therefore not result in correct statistical
uncertainties.

Jackknife method

To estimate the statistical uncertainties, we use a brute-force method known as
the “Jack-knife” method. The basic idea of the Jackknife method is that the
estimator, in this case tau polarisation, is calculated by sequentially deleting
one event (which can correspond to several polarimeter measurements) from the
sample, and estimating the polarisation in each of these sub-samples. For a
sample of n events, let the estimated parameter using all events be P̂ . There
are n sub-samples of n − 1 events, in which the fitted parameter is P̂i. The
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Figure 3.20: An example polarimeter distribution (left) and the expected distri-
butions for negative and positive helicity taus (right).

Jack-knife method tells us that the variance on the extracted parameter P can
be estimated as [29]

Var(P ) = σ2
P =

n− 1

n

n∑

i=1

(P̂i − P̂ )2 (3.13)

3.3.6 Check of fitting method

Our aim is to measure the tau polarisation as a function of the scattering angle
θτ− . We run a number of toy-MC experiments to check the behaviour of the fit
method outlined above, using events with mττ> 240 GeV and in which at least
one τ decays to π or ρ.

Samples of 50k events with different “artificial” polarisation Pin were created
in 10 bins of cos θτ− by changing the ratio of right-handed NR to left-handed NL

events Pin = NR−NL

NR+NL
. Each sub-sample was fitted to extract the tau polarisaton,

and the Jack-knife method was used to estimate its uncertainty.
Figures. 3.21 presents the fitted value of the polarisation as a function of the

true value of the input polarisation Pin = NR−NL

NR+NL
, in the 10 bins of cos θτ− . The

fitted polarisaton depends linearly on the input polarisation, and the dependence
cos θτ− is seen to be very small. We note that a significant bias is observed, with
the fitted polarisation always having a smaller magnitude than the input: e.g.
for an input polarisation of ±1.0, the fitted polarisation is ± ∼ 0.85. This can
be understood as the effect of wrong event solutions, which will on average tend
to dilute the polarisation measurement, resulting in a smaller extracted value.

The polarisation uncertainty obtained from the Jack-knife method is pre-
sented in Fig. 3.22 for the same samples. For the 50k events per sample assumed
in this toy-MC, the absolute uncertainty on the polarisation is in the range
0.004 → 0.007. It depends on the true value of the polarisation (the uncertainty
is largest for zero polarisation), but seems rather insensitive to cos θτ− .
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Figure 3.21: Jackknife method result of the tau polarisation: The y-axis rep-
resents the tau polarisation obtained by fitting and x-axis is an artificial input
polarisation for each cos θτ− region.
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Figure 3.22: Jackknife method result of the tau polarisation error: The y-axis
represents the tau polarisation error obtained by Jackknife method and x-axis
is an artificial input polarisation for each cos θτ− region.

54



3.3.7 Extrapolation to ILC-250

Next, the sensitivity of the tau polarisation was investigated assuming the beam
polarisation datasets for 2.0 ab−1 of data forseen for ILC-250 using this Jackknife
method. The electron beam is 80% polarised and the positron beam is 30%
polarised. The 2.0 ab−1 of integrated luminosity forseen at ILC-250 is split as
follows: (e−L80e

+
R30, e

−
R80e

+
L30,e

−
L80e

+
L30,e

−
R80e

+
R30 ) as (45%,45%,5%,5%).

Figure. 3.23 shows that the invariant mass of tau pair for e−L80e
+
R30 sample

(eLpR) and e−R80e
+
L30 sample (eRpL). For radiative return to Z pole events (mττ =

91± GeV), the expected number of taus is N = 6.8 × 106 and for high mass
tau-tau events (mττ = 245 ± 5 GeV), the expected number of taus is N =
4.9 × 106. Jackknife method was performed for high mass tau-tau event with
N = 4.9×104 taus and Z pole event with N = 6.8×106 taus, respectively, and tau
polarisation precision estimation was performed. Figures. 3.24 and 3.25 show
that the polarimeter distributions for at least 1 τ decays to π or ρ (for example, in
the event 1 τ → πν and 1 τ → eνν, the measurement is still performed using the
τ decayed to π.) with left-handed and right-handed polarised beam sample. As
a result of tau polarisation precision measurement, tau polarisation error for the
high mass tau-tau event are 0.0618% and 0.0614% for the left- and right-handed
polarised samples, respectively. For Z pole events, the results were 0.0566% and
0.0579%, for the left- and right-handed polarised samples, respectively.

Figure 3.23: The invariant mass of tau-tau mττ for two types of samples: e−L80e
+
R30

sample (red) and e−R80e
+
L30 sample (green).
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Figure 3.24: Polarimeter distributions for at least 1 τ → π/ρ decay with eLpR
sample. For events with radiative return to Z pole event (left) and high mass
tau-tau (right).
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Figure 3.25: Polarimeter distributions for at least 1 τ → π/ρ decay with eRpL
sample. For events with radiative return to Z pole event (left) and high mass
tau-tau (right).
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3.4 Constraining physics beyond the SM using the tau
polarisation

In this section, we evaluate the performance of the ILC at 250 GeV in the search
for new physics by comparing it with the Z ′ model (SSM, E6,, ALR, GHU) using
tau polarisation and the possibility of searching for a new physical model based
on the accuracy of the tau polarisation obtained in this study.

First, we evaluate the performance of the Z ′ model; the coupling constants of
Z ′ differ from model to model, and in this section we use the Sequential Standard
Model (SSM) and the Alternative Left-Right symmetric model (ALR), and the
E6 model.

Figures. 3.26 and 3.29 show the cross-section and the tau polarisation pre-
dicted by each Z ′ models and SM, and its deviations from SM as a function of
the centre-of-mass energy and the the cos θτ− with left-handed and right-handed
polarised beams.
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Figure 3.26: The cross-section (Left) and its deviations from SM as a function of
the centre-of-mass energy for each Z ′ models with left-handed (Top) and right-
handed (Bottom) polarised beams.
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Figure 3.27: The cross-section (Left) and its deviations from SM (Right) as a
function of the cos θτ− for each Z ′ models with left-handed (Top) and right-
handed (Bottom) polarised beams.
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Figure 3.28: The average tau polarisation (Left) and its deviations from SM
(Right) as a function of the centre-of-mass energy for each Z ′ models with left-
handed (Top) and right-handed (Bottom) polarised beams.
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Figure 3.29: The tau polarisation (Left) and its deviations from SM (Right) as
a function of the cos θτ− for each Z ′ models with left-handed (Top) and right-
handed (Bottom) polarised beams at 250 GeV.

3.4.1 Results of analysis

For the differential cross-section and the tau polarisation, the entire angular
range of cos θτ− is divided into bins, and for each bin the deviation from SM
of them predicted from each model of the i-th bin is determined. Then, the
corresponding χ2 can be expressed as [30]:

χ2 =
∑

bins

∑

{σ,Pτ}

∑

L,R

[O(SM + Z ′) −O(SM)]2bin
δO2

bin

(3.14)

where O = dPτ

d cos θ
, dσ
d cos θ

in each bin for the tau polarisation and the differential
cross-section, respectively. Then, the probabilities that the Z ′ model deviation
are consistent with the SM are calculated by using these χ2. Figure. 3.30 and
3.31 show the χ2 distributions and the probabilities by using MC-truth and
reconstructed results, respectively. The lower this probability is, the easier it is
to find the Z ′ bosons for that mass and new physics model. Table. 3.1 shows
the upper limit of Z ′ masses that can be found at 95% C.L. for each model.
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Figure 3.30: Chi-squared distributions as a function of the mass of Z ′ for each Z ′

models at ILC-250 with polarised beams and the expected integrated luminosity
of 900 fb−1 using MC-truth and the probabilites of the χ2 that the deviation of
Z ′ model are consistent with the SM prediction at ILC-250 using the expected
error from MC-truth. The results of the cross-section and the tau polarisation
and the tau polarisation with left- and right-handed samples are combined to
calculate the χ2.
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Figure 3.31: Chi-squared distributions as a function of the mass of Z ′ for each Z ′

models at ILC-250 with polarised beams and the expected integrated luminosity
of 900 fb−1 using reconstructed results and the probabilites of the χ2 that the
deviation of Z ′ model are consistent with the SM prediction at ILC-250 using
the expected error from MC-truth. The results of the cross-section and the tau
polarisation and the tau polarisation with left- and right-handed samples are
combined to calculate the χ2.

Table 3.1: Upper limit on the mass of Z ′ in unit of GeV detectable e+e− → τ+τ−

measurement of the ILC at 250 GeV centre-of-mass energy at 95% C.L. for each
model

Z ′ model MC PFO

SSM 2103.92 2038.46
ALR 2868.72 2795.89
E6χ 2189.57 2131.97
E6ψ 1043.01 1005.24
E6η 906.951 872.219
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In this analysis, three values of θH = 0.09, 0.10, 0.11 are assumed to de-
termine whether the GHU model deviations from SM can be seen at ILC-250.
Figures. 3.32 and 3.33 show the deviations from SM of the cross-secion and the
tau polarisation in the GHU model with different θH values and the expected
error at ILC-250. For all values of θH , sufficient deviations from SM can be
observed. The probabilities of them being consistent with SM is almost zero,
and if the GHU model is correct within the range of possible values of θH , the
analysis of the tau channel alone is sufficient to new physics search at ILC.
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Figure 3.32: The deviations from SM e+e− → τ+τ− cross-section in the GHU
model of Z ′ for left-handed (Left) and the right-handed (Right) polarised beams
with the different values of θH = 0.09, 0.10, 0.11. The error bars represent the
expected accuracy of this analysis.
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Figure 3.33: The deviations of the tau polarisation from SM e+e− → τ+τ−

process in the GHU model of Z ′ for left-handed (Left) and the right-handed
(Right) polarised beams with the different values of θH = 0.09, 0.10, 0.11. The
error bars represent the expected accuracy of this analysis.
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3.5 Conclusion

The reconstruction of tau polarisation at ILC-250 was investigated. For events
with mττ> 240 GeV, “Cone method” works for 70% of taus and “Impact pa-
rameter method” efficiency is > 90%. “Midpoint method” was used if “Cone
method” fails. Polarimeters were reconstructed in the τ → πν and τ → ρν decay
modes, and used to estimate the tau polarisation and its error.

Reasonable agreement between MC truth polarimeter value and the one from
each method for both τ → πν and τ → ρν decay were found.

Jackknife method was used to estimate tau polarisation errors and check its
bias. There is no cos θτ dependence and the tau polarisation obtained from fit
as a function of an artificial input polarisation can be used for the calibration of
tau polarisation measurement using Jackknife method.

The experimental sensitivities to the tau polarisation of impact parameter
method are about 0.06% for events with mττ> 240 GeV and also radiative
return to Z pole event around mττ∼ 91 GeV , assuming 900 fb−1 of e−L80e

+
R30

and e−R80e
+
L30 beam polarisation.

A new physics model search for Z ′ was performed using the tau polarisation
error obtained by the newly developed reconstruction method. Using both tau
polarisation and cross-sections, the new physics model was found to be sensitive
to Z ′ with masses up to 820 GeV to 2.8 TeV.
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CHAPTER 4

OPTIMISATION STUDY OF THE ASIAN GEM

MODULE FOR TPC READOUT

4.1 Introduction

4.1.1 Tracking requirements at a Higgs Factory

The physics program at collider experiments past, present, and future require
essentially perfect efficiency to reconstruct charged particles produced in col-
lisions, to measure their direction, their origin with respect to the interaction
vertex to identify displaced vertices, and to estimate their momentum.

At experiments for future lepton Higgs Factory colliders, requirements on the
tracking system come from

� momentum resolution to allow reconstruction of the Higgs mass recoiling
against a Z boson decaying into muons; the experimental smearing due
to momentum resolution should not dominate over that induced by the
collider’s beam energy spread.

� impact parameter resolution to allow the efficient reconstruction of tau
lepton decays and heavy flavour quark jets

The efficiency and resolution for charged particle reconstruction should cover
as much of the solid angle as possible, given the constraints from the machine-
detector interface, and should cover a range of momentum from O(100) GeV to
O(100) MeV to reconstruct all produced particles.

Tracks produced by the decays of long-lived particles, whether photon con-
versions, K-short decays, or BSM particles, should also be detected with very
high efficiency to fully reconstruct events and to search for unexpected signa-
tures. The ability of the tracking system to distinguish particle types, particu-
larly charged hadrons, by means of their specific energy loss as described by the
Bethe-Bloch formula, provides an additional lever with which to analyse events.

The analysis of tau leptons, as discussed in the first part of this thesis, relies
on the good performance of the charged particle tracking system. The charged
decay products of the tau must be reconstructed with high efficiency, and their
momentum measured with good precision. The measurement of the particle
trajectories in the vicinity of the interaction region is a central element of the
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analysis. In addition to the tracking system, the reconstruction of a majority of
tau decays also depends on information from both the calorimeter systems, to
measure neutral pion decays to photons and to distinguish charged leptons and
hadrons.

Since the energy resolution of calorimeters is intrinsically less precise than
that of tracking detectors, experimental precision on tau lepton reconstruction
is not dominated by the tracking detector precision.

For these reasons, the performance requirements on the tracking detectors
coming from tau lepton reconstruction are less stringent than those coming from
other measurements, largely coming from the Higgs physics program, in part
due to the very small natural width of the Higgs boson. A particular aspect
of taus is the reconstruction of very nearby tracks from multi-prong decays of
highly boosted taus.

4.1.2 Tracking technologies

Several technologies can be considered for the tracker. Leading examples are a
full silicon tracker or gas-based detectors, such as a drift or time projection cham-
ber. These options present different advantages and challenges, which depend
on the experimental environment in which it is to be operated.

A silicon tracker provides a relatively small number of very precise measure-
ments of particles’ trajectories, while a gas-based detector typically provides a
larger number of less precise measurements. Gas-based detectors contain only
a very small amount of material within the active tracking volume, leading to
reduced multiple scattering and therefore better resolution for low momentum
particles, and can also typically provide better measurement of the specific en-
ergy loss dE/dx than a silicon tracker. A time projection chamber in particular
involves the drift of charge over metre-scale distances, which introduces sensi-
tivity to a build-up of ions within the tracking region.

The ILD has selected a hybrid tracking system, with a large TPC comple-
mented by a small number of silicon detector layers, placed before and after
the gas volume. The TPC allows quasi-continuous reconstruction of charged
particle trajectories, providing excellent efficiency at all relevant momenta, also
for highly displaced tracks. Inner and outer silicon layers provide high-precision
points on tracks which, when combined with the TPC measurement, meet the
momentum resolution requirement. The small mass of the main tracker provides
good resolution also at low momenta, while its measurement of dE/dx provides
good statistical separation of pions from kaons (and protons) up to several 10s of
GeV. The large number of measurements of each track results in a robust system
with built-in redundancy. The beam structure of the ILC, with its 200 ms–long
“quiet” periods between bunch trains, permits the use of a gating system to block
the majority of secondary amplification ions from the drift volume, minimising
the concentration of ions in the drift region.

TPCs have been operated successfully at several collider experiments (e.g.
ALEPH and DELPHI at LEP, ALICE at the LHC), and liquid-based TPCs are
also increasingly being used in neutrino experiments (MicroBoone, T2K near
detector, DUNE). They offer a very complete picture of the charged particles
produced in particle interactions.
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4.1.3 Operation Principle of TPC

The TPC can reconstruct the three-dimensional trajectory of charged particles.
A schematic image of ILD’s TPC is shown in Fig. 4.1. The TPC has a cylin-
drical shape with an outer radius of 1.8 m. It is divided into two volumes, each
approximately 2.2 m long, separated by a HV cathode positioned at z = 0 (i.e.
normal to the ILC beampipe, and aligned with the nominal interaction point).
Each volume is closed by an end-plate instrumented with readout modules. The
purpose of the TPC is to measure the trajectory and momentum of the charged
particles, as well as to identify particle type by mans of their specific energy
loss dE/dx. Charged particles entering the TPC ionise the gas molecules within
it. The ionisation electrons drift along the electric field (xx V/m aligned with
the detector axis) towards the readout end-plates; a HV cathode is positioned
at z = 0. The solenoidal 3.5 T B-field of the experiment allows the TPC to
act as a magnetic spectrometer to measure particle momenta, and also reduces
the transverse diffusion of ionisation electrons as they drift towards the readout
anode.

E-Field
E-Field

Cathode

End Plate

(Readout Modules)

B-Field

Z from

drift time

End Plate

(Readout Modules)

r

z

Charged 

particle

rΦ
projection

Figure 4.1: Schematic image of a TPC.

The TPC end-plates are each instrumented with around 240 readout modules
of size 17×21 cm, arranged in 8 rings. Each module is segmented into ∼ 1×6mm2

readout pads in the r − ϕ and r directions, for a total of around 1 M channels
per end-plate. This corresponds to 220 individual measurements for a central
track which passes through the TPC volume.

As the signal current generated by the ionisation electrons is too weak to
be measured directly, the signal is gas amplified and read out within the end-
plate readout module. A number of gas amplification technologies are being
considered for the readout of the ILD TPC: Gas Electron Multiplier (GEM),
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resistive Micromegas, and silicon readout based on the TimePix sensor.

4.2 Gas amplification

We make a brief survey of these gas amplification technologies, before discussing
the GEM in more detail.

4.2.1 MicroMEGAS

Micro-Mesh Gaseous Structure (MicroMEGAS) is a MPGD detector developed
by Y. Giomataris in 1996, whose structure is shown in the Fig. 4.2 [31]. The
MicroMEGAS consists of a drift region of several mm separated by a micro-
scopic mesh from an amplification region of about 100 µm width. The mesh is
supported by pillars, and strip electrodes are used for signal readout.

Figure 4.2: The structure of the MicroMEGAS.

By applying a negative high voltage to the mesh and a positive high voltage
to the drift electrode, an electric field can be formed in the drift region (between
mesh and drift electrode). Figure. 4.3 shows the electric field structure of Mi-
croMEGAS [32]. This electric field causes the seed electrons produced by the
incident particles to move in the direction of the anode strip.

These electrons are then amplified in the amplification region (between the
strip electrode and the mesh) and can be detected as a signal. The electric field in
the drift region is of the order of several hundred V/cm, whereas the electric field
in the amplification region is of the order of tens of kV/cm, so that most electrons
can pass through the mesh. Positive ions produced in the electron avalanche
process are quickly absorbed by the mesh, making MicroMEGAS suitable for
use in environments with high particle incidence.

Figure. 4.4 shows the calculated gas gain as a function of the MicroMEGAS
gap width when using a He/isobutane 94/6 gas mixture [32]. The gas gain
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Figure 4.3: Electric field structure in the vicinity of the MicroMEGAS mesh.

reaches a maximum for gaps in the range between 30 to 100 µm. This is the
range currently used by the MicroMEGAS detectors.

4.2.2 Gas Electron Multiplier (GEM)

The GEM was invented by F.Sauli in 1997 [33]. The GEM is a sheet of insulating
polyimide sandwiched between copper electrodes, approximately 100 µm thick,
which amplifies electrons to a readable charge amplitude. Figure. 4.5 shows the
photograph of the surface of GEM [34]. By applying a high voltage of a few 100 V
between the two copper electrodes of the GEM, a high electric field is created
in the GEM hole, which amplifies the seed electrons by causing an electron
avalanche in the hole. The ionisation electrons are further accelerated and collide
with other molecules, causing a chain reaction in which further electrons are
generated. This avalanche phenomenon is also known as a Townsend discharge.
An example of a electric field configuration in a GEM hole and electron avalanche
are shown in Figures. 4.6 [34].

Ion Back Flow

In this electron avalanche process, positive ions are produced together with the
ionisation electrons. Since ions have the opposite charge and much larger mass
than the electrons, they slowly drift backwards in the drift volume, with a drift
velocity O(1000) times smaller than that of electrons.
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Figure 4.4: Calculated gas gain in the MicroMEGAS geometry.

The bunch structure of the ILC is shown in Fig. 4.7. A bunch train consists of
1312 bunches spaced over less than a ms, repeated at 5 Hz. The tracks produced
within a single train will give rise to a disk of secondary ions produced in the gas
amplifier, which slowly drift through the whole TPC volume. Given the 5 Hz
repetition rate and the ion drift velocity, three such ion disks are present within
the TPC volume. These positive ion disks distort the electric field in the TPC,

Figure 4.5: Photograph of the GEM surface.
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Figure 4.6: The electric field structure in the GEM hole (left) and a simulated
electron avalanche in a GEM geometry using Garfield++ (right).

0.73 ms

200 ms

554 ns

timeOne train = 1321 bunches

1 bunch

Figure 4.7: ILC bunch structure.

deviate the path of drifting ionisation electrons, and thus deteriorate the spatial
resolution. A gating device can be used to block the majority of these secondary
ions from the drift volume, minimising the size of these distortions.

The distortion of the electric field inside TPC due to the three ion disks is
estimated to be 60 µm, so this effect cannot be neglected in order to achieve the
required spatial resolution of 100 µm in rϕ. Therefore these positive ions have
to be neutralised during the 200 ms between crossings. Simulation study have
shown that a gating system is necessary to achieve the momentum resolution
requirements at the nominal operating conditions of the ILC.

Gating system

To solve the Ion back flow problem, a large aperture gating device with a GEM-
like structure has been developed [35]. Unlike a GEM, this gating device func-
tions as an electron transmission film without the function of gas amplification.
It is about 25 µm thick and has a honeycomb structure of about 300 µm wide
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Figure 4.8: (Left) Distortion of electric field lines. (Right) Estimated deteriora-
tion in rϕ resolution.

holes. The optical aperture of the gating device is about 80 %, which corresponds
to a spatial resolution degradation O(10%) in the ILD-TPC nominal electric
field configuration. In ILD-TPC, motion of electrons is strongly restricted in the
direction of the magnetic field of 3.5 T and the operation in a gas with a high
mean free time (τ) of drift electrons due to collisions with gas molecules. High
optical transparency is therefore required for the gating device to ensure high
electron transmission rate. By inverting the electric field it can easily be used as
a closed gate. Figures. 4.9 and 4.10 show the electric field lines when the gating
device is open and closed.

∆
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Figure 4.9: electric field: Open gate

Asian GEM readout module

Research groups in Japan are developing a GEM-based module for TPC readout,
known as “Asian GEM”, in the context of the international LC-TPC collabora-
tion. The Asian GEM is a 100 µm thick sheet of polyimide and it has 70 µm
diameter holes with 140 µm pitch. Figure. 4.11 shows the photograph of our
Asian GEM sheet.
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Figure 4.10: electric field: Closed gate

Figure 4.11: The photograph of our Asian GEM sheet.

Tests of the Asian GEM module have highlighted several points which should
be improved in order to achieve an efficient, stable and robust detector. The
gas gain across a module shows a significant non-uniformity, and spontaneous
discharge of the GEM is observed.

Gas gain uniformity

Gas gain measurements have previously been performed across the entire surface
of an Asian GEM prototype module using a 55Fe source in long-term tests of the
module [36]. As gas gain measurements are strongly dependent on environment
conditions (temperature, pressure, humidity, etc.), care was taken to account
for such variations by comparing the gain to a continuously monitored fixed
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reference point. a single point on the GEM sheet was set as a reference point,
measurements were performed over a long period of time and if the gas gain at
this reference point varied with time, this value was used to correct the overall
gain value. The results are shown in Figure. 4.12 [36]. A large gas gain non-
uniformity was observed over the GEM sheet area, with variations of several 10s
of percent.

Figure 4.12: Gas gain uniformity for 2 kinds of samples of 100 µm thick GEM.

Such a significant variation in gain can be a problem. If the gas gain depends
on the location within a module, a rather high voltage must be applied to obtain
a sufficiently large signal in the regions with low gas gain region (e.g. the area
to the left of the Figure. 4.13). On the other hand, locations with high gas gain
(such as the area to the right of the Figure. 4.13), the avalanche will become very
large, increasing the possibility of discharge as well as increasing the number of
positive ions. To achieve a GEM readout module with limited discharge rate
and sufficient gain over the whole surface, we should reduce such variations in
gas gain. GEM modules with uniform characteristics will be easier to operate,
calibrate and analyse in the context of a physics experiment, leading to improved
performance and reduced danger of systematic effects.

GEM

GEM hole

electron avalanche
Asian GEM

Figure 4.13: An example image of the problem with thickness dependence of
GEM.

Why does the gas gain vary across the GEM surface? Several potential
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contributions can be listed: foil thickness, gas circulation, HV supply, hole ge-
ometry, and so on. The major contribution to gas gain variations is likely due
to variations in the thickness of the GEM foil.

We have already seen in Fig. 4.4 that small variations in micromegas gap
thickness can give rise to large changes in gain, but also that there exists a range
of gap widths, around the gain maximum, at which the dependence on gain on
small gap variations becomes small.
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4.3 Theoretical description of GEM amplification

The work presented in this thesis is an attempt to understand whether there
exists a configuration for GEM devices for which the dependence on GEM thick-
ness is zero to first order. We first survey the theoretical description of the
processes which occur in the gas amplification process.

4.3.1 Gas amplification

In this section we derive the dependence of gas gain in an ideal parallel plate
geometry on variations in pressure and electric field.

Consider an electron in a strong electric field. The electron is accelerated by
the field, increasing its energy. The electron may collide with and ionise a gas
molecule, producing additional ionisation electrons. The probability that this
process occurs in unit length is called the “first Townsend coefficient”, α.

Defining σ, ds and ρ as respectively the collision cross section between elec-
trons and gas molecules, an infinitesimal element of length, and the ion number
density, the increase of the number of electrons dN in a path of length ds can
be expressed as

dN = Nρσ ds (4.1)

= Nα ds (4.2)

where we define α = ρσ. The dimension of the Townsend coefficient is inverse
length.

From the Boltzmann equation, σ depends on the distribution of electron
energy σ([f(ϵ)]) and the distribution of electron energy is proportional to E/ρ.
Therefore, the dependence of the Townsend coefficient on the value of the electric
field E (V/cm−1) and the density of the gas ρ (Torr) should have the form

α

p
= f(E/ρ) (4.3)

The Townsend coefficient is determined by the cross section of ionisation
and excitation collisions, which is a function of two scaling variables: the ratio
of electric field to gas density E/ρ and the magnetic field strength to gas density
B/ρ.

gain vs pressure

If the temperature T is constant, from the ideal gas law, the relationship of the
form

p

p0
∝

1
V
1
V0

∝ ρ

ρ0
(4.4)

Then collecting things together, the Townsend coefficient should be proportional
to the gas density

α = α0

(
E

ρ
,
B

ρ

)

· ρ
ρ0

(4.5)
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The average gas gain is defined as

Ḡ :=
N

N̄
= exp

[∫ A

B

ds α(E(s))

]

(4.6)

where N̄ is the average increase of number of electrons. The average gas gain
depends on the path along which the avalanche develops. If a magnetic field is
applied parallel to the electric field, as is the case in the ILD TPC, it will not
affect the longitudinal motion, and its effect on the Townsend coefficient can be
ignored.
The Townsend coefficient can then be written

α = α0

(
E

ρ

)

· ρ
ρ0

(4.7)

rewrite this to

α = α0

(

Ê0(x) · E(x)

ρ

)

· ρ
ρ0

(4.8)

where Ê0 = E0(x)
|E0(x)|

is a unit vector of reference electric field of E0.
Let’s assume the change of the applied high voltage causes the variation of the
electric field which satisfies

E(x)

E0(x)
=
V

V0
(4.9)

If we change the applied high voltage, the electric field uniformly will be scaled
up/down. Then, Eq. 4.8 will be the form of

α = α0

(
E0(x)

V0
· V
ρ

)

· ρ
ρ0

(4.10)

Define the scaling variable of X := V
ρ

and rewrite the above formula

α = α0

(
E0(x)

V0
·X
)

· ρ
ρ0

(4.11)

Putting Eq. 4.11 into Eq. 4.6, we have

Ḡ = exp

[∫ A

B

ds α0

(
E0(x)

V0
·X
)

· ρ
ρ0

]

(4.12)

Take the logarithm of both sides of above equation, we find

ln Ḡ =

∫ A

B

ds α0

(
E0(x)

V0
·X
)

· ρ
ρ0

(4.13)

By performing Taylor expansion around X0, ρ0, the change of gas gain with the
variation of X, ρ will be form of

∆Ḡ

G
≃
[
∫ A

B

ds

{
∂

∂X0

α0

(
E0(x)

V0

·X0

)}

X0

]

·∆
(

X

X0

)

+

[
∫ A

B

ds α0

(
E0(x)

V0

·X0

)]

·∆
(

ρ

ρ0

)

=

[
∫ A

B

ds

{
∂

∂X0

α0

(
E0(x)

V0

·X0

)}

X0

]

·∆
(

X

X0

)

+ ln Ḡ0 ·∆
(

ρ

ρ0

)

,
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where

ln Ḡ0 :=

∫ A

B

ds α0

(
E0(x)

V0
·X0

)

(4.14)

and
∂ ln G̃

∂(X/X0)

∣
∣
∣
∣
∣
X=X0

=

[∫ A

B

ds

{
∂

∂X0

α0

(
E0(x)

V0
·X0

)}

X0

]

(4.15)

By measuring the high voltage curve, ln Ḡ0 can be experimentally deter-
mined. The scaling variable X depends on the high voltage V and the gas
density ρ. Then if the high voltage is fixed, the dependence of X will be

∆

(
X

X0

)

= −∆

(
ρ

ρ0

)

(4.16)

Therefore we have,

∆G̃

G̃
≈ −

[

∂ ln G̃

∂(V/V0)

∣
∣
∣
∣
∣
V=V0

− ln G̃0

]

∆

(
ρ

ρ0

)

(4.17)

4.3.2 Penning effect

An additional gas amplification effect we should pay particular attention to is
the “Penning effect” [37], which can result in a gas gain which far exceeds that
calculated using only the Townsend coefficient. The Penning effect occurs when
a gas-B with a low ionisation potential is added to a gas-A that has an excited
state energy higher than the ionisation energy of gas-B. De-excitation of gas-A
can then ionise gas-B:

A∗ +B → A+B+ + e− (4.18)

From the discussion above, the gas gain G has the form

G = exp

∫

dx α(x) (4.19)

Taking account of the Penning effect, the Townsend coefficient will be modified
to

α(x) = α0(x)

(
Σirexc,i + Σirion,i

Σirion,i

)

(4.20)

where rexc,i is the rate at which the excitation energy of excited level i exceeds
the ionization potential of the gas mixture, and rion,i is the rate of an ionisation
level i.
Then

α(x) = α0(x)

(
Σirexc,i + Σirion,i

Σirion,i

)

= α0(x) (1 + r) (4.21)

where r ≡ Σirexc,i
Σirion,i

is called the Penning transfer rate. Putting Eq. 4.21 into

Eq. 4.19, we obtain

G = exp

[

(1 + r)

∫

dx α0(x)

]

(4.22)

and the additional gas gain is accounted for by this Penning transformation of
the excitation energy.
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4.3.3 Thickness dependence of Gas gain

The probability per unit length that a seed electron in a strong electric field
produces an additional ionised electron is called the first Townsend coefficient
α. The average increase in electrons dN on the pathway ds can be written as

dN = Nαds (4.23)

The Townsend coefficient is determined by the cross sections of ionisation and
excitation collisions that lead to secondary ionisation. These cross sections are
a function of the electron velocity, or energy, and then a function of two scaling
variables: E/(gas density) and B/(gas density) as far as the t- and x-derivatives
of the electron state density function on the left-hand side of the Boltzmann
equation can be ignored.
The Townsend coefficient with inverse length dimension should then be propor-
tional to the inverse of the mean free path and thus to the gas density:

α = α0

(
E

ρ
,
B

ρ

)

· ρ
ρ0

(4.24)

However, this is not the case for a strong electric field gradient, in which case
f(v; x) on the left-hand side of Boltzmann equation varies significantly over a few
mean free paths. Assuming this condition, the average gas gain can be written
as a line integral

Ḡ :=
N

N0

= exp

[∫ B

A

dsα(E(s))

]

(4.25)

This generally depends on the possible path along which the avalanche develops.
This equation can be used to calculate the average gas gain if the first

Townsend coefficient is given as a function of the electric field. When the electric
fields and magnetic fields are parallel, the effect of the magnetic fields on the
Townsend coefficient can be ignored, since longitudinal motion is not affected by
the magnetic fields. Considering a uniform electric field E in an amplification
gap of width ∆ spanned by a voltage V , we can write the average gain as

Ḡ(∆) = exp

[

α

(
V

∆

)

∆

]

(4.26)

(assuming parallel electric magnetic fields). This should be a good approxima-
tion, in the case of GEM and MicroMEGAS. Note that the Townsend coefficient
increases with the electric field. If the electric field strength is held constant,
the gas gain increases with the gap width. However, as the gap increases, the
electric field decreases. This indicates that the gas gain should be maximum at
the appropriate gap value and be stable around that value with respect to gap
variation. In this study, we call the condition in which the gas gain is maximum
and constant with respect to the gap the “Stability condition”. The purpose
of this study is to theoretically verify whether this “Stability condition” exists
in GEM, which are candidates for amplifiers used in ILD-TPC, and to identify
GEM with an optimal geometry.
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4.3.4 Alkhazov’s Theory

In this section we provide an overview of Alkhazov’s theory for avalanche forma-
tion [38]. There are various mechanisms for electron avalanche formation, such
as collision ionisation and the Penning and Jesse processes [39]. Since MPGD
detectors usually use electric field strengths at which ionisation collision is dom-
inant, other mechanisms are ignored.
Furthermore, a uniform electric field is assumed in the amplification region, and
if there is a magnetic field it should be parallel to the electric field. This sup-
presses the E × B effect, which causes drift electrons to be deflected.

Figure 4.14 shows a cartoon of the amplification process. If P (N ; x) is the
probability of obtaining N electrons at point x from the beginning of the ampli-
fication region, then it must satisfy the following self-consistency equation:

P (N ; x) =

∫ x

0

dl pi(l)
N−1∑

N ′=1

P (N ′; x− l)P (N −N ′; x− l) (4.27)

where pi(l) is the probability of the first ionising collision occurring at a distance
l from the origin of the seed electron.

P

P

x

 N = ∫
x

0

dl

N−1

∑
N′ =1

pi

P

 N′ 

 N − N′ 

x − ll

Figure 4.14: Schematic image of the amplification process

We now consider fluctuations which occur in the avalanche process. The
avalanche fluctuation function is defined as

p(z, x) := N̄(x)P (N̄(x)z; x) (4.28)
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where z = N
N̄(x)

and N̄(x) is the average number of electrons at distance x within

the amplification region.
The n-th moment Mn of this fluctuation function can be written

Mn : =

∫ ∞

0

dz zn p(z, x)

=
∞∑

N=0

1

N̄(x)

(
N

N̄(x)

)n

N̄(x)P (N ; x).
(4.29)

Thanks to the central limit theorem, the avalanche fluctuation function and
its moments are determined in the early stages of avalanche growth; at large x,
p(z, x) therefore no longer depends on x: p(z, x) → p(z), and N̄(x) → eαx.

Therefore, we can derive from Eq. 4.27, an equation for Mn can be expressed
as follows (see Appendix 5.2 for its derivation):

Mn =

∫ x

0

dl pi(l)e
−nαl

n∑

k=0

n!

k!(n− k)!
MkMn−k (4.30)

which leads to the recursion

Mn =
n−1∑

k=1

n!

k!(n− k)!

MkMn−kJ(n)

1 − 2J(n)
(4.31)

where

J(n) :=

∫ ∞

0

dl pi(l)e
−nαl (4.32)

which is determined by the probability of the first ionising collision pi(l). From
Eq. 4.30, we have

M0 = M1 = 1 (4.33)

which leads to the following relation regarding the first Townsend coefficient:

2J(1) = 2

∫ ∞

0

dl pi(l) e
−αl = 1. (4.34)

From the self-consistency equation 4.27, we find

p(z) =
1

αz

∫ ∞

z

dz′
∫ z′

0

dz′′p(z′′)p(z′ − z′′)pi(
1

α
ln
z′

z
) (4.35)

An approximate solution can be obtained by using an equation for p(z) and
repeating the substitution and this equation implies that the behaviour at large
l in pi(l) controls the behaviour of p(z) around z = 0. In the limit of large l, an
exponential shape is assumed

pi(l) → Ce−al (4.36)

where C is a constant. Then, we have

p(z) ≃ z
a
α
−1

∫ ∞

0

dz′
∫ z′

0

dz′′ p(z′′)p(z′ − z′′)
C

α
z′−

a
α (4.37)
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around z = 0. No specific form of pi(l), the probability of the first ionising
collision, is specified in Alkhazov’s theory.

This self-consistency equation for p(z) implies that the behaviour of pi(l) at
large l controls the behaviour of p(z) around z = 0. Assume an exponential
shape in the limit of large l:

pi(l) → Ce−al as l → ∞ (4.38)

where C is constant. Therefore, near z = 0, we have,

p(z) ≃ z
a
α
−1

∫ ∞

0

dz′
∫ z′

0

dz′′p(z′ − z′′)
C

α
z′−a/α (4.39)

Defining θ := a
α
− 1 we obtain

p(z) ≃ C ′zθ (4.40)

where C ′ is constant.
In Alkhazov’s theory pi(l) can be chosen by the user; we consider Legler’s

model, which we describe next.

4.3.5 Legler’s model

In this section we describe Legler’s model for the form of pi(l).
In Legler’s model, ionisation collisions are assumed to occur only after seed

electrons have traveled a certain minimum distance x0 to obtain sufficient en-
ergy from the electric field to ionisation the gas: x0 := U0/E, where U0 is the
ionisation potential of the gas, and E the electric field strength. In Legler’s
model, the cross-section is assumed to be constant after exceeding the energy
threshold required for ionisation (like the step function) shown in the Fig. 4.15.
The probability of the first ionisation collision is then given by

probability

a
i

0

Distance x
0

Figure 4.15: In Legler’s model, any ionising collision is assumed to occur after
the seed electron flying over a minimum distance x0 sufficient to obtain from
the electric field the energy required for ionisation. It is also assumed that the
cross-section of ionising collision after the x0 threshold is constant.
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pi(l) = aie
−ai(l−x0)θ(l − x0). (4.41)

The relation 2J(1) = 1 (Eqn. 4.34) leads to

ai =
α

2e−αx0 − 1
, (4.42)

while from Eq. 4.30, the 2nd order moment is

M2 =
2J(2)

1 − 2J(2)
(4.43)

and its variance can be calculated as follows

σ2 = M2 −M1 = M2 − 1 =
(2 − eαx0)2

2 − (2 − eαx0)2
(4.44)

From this Legler’s model, we further assume that the electrons accelerate from
rest to the first ionisation collision, so the probability of encountering the first
ionisation collision at distance l is

pi(l)dl = P

(

0,

∫ l

0

dl′ nσ((V/∆)l′)

)

· P
(

1,

∫ l+dl

l

dl′ nσ((V/∆)l′)

)

(4.45)

where the usual Poisson probability P (k, λ) = λke−λ/k! .

We evaluate these integrals as

∫ l

0

dl′ nσ((V/∆)l′) = nσ0(l − x0)θ(l − x0) (4.46)

and ∫ (l+dl)

l

dl′ nσ((V/∆)l′) = nσ0θ(l − x0)dl (4.47)

with
x0 := (U0/V )∆. (4.48)

Hence, we find
pi(l) = e−nσ0(l−x0)nσ0θ(l − x0) (4.49)

and comparing this equation with Eq. 4.42, ai is expressed as

ai = nσ0 (4.50)

and σ0 is a kind of effective cross section, which generally depends on the distri-
bution of electron energy or equivalently E/n, where n is the gas density.

By introducing the scaling variables

η := aix0 = nσ0x0 (4.51)

χ := αx0 (4.52)

we rewrite Eq. 4.42 for the first Townsend coefficient as

η =
χ

2e−χ − 1
(4.53)
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and the full gain as
lnG = α∆ = χδ, (4.54)

where δ := ∆/x0 = V/U0 with x0 := (U0/V )∆.
By differentiating Eq. 4.54 with respect to some general variable X, we obtain

d lnG =
dG

G
=

[(
∂χ

∂η

)(
∂η

∂X

)

δ + χ

(
∂δ

∂X

)]

X

(
dX

X

)

(4.55)

∂χ
∂η

is obtained by differentiating the logarithm of Eq. 4.53:

1

η
=

[
1

χ
+
η

χ
2e−χ

](
∂χ

∂η

)

=

[
1

χ
+
η

χ

(
χ

η
+ 1

)](
∂χ

∂η

)

=
1

χ
(1 + χ+ η)

(
∂χ

∂η

)

(4.56)

From Eq. 4.56, we find

(
∂χ

∂η

)

=
χ

η(1 + χ+ η)
, (4.57)

which when inserted into Eq. 4.55 leads to

dG

G
=

[(
1

1 + χ+ η

)
1

η

(
∂η

∂X

)

+
1

δ

(
∂δ

∂X

)]

χδX

(
dX

X

)

(4.58)

with

η = σ0

[
V/∆

n

]

U0

(
V/∆

n

)−1

δ = V/U0

χ =
lnG

δ
.

We can now use Eq. 4.58 to investigate the dependence of the gas gain G on
different variables X. In the following we consider two cases, the gas density n
and the gap width ∆.

Case 1: dependence on the gas density n

Start from

η = nσ0x0

= nσ0
U0

V
∆

= σ0U0
1

ϵ

(4.59)

with

ϵ :=
E

n
=
V/∆

n
(4.60)
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For some variables X is gas density n, we have

1

η

(
∂η

∂n

)

=
1

η

[(
∂η

∂n

)

+

(
∂η

∂ϵ

)(
∂ϵ

∂n

)]

(4.61)

Here, corresponding terms can be expressed as

1

η

∂η

∂n
=

σ0
U0

V
∆

nσ0
U0

V
∆

=
1

n
, (4.62)

∂ϵ

∂n
= −V/∆

n2
= − ϵ

n
, and (4.63)

1

η

∂η

∂ϵ
=

1

η

(
∂η

∂σ0

)(
∂σ0
∂ϵ

)

. (4.64)

In the Eq. 4.64, we find

1

η

(
∂η

∂σ0

)

=
ϵ

σ0U0

U0

ϵ
=

1

σ0
(4.65)

Therefore, putting them together, we arrive at

1

η

(
∂η

∂n

)

=

[
1

n
+

1

σ0

(
∂σ0
∂ϵ

)(

− ϵ

n

)]

=

[

1 − ϵ

σ0

(
∂σ0
∂ϵ

)]
1

n

(4.66)

and, hence, we obtain the gas density n dependence of gas gain G

dG

G
=

(
1

1 + χ+ η

)[

1 − ϵ

σ0

(
∂σ0
∂ϵ

)]

χδ

(
dn

n

)

. (4.67)

Case 2: dependence on the gap width ∆

Similarly for X = ∆,

1

η

(
∂η

∂∆

)

=
1

σ0

(
∂σ0
∂ϵ

)(
∂ϵ

∂∆

)

+
1

∆
(4.68)

and the gap ∆ dependence of gas gain G is

dG

G
=

(
1

1 + χ+ η

)[

1 − ϵ

σ0

(
∂σ0
∂ϵ

)]

χδ

(
d∆

∆

)

. (4.69)

We can see that gas gain is constant dG
G

= 0 in both the above cases when

1 − ϵ

σ0

(
∂σ0
∂ϵ

)

= 0 (4.70)

from which we obtain the “Stability condition’
(
∂σ0
∂ϵ

)

=
σ0
ϵ
. (4.71)

If this condition is satisfied the gas gain is insensitive to small changes of both
the gap ∆ and gas density n. Comparing the Eq. 4.58 and Eq. 4.69, we see
that the gas gain is stabilised against changes in gap ∆ if it is stabilised against
changes in gas density n, and vice versa.
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4.4 Simulation setup

The validity of the theory discussed in the previous section was the verified
using the simulation software Garfield++. Although it is possible to simulate gas
amplification process using Garfield++ alone, simulations can also be performed
by loading the electric field calculated by an external programme. The latter
method is recommended when simulating detectors with complex electric field
structures such as exist in a GEM. In this study, Gmsh was used to create
the mesh and Elmer software was used to calculate the electric field, and the
resulting field was loaded into Garfield++ for simulation. We here give a brief
description of the software tools used.

4.4.1 Garfield++

Garfield++ is a toolkit for the detailed simulation of gas detectors, and consist-
ing of components including Heed [40]. The drift of electrons and ions in gases
under the influence of electric and magnetic fields is simulated. From a micro-
scopic point of view, the macroscopic transport parameters of these electrons
(drift velocity, diffusion coefficient, Townsend coefficient, attachment coefficient,
etc.) are determined by the cross sections of electron scattering by atoms and
molecules. Garfield++ interfaces with Magboltz and uses its cross–section li-
brary to calculate accurate transport parameters. The main phenomena that
can occur in the charge transport process include elastic and inelastic scatter-
ing, ionisation, attachment, and excitation.

4.4.2 Magboltz

Magboltz is a software tool widely used for modeling electron motion in gas
detectors [41]. For Garfield++ simulations, macroscopic parameters such as
the Townsend coefficient, electron/ion attachment coefficient, drift velocity and
diffusion constant in a gas under certain electric and magnetic fields are calcu-
lated by Magboltz. Magboltz calculates electron swarm parameters by solving
the Boltzmann equation (transport equation) on the basis of elastic scattering,
ionisation and excitation cross sections of electrons and gas molecules.

4.4.3 Gmsh

Gmsh is a software for the finite element method [42] which allows pre-processing,
such as the creation of two- or three-dimensional meshes, and post-processing,
such as the visualisation of the analysis data. Gmsh was used to describe the
geometry of the GEM and parallel plate and to create the mesh. The mesh file
created here was loaded into Elmer.

4.4.4 Elmer

Elmer is a finite element software for solving partial differential equations [43].
Its ability to handle a very large variety of equations and to couple equations
in a general form makes it a versatile tool for multiphysical simulations. Using
this software, the potential of the surface and the dielectric constant of the solid
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were set and the electric field created in the GEM geometry was calculated. The
electric field calculated here was loaded into Garfield++ for simulation.

4.5 Comparison with experimental data

First, in order to investigate whether Garfield++ can reproduce the experimental
data, the experimental gas gain results of the Glass GEM and the MicroMEGAS
with P10 gas (a mixture of Argon, CH4 in the 90/10 concentrations) and T2K
gas were compared with the simulation results.

4.5.1 Glass GEM

Figure. 4.16 shows the measured gas gain curves for the P10 gas from the previous
study [44]. The red line corresponds to the P10 gas. The geometry and the
photograph of Glass GEM are shown in Table. 4.1 and Fig. 4.17.

Figure 4.16: Measured gas gain curves of Glass GEM.

Table 4.1: Geometry of Glass GEM
Hole diameter 170 µm
Pitch 280 µm
Thickness 680 µm
Sensitive area 100 mm × 100 mm

Figure 4.17: Photograph of Glass GEM
Then, we performed the simulations with applied high voltages of 1400, 1450,

1500, and 1550 V at 750 Torr. Figure. 4.18 shows the comparison of the gas gain
curve between Garfield++ simulation result and the measured gas gain. In
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order to adjust to reproduce the experimental data, the Penning transfer rate
of r = 0.18 was used and its measured value is is r = 0.212 ± 0.002 at 760
Torr [45]. The result of Garfield++ simulation and the measured gas gain is in
good agreement considering the pressure difference.
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Figure 4.18: Comparison of gas gain curve of Glass GEM for the P10 gas. The
blue line is the result of the previous study and the red line is the result of
Garfield++ simulation. The Penning transfer rate of r = 0.18 was used to
reproduce the result of the previous measurement.

4.5.2 MicroMEGAS

Figure. 4.19 shows the measured gas gain curves of the MicroMEGAS for the
T2K gas from the previous study [46]. The geometry of MicroMEGAS is the
wire pitch of 59 µm, the amplification gap of 128 µm, and the 12 pillars per pad
with a diameter of 0.5 mm.
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Figure 4.19: Measured gas gain curves of MicroMEGAS.

We performed the simulations with applied high voltages of 310 to 390 V
at 760 Torr. Figure. 4.20 shows the comparison of the gas gain curve between
Garfield++ simulation result and the measured gas gain. The Penning transfer
rate of r = 0.34 was used. The corresponding measured value is r = 0.40 ± 0.01
at 760 Torr [45]. This value is not exactly the same as T2K, but is considered
approximately equal as it is a mixture of iso-butane and Ar gases that contribute
to penning effect. The result of Garfield++ simulation and the measured gas
gain is in good agreement considering this difference.
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Figure 4.20: Comparison of gas gain curve of MicroMEGAS for the T2K gas.
The blue line is the result of the previous study and the red line is the result
of Garfield++ simulation. The Penning transfer rate of r = 0.34 was used to
reproduce the result of the previous measurement.

Comparison of measured data with Garfield++ using the Glass GEM and
the MicroMEGAS confirms that Garfield++ reproduces the experimental data
very well. Therefore, verification of theory will be performed in the following
section using Garfield++.

4.6 Verification of theory

In this section we describe simulations performed using the above tools to inves-
tigate the stability condition theoretically predicted in Sec. 4.3. All simulations
were carried out at a pressure of 1 atm (760 bar), a temperature of 273.15 K
and zero magnetic field.

4.6.1 Parallel plate geometry

First, it was verified whether a stability point (a region where the gas gain
is almost constant with respect to changes in the gap) can be found in the
dependence of the gas gain on the gap size in a simple parallel plate geometry, and
whether the stability condition derived from Alkhazov’s theory–Legler’s model
is consistent with this stability point.

The simulated gas gain when the parallel plate gap was changed from 10 µm
to 100 µm is shown in Fig. 4.21 with voltage of 350 V. A stability region can be
seen around 20 µm, the area corresponding to an electric field strength of about
∼ 175 kV/cm.

Eq. 4.71 predicts that the function describing the dependence of the cross-
section σ0 on the scaled electric field strength E

n
should intersect with its own

first derivative function at the stability point.
Garfield++ was used to calculate the mean free path l of electrons within the
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Figure 4.21: Gap dependence of gas gain in the case of a parallel plate geometry,
T2K gas, and voltage of 350 V.

gas as a function of the electric field strength E, which was the used to derive
the corresponding cross–section σ0 = 1/(nl). Figure. 4.22 shows the dependence
of the inverse free–path 1/l on the electric field strength E, in the assumption
n = 1.
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Figure 4.22: The cross-section σ0 as a function of ϵ in the case of parallel plate
geometry and voltage of 350 V. This figure actually shows how the inverse mean
free-path in µm depends on the E-field in the case n = 1.

In Fig. 4.23, the black line shows the ratio σ0/ϵ, and the red line its differ-
ential.The intersection point occurs at around 158 kV/cm, which corresponds
to the gap of parallel plate of about 22 µm. We found that consistent within
10% in this relatively low electric field case where electrons would be thermal
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after ionisation. The slight difference could be attributed to Legler’s model’s
over-simplified cross-section shape.
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Figure 4.23: Theoretical prediction of the stability condition in the case of par-
allel plate geometry. The black line shows the ratio σ0/ϵ, and the red line its
differential. The intersection point corresponds to the gap of parallel plate of
about 40 µm.

Then, we also performed Garfield++ simulation with a parallel plate ge-
ometry in relatively high electric field case ( applied high voltage of 500 V).
Figure. 4.24 shows the gap dependence of gas gain in the case of a parallel plate
geometry with a voltage of 500 V. A stability region can be seen in the range
from 25 µm to 30 µm, the area corresponding to an electric field strength of
about 160 ∼ 200 kV/cm.
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Figure 4.24: Gap dependence of gas gain in the case of a parallel plate geometry,
T2K gas, and voltage of 500 V.

Figure. 4.25 shows the dependence of the inverse free–path 1/l on the electric
field strength E, in the assumption n = 1 and the intersection point was found
at around 100 kV/cm which corresponds to the gap of parallel plate of about
50 µm.
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Figure 4.25: The cross-section σ0 as a function of ϵ in the case of parallel plate
geometry with a voltage of 500 V. This figure actually shows how the inverse
mean free-path in µm depends on the E-field in the case n = 1.

Compared to the relatively low electric field case, the intersection point re-
sulted in a more distance from the stable region. Possible reason is that after
ionisation collision, electrons have enough energy for further ionisation, electrons
being non-thermal, then this is inconsistent with Alkhazov’s assumptions.

Therefore, under a uniform electric field by parallel plate geometry, the sta-
bility condition derived from our theory is not found to be in good agreement
with the stability point of the gas gain found in a detailed simulation especially
in relatively high electric field case.

4.6.2 GEM geometry

We also investigated whether a gas gain stability condition could be found in
the more complex GEM geometry. Figure. 4.26 shows the simulated gas gain
dependence on the GEM thickness. A stable region can be seen around 10 ∼
40 µm, corresponding to an electric field strength of 350 ∼ 87 kV/cm.

As in the case of parallel plate geometry, the theory was tested in the case
of GEM geometry by estimating the cross-section σ0 from the mean free path
calculated by Garfield++ at different electric field strengths, and identifying
the point at which σ0

ϵ
= ∂σ0

∂ϵ
. Fig. 4.27 shows how the inverse mean free path

depends on the electric field strength, and 4.28 overlays σ0
ϵ

and its derivative ∂σ0
∂ϵ

as a function of the field.
Fig. 4.28 shows an intersection between the curves at around 40kV/cm, cor-

responding to a gap of 90 µm, again far from the predicted stability condition.
This is due to the complex electric field structure in the GEM hole.
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Figure 4.26: GEM thickness dependence of gas gain.
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Figure 4.27: The cross-section σ0 as a function of ϵ in the case of GEM geometry.
Dependence of the inverse mean free path (µm−1) on the applied electric field
strength, as calculated by Garfield++ for the GEM geometry.
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Figure 4.28: Theoretical prediction of the stability condition in the case of GEM
geometry. The black line shows the ratio σ0/ϵ, and the red line its differential.
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4.7 Townsend coefficient

The Townsend coefficient is a rather fundamental quantity, which does not de-
pend on the exact field geometry. The coefficient can be calculated in the simple
case of a uniform field produced by a parallel plate geometry under different field
strengths, and then applied to a more complex field configuration, such as that
found in a GEM. This can then be used to identify and understand the stability
condition of the complex detector.

Equation 4.34, derived from Alkhazov’s theory, shows that the Townsend
coefficient α can be obtained as a functional of pi(l). Specifically, by setting
J(1) = 1

2
using pi(l) obtained in a certain electric field, one can obtain the

Townsend coefficient α at that electric field strength.
Figure. 4.29 shows the results of calculation of α using this approach, as-

suming Legler’s model for pi(l). Compared to the Townsend coefficient used in
Magboltz, the overall dependence on the field strength is similar, however the
absolute values of the Townsend coefficient are around twice higher.
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Figure 4.29: The results of the calculation of α. The red and blue line correspond
to the calculated α and Magboltz α, respectively.

Using these two sets of Townsend coefficients, we calculate the gas gain.
When considering the electron drift between points r1 and r2, the gas gain along
that path is calculated as exp(

∫ r2
r1
α(r)dr). The gas gain depends strongly on the

value of the Townsend coefficient, resulting in large gas gain differences between
the two sets of coefficients. The calculated gains are shown in Fig. 4.30, indeed
showing that the gas gain calculated on the basis of our theory is much higher
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that that calculated using the Townsend coefficients implemented in Magboltz.
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Figure 4.30: analytic gain

In summary, we used Alkhazov’s theory to calculate the development of an
avalanche in a high electric field, as found in a GEM, with the aim to identify
a geometry in which the gain is insensitive to the GEM thickness. The cal-
culated stability point was not in good agreement to the result of simulations
using Garfield++, neither in the case of a parallel plate geometry, nor in a more
detailed GEM-like model. Considering the more fundamental Townsend coeffi-
cient, the values calculated from the theory were significantly higher than those
used in Magboltz, leading to the larger predicted gas gain.

To investigate the cause of these discrepancies, I developed a simple micro-
scopic avalanche simulator code and used it to investigate the roles of various
factors on avalanche formation.

4.8 Simple Microscopic Avalanche Simulator

We developed a code to simulate the avalanche process based on the cross-
sections used in Magboltz Fig. 4.31, implementing a simple parallel plate geom-
etry.

In this simple microscopic avalanche simulator, the following procedure was
used:

� Setup the parameters of the system: the voltage applied across the plates;
the (uniform) magnetic field; the gap width; and the gas mixture.

� Set the initial energy of the seed electron.
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Figure 4.31: Cross-section used in Magboltz

� Calculate the electron’s mean free path l = 1/nσ, using the total cross-
section from Magboltz corresponding to the electron’s energy.

� Advance the electron by a small step, approximately one tenth of the cal-
culated mean free path, taking into account its acceleration in the electric
and magnetic fields.

� For each step, randomly decide whether it undergoes a collision, based on
the Magboltz cross-sections.

� If the electron undergoes an ionisation collision, trigger the creation of a
new seed electron.

� If the electron reaches one of the parallel plates, kill it.

� Repeat until all electrons killed.

4.8.1 Comparison with Garfield++

We performed the simulations with applied high voltages of 310 to 390 V at
760 Torr with 128 µm gap parallel plate geometry . Figure. 4.32 shows the
comparison of the gas gain curve between Garfield++ simulation result and the
Simple simulator result. The Penning transfer is not considered, in other word
the penning rate of r = 0 was used. The result of Garfield++ simulation and
the Simple simulator gas gain is in good agreement.
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Figure 4.32: Comparison of gas gain curve of 128 µm gap parallel plate geometry
for the T2K gas. The blue line is the result of the Simple simulator and the red
line is the result of Garfield++ simulation. The Penning transfer is not taken
into acount.

Comparison of measured data with Garfield++ using the parallel plate geom-
etry confirms that the Simple simulator reproduces the Garfield++ result very
well. Therefore, some simulations will be performed in the following section
using Garfield++ and Simple simulator.

4.8.2 P/T correction

Equation. 4.17 predicts the gas density dependence of the gas gain G, as a
function of both the absolute value and the high voltage dependence of the gas
gain. Once the high voltage dependence of the gas gain and its absolute value
are obtained, the gas density dependence of the gas gain can be predicted. If the
temperature T (pressure P ) is fixed, the gas density depends on the gas pressure
(temperature).
If the ratio of the temperature and pressure are kept constant, the right-hand-
side of Eq.4.17 indicates the gas gain is also kept constant. We have verified this
theory by using both our simple MC simulator and Garfield++.

First, consider the case where the temperature T is changed while the pres-
sure P of the gas is kept constant. When the temperature of gas is increased
under constant pressure, the gas molecules are easily excited due to their high
energy, and the gas gain is predicted to increase. Figure. 4.33 shows the change
in gas gain when temperature T is changed from 250 K to 300 K while pressure
P is kept constant at 760 Torr(1 atm), using both Garfield++ and our simple
simulator.

In a similar way, the results of changing the pressure from 700 760Torr
at a constant temperature T = 273.15 K are shown in Fig. 4.34. When the
pressure is increased at a constant temperature, the electrons collide with gas
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Figure 4.33: Change in gas gain when the temperature is changed from 250 to
300 K while the pressure P is kept constant at 1 atm. Results from Garfield++
(left) and our Simple Simulator (right).

molecules before they can obtain sufficient energy from the electric field to ionise
the molecules, and the gas gain tends to decrease.
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Figure 4.34: Change in gas gain when the pressure is changed from 700 to
760 Torr while the temperature T is kept constant T = 273.15 K. Results from
Garfield++ (left) and our Simple Simulator (right).
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Figure 4.35: Change in gas gain when the temperature is changed from 250 to
300 K while keeping the ratio of pressure P to temperature constant. Results
from Garfield++ (left) and our Simple Simulator (right).

The change in gas gain as temperature is varied while keeping the P/T ratio
constant is shown in Figure. 4.35. In both Garfield++ and simple simulator,
keeping the P/T ratio constant, also results in a constant gas gain. This is
consistent with the behaviour predicted by the equations derived from the theory.
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4.8.3 Gas gain

To check the performance of this simulator, it was used to simulate the gas gain
under different conditions. The dependence of the gas gain on the gap width
when using different argon-based gases and applied voltages was investigated,
while keeping other conditions constant (temperature 273.15 K, pressure 1 atm,
1 T magnetic field parallel to the E-field).

Figure. 4.36 shows the gas gain in pure Argon, for gas gaps between 5 µm
and 150 µm and applied voltages of 350, 375 and 400 V. The gain increases with
increasing applied voltage, and a stability region is clearly seen at gaps around
20 µm

Pure Argon gas 

1 T 

1 atm 

273.15 K

Figure 4.36: Gas gain as a function of gap width in pure Argon, with applied
high voltage 350, 375, 400 V.

To investigate the effect of the gas mixture, Fig. 4.37 shows how the gain
dependence changes when 1, 5, or 10% of CF4 is added to the argon. The
addition of these fractions of CF4 to the argon result in only rather small changes
in the gas gain.

Next, the simulation was using the T2K gas we plan to use in ILD’s TPC.The
results are shown in Figure. 4.38. A stable region is seen in the gap range
10 µm to 40 µm. This result is in rather good agreement with results of the full
Garfield++ simulation presented earlier in Figure. 4.26.

The effect of adding CF4 or isobutane to pure argon showed only small
changes in gas gain. This is probably due to the fact that only fundamental
reactions are taken into account in this simulator, ignoring effects such as the
penning effect, and thus the contribution from argon is dominant.

Next, the electric and magnetic field dependence of the drift velocity and
diffusion constant for each gas mixture was investigated.
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Figure 4.37: Gas gain in ArCF4 in the (90/10, 95/5, 99/1) concentrations with
the applied high voltage of 350, 375, 400 V.

Figure. 4.39 shows the electric field dependence of the drift velocity and
diffusion constant for argon, ArCF4 and T2K gases under a magnetic field of
1 T. For both drift velocity and diffusion constant, the addition of a small amount
of CF4 to pure Argon is found to produce dramatic changes.

Figure. 4.40 shows the electric field dependence of the drift velocity and
diffusion constant in the T2K gas for different magnetic fields 1, 2, and 4 T
applied parallel to the electric field. The drift velocity is not affected by the
magnetic field, since particle velocities are largely aligned with the magnetic
field. On the other hand, the magnetic field has a dramatic effect on the diffusion
constant. The diffusion constant can be expressed as

Cd(B,E) =
1

√

1 + (ωτ)2
Cd(0, E) (4.72)

where τ is the mean free time, ω the cyclotron frequency, and Cd(0, E) the
diffusion constant at 0 T. Since this cyclotron frequency ω depends linearly on
the magnetic field, the diffusion constant is strongly affected.
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Figure 4.38: Gas gain in T2K gas with the applied high voltage of 350, 375, 400 V.
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Figure 4.39: The electric field dependence of the drift velocity (left) and the
diffusion constant (right) at 1 T for different gas mixtures.
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Figure 4.40: The electric field dependence of the drift velocity (left) and the
diffusion constant (right) in T2K gas at magnetic field strengths 1, 2, 4 T.
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4.8.4 Effect of z dependence of pi

This simple simulator was used to simulate the avalanche process to and extract
the function pi(l) for the case of a 25µm gap filled with T2K gas, at an applied
voltage of 350 V and 400 V. Figure. 4.41 shows the distribution of all electron
paths between ionisation collisions within the avalanche at an applied voltage of
350 V, as a function of their length projected onto the axis normal to the plates
(l = zi − zlic, where zi is the ending position of the step, and zlic the position
at which the particle last underwent an ionisation collision) and the initial z
position of the path with respect to the upstream electrode (zlic − z0).

Figure 4.41: The free path l distribution as a function of the last ionisation po-
sition zlic from original electron position x0 and z-axis represents the probability
of first ionising collision at an applied high voltage of 350 V.

The variable zlic − z0 is constrained to be between 0 and 100 µm, corre-
sponding to the gap between electrodes. The l can have only positive values,
corresponding to electrons moving against the direction of the electric field as
shown in Fig. 4.42. The projection of this distribution onto the l axis, shown in
Fig. 4.41, yields the probability density function for a particular path length, in
other words pi(l).
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:last ionisation positionzlic

Figure 4.42: The schematic image of electrons moving against the direction of
the electric field at an high voltage of 350 V. The l is always positive values in
this relatively low electric field case.

Figure. 4.43 shows the projection onto the l axis for every 2.5 µm and Fig. 4.44
shows them all overlaid. Therefore, for this relatively low electric field case, pi has
no zlic− z0 dependence at all and this is consistent with Alkhazov’s assumption:
pi does not depend on electron’s position.
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x0 ∼ 0.46 × 10
−3

x0 ∼ 0.46 × 10
−3

Figure 4.43: The projection onto the l axis for every 2.5 µm; The top left is for
2.5 µm, the top right is for 5 µm, the bottom left is for 7.5 µm, and the bottom
right is for 10 µm. pi does not depend on electron’s position. The black line
corresponds to the threshold x0 = 0.46 × 10−3 cm.
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Figure 4.44: The overlaid plot of the projection plot shown in Fig. 4.43. The
shapes of pi are all identical for each region. Therefore pi has no zlic− z0 depen-
dence at all.

Next, we performed simulation with relatively high electric field case ( an
applied high voltage of 400 V). Figure. 4.45 shows the distribution of all electron
paths between ionisation collisions within the avalanche at an applied voltage of
400 V, as a function of their length projected onto the axis normal to the plates
(l = zi − zlic.
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Figure 4.45: The free path l distribution as a function of the last ionisation po-
sition zlic from original electron position x0 and z-axis represents the probability
of first ionising collision at an applied high voltage of 400 V.

The variable zlic−z0 is constrained to be between 0 and 25 µm, corresponding
to the gap between electrodes. The l can have either positive or negative values,
corresponding to electrons moving against or with the direction of the electric
field as shown in Fig. 4.46. In other words, paths with a negative value of l are
travelling against the prevailing avalanche direction; such paths are typically an
order of magnitude shorter than those travelled in the “correct” direction.

:last ionisation positionzlic

Figure 4.46: The schematic image of electrons moving against the direction of
the electric field at an high voltage of 400 V. The l is always positive values in
this relatively high electric field case.

108



The linear cut-off visible above zlic − z0 ∼ 21µm is due to the proximity to
the downstream electrode, which electrons hit before undergoing an ionisation
collision. A second cut-off is seen at small values of zlic− z0 below around 3 µm.

Figure. 4.47 shows the projection onto the l axis for every 1 µm and Fig. 4.48
shows them all overlaid. Therefore, for this relatively high electric field case, pi
below l = x0 = 0.1×10−3 cm develops with zlic−z0; pi does depend on electron’s
position and this is inconsistent with Alkhazov’s assumption.

x0 = 0.1 × 10
−3

Figure 4.47: The projection onto the l axis for every 1 µm; The top left is for
1 µm, the top right is for 2 µm, the bottom left is for 3 µm, and the bottom
right is for 4 µm. pi does not depend on electron’s position. The black line
corresponds to the threshold x0 = 0.46×10−3 cm and pi can have either positive
or negative values even for the region below this threshold.
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Figure 4.48: The overlaid plot of the projection plot shown in Fig. 4.47. The
shapes of pi changes for each region. Therefore pi dependent on zlic−z0 and this
is inconsistent with Alkhazov’s assumption.

In the Fig. 4.45, projection onto the y-axis (l) yields pi(l).　 The result is
shown in the Fig. 4.49 and the distributions of the gas gain from Simple Simulator
is shown in the Fig. 4.50 with the mean value of gas gain of 5416.

Then, we performed toyMC simulation based on the pi(l) and the result of
gas gain distribution is shown in the Fig. 4.51. The mean value of this gas gain
is 44230.

The Townsend coefficient α calculated using this pi(l) is about 4353, resulting
in a gain of 34454. However, the resultant gas gain from toyMC simulation based
on this pi(l) is 44230. Therefore, by comparing the gas gain of 5416 from Simple
Simulator, it is significant overestimate (∼800%) so the gas gain is too large if
MC pi is used as it is.
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Figure 4.49: The probability of first ionising collision pi distributions as a func-
tion of the free path l.
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Figure 4.50: The resultant gas gain distributions from Simple MC Simulator.
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Figure 4.51: The resultant gas gain distributions from toyMC based on pi(l)
from MC.

In the region l < x0, pi(l) develops in dependence on zlic, so the result
of ignoring this development process, i.e. truncating pi(l) at x0, is shown in
Fig. 4.52. The Townsend coefficient α calculated using this pi(l) is about 3146,
resulting in a gain of 1902. The resultant gas gain from toyMC simulation is
2030. Compared with the results before truncating at l = x0, the difference
between the gas gain calculated using the α at pi(l) with J(1) as 1

2
derived

from theory and the gas gain obtained from the toyMC simulation results were
in reasonable agreement, however, it is still significant underestimate (∼40%)
compared with the gas gain of 5416 from Simple Simulator.
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Figure 4.52: The probability of first ionising collision pi distributions as a func-
tion of the free path l but truncated at l = x0 = 0.0001 [cm].
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Figure 4.53: The resultant gas gain distributions from MC simulation based on
pi(l) from MC but truncated at l = x0 = 0.0001 [cm].
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The problem is that the shape of pi(l) changes in the region up to the x0
threshold, and when simulations were performed in Garfield++, the gas gain
were calculated using pi(l) obtained by projection without considering this re-
gion. In the region after the evolution of pi(l) due to this zlic − z0 dependence,
the shape of pi(l) is almost constant and the Townsend coefficient α and gas gain
calculated based on Alkhazov’s theory agree with the MC simulation results.

Then, we have checked this the effect of this zlic − z0 dependence of pi(l) by
using zlic − z0-dependent pi(l, zlic − z0) instead of pi(l). The result of gas gain
distribution is shown in Fig. 4.54. The resultant gas gain from toyMC simulation
in simple simulator is 3918 by using zlic−z0-dependent pi(l, zlic−z0). Compared
with the gas gain of 5416 from Simple Simulator, it is still underestimate (∼80%),
however, much better than toyMC result of overestimated gas gain of 44230
(∼800%) with MC pi is used as it is and the underestimated gain of 2030 (∼40%)
with pi(l) truncated at l = x0.
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Figure 4.54: The resultant gas gain distributions from toyMC based on zlic− z0-
dependent pi(l, zlic − z0) instead of pi(l) from MC.

Compared with the results before truncating at l = x0, the difference between
the gas gain calculated using the α at pi(l) with J(1) as 1

2
derived from theory

and the gas gain obtained from the toyMC simulation results were in reasonable
agreement, however, it is still significant underestimate (∼40%)

Therefore, it is found that pi(l) at l < x0 develops with the distance to next
ionisation zlic − z0. If ignored this zlic − z0 dependence, it can make significant
difference in the resultant gas gain. Thus, in order to calculate the gas gain
analytically, it is necessary to construct a theory that takes this x0 threshold
into account. In Eq. 4.27, we ignored this z dependence, however, for analytical
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gas gain calculations, it is important to consider the early stage of avalanche
growth and it is necessary to proceed with the calculation with pi(l) as pi(l, z).
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4.9 Conclusion and Future prospect

The aim of this study was to develop the theoretical understanding of the Gas
Elelctron Multiplier (GEM) in order to propose a design whose gain is insensitive
to small variations in GEM foil thickness. Such a GEM will result in a GEM
with more uniform response, and therefore easier to operate and calibrate. This
will lead to obvous advantages when using 100s of such GEM detectors to read
out the signals of a large Time Projection Chamber at a future experiment at
the ILC, whose lifetime should extend to several decades.

Based on Alkhazov’s theory for avalanche development and assuming Legler’s
model of ionisation, we derived a theoretical “Stability condition” configuration
whose gas gain is stable against gap variation.
When the gas gain distribution was plotted as a function of the parallel plate
gap and GEM thickness, a region was found in which the gas gain was almost
stable with respect to the gap variation in both cases. In the parallel plate case,
i.e., under a uniform electric field, the “Stability condition” is not satisfied in
this stable region. In the case of GEM geometry with a complex electric field
structure near the hole, also the “Stability condition” was not satisfied.

We investigated whether the magboltz results could be reproduced using the
Townsend coefficient calculated as a functional of the probability of first ionising
collision, and found that they could not be reproduced. The differences became
particularly large in the high electric field regime compared to the low electric
field regime. This indicates that there is a strong dependence on the strength of
the electric field for the calculation of the Townsend coefficient.

To investigate whether the inability to reproduce the Magboltz results is due
to the scope of Alkhazov’s theory or to a problem with the probability of first
ionising collision used to calculate the Townsend coefficient, a simple microscopic
avalanche simulator was developed.

The simulator results show that the probability of first ionising collision is
strongly influenced by the avalanche growth process and has z-dependence.

Since we have discussed the Legler’s model in Alkhazov’s theory assuming
that this z-dependence is negligible, the derived “Stability condition” does not
take this z-dependence into account.

The z-dependence of the probability of first ionising collision is found to be
very important in discussing the stability of gas gain. As a future perspective,
we will derive a “Stability condition” that takes this z-dependence into account
and investigate the geometry conditions under which the gas gain is stable with
respect to the gap variation.

The development of the Simple Microscopic Avalanche Simulator, relatively
high speed tool, and the identification of the reason why Alkhazov’s theory
does not hold true in this study have provided a solid foundation for providing
feedback to the actual TPC-GEM in the future. This is a major step toward
solving the discharge problem of the GEM described in the first section.
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5.1 Polarisation

dσLl = Ng2eLg
2
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(1 + cos θ)2 d cos θ (5.1)

dσLr = Ng2eLg
2
fR

(1 − cos θ)2 d cos θ (5.2)
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5.2 Derivation: Alkhazov’s Theory

Here we derive the recurrence formula of the moment of avalanche fluctuation.
First, let’s start from Eq. 4.29

Mn =
∞∑

N=0

1

N̄(x)

(
N

N̄(x)

)n

N̄(x)P (N ; x) (5.9)

with Eq. 4.27

P (N ; x) =

∫ x

0

dlpi(l)
N−1∑

N ′=1

P (N ′; x− l)P (N −N ′; x− l). (5.10)

We found
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5.2.1 Derivation of p(z)

Start from Eq. 4.28 with Eq. 4.27, we found

p(z, x) = N̄(x)P (N̄(x)z; x)

= N̄(x)
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For large x, the avalanche is well developed and dependence on x disappears.
Then, the average number of electrons produced in the avalanche process N̄ can
be calculated by N = e

∫
αdx, and since x-dependence disappears for large x as

mentioned above, α can be regarded as a constant and expressed as eαx.
Then,

N̄(x)

N̄(x− l)
=
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eα(x−l)
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1 = ∆N ′ = N̄(x− l)∆z′′

Therefore, we can find
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where z′ = zeαl → l = 1
α

ln z′

z
, eαl = z′

z
, and dl = 1

αz′
dz′
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5.2.2 Derivation of pi(l)

Start from Eq. 4.45, we found

pi(l)dl =
λ00
0!
e−λ0 · λ

1
1

1!
e−λ1 (5.13)

where λ0 := nσ0(l − x0)θ(l − x0) and λ1 := nσ0θ(l − x0), then

pi(l)dl =
λ00
0!
e−λ0 · λ

1
1

1!
e−λ1

= e−nσ0(l−x0)nσ0θ(l − x0)e
−nσ0dlddl

= nσ0 dle
−nσ0(l−x0)−nσ0dlθ(l − x0)

(5.14)

By performing Taylor expansion around dl,

nσ0dle
−nσ0dl ≃ nσ0dl (5.15)

Therefore we obtain

pi(l) = e−nσ0(l − x0)nσ0θ(l − x0) (5.16)
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