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Subgraph—based Machine Learning for Graph Generation
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Designing de novo molecules for drugs and materials with desired properties is a
highly challenging task due to the combinatorial problem of finding desired graphs.
Molecules are essentially represented as graphs with node and edge attributes. In
contrast, such graph structure of chemical compounds makes it challenging to generate
valid molecules with the desired biochemical activity or property. Several methods have
been proposed to tackle this problem of molecular graph generation. Recent advanced
approaches to finding drug-candidate molecules have employed deep generative models.
The basic idea of using generative models is to learn the latent representation of
molecules, which enables latent vectors to be reconstructed and explore molecules that
satisfy target properties in the learned latent chemical space. Exploration methods
such as Bayesian optimization are used to search the latent chemical space. However,
it is fundamentally difficult to reconstruct molecular graphs from the latent space and
search for molecules with the desired property by extrapolation from a training dataset,
as a large part of the latent space represents invalid molecules. Furthermore, there is
another problem when using graph neural networks (GNNs) for embedding graphs and
surrogate models for predicting target properties. Many proposed GNN models are
based on message passing algorithms, which is the fundamental approach to extracting
features of subgraph structures by aggregating information in neighboring nodes. This
operation is related to the Weisfeiler-Lehman graph isomorphism test for discerning
whether two graphs are isomorphisms. When the number of message-passing iterations
increases, the problem has been reported that GNNs fail to represent node features in
graphs. It is a critical problem when incorporating GNNs into graph generation
algorithms.

This thesis consists of four chapters. In the first chapter of this thesis, we state the
outlines of the preliminary graph theory and the peripheral areas to understand graph
generation molecular graphs. Graph theory is indispensable for representing graphs
appropriately. Graph generation covers a broad range of machine learning topics: deep
generative models for generating data, graph kernels and graph neural networks for
predicting target properties, and reinforcement learning for generating graphs to guide
with target properties.

In the second chapter of this thesis, we state the molecular graph generation
algorithm based on subgraphs. We propose a novel method called the MOLDR

(MOLecular graph Decomposition and Reconstruction) algorithm to generate molecular



graphs by combining subgraphs mined from molecular graph datasets by using the
subgraph mining algorithm and searching molecules with target properties via Monte
Carlo tree search and reinforcement learning. Our method can generate molecules
maximized with respect to logP and QED (Quantitative Estimation of Druglikeness)
that are used as benchmarks for molecular generation. In contrast to deep generative
models, MOLDR can generate molecular graphs directly so that the generating process
1s highly interpretable when evaluating the generative path.

In the third chapter of this thesis, we investigate how the subgraph features from
message passing affect graph classification and regression. This is also highly related
to generating graphs with desired properties because when generating graphs, it is
necessary to prepare for some objective function to maximize or minimize target
properties, which is basically a surrogate model, that is, a property prediction function
trained on a graph dataset. Our main contributions are that the WL kernel outperforms
the performance of classification and regression over the most fundamental graph
neural networks inspired by message passing schemes, such as graph convolutional
networks (GCNs) and graph isomorphism networks (GINs). We also investigate the
effect of a bigger size of subgraph structures by increasing the number of message
passing iterations. The performance of the WL kernel does not deteriorate even if the
message passing iteration increases. In contrast, the performance of GCNs and GINs
deteriorate due to a large number of parameters to train and ill-trained previous
features.

In the final chapter, we summarize our contributions to this dissertation and discuss
future work of molecular graph generation. Although MOLDR can generate molecules
with maximized target properties, we need to investigate further the strengths and
weaknesses of MOLDR on other benchmark datasets. MCTS needs more rollout to
search molecules, so we need to speed up searching and apply another reinforcement

learning with parallel computations to MOLDR.
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