Machine learning for de novo
design of functional molecules and
their synthetic routes

Zhang Qi

Department of Statistical Science

School of Multidisciplinary Sciences
The Graduate University for Advanced Studies, SOKENDAI

This dissertation is submitted for the degree of
Doctor of Philosophy



September 2023



Abstract

In recent years, de novo molecular design using machine learning has made significant
technical progress, but practical applications still face challenges. The primary
barrier to practical applications of computationally designed molecules is the cost
and technical difficulty of synthesizing them. As a solution to this problem, various
methods for synthetic route design using deep neural networks have been studied.
However, designing molecules and their synthetic routes simultaneously has received
little attention. In this study, we formulate the problem of designing molecules
and their synthetic routes within the framework of Bayesian inference. The design
variables in our framework consist of a set of reactants in a reaction network and
its network topology. The design space is vast, consisting of all combinations of
purchasable reactants, which can number in the millions or more. In addition, the
designed reaction networks can adopt any topology beyond simple multistep linear
reaction routes. Thus, this is a hard combinatorial problem that requires a powerful
algorithm to solve. To address this problem, we present a powerful sequential Monte
Carlo algorithm that recursively designs a synthetic reaction network by sequentially
building up single-step reactions. Our algorithm is highly efficient, and in a case
study of designing drug-like molecules based on commercially available compounds,
it outperformed heuristic combinatorial search methods in terms of computational
efficiency, coverage, and novelty with respect to existing compounds. Our framework
has practical implications in the design of new molecules for various applications, such
as drug design and materials science. Moreover, it offers a significant advantage in
terms of computational efficiency, which is crucial for large-scale molecular design.
Our study also provides the Python library ”Seq-Stack-Reaction” with an illustrative
example of designing highly viscous lubricant molecules. This library can be used to
design molecules with desired properties and synthetic routes, making it a valuable
tool for researchers in various fields.
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Chapter 1

Introduction

In recent years, machine learning-based molecular design has made great technological
advances and has achieved remarkable outcomes in drug discovery and materials
science (Ikebata et al., 2017; Wu et al., 2019; Gémez-Bombarelli et al., 2018; Segler
et al., 2018a; Sanchez-Lengeling & Aspuru-Guzik, 2018; Ramprasad et al., 2017; Perron
et al., 2022; Sumita et al., 2022). The design objective here is to identify the chemical
structure of a new molecule with a given set of desired properties. To do so, a machine
learning model that forwardly predicts the physicochemical or other properties of
any given chemical structure is first constructed and then its inverse mapping is
found to determine the design of the chemical structure that exhibits the desired
properties in the backward direction. The former is often referred to as quantitative
structure—property relationship (QSPR) analysis (Roy et al., 2015), and the latter is
called inverse structure-property relationship (inverse-QSPR) analysis (Miyao et al.,
2016). Usually, the inverse problem is solved using heuristic search techniques such
as a genetic algorithm. A molecular generator is then used to sequentially modify a
candidate molecule such that the resulting predicted properties fall into the region
of the desired properties. The generative model plays an important role in this
process. Traditionally, structural modifications have been performed by conducting
stochastic recombination with a predefined set of molecular fragments or random
atomic substitution. By utilizing fragments of existing molecules as building blocks,
we can restrict the degrees of freedom in the resulting chemical structures and narrow
down the search space to enhance the synthesizability of virtually created molecules.
However, excessive narrowing of the search space may reduce the novelty of the
structures created. In order to overcome this limitation, increasing attention has been
paid, since around 2017-2018 in particular, to the development of molecule generative
models that rely on advanced machine learning techniques (Ikebata et al., 2017; Yang
et al., 2017; Assouel et al., 2018; Dai et al., 2018; Goémez-Bombarelli et al., 2018;
Jin et al., 2018; Kadurin et al., 2017; Kajino, 2019; Li et al., 2018; Seff et al., 2019;



Segler et al., 2018a; Simm & Hernandez-Lobato, 2019; Simm et al., 2020; You et al.,
2018). With a training set of compounds synthesized thus far, a generative model for
molecular graphs is constructed to mimic the rule of frequently appearing chemical
fragments and bonding patterns in the training molecules. Using such a model, we
can freely scan the vast chemical space to identify innovative hypothetical molecules.

As described above, machine learning-based molecular design has made great
technical progress over the past few years. However, there are still hurdles to be
overcome in their practical applications. One reason for this is owing to the difficulty
in determining the synthetic routes to such designed molecules. Concurrently, with
the growing attention to molecular design, significant progress has been made in
computational methods for synthetic route design (Schwaller et al., 2019; Jin et al.,
2017; Liu et al., 2017; Lin et al., 2020; Zheng et al., 2019; Nguyen & Tsuda, 2022;
Segler et al., 2018b). Similar to the molecular design task, the general workflow for
synthetic route design consists of forward and inverse problems. The goal of the
forward problem is to derive a model that predicts the chemical structure of a synthetic
product for a given set of reactant molecules. In contrast, in the inverse problem,
inverse mapping of the forward model is explored to identify a set of reactants that
produces a given desired product. Recent developments in deep learning technologies
have significantly improved the accuracy of predicting reaction outcomes in organic
synthesis. For example, if the structures of the reactants and products are treated
as graphs, the reaction prediction task can be formulated as a graph transformation
problem (Jin et al., 2017). Under the string representation of reactants and products
according to the simplified molecular input line entry system (SMILES) chemical
language (Weininger, 1988), deep neural networks for sequence-to-sequence translation
can be utilized to predict the SMILES string of a product from input reactants.
For example, it was reported that the reaction prediction using Transformer, a well-
known encoder-decoder architecture for machine translation, could successfully predict
the chemical structures of synthetic products with over 90% accuracy (Schwaller
et al., 2019). Furthermore, several methods have been developed to solve the inverse
problem of such forward reaction prediction models. The objective is to identify a
set of promising reactants from a list of commercially available compounds that can
synthesize a desired product (Guo et al., 2020; Bradshaw et al., 2020; Gottipati et al.,
2020).

More recently, several attempts have been made to simultaneously design desired
functional molecules and their synthetic routes under a unified methodological frame-
work. For a given reaction prediction model, a virtual library of candidate molecules
can be created by which a set of reactants is given to the model to produce its synthetic
product. In addition, the properties or a certain score of a candidate molecule can
be calculated using machine learning models or an arbitrary reward function. By
obtaining the inverse mapping of such a cascade model, which defines the composite



mapping from any given reactant set to a product and from the product to its proper-
ties, the products exhibiting desired properties and their reactant sets can be predicted
simultaneously. The Molecule Chef algorithm proposed by Bradshaw et al. (2019)
used a cascaded forward model that connects a deep generative model of reactant
molecules (Molecular Transformer) for the reaction prediction (Schwaller et al., 2019),
and a property prediction model for the created virtual products. Gottipati et al.
(2020) formulated the inverse problem of such a cascade model as a combinatorial
optimization problem over a set of commercially available compounds, and proposed
a reinforcement learning algorithm to identify the promising combination of reactant
molecules. Gao et al. (2021) formulated the problem of synthesis planning as generat-
ing a synthetic tree, and proposed a Markov decision process method to construct
the synthetic tree in a bottom-up manner. Horwood & Noutahi (2020) considered
a reinforcement learning framework for molecular design to use known chemistry
as a starting point and optimize it by sequentially performing reactions. However,
there are still many unsolved technical problems in these existing methods, and their
predictive performance remains yet to be improved. One of the technical difficulties
comes from the complexity of the search space. The search space grows exponentially
due to the degree of freedom in the network topology of designed synthetic pathways
and the possible combinations of reactants. Therefore, it should be theoretically
guaranteed that a given computational method can reach the entire search space. The
computational burden of exploring such a large space is another important issue; more
attention should be paid to developing methods that accelerate the search process.
This study aims to provide solutions to these problems.

In this paper, we formulate the task of simultaneous design of molecules and
synthetic routes as a general statistical problem in which a forward model is defined
as a cascade of reaction prediction models and property prediction models, as in
the previous work of Gottipati et al. (2020). In the inverse problem, we seek a set
of reactants and a network structure of synthetic reactions such that the resulting
products reach a predefined region of desired properties. The overall search space
for the reactant sets is spanned by all possible combinations of given commercially
available compounds. If the number of commercial compounds is of the order O(10°)
and the number of reactants involved in a synthetic route is 10, the size of the search
space will reach O(10%). The structure of the reaction network is a design variable as
well, involving the number of reaction steps and the network topology.

For example, a pattern of branching routes, the width and depth of networks, and
the number of leaf nodes are included in the design variable. Therefore, it is necessary
to solve the intractable combinatorial problem defined over an extremely vast search
space.

Here, we present an efficient algorithmic technique and implementation to solve
this hard problem. Specifically, we present a sequential Monte Carlo method based on



a recurrent network search algorithm to simultaneously identify a reaction network,
its constituent reactant sets, and the final products that satisfy the arbitrary target
properties. An important practical requirement considered here is the maintenance
of diversity in the designed molecules and synthetic routes. There are always errors
in the properties and synthetic routes predicted by statistical models. Therefore,
the optimal solution in a model is not optimal in practice. Our method aims to
exhaustively identify a wide variety of promising candidates and to present various
scenarios to domain experts. The final decision is left to the expert. A Python library
called Seq-Stack-Reaction has been made available on GitHub (Zhang, 2022), which
allows us to plug-in any forward model into the Bayesian design workflow (Figure
1.1).

Forward prediction Y = ho g(S|G)

— [Reactant SJ + [Reactant SZ] —>[ Product P, ]—i— [Reactant Sa] —>[ Product P, ] = [ Property Y ]

o
@ Backward prediction (S, G) = argsolve{(S,G)|Y = ho g(S|G) €U*}

—> [ S, ]-I—[ S, ]—)[ P, ]—i—[ S, ]—)[ P, ]=>[ Y ]E[Targetpropertyregionu*]

A A A

Combinatorial search

==

Commercially available compounds

Design variables

Figure 1.1: Workflow of the concurrent design of molecules and their synthetic reaction
networks. The forward-prediction model defines the composite mapping h o g from a
given reactant set S to its synthetic product P conditioning on a reaction network G
via a reaction function g, and from product P to its properties Y via a prediction model
h. The desirable products and their synthetic reactions are concurrently designed
by inversely exploring G and S such that the resulting properties meet the design
objective Y € U*.

This thesis proceeds as follows.

Chapter 2 Chapter 2 provides an in-depth exploration of the major topics related
to machine learning in molecular design. Specifically, the chapter focuses on three
key building blocks of molecular design: representation of molecules, deep learning
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models, and design objectives. One of the fundamental aspects of molecular design
is the representation of molecules. This is because the representation plays a key
role in determining the properties and behavior of a molecule. In this chapter, we
explore the various methods for molecular representation, including graph-based and
sequence-based approaches. Graph-based approaches involve representing a molecule
as a graph, where each node represents an atom and each edge represents a bond.
Sequence-based approaches, on the other hand, involve representing a molecule as a
sequence of characters, such as SMILES or InChl notation. We discuss the strengths
and weaknesses of each approach and how they can be used to train machine-learning
models for molecular design. The second building block of molecular design that
we explore in Chapter 2 is deep learning models. Deep learning has emerged as a
powerful tool for machine learning in recent years, and it has been applied to a wide
range of tasks in molecular design, such as predicting properties, generating molecules,
and optimizing molecular structures. We provide an overview of the various types
of deep learning models used in molecular design, including convolutional neural
networks (CNNs), recurrent neural networks (RNNs), and generative adversarial
networks (GANs). We also discuss the advantages and limitations of each type of
model and their potential applications in molecular design. Finally, in Chapter 2, we
examine the design objectives in molecular design. The ultimate goal of molecular
design is to create molecules with desired properties, such as efficacy, safety, and
stability. To achieve this, machine learning models must be trained to optimize specific
design objectives, such as maximizing or minimizing certain properties. We explore
the various types of design objectives used in molecular design, including property
prediction, property optimization, and structure generation. We also discuss the
challenges and opportunities in optimizing these objectives and how they can be used
to develop effective machine-learning models for molecular design.

Chapter 3 Chapter 3 of this study provides a detailed description of the methods
that will be used in the proposed methodology for simultaneous molecular design and
synthetic pathway design. The chapter is divided into four sections, each discussing a
key aspect of the proposed method. The first section introduces the forward model of
reaction prediction, which is a critical component of the proposed methodology. The
forward model is designed to predict the outcome of a chemical reaction based on
the properties of the reactants and the reaction conditions. This section provides an
overview of the methodology used to train the model, including the choice of training
data and the selection of features. It also discusses the performance of the forward
model in predicting the outcome of chemical reactions and its limitations. The second
section introduces the forward model of property prediction, which is another key
component of the proposed methodology. The forward model is designed to predict
the properties of a molecule based on its chemical structure. This section provides an



overview of the methodology used to train the model, including the choice of training
data and the selection of features. It also discusses the performance of the forward
model in predicting the properties of molecules and its limitations. The third section
introduces the Bayesian inverse problem, which will be used for inverse design. The
Bayesian inverse problem is a mathematical framework for solving inverse problems,
which are problems where the input is known but the output is unknown. In the
context of molecular design, the Bayesian inverse problem can be used to identify
the optimal set of reactants and reaction conditions that will produce a molecule
with a desired set of properties. This section provides an overview of the Bayesian
inverse problem and its application to molecular design. The fourth section introduces
sequential Monte Carlo, which is a specific method used to solve the inverse problem.
Sequential Monte Carlo is a computational technique for approximating the posterior
distribution of a system given a set of observations. In the context of molecular
design, sequential Monte Carlo can be used to identify the optimal set of reactants
and reaction conditions that will produce a molecule with a desired set of properties.
This section provides an overview of the sequential Monte Carlo algorithm and its
application to molecular design.

Chapter 4 This chapter outlines the proposed method that aims to solve the inverse
problem of synthetic reaction network design. The chapter begins by introducing the
algorithm used to accomplish this task. Subsequently, an acceleration technique is
presented that enhances the efficiency of the proposed method. Finally, the proposed
method is summarized as an algorithm, and the software to implement it is described.
To begin with, the proposed method employs an algorithm that allows for the
simultaneous identification of a reaction network, its constituent reactant sets, and
the final products that satisfy arbitrary target properties. The algorithm leverages
a synthetic reaction prediction model and property prediction models as building
blocks to construct a forward model. The inverse mapping of this forward model
is then obtained based on a Bayesian inference framework. As the design space,
consisting of arbitrary reaction networks and reactant sets, is exceedingly large, the
proposed method adopts a sequential Monte Carlo algorithm incorporating a recurrent
algorithm for network search. This approach enables the proposed method to achieve
an efficient and effective search for high-quality virtual molecules.

In addition to the algorithm for solving the inverse problem of synthetic reaction
network design, an acceleration technique is presented in the proposed method. This
technique accelerates the network search process and reduces the computational costs
associated with the proposed method. Specifically, the proposed technique involves
the use of a surrogate model, which is a simplified version of the forward model
that provides an estimate of the forward model’s response. This surrogate model is
updated iteratively by incorporating the results of each search step, leading to faster



convergence towards the optimal solution.

Finally, the proposed method is summarized as an algorithm, along with the software
required to implement it. The algorithm includes several steps, such as initializing the
search process, sampling initial reactant sets, and iteratively updating the surrogate
model and the search path. The software implementation of the proposed method is
designed to be user-friendly and flexible, allowing users to plug-in arbitrary reaction
prediction models, property prediction models, and commercial compounds.

Chapter 5 In this chapter, we evaluated the performance of the proposed method
in designing drug-like molecules by assessing its predictive and computational capa-
bilities. To accomplish this, we constructed various versions of Bayesian molecular
design algorithms by integrating the four constituent mechanisms discussed in the
previous section. The aim of this evaluation was to quantitatively investigate the
contributions of each mechanism to the overall performance of the algorithm. To start,
we selected drug-like molecules as our application example, which are an important
class of molecules due to their significant role in the pharmaceutical industry. We
then constructed multiple versions of the Bayesian molecular design algorithm that
incorporated the following four constituent mechanisms: synthetic reaction prediction,
property prediction, Bayesian inverse design, and sequential Monte Carlo. Next, we
evaluated the performance of each version of the algorithm in terms of its predictive
and computational capabilities. Specifically, we examined the algorithm’s ability to
design molecules with desirable properties while also considering the complexity and
computational efficiency of the algorithm. Through our evaluation, we were able to
quantitatively analyze the individual contributions of each constituent mechanism
to the overall performance of the algorithm. By comparing the performance of each
version of the algorithm, we identified the strengths and weaknesses of each mechanism
and determined their relative importance in achieving the desired design objectives.

Chapter 6 In the final chapter, the proposed work is summarized, and the future
direction of the research is discussed.

Chapters 3 to 5 are based on our work published work (Zhang et al., 2023) on
Science and Technology of Advanced Materials: Methods.



Chapter 2

Machine learning in molecular
design

The subject of machine learning has emerged as a vital and rapidly evolving area
in the realm of computer-aided molecular design. In contrast to traditional physical
models that rely on explicit physical equations, such as quantum chemistry or molec-
ular dynamics simulations, machine learning approaches utilize pattern recognition
algorithms to discern mathematical relationships between empirical observations of
small molecules, enabling them to extrapolate and predict the chemical, biological,
and physical properties of novel compounds. Machine learning techniques are highly
efficient and can easily be scaled to accommodate large datasets without the need for
extensive computational resources. As such, they are increasingly being utilized to
help researchers understand and exploit the intricate relationships between chemical
structures and their biological activities or structure-activity relationships (SAR).
For example, in the context of a drug screening campaign, researchers may wish to
optimize a hit compound’s chemical structure to improve its binding affinity, biological
response, or physiochemical properties. In the past, this type of problem could only
be addressed through numerous costly, time-consuming, and labor-intensive cycles of
medicinal chemistry synthesis and analysis. In contrast, modern machine learning
techniques can be used to model quantitative structure-property relationships (QSPR)
(Puri et al., 2016) and develop artificial intelligence programs that accurately predict
in silico how chemical modifications might influence biological behavior. In particular,
QSAR modeling has been highly successful in effectively modeling many physiochemi-
cal properties of drugs, including toxicity, metabolism, drug-drug interactions, and
carcinogenesis. Early QSAR models, such as the Hansch and Free-Wilson analyses,
utilized simple multivariate regression models to correlate potency with substructure
motifs and chemical properties such as solubility (logP), hydrophobicity, substituent
pattern, and electronic factors. However, these approaches were ultimately limited



2.1. REPRESENTATION OF MOLECULE

by the unavailability of experimental data and the linearity assumption made in
modeling. Thus, advanced chemoinformatics and machine learning techniques capable
of modeling nonlinear datasets, as well as large and complex datasets, are necessary
to advance the field of drug discovery. These new methods are expected to offer
increased accuracy and efficiency, thereby contributing to the development of novel
therapeutics with improved efficacy and fewer adverse side effects.

In this chapter, we delve into the three main topics involved in machine learning-based
molecular design, exploring the fundamental concepts and techniques that enable
this exciting field. The first topic we review is the representation of molecules. A
machine learning model needs to have access to as much information as possible
about a chemical structure in order to generate accurate predictions. We explore
the different methods of molecular representation, including SMILES notation and
molecular fingerprints, and evaluate their strengths and weaknesses. The second topic
we delve into is the machine learning model used to learn features from existing data.
The selection of the model used is crucial, as it determines the accuracy and efficiency
of the molecular design process. We analyze various models, such as neural networks
and decision trees, and determine which one is best suited to our needs. The last
topic we explore is the objective of the designing task. In this stage, we instruct the
machine learning model on what we want it to achieve and measure its performance
against specific criteria. We discuss the importance of defining the objective precisely
to ensure that the model generates molecules that meet our specific requirements.
Throughout the chapter, we provide examples of how these concepts are applied in
real-world scenarios. We showcase the potential of machine learning-based molecular
design, including its ability to accelerate drug discovery and design new materials with
unique properties. By the end of this chapter, readers will have a solid understanding
of the fundamental concepts involved in machine learning-based molecular design, and
be able to apply them to their own research in this exciting and rapidly evolving field.

2.1 Representation of molecule

Chemical descriptors are numerical features extracted from chemical structures and are
widely used for molecular data mining, compound diversity analysis, and compound
activity prediction. In this thesis, we provide a comprehensive overview of chemical
descriptors, including their different types and applications.

One-dimensional (1D) descriptors are scalar values that describe aggregate informa-
tion such as atom counts, bond counts, molecular weight, sums of atomic properties,
or fragment counts. While simple to compute, 1D descriptors are limited by their
degeneracy problems. In other words, distinct compounds may be mapped to identical
descriptor values for a given descriptor. To address this, 1D descriptors are often
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used in combination with higher-dimensional descriptors or expressed as a vector of
multiple 1D descriptors.

Two-dimensional (2D) descriptors are the most frequently reported descriptor type in
the literature. They include topological indices, molecular profiles, and 2D autocorre-
lation descriptors. One important feature of 2D descriptors is graph invariance, which
allows for structure differentiation. This means that descriptor values are unaffected
by the renumbering of graph nodes. To facilitate the analysis of large spaces of 2D
descriptors, Hong et al. (2008) developed the Mol? system, which rapidly generates
up to 200 types of 2D descriptors for large compound datasets. Commercial software
packages, such as the DRAGON system (Sawada et al., 2014), can also generate up
to 5000 types of descriptors as part of several QSAR studies.

Three-dimensional (3D) descriptors extract chemical features from 3D coordinate
representations and are considered the most sensitive to structural variations. Com-
mon 3D descriptors include autocorrelation descriptors, substituent constants, surface:
volume descriptors, and quantum-chemical descriptors. Which are distinct chemical
scaffolds with similar binding activities. However, one key limitation of 3D chemical
descriptors in QSAR analysis is the computational complexity of conformer gener-
ation and structure alignments, which are absent of any guarantees that predicted
conformations correspond to relevant bioactive conformations.

Four-dimensional (4D) descriptors are an extension of 3D chemical descriptors that
simultaneously consider multiple structural conformations. Ash and Fourches (Ash &
Fourches, 2017) applied molecular dynamics simulation on ERK2 kinase to compute
3D descriptors over a grid box based on the 20 ns trajectory and showed that such 4D
chemical descriptors can effectively differentiate the most active ERK2 inhibitors from
the inactive ones with superior enrichment rates. The ability to consider multiple
conformations enhances the accuracy of predictions and allows for a better under-
standing of the molecular dynamics underlying chemical activity.

2.1.1 3D geometry

A 3D chemical descriptor is a type of molecular representation that characterizes
the 3-dimensional structure of a molecule. It provides information about the spatial
arrangement of atoms and the distance between them in a molecule.

There are several types of 3D chemical descriptors, including:

Shape descriptors: Shape descriptors are one of the most commonly used 3D
chemical descriptors and are used to quantitatively describe the shape of a molecule.
This descriptor provides information about the molecular shape that cannot be
obtained from other types of descriptors, such as 2D representations or electrostatic
potential descriptors. The shape descriptors can be used to compare the shapes
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of different molecules, identify molecules that have similar shapes, and analyze the
relationship between molecular shape and biological activity. By comparing the shapes
of different molecules, researchers can gain insights into the behavior of molecules in
different chemical reactions and biological processes. For example, shape descriptors
have been used in the design of drugs that have a similar shape to a natural substrate
or inhibitor, allowing the drug to bind to the same receptor site and exert a similar
effect. Shape descriptors are typically calculated using computational methods, such
as molecular mechanics or quantum mechanics calculations. These calculations allow
researchers to generate a 3D model of a molecule and calculate descriptors such as
the volume, surface area, and curvature of the molecule. The resulting data can then
be used to generate a quantitative measure of the shape of the molecule, such as the
molecular shape index, surface roughness index, or shape circularity index.

Electrostatic descriptors: Electrostatic descriptors are another type of 3D chemical
descriptor that provides information about the electrostatic potential of a molecule.
These descriptors are used to predict the reactivity and biological activity of a molecule
based on its electrostatic properties. The electrostatic potential of a molecule is deter-
mined by the distribution of charged particles, such as electrons and protons, within
the molecule. Electrostatic descriptors quantify the electrostatic potential at various
points within the molecule, allowing researchers to identify regions of high or low
electrostatic potential. These descriptors are typically calculated using computational
methods, such as quantum mechanics or molecular dynamics simulations. One com-
monly used electrostatic descriptor is the molecular electrostatic potential (MEP),
which is calculated by solving the Poisson equation for the molecule. The MEP
provides a three-dimensional map of the electrostatic potential of the molecule, which
can be visualized and analyzed to gain insights into the reactivity and biological
activity of the molecule. Electrostatic descriptors have many applications in chemistry
and biochemistry. For example, they can be used to predict the binding affinity of
a molecule to a receptor site, based on the electrostatic complementarity between
the two molecules. They can also be used to predict the reactivity of a molecule
in a chemical reaction, based on the electrophilic or nucleophilic character of the
molecule. Additionally, electrostatic descriptors can be used to analyze the behavior
of molecules in an aqueous environment, as the electrostatic properties of the molecule
can influence its solubility and transport properties.

Hydrophobicity descriptors: Hydrophobicity descriptors are another type of 3D
chemical descriptor used to calculate the hydrophobicity of a molecule. Hydrophobicity
refers to the tendency of a molecule to be insoluble in water or other polar solvents,
due to its nonpolar nature. Hydrophobicity descriptors provide information about
the distribution of hydrophobic and hydrophilic regions within a molecule, allowing
researchers to predict its solubility in different solvents. The hydrophobicity of a
molecule can affect its behavior in biological systems, as hydrophobic molecules tend
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to accumulate in lipid membranes and can affect membrane function. One commonly
used hydrophobicity descriptor is the octanol-water partition coefficient (LogP), which
is a measure of the ratio of a molecule’s concentration in octanol (a nonpolar solvent)
to its concentration in water. A high LogP value indicates that the molecule is
more hydrophobic and less soluble in water, while a low LogP value indicates that
the molecule is more hydrophilic and more soluble in water. Other hydrophobicity
descriptors include the surface area of the molecule that is accessible to water, as well as
various measures of the molecule’s polarity, such as the polar surface area or the dipole
moment. Hydrophobicity descriptors are useful in drug discovery, as the solubility of
a drug in different solvents can affect its bioavailability and pharmacokinetics. By
using hydrophobicity descriptors to predict a drug’s solubility in different solvents,
researchers can optimize its formulation to improve its delivery and efficacy.

2.1.2 SMILES representation

The Simplified molecular-input line-entry system (SMILES) is a widely-used notation
system for representing the structure of molecules in a compact and easily interpretable
format. SMILES notations are strings of characters that represent the atoms and
bonds in a molecule, with each atom being represented by its elemental symbol and
each bond being represented by a variety of symbols such as ’-’, =", and '#’. The
use of SMILES notation is widespread in the field of chemistry due to its ability to
represent complex structures in a simple, standardized format that can be easily read
and interpreted by computers and other software programs. SMILES notations are
commonly used for a variety of applications, including molecular modeling, database
searching, and predicting the properties of new compounds. One of the key advantages
of SMILES notation is its conciseness. The SMILES notation for a given molecule is
typically much shorter than other representations, such as the full chemical formula
or a 3D molecular structure. This makes it easier to store and manipulate large
numbers of molecular structures in computer databases, which are often used for drug
discovery and other chemical research applications. In addition to its conciseness,
SMILES notation is also highly standardized. This means that SMILES notations
are consistent across different software programs and databases, making it easy to
share and exchange molecular structures between different users and systems. The
standardization of SMILES notation also helps to reduce errors and inconsistencies
that can arise when different users or software programs use different notations for
the same molecule. Another advantage of SMILES notation is its ability to represent
complex chemical structures in a way that is easily interpretable by humans. For
example, SMILES notations can represent stereochemistry, which refers to the spatial
arrangement of atoms in a molecule. Stereochemistry is an important aspect of many
chemical reactions and can have a significant impact on the properties of a molecule.
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By representing stereochemistry in a concise and standardized format, SMILES
notation makes it easier for researchers to understand and interpret the structures of
complex molecules. The SMILES is a highly useful and widely used notation system
for representing the structure of molecules. Its conciseness, standardization, and
ability to represent complex structures make it a valuable tool for researchers in a
variety of fields, from drug discovery to materials science to environmental chemistry.

2.2 Deep learning in molecular design

In this section, we review the three most commonly used machine learning models in
the molecular design field.

2.2.1 Recurrent neural networks

Benefiting from the sequential representation of chemical structures, recurrent neural
networks (RNNs) (Rumelhart et al., 1986) became a commonly used model for
molecular design. It also works as a critical building block of Autoencoders (Baldi,
2012) and Generative adversarial networks (Goodfellow et al., 2020) which will be
discussed hereafter. A Recurrent Neural Network (RNN) is a type of artificial neural
network that is designed to process sequential data or time series data. This deep
learning algorithm is particularly useful for ordinal or temporal problems, such as
language translation, natural language processing (NLP) (Nadkarni et al., 2011),
speech recognition (Hinton et al., 2012), and image captioning (Xu et al., 2015),
and is incorporated into various popular applications, including Siri (Capes et al.,
2017), voice search (Hinton et al., 2012), and Google Translate (Wu et al., 2016).
Unlike feedforward and convolutional neural networks (CNNs) (LeCun et al., 1998),
RNNs have a "memory” that enables them to use information from previous inputs
to influence the current input and output. Unlike traditional deep neural networks,
which assume that inputs and outputs are independent of each other, RNN outputs
depend on the prior elements within the sequence. However, unidirectional RNNs
are limited in that they cannot account for future events in their predictions. To
illustrate the functioning of RNNs, we can consider an idiom, such as ”I am eating
noodles,” which requires the specific order of words to make sense. RNNs take
into account the position of each word in the idiom and use this information to
predict the next word in the sequence. RNNs share parameters across each layer
of the network, in contrast to feedforward networks, which have different weights
across each node. The weight parameter within each layer of the network is adjusted
through backpropagation and gradient descent to facilitate reinforcement learning.
To determine the gradients, RNNs use the backpropagation through time (BPTT)
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(Werbos, 1990) algorithm, which is specific to sequence data. BPTT operates on
the same principles as traditional backpropagation, where the model trains itself by
calculating errors from its output layer to its input layer. This calculation enables
the adjustment and fitting of the model’s parameters. However, BPTT differs from
the traditional approach by summing errors at each time step, whereas feedforward
networks do not need to sum errors since they do not share parameters across each
layer. During the training process, RNNs face two common problems: exploding
gradients and vanishing gradients. The size of the gradient, which is the slope of the
loss function along the error curve, defines these issues. When the gradient is too
small, it continues to become smaller, eventually updating the weight parameters
to zero, resulting in an algorithm that is no longer learning. Conversely, exploding
gradients occur when the gradient is too large, leading to an unstable model. In this
case, the model weights will grow too large, eventually becoming represented as NaN.
One solution to these issues is to reduce the number of hidden layers in the neural
network, thereby reducing the complexity of the RNN model.

2.2.2 Autoencoders

In the field of machine learning, autoencoders have become an increasingly popular
technique for unsupervised learning. Autoencoders leverage neural networks to learn
and represent the underlying structure of data by imposing a bottleneck in the network,
which forces a compressed knowledge representation of the original input. The resulting
compressed representation can be used for various tasks, such as data compression,
anomaly detection (Sakurada & Yairi, 2014), and feature extraction (Masci et al.,
2011). This essay will discuss the working principles of autoencoders, including
the design of the neural network architecture, and the significance of the imposed
bottleneck. It will also explore the relationship between input feature independence
and the difficulty of the reconstruction task. Autoencoders are composed of an
encoder network and a decoder network. The encoder network takes the input data
and compresses it into a lower dimensional representation, while the decoder network
takes the compressed representation and attempts to reconstruct the original input.
The key feature of the autoencoder architecture is the bottleneck layer which forces
the encoder to learn a compressed representation of the input data. This bottleneck
is often a hidden layer with fewer nodes than the input layer, forcing the encoder to
learn a compressed representation of the input data. The bottleneck layer’s purpose
is to force the encoder to learn a compressed representation of the input data. This
compressed representation is often referred to as the latent space or code. The size of
the bottleneck layer determines the amount of compression applied to the input data,
and the quality of the reconstruction. If the bottleneck layer is too small, the network
may not be able to learn a useful representation of the input data. On the other
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hand, if the bottleneck layer is too large, the network may not be able to capture
the relevant structure of the input data and produce a low-quality reconstruction.
The success of an autoencoder relies heavily on the existence of correlations between
the input features. If the input features are independent of one another, the task
of compression and reconstruction becomes extremely difficult. However, if there is
some structure or correlation between input features, autoencoders can learn this
structure and use it to compress and reconstruct the input data. For example, in
image processing, neighboring pixels are often correlated, and autoencoders can
learn this correlation to compress and reconstruct the image. In contrast, if the
input data lacks any structure, autoencoders cannot learn any useful representation.
Autoencoders have a wide range of applications, ranging from data compression to
feature extraction. In data compression, autoencoders can be used to compress large
datasets to reduce storage and computational requirements. Autoencoders can also
be used for anomaly detection, where they can detect anomalous data points by
comparing the reconstruction error to the original input. In addition, autoencoders
can be used for feature extraction, where they learn a compressed representation of
the input data, which can be used as input for supervised learning algorithms.
Autoencoders have emerged as a promising technique in the field of molecular
design due to their ability to generate new molecules by making small modifications to
the latent feature space. This is achieved through the use of a decoder network that
reconstructs the original input from the compressed latent representation, which can
also be seen as a generative model. One of the advantages of autoencoders in molecular
design is that they can learn the underlying structure and patterns in the molecular
data, which allows for the generation of new molecules with desirable properties.
The decoder network can be trained to produce new molecules by modifying the
latent feature space, which can lead to slightly different chemical structures compared
to the original input. This process can be used to explore the chemical space and
identify novel molecules that may have beneficial properties. The generation of new
molecules using autoencoders has been shown to be an effective approach for drug
discovery and materials design. For example, in drug discovery, the goal is to identify
new molecules that have a desired therapeutic effect while minimizing potential side
effects. Autoencoders can be trained on a dataset of known drug molecules and then
used to generate new molecules with similar properties. These generated molecules
can then be evaluated for their potential as drugs, and those that show promise
can be further developed and tested. Similarly, in materials design, autoencoders
can be used to generate new materials with specific properties, such as conductivity,
strength, or flexibility. By modifying the latent feature space, the decoder network
can generate new materials that have slightly different properties compared to the
input data. These new materials can be evaluated and selected for their potential use
in various applications. Overall, the ability of autoencoders to generate new molecules
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by modifying the latent feature space has made them a valuable tool in molecular
design. By leveraging the underlying structure and patterns in the molecular data,
autoencoders can be used to explore the chemical space and identify novel molecules
with desirable properties. As such, they have the potential to revolutionize drug
discovery and materials design, and their use in these fields is expected to continue to
grow in the future.

2.2.3 Generative adversarial networks

Generative Adversarial Networks (GANs) (Goodfellow et al., 2020) are a machine
learning model that has gained significant attention in recent years. GANs employ
deep learning methods to generate new data from an existing dataset by using two
competing neural networks, known as the generator and the discriminator, which
work together in a cooperative zero-sum game framework. The generator is trained to
produce synthetic data, while the discriminator is trained to differentiate between the
synthetic and real data. The generator is typically a convolutional neural network
(CNN), and the discriminator is a deconvolutional neural network (DNN) (Zeiler &
Fergus, 2014). The goal of the generator is to produce data that is so realistic that it
cannot be distinguished from the real data by the discriminator. On the other hand,
the discriminator aims to distinguish between the synthetic data and the real data.
One of the key features of GANSs is their ability to generate new data by creating a
probabilistic model. This means that GANs can learn the underlying structure of
the dataset and use it to create new data that closely resembles the original. For
example, a GAN can generate realistic-looking images of human faces that do not
correspond to any real individual. The process of training a GAN involves several
steps. Firstly, an initial training dataset is collected based on the desired output. This
dataset is then randomized and fed into the generator to produce synthetic data. The
synthetic data is combined with the real data and inputted into the discriminator.
The discriminator then calculates a probability score between 0 and 1 to determine
whether the input data is real or synthetic. If the discriminator correctly identifies the
synthetic data, a penalty is applied to the generator, and the process is repeated until
the generator produces data that is indistinguishable from the real data. The training
process of GANs can be divided into three main categories: generative, adversarial,
and networks. The generative category focuses on how data is generated based on a
probabilistic model, while the adversarial category focuses on the competitive aspect
of the model. The network category refers to the use of deep neural networks as the
artificial intelligence algorithms for training purposes.
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2.3 Design objective

In machine learning, choosing the appropriate evaluation metric is critical to obtain
meaningful insights into the performance of a model in a given application. Evaluation
metrics provide a quantitative measure of how well a machine learning model is able
to perform a specific task, in contrast to training methods that aim to improve the
model’s performance during training. Based on the reference of the metric, evaluation
metrics can be categorized into three groups. In the field of molecular generation, it is
common practice to use a set of evaluation metrics to assess the quality of generated
molecules. One of the most important groups of evaluation metrics is the one that
involves comparing the generated molecules with the training data. This group of
metrics is typically employed when the goal is to reconstruct existing data. Within
this group of evaluation metrics, there are several specific criteria that researchers can
use to determine the accuracy of the model’s ability to replicate known molecules. One
such metric is the coverage of existing data, which measures how well the generated
molecules represent the entire training set. This metric is crucial because it assesses
how well the model has learned to represent the diversity of the training data. Another
metric in this group is the distance to the existing distribution, which measures how
similar the generated molecules are to the molecules in the training set. This metric
is important because it evaluates the model’s ability to generate molecules that
are consistent with the underlying distribution of the training data. By analyzing
this metric, researchers can determine how well the model has learned to capture
the underlying patterns and structures of the training data. The evaluation of the
similarity between the generated molecules and the training data is a critical step in
the assessment of the quality of molecular generation models. By using a range of
evaluation metrics, researchers can gain a more comprehensive understanding of the
model’s strengths and weaknesses, and ultimately improve the accuracy and reliability
of molecular generation techniques.

The second group of evaluation metrics is critical for assessing the model’s ability
to design molecules that exhibit specific properties. The machine learning model
is tasked with generating molecules that meet specific design criteria. This process
involves optimizing the chemical structure of the molecule to achieve the desired
properties. To determine the effectiveness of the model’s ability to generate molecules
with specific properties, there are several evaluation metrics that researchers use. One
of the most common metrics is measuring the desired property of the molecule, such
as potency, selectivity, or toxicity. These properties are essential in drug design, where
the goal is to create a molecule with specific biological activity that can interact
with a target protein or enzyme. In addition to measuring the desired properties
of the molecule, researchers may also evaluate other properties such as solubility,
stability, and bioavailability. These properties are crucial in determining whether
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a molecule can be developed into a viable drug candidate. Overall, evaluating the
properties of the designed molecules is a critical step in the assessment of the quality of
machine learning models in molecular design. By using a range of evaluation metrics,
researchers can assess the model’s ability to generate molecules that meet specific
design criteria and identify areas for improvement. This can lead to the development
of more accurate and effective molecular design techniques, which have the potential
to revolutionize the field of drug discovery and other related areas.

The last group of evaluation metrics involves assessing the quality of the molecules
generated by the machine learning model in molecular design. The quality of the
generated molecules is a critical aspect of the evaluation process because it determines
the usefulness and practicality of the model’s outputs. In this group of evaluation
metrics, researchers assess the feasibility, stability, and synthetic accessibility of the
generated molecules. Feasibility refers to the practicality of synthesizing molecules in
a laboratory setting. Stability is a measure of the molecule’s ability to maintain its
chemical structure under different conditions. Synthetic accessibility is a measure of
the ease with which the molecule can be synthesized using existing chemical methods.
To assess the feasibility of the generated molecules, researchers may use computational
tools to predict the synthetic pathway of the molecule and its likelihood of being
synthesized in a laboratory. The stability of the generated molecules can be assessed
using various computational techniques, including molecular dynamics simulations
and quantum chemical calculations. Synthetic accessibility can be evaluated using
computational tools that predict the ease of synthesizing the molecule using existing
chemical methods. By evaluating the quality of the generated molecules, researchers
can determine if the machine learning model is generating realistic and chemically
feasible molecules. If the model is generating molecules that are difficult or impossible
to synthesize, then the model’s practical utility is limited. On the other hand, if the
model generates high-quality molecules that are easy to synthesize and have desirable
properties, then it has the potential to be a valuable tool in drug discovery and other
molecular design applications. The last group of evaluation metrics is an essential
component of assessing the quality of machine learning models in molecular design.
By evaluating the feasibility, stability, and synthetic accessibility of the generated
molecules, researchers can determine the practicality and usefulness of the model’s
outputs.
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Chapter 3

Bayesian inference in molecular
design

In the previous chapter, we did a survey about the general building blocks of machine
learning-based molecular design. Other than this, some specific methods and algo-
rithms are involved in this work. In this chapter, we will go through the details of
this stuff.

3.1 Forward model: synthetic reaction

Suppose that a single-step reaction is given as

S1 and S, denote two reactants, and P denotes the product, which is assumed to
be a singleton as byproducts are ignored here. In this study, we considered only
synthetic reactions with two reactants. In this study, we considered only synthetic
reactions with two reactants, but the proposed method can be generalized to handle
any number of reactants. Our software, which will be introduced later, can design
reaction pathways without limiting the number of reactants. In addition, solvents and
reagents can also be incorporated on demand.
Consider that the single-step reaction is modeled by a function r as

P =r(S), (3.2)

where S = {5}, S2}. Function r represents the change in the chemical structure from
S to P. Note that r is a set function that is invariant to the exchange of S; and
Sy. As described later, the single-step reaction prediction model was modeled using
Molecular Transformer.
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Arbitrary reaction networks can be modeled by combining the single-step model.
For example, consider a three-step single-chain reaction as

Step1:511+5'12—>P1
Step2:P1+521—>P2 (33)
Step3:P2+531—>P3 (:P)

In the first step, two reactants, S;; and Sio, produce the intermediate product P,
followed by the second step, which produces the second intermediate product P, by
reacting P; and a newly selected reactant Sp;. In the third step, the intermediate
product P, and reactant Ss; react to produce final product P := P3. This reaction
cascade can be expressed using the single-step reaction model, as follows:

P =r(P,, S3)

=r(r(Py, S21), Ss1)

= 7“(7“( (311, 512) 521), 531)
1 9(51G).

(3.4)

The final product P = P is described as a function g(-|G) of the four purchasable
reactants S = {S11, S12, 51,531}, where all the intermediate reaction states are
discarded. The structure of the reaction network is represented by the synthetic graph
or network GG. The graph forms a rooted tree in which the leaf nodes consist of the
four reactants in S and the root node is given by the final product. Every node,
except the leaf nodes, has two children. Without loss of generality, any synthetic
reaction network, beyond single-chain reactions, can be described as P = ¢(S|G) and
retains the graph properties. Several examples are shown in Figure 3.1.

3.2 Forward model: property prediction models
and scoring function

Once the final product P is generated as P = g(S|G) with any given S, we estimate
its properties Y using the prediction model Y = h(P) as
Y = h(P)
= hog(S|G) (3.5)
=: f(S]G).

As the product can be represented by the deterministic function ¢(S|G) of S, Y can
be expressed by a function of S as Y = f(S|G). Here, Y can be a vector of one
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Network type  Reaction sequence Reaction prediction model Graph representation

Single-step S+ 8y =+ P P =7(S1,S2)

Three-step Su+5z-= R Py = (P, S31)

single-chain Pi+Sn— P = r(r(P1, S21), S31)
P+ S31 — P = 7(r(r(S11, S12), S21), S31)
511 + 512 — P, P, = T(P2 P3)

Four steps So1 + Soo — P B ’

(Branches) Pfl+ 5312_) P32 - r(r(Sa1, S22), 7(P1, S31))

r(r(Sa1, S22), 7(r(S11, S12), S
P+ Py — Py (r(Sa1, §22), r(r(Su; S12), S1))

Figure 3.1: Examples of synthetic reaction networks.

or more properties. Function h can be specified arbitrary; for example, a machine
learning property prediction model or a scoring function such as the quantitative
estimate of drug-likeness (QED) score (Bickerton et al., 2012).

The objective of molecular design is to identify a reactant set S with the resulting
P exhibiting a set of desired properties Y* with respect to the given forward model
Y = f(S|G). For the molecular design task, it is necessary to define a measure of
the discrepancy d(Y,Y™) between the predicted properties and the target. A typical
example of a discrepancy measure is the Euclidean distance:

diY,Y*) =Y — Y*|* (3.6)

Additionally, various measures can be defined depending on the type of task. For
example, if the target property is given as a region U*, we can use the following 0-1
loss:

0 Y e U*

. (3.7)
1 otherwise

d(y,U*) = {

Hereafter, we consider d(Y,U*), but we can use any type of discrepancy without loss

of generality. Alternatively, in the case of a score-type monotonic measure such as
QED, d can be defined, for example, as

d(Y) = —QED(Y). (3.8)
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Furthermore, in the task of retrosynthetic prediction, where a target product P* is
given as the design purpose, we can use, for example, the 0-1 loss between P and P*
as follows:

0 P =P

1 otherwise -

d(P, P*) = { (3.9)

This is equivalent to setting A(P) =1 and Y = P in the property prediction model,
Eq. 3.5.

3.3 Bayesian inverse problem

Herein, we describe the task of designing molecules with their synthetic routes.
Suppose that a collection of N commercially available compounds is given by

B={S,,.. Sy} (3.10)

A reactant set S that forms the designed G should be selected from B. Here, by
Pr(B), we denote the set of all k combinations from B. Then, the support P(B) of S
is expressed as

P(B) = Pi(B) +--- + Pk (B), (3.11)

where the maximum number of reactants that can be selected is constrained to K.

The design variable is denoted by a tuple z = {S, G}. Here, we write the model
in Eq. 3.5 as Y(x) = f(z) = f(S|G) in order to explicitly express that the predicted
property Y is a deterministic function of the reactant S and the reaction network G.
As in our previous studies (Ikebata et al., 2017; Guo et al., 2020), molecular design
based on Bayesian inference is performed based on the target distribution 7 (z), which
is defined on P(B):

m(z) = p(x]Y € U")

p(x,Y € U*)

— p(Y € Ula)pla) (312)
1
z

(_;d(Y(x),U*)> - p(x).

According to Bayes’ law, the posterior distribution m(z) = p(z|Y € U*) is pro-
portional to the joint distribution p(x,Y € U*), which consists of the product
of the likelihood p(Y € U*|z) and prior distribution p(z). The forward model
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forms the joint probability distribution, which is modeled by the Gibbs distribution
p(Y € U|lz) = Lexp (—1d(Y(z),U")), with temperature parameter o > 0. The
normalizing constant Z is the canonical partition function:

Z= Y e (—%d(Y(x),U*))a

YeU=,YgU*

1 1
. = exp <—— X O) + exp (—— X 1) (3.13)
o o
1
=1+exp (——)
o

The prior distribution p(z) is used to narrow down the broad solution space based
on prior knowledge. For example, the prior can be modeled as follows:

o) 115 < P (~) o (). o

The indicator function I(-) takes the value one or zero depending on whether the
designed reactant set S belongs to a subset of purchasable compounds. The second and
third terms on the right-hand side penalize the increasing number of reactants (|.5])
and the size of the designed network (|G|), where 7 and 7" determine the magnitude
of penalties.

By identifying x with a sufficiently high posterior probability, we predict product
P and its synthetic reaction route {S, G} that satisfy design objective U*. However,
computational difficulty here arises from the extremely large search space. The search
space is composed of all combinations of reactants that are purchasable. The number
of candidate reactants is typically of the order O(10°), resulting in the cardinality
of the solution space burgeoning to O(10°*%) when k reactants are involved in the
synthetic route planning. In addition, the network topology to be explored further
increases the size of the search space.

3.4 Sequential Monte Carlo in general

For the main building block of the proposed method, we employed a sequential Monte
Carlo (SMC) algorithm (Del Moral et al., 2006) to draw a promising sample set of
x = {5, G} from the target m(x). Basically, most of the heuristic algorithms can be
incorporated into the proposed method. However, as will be introduced later, the
proposed method uses a real-time procedure to design the synthetic route and SMC
is designed for real-time learning and estimation in dynamic and sequential systems.
This is due to several key characteristics of SMC methods that make them well-suited
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for applications that involve updating estimates as new data becomes available. So
we employ SMC in this study. As mentioned above, because the target distribution
is defined on a large combinatorial space, an ordinary SMC cannot approximate it
adequately. In particular, it is difficult to obtain a diverse set of highly probable
molecules with their reaction routes using such ordinary methods, which will be
demonstrated later. The proposed method, shown in the next section, was developed
as an extension of SMC to overcome the difficulty of combinatorial complexity. To
clarify the design concept of the proposed method, we briefly describe the general
SMC method here.

In conventional SMC, we define an augmented target distribution m(x) using
T auxiliary distributions, m(z¢) (t = 1,...,7), and an arbitrarily chosen initial
distribution 7 (zo):

T

ma(x) = mo(wo) [ [ (). (3.15)

t=1

The augmented variable & = (g, x1,...,2r) consists of T+ 1 auxiliary variables.
The goal of SMC is to efficiently approximate the entire system 74(x) with the
Monte Carlo approximator, successively sampling z; in the order t =0,1,...,7. The
definition of the auxiliary distribution is arbitrary. For example, if the last auxiliary
distribution is defined as the original target w7 (x1) = 7(x), we can take a sample set of
7 to obtain an approximate distribution. Alternatively, all T" auxiliary distributions
mi(x1) ..., mp(z7) can be set to be identical to the target m(x). In this case, all
samples of x1, ...,z can be used for the approximate inference. The essence of SMC
methodology is to be able to use any sequence of auxiliary distributions to efficiently
obtain random samples from the intractable target distribution. As a constraint to be
satisfied, it is imposed that the last auxiliary distribution is consistent with the target
distribution.

To derive the sampling algorithm, we rewrite the augmented distribution in Eq.
3.15 as

a(@) = moan) [[{ ="Aoo (316)

1 Tl ) w1 (Te1)

The conditional probability distribution n(x¢|x;_), called the proposal distribution,
determines the transition process from z; ; to x;. Assume that we currently have
a sample set {z! ,|i = 1,...,m} of x;_; that follows m;_;(x;_;). This set defines a
Monte Carlo approximation of m;_;(z;—1) as

Foo1(zy) = % Z Iz =2t ) (3.17)
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The indicator function I(-) takes the value one if the argument is true; otherwise, it
takes zero. The purpose of each step of SMC is to derive a conversion from 7y_1(x;_1)
to () based on the form in Eq. 3.16. To be specific, consider the following recursive
formula derived by substituting the approximate distribution 7t;_1(x;_1) into Eq. 3.16:

) = {0 oo

n $t|$t—1)7Tt—1(!Et—1)

Lo (3.18)
= EZw(xt]zi_l)n(xﬂx;_l) (t=1,...,7).
i=1

Based on this form with the given 7;_;(z;_1), we generate a sample set {zi|i =

1,...,m} of z; from ;(x;) by performing the sampling importance resampling

(SIR) method (Rubin, 1988) with the importance weight given by w(zzi ;) =

T ”t)(:t)l( —- The algorithm starts with an initial sample set {afli=1,...,m} ~
t—1)Tt—1(Ty_1

mo(xo) and repeats the following steps for t =1,...,T":

(1) Draw a particle z! from the proposal distribution n(z|z! ;) for each of i =
1,...,m.

(2) Calculate the importance weight w(zt|z¢_;) to obtain the approximate distribu-
tion as

ST $t|$t 3 Zw wilat ) (x; = 2t). (3.19)
i= i=1

m(zy) =

(3) Resample {zi|i = 1,...,m} with probability proportional to w(z}) to renew the
m samples as following an empirical distribution @,(z,) = = > " I(x, = x})
with the equal weight as in Eq. 3.17.

In step 1, the previous sample set is tentatively replaced with a new one according to
the proposal distribution n(z|z!_ ;). The proposal distribution is designed to search
a neighboring area of the currently obtained x! | with a certain probability and to
search a still unexplored region with the remaining probability. This strikes a balance
between exploitation and exploration. In step 2, we calculate the importance weight
representing the goodness-of-fit of the proposed xi. Finally, in step 3, we determine
the survival or death of ¢ according to the importance weight. The SMC is essentially
equivalent to a genetic algorithm.

As shown later, the simple SMC performs very poorly in our molecular design task.
The support of the posterior distribution is extremely large; moreover, the promising
solution sets are widely scattered in the huge support. Because conventional SMC
cannot cope with the target task, we developed an extended method following the
SMC framework.
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Chapter 4

Proposal

4.1 Recurrent design algorithm for synthetic reac-
tion networks

Here, we begin by depicting the key idea of the recurrent design technique for reaction
networks following the example shown in Figure 4.1. Note that for any reaction
network, the final product at the root node has two reactants in its parent nodes.
We consider that at each step of SMC, denoted by ¢, only the two reactants of the
final product are explored. In the forward cascade model Y = h o g(S|G), only the
single-step reaction Sy + S5 — P is considered as G, and the two reactants {5, Sa}
are selected from the original set B of commercial compounds and an additional set
7, 1 containing all intermediate products computationally synthesized until step ¢ — 1.
Let By = BUZ;_; be the expanded set of candidate reactants and let x; = {S1, S2}
be the auxiliary variable at t. Then, the auxiliary distribution m;(z;) is defined as

() o< exp (—%d(Y(xt), U*)) where Vo, € By x B, : Y(z,) = hor(S). (4.1)

Unlike the general form in Eq. 3.5, the forward model Y (x;) = h o r(S) represents
only the single-step reaction model r(S), and consequently the auxiliary distribution
7 () is a function of two reactants only. Nevertheless, the model is able to represent
general reaction networks by selecting the already calculated intermediate products
contained in B;, to which their reaction networks are implicitly assigned.
Specifically, we proceed with the following SMC procedure. In step t — 1, a sample
set {z!_,|i =1,...,m} of reactant set z;_; is obtained, and a new set {xi|i = 1,...,m}
is generated using the proposal n(z|x;_1), where each x; is sampled from ;. Here, all
newly generated products P, = r(z}) (i = 1,...,m) are added to the set of candidate
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reactants in the next step, as follows:
Bt+1 :BtU{Pl,...,Pm}. (42)

Thus, the support B; of the auxiliary distribution constitutes a sequence of increasing
sets as

B=By,CB, C---CBr_y CBr. (4.3)

At each step, the reactants are sampled from the auxiliary distribution 7 (z;)
defined on B; x B; following the procedure described above. After calculating the
predicted products P; = r(z}) using the single-step reaction model and predicted
properties Y; = h o r(z}), and calculating the importance weights, resampling is
performed to determine the survival or death of xi. Because the solution space for
each t is restricted to the support of two reactants B; x B;, no combinatorial explosion
occurs. Additionally, as t increases, the network topology that can be represented by
B; increases monotonically. In principle, if ¢ approaches infinity under the use of a
proper proposal distribution, then B; can represent any network topology. We call this
method the Bayesian sequential stacking algorithm, which describes the process of
constructing a reaction network by recurrently stacking single-step reactions (Figure
4.1).

For the proposal n(z¢|x;_1), we employ a mixture model such that a neighboring
reactant of each in z;_; is selected from B; with probability «, and with probability
1 — a, x; is chosen completely at random from B; x B; in order to obtain a renewed
x¢. Probability « is a hyperparameter that controls the trade-off between “exploita-
tion” and “exploration”. The “exploration” creates a mechanism that enhances the
diversity of solutions. The problem we face here is the computational cost of the
neighborhood search. The set of candidate reactants B; grows monotonically with
each step. Calculating the similarity between all entries in {z!_;|i = 1,...,m} and
the monotonically increasing B; at every step is quite time-consuming. Therefore, we
introduce a method to reduce the computational complexity, as described below.

The initial set B of commercial compounds is divided into K clusters according to
the pattern of the chemical structures. First, the chemical structure S is transformed
into a descriptor vector ¢(.S) of length 3239 with the concatenation of RDKit fingerprint
(Landrum et al., 2006) (length 2048), MACCS (Molecular ACCess System) keys
(Durant et al., 2002) (length 167), and Morgan fingerprint (Morgan, 1965) of radius 2
(length 1024). Then, generative topographic mapping (GTM) is applied (Bishop et al.,
1998), which is a well-established integrated method of dimensionality reduction and
clustering, in order to obtain a unique mapping from vectorized chemical structures
to class labels as

k= k(S) = k(6(S)) where k € {1,...,K}. (4.4)
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Thus, an arbitrary compound set can be partitioned into K disjoint clusters (Figure
4.2).

Using a trained GTM, candidate reactants that are newly added to B, ; are
sequentially grouped into each of the K predefined clusters C,i_l (k=1,...,K). Here,
R € C;, denotes an element of cluster k£, where the cluster members vary with step
t; here, we omit the subscript indicating the dependence of the cluster on t. The
model ng(x¢|z:—1) for the neighborhood search in the proposal distribution selects
wy = {514, Sz} with equal probability from cluster R € Cys,,_,) (i = 1,2) to which
each reactant S; ;1 or Sp,;_; in x;_; belongs. The explicit form of the probabilistic
model can be expressed as

2 K I1(Si,t€Ch(s; 4_1))
mtade =TT () . (4.5

=1 k=1

For the model corresponding to “exploration”, we sample a candidate from B; with
equal probability. In summary, the proposal distribution is given by the two-component
mixture distribution as

2 1 (Si’tGBt)
o) =amledocn + -0 I (1) - (46)
i=1 t

The first and second terms function as the “exploitation” and “exploration” mecha-
nisms, respectively. Note that the number of clusters K in GTP can also be interpreted
as a hyperparameter that determines the trade-off between exploitation and explo-
ration in SMC. When the number of clusters is increased, the homogeneity of molecules
within a cluster increases. Therefore, the similarity of the candidate molecules gener-
ated from the proposal distribution will also increase. This corresponds to placing
a higher weight on the exploitation mechanism. Conversely, when the number of
clusters is small, the probability of being replaced by a candidate molecule with a
large structural difference tends to increase.

4.2 Acceleration techniques

Here, we consider the problem of slow computation of the deep neural network for
the reaction prediction. In this study, we used Molecular Transformer developed by
Schwaller et al. (2019) for the forward prediction of a single-step reaction. In our test,
a single-step reaction prediction of m = 500 particles using Molecular Transformer
required 25-40 seconds on average on a Linux server with an NVIDIA V100 GPU.
When the number of steps was set as T" = 5000, the total runtime of the reaction
prediction exceeded 56 hours.
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We therefore used a computationally light surrogate model Y = d(S) that directly
predicts property Y from a given set of reactants S without going through the reaction
prediction to generate the product. The chemical structure of each reactant in S was
converted into a binary vector of length 3239 by concatenating the Morgan fingerprint
with radius 2 and bit length 1024, the MACCS keys, and the RDKit fingerprint.
The intersection of the binary vectors for the two reactions in S was then taken to
obtain a single-descriptor vector. From the United States Patent and Trademark
Office (USPTO) open chemical reaction dataset (Lowe, 2017), which contains 1.1M
reactions, we selected a subset of 492k reactions that involve exactly two reactants.
We then substituted the selected reactant pairs in Molecular Transformer to obtain
their products and calculated their model properties Y using the property predictor h.
The gradient boosting regressor (Schapire & Freund, 2013) was then trained to learn
the mapping from S to Y using 80% of the 492k instances as the training set. For
hyperparameter tuning, using 20 candidate values for the learning rate, 15 for the max
depth, and 10 for the number of estimators, we performed 10-fold cross-validation
looped within the training set and selected the optimized hyperparameters attaining
the smallest mean absolute error (MAE). In the calculation of the importance weights
in the SMC module, the surrogate Y (z;) = d(S) was used instead of Y (z;) = hor(S).
Samples drawn from the proposal distribution at each step of the SMC were handed
over to the validation module with Molecular Transformer r and property predictor h
for the exact calculation of their synthetic products and resulting properties.

We also considered a technique for parallel computing, wherein the entire algorithm
was divided into two modules: SMC and the aforementioned validation calculation
of products and properties using the forward models. The SMC module sequentially
feeds the reactants sampled at each step into the module of the forward model.
The forward-prediction module calculates the synthetic products and properties of
the received reactants and adds the calculated products to the pool of candidate
reactants in the SMC module. These two units carry out the computation of the
reactant sets flowing from the different steps of SMC. The two modules perform their
tasks simultaneously once the data exchange is complete, synchronizing the timing
of the data exchange, as schematically described in Figure 4.3. The SMC module
proceeds with its calculation as ¢t = 0, 1, ... without any suspension (top row in Figure
4.3). In contrast, the forward-prediction module is subject to an idle state. Once
the calculation of one step of the SMC is completed, the set of reactants produced
there is handed over to the module for the forward calculation in an idle state. The
forward-prediction module then calculates the predicted products using Molecular
Transformer, which are sent back to the SMC module. Once the data transfer is
completed, the forward-prediction module returns to the idle state and waits to receive
the next reactant set. In the example shown in Figure 4.3, we assume that the SMC
module is approximately 1.5 times faster than the forward-prediction module. In this
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case, three forward-prediction modules are allocated to different processing units in
order to reduce the idling time as much as possible.

Reactant set Search for single-step
reaction

Sampling .
S

Add to the reactant set

Sampling

t>0 B, = m I::> m

Figure 4.1: Design of synthetic reaction networks using the SMC calculation based
on sequential stacking algorithm. In the current step, all sampled reaction networks
and their products are added to the reactant pool in the next step. By searching for
single-step reactions from this expanding pool of reactants, the network can be built
up recursively.

4.3 Summary: Bayesian sequential stacking algo-
rithm for molecular design

The proposed molecular design algorithm is summarized in Algorithm 1. The overall
workflow consists of two modules: SMC and calculation of the forward model. The
SMC module performs posterior sampling of the single-step reactions using the current
pool B, of the candidate reactants. The sampling calculation consists of (1) resampling
based on the goodness-of-fit of the current set of reactants, (2) updating the set of
hypothetical reactants based on the proposed distribution, and (3) calculating the
goodness-of-fit importance weights. All reactant sets generated from the proposal
distribution are handed over to the forward model module to generate the predicted
products and characterize their properties. All the products generated in this module
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Query reactant Neighbor

Unique mapping to clusters
GTM: 2 = k(S)

‘@0 00 | o
® |® |eoe

Pre-defined clusters

Random sampling
with equal probability

Figure 4.2: Efficient sampling scheme to generate structurally similar reactants based
on pre-partitioning of the reactant space. Using a pretrained GTM, any query reactant
is uniquely mapped to a cell or cluster to which similar reactants belong. A structurally
similar reactant of the query compound can be obtained by sampling the instances in
the cell with equal probabilities.

sMc ‘ t=1 H t=2 H t=3 H t=4 H t=5 H t=6 H t=7 ‘
Forward model unit 1 ‘ t'=1 idle ‘ t=4 idle t=7
Forward model unit 2 ‘ t'=2 idle ‘ =6 idle

idle

Reactants Products and properties

Forward model unit 3

Figure 4.3: SMC algorithm using asynchronous parallel computation. The SMC
module proceeds without any suspension (top row). Once the calculation of one step
of the SMC is completed, the set of reactants produced there is handed over to the
module for the forward calculation in an idle state. The forward-prediction module
then calculates the predicted products using Molecular Transformer, which are sent
back to the SMC module. Once the data transfer is completed, the forward-prediction
module returns to a idle state and waits to receive the next reactant set.

are successively added to the pool of candidate reactants B; in the SMC module. The
monotonically growing reactant pool B; contains the intermediate products calculated
from the reaction prediction model. Therefore, throughout the search for single-step
reactions in SMC, reaction networks with various structures can be constructed by
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sampling and stacking intermediate products for which their reaction networks have
already been calculated. The computational complexity of the neighborhood search
owing to the monotonic growth of B; is suppressed by pre-clustering the set of reactants
using the GTM. In summary, the algorithm is based on four ideas: (1) the recurrent
algorithm for the network search, which is based on the sequential expansion of the
reactant pool, (2) the avoidance of the neighborhood search from large reactant pools
using GTM clustering, (3) efficient computation of the forward cascade model using a
surrogate model, and (4) the asynchronous parallel computation algorithm.

Algorithm 1 De novo design of functional molecules and their synthetic routes
Initialize commercially available compounds B = {S;,...Sy}

Initialize intermediate products Zy = {}

Initialize auxiliary distribution mo(xo),

Initialize number of SMC steps T

Initialize number of particles m

Initialize surrogate forward-prediction model d

Do in multiprocess

SMC Forward prediction
1: fort+<+ 1to T do 1: =0
2: Bt BUZ, 2: fort' + 1toT do
3: Xe={} 3: Wait for X,/
4: for i < 1 to m do 4 Assign Xy to a processing unit
5: Draw zi from n(z¢|zi_;) 5 for 2%, in X,/ do
6: X+ XU {zi} 6: Predict product Pti, = r(xi,)
7 Predi_ct _surrogate  property Y = 7. Predict property y;l, = h(Pti,)
d({51,4>95,:}) 8: end for
8: Calculate the importance weight w(z}) by Y 9: Ty < Iy U{P}li=1,---m}
9: Resample z from ¢ () 10: Pass Z;s to the SMC module.
10: end for 11: end for
11: Pass Xy to the forward-prediction module.
12: end for

Output: {2{|Y/ e U*t=0,---T;i=1,---m}

4.4 Software and potential applications

The analyses shown later can be performed using the Python package Seq-Stack-
Reaction (Zhang, 2022), which we have made available online under the license BSD
3-Clause (bsd, 1999). Seq-Stack-Reaction can be installed with Conda (ana, 2020).
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Users can plug-in any model for property and synthetic reaction predictions. The
list of commercial compounds and the maximum number of reaction steps can also
be specified arbitrarily. In the latest version, reactions with a variable number of
reactants, such as one- and two-component systems, can be incorporated into the
design calculations. In a parallel computing environment, the asynchronous parallel
search algorithm can be executed by specifying an option. Additionally, a visualization
of the predicted synthetic pathway network of the excavated products is implemented.

In the following, we show an example of applying Seqg-Stack-Reaction to the
design of drug-like molecules. However, the present method can be applied to general
molecular design tasks in materials research. To demonstrate the versatility of the
proposed method, as an additional example, the GitHub website provides a sample
dataset and Python scripts to design lubricant molecules by following the task designed
in (Kajita et al., 2020). As the target property, we choose the viscosity index (VI)
that indicates the temperature sensitivity of viscosity. To maintain stable machine
operations, oil with a high VI value is required by machinery equipment. Because
the VI is known to underestimate the viscosity susceptivity of low-viscosity oils, a
complementary index called the dynamic viscosity index (DVI) was also added to
the design goal. Using a structure-property dataset obtained from all-atom classical
molecular dynamics simulations in (Kajita et al., 2020), we predicted the VI and DVI
from the chemical structure of any given lubricant molecule. Its inverse map was
then computed to identify highly viscous molecules with their synthetic pathways
that could be designed from a given set of reactants.
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Chapter 5

Experiments

The predictive and computational performances of the proposed method were evaluated
using an application example that involved designing drug-like molecules. In particular,
we constructed several variants of the Bayesian molecular design algorithms by
combining the four constituent mechanisms described in the previous section, and
compared their performance to quantitatively investigate their individual contributions
to the overall scheme.

5.1 Target properties

As target properties Y = h(P), we considered the following two physicochemical
properties that quantitatively express the drug-likeliness of a designed molecule P.

e QED The quantitative estimate of drug-likeness (QED) quantifies drug-likeness
as a score ranging between 0 and 1 (Bickerton et al., 2012). QED was modeled
on a dataset of 771 known oral drugs using eight descriptors, including molecular
weight, polar surface area, and number of hydrogen bond donors and acceptors.
The higher the QED value, the more drug-like the molecule is judged to be.
The target range of the QED was set to be greater than 0.8.

e logP The octanol-water partition coefficient logP is defined as the normal
logarithm of the ratio of the concentrations of molecules in the organic and
aqueous layers at equilibrium. According to Lipinski’s rule of five (Lipinski
et al., 1997), the target range of logP was defined as not exceeding 5.

Computational models of these two properties are implemented in the modules of
RDKit (Landrum et al., 2006).
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5.2 Reaction prediction

As a forward response prediction model P = ¢(.S), we employed Molecular Transformer
(Schwaller et al., 2019), which is known to be a standard model. This attention-based
neural translation model defines a translation between the SMILES strings of reactants
and their products. For simplicity, reagents were removed from the model input.
SMILES strings for multiple reactants were input into the model as separated by
periods “.”. The SMILES strings were all canonicalized using RDKit. The inputs were
tokenized with the regular expression according to the original paper of Molecular
Transformer.

The model was trained from scratch using 80% of the training instances randomly
selected from the 500k recorded reactants and products in the USPTO dataset (Lowe,
2012). The top 1 prediction accuracy of the trained model for the remaining data
reached 78.2%, which is comparable to the accuracy reported in previous studies (Guo
et al., 2020; Pesciullesi et al., 2020).

5.3 Surrogate models

We applied gradient boosting regression to construct surrogate models that predict the
two target properties from a set of two reactants without going through the prediction
of synthetic products using Molecular Transformer. We randomly selected two pairs of
492K reactants from USPTO, generated their products using Molecular Transformer,
and calculated their QED and logP. The resulting set of 394K samples was used to
train the surrogate models for QED and logP. The R? values for predicting QED and
logP for the 98K additional test samples were 0.78 and 0.86, respectively.

5.4 Commercial compounds

We used a subset of the Enamine building block catalog global stock as the set of
commercially available reactants by which virtual molecules are synthesized (ena,
2020). This set, consisting of 150K unique building blocks, was narrowed down by
Gottipati et al. (2020) to those applicable to one or more rules in a template-based
reaction prediction model. The design task is to identify the synthesizable products
in this reactant set and to meet the required properties. The Enamine reactant set
was also used to train the GTM model as well. Each reactant was transformed into
a binary vector of length 3239 concatenated with the Morgan fingerprint of radius
2 and bit length 1024, the MACCS key, and the RDKit fingerprint. A total of 441
predefined clusters were used in the similarity-based SMC proposal.
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5.5 Sequential Monte Carlo

As explained previously, the proposed method was designed based on four ideas.
To investigate the contribution of each idea to the overall performance, we imple-
mented the five variants listed in Table 5.1: (1) SMC-RECUR-GTM-SR-PL, (2)
SMC-RECUR-GTM, (3) SMC, (4) Random, and (5) Random-RECUR. The meanings
of the abbreviations attached to each method are as follows:

¢ RECUR Recurrent design technique for the reaction networks
e GTM The use of the 441 GTM clusters in the similarity-based proposal

e SR Surrogate models for the direct prediction of QED and logP

PL Asynchronous parallel computing of the SMC and reaction prediction
modules

For the vanilla SMC in (3), only single-chain synthetic reactions with the number
of steps fixed at n € {1,2,3} were considered. For example, in the case of n = 2,
we considered only the cascade-type reactions as Si1 + S12 — P, P + So1 — Py
and searched for three reactants S = {511, S12, 521} that synthesize product P = P,
satisfying the property requirements. For “Random” in (4), a completely random
search for two reactants was conducted for the single-step reaction Si; + S1o — P;.
The variant “Random-RECUR” in (5) represents an integrated method of random
search and recursive network design algorithm.

The experimental conditions were set to be common to the five variants: for SMC
and Random search, the number of iterations was set to 7" = 10000, the number
of particles was set to m = 500, for SMC, the exploration—exploitation trade-off
parameter of the proposal distribution was set to o = 0.8, indicating a 20% chance of
making an exploratory search.

5.6 Computational environments
The experiments were carried out on an NVIDIA DGX STATION with 4 Tesla V100

and Intel Xeon E5-2698 v4 CPUs.

5.7 Results

After the experiment, we compared the five methods listed in Table 5.1. As mentioned
above, for the vanilla SMC, the design of the single-chain reaction routes was tested
under three different step sizes n € {1,2,3}. Therefore, seven methods were included
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Table 5.1: Five different algorithms to be evaluated for the performance test. The
abbreviations are explained in the main text.

Method SMC  Network type Parallel

SMC-RECUR-GTM v any -

SMC-RECUR-GTM- v any v

SR-PL

SMC-n v n-step single chain (n € -
{1,2,3})

Random - one-step single chain -

Random-RECUR - any -

in this comparison. Each method was tested in two scenarios. In scenario 1, a
relatively small number of commercial compounds was assumed to be available: the
candidate reactants were generated by randomly sampling 10k of the 150k Enamine
compounds available for purchase. In scenario 2, all 150k compounds were used to
design the molecules.

First, we report the results of scenario 1. As a performance measure, we simply
considered the number of unique designed molecules that reached the target property
range. Figure 5.1 shows the evolution of the number of unique hit molecules at each
step of the sequential calculation. Unsurprisingly, the two random search algorithms
were clearly less efficient than the others. For SMC-1 and Random, whose design
space is restricted to single-step reactions with two reactants, the number of hits
decayed as the number of search steps increased. This means that the limited design
space consisting of two combinations of at-most 10k commercial compounds can be
adequately covered by the naive algorithms. In contrast, for the vanilla SMC with two-
and three-step reactions (SMC-2, SMC-3) and the recurrent algorithms to explore
arbitrary reaction networks (SMC-RECUR-GTM, SMC-RECUR-GTM-SR-PL), the
number of hit molecules at each step remained constant, and no decay trend was
observed for 7" = 10000. This observation confirms that the search space for general
reaction design is quite large. In the comparison between SMC-RECUR-GTM and its
extended version, SMC-RECUR-GTM-SR-PL with the surrogate models shows that
the number of hits of the latter is slightly lower than that of the former. This is a
natural consequence because the surrogate models involve approximation errors.

Figure 5.2 shows the evolution of the cumulative number of unique hit molecules
that reached the target region against the number of steps. The left panel shows the
cumulative number of hits as a function of the total number of molecules generated.
This is a different view of the results in Figure 5.1. It was confirmed that SMC-RECUR-
GTM is the most efficient method to find molecules hidden in the target region. It
was also confirmed that SMC-RECUR-GTM-SR-PL has a reduced hit rate due to
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SMC-RECUR-GTM 100, SMC-RECUR-GTM-SR-PL SMC-1 SMC-2 SMC-3 Random Random-RECUR

s

Number of unique hit molecules

Number of steps

Figure 5.1: Number of design molecules reaching the target property range at each
step for scenario 1 where the number of commercially available reactants is limited
to 10K. The correspondence between the seven methods and their labels is shown in
Table 5.1.

the use of the surrogate models involving approximation errors, as mentioned above.
Vanilla SMC-2 and SMC-3 also consistently found the target molecules. This suggests
that it is difficult to fully cover the large design space with as few as T' x m = 500000
search trials. The right panel in Figure 5.2 shows the cumulative number of hits per
step as a function of execution time (right panel). In terms of computational cost,
the parallel recursive molecular design algorithm SMC-RECUR-GTM-SR-PL with
the surrogate models showed by far the highest search efficiency.

1e6 1e6

12] —— SMC-RECUR-GTM
SMC-RECUR-GTM-SR-PL
—— SMC-1
—— SMC-2
SMC-3
Random
Random-RECUR

—— SMC-RECUR-GTM
SMC-RECUR-GTM-SR-PL
—— SMC-1
—— SMC-2
SMC-3
Random
Random-RECUR

°

Cumulative number of hits
Cumulative number of hits

100 300000 400 000 700000

Total number of molecules Execution time (second)

Figure 5.2: Cumulative number of hit molecules in scenario 1 where the number of
commercially available reactants is limited to 10K. The left and right plots show the
cumulative number of hits as a function of the total number of molecules generated
and the execution time (CPU time), respectively.

With regard to the results for scenario 2: The number of hit molecules at each step
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(Figure 5.3) and the cumulative number of hits (Figure 5.4) were significantly lower
for the two random searches, as in scenario 1. In contrast to the results of scenario 1,
SMC-1 and Random, whose design space was restricted to single-step reactions with
two reactants, did not show any decay in the number of hit molecules throughout
all steps. This observation indicates that, as the number of commercial reactants
increases, the design space becomes much larger, even for single-step reactions. Among
the methods other than the random searches, no significant difference was found in
the evolution of the number of hit molecules and the cumulative number. However,
similar to the results of scenario 1, SMC-RECUR-GTM-SR-PL showed by far the
highest search efficiency in terms of the number of hit molecules per execution time
(right panel in Figure 5.4). From a practical point of view, search performance against
execution time is considered the most important criterion. Therefore, we conclude
that SMC-RECUR-GTM-SR-PL is superior in terms of the evaluation criteria for
detecting the number of unique molecules.

SMC-RECUR-GTM SMC-RECUR-GTM-SR-PL SMC-1 SMC-2 SMC-3 Random Random-RECUR

Number of unique hit molecules

" Number of steps
Figure 5.3: Number of design molecules reaching the target property range at each
step for scenario 2 where all 150K commercial compounds were used in the design.

We then performed a quality assessment based on the structural diversity and
novelty of the generated hit molecules and their coverage against existing molecules
synthesized so far. Specifically, we assessed the coverage and novelty of the 300K
hypothetical molecules that reached the target region in scenario 2 against a hit
compound set extracted from the organic compound database ChEMBL (Gaulton
et al., 2017) as follows:

(1) The set of hit compounds, denoted by A, was obtained by calculating the two
properties of 127k compounds registered in the ChEMBL.

(2) Let B be the set of 300K hit virtual molecules generated in scenario 2.

(3) Evaluate the similarity between the compounds in A and B using the Tanimoto
coefficient of the ECFP fingerprint descriptor (radius 2, bit length 2048).

(4) Set the threshold values of the Tanimoto coefficient as v € {0,0.1, ..., 1}.
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le6
—— SMC-RECUR-GTM
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SMC-3

Random
Random-RECUR

—— SMC-RECUR-GTM
SMC-RECUR-GTM-SR-PL
SMC-1
SMC-2
SMC-3
Random
Random-RECUR

Cumulative number of hits
Cumulative number of hits

°
X

0
1e6
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Figure 5.4: Cumulative number of hit molecules in scenario 2 where all 150K commer-
cial compounds were used in the design. The left and right plots show the cumulative
number of hits as a function of the total number of molecules generated and the
execution time (CPU time), respectively.

(5) Coverage: Calculate the percentage of molecules in A with a similarity greater
than ~ to those in B.

(6) Novelty: Calculate the percentage of molecules in B with a similarity smaller
than v to those in A.

(7) Vary the threshold 7 from 0 to 1, and draw a curve representing the balance
between coverage and novelty (CN curve), as in Figure 5.5.

The CN curve shows an upward or downward convex pattern depending on the
inclusive relationship of the distributions of A and B. Ideally, a set of reasonably
novel and diverse molecules should be generated, while maintaining a high coverage
to existing molecules. This corresponds to a situation in which the distribution
of B encompasses A. In such a case, the CN curve deviates slightly from the 45°
line and shows an upward convex pattern. For this criterion, SMC-RECUR-GTM,
SMC-RECUR-GTM-SR-PL, and Random-RECUR, showed better properties than the
others (Figure 5.5). When the threshold of Tanimoto similarity was set to v > 0.7,
the coverage and novelty of SMC-RECUR-GTM and SMC-RECUR-GTM-SR-PL
were both approximately 0.3 and 0.8, respectively.

Note that the SMC-3 showed a significantly lower novelty than the others. As the
search space grows, the ordinary SMC is more likely to get trapped in local solutions,
making it more difficult to escape from them in a finite run time. The increase in the
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number of steps in the single-chain reaction from two to three caused the SMC to
significantly degrade in performance.

1.0 4 —— SMC-RECUR-GTM
SMC-RECUR-GTM-SR-PL
—— SMC-1
—— SMC-2
0.8 SMC-3
Random
——— Random-RECUR

0.2 1

0.0 4

0.0 0.2 0.4 0.6 0.8 1.0

1 - coverage

Figure 5.5: 1-coverage (horizontal axis) and novelty (vertical axis) of the set of
designed virtual molecules with respect to existing molecules in ChMBLE, which is
drawn as a function of varying thresholds of Tanimoto similarity. The circle represents
the coverage and novelty when the similarity threshold is set to 0.7.

Table 5.2 provides a summary of the performance comparison between the proposed
method (SMC-RECUR-GTM and SMC-RECUR-GTM-SR-PL) and eight commonly
used molecular generators: SMILES-LSTM (Segler et al., 2018a), Character VAE
(CVAE) (Gémez-Bombarelli et al., 2018), Grammar VAE (GVAE) (Kusner et al.,
2017), GraphVAE (Simonovsky & Komodakis, 2018), Junction Tree Autoencoder
(JT-VAE) (Jin et al., 2018), Constrained Graph Autoencoder (CGVAE) (Liu et al.,
2018), Molecule Chef (Bradshaw et al., 2019), and DoG-Gen (Bradshaw et al., 2020).
Here, we have reported six performance metrics (validity, uniqueness, quality, novelty,
FCD, and synthetic accessibility score) as a common benchmark proposed by Brown
et al. (2019) that were reported in the previous studies:

e Validity Proportion of generated molecules that can be parsed by RDKit

e Uniqueness Proportion of unique molecules that can be parsed by RDKit
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e Novelty Proportions of molecules that are different from the training instances

e Quality Compound quality measurements, a rule set is employed to decide
whether compounds can be included in high throughput screening

e FCD Fréchet ChemNet distance between generated molecules and a predefined
set of existing molecules

e SA score The synthetic accessibility (SA) score (Ertl & Schuffenhauer, 2009)

Note that these reported values were calculated on different tasks in the different
studies. Although the result cannot be used to discuss superiority or inferiority based
on performance values, it is confirmed that the performance values achieved by the
proposed method are at almost the same level as those of the related methods.

To evaluate the synthesizability of the designed molecules, we used the SA score,
which takes values from 1 to 10, with higher values indicating more difficult to
synthesize. To distinguish between compounds that are easy and difficult to synthesize,
a threshold value of 6.0 has empirically been used. Using RDKit, we calculated the
SA score for 20K molecules randomly selected from the hit compounds of SMC-
RECUR-GTM-SR-PL. Their histogram is shown and compared with one of the
existing molecules in ChEMBL in Figure 5.6. Most SA scores are concentrated at 3.2,
indicating that their distribution is not significantly different from that of previously
synthesized molecules.

Histogram of synthetic accessibility

o
o)
!

Designed molecules
Existing molecules

Proportion of molecules

o o o =] o =]

N w B w [=)] ~
"

IS4
—

0.0

Synthetic accessibility

Figure 5.6: Histograms of SA scores of hit compounds obtained from the proposed
method and existing molecules in ChEMBL.
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Table 5.2: Validity, uniqueness, quality, FCD, and the mean of the average SA score of
the hit compounds generated from the proposed method and the performance values
of other methods reported in previous studies. Note that the reported values were
obtained from different tasks and experimental conditions.

Method Task Validity =~ UniquenessNovelty — Quality FCD SA
SMC-RECUR- QED, logP 100.0 97.6 98.9 86.78 0.78 3.27
GTM
SMC-RECUR- QED, logP 100.0 98.7 98.7 86.16 0.77 3.27
GTM-SR-PL
DoG-Gen (Brad- Structural fea- 100.0 97.7 88.4 101.6 0.45 3.31
shaw et al., 2020) tures, physico-

chemical prop-

erties, etc.
SMILES LSTM serotonin 94.8 95.5 74.9 101.93 0.46 3.14
(Segler et al., receptor,
2018a) plasmodium

falciparum,

and Staphylo-

coccus aureus
CVAE (Gémez- QED, SA 96.2 97.6 76.9 103.82 0.43 3.22
Bombarelli et al., score
2018)
GVAE (Kusner logP 74.4 97.8 82.7 98.98 0.89 2.98
et al., 2017)
GraphVAE  (Si- QM9 (Ra- 42.2 57.7 96.1 94.64 13.92 3.29
monovsky &  makrishnan
Komodakis, 2018) et al., 2014)

and ZINC

(Irwin et al.,

2012)
JT-VAE (Jin logP 100.0 99.2 94.9 102.34 0.93 3.32
et al., 2018)
CGVAE (Liu QED 100.0 97.8 97.9 45.64 14.26 3.19
et al., 2018)
Molecule  Chef QED 98.9 96.7 90.0 99.0 0.79 3.25

(Bradshaw et al.,

2019)
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Here, we remark on the chemical validity of the predicted reaction networks. To
see this, three examples of predicted reaction networks are shown in Figures 5.7-5.9,
which were drawn with the Seq-Stack-Reaction library. Each reaction in the three
reaction pathways was assessed by our expert chemist, in which unknown reagents
and reaction conditions were inferred based on expert knowledge. The validity was
classified into one of {1,2,3} as follows: 1, feasible with suitable catalysts and/or
reagents; 2, difficult to react due to low reactivity or other factors; 3, infeasible.
Detailed explanations have been provided in the figure captions. The rationale for
each scoring is given in the figure captions. Overall, half of the predicted reactions are
considered possible; the remaining reactions are considered less reactive or infeasible.

Further, the SA score was used to evaluate the synthesizability of an intermediate
and final product in each reaction step. According to this evaluation criterion,
most of the products on the designed network were judged to be synthesizable.
However, it should be noted that the SA score is a measure of the synthesizability
of a product molecule and does not evaluate the feasibility of each reaction. In
fact, although the three reaction networks contained apparently infeasible reaction
steps, the synthesizability of their intermediate products was determined to be high
according to the SA scores. The accuracy of the forward reaction predictor will have
to be greatly improved in order to stably present a chemically valid synthetic reaction
network. Therefore, while the current methodology is useful as a decision-support
tool to encourage expert ideas, it cannot be used for predictive models such as those
implemented in fully automated chemical synthesis.

For further validation, it is necessary to develop methods and platforms to system-
atically evaluate the properties of designed molecules and the feasibility of designed
synthetic pathways. The computation of molecular property characterization and
synthetic reactions using quantum chemical methods is extremely time-consuming;
therefore, the implementation of a high-throughput evaluation system is quite chal-
lenging. The establishment of a systematic validation method is an important issue
for future research.
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Figure 5.7: A synthetic reaction network consists of 5 single-step reactions (1)—(5).
The SA scores are given to the intermediate and final products. The validity of each
reaction was classified into one of {1,2, 3} as follows: 1, feasible; 2, difficult to react
due to low reactivity or other factors; 3, infeasible. (1) This reaction is feasible with a
suitable reagent that hydrolyzes the upper reactant to alcohol, the reaction between
the alcohol and sulfonyl chloride (R—SO5—Cl) is often used in the synthesis of sulfonate
esters (R-SO9—OR’). (2) This is infeasible because the methyl group cannot be found
in the reactants. (3) The lower reactant is an «, f-unsaturated carbonyl, which is
susceptible to attack by nucleophiles such as an amino group at the S-carbon. (4) This
would be difficult, considering the general reaction of sulfonate esters, CHoC(=0)CHj
is released from the sulfonate ester. The CHyC(=0)CH3 and CH3S0, in the lower
reactant may undergo a substitution reaction with some catalysts, but in this case,
the number of carbons in the product is incorrect. (5) The reaction sites are saturated
C-C bonds, which generally exhibits low reactivity.
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Figure 5.8: A synthetic reaction network consists of 4 single-step reactions (1)—(4). (1)
The reaction sites are saturated C—C bonds, which generally exhibits low reactivity.
(2) This reaction is feasible by using Fe catalysts that can dechlorinate chlorobenzene.
In this reaction, the upper reactant is not necessary. (3) This reaction is feasible by
using reagents that can release NHy anion from the upper reactant. The NHy anion
can substitute for the OH group in the lower reactant by Sx2 reactions because the
NH, anion has higher nucleophilicity than OH anion, and chiral inversion occurs in
the product. (4) The reaction is difficult to proceed. This product can be synthesized
from iodomethane and the lower reactant.
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Figure 5.9: A synthetic reaction network consists of 5 single-step reactions (1)—(5).
(1)-(2) Diazo transfer reactions. Reactants with an azide group (-N3) generally exhibit
low reactivity for diazo transfer reactions. CF3S0-Nj3 is commonly used as an azide
reagent in diazo transfer reactions. (3) The azide reagents (upper reactant) and acyl
chlorides (R-C(=0)Cl in the lower reactant) can undergo the Curtius rearrangement,
leading to isocyanates (R-NCO). However, this reaction is incorrect because the
Curtius rearrangement should convert the acyl chloride group in the lower reactant to
the isocyanate group. (4) The acyl bromide group (C(=0)-Br) in the upper reactant
can undergo nucleophilic attack from the secondary amine group in the lower reactant,
leading to the amide group (R-NC(=0)-R’) in the product. (5) This is feasible with
a suitable reagent that hydrolyzes the lower reactant to the secondary amine. The
amines and isocyanates react to produce the urea product (R-N-C(=0)-NH-R’).
Note that in this case, reaction (4) is not necessary because the final product can be
synthesized from the isocyanate reactant (the upper reactant in reaction (5)) and the
lower reactant in reaction (4).
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Chapter 6

Conclusions and future works

6.1 Limitation

In this study, we put forth a set of novel ideas aimed at addressing a crucial issue in
the domain of molecular design. However, it is important to acknowledge that our
proposed method is not devoid of limitations, which warrant careful consideration. One
of the limitations is the Molecular Transformer, Molecular Transformer is contingent
upon the availability and quality of the training data. This model excels in situations
where the input data closely resembles the molecular structures it has been trained
on. This limitation is inherent in its training paradigm, as it learns patterns and
relationships from a specific dataset. Consequently, the model’s performance might
falter when confronted with molecules that exhibit structural variations or features
outside the scope of its training data.

Another significant limitation pertains to the cumulative accuracy of reaction
prediction. Given that the predictive performance of the one-step reaction prediction
model is not flawless, the repeated utilization of this model along an extended
reaction pathway introduces the potential for error accumulation. Consequently, this
cumulative error poses a significant challenge, ultimately resulting in the generation
of infeasible final product outcomes.

Moreover, there is a challenge in the validation step. In our pursuit of refining
the accuracy and reliability of our molecular design process, we engaged chemists to
provide expert judgments on each individual step. Their extensive domain knowledge
and expertise play a crucial role in evaluating the feasibility, efficiency, and practicality
of the proposed molecular designs. This collaborative approach represents an effort to
bridge the gap between machine-generated suggestions and human intuition, leveraging
the strengths of both sides. However, it’s important to acknowledge that while
chemists’ insights are invaluable, conducting systematic validation can be challenging.
The complexity of molecular interactions, the vastness of chemical space, and the
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intricacies of reaction mechanisms all contribute to the intricacy of the validation
process. While chemists’ assessments offer qualitative feedback, a more quantitative
and comprehensive validation framework is required to ensure the robustness and
accuracy of our molecular designs.

6.2 Future works

Up until this point, our focus in this endeavor has primarily centered on specific
aspects of molecular design, notably excluding catalysts and reaction conditions. Ac-
knowledging the pivotal role that catalysts and reaction conditions play in influencing
the outcome of chemical reactions, we recognize the potential benefits of integrating
these factors into our molecular design framework. Recent advancements in the field
have demonstrated that harnessing this additional information can yield more refined
and contextually relevant molecular designs. In light of this, our future trajectory
involves incorporating catalysts and reaction conditions into our design process to
extract enhanced insights and produce more effective solutions.

Moreover, extending the scope of our proposed method, we envision its application
in the generation of polymer libraries. As part of our research initiatives, our team
has been diligently developing a rule-based polymer generator (Ohno et al., 2023
in press). This work aims to enhance the diversity and versatility of polymers that
can be synthesized for various applications. The proposed method in this paper is
expected to make full use of the new polymer generator.

6.3 Summary

We present a machine-learning methodology and a general-purpose Python library
for the simultaneous design of molecules with desired properties and their synthetic
reactions with any network topology. Our methodology involves constructing a forward
model using synthetic reaction prediction models and property prediction models
as building blocks. The forward model predicts the properties of the final products
that result from a given reaction network and reactant set. We then obtain the
inverse mapping based on a Bayesian inference framework to simultaneously identify
a reaction network, its constituent reactant sets, and the final products that satisfy
arbitrary target properties. The reactant set is selected based on a combination of
predefined commercial compounds. The design space for our methodology consists of
arbitrary reaction networks and reactant sets, which are very large. Therefore, we
developed a sequential Monte Carlo algorithm incorporating a recurrent algorithm
for the network search. This algorithm was designed to efficiently explore the design
space and identify high-quality virtual molecules that meet the desired properties. We

49



6.3. SUMMARY

conducted performance tests to assess the ability of our algorithm to find high-quality
virtual molecules. The quality of the designed molecules was evaluated based on
their reproducibility and novelty with respect to previously synthesized molecules.
Our algorithm successfully generated high-quality virtual molecules that are both
reproducible and novel with respect to previously synthesized molecules. We developed
a distributed Python library for our machine learning methodology, which provides an
interface that allows users to plug in arbitrary reaction prediction models, property
prediction models, and a set of commercial compounds. The library is designed to be
modular and extensible, allowing users to easily add their own models and compounds.
It also includes a set of pre-trained models for reaction and property prediction,
which can be used out-of-the-box for many applications. The library is expected to
facilitate the widespread use of our methodology in practical applications. The use of
machine learning in molecular design has shown great promise in recent years. Our
methodology provides a flexible and efficient approach to the simultaneous design of
molecules and their synthetic reactions. Our approach is particularly advantageous for
large and complex design spaces, where traditional methods may be impractical. Our
methodology also provides a useful tool for discovering novel molecules with desired
properties, which can have important applications in drug design, materials science,
and many other fields.

Although machine learning-based research for molecular design and synthetic
pathway design has been actively pursued in recent years, most such studies have
worked independently on the two subjects so far. Thus, research on the simultaneous
design of functional molecules and synthetic pathways has not progressed significantly.
In particular, few general-purpose libraries are currently available. The aim of this
study was to develop a generic methodology and tools to link these two subjects. We
believe that this milestone has been achieved.
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