

Subgraph-based Machine Learning for

Graph Generation

Masatsugu Yamada

Doctor of Philosophy

Department of Informatics

School of Multidisciplinary Sciences

The Graduate University for Advanced Studies, SOKENDAI

September 2023

A dissertation submitted to Department of Informatics

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

Advisory Committee

Assoc. Prof. Mahito SUGIYAMA National Institute of Informatics,

The Graduate University for Advanced

Studies, SOKENDAI

Prof. Takeaki UNO National Institute of Informatics,

The Graduate University for Advanced

Studies, SOKENDAI

Prof. Katsumi INOUE

National Institute of Informatics,

The Graduate University for Advanced

Studies, SOKENDAI

Prof. Ken SATOH

National Institute of Informatics,

The Graduate University for Advanced

Studies, SOKENDAI

Assoc. Prof. Hiroko SATOH

University of Zurich,

Research Organization of Information and

Systems, ROIS

Acknowledgements

I want to express my gratitude to many individuals, institutions, and the company
who contributed in many different ways to support me.

First and foremost, I want to express my sincere gratitude to my supervisor,
Assoc. Prof. SUGIYAMA Mahito for continuous support and invaluable advice
on my research. It would have been impossible to finish my dissertation without
his persistent help. He gave lectures on graph kernel, graph mining and mindsets
towards research. I am greatly thankful for all that and his supports in the course.

Besides, I wish to acknowledge the rest of my Ph.D. committee: Prof. UNO
Takeaki, Prof. INOUE Katsumi, Prof. SATOH Ken, and Assoc. Prof. SATOH
Hiroko and RIKEN AIP Dr. TAKIGAWA Ichigaku for their insightful and helpful
comments. In addition, my special thanks are due to secretary TOKUDA Hiroko
for helping me with many things, such as procurement of supplies, accounting
procedures, etc.

I am grateful to my ex-managers and ex-colleagues at AGC Inc., Innovative
Technology Laboratory. I want to express my sincere gratitude to AGC for
supporting me when I worked at the time. In particular, a team leader TODORIKI
Hiroshi, managers, KITAYAMA Daisuke, and MINAMI Takuya allowed me to
take a Ph.D. and allocate extra time for studying while working in the company.

I would like to thank all the members in Sugiyama laboratory, ABE Hiroto,
MUHAMMAD Masykur, MIZUGUCHI Makoto, MATSUE Kiyotaka, LUO
Simon Junming, CHEEMA Prasad, PÂRT, ACHI Profir-Petru, AHMED Md.
Sohel, GHALAMKARI Kazu, KANOH Ryuichi, KAWAKAMI Yuhi, ISHIZAKI
Ryunosuke, MARUYAMA Yuichi. They gave me a lot of invaluable advice in the
Lab seminar and Lunch seminar.

Last but not least, I am grateful to my family for supporting me through my life.

Masatsugu Yamada
September 2023

3

Abstract

Graph-structured data are ubiquitous in the real world, ranging from social networks,
supply chains, and transportation networks to bio and chemo-informatics. There
are various graph machine learning tasks to analyze graph datasets. Some examples
of graph machine learning tasks include link prediction, node classification, graph
embedding, graph regression, and graph classification. More and more algorithms
have been proposed in order to achieve these tasks. Especially in the case of
chemo-informatics domain, molecules can be represented as graphs, and various
methods to embed molecular graphs into latent space have been proposed to analyze
molecular properties and similarity between molecules. It is essential to learn
the representation of graph structures and generate novel molecules with desired
properties demanded in drug discovery and material science. However, generating
graphs with desired properties is highly challenging due to the combinatorial
optimization problem, satisfying the strict condition of the definition of graphs.
As for the case of image generation, deep generative models such as Generative
Adversarial Networks (GANs) and Variational Autoencoders (VAEs) are often
employed, and the generated image does not need to be reconstructed pixel by pixel
rigorously. In graph generation tasks, however, although generative models are also
often used, if the generated graph has a different bit in the adjacency matrix, the
graph would be completely different from the original graph to reconstruct. This is
because, especially in a molecular graph, it is not likely to satisfy the definition of
molecules because the node (atom) must have a limited number of edges (degree)
according to the atom types. For example, if an atom is a carbon, the number of
degrees in the node of interest must be up to four, and the generated graph from a
deep generative model often violates the rule.

In the first chapter of this thesis, we state the outlines of the preliminary graph
theory and the peripheral areas to understand graph generation, particularly molec-
ular graphs. Graph theory is indispensable for representing graphs appropriately.
Graph generation covers a broad range of machine learning topics: deep generative
models for generating data, graph kernels and graph neural networks for predicting
target properties, and reinforcement learning for generating graphs to guide with
target properties. We also state the representation of molecules as strings and

4

5

graphs. String notation of molecules helps treat the chemical structures and is also
helpful for applying natural language processing techniques.

In the second chapter of this thesis, we state the molecular graph generation
algorithm based on subgraphs. We propose a novel method called the MOLDR
(MOLecular graph Decomposition and Reassembling) algorithm to generate
molecular graphs by combining subgraphs mined from molecular graph datasets by
using the subgraph mining algorithm and searching molecules with target properties
via Monte Carlo tree search and reinforcement learning. Our method can generate
molecules maximized with respect to logP and QED, which are used as benchmarks
for molecular graph generation. In contrast to deep generative models, MOLDR can
generate molecular graphs directly so that the generating process is interpretable
when evaluating the path.

In the third chapter of this thesis, we investigate how the subgraph features from
message passing affect graph classification and regression. This is also related to
generating graphs with desired properties. This is because when generating graphs,
it is necessary to use some objective function to maximize or minimize target
properties, which is basically a surrogate model, that is, the property prediction
function, trained on a graph dataset. Most proposed graph neural networks are
based on a message passing scheme, aggregating the features in neighboring nodes.
This operation is similar to the Weisfeiler–Lehman graph isomorphism test for
discerning whether or not two graphs are isomorphism. The algorithm is related to
focusing on the subgraph structure through a message passing scheme. Our main
contributions are that the WL kernel outperforms the performance of classification
and regression over the most fundamental graph neural networks inspired by
message passing schemes, such as graph convolutional networks (GCNs) and graph
isomorphism networks (GINs). We also investigate the effect of a bigger size of
subgraph structures by iterating the number of message passing schemes. The
performance of the WL kernel does not deteriorate even if the message passing
iteration increases. In contrast, the performance of GCNs and GINs deteriorates
due to the large number of parameters to train and ill-trained previous features.

In the final chapter, we summarize our contributions to this dissertation and
discuss future work of molecular graph generation and the problem between
molecular graph generation and the objective function of GNNs with the larger
number of message passing iterations. Although MOLDR can generate molecules
with maximized target properties, we need to investigate further the strengths
and weaknesses of MOLDR on other benchmark datasets. MCTS needs more
rollout to search molecules, so we need to speed up searching and apply another
reinforcement learning with parallel computations to MOLDR.

Contents

1 Introduction 13
1.1 Background . 13
1.2 Graph theory . 14
1.3 Graph Kernels . 15

1.3.1 Vertex Histogram Kernel 16
1.3.2 Weisfeiler–Lehman graph kernel 16
1.3.3 Extend connectivity Fingerprints 19

1.4 Molecular Graphs and SMILES 19
1.5 Graph Neural Networks . 20
1.6 Reinforcement Learning . 22

1.6.1 Policy Gradient . 23
1.6.2 Proximal Policy Optimization 23

1.7 Generative Models for Molecular Graph Generation 24
1.8 Our Contributions . 26

2 Molecular Graph Generation 28
2.1 Introduction . 28
2.2 Related works . 30
2.3 The Proposed Algorithm: MOLDR 31

2.3.1 Problem Setting . 31
2.3.2 Graph Decomposition via Frequent Subgraph Mining . . . 31
2.3.3 Graph Reassembling from Frequent Subgraphs 34
2.3.4 Finding Candidate Subgraphs by Monte Carlo tree search . 35

2.4 Experiments . 36
2.4.1 Results of log P and QED 39

2.5 Single-objective optimization . 43
2.6 Multi-objective optimization . 43

2.6.1 Results of GuacaMol . 46
2.7 Conclusion . 49

6

CONTENTS 7

3 Substructure-based Machine Learning 50
3.1 Introduction . 50
3.2 Methods for Graph Machine Learning 52

3.2.1 Notation . 52
3.2.2 The Vertex Histogram Kernel 52
3.2.3 The Weisfeiler–Lehman Kernel 52
3.2.4 Graphlet kernel . 53
3.2.5 Graph convolutional neural networks 53
3.2.6 Graph Isomorphism Networks 54
3.2.7 Special case of GIN (Pre-fixed GCN) 55
3.2.8 Measuring Transition of Node Features 56

3.3 Experiments . 56
3.3.1 Experimental Setting . 56
3.3.2 Results and discussion 58

3.4 Conclusion . 62

4 Summary and Future works 71
4.1 Summary . 71

4.1.1 Molecular Graph Generation 71
4.1.2 How Graph Features from Message Passing Affect Graph

Classification and Regression 72
4.2 Future Works . 73

A Update Process of MOLDR 74
A.1 Merge Nodes and Edges . 74
A.2 MOLDR with reinforcement learning 75
A.3 How to select molecules . 75

B Experimental results for GNNs on another dataset 79

List of Figures

1.1 An undirected graph and an undirected hypergraph. Left: An
undirected graph that has 4 vertices and 4 edges. Right: An
undirected hypergraph that have 4 vertices and 3 edges. An edge
𝑒1 is overlapped with half-toned. Edges 𝑒1 and 𝑒2 are duplication
of vertices (𝑣1, 𝑣3), but can have different edge labels. 15

1.2 An undirected graph and its corresponding junction tree. Left: An
undirected graph with a cycle that has 6 vertices and 6 edges. Right:
A junction tree that has 4 cliques encircled with blue. Intersection
in the junction tree is colored with orange. Graphs and trees can
be converted interchangeably. 16

1.3 Weisfeiler–Lehman procedure. Given two graphs 𝐺 and 𝐺′, after
second iteration, new labels of 𝑣0 and 𝑣′0 become different. 17

1.4 New node labels after 1st iteration in WL. These subgraphs are
enumerated and counted in the end. 18

1.5 The notation of a graph and its SMILES of aspirin. Left: A
molecular graph and its SMILES. Right: The lookup table for
SMILES. The vertical axis shows the characters in SMILES, and
the horizontal axis shows the position of SMILES. 20

1.6 Circular fingerprints and Neural graph fingerprints (source: [Rogers
and Hahn, 2010a]). Left: The algorithm of Circular Fingerprints
(ECFPs). The main difference of WL is after mod operation.
Right: Neural graph fingerprints use a nonlinear function to embed
subgraphs into latent spaces. 21

1.7 The diagram of environment interaction in reinforcement learning. 23
1.8 A junction tree generated by VAE. Left figure shows the generated

junction tree. Right figure shows that the number of each node
corresponds to substructures. 25

1.9 An example of assembling process. The label encoder outputs the
log-likelihood of reassembled molecules. 25

8

LIST OF FIGURES 9

2.1 An example of gSpan applied to two molecular graphs under support
2. In support 2, all subgraphs are enumerated in a lexicographical
order. 32

2.2 An example of directly applying gSpan to molecular graphs. The
enumerated subgraphs include truncated structures of molecules.
Chemical properties such as ring of benzene are completely ignored
and more graphs are mined through gSpan. 33

2.3 Reassembling two molecules with nodes (a) or edges (b). (a) shows
merging with nodes labeled as C. (b) shows merging with edges in
rings. In this examples, reassembled molecules are sanitized to be
valid molecules. 35

2.4 The molecular generation via MCTS. Subgraph structures are
selected based on the PUCT scores in Equation (2.1). After
reassembling molecules, a new graph is selected based on the
highest score of a target property. 36

2.5 Examples of extracted substructures sorted by the score of QED.
ZINC 250k molecules are decomposed into junction trees, frequent
subtrees are enumerated by gSpan, and they are reconstructed
into molecules by ISMAGS. These substructures become building
blocks for molecular reassembling. 40

2.6 Comparison of Top 1 QED molecules in MOLDR, ZINC, GCPN. 41
2.7 Generated molecules based on ZINC dataset by MOLDR+PPO

with penalized log 𝑃 and QED scores. 41
2.8 Top 5 samples of generated molecules optimized penalized log P

and QED respectively by using MCTS. 41
2.9 Generated molecules by MOLDR+MCTS with their QED scores.

The score of QED is high for these molecules because the properties
of each molecule lie within the condition in Table 2.5. 43

2.10 Generated molecules with log 𝑃 = 8.0 44
2.11 Distribution of generated compounds for optimizing both QED and

SA in the multi-objective task on the GuacaMol dataset. 45
2.12 Distributions of training sets in GuacaMol and ZINC dataset, and

generated molecules. Molecules are mapped into vectors using
Mol2vec, and then we apply t-SNE dimensionality reduction for
visualization. 47

2.13 Generating process of Troglitazone rediscovery. The number under
the molecules denotes the similarity score between a generated
molecule and target. MOLDR can generate Troglitazone in 8 steps. 48

2.14 Generating process on Celecoxib rediscovery. 48

LIST OF FIGURES 10

3.1 Classification results of GCNs on bio-informatics datasets. X-axis
shows the number of convolutional layers (the number of message
passing). Blue bold line shows the average of accuracy evaluated
in 10-fold cross validation and the filled area shows the standard
deviation. 63

3.2 Classification results of GINs on the bio-informatics dataset. . . . 64
3.3 Classification results on social network datasets. 65
3.4 Classification results of the WL kernel on Bio-informatics datasets. 66
3.5 Classification results on social network datasets. 66
3.6 Accuracy and loss on MUTAG dataset. 67
3.7 Accuracy and loss on NCI1 dataset. 68
3.8 An example of transition of node features on MUTAG dataset.

Each curve represents the averaged node feature value in a graph at
each iteration step. 68

3.9 An example of transition of node features on NCI1 dataset. Each
curve represents the averaged node feature value in a graph at each
iteration step. 69

3.10 Regression results of SVR using node features learned from GCNs.
Left plots show SVR results using features produced from each
GCNs layer and right plots show SVR results using concatenating
features. 70

A.1 Procedure of merging node between two graphs. Left figure shows
the two graphs represented by one graph. Red rectangle encircling
(𝐹, ∗) is merged from dotted reg rectangle encircling (∗, ∗). Right
figure shows the result of reassembling two graphs. After merging
nodes, the bits written in red number is added into adjacency matrix
and the index of merged node ∗ is removed from row and column. 75

A.2 Procedure of merging an edge between two graphs. Left figure
shows the two graphs represented by one graph. Red rectangle
encircling 𝐶6, 𝐶7 is merged from dotted reg rectangle encircling
𝐶0, 𝐶1. Right figure shows the result of reassembling two graphs.
After merging edges, the bits written in red number is added into
adjacency matrix. 76

A.3 Troglitazone rediscovery with MOLDR when generating success-
fully. The value under molecules is similarity score between a
generated molecule and target molecule. Gradually molecules are
reassembled and generate the final product. 77

LIST OF FIGURES 11

A.4 Training results of MOLDR with random select when reassembling
molecules. Expanding path is selected through PPO where the
policy network is either LSTM (red) or MLPs (blue). In the left
figure, vertical axis shows the episode length. The middle figure
shows the maximum reward in the episode. Right figure shows
reward mean of episode. 77

A.5 Training results of MOLDR with the maximum score selection.
Expanding path is selected through PPO where the policy network
is MLPs. 78

A.6 Troglitazone rediscovery with MOLDR under the PPO + maximum
reward selection. 78

B.1 GCN: Accuracy and loss on DD dataset. 80
B.2 GIN: Accuracy and loss on DD dataset. 81
B.3 GCN: Accuracy and loss on PROTEINS dataset. 82
B.4 GIN: Accuracy and loss on PROTEINS dataset. 83
B.5 GCN: Accuracy and loss on PTC dataset. 84
B.6 GIN: Accuracy and loss on PTC dataset. 85
B.7 GCN: Accuracy and loss on IMDBBINARY dataset. 86
B.8 GIN: Accuracy and loss on IMDBBINARY dataset. 87
B.9 GCN: Accuracy and loss on REDDITBINARY dataset. 88
B.10 GIN: Accuracy and loss on REDDITBINARY dataset. 89

List of Tables

2.1 Comparison of frequent subgraph enumeration with or without
junction trees. 40

2.2 Comparison of the top 3 property scores of generated molecules.
Scores for ORGAN, JT-VAE, and GCPN are from [You et al., 2018].
The score of penalized log 𝑃 is normalized in the ZINC dataset. . . 42

2.3 Distribution benchmarks at 10k molecules on GuacaMol dataset. . 46
2.4 Goal Directed benchmarks . 47
2.5 Details of top molecules in terms of QED. 49

3.1 Statistics of benchmark datasets. 62
3.2 Classification accuracy of 10-folds cross-validation on Bio-informatics

datasets. 63
3.3 Classification accuracy of 10-folds cross-validation on social net-

work datasets. 64
3.4 RMSE of holdout validation (training 70% test 30%). "-" denotes

that a model can not be trained properly under this hyperparameter. 65

12

Chapter 1

Introduction

1.1 Background
Designing de novo molecules for drugs and materials with desired properties is
a highly challenging task due to the combinatorial problem of finding desired
graphs. Molecules can be essentially represented as graphs with node and edge
attributes. Hence, graph mining methods and graph machine learning have been
applied for this task and enumerating substructures in molecules. In order to
discover drug candidates, one of the most fundamental approaches is using the
quantitative structure-activity relationship (QSAR), a mathematical model to explain
relationships between biological activities and the structural properties of molecules.
A QSAR model is often used to do high-throughput screening of molecules. It
is helpful to search within the dataset researchers possess and the molecules they
come up with. However, to design new molecules, there needs to solve an inverse
problem of QSAR models, and it is challenging to solve the optimization problem
because a QSAR model is trained with molecular descriptors computed from graph
structures, such as the molecular weight (sum of the node features in a graph
(each atomic weight in a molecule)). After converting graphs into descriptors, the
information on graph structure is lost. Hence, the optimization through the QSAR
model results in optimized descriptors and cannot generate graphs directly. Several
methods have been proposed to tackle this problem of molecular graph generation.
Recent advanced approaches to finding drug-candidate molecules have employed
deep generative models. The basic idea of using generative models is to learn the
latent representation of molecules, which enables latent vectors to be reconstructed
and explore molecules that satisfy target properties in the learned latent chemical
space. Exploration methods such as Bayesian optimization are used to search
the latent chemical space. However, it is fundamentally difficult to reconstruct
molecular graphs from the latent space and search for molecules with the desired

13

CHAPTER 1. INTRODUCTION 14

property by extrapolation from a training dataset, as a large part of the latent space
represents invalid molecules. There is another problem when using graph neural
networks (GNNs) for embedding graphs and surrogate models for predicting target
properties. Many proposed GNN models are based on message passing algorithms,
which is the fundamental approach to extracting features of subgraph structures
by aggregating information in neighboring nodes. This operation is related to
the Weisfeiler-Lehman graph isomorphism test for discerning whether two graphs
are isomorphisms. When the number of message-passing iterations increases, the
problem has been reported that GNNs fail to represent node features in graphs. It is
a critical problem when incorporating GNNs into graph generation algorithms for
learning the representation of graph structures and estimating the reward function
that maximizes a target in reinforcement learning. This first chapter states the
fundamentals of graphs and machine learning for molecular graphs and the methods
to generate and search methods to obtain molecular graphs with desired properties.

1.2 Graph theory
First, we define terminology and notation of graphs necessary for explaining graph
generation and graph machine learning.

A graph is a tuple 𝐺 = (𝑉, 𝐸), where 𝑉 and 𝐸 denote the set of nodes
𝑉 = {𝑣1, 𝑣2, . . . , 𝑣𝑛} and edges 𝐸 = {𝑒1, 𝑒2, . . . , 𝑒𝑚}, respectively. Edges are a
tuple of neighboring nodes (𝑣𝑖, 𝑣 𝑗). The number of vertices and edges of 𝐺, the
cardinality of 𝑉 and 𝐸 , are represented as |𝑉 | and |𝐸 |, respectively. Nodes and
edges can have labels (attributes) via label functions 𝑙𝑉 : 𝑉 → Σ𝑉 for nodes and
𝑙𝐸 : 𝐸 → Σ𝐸 for edges with some label domain Σ𝑉 and Σ𝐸 , which can be any
set such as Z and R𝑑 . A labeled graph is a triple 𝐺 = (𝑉, 𝐸,L), where L is the
set of node label and edge label obtained from 𝑙𝑉 and 𝑙𝐸 respectively. For two
graphs 𝐺 = (𝑉, 𝐸) and 𝐺′ = (𝑉 ′, 𝐸′), we say that 𝐺′ is a subgraph of 𝐺, denoted
by 𝐺′ ⊑ 𝐺, if 𝑉 ′ ⊆ 𝑉 and 𝐸′ ⊆ (𝑉 ′ ×𝑉 ′) ∩ 𝐸 .

Two nodes 𝑣𝑖 and 𝑣 𝑗 in a graph 𝐺 are adjacent if an edge 𝑒𝑖 𝑗 = (𝑣𝑖, 𝑣 𝑗) exists in
a graph. The neighboring information of a graph is represented by an adjacency
matrix. The adjacency matrix 𝐴 ∈ R|𝑉 |×|𝑉 | of a graph is defined as

𝐴𝑖 𝑗 =

{
1 if (𝑣𝑖, 𝑣 𝑗) ∈ 𝐸,

0 otherwise.
(1.1)

The set of neighbourhood nodes with respect to a vertex 𝑣𝑖 is denoted by
N(𝑣𝑖) = {𝑣 𝑗 | (𝑣𝑖, 𝑣 𝑗) ∈ 𝐸}. A degree or valency of node 𝑣𝑖 in a graph 𝐺 is the
number of neighboring nodes, which is defined as

deg(𝑣𝑖) = |N (𝑣𝑖) |. (1.2)

CHAPTER 1. INTRODUCTION 15

Figure 1.1: An undirected graph and an undirected hypergraph. Left: An undirected
graph that has 4 vertices and 4 edges. Right: An undirected hypergraph that have
4 vertices and 3 edges. An edge 𝑒1 is overlapped with half-toned. Edges 𝑒1 and 𝑒2
are duplication of vertices (𝑣1, 𝑣3), but can have different edge labels.

A generalization of graphs is called a hypergraph 𝐻 = (𝑋, 𝐸), where 𝑋 is a set
of vertices and 𝐸 is hyper edges that have multiple edges rather than single pare of
nodes (𝑣𝑖, 𝑣 𝑗). Examples of a graph and a hypergraph are shown in Fig. 1.1. The
left graph in the figure shows a simple graph 𝐺 = (𝑉, 𝐸) where a set of nodes and
edges are given as 𝑉 = {𝑣1, 𝑣2, 𝑣3, 𝑣4} and 𝐸 = {𝑒1, 𝑒2, 𝑒3, 𝑒4}, and each edge is
a tuple: 𝑒1 = (𝑣1, 𝑣2), 𝑒2 = (𝑣1, 𝑣3), 𝑒3 = (𝑣2, 𝑣3), 𝑒4 = (𝑣3, 𝑣4). The right graph
in the figure shows a hypergraph 𝐻 = (𝑋, 𝐸) defined as 𝑋 = {𝑣1, 𝑣2, 𝑣3, 𝑣4}, 𝐸 =

{𝑒1, 𝑒2, 𝑒3}, and each edge is a set: 𝑒1 = {𝑣1, 𝑣2, 𝑣3}, 𝑒2 = {𝑣1, 𝑣3}, 𝑒3 = {𝑣3, 𝑣4}.
Note that there are two more vertices in an edge 𝑒1. This notation is convenient
when considering graph generation by combining two subgraphs.

A graph can be decomposed into a junction tree composed of the set of subgraphs
or cliques 𝐶. A junction tree T satisfies the following properties:

1. The union of all sets 𝐶1, . . . , 𝐶𝑛 equals to 𝑉 ; that is,
⋃

𝑖 𝐶𝑖 = 𝑉 .

2. For every edge (𝑢, 𝑣) ∈ 𝐸 , there exists 𝐶𝑖 ∈ V such that 𝑢 ∈ 𝐶𝑖 and 𝑣 ∈ 𝐶𝑖.

3. If 𝐶𝑘 is on a path from 𝐶𝑖 to 𝐶 𝑗 in T , 𝑉𝑖 ∩𝑉 𝑗 ⊆ 𝑉𝑘 .

An example of junction tree is shown in Fig. 1.2. A graph 𝐺 is decomposed into
junction tree T . Cliques in𝐺 include four cliques: 𝐶1 = {𝑣1, 𝑣2},𝐶2 = {𝑣2, 𝑣3, 𝑣4},
𝐶3 = {𝑣3, 𝑣4}, and 𝐶4 = {𝑣4, 𝑣5}. Intersection of vertices becomes edges of the
original graph 𝐺 in reconstruction from junction tree. These notation is helpful
when computing marginalization in general graphs in Bayesian networks and
generating graphs being retained with cycles.

1.3 Graph Kernels
The graph kernel is a kernel function that computes the similarity between graphs
by the inner product of features computed from a graph. Many graph kernels

CHAPTER 1. INTRODUCTION 16

Figure 1.2: An undirected graph and its corresponding junction tree. Left: An
undirected graph with a cycle that has 6 vertices and 6 edges. Right: A junction
tree that has 4 cliques encircled with blue. Intersection in the junction tree is
colored with orange. Graphs and trees can be converted interchangeably.

have been proposed to compute the similarity between graphs. A kernel function
𝑘 (𝑥, 𝑥′) is a measure of similarity between 𝑥 and 𝑥′ of features. Every kernel
function must be symmetric about features, that is, 𝑘 (𝑥, 𝑥′) = 𝑘 (𝑥′, 𝑥) and semi-
definite [Vishwanathan et al., 2010]. The feature 𝑓 computed from a graph is
mainly composed of graph specific structures.

1.3.1 Vertex Histogram Kernel
One of the simplest kernels is the vertex histogram kernel that counts the occurrence
of node labels in a graph 𝐺. Let 𝑑 be the number of types of node labels, that
is, 𝑑 = |Σ𝑣 | and assume that Σ𝑣 = {1, 2, . . . , 𝑑} without loss of generality. The
histogram of node labels is 𝑓𝑖 = |{𝑣 ∈ 𝑉 : 𝑙𝑣 = 𝑖}|. As a result the vertex histogram
between 𝐺 and 𝐺′ is defined as

𝑘𝑉 (𝐺,𝐺′) = ⟨f, f′⟩.

The complexity of the vertex histogram kernel is O(|𝑉 |).

1.3.2 Weisfeiler–Lehman graph kernel
In order to take the subgraph structures into account, a number of efficient ways have
been proposed. One of the powerful graph kernels is the Weisfeiler–Lehman subtree
kernel [Shervashidze et al., 2011a], which is based on the Weisfeiler–Lehman test
of isomorphism [Weisfeiler and Lehman, 1968]. Fig. 1.3 shows the procedure of
computing Weisfeiler–Lehman algorithm at the second iteration with respect to
𝑣0 and 𝑣′0. Note that, for simplicity, the compression for relabeling is not shown
in Fig 1.3. Each compressed label is determined after finishing iteration. The

CHAPTER 1. INTRODUCTION 17

Figure 1.3: Weisfeiler–Lehman procedure. Given two graphs 𝐺 and 𝐺′, after
second iteration, new labels of 𝑣0 and 𝑣′0 become different.

WL procedure is to aggregate node labels in the neighboring nodes and count
its occurrence. For example, let us take the node label of 𝑣0 and 𝑣′0. In the first
iteration, the neighboring node of 𝑣0 is 𝑣1, and they are aggregated as a new label
[0, 3]. In order to compress the representation, the new node label is replaced
as 5 := 𝑙 ([0, 3]) in this case. The label of 𝑣′0 is the same with that of 𝑣0 at first
iteration. After completing iteration over entire vertices, new labels in 𝐺 and 𝐺′

are shown in Fig 1.4.
A new label obtained by the WL procedure represents the sub-tree structure

of a graph as shown in Fig 1.4. After iterating this process over and over, final
substructures include duplication and are equal to original structure. At end of the
iteration, feature vector representation is obtained as a series of counts of original
node labels and counts of compressed node labels

𝑘𝑊𝐿 (𝐺,𝐺′) = ⟨𝜙(𝐺), 𝜙(𝐺′)⟩,

where 𝜙 is the vertex histogram of node labels after iteration.

CHAPTER 1. INTRODUCTION 18

Figure 1.4: New node labels after 1st iteration in WL. These subgraphs are
enumerated and counted in the end.

CHAPTER 1. INTRODUCTION 19

1.3.3 Extend connectivity Fingerprints
Extend connectivity fingerprints (ECFPs) are a novel class of topological fingerprints
for molecular characterization [Rogers and Hahn, 2010a]. It is not a rigorous graph
kernel, but it is highly related to the WL graph kernel procedure, so we state the
algorithm in this section. In the section on Graph Neural Networks, we introduce
the neural algorithm extended through graph neural networks.

The algorithm of ECFPs is basically the same process of aggregating neighboring
node labels, such as atom labels. After obtaining a new node label, it is relabeled by
a hash function that converts it to unique integer values to represent the subgraph
structure. In ECFPs, received new labels are divided by the fixed length of the
vector, the fingerprint 𝑆, and the remainder (𝑙𝑣 mod 𝑆) is stored in the index of
𝑆 as a bit that represents the existence of subgraph structures. The algorithm is
shown in the left panel in Fig. 1.6. Counts of bits can be used instead of a bit as
well. This algorithm can compute the fingerprint explicitly, but there is a problem
of bit collision that an index of subgraph structures is duplicated. However, the
subgraphs are different due to the modulo of fixed length.

1.4 Molecular Graphs and SMILES
Molecules can be defined as graphs. Notation of molecular graphs is mainly two
ways. The first one is a string representation called Simplified molecular-input
line-entry system, SMILES [Weininger, 1988]. Atoms are represented by the
standard abbreviation of chemical elements such as carbon as C and nitrogen as N.
Bonds are represented as the symbols, “=” is a double bound, “#” is a triple bond.
Branching is defined in curly parenthesis “()’ as in FC(F)F for fluoroform. Rings
are represented as the number from start and end. For example, the compound
benzene is written as c1ccccc1. If a chemical compound has multiple rings, such as
naphthalene (that has two rings), the two numbers of closure 1 and 2 are needed to
discern each ring, and it is written as c1c2ccccc2ccc1. SMILES can represent the
same molecule in a different notation. In the case of ethanol, it may be written as
CCO and OCC, but in canonical SMILES, ethanol is represented as CCO. Fig 1.5
shows the aspirin as the representation of a graph and SMILES. This SMILES
is not canonical, but the starting point of the vertex begins in O (Oxygen). In
canonical SMILES, aspirin is written as CC(=O)Oc1ccccc1C(=O)O. The one hot
matrix of aspirin can be represented as illustrated in Fig 1.5, and this notation is
helpful to generate SMILES by using a generative model.

CHAPTER 1. INTRODUCTION 20

Figure 1.5: The notation of a graph and its SMILES of aspirin. Left: A molecular
graph and its SMILES. Right: The lookup table for SMILES. The vertical axis
shows the characters in SMILES, and the horizontal axis shows the position of
SMILES.

1.5 Graph Neural Networks
The first concept of graph neural networks (GNNs) are originally introduced by
[Gori et al., 2005, Scarselli et al., 2009] extending recursive neural networks into a
graphs to expressing topological information of graphs. The recursive definition of
node and edge features is adopted to update them through parametric functions.
The first GNNs have some drawbacks about training properly that the function must
be a “contraction map” and many iterations are need to reach a stable state [Zhang
et al., 2018]. In order to overcome this problem, an improvement of GNNs is gated
graph sequence neural networks [Li et al., 2015].

Message passing neural networks are unified forms of most of proposed GNN
variants [Gilmer et al., 2017]. The message passing scheme is basically equivalent
to the WL scheme, that is, it aggregates node features of neighboring nodes. After
aggregating node features, these features are updated as a new message 𝑚

(𝑡)
𝑣 for

a node 𝑣 through the message function 𝑀𝑡 with edge features 𝑒𝑣𝑤 at the 𝑡th WL
iteration round. Hidden features ℎ𝑣 are updated through the vertex update function
𝑈𝑡 . These procedure is defined as

𝑚
(𝑡+1)
𝑣 =

∑︁
𝑤∈N (𝑣)

𝑀𝑡 (ℎ(𝑡)𝑣 , ℎ
(𝑡)
𝑤 , 𝑒𝑣𝑤), (1.3)

ℎ
(𝑡+1)
𝑣 = 𝑈𝑡 (ℎ(𝑡)𝑣 , 𝑚

(𝑡+1)
𝑣), (1.4)

where, in the sum, N(𝑣) denotes the neighbor of 𝑣 in a graph 𝐺. The readout
phase to extract graph features at the final round of message passing 𝑇 is defined as
follows:

�̂� = 𝑅({ℎ(𝑇)𝑣 |𝑣 ∈ 𝐺}), (1.5)
where 𝑅 is some readout function that can be learnable differentiable function. Most
proposed GNNs can be represented as the message passing scheme. For example,

CHAPTER 1. INTRODUCTION 21

Figure 1.6: Circular fingerprints and Neural graph fingerprints (source: [Rogers
and Hahn, 2010a]). Left: The algorithm of Circular Fingerprints (ECFPs). The
main difference of WL is after mod operation. Right: Neural graph fingerprints
use a nonlinear function to embed subgraphs into latent spaces.

Neural Graph Fingerprints [Duvenaud et al., 2015] are related to the procedure of
the circular fingerprints and WL. The difference is shown in 1.6. Main difference
between circular fingerprints and neural graph fingerprints is to embed aggregated
node labels into vectors instead of hashing. After that, the features are updated
through the sigmoid function and allocated the index of vectors. Neural graph
fingerprints can be defined as the message passing framework in the following.

𝑀 (ℎ𝑣, ℎ𝑤, 𝑒𝑤𝑣) = CONCAT(ℎ𝑤, 𝑒𝑣𝑤), (1.6)

𝑈𝑡 (ℎ(𝑡)𝑣 , 𝑚
(𝑡+1)
𝑣) = 𝜎(𝐻deg(𝑣)

𝑡 𝑚
(𝑡+1)
𝑣), (1.7)

𝑅 = 𝑓

(∑︁
𝑣,𝑡

softmax(𝑊𝑡ℎ
(𝑡)
𝑡)

)
, (1.8)

where 𝜎 is the sigmoid function, 𝐻𝑡 is a learned matrix for each timestep 𝑡, and 𝑅

has a skip connections to all previous hidden states ℎ(𝑡)𝑣 .
Recent graph neural networks are unified with the graph networks [Battaglia

et al., 2018]. These GN frameworks are based on building blocks of functions: an
“update” function 𝜙 and three “aggregation” functions, 𝜌. Let the graph features be
u. Three update functions are defined as follows:

e′𝑘 = 𝜙𝑒 (e𝑘 , v𝑟𝑘 , v𝑠𝑘 , u), (1.9)
v′𝑘 = 𝜙𝑣 (ē𝑖, v𝑖, u), (1.10)
u′ = 𝜙𝑢 (ē′, v̄′, u). (1.11)

CHAPTER 1. INTRODUCTION 22

Aggregation functions are defined as

ē′𝑖 = 𝜌𝑒→𝑣 (𝐸′
𝑖), (1.12)

ē′ = 𝜌𝑒→𝑢 (𝐸′), (1.13)
v̄′ = 𝜌𝑣→𝑢 (𝑉 ′), (1.14)

where

𝐸′
𝑖 = {(e′𝑘 , 𝑟𝑘 , 𝑠𝑘)}𝑟𝑘=𝑖,𝑘=1:|𝐸 |, (1.15)

𝑉 ′ = {v′𝑖}𝑖=1:|𝑉 |, (1.16)
𝐸′ = ∪𝑖𝐸

′
𝑖 = {(e′𝑘 , 𝑟𝑘 , 𝑠𝑘)}𝑘=1:|𝐸 | . (1.17)

𝑟𝑘 is the index of the receiver node, and 𝑠𝑘 is the index of the sender node. The 𝜙𝑒

is mapped across all edges, 𝜙𝑣 is mapped across all nodes, and 𝜙𝑢 is mapped across
the entire graph features to compute update the features obtained from aggregation
functions, respectively. The 𝜌 function aggregates each element and reduces it to a
single element as a message. The 𝜌 function must be invariant to permutations;
examples of aggregation functions are summation, mean, maximum etc.

1.6 Reinforcement Learning
Machine Learning has three topics: Supervised learning, Unsupervised learning,
and Reinforcement Learning. In reinforcement learning, the core idea is to make an
agent learning the optimal behavior so as to maximize a numerical reward through
interacting with the environment as shown in Fig. 1.7. The agent interacts an
environment at 𝑡 = 0, 1, At each time step 𝑡, the agent receives a state 𝑠𝑡 and an
immediate reward 𝑟𝑡 . Based on some policy computed from the current state, the
agent takes the action 𝑎𝑡 . As a result, the environment returns the new state 𝑠𝑡+1
and the numerical reward 𝑟𝑡+1. Through this agent-environment interaction, the
agent trains the optimal action so as to maximize the cumulative rewards.

The agent’s policy is denoted as 𝜋(𝑎𝑡 |𝑠𝑡), which is the probability of taking an
action 𝑎𝑡 given the state 𝑠𝑡 . The agents tries to compute actions so as to maximize
the expected reward defined as

𝐺 𝑡 = 𝑟𝑡+1 + 𝛾𝑟𝑡+2 + 𝛾2𝑟𝑡+3 + · · · =
∞∑︁
𝑘=0

𝛾𝑘𝑟𝑡+𝑘+1,

where 𝛾 (0 ≤ 𝛾 ≤ 1) is a discount rate to control how the future reward is weighted.
If 𝛾 is equal to zero, agents take an action based on the immediate reward, not

CHAPTER 1. INTRODUCTION 23

Figure 1.7: The diagram of environment interaction in reinforcement learning.

considering the future rewards. As 𝛾 approaches 1, the agents take future rewards
into account.

Reinforcement learning has been applied to various domains such as game,
robotics, simulation, and chemo informatics. As for molecular graph generation,
model-free and model-based algorithms can be considered because if molecular
graphs are treated as discrete structures instead of graph embedding, model-based
algorithms such as MCTS can be applied to search directly graph structure so
as to satisfy with target properties. In contrast, if graphs are embedded and
generated through graph neural networks and generative models, then model free
algorithms such as Deep Q Network, actor critic and Proximal Policy Optimization
can be applied to search the latent space to generate graphs. In such cases, other
optimization techniques such as Bayesian optimization and meta-heuristics can be
applied to search the latent space as well.

1.6.1 Policy Gradient
Policy gradient methods are computed by differentiating the objective

𝐿PG(\) = Ê𝑡 [log 𝜋\ (𝑎𝑡 |𝑠𝑡) �̂�𝑡],

where 𝜋\ is a stochastic policy function and �̂�𝑡 is an advantage estimator at time
step 𝑡. The expectation Ê𝑡 indicates the empirical average over a finite batch
of samples. A generalized advantage estimator is computed from exponentially-
weighted discounted cumulative average over a reward sequence [Schulman et al.,
2015b]. This algorithm is used for continuous control.

1.6.2 Proximal Policy Optimization
Proximal policy optimization (PPO) is based on trust region policy optimization
(TRPO) methods [Schulman et al., 2015a] to prevent the high variance while

CHAPTER 1. INTRODUCTION 24

learning in policy gradient [Schulman et al., 2017]. The key idea of PPO is using
the clipped surrogate objective as the following:

𝐿CLIP(\) = Ê𝑡 [min(𝑟𝑡 (\) �̂�𝑡 , clip(𝑟𝑡 (\), 1 − 𝜖, 1 + 𝜖) �̂�𝑡)]

𝑟𝑡 (\) =
𝜋\ (𝑎𝑡 |𝑠𝑡)
𝜋\old (𝑎𝑡 |𝑠𝑡)

,

where 𝜖 is a clip parameter. The first term inside the min is conservative policy
iteration [Kakade and Langford, 2002], and the parameter \ of policy is updated
through mini-batch stochastic gradient ascent. The second term modifies the
surrogate objective by clipping the probability ratio, which removes the incentive
for moving 𝑟𝑡 outside of the interval [1 − 𝜖, 1 + 𝜖] [Schulman et al., 2017]. The
PPO also exploits the value function for estimating the cumulative rewards, and
the entropy term for exploration. In the end, the objective considering the value
function and exploration is defined as follow:

𝐿CLIP+VF+S
𝑡 (\) = Ê𝑡

[
𝐿CLIP
𝑡 (\) − 𝑐1𝐿

VF
𝑡 (\) + 𝑐2𝑆[𝜋\] (𝑠𝑡)

]
where, 𝑐1, 𝑐2 are coefficients, and 𝑆 denotes the entropy bonus. 𝐿VF

𝑡 is squared loss
of 𝑉\ (𝑠𝑡) and the target value function.

1.7 Generative Models for Molecular Graph Gener-
ation

In this section, we state the fundamental molecular graph generation model using
Variation Autoencoder and Reinforcement Learning. Later in Chapter 2, we propose
a new method to generate novel molecular graphs using sub-graph mining methods,
Monte Carlo Tree Search (MCTS), and reinforcement Learning.

Chemical VAE Chemical VAE is proposed to generate SMILES using a varia-
tional autoencoder(VAE) [Gómez-Bombarelli et al., 2018]. SMILES representation
is string forms of a molecule. In stead of generating molecules directly, SMILES
can be generated by Chemical VAE. In order to generate SMILES with desired
properties, neural networks are trained jointly with multilayer perceptrons to predict
a desired property values through the continuous representation of molecules
computed from an encoder. After training the generative model, the latent vectors
of molecules with a target property are searched by Bayesian optimization. The
optimized latent vectors are decoded to generate characters of SMILES, and they
are reconstructed into SMILES. However, reconstructing SMILES from characters
is normally highly challenging because the representation pattern of SMILES is
difficult to learn the generalization without considering SMILES grammar rules.

CHAPTER 1. INTRODUCTION 25

Figure 1.8: A junction tree generated by VAE. Left figure shows the generated
junction tree. Right figure shows that the number of each node corresponds to
substructures.

Figure 1.9: An example of assembling process. The label encoder outputs the
log-likelihood of reassembled molecules.

In order to address this problem, the VAE model that generates a grammar rule
instead of characters is proposed [Kusner et al., 2017].

Junction Tree VAE Generating SMILES has another problem when generating
rings. Valid SMILES must be grammar rules. If the character of end points of rings
shifts even by one, the entire SMILES would be invalid. In Fig. 1.5, for example,
in order to reconstruct SMILES from a one hot table, the position of “1” must
be exacted. Junction tree VAE [Jin et al., 2018] is proposed to generate junction
trees and reconstruct molecules by using VAE. The model is composed of two
models: the tree encoder model and the label encoder model in order to overcome
the problem of invalid generating SMILES. Fig. 1.8 shows the generating process of
JT-VAE. The tree autoencoder generates the structure of a junction tree and its node
labels as substructures. The label encoder, which is message passing networks),
trains how subgraph structures (cliques obtained from a junction tree) are combined,
and selects which subgraphs are assembled according to the likelihood shown in
Fig 1.9. In order to generate molecules with desired properties, two latent vectors
in tree encoders and the label encoder need to be searched.

GCPN Graph Convolutional Policy Network for Goal-Directed Molecular

CHAPTER 1. INTRODUCTION 26

Graph Generation (GCPN)[You et al., 2018] is the method to generate graphs
in a node-by-node manner with reinforcement learning. The state of a graph is
computed from graph convolutional networks. Action space is defined as a tuple of
(start node id, end node id, edge type and stop signal). These actions are computed
from MLPs and the policy is optimized by PPO.

1.8 Our Contributions
Generating molecular graphs with desired properties have mainly several challeng-
ing tasks to tackle, as follows:

1. How should molecular graphs be represented and reconstructed from embed-
ding features into the original?

2. How should graph properties, such as whether molecules are toxic or not, be
predicted?

3. How should the molecules with desired properties searched in huge chemical
space?

In Chapter 2, in order to solve the problems of 1 and 3, we propose a new
graph generation algorithm called MOLDR (Molecular graph Decomposition and
Reassembling). This algorithm has two steps and can generate molecules directly
instead of generative models. In the first decomposition step, subgraph structures
are mined by the subgraphs mining algorithm. In the second step, desirable
graphs are searched via Monte Carlo Tree Search and reinforcement learning.
This procedure of decomposition and reassembling enables interpretable graph
generation. The advantage of our method MOLDR is summarized as follows:

• Our method MOLDR explicitly constructs new molecules by combining
substructures of molecules instead of using generative models; hence, its
generation process is interpretable.

• MOLDR can easily generate larger molecules out of distribution in a dataset
by combining subgraph structures.

• Molecules generated by MOLDR are superior to those by the current state-
of-the-art methods in terms of log 𝑃 and QED (drug-likeness).

Next, in Chapter 3, in order to guide the target graph with desired properties, an
appropriate prediction function for the target is needed, and graph neural networks
are often used for this purpose. However, GNNs using a message passing scheme

CHAPTER 1. INTRODUCTION 27

have a problem with over-smoothing. When over-smoothing happens, the similarity
between node features is close to each other, and the effect of a large amount of
subgraph structures cannot be taken into account.

Considering the larger graphs in the process of generating graphs, in order
to evaluate the problem of 2, we investigate the prediction performance of graph
machine learning and the graph features as the number of message passing iterations
increases. As a result, we gain insights into the prediction performance of graph
neural networks as below:

• We show that the prediction performance of the WL kernel outperforms the
most fundamental GNNs, GCNs, and GINs if the number of message passing
iterations increases.

• The WL kernel does not significantly deteriorate for many message passing
iterations in most datasets. At the same time, GCNs and GINs do due to their
large number of parameters and ill-trained previous node features.

• We also show that the transition of node features tends to be small, which leads
to the difficulty of determining which feature is informative for prediction.
The features become certain values when the training fails.

In later chapter, we will state our methods and the results in detail.

Chapter 2

Molecular Graph Generation

2.1 Introduction
Designing new molecules for drug and material with desired properties is a
challenging task due to the massive number of potential drug-like molecules, which
is estimated to be between 1023 to 1060 [Polishchuk et al., 2013]. Molecules are
essentially represented as graphs with node and edge attributes, while such graph
structure of chemical compounds makes it difficult to generate valid molecules
with desired activity or property even if you can build a Quantitative Structure-
Activity Relationship (QSAR) model, which is a computational modeling method
for revealing relationships between structural properties of chemical compounds
and biological activities [Kwon et al., 2019], by designing descriptors of chemical
features specifically for virtual screening. The straightforward way of generating
molecules is to solve the inverse QSAR problem through the objective function
estimated from the molecular structures [Miyao et al., 2016, Wong and Burkowski,
2009, Churchwell et al., 2004]. However, feature vectors extracted from molecular
graphs are often highly correlated between its features, which makes it challenging
to reconstruct a new molecular graph from the optimized descriptors as it requires
preserving such correlation information.

A number of methods have been proposed to tackle this problem of molecular
generation [Gugisch et al., 2014, Takeda et al., 2020, Olivecrona et al., 2017].
Recent advanced approaches to finding of drug-candidate molecules have employed
deep generative models [Gómez-Bombarelli et al., 2018, Kusner et al., 2017,
Guimaraes et al., 2017, Jin et al., 2018]. The basic idea of using generative
models is to learn the latent representation of molecules, which enable us to
reconstruct and explore molecules that satisfy target properties in the learned latent
chemical space. Exploration methods such as Bayesian optimization is used to
search the latent chemical space [Gómez-Bombarelli et al., 2018]. However, it is

28

CHAPTER 2. MOLECULAR GRAPH GENERATION 29

fundamentally difficult to reconstruct molecular graphs from the latent space and to
search molecules with the desired property by extrapolation from a training dataset
as a large part of the latent space represents invalid molecules.

Another strategy to search desired molecules is based on a reinforcement
learning. In the setting of reinforcement learning, an agent learns the optimal
policy to maximize the cumulative reward, and the trained agent can take an action
to generate the optimal molecules. The recurrent neural network (RNN) model
can be used to generate a string notation of a molecule, which is a simplified
molecular-input line-entry system (SMILES) [Weininger, 1988]. The agent takes
an action of the next character of SMILES based on the optimized policy [5]. In the
case of molecular graph generation using reinforcement learning, the agent takes
an action of choosing the atom type and bond type between nodes to expand each
molecule [You et al., 2018]. The state is represented as the latent feature vectors
by using RNNs or graph neural networks. However, both approaches of SMILES
generation and node-wise molecular graph generation share the problem that the
intermediate steps do not represent valid molecules, which significantly deteriorates
the interpretability of resulting generated molecules. Moreover, the property and
the state radically change if the ring structure appears, and it is fundamentally
difficult to treat such binary response in optimization on a continuous latent space.

In this chapter, we propose a novel molecular generation approach, called
MOLDR (MOLecular graph Decomposition and Reassembling), which generates
optimized new molecules by decomposing molecular graphs into subgraphs in a
training dataset and reassembling such obtained subgraphs again in a different way.
Our key insight is that chemical properties depend on the combination of subgraphs,
which correspond to the functional group or the motif of molecules in the context
of chemoinformatics, and that it can be optimized when appropriate substructures
are included in molecules. MOLDR is composed of a decomposition step and
a reassembling step. In the decomposition step, we first convert each molecular
graph into a tree structure to efficiently obtain subgraphs; that is, functional groups,
followed by extracting frequent subgraph structures by applying a graph mining
method. In the reassembling step, we treat the extracted subgraphs as building
blocks of molecular graphs and reassemble them by searching desired blocks
according to the target property using Monte Carlo tree search (MCTS) [Coulom,
2006, Kocsis and Szepesvári, 2006]. We empirically evaluate molecular graphs
generated by our method with respect to two well-established property scores, the
penalized log 𝑃 and Quantitative Estimation of Drug-likeness (QED) [Bickerton
et al., 2012], and show that our method outperforms the state-of-the-art molecular
generation methods.

CHAPTER 2. MOLECULAR GRAPH GENERATION 30

Our contributions are summarized as follows:

• Our method MOLDR explicitly constructs new molecules by combining
substructures of molecules, hence its generation process is interpretable.

• MOLDR can easily generate larger size of molecules out of distribution in a
dataset by combining subgraph structures.

• Molecules generated by MOLDR are superior to those by the current state-
of-the-art methods in terms of log 𝑃 and QED (drug-likeness).

2.2 Related works
[Yang et al., 2017, 2021] and [Olivecrona et al., 2017] proposed a SMILES
generation approaches by RNNs and search the SMILES with desired properties
using MCTS and policy gradient respectively. Instead of generating SMILES,
[You et al., 2018] proposed node-wise graph generation and property optimization
using reinforcement learning. The state of a molecule is represented through
graph convolutional networks, and the agent selects nodes, edges types, or terminal
to expand molecules. The policy is optimized through the Proximal Policy
Optimization. These methods can generate valid molecules with desired properties
at the final step. However, the generation process is a black-box and it is difficult to
explain why and how such molecules are obtained.

[Jin et al., 2018] proposed a VAE model that generates junction trees over
molecules. Nodes in a junction tree represent subgraphs extracted from a molecular
dataset, and a graph neural network determines which nodes or edges are combined
with each other in the junction tree. To search molecules that optimize the desirable
properties, it is necessary to search two vectors, what a tree structured scaffold is
and how a molecule is reconstructed within latent embedding space. In contrast,
in our method, junction trees themselves are used to efficiently extract frequent
substructures from a molecular dataset, and we expand and search substructures
directly to achieve target scores instead of generating junction trees from VAE.

[Takeda et al., 2020] proposed to generate molecules by combining substructures
which contribute to the target properties, where candidate molecules are searched
by McKay’s Canonical Construction Path (MC-MCCP) algorithm [McKay, 1998,
Stephen and Andrew, 2009]. [Jin et al., 2020] proposed the multi objective molecule
generation using interpretable substructures as rational for extracting substructures
by MCTS to generate molecules by merging common substructures and graph
completion. Although their approaches and our approach share the general strategy
of constructing new molecules from its substructures, our method can cover a
wider variety of substructures in molecular generation as we directly apply frequent

CHAPTER 2. MOLECULAR GRAPH GENERATION 31

subgraph mining to the entire molecular dataset, which will lead to better new
molecules.

Our approach of combining decomposition of molecules into subgraphs by
graph mining and reassembling of subgraphs to generate new molecular graph
has not been studied at sufficient depth. There is a related approach in the task of
planning of chemical synthesis, which also combines subgraphs and MCTS [Segler
et al., 2018b], while it is not applied to the property optimization.

2.3 The Proposed Algorithm: MOLDR
We introduce our molecular generation algorithm MOLDR. We provide the problem
setting, tree decomposition preprocessing, graph mining, and the strategy to build
up molecules via Monte Carlo Tree Search and Proximal Policy Optimization.

2.3.1 Problem Setting
A graph is a tuple 𝐺 = (𝑉, 𝐸), where 𝑉 and 𝐸 denote the set of nodes and edges,
respectively. Nodes and edges can have labels (attributes) via label functions
𝑙𝑉 : 𝑉 → Σ𝑉 for nodes and 𝑙𝐸 : 𝐸 → Σ𝐸 for edges with some label domain Σ𝑉 , Σ𝐸 ,
which can be any set such as Z andR𝑑 . We assume that each molecule is represented
as a graph. If we see a graph as a molecule, 𝑉 is the set of atom types, and 𝐸 is the
set of bond types. For two graphs 𝐺 = (𝑉, 𝐸) and 𝐺′ = (𝑉 ′, 𝐸′), we say that 𝐺′ is
a subgraph of 𝐺, denoted by 𝐺′ ⊑ 𝐺, if 𝑉 ′ ⊆ 𝑉 and 𝐸′ ⊆ (𝑉 ′ ×𝑉 ′) ∩ 𝐸 .

Let us assume that 𝑓 (𝐺) is some chemical property of a graph 𝐺, which is
usually a real-valued function, where we assume that 𝑓 is known beforehand and we
can compute 𝑓 (𝐺) for any graph 𝐺. For example, 𝑓 can be the log 𝑃 of a molecular
𝐺. Given a molecular dataset, which is a collection of graphs, the problem of
molecular generation is to explore a new graph 𝐺new that has high 𝑓 (𝐺new) value
as long as possible.

2.3.2 Graph Decomposition via Frequent Subgraph Mining
Given a collection of graphs as an input molecular dataset, our idea is to apply
frequent subgraph mining [Zaki and Meira, 2014] to the dataset, which finds
subgraphs that frequently appear in in the graph dataset. Formally, given a graph
dataset D = {𝐺1, 𝐺2, ..., 𝐺𝑛}, the objective of frequent subgraph mining is to find
all subgraphs 𝐺 satisfying the condition support(𝐺) ≥ minsup, where support(𝐺)
is defined as

support(𝐺) =
��� {𝐺𝑖 ∈ D | 𝐺 ⊑ 𝐺𝑖}

���,

CHAPTER 2. MOLECULAR GRAPH GENERATION 32

Figure 2.1: An example of gSpan applied to two molecular graphs under support 2.
In support 2, all subgraphs are enumerated in a lexicographical order.

that is, the number of graphs in D that contains 𝐺 as a subgraph, and minsup ∈ Z
is a frequency threshold.

We use the gSpan [Xifeng Yan, 2002] algorithm, which is commonly used
for the task of frequent subgraph mining. It enumerates subgraphs in a depth
first manner. Each graph is represented as the so-called DFS code, which is
constructed from a search tree based on a lexicographic order and enables us to
efficiently check duplication of enumerated graphs as shown in Fig 2.1. More
precisely, for each explored graph during the enumeration, it checks whether or not
its DFS code is canonical. After completion of gSpan, we check every enumerated
subgraph and keep only subgraphs whose target property score is already higher
than some threshold, which is determined beforehand, to efficiently reassemble
them to construct new graphs in the next reassembling step.

Molecules are firstly converted into molecular graphs, where each node repre-
sents an atom type and each edge represents a bond type. However, if we directly
apply gSpan to such molecular graphs, it gives a lot of invalid subgraphs in terms of
molecules as building blocks for molecular generation as shown in Fig 2.2. This is
because gSpan does not know the chemical context and simply enumerates frequent
subgraphs, hence, for example, the ring structure will be truncated by gSpan, while
such truncated subgraphs are invalid and unnecessary for the reassembling step.

To circumvent this problem, we apply tree decomposition to molecular graphs
as preprocessing before applying gSpan, and convert them into molecular junction
trees. A tree decomposition maps a graph 𝐺 = (𝑉, 𝐸) into a junction tree
T = (V, E), where V = {𝐶1, . . . , 𝐶𝑛} is a collection of subsets of 𝑉 ; that is, each
𝐶𝑖 ⊆ 𝑉 , and E is a set of edges between elements of V. A junction tree satisfies

CHAPTER 2. MOLECULAR GRAPH GENERATION 33

Figure 2.2: An example of directly applying gSpan to molecular graphs. The
enumerated subgraphs include truncated structures of molecules. Chemical
properties such as ring of benzene are completely ignored and more graphs are
mined through gSpan.

the following properties:

1. The union of all sets 𝐶1, . . . , 𝐶𝑛 equals to 𝑉 ; that is,
⋃

𝑖 𝐶𝑖 = 𝑉 .

2. For every edge (𝑢, 𝑣) ∈ 𝐸 , there exists 𝐶𝑖 ∈ V such that 𝑢 ∈ 𝐶𝑖 and 𝑣 ∈ 𝐶𝑖.

3. If 𝐶𝑘 is on a path from 𝐶𝑖 to 𝐶 𝑗 in T , 𝑉𝑖 ∩𝑉 𝑗 ⊆ 𝑉𝑘 .

By converting a graph into its corresponding junction tree, by definition, each cycle
will be gathered as a single node and all cycles will be eliminated. Therefore, if
we apply gSpan to not the original graphs but the converted junction trees, we can
avoid enumerating invalid subgraphs in which the ring structure of a molecule,
represented as a cycle on a graph, is truncated. In addition, gSpan on junction trees
can dramatically reduce the number of frequent subgraphs. This is also an advantage
of using junction trees in the decomposition step for molecular generation.

The edge label information and the node label information in each clique are
lost in a junction tree, hence we need to restore them after frequent subgraph mining.
To achieve this task, we use a subgraph matching algorithm that matches between
original graphs and obtained trees. We use the indexed based subgraph matching
algorithm with general symmetries (ISMAGS) [Houbraken et al., 2014]. Since the
size of each molecule is usually not so large and the number of nodes is mostly
around 20∼30 in the task of molecular generation, this restoring process is not
computationally expensive.

CHAPTER 2. MOLECULAR GRAPH GENERATION 34

2.3.3 Graph Reassembling from Frequent Subgraphs
Now we generate new molecules by reassembling frequent subgraphs obtained
by the previous graph decomposition step. In contrast to our approach using
subgraphs as building blocks, existing approaches are based in either text generation
or node-wise graph generation. In the text generation approach [Segler et al.,
2018a] based on SMILES, an algorithm picks up a particular character which
denotes chemical state, such as the atom (C, N, O, F, ...), the bond type (=, ≡), or
the branched symbols, from the set of character types occurred in a training dataset
to generate and expand molecules. In the node-wise graph generation [You et al.,
2018, Li et al., 2018], an algorithm selects a node (atom symbol) and the edge type
between source and target atoms from the candidate set of atom and edge types.
Our method can be more powerful as we directly combine subgraphs that already
have desirable properties as building blocks in molecular generation.

To assemble molecular subgraphs, we pick up two graphs 𝐺 𝑡 and 𝐺′
𝑡 from

building blocks and combine them to generate a new graph 𝐺 𝑡+1, where 𝑡 is the
number of building up steps of molecules. Let us assume that 𝐺 𝑡 = (𝑉 (𝐺 𝑡), 𝐸 (𝐺 𝑡))
with 𝑉 (𝐺 𝑡) = {𝑣1, . . . , 𝑣𝑛} and 𝐺′

𝑡 = (𝑉 (𝐺′
𝑡), 𝐸 (𝐺′

𝑡)) with 𝑉 (𝐺′
𝑡) = {𝑢1, . . . , 𝑢𝑛′}.

In the reassembling with nodes, we select single nodes 𝑣𝑖 ∈ 𝑉 (𝐺 𝑡) and 𝑢 𝑗 ∈ 𝑉 (𝐺′
𝑡)

such that they have the same node labels: 𝑙𝑣 (𝑣𝑖) = 𝑙𝑣 (𝑢 𝑗). We overlay these two
nodes as 𝑣𝑡+1; that is, 𝑉 (𝐺 𝑡+1) = 𝑉 (𝐺 𝑡) ∪ 𝑉 (𝐺′

𝑡) \ {𝑣𝑖, 𝑢 𝑗 } ∪ {𝑣𝑡+1} for a newly
constructed graph 𝐺 𝑡+1. All edges in 𝐺 𝑡 and 𝐺′

𝑡 are preserved in 𝐺 𝑡+1, where
if there is an edge (𝑣𝑖, 𝑣𝑘) or (𝑢 𝑗 , 𝑢𝑙), it is replaced with (𝑣𝑡+1, 𝑣𝑘) or (𝑣𝑡+1, 𝑢𝑙).
In the reassembling with edges, we select edges from rings, and overlay them
in the same manner as the assembling with edges. This assembling is similar
to reconstructing a graph from a junction tree; that is, nodes of a clique in a
junction tree have intersected nodes that are connected with each other between
subgraphs. Assembling two graphs is equivalent to choose the intersection of nodes
or edges. Figure 2.3 shows the process of reassembling the two molecular graphs
with nodes or edges, respectively. The candidate set of node label C for merging
is {𝑣0 : {𝑢6, 𝑢7, 𝑢9, 𝑢10, 𝑢15}, 𝑣4 : {𝑢6, 𝑢7, 𝑢9, 𝑢10, 𝑢15}, 𝑣5 : {𝑢6, 𝑢7, 𝑢9, 𝑢10, 𝑢15}},
where indices of nodes correspond to numbers in the illustration in Figure 2.3. We
do not include internal nodes such as 𝑢12 as the resulting graph will be an invalid
molecule. In the reassembling with edges, the candidate set in the same node label
(C, C) is {{(𝑣0, 𝑣1), (𝑢6, 𝑢7)}, {(𝑣1, 𝑣2), (𝑢6, 𝑢7)}}, resulting in two new graphs.

The computational cost of combining two graphs depends on the number of
nodes and the number of edges in rings. In the worst case, where we need to consider
all combinations of nodes and edge of two graphs 𝐺 = (𝑉, 𝐸) and 𝐺′ = (𝑉 ′, 𝐸′),
the complexity becomes O(|𝑉 | |𝑉 ′| + |𝐸 | |𝐸′|). However, this can be usually reduced
in practice by considering the symmetrical structure of a graph and some type of
restrictions of chemical valency of an element in the case of molecules. We always

CHAPTER 2. MOLECULAR GRAPH GENERATION 35

Figure 2.3: Reassembling two molecules with nodes (a) or edges (b). (a) shows
merging with nodes labeled as C. (b) shows merging with edges in rings. In this
examples, reassembled molecules are sanitized to be valid molecules.

check such conditions whenever a new molecule is generated and remove it if does
not satisfy such conditions. Therefore molecules generated by our method is always
valid.

2.3.4 Finding Candidate Subgraphs by Monte Carlo tree search
To efficiently find which graphs should be assembled in graph generation, we use
Monte Carlo tree search (MCTS), which is a search method that combines tree
search with random sampling [Browne et al., 2012]. MCTS has been applied to
a number of tasks when the search space is massive and achieved huge success
in various fields such as the game of Go [Silver et al., 2016] and the planning of
chemical syntheses [Segler et al., 2018b].

Forward pass. The first node can be any subgraph for molecular graph
generation. The search stops when the number of steps reaches at the maximum
number of steps 𝐿 or a the weight of a generated molecule exceeds the predetermined
threshold. At each time step 𝑡 < 𝐿, an action for expanding a search tree from a
current molecule 𝐺 𝑡 is selected according to the following functions:

𝐴𝑡 = argmax
𝐴

(
𝑄(𝐺 𝑡 , 𝐴) +𝑈 (𝐺 𝑡 , 𝐴)

)
, (2.1)

𝑄(𝐺 𝑡 , 𝐴) =
𝑊 (𝐺 𝑡 , 𝐴)
𝑁 (𝐺 𝑡 , 𝐴)

, 𝑈 (𝐺 𝑡 , 𝐴) = 𝑐pcut𝑅(𝐺 𝑡 , 𝐴)
√︁∑

𝐵 𝑁 (𝐺 𝑡 , 𝐵)
1 + 𝑁 (𝐺 𝑡 , 𝐴)

(2.2)

where 𝐴 is a candidate subgraph from building blocks, 𝑁 (𝐺 𝑡 , 𝐴) is a visit count of
the pass, 𝑊 (𝐺 𝑡 , 𝐴) is the score of the chemical property, 𝑅(𝐺 𝑡 , 𝐴) is the predicted

CHAPTER 2. MOLECULAR GRAPH GENERATION 36

Figure 2.4: The molecular generation via MCTS. Subgraph structures are selected
based on the PUCT scores in Equation (2.1). After reassembling molecules, a new
graph is selected based on the highest score of a target property.

target property score of a new graph 𝐺 𝑡+1 assembled from previous node and a
selected building block, and 𝑐pcut is a constant value that determines the level
of exploration. The function 𝑄(𝐺, 𝑎) represents the mean action value. This
algorithm is a variant to predictive upper confidence tree (PUCT) [Rosin, 2011].

Backward pass. The rollout statistics are updated for each step as follows:

𝑁 (𝐺 𝑡 , 𝐴𝑡) := 𝑁 (𝐺 𝑡 , 𝐴𝑡) + 1, (2.3)
𝑊 (𝐺 𝑡 , 𝐴𝑡) := 𝑊 (𝐺 𝑡 , 𝐴𝑡) + 𝑅(𝐺 leaf), (2.4)

where 𝑅(𝐺 leaf) is the score of the terminal molecule 𝐺 leaf. We collect all of the
reassembled molecules through these steps. Figure 2.4 shows the procedure of
MCTS. The building blocks; that is, subgraphs extracted by frequent graph mining,
are selected based on max(𝑄(𝐺 𝑡 , 𝐴) +𝑈 (𝐺 𝑡 , 𝐴)). When graphs are reassembled,
several candidates of new graphs are generated. We prune such new graphs by
considering molecules with the higher score according to the target property. This
procedure proceeds until the terminal condition is satisfied, such as the maximum
number of nodes or the molecular weight.

2.4 Experiments
We empirically examine the effectiveness of our proposed method MOLDR
compared to the state-of-the-art molecular generation methods. In particular,
we have examined the two standard criteria, the pernalized log 𝑃 and the drug-
likeness score QED, of generated molecules. In addition, we also examine the
multi-objective score of QED and SA. Furthermore, we benchmark the rediscovery
molecules using GuacaMol benchmark dataset Brown et al. [2019].

CHAPTER 2. MOLECULAR GRAPH GENERATION 37

All methods are implemented in Python 3.7.6. We used the gSpan library1

to obtain building blocks. All neural networks and reinforcement learning are
implemented in RLlib Liang et al. [2018] and PyTorch Paszke et al. [2019]. All
experiments were conducted on Ubuntu 18.04.5LTS with 40 cores of 2.2 GHz Intel
Xeon CPU E5-2698 v4, 256GB of memory, and 32GB Nvidia Tesla V100.

Dataset. We use the ZINC 250k molecular dataset, which is a freely available
drug-like molecular database [Irwin et al., 2012]. There are 249,456 molecules in
total, and the maximum numbers of nodes and edges are 38 and 45, respectively.
The number of node labels is nine: {B, C, F, H, I, N, O, P, S}. Molecules are
prepossessed by RDKit [Landrum, 2006] so that they are treated as graphs. Before
applying MOLDR, we converted molecules in the ZINC dataset into junction trees
as we explained in Section 2.3.2. As a result, the number of cliques is 784, which
are used as the node label of junction trees. The maximum number of nodes and
edges in junction trees become 31 and 30, respectively. The number of molecules
on the GuacaMol dataset is 1,591,378 in total, and the maximum numbers of nodes
and edges are 88 and 87. The number of node labels is 12: {B, Br, C, Cl, F, I, N,
O, P, S, Se, Si}. All molecules are prepossessed by RDKit Landrum [2006] so
that they are treated as graphs.

Experiment setting. The gSpan algorithm was applied to converted junction
trees with the minimum support of 10,000, 5,000, 1,000, and 100, where we
enumerated molecules with more than 7 nodes. To see the effectiveness of our
junction tree-based enumeration, we also applied gSpan to the original ZINC dataset
without junction tree conversion. In the molecular reassembling step in MOLDR,
we use building blocks extracted under the condition of the minimum support 1,000.
In MCTS, we set the parameter 𝑐𝑝𝑢𝑐𝑡 = 10, the terminal condition is when the log 𝑃

exceeds 1,000 or 𝑄𝐸𝐷 exceeds 350. In reinforcement learning, we use the policy
network with 3-layer MLPs (256, 128, 128 hidden units) to take actions (to choose
building blocks and compute state value function), and the activation function is
the ReLu function. The generalized advantage estimate (GAE) parameters are set
as _ = 1.0 and 𝛾 = 0.99. The optimizer is stochastic gradient descent, where the
mini-batch size is 128 and the learning rate is 5.0× 10−5. The terminal condition is
when the maximum number of nodes exceeds 100, or the previous reward exceeds
the current reward or threshold.

Target properties. As target chemical properties, we employ scores of the
penalized log 𝑃 [Kusner et al., 2017] and Quantitative Estimation of Drug likeness
(QED) [Bickerton et al., 2012]. These values are widely used as a benchmark
of the task of molecular generation. The penalized log 𝑃 is a logarithm of the
octanol-water partition coefficient with restrictions on the ring size and synthetic

1https://github.com/betterenvi/gSpan

https://github.com/betterenvi/gSpan

CHAPTER 2. MOLECULAR GRAPH GENERATION 38

accessibility(SA) [Ertl and Schuffenhauer, 2009]. SA score is defined as follows:

SA = Fragment Score − Complex Penalty.

The Fragment Score was introduced to capture the “historical synthetic knowledge”
by analyzing common structural features in a large number of already synthesized
molecules. Complex Penalty is computed from summation of each term as follows:

Ring complexity = log(nRingBridgeAtoms + 1) + log(nSprioAtoms − 1),
Stereo complexity = log(nStereoCenters + 1),

Macro Cycle Penalty = log(nMacroCycles + 1),
Size penalty = nAtoms1.005 − nAtoms,

where “n” denotes the number. We used the penalized log 𝑃 normalized with the
ZINC250k dataset to compare the same setting with other methods, thus direct
comparison of scores is fair.

QED is a score representing the drug-like nature of molecular structures. QED
represents the function of weighted chemical properties:

QED = exp
(∑

𝑤𝑖 log 𝑑𝑖∑
𝑤

)
,

where 𝑤 is the weight of a molecule and each 𝑑𝑖 is one of the following chemical
property: molecular weight (MW), octanol-water partition coefficient (ALOGP),
number of hydrogen bond donors (HBD), number of hydrogen bond acceptors
(HBA), molecular polar surface area (PSA), number of rotatable bonds (ROTB), the
number of aromatic rings (AROM), or number of structural alerts (ALERTS). Thus
optimizing QED implies to generate the molecules subject to these parameters.

For guiding target values of property, we optimize molecule with log 𝑃 = 8.0.
For multi-objective benchmark, we generate molecules such that QED is higher
and SA is smaller (easy to synthesize). We choose the objective function proposed
by Tan et al. defined as follows:

𝑓 (𝐺) = max
(
QED(𝐺) − 0.1SA(𝐺)

)
.

Distribution benchmarks. To investigate whether MOLDR can generate
diverse molecules or not, we use the GuacaMol benchmark dataset. The proposed
scores are listed as follows:

• Validity: whether the generated molecules are actually valid computed in
RDKit.

• Uniqueness: the ratio of molecules that are not duplicated to generate
molecules.

CHAPTER 2. MOLECULAR GRAPH GENERATION 39

• Novelty: the ratio of molecules that are not duplicated to original dataset.

• Kullback-Leibler (KD) divergence: measures how well a probability distri-
bution Q approximates another distribution P: 𝐷KL =

∑
𝑖 𝑃(𝑖) log 𝑃(𝑖)

𝑄(𝑖) . For
the training set and generated set, the probability is calculated from physio-
chemical descriptors: BertzCT, MolLogP, MolWt, TPSA, NumHAcceptors,
NumHDonors, NumRotatableBonds, NumAliphaticRings, and NumAromati-
cRings by RDKit. The final score is calculated by 𝑆 = 1

𝑘

∑𝑘
𝑖 exp(−𝐷KL, 𝑖),

where 𝑘 is the number of descriptors (in this case 𝑘 = 9).

• Fréchet ChemNet Distance (FCD). Preuer et al. introduced the Fréchet
ChemNet Distance as a measure of how close distributions of generated
data are to the distribution of molecules in the training set. Low FCD
values characterize similar molecule distributions. Final score is given by
𝑆 = exp(−0.2FCD).

Rediscovery molecules. We examined whether or not MOLDR can reconstruct
target molecules such as drugs, and can generate molecules exceeding some thresh-
old of similarity between molecules, not just generating molecules with chemical
properties. In such cases, we chose Celecoxib, Troglitazone and Thiothixene as
rediscovery benchmarks, Aripiprazole as similarity benchmark, and Ranolazine
and Osimertinib as MPO benchmarks.

Comparison partners. For comparison, we used scores of log 𝑃 and QED
reported by [You et al., 2018]. The list of methods are as follows: Junction
Tree Variational Autoencoder (JT-VAE) [Jin et al., 2018], Graph Convolutional
Policy Network (GCPN) [You et al., 2018], and Objective-Reinforced Generative
Adversarial Networks (ORGAN) [Guimaraes et al., 2017]. JT-VAE is a VAE model
that generates junction trees of molecules, while GCPN is a method that generates
graphs node-by-node using graph neural networks and reinforcement learning to
satisfy the objective properties. ORGAN is a model that generates SMILES by
Sequence based Generative Adversarial Networks and optimizes the properties
through reinforcement learning.

2.4.1 Results of log P and QED
Table 2.1 shows results of applying gSpan to the ZINC database with varying the
minimum support. We compare the number of obtained subgraphs and calculation
time with or without molecular junction trees. We can see that enumeration based on
junction trees is much faster than directly applying gSpan to molecular graphs. This
result means that our junction tree-based enumeration is effective in the real-world
ZINC database. When the minimum support is 100, we were able to find a large
number of subgraphs (23,616 subgraphs), and it is expected that we have collected

CHAPTER 2. MOLECULAR GRAPH GENERATION 40

Table 2.1: Comparison of frequent subgraph enumeration with or without junction
trees.

Minimum support Number of mined trees Number of mined graphs

100,000 0 23 (1334 sec)
10,000 8 (164.42 sec) 4040 (106.5 min)
5,000 39 (216.21 sec) —
1,000 910 (342.20 sec) —

100 23,616 (775.23 sec) —
“—” means that computation did not stop in 2 hours

Figure 2.5: Examples of extracted substructures sorted by the score of QED.
ZINC 250k molecules are decomposed into junction trees, frequent subtrees are
enumerated by gSpan, and they are reconstructed into molecules by ISMAGS.
These substructures become building blocks for molecular reassembling.

enough amount of substructures. Therefore we stop decreasing the minimum
support. Figure 2.5 shows examples of building blocks of substructures extracted
from ZINC 250k filter by the score of QED > 0.7. The obtained substructures
are frequent subgraphs with minimum support 100. These structures are used as
building blocks for molecular graph reassembling.

Table 2.2 shows top 3 generated molecules according to property scores of the
pernalized log 𝑃 or QED. Scores of other methods come from [You et al., 2018].
MOLDR is similar to the method of JT-VAE as both methods use junction trees,
while MOLDR outperforms both scores. The log 𝑃 is related to lipophilicity (fat
solubility) and hydrophilicity (water solubility) of a molecule. Hence, if nodes in a
generated molecule have have many carbon (C) and less imide (=NH) or hydroxyl

CHAPTER 2. MOLECULAR GRAPH GENERATION 41

Figure 2.6: Comparison of Top 1 QED molecules in MOLDR, ZINC, GCPN.

0.9483 0.9482 0.9479 0.9475 0.9474

12.46 12.20 12.04 11.95

(a)

(b)

Figure 2.7: Generated molecules based on ZINC dataset by MOLDR+PPO with
penalized log 𝑃 and QED scores.

Figure 2.8: Top 5 samples of generated molecules optimized penalized log P and
QED respectively by using MCTS.

CHAPTER 2. MOLECULAR GRAPH GENERATION 42

Table 2.2: Comparison of the top 3 property scores of generated molecules. Scores
for ORGAN, JT-VAE, and GCPN are from [You et al., 2018]. The score of penalized
log 𝑃 is normalized in the ZINC dataset.

Method Penalized logP QED
1st 2nd 3rd Validity 1st 2nd 3rd Validity

ZINC 4.52 4.30 4.23 100% 0.948 0.948 0.948 100.0%
ORGAN 3.63 3.49 3.44 0.4% 0.838 0.814 0.814 2.2%
JT-VAE 5.30 4.93 4.49 100.0% 0.925 0.911 0.910 100.0%
GCPN 7.98 7.85 7.80 100.0% 0.948 0.947 0.946 100.0%

MOLDR(MCTS) 11.40 11.19 10.83 100.0% 0.948 0.948 0.944 100.0%
MOLDR(PPO) 12.46 12.20 12.04 100.0% 0.948 0.948 0.947 100.0%

groups (-OH), the resulting log 𝑃 becomes high. This means that, the larger the
number of the atom C is, the higher the log 𝑃 value is. While we show penalized
log 𝑃 scores in which the ring size and synthetic accessibility are penalized in
Table 2.2, if we compute the non-penalized log 𝑃 score, it tends to be higher and
the score is 22.47 for the top molecule of MOLDR. (For the comparison, 1st score
in GCPN is 14.49). Moreover, when the penalized log 𝑃 is not normalized in ZINC
250k, the top score of MOLDR is 17.39, which outperforms the top score 15.13
recently reported in MP-MCTS [Yang et al., 2021] and the score 10.96 of GCPN.
In the case of penalized log 𝑃 optimization, an approach of greedy search such as
selecting only C can be enough to maximize the score, because the calculation
of the log 𝑃 score consists of an additive condition. However, it is shown that
MOLDR can explore and exploit molecules with optimizing the penalized 𝑙𝑜𝑔𝑃

without such trick.
In contrast, the QED score is empirically derived from the combination of various

chemical properties and chemical structures. Hence it is not straightforward to
maximize QED unlike the case of log 𝑃 and is more difficult. MOLDR outperforms
the score of JT-VAE, and top-1 and -2 molecules generated by GCPN. One can
see that our method MOLDR actually outperforms GCPN from more accurate
numbers presented in Table 2.5. In order to increase the QED score, generated
molecules need to follow the strict restriction of structures. Figure 2.7 and 2.8
illustrate examples of generated molecules with optimization of the penalized log 𝑃

and QED, respectively, by MOLDR. In penalized log 𝑃 optimization, the molecular
size is larger and molecules include the large number of C. In QED optimization,
the size of molecule is smaller than the case of log 𝑃 optimization, and they have
subgraphs that contribute to the QED. We remove the similar graphs that have the
highest score in Figure2.9 to show variety of generated molecules by our method.

Table 3 shows the detail of the properties of generated molecules. Theoretically,
QED can have a value between 0 and 1, while if we use the default weight 𝑤 of
RDKit for QED computation, the theoretical maximum value of QED is 0.948449.

CHAPTER 2. MOLECULAR GRAPH GENERATION 43

Figure 2.9: Generated molecules by MOLDR+MCTS with their QED scores. The
score of QED is high for these molecules because the properties of each molecule
lie within the condition in Table 2.5.

Due to our approach of reassembling subgraphs, the second best generated molecule
shown in Figure 2.6 has the same components of molecules in the ZINC database
with slightly different positions. The molecule with the highest QED score is
already included in ZINC, which is the nearest to the optimal QED score. It is
interesting that a number of property scores used in QED computation, such as
discrete scores like HBA and HDB, are exactly the same with the optimal scores
even if each of these scores is not directly optimized in molecular generation. Our
method tends to generate similar molecules in QED optimization as shown in
Figure 2.9, which may be from the property of graph mining that similar frequent
subgraphs are often enumerated such as only one node is different with each other.

2.5 Single-objective optimization
MOLDR is flexible in the sense that it can generate molecules with not only
maximizing the target value like log 𝑃 but controlling it to be a specific value. As
an example, we show molecules generated by MOLDR with specifying the target
value log 𝑃 = 8.0 in Figure 2.10.

2.6 Multi-objective optimization
In a multi-objective task with both QED and SA, Figure 2.11 shows results of
generated molecules when only QED is optimized or both QED and SA are
optimized. If only QED is optimized (Figure 2.11(a), (b)), generated molecules
tend to have a higher QED score with SA score being around 3 to 5. Otherwise if

CHAPTER 2. MOLECULAR GRAPH GENERATION 44

NH

O

N

SH

OH

1.0

NH

O

N
HO

HS

1.0

N
H

O

N

HO

HS

1.0

NH

O

N

OH

SH

1.0

NH

O

N

SH

OH

1.0

NH

O

N

OH
SH

1.0

NH

O

N

SH

HO

1.0

N

1.0

N

1.0

N

1.0

N

1.0

N

1.0

Figure 2.10: Generated molecules with log 𝑃 = 8.0

both QED and SA are optimized, the distribution of SA shifts left (Figure 2.11(c),
(d)) compared to the case of QED optimization.

CHAPTER 2. MOLECULAR GRAPH GENERATION 45

1 2 3 4 5 6 7
SA

0.0

0.2

0.4

0.6

0.8

1.0

De
ns

ity

Building Blocks
Generated

(a) SA distribution of building blocks and
generated molecules when QED is opti-
mized.

0.0 0.2 0.4 0.6 0.8 1.0 1.2
QED

0

1

2

3

4

5

6

7

De
ns

ity

Building Blocks
Generated

(b) QED distribution of building blocks
and generated molecules when QED is opti-
mized.

1 2 3 4 5 6 7
SA

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

De
ns

ity

Building Blocks
Generated

(c) SA distribution of building blocks and
generated molecules when both QED and
SA are optimized simultaneously.

0.0 0.2 0.4 0.6 0.8 1.0 1.2
QED

0

1

2

3

4

5

6

7

De
ns

ity

Building Blocks
Generated

(d) QED distribution of building blocks and
generated molecules when both QED and
SA are optimized simultaneously.

Figure 2.11: Distribution of generated compounds for optimizing both QED and
SA in the multi-objective task on the GuacaMol dataset.

CHAPTER 2. MOLECULAR GRAPH GENERATION 46

Table 2.3: Distribution benchmarks at 10k molecules on GuacaMol dataset.

benchmark Random
Sampler

Graph
MCTS

SMILES
LSTM VAE MOLDR

(Random)

Validity 1.00 1.000 0.959 0.870 1.000
Uniqueness 0.997 1.000 1.000 0.999 0.994

Novelty 0.000 0.994 0.912 0.974 0.996
KL divergence 0.998 0.522 0.991 0.982 0.442

Fréchet ChemNet Distance 0.929 0.015 0.913 0.863 0.029

2.6.1 Results of GuacaMol
GuacaMol benchmark evaluates whether or not a model can generate valid, unique,
and novel molecules from a training dataset. The KL (Kullback–Leibler) divergence
and the Fréchet ChemNet distance (FCD) between a training set and generated
molecules are also used. In a decomposition step, 1,709 building blocks are mined
from the GuacaMol dataset with minsup = 10, 000. The distribution benchmark
is evaluated from 10k sampled molecules in a reassembling step. MOLDR can
generate valid molecules due to reassembling a building block of molecules.
Although the uniqueness is slightly smaller than other models, MOLDR depends
on random seeds to choose building blocks. In terms of the KL divergence and
the FCD, MOLDR is inferior to SMILES LSTM and VAE. However, the score is
similar to Graph MCTS because it is also a similar strategy to generate molecules.
In addition, MOLDR can sample molecules randomly from an untrained policy
network. Hence, MOLDR has a potential to generated molecules that are largely
different from those in the training dataset, leading to lower scores of the KL
divergence and the FCD. In order to improve the performance in terms of the KL
divergence and the FCD, MOLDR would need to train the policy network and
design an appropriate reward function, such as the similarity between the training
dataset and generated molecules.

Figure 2.12 shows results of the distribution of generated molecules when
trained on the ZINC or the GuacaMol dataset. Molecules are first mapped into
300-dimensional vectors using Mol2Vec [Jaeger et al., 2018] and t-distributed
stochastic neighbor embedding (t-SNE) is applied to visualize the distribution of
generated molecules and that of the training set. On the ZINC dataset, generated
molecules are mostly overlapped within the training set, while on the GuacaMol
dataset, the distribution of generated molecules goes beyond that of the training set.
It means that the generated molecules are not similar to the training set; therefore,
the KL divergence and FCD scores are likely to be lower. However, random
sampling from MOLDR can generate larger molecules out of distribution.

Table 2.4 shows the result of rediscovery benchmarks. MOLDR can generate the
target molecules with high accuracy, whose scores are competitive with SMILES

CHAPTER 2. MOLECULAR GRAPH GENERATION 47

75 50 25 0 25 50 75 100

100

50

0

50

100 Generated
ZINC

(a) Distribution on ZINC dataset

100 75 50 25 0 25 50 75
80

60

40

20

0

20

40

60
Generated
GuacaMol

(b) Distribution on GuacaMol dataset

Figure 2.12: Distributions of training sets in GuacaMol and ZINC dataset, and
generated molecules. Molecules are mapped into vectors using Mol2vec, and then
we apply t-SNE dimensionality reduction for visualization.

LSTM and Graph GA. The most notable difference between those models is that
our model can visualize the generating process of molecules, not just generating
the target molecule. Although in SMILES LSTM, intermediate molecules are
evaluated from the state value function, and the SMILES character is selected based
on the state, it is not easy to interpret why the character is vital at a particular time
step, especially when generating a ring. In contrast, in MOLDR, building blocks
are directly selected, and the sub-structure affects the target directly. Generating
process is shown in Figure 2.14 and 2.13. Since the generation performance of
MOLDR depends on the building blocks obtained from graph mining, in practical
applications, it is important to prepare an appropriate dataset and set an appropriate
minimum support based on a priori knowledge.

Table 2.4: Goal Directed benchmarks

Benchmark Best in dataset SMILES
LSTM Graph GA MOLDR

Celecoxib rediscovery 0.505 1.000 1.000 1.000
Troglitazone rediscovery 0.419 1.000 1.000 1.000
Aripiprazole similarity 0.595 1.000 1.000 1.000

Osimertinib MPO 0.839 0.907 0.953 0.898
Ranolazine MPO 0.792 0.855 0.920 0.864

Limitation. Our method MOLDR cannot design a molecule that has the large
cyclic structure if these structures are not included in a database as necessary
building blocks to construct such structure are not detected by frequent subgraph

CHAPTER 2. MOLECULAR GRAPH GENERATION 48

CH4

0.0

O

0.245

O O

0.361

O O

0.419

O O

0.48

O

OH

O

0.545

O

OH

O

0.703

HO

O
S

N
H

O

O

0.789

HO

O S

O
N
H

O

O

1.0

Figure 2.13: Generating process of Troglitazone rediscovery. The number under
the molecules denotes the similarity score between a generated molecule and target.
MOLDR can generate Troglitazone in 8 steps.

CH4

0.0 0.152

N
N

0.333
N

N

S

NH2

O

O

0.662

F
F

F

N

N
S NH2

O

O

1.0

Figure 2.14: Generating process on Celecoxib rediscovery.

CHAPTER 2. MOLECULAR GRAPH GENERATION 49

mining. In addition, as we state in Section 3.3, the bigger the size of a graph is, the
higher the number of candidates to merge nodes and edges is, resulting in too high
computational cost.

Table 2.5: Details of top molecules in terms of QED.

Method QED MW ALOGP HBA HBD PSA ROTB AROM ALERTS

Optimized 0.948449 306.051 2.8134 3 1 53.05 3 2 0
ZINC 0.948442 305.385 2.8273 3 1 52.88 3 2 0
MOLDR 0.948155 307.353 2.8329 3 1 62.30 3 2 0
GCPN 0.948052 300.406 2.8057 3 1 53.92 3 2 0

2.7 Conclusion
We have proposed a new molecular generation method, called MOLDR, which
decomposes graph structures and reassembles them. In our experiments on the
ZINC database, MOLDR can find a better molecules in terms of two properties, the
penalized log 𝑃 and the drug-likenss score QED, than the state-of-the-art molecular
generation methods. Our approach is general, hence it can be also applied to any
graph generation problem as well as molecular graph generation.

For our future work, it is interesting to explore clustering of subgraphs extracted
by graph mining as there are often many graphs that are similar with each other.
Since graph construction step is interpretable in MOLDR, incorporating MOLDR
with the retrosynthesis analysis to consider the chemical reaction is an interesting
topic.

Chapter 3

Substructure-based Machine
Learning

3.1 Introduction
Graph-structured data are ubiquitous in various domains from social networks to
system engineering and bio- and chemo-informatics. Most of the recent machine
learning methods for graphs are essentially based on the message passing scheme,
which aggregates feature vectors associated with neighboring nodes and updates
them via a certain function at each node [Hamilton et al., 2017, Xu et al., 2019,
Veličković et al., 2018, Gilmer et al., 2017, Bo et al., 2021]. This scheme is widely
employed to learn the representation of nodes and graphs in recently proposed
graph neural networks (GNNs).

In machine learning on graphs, graph kernels have been studied to measure the
similarity between graphs, which can be combined with classification or prediction
tasks to achieve good predictive performances on various graph datasets [Borgwardt
et al., 2020, Kashima et al., 2003, Sugiyama and Borgwardt, 2015]. If node features
in graphs are discrete – that is, each node has its label – the Weisfeiler–Lehman
(WL) sub-tree graph kernel can be the first choice for graph classification tasks,
which also shares the message passing algorithm in its process [Shervashidze et al.,
2011b]. This “WL scheme” can effectively and efficiently count subgraph patterns
in graphs, resulting in the high predictive performance in ML tasks for graphs. The
WL scheme obtains feature vectors based on counting the node label appearance on
neighboring nodes, which implicitly obtains representation of graphs and is likely to
represent some specific characteristics that are able to explain targets in graph ML
tasks. Although huge computational cost is a limitation of graph kernel approaches,
the quadratic time complexity with respect to the number of graphs in construction
of a kernel matrix, when applied to larger datasets, make their performance superior

50

CHAPTER 3. SUBSTRUCTURE-BASED MACHINE LEARNING 51

to other approaches in various medium sized datasets [Borgwardt et al., 2020].
GNNs have emerged as a way of learning representation on graphs. The

message passing scheme is commonly used in most of proposed GNNs [Gilmer
et al., 2017, Kipf and Welling, 2017, Xu et al., 2019, Scarselli et al., 2009]. For
example, graph convolutional network (GCN) is known to be a simple GNN model
for semi-supervised learning [Kipf and Welling, 2017], which is similar to the WL
scheme. Graph isomorphism network (GIN) is more similar to the WL graph kernel,
which have been theoretically and empirically shown to be as powerful as the WL
scheme with respect to their discriminability and representation power [Xu et al.,
2019]. In addition, to learn better representation of node features and overcome the
limitation of graph convolutions, attention-based graph neural models have been
studied [Veličković et al., 2018, Brody et al., 2021]. These graph neural network
models are helpful to solve graph prediction tasks as well as node or link prediction.

In GNNs, the problem of over-smoothing, where the similarity between nodes
becomes closer and closer when more and more message passing is performed,
is one of common issues. The over-smoothing deteriorates the quality of graph
representation, particularly when multiple convolutional layers are stacked, because
of the low information-to-noise ratio of the message received by the nodes, which
is partially determined by the graph topology [Chen et al., 2020]. As a result, the
performance of a trained model such as the accuracy of classification worsens
when over-smoothing occurs. This means that the message passing scheme may
inherently have a limitation in terms of capturing large subgraph structures as
it requires many message passing iterations. Thus, if such large subgraphs are
relevant in prediction, this would be a serious problem for GNNs.

In this chapter, to investigate the advantage and the limitation of the message
passing scheme in GNNs and graph kernels, we focus on the influence of the
over-smoothing problem. More precisely, we empirically examine how features of
graph substructures obtained by the WL (or message passing) scheme affect the
predictive performance as the number of convolutional layers increases. First, we
compare the WL sub-tree graph kernels with GNNs, including GCNs and GINs on
classification and regression real-world graph datasets collected from a variety of
domains. In GNNs, for certain types of datasets, we show that the large number
of message passing iterations deteriorates the predictive performance due to the
over-smoothing phenomenon. Second, we argue that the averaged feature vectors
over nodes learned from graph convolutional layers, which are expected to represent
the overall graph characteristics, are not stable as the number of message passing
iterations increases. Finally, we evaluate graph features on multi-layer perceptrons
(MLPs) and support vector machines (SVMs) in the task of classification and
regression. We also show that SVMs with features obtained from GCNs can be
used as a way of measuring how strong the contribution of node features is, where
the node features are concatenated at each message passing iteration.

CHAPTER 3. SUBSTRUCTURE-BASED MACHINE LEARNING 52

Our contributions are summarized as follows:

• The prediction performance of the WL kernel outperforms the most funda-
mental GNNs, GCNs and GINs, if the number of message passing iteration
increases.

• The WL kernel does not deteriorate significantly for many message passing
iterations in most of datasets, while GCNs and GINs do deteriorate due to
their large number of parameters and ill-trained previous node features.

• Transition of node features tend to be small, which leads to difficulty of
determining which feature is informative for prediction, and the features
converge to indistinguishable values when the training fails.

3.2 Methods for Graph Machine Learning

3.2.1 Notation
A graph is a tuple 𝐺 = (𝑉, 𝐸), where 𝑉 and 𝐸 denote the set of nodes and edges,
respectively. Nodes and edges can have labels (attributes) via label functions
𝑙𝑉 : 𝑉 → Σ𝑉 for nodes and 𝑙𝐸 : 𝐸 → Σ𝐸 for edges with some label domain Σ𝑉 and
Σ𝐸 , which can be any set such as Z and R𝑑 .

For two graphs 𝐺 = (𝑉, 𝐸) and 𝐺′ = (𝑉 ′, 𝐸′), we say that 𝐺′ is a subgraph of
𝐺, denoted by 𝐺′ ⊑ 𝐺, if 𝑉 ′ ⊆ 𝑉 and 𝐸′ ⊆ (𝑉 ′ ×𝑉 ′) ∩ 𝐸 .

3.2.2 The Vertex Histogram Kernel
One of the simplest graph kernels is the vertex histogram kernel, which counts
node label matching between a pair of graphs. Let 𝑑 be the number of types of
node labels – that is, 𝑑 = |Σ𝑣 | – and assume that Σ𝑣 = {1, 2, . . . , 𝑑} without loss of
generality. The histogram vector f𝑖 = (𝑓𝑖,1, . . . , 𝑓𝑖,𝑑) of node labels of a graph 𝐺𝑖 is
given as 𝑓𝑖,𝑚 = |{𝑣 ∈ 𝑉 : 𝑙𝑣 = 𝑚}| for each 𝑚 ∈ Σ𝑣. The vertex histogram kernel
𝑘VH between 𝐺 and 𝐺′ is defined as

𝑘VH(𝐺𝑖, 𝐺 𝑗) = ⟨f𝑖, f 𝑗 ⟩. (3.1)

3.2.3 The Weisfeiler–Lehman Kernel
The Weisfeiler–Lehman (WL) sub-tree kernel is based on the Weisfeiler–Lehman
test of isomorphism. The key idea of the kernel is the “WL scheme”, which is
re-labeling of node labels by gathering neighboring node labels. Then each new

CHAPTER 3. SUBSTRUCTURE-BASED MACHINE LEARNING 53

label is a good proxy of an indicator of subgraph structure. This re-labeling step
is repeated until every pair of graphs have different node labels or reaching at a
certain step 𝑡, which is a hyperparameter. If node label sets are different for two
graphs, this indicates that they are not isomorphic with each other. Moreover, node
labels obtained from this procedure implies its subgraph structures, resulting in the
tree structure of labels. After the procedure, each graph can be represented by the
occurrence of labels (subgraph structures).

In the WL kernels, these subgraph structures obtained from the WL scheme are
mapped into the Hilbert space. In other words, the obtained node label sets are
used to compute the similarity between graphs. The WL kernel is also based on
the vertex histogram, but it extends the original vertex histogram through iterations
of node re-labeling. The final kernel matrix after 𝑡 iteration of the WL scheme is
given as follows:

𝑘𝑊𝐿 (𝐺𝑖, 𝐺 𝑗) = 𝑘VH(𝐺 (0)
𝑖

, 𝐺
(0)
𝑗
) + 𝑘VH(𝐺 (1)

𝑖
, 𝐺

(1)
𝑗
) + · · · + 𝑘VH(𝐺 (𝑡)

𝑖
, 𝐺

(𝑡)
𝑗
), (3.2)

where 𝐺 (𝑡) denotes the graph 𝐺 with the updated node labels obtained by 𝑡th
iteration of the WL scheme. In the WL scheme, each node label 𝑙 (𝑡)𝑣 for a node
𝑣 ∈ 𝑉 of 𝐺 = (𝑉, 𝐸) at 𝑡th iteration is relabeled as 𝑙 (𝑡+1)

𝑣 by the hash function given
as

𝑙
(𝑡+1)
𝑣 = HASH

(
CONCAT

(
𝑙
(𝑡)
𝑣 ,N(𝑣)

))
, 𝑙

(0)
𝑣 = 𝑙𝑣, (3.3)

where N(𝑣) is the set of neighboring node labels of 𝑣. The function HASH denotes
the aggregated labels into unique new labels, and CONCAT denotes the operation
of concatenating labels. As the number 𝑡 of iterations increases, the kernel can
capture more and more overall information of graph structure. When 𝑡 goes to
infinity, it always converges to some value.

3.2.4 Graphlet kernel
The graphlet kernel is calculated by the frequency of occurrence of matched
subgraphs, called graphlets [Pržulj, 2007]. Graphs are decomposed into graphlets.
Let G = {graphlet1, graphlet2, . . . , graphlet|G|} be the set of size-𝑘 graphlets in 𝐺.
Using the histogram vector f𝑖 = (𝑓𝑖,1, . . . , 𝑓𝑖,|G|) such that 𝑓𝑖,𝑚 = #(graphlet𝑚 ⊑
𝐺) [Shervashidze et al., 2009]. Then the graphlet kernel is defined as

𝑘 (𝐺𝑖, 𝐺 𝑗) = ⟨f𝑖, f 𝑗 ⟩. (3.4)

3.2.5 Graph convolutional neural networks
Graph convolutional neural networks are first introduced for semi-supervised
learning of classifying nodes in a graph. In graph convolutional networks, node

CHAPTER 3. SUBSTRUCTURE-BASED MACHINE LEARNING 54

labels are treated as a feature matrix𝐻 ∈ R|𝑉 |×𝑑 , where each row is the corresponding
node label. The update rule of 𝐻 from 𝐻 (𝑡) to 𝐻 (𝑡+1) at the 𝑡th iteration in a graph
convolutional network is defined as

𝐻 (𝑡+1) = 𝜎(�̃�− 1
2 �̃��̃�

1
2 𝐻 (𝑡)𝑊 (𝑡)), (3.5)

where �̃� = 𝐴 + 𝐼 is the adjacency matrix of 𝐺 with self-loop (𝐼 is the identity
matrix), �̃�𝑖 𝑗 =

∑
𝑗 �̃� is the degree matrix with self-loop, 𝑊 (𝑡) is a matrix composed

of trainable weight parameters in a layer 𝑡 used for mapping of node feature matrix
𝐻, and 𝜎 is a non-linear function such as ReLu(·) = max(0, ·). The initial node
feature matrix 𝐻 (0) ∈ R|𝑉 |×𝑑 is directly given by node labels of a given graph
𝐺. This approach is related to the continuous version of the WL scheme with an
additional mapping and non-linear transformation instead of concatenating node
features [Kipf and Welling, 2017].

For regression and classification settings, the output of node features at the
final layer is reduced by the pooling operation, such as taking the mean and the
sum over vertices, which is equivalent to the readout operation that can obtain the
representation of graph features. The readout graph feature is passed into MLP
layers and trained through back propagation.

In computing for classification and regression, the reduce function that returns
the final output value 𝑜𝐺 for a given graph 𝐺 is defined as simply sum over nodes

𝑜𝐺 = MLP(READOUTGCN(𝐻 (𝑇))), (3.6)

where READOUTGCN(·) returns the sum pooling, the sum of each column, of an
input feature matrix. Since each row of 𝐻 corresponds to each node of a graph 𝐺,
the READOUTGCN operation performs the summation of feature vectors across
nodes.

3.2.6 Graph Isomorphism Networks
The graph isomorphism network (GIN) is a model that is known to be as powerful
as the WL test [Xu et al., 2019]. To update the representation of each node feature
vector ℎ, the GIN employs MLP as the core process in the following manner.

ℎ
(𝑡+1)
𝑣 = MLP(𝑡) ©«(1 + 𝜖 (𝑡))ℎ(𝑡)𝑣 +

∑︁
𝑢∈N (𝑣)

ℎ
(𝑡)
𝑢

ª®¬ , (3.7)

where MLP(𝑡) is a MLP layer at 𝑡th iteration, 𝜖 (𝑡) is a learnable weight or a fixed
scalar at the 𝑡th iteration. For graph classification and regression tasks, the output

CHAPTER 3. SUBSTRUCTURE-BASED MACHINE LEARNING 55

of graph features ℎ(𝑇)
𝐺

at the 𝑇 th iteration is defined as follows:

ℎ
(𝑇)
𝐺

= CONCAT
((

READOUT
(
(ℎ(𝑡)𝑣 | 𝑣 ∈ 𝐺)

)
| 𝑡 = 0, 1, . . . , 𝑇

))
. (3.8)

The READOUT function aggregates node features from the final iteration to obtain
graph features of ℎ(𝑡)

𝐺
by the summation or the graph-level pooling function. In

each iteration, graph features are read out and concatenated as total features. The
CONCAT function is defined as

ℎ𝐺 =

𝑇∑︁
𝑡=0

𝑤 (𝑡)ℎ(𝑡)
𝐺
, (3.9)

where 𝑤 is the weights of linear layers. The final features of ℎ𝐺 are computed
through each linear layer.

3.2.7 Special case of GIN (Pre-fixed GCN)
Our focus in this chapter is not on developing state-of-the-art GNNs, but on
examining the effectiveness of GNNs with respect to treating large substructures of
graphs. Therefore, we fix every weight to be the identity matrix and 𝜖 to be zero
in GINs. In such a situation, the update of node features is fully based on graph
structure (adjacency matrix) itself. The formula is defined as follows:

𝐻 (𝑙+1) = 𝜎(�̃�− 1
2 �̃��̃�

1
2 𝐻 (𝑙)), (3.10)

𝐻𝐺 = CONCAT
(
READOUT(𝐻 (𝑡)

𝑖
) |𝑡 = 0, 1, . . . , 𝑇

)
. (3.11)

Note that the obtained features can be combined with not only MLPs but also any
machine learning models. In SVMs, the graph feature of 𝐻𝐺 is decomposed into
a collection of graph features obtained via iterations and the resulting kernel is
obtained like the WL kernel as

𝑘 (𝐻𝐺 , ·) = 𝑘 (𝐻 (0)
𝐺

, ·) + 𝑘 (𝐻 (1)
𝐺

, ·) + · · · + 𝑘 (𝐻 (𝑇)
𝐺

, ·). (3.12)

Since the dimensionality of concatenated features of graphs becomes larger and
larger if more and more iterations are performed, we introduce the norm to normalize
each feature matrix as follows:

𝐻 (𝑡+1) =
�̃�− 1

2 �̃��̃�
1
2 𝐻 (𝑡)

|�̃�− 1
2 �̃��̃�

1
2 𝐻 (𝑡) |

. (3.13)

We call these features pre-fixed GCN as the weights of GCN is prefixed into unity.

CHAPTER 3. SUBSTRUCTURE-BASED MACHINE LEARNING 56

3.2.8 Measuring Transition of Node Features
To measure the degree of transition of node features after weight training in graph
convolutional layers, we simply introduce the AVERAGE operation of node feature
vectors for each convolutional layer. In GCNs, learned node features of 𝐻 are
updated per layer so that we retrieve and average 𝐻

(𝑡)
𝐺

over nodes at each iteration
step 𝑡, and we can describe the change of node features with the size 𝑓 , which is
the number of node features.

𝐻
(𝑡)
𝐺

=

©«
ℎ
(𝑡)
11 · · · ℎ

(𝑡)
1 𝑓

...
. . .

...

ℎ
(𝑡)
𝑣1 · · · ℎ

(𝑡)
𝑣 𝑓

ª®®®¬ . (3.14)

The update of 𝐻 is done with Eq. (3.5). The dimensionality of these features is
reduced by the mean pooling as

ℎ
(𝑡)
𝐺

=

(
1

|𝑉𝐺 |

|𝑉𝐺 |∑︁
𝑣

ℎ
(𝑡)
𝑣1 ,

1
|𝑉𝐺 |

|𝑉𝐺 |∑︁
𝑣

ℎ
(𝑡)
𝑣2 , . . . ,

1
|𝑉𝐺 |

|𝑉𝐺 |∑︁
𝑣

ℎ
(𝑡)
𝑣 𝑓

)
, (3.15)

ℎ
(𝑡+1)
𝐺

=

(
1

|𝑉𝐺 |

|𝑉𝐺 |∑︁
𝑣

ℎ
(𝑡+1)
𝑣1 ,

1
|𝑉𝐺 |

|𝑉𝐺 |∑︁
𝑣

ℎ
(𝑡+1)
𝑣2 , . . . ,

1
|𝑉𝐺 |

|𝑉𝐺 |∑︁
𝑣

ℎ
(𝑡+1)
𝑣 𝑓

)
. (3.16)

We expect that embedded node features include information about the neighboring
node features.

3.3 Experiments

3.3.1 Experimental Setting
Datasets

To investigate how sub-graph structures affect the performance in classification
and regression tasks, we collected eight classification datasets and three regression
datasets from various domains widely used as benchmarks of graph machine
learning. In terms of classification datasets, Kersting et al. [Kersting et al., 2016]
listed various benchmark sets for graph kernels. Classification benchmarks include
five bio-informatics datasets (MUTAG, PTC, NCI1, PROTEINS, and DD) and
two social network datasets (IMDB-BINARY and REDDIT-BINARY). Regression
benchmarks are three chemo-informatics datasets: ESOL from MoleculeNet for
the prediction of water solubility, FreeSolv from MoleculeNet for prediction
of hydration free energy of small molecules in water, and Lipophilicity from

CHAPTER 3. SUBSTRUCTURE-BASED MACHINE LEARNING 57

MoleculeNet for the prediction of octanol/water distribution coefficient (logD at
pH 7.4) ["Wu et al., "2018"]. Node labels in graphs are converted into a one-hot
matrix for GNNs while graph kernels use node labels directly to compute gram
matrices. As for social network graphs, all node feature vectors are the same
as each other according to the procedure proposed in literature [Xu et al., 2019,
Siglidis et al., 2020]. Our goal is to investigate whether or not graph machine
learning models can appropriately learn information of large subgraph structures
when the amount of message passing increases. We do not use edge features and
node features obtained from 3D structures such as the distance between nodes for
chemo-informatics dataset as they are not relevant to our task. All datasets are
available from DGL [Wang et al., 2019] and DGL-LifeSci [Li et al., 2021]. The
statistics of datasets are summarized in Table 3.1.

Models and Configuration

We chose two graph neural networks models that are highly related to the WL
scheme: Graph Convolutional Network (GCN) [Kipf and Welling, 2017] and Graph
Isomorphism Network (GIN) [Xu et al., 2019]. All neural networks are implemented
in Deep Graph Library (DGL) [Wang et al., 2019] and PyTorch [Paszke et al.,
2019]. The graph kernel of vertex histograms and the WL sub-tree kernel are
implemented in GraKel [Siglidis et al., 2020] and GRAPHLETs are obtained using
gSpan [Xifeng Yan, 2002] library1 for subgraph mining. Note that we enumerated
all the subgraphs in GRAPHLETs instead of performing sampling. The maximum
number of nodes and the support in gSpan is set to 5 and 500 in DD and REDDIT, 5
and 100 in IMDB, and 8 and 1 in other datasets. Support Vector Machines (SVMs)
is trained with scikit-learn [Pedregosa et al., 2011]. All methods are implemented
in Python 3.7.6. All experiments were conducted on Ubuntu 18.04.5LTS with a
single core of 2.2 GHz Intel Xeon CPU E5-2698 v4, 256GB of memory and 32GB
Nvidia Tesla V100.

Evaluation

In classification, datasets are evaluated in stratified 10-fold cross-validation, where
each fold preserves the class ratio of samples. In regression, we evaluated the
performance as root mean squared errors (RMSE) with a holdout validation set,
where a training set is 70 percent in the entire dataset. To perform fair comparison
of learned node features, the dimensionality of initial weights in convolutional
layers is the same as that of initial node features, which is |𝑉 | × 𝐹 with the number
of nodes |𝑉 | and that of features 𝐹. In classification datasets, the maximum number
of trainable parameters in GCN is 234,960 on the DD dataset when 30 graph

1https://github.com/betterenvi/gSpan

https://github.com/betterenvi/gSpan

CHAPTER 3. SUBSTRUCTURE-BASED MACHINE LEARNING 58

convolutional layers are stacked (the number of initial features (88) × the number of
initial features + bias (89) × the number of GCN layers (30)). In regression datasets,
the number of trainable parameters in GCN is 166,500 when 30 graph convolutional
layers are stacked. The dimensionality of the convolutional weights is also set to be
64 in order to obtain the best accuracy and the RMSE. For both classification and
regression settings, after the process for node embedding from GCN layers, the
obtained features of graphs are aggregated to pass them to MLP layers with batch
normalization. In GNNs, graph datasets are mini-batched according to datasets.
The default size is 32. About hyperparameters of networks, training epochs are 350
and two layers of MLPs and its linear hidden dimension is 1024. Adam [Kingma
and Ba, 2014] is used as an optimizer and its learning rate is 0.01. Other parameters,
such as betas for computing running averages of gradient and its square are default
values on PyTorch. The learning rate scheduler is a step function and decays
the learning rate half per 50 epochs. The loss function is cross-entropy loss in
classification and mean squared loss in regression.

3.3.2 Results and discussion
Classification

In classification, we use the Vertex Histogram kernel as a baseline, which computes
the similarity (kernel value) between graphs by simply counting the matching node
labels; in so doing, it completely ignores the graph topological information. We
also use the GRAPHLET kernel, which includes information of subgraphs under
the designated number of vertices.

Classification performance of each method. We show classification accuracy
on the bio-informatics and social network datasets in Table 3.2 and Table 3.3.
Table 3.2 shows the best accuracy on each dataset when changing the number of
iterations of message passing, where hyper-parameters are tuned by the 10-fold
cross-validation. In the table, the method “V” at the first row means the vertex
histogram kernel that shows our baseline of classification. The kernel shows that
most of the datasets can be classified to a certain extent by only counting node labels
in graphs. Since the vertex histogram kernel does not include any information
about graph topological structures, if the classification accuracy is comparable at a
certain level, this means that the effect of subgraphs is marginal.

The WL kernel can consider additional information of subgraph structures
through the WL scheme of iteration. The GRAPHLET kernel has a potential to in-
clude more information about substructures than the WL kernel according to the set-
ting of maximum number of vertices through enumeration of subgraphs (graphlets).
Note that the complexity of enumeration of subgraphs for the GRAPHLET kernel
exponentially increases as the number of vertex increases [Shervashidze et al.,

CHAPTER 3. SUBSTRUCTURE-BASED MACHINE LEARNING 59

2009], so it is not feasible to set the large number of vertices.
The pre-fixed GCN SVM is the support vector machine with input features

computed from GCN layers where the weight is the identity matrix. Such graph
features represent the graph structure itself. GCN is related to the WL kernel, while
features obtained through graph convolution can include information of subgraph
structures as embeddings through training at the final layer. In contrast, GIN can
include all features of substructures at each iteration.

In Table 3.2, the accuracy score of the GRAPHLET kernel, which explicitly
considers all the possible subgraphs under the certain number of vertices, is highest
on the MUTAG and DD dataset. The accuracy of the WL kernel is also high overall
and shows the best score in three datasets (PTC-MR, NCI1, and PROTEINS). The
accuracy scores of both GIN and GCN are comparable to those of the WL graph
kernel. When we consider downstream classification methods in GCNs, SVM with
the features computed from GCNs with pre-fixed weights, which can be viewed as
the continuous version of the WL scheme and weights in GCNs are not trained and
node features depend on the initial node attributes and its structure (the adjacency
matrix) can be effective in certain types of datasets as it shows comparable or better
accuracy in, for example, MUTAG and DD than the standard GCN. While our
result is different from that in [Xu et al., 2019] due to hyperparameter settings,
but our comparison is fair as hyperparameters are tuned in the same way across
comparison partners.

Effects of the number of message passing iteration. Figures 3.1, 3.2,
and 3.3 are classification results of GCNs and GINs when the amount of message
passing increases, which investigates the impact of larger subgraph structures on
its predictive performance. As the number of iterations increases, GCNs fail to
appropriately learn representation of graphs in NCI1 and REDDIT-BINARY, and
GINs fail in NCI1, PROTEINS, DD, REDDIT-BINARY, and IMDB-BINARY. One
reason for this phenomenon is that GINs have more parameters than GCNs, so it
is more difficult to effectively learn representation of node features as it is more
affected by the previous ill-learned node features. However, as Tables 3.2 and 3.3
show, GINs are more powerful at learning representation of graphs on various
datasets and also comparable to the WL kernel when such hyperparameters are
properly tuned.

In the WL kernel, it is easy to compute the kernel even if the number of
message passing iterations increases. Figure 3.4 shows the classification accuracy
as the number of iterations increases. We have increased the number of iterations
in the WL kernel up to 100. In the MUTAG dataset, labels obtained from the
WL scheme become unique when iterations reach to 13, which means no more
information gains. Small fluctuations of the resulting accuracy comes from the
loop structure in graphs. Overall, the accuracy score is not largely affected by the
number of iterations in the WL kernel, except for NCI1 and DD. One possible

CHAPTER 3. SUBSTRUCTURE-BASED MACHINE LEARNING 60

reason for such deteriorating accuracy in NCI1 and DD is that they have more node
labels than other datasets and it becomes difficult to discriminate graphs as the
number of iteration increases. Various node labels contribute to the occurrence of
multiple types of unique subgraphs. Since graph kernels fundamentally measure
the similarity between graphs based on subgraph matching, the kernel value gets
smaller if there are many unique subgraphs. In the case of NCI1 and DD, when the
number of iterations increases, more and more unique subgraphs appear, and the
additional contribution to kernel values becomes smaller and smaller, resulting in
the difficulty of discrimination. An interesting observation is that the accuracy on
the REDDIT-BINARY dataset increases when the number of iterations increases,
although the highest accuracy is at the first iteration.

As for GCNs and GINs, Figures 3.6 and 3.7 show the training-validation loss
and accuracy via 10-fold cross-validation per epoch on the MUTAG and NCI1
datasets. In each figure, left and right plots represent the training log of GCNs under
the setting of the number of iterations 1 or 30, respectively. When the number of
graph convolutional layers is one, the loss and accuracy of training-validation sets
are rather smooth compared to the case where the number of graph convolutional
layers is 30. After training after 350 epochs, the standard deviation of the training-
validation loss and accuracy fluctuates greatly, although the final accuracy score is
almost the same, at around 70 percent. This shows the difficulty of learning for
a larger number of iterations where there are more trainable parameters as well.
Figure 3.3 shows results on the social networks datasets. In GCNs, the accuracy
does not change so much compared to GINs. All graphs on social network datasets
have the same node labels, and GCNs may be easier to learn representation of node
features, while GINs can get the best accuracy at the first or second steps.

Transitions of node features over message passing iteration. To investigate
how the number of message passing iterations affects the learning and how node
features change through iteration, we plot the transition of node features shown
in Figures 3.8 and 3.9. Figure 3.9 shows that node features in GCNs is likely to
converge to a certain value on the NCI1 dataset, where over-smoothing is observed.
Here, the size of features may be relevant to this phenomenon; that is, when the
number of trainable parameters increases in graph convolutional layers, it is more
difficult to learn the node features appropriately. As we can see in the MUTAG
dataset in Figure 3.8, when the weights are properly trained, even though the
transition of node features tends to become small, the classification performance
does not change.

Regression

Regression performance of each method. In addition to the classification task,
we investigated the regression performance of WL kernels and GCNs. Results

CHAPTER 3. SUBSTRUCTURE-BASED MACHINE LEARNING 61

are shown in Table 3.4. In the table, 0-SVR is the linear kernel computed from
the sum of initial node features across nodes, which is similar to the Vertex
Histogram kernel. In chemo informatics datasets, graph features are often used as
fingerprints (subgraphs in molecules) such as extended-connectivity fingerprints
(ECFPs) [Rogers and Hahn, 2010b] to deal with larger datasets. We chose smaller
datasets for regression because ECFPs have a problem of bit collision, where
fingerprints have duplication of subgraph structure in vectors. In the WL kernel,
atomic numbers are directly used as node labels. The WL kernel shows the best
result (the smallest RMSE) in ESOL and lipophilicity. GCNs and GINs are inferior
to the WL kernel for the two datasets, while GCNs show the best score in FreeSolv
using node features from two convolutional layers with their training.

Effects of the number of message passing iteration. To investigate the impact
of message passing iteration in the regression task, we plot RMSE results of SVR
with node features learned from GCNs in Figure 3.10. In the plots, the x-axis
(iteration) means the number of message passing (graph convectional layers). In the
left plots, the output of node features from each GCNs layer is used in SVR, and in
the right plots, concatenated node features from GCNs are used in SVR. In ESOL
and Lipophilicyty, an increase in the amount of message passing does not contribute
to its predictive performance, while in FreeSolv it makes some contribution to
the predictive performance. Concatenating graph features from each layers can
be an effective choice when using a large number of iterations. In addition, the
place where features from each GCNs layer become a plateau can provide good
features. In FreeSolv, the score of GCNs with SVR fluctuates, and concatenating
graph features gets the best score, at around five iterations. However, SVR is still
effective and, with a little hyperparameter tuning, can learn the model with high
predictive performance. The result of the RMSE of GCNs shows that increasing
the number of message passing does not contribute to its predictive performance.
Especially in GINs, the performance deteriorates, or learning is too unstable to train
the model properly. This phenomenon often occurs, as shown in the classification
section. However, as can be seen in Fig. 10, node features obtained from each
layer in trained GCNs seem to be informative for SVR prediction on ESOL and
lipophilicity datasets when concatenating these features. In contrast, the resulting
RMSE of FreeSolv shows that calculated node features are likely to include noise
because the performance of SVR decreases when they are concatenated. Therefore,
as one of the options to circumvent the over-smoothing problem, we recommend
empirically checking whether the iteration affects over-smoothing in SVR with
node features learned from GCNs.

CHAPTER 3. SUBSTRUCTURE-BASED MACHINE LEARNING 62

3.4 Conclusion
In this chapter, we have investigated the effect of iterations of GCNs layers. In the
WL kernel (which is the state-of-the-art graph kernel and shares the iteration process
with GNNs to incorporate graph topological information), it usually maintains
the good performance for large number of iterations in both classification and
regression tasks. This may be because the WL kernel implicitly constructs a feature
vector and addition of iteration means the concatenation, not the summation, of
features. Since the large number of iterations means that the corresponding method
tries to capture larger subgraphs, it can become insignificant if only local graph
information is relevant. In GNN models such GCNs and GINs, by contrast, the
number of iterations is largely affected because there are more and more trainable
parameters and it is often difficult to learn them properly. Another reason could be
that since node features can include noise, message passing iteration contributes to
accumulate noise, resulting in worsening the performance of even the WL kernel.
Since the predictive power of GCNs and GINs is comparable to that of the WL graph
kernel, GNNs with mini-batch training can be an effective choice on larger dataset,
as it is much more efficient than the WL kernel that requires the computation of the
full kernel matrix. In our future work, we will investigate other methods such as
attention-based graph neural networks.

Table 3.1: Statistics of benchmark datasets.

Name Statistics Label/Attributes
Num. of Graphs Avg. Nodes Avg. Edges Node Labels Node Attr. Dim.

MUTAG 188 17.93 19.79 + 7
PTC-MR 344 4.29 14.69 + 19

NCI1 4110 29.87 32.30 + 37
PROTEINS 1113 39.06 72.82 + 3

DD 1178 284.32 715.66 + 88

REDDIT-BINARY 2000 429.63 497.75 - -
IMDB-BINARRY 1000 19.77 96.53 - -

ESOL 1128 13.29 13.68 + 74
FreeSolv 642 8.72 8.39 + 74

Lipophilicity 4200 27.04 29.5 + 74

CHAPTER 3. SUBSTRUCTURE-BASED MACHINE LEARNING 63

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29
iterations

70

75

80

85

90

ac
cu

ra
cy

MUTAG: GCN
validation accuracy

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29
iterations

45

50

55

60

65

70

75

80

ac
cu

ra
cy

PTC: GCN
validation accuracy

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29
iterations

70

72

74

76

78

80

82

84

ac
cu

ra
cy

NCI1: GCN
validation accuracy

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29
iterations

66

68

70

72

74

76

78

80

ac
cu

ra
cy

PROTEINS: GCN
validation accuracy

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29
iterations

60

62

64

66

68

70

72

74

ac
cu

ra
cy

DD: GCN
validation accuracy

Figure 3.1: Classification results of GCNs on bio-informatics datasets. X-axis
shows the number of convolutional layers (the number of message passing). Blue
bold line shows the average of accuracy evaluated in 10-fold cross validation and
the filled area shows the standard deviation.

Table 3.2: Classification accuracy of 10-folds cross-validation on Bio-informatics
datasets.

Method Dataset
MUTAG PTC-MR NCI1 PROTEINS DD

V 81.96 +/- 7.06 55.82 +/- 0.91 63.24 +/- 1.83 72.42 +/- 2.53 77.85 +/- 3.11
WL 88.30 +/- 5.13 65.68 +/- 7.44 86.11 +/- 1.09 75.29 +/- 2.52 78.78 +/- 2.41

GRAPHLET 89.36 +/- 4.78 64.55 +/- 8.13 83.19 +/- 1.79 73.95 +/- 1.79 79.03 +/- 2.91

pre-fixed GCN SVM 87.16 +/- 6.09 59.89 +/- 3.27 64.28 +/- 2.19 71.53 +/- 4.63 75.12 +/- 2.77
GCN 85.12 +/- 6.91 64.76 +/-15.18 81.53 +/- 4.38 74.93 +/- 6.07 73.43+/- 5.56
GIN 88.89 +/- 9.80 62.20 +/-12.67 80.85 +/- 14.55 75.03+/- 8.45 77.42 +/- 9.23

CHAPTER 3. SUBSTRUCTURE-BASED MACHINE LEARNING 64

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29
iterations

75

80

85

90

95

ac
cu

ra
cy

MUTAG: GIN
validation accuracy

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29
iterations

50

55

60

65

70

ac
cu

ra
cy

PTC: GIN
validation accuracy

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29
iterations

45

50

55

60

65

70

75

80

85

ac
cu

ra
cy

NCI1: GIN
validation accuracy

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29
iterations

60.0

62.5

65.0

67.5

70.0

72.5

75.0

77.5

ac
cu

ra
cy

PROTEINS: GIN
validation accuracy

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29
iterations

40

50

60

70

80

ac
cu

ra
cy

DD: GIN
validation accuracy

Figure 3.2: Classification results of GINs on the bio-informatics dataset.

Table 3.3: Classification accuracy of 10-folds cross-validation on social network
datasets.

Method Dataset
REDDIT-BINARY IMDB-BINARY

V 76.90 +/- 2.10 72.6 +/- 4.27
WL 85.61 +/- 4.87 73.6 +/- 4.10

GRAPHLET 84.60 +/- 1.70 70.90 +/- 5.26

pre-fixed GCN SVM 82.55 +/- 2.60 55.50 +/- 2.25
GCN 73.43 +/- 4.63 67.00 +/- 4.42
GIN 64.90 +/- 13.35 71.00 +/- 5.29

CHAPTER 3. SUBSTRUCTURE-BASED MACHINE LEARNING 65

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29
iterations

55

60

65

70

75

ac
cu

ra
cy

REDDITBINARY: GCN
validation accuracy

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29
iterations

40

45

50

55

60

65

70

75

80

ac
cu

ra
cy

REDDITBINARY: GIN
validation accuracy

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29
iterations

55

60

65

70

ac
cu

ra
cy

IMDBBINARY: GCN
validation accuracy

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29
iterations

50

55

60

65

70

75

ac
cu

ra
cy

IMDBBINARY: GIN
validation accuracy

Figure 3.3: Classification results on social network datasets.

Table 3.4: RMSE of holdout validation (training 70% test 30%). "-" denotes that a
model can not be trained properly under this hyperparameter.

Method Dataset
ESOL Free Solv Lipophilicity

0-SVR 1.127 1.951 1.019
WL 0.768 1.112 0.6074

pre-fixed GCN SVR 1.534 3.756 1.169
1-2 layers GCN + SVR 0.8675 0.9413 0.6881

2 layers GCN 1.270 1.303 0.8087
2 layers GIN 0.8165 1.438 0.8118

30 layers GCN 1.016 1.407 1.219
30 layers GIN - 14.45 -

CHAPTER 3. SUBSTRUCTURE-BASED MACHINE LEARNING 66

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96
iteration

75.0

77.5

80.0

82.5

85.0

87.5

90.0

92.5

MUTAG: WL
validation accuracy

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96
iterations

52.5

55.0

57.5

60.0

62.5

65.0

67.5

70.0

72.5

ac
cu

ra
cy

PTC_MR: WL
validation accuracy

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96
iterations

72

74

76

78

80

82

84

86

88

ac
cu

ra
cy

NCI1: WL
validation accuracy

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96
iterations

70

72

74

76

78

ac
cu

ra
cy

PROTEINS: WL
validation accuracy

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96
iterations

74

75

76

77

78

79

80

81

82

ac
cu

ra
cy

DD: WL
validation accuracy

Figure 3.4: Classification results of the WL kernel on Bio-informatics datasets.

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96
iteration

68

70

72

74

76

78

80

REDDIT-BINARY: WL
validation accuracy

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96
iteration

68

70

72

74

76

78

IMDB-BINARY: WL
validation accuracy

Figure 3.5: Classification results on social network datasets.

CHAPTER 3. SUBSTRUCTURE-BASED MACHINE LEARNING 67

0 50 100 150 200 250 300 350
epochs

0.5

0.6

0.7

0.8

0.9

training accuracy
validation accuracy

(a) Accuracy of 1-layer GCN

0 50 100 150 200 250 300 350
epochs

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
training accuracy
validation accuracy

(b) Accuracy of 30-layers GCN

0 50 100 150 200 250 300 350
epochs

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6
training loss
validation loss

(c) Loss of 1-layers GCN

0 50 100 150 200 250 300 350
epochs

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6 training loss
validation loss

(d) Loss of 30-layers GCN

Figure 3.6: Accuracy and loss on MUTAG dataset.

CHAPTER 3. SUBSTRUCTURE-BASED MACHINE LEARNING 68

0 50 100 150 200 250 300 350
epochs

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85 training accuracy
validation accuracy

(a) Accuracy of 1-layer GCN

0 50 100 150 200 250 300 350
epochs

0.5

0.6

0.7

0.8

training accuracy
validation accuracy

(b) Accuracy of 30-layers GCN

0 50 100 150 200 250 300 350
epochs

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6
GCN: 1-layer

training loss
validation loss

(c) Loss of 1-layers GCN

0 50 100 150 200 250 300 350
epochs

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6
GCN: 30-layer

training loss
validation loss

(d) Loss of 30-layers GCN

Figure 3.7: Accuracy and loss on NCI1 dataset.

0 5 10 15 20 25 30
iteration

0.6

0.4

0.2

0.0

0.2

0.4

0.6

no
de

 fe
at

ur
es

MUTAG id: 84: train

(a) GCN trained

0 5 10 15 20 25 30
iteration

4

2

0

2

4

no
de

 fe
at

ur
es

 (s
ca

le
d)

MUTAG id: 84: train

(b) Pre-fixed weights GCN

Figure 3.8: An example of transition of node features on MUTAG dataset. Each
curve represents the averaged node feature value in a graph at each iteration step.

CHAPTER 3. SUBSTRUCTURE-BASED MACHINE LEARNING 69

0 20 40 60 80 100
iteration

0

2

4

6

8

10

no
de

 fe
at

ur
es

 (s
ca

le
d)

NCI1 id: 2054: train

(a) Trained GCNs

0 20 40 60 80 100
iteration

6

4

2

0

2

4

6

no
de

 fe
at

ur
es

 (s
ca

le
d)

NCI1 id: 2054: train

(b) Pre-fixed weights GCNs

0 20 40 60 80 100
iteration

4

2

0

2

4

6

8

no
de

 fe
at

ur
es

 (s
ca

le
d)

NCI1 id: 0: test

(c) Trained GCNs

0 20 40 60 80 100
iteration

6

4

2

0

2

4

no
de

 fe
at

ur
es

 (s
ca

le
d)

NCI1 id: 0: test

(d) Pre-fixed weights GCNs

Figure 3.9: An example of transition of node features on NCI1 dataset. Each curve
represents the averaged node feature value in a graph at each iteration step.

CHAPTER 3. SUBSTRUCTURE-BASED MACHINE LEARNING 70

0 5 10 15 20 25 30
iteration

1.2

1.4

1.6

1.8

2.0

2.2

RM
SE

ESOL

0 5 10 15 20 25 30
iteration

1.00

1.02

1.04

1.06

1.08

1.10

1.12

RM
SE

ESOL

0 5 10 15 20 25 30
iteration

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

RM
SE

FreeSolv

0 5 10 15 20 25 30
iteration

1.2

1.4

1.6

1.8

2.0

2.2

2.4

RM
SE

FreeSolv

0 5 10 15 20 25 30
iteration

1.00

1.05

1.10

1.15

1.20

RM
SE

Lipophilicity

0 5 10 15 20 25 30
iteration

0.84

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00

RM
SE

Lipophilicity

Figure 3.10: Regression results of SVR using node features learned from GCNs.
Left plots show SVR results using features produced from each GCNs layer and
right plots show SVR results using concatenating features.

Chapter 4

Summary and Future works

In this thesis, we have proposed a novel molecular graph generation algorithm called
MOLDR (Molecular graph Decomposition and Reassembling) and investigated the
effect of the message passing algorithm, the fundamental procedure of incorporating
graph topological structure, as the number of iteration increase. In Chapter 1,
we have described the fundamental theories in multi-disciplinary areas in order
to understand graph generation and graph machine learning, especially focusing
on subgraphs structures. In Chapter 2, we proposed MOLDR and showed the
effectiveness of MOLDR in the task of molecular graph generation using real-world
datasets. MOLDR does not need to use generative models; hence, it is not need
to consider the representation of graphs when generating molecules. Due to
reassembling molecules from building blocks obtained from subgraph mining,
it enables chemical space to be restricted in order to prevent the combinatrial
problem. In Chapter 3, we have investigated how graph features from message
passing affect graph classification and regression. Although Chapter 3 is a general
topic of message passing algorithms, it is related to molecular graph generation
(Chapter 2) when estimating the properties of molecular graphs using graph neural
networks. In order to design molecules with desired properties, an appropriate
reward function is also needed to maximize the cumulative rewards. Finally, in this
chapter, we summarise this thesis, current limitations, and future works.

4.1 Summary

4.1.1 Molecular Graph Generation
We have proposed a new graph generation algorithm, called Molecular graph
Decomposition and Reassembling (MOLDR). The procedures are as follows:

1. Apply subgraph mining algorithm gSpan to a given graph dataset,

71

CHAPTER 4. SUMMARY AND FUTURE WORKS 72

2. Select subgraph structures as building blocks,

3. Compute the target property of reassembled graphs by some target function
e.g. graph regression model,

4. Apply MCTS (or reinforcement learning),

5. Compute the PUCT score against the generated molecules,

6. Expand the path for the next generated graph,

7. Update PUCT score,

8. Run until the preset condition is satisfied and back to 2.

The properties of MOLDR are as follows:

• MOLDR explicitly constructs new molecules by combining substructures,
hence its generation process is interpretable.

• MOLDR can easily generate larger size of molecules out of distribution in a
dataset by combining subgraph structures.

• Molecules generated by MOLDR are superior to those by the current state-
of-the-art methods in terms of log 𝑃 and QED (drug-likeness).

4.1.2 How Graph Features from Message Passing Affect Graph
Classification and Regression

We have investigated the prediction performance of graph regression and classi-
fication regarding the WL kernel and graph neural networks with respect to the
number of message passing iterations.

• We show that the prediction performance of the WL kernel outperforms
the most fundamental GNNs, GCNs, and GINs, if the number of message
passing iterations increases.

• The WL kernel does not significantly deteriorate for many message passing
iterations in most datasets. At the same time, GCNs and GINs do due to their
large number of parameters and ill-trained previous node features.

• We also show that the transition of node features tends to be small, which leads
to the difficulty of determining which feature is informative for prediction.
The features become certain values when the training fails.

CHAPTER 4. SUMMARY AND FUTURE WORKS 73

4.2 Future Works
The graph generation task is still challenging due to the graph combinatorial
problem when the number of nodes increases. Generating graphs with desired
properties need an appropriate balance between exploration and exploitation. In
MOLDR, generated graphs depend on the previous nodes; thus, if the previous
path is not accurate, a massive rollout with higher exploration is needed to prevent
this problem. MOLDR implemented with MCTS is computed with currently
only a single core. In order to search efficiently, the implementation of parallel
computation is also necessary. We need to investigate MOLDR further in the case
of multi-objective targets and another benchmark, such as GuacaMol that is used
for goal-directed molecular graph generation.

We also need to investigate the relationship between the performance and node
embedding in molecular graph generation as the graph size increases. As shown
in Chapter 3, as the number of message passing iterations increases, it is likely to
decrease the performance of regression and classification, which means that it is
difficult to take the effect of larger substructures into consideration in GCN and
GIN. This would have the possibility to affect the performance of molecular graph
generation since it cannot represent graph structures appropriately. We need to
conduct further experiments and improve the performance of the molecular graph
generation algorithm to use an appropriate embedding when applying graph neural
networks and reinforcement learning.

Appendix A

Update Process of MOLDR

A.1 Merge Nodes and Edges
The procedure of merging node and edge is shown in Fig A.1 and A.2. In order to
combine two graphs, two adjacency matrices should be concatenated. The process
of merging nodes and edges is operated through the adjacency matrix.

In Fig. A.1, two graphs are merged with nodes by adding the bit in adjacency
matrix and by removing duplicated nodes. Fig. A.2 shows that two graph 𝐺1 and
𝐺2 is merged into one graphs with two rings. 𝐶6 and 𝐶7 is overwritten into 𝐶0 and
𝐶1 in this case so that a bit in the adjacency matrix is add at the position that is
merged. Unneeded nodes are removed in this process.

74

APPENDIX A. UPDATE PROCESS OF MOLDR 75

Figure A.1: Procedure of merging node between two graphs. Left figure shows
the two graphs represented by one graph. Red rectangle encircling (𝐹, ∗) is
merged from dotted reg rectangle encircling (∗, ∗). Right figure shows the result of
reassembling two graphs. After merging nodes, the bits written in red number is
added into adjacency matrix and the index of merged node ∗ is removed from row
and column.

A.2 MOLDR with reinforcement learning
We evaluate MOLDR with reinforcement learning to compute asynchronously. To
do so, we tried policy proximal optimization algorithm to train the agent of MOLDR
on the GuacaMol benchmark. We evaluate the task of Troglitazone rediscovery.

A.3 How to select molecules
In reassembling process, the combination of subgraphs increases as the number
of nodes increases. We check the performance how the reassembled molecules
are selected with reinforcement learning. After reassembling molecules, there are
multiple candidates generated through MOLDR, and there are multiple choices
to select them: Random selection, Maximum score selection, and selection based
on chemical reaction property. We tried random selection and maximum score
selection. The reward for reinforcement learning is defined as the similarity between
a generated molecule and target molecule.

APPENDIX A. UPDATE PROCESS OF MOLDR 76

Figure A.2: Procedure of merging an edge between two graphs. Left figure shows
the two graphs represented by one graph. Red rectangle encircling 𝐶6, 𝐶7 is
merged from dotted reg rectangle encircling 𝐶0, 𝐶1. Right figure shows the result
of reassembling two graphs. After merging edges, the bits written in red number is
added into adjacency matrix.

Random selection. Fig. A.4 shows the training results. In the case of random
selection of candidates reassembled through MOLDR, the reward mean is better
when the policy is MLPs. However, the max reward is almost same as the LSTMs,
and MOLDR cannot reconstruct Troglitazone based on the score.

Maximum score selection. In the case of maximum score selection of
candidates shown in Fig A.5, the reward mean is better when the selection is
random. Generated molecules are almost same as the target molecule. However,
the max reward is almost same as the LSTM, and MOLDR cannot reconstruct
Troglitazone shown in Fig. A.6. Computational time is about 40 minutes with 32
CPUs and 2 GPUs.

APPENDIX A. UPDATE PROCESS OF MOLDR 77

Figure A.3: Troglitazone rediscovery with MOLDR when generating successfully.
The value under molecules is similarity score between a generated molecule and
target molecule. Gradually molecules are reassembled and generate the final
product.

Figure A.4: Training results of MOLDR with random select when reassembling
molecules. Expanding path is selected through PPO where the policy network
is either LSTM (red) or MLPs (blue). In the left figure, vertical axis shows the
episode length. The middle figure shows the maximum reward in the episode.
Right figure shows reward mean of episode.

APPENDIX A. UPDATE PROCESS OF MOLDR 78

Figure A.5: Training results of MOLDR with the maximum score selection.
Expanding path is selected through PPO where the policy network is MLPs.

Figure A.6: Troglitazone rediscovery with MOLDR under the PPO + maximum
reward selection.

Appendix B

Experimental results for GNNs on
another dataset

Experimental results of accuracy and loss in GCNs and GINs are shown here. The
rests of dataset are DD, PROTEINS, PTC, IMDB-BINARY, and REDDIT-BINARY.
As shown in here, training results of GINs is not stable when the number of message
passing iteration increases, so that loss values in some figures are not shown due to
the bigger values.

79

APPENDIX B. EXPERIMENTAL RESULTS FOR GNNS ON ANOTHER DATASET80

0 50 100 150 200 250 300 350
epochs

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80 training accuracy
validation accuracy

(a) Accuracy of 1-layer GCN

0 50 100 150 200 250 300 350
epochs

0.4

0.5

0.6

0.7

0.8

0.9 training accuracy
validation accuracy

(b) Accuracy of 30-layers GCN

0 50 100 150 200 250 300 350
epochs

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6
GCN: 1-layer

training loss
validation loss

(c) Loss of 1-layers GCN

0 50 100 150 200 250 300 350
epochs

0

1

2

3

4

GCN: 30-layer
training loss
validation loss

(d) Loss of 30-layers GCN

Figure B.1: GCN: Accuracy and loss on DD dataset.

APPENDIX B. EXPERIMENTAL RESULTS FOR GNNS ON ANOTHER DATASET81

0 50 100 150 200 250 300 350
epochs

0.4

0.5

0.6

0.7

0.8

training accuracy
validation accuracy

(a) Accuracy of 1-layer GIN

0 50 100 150 200 250 300 350
epochs

0.4

0.5

0.6

0.7

0.8

0.9

1.0 training accuracy
validation accuracy

(b) Accuracy of 30-layers GIN

0 50 100 150 200 250 300 350
epochs

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

GIN: 1-layer
training loss
validation loss

(c) Loss of 1-layers GIN

0 50 100 150 200 250 300 350
epochs

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00 GIN: 30-layer
training loss
validation loss

(d) Loss of 30-layers GIN

Figure B.2: GIN: Accuracy and loss on DD dataset.

APPENDIX B. EXPERIMENTAL RESULTS FOR GNNS ON ANOTHER DATASET82

0 50 100 150 200 250 300 350
epochs

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85 training accuracy
validation accuracy

(a) Accuracy of 1-layer GCN

0 50 100 150 200 250 300 350
epochs

0.4

0.5

0.6

0.7

0.8
training accuracy
validation accuracy

(b) Accuracy of 30-layers GCN

0 50 100 150 200 250 300 350
epochs

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6
GCN: 1-layer

training loss
validation loss

(c) Loss of 1-layers GCN

0 50 100 150 200 250 300 350
epochs

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

GCN: 30-layer
training loss
validation loss

(d) Loss of 30-layers GCN

Figure B.3: GCN: Accuracy and loss on PROTEINS dataset.

APPENDIX B. EXPERIMENTAL RESULTS FOR GNNS ON ANOTHER DATASET83

0 50 100 150 200 250 300 350
epochs

0.55

0.60

0.65

0.70

0.75

0.80 training accuracy
validation accuracy

(a) Accuracy of 1-layer GIN

0 50 100 150 200 250 300 350
epochs

0.4

0.5

0.6

0.7

0.8
training accuracy
validation accuracy

(b) Accuracy of 30-layers GIN

0 50 100 150 200 250 300 350
epochs

0.0

0.5

1.0

1.5

2.0

GIN: 1-layer
training loss
validation loss

(c) Loss of 1-layers GIN

0 50 100 150 200 250 300 350
epochs

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00 GIN: 30-layer
training loss
validation loss

(d) Loss of 30-layers GIN

Figure B.4: GIN: Accuracy and loss on PROTEINS dataset.

APPENDIX B. EXPERIMENTAL RESULTS FOR GNNS ON ANOTHER DATASET84

0 50 100 150 200 250 300 350
epochs

0.4

0.5

0.6

0.7

0.8

0.9 training accuracy
validation accuracy

(a) Accuracy of 1-layer GCN

0 50 100 150 200 250 300 350
epochs

0.3

0.4

0.5

0.6

0.7

0.8

training accuracy
validation accuracy

(b) Accuracy of 30-layers GCN

0 50 100 150 200 250 300 350
epochs

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6
GCN: 1-layer

training loss
validation loss

(c) Loss of 1-layers GCN

0 50 100 150 200 250 300 350
epochs

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6
GCN: 30-layer

training loss
validation loss

(d) Loss of 30-layers GCN

Figure B.5: GCN: Accuracy and loss on PTC dataset.

APPENDIX B. EXPERIMENTAL RESULTS FOR GNNS ON ANOTHER DATASET85

0 50 100 150 200 250 300 350
epochs

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75
training accuracy
validation accuracy

(a) Accuracy of 1-layer GIN

0 50 100 150 200 250 300 350
epochs

0.3

0.4

0.5

0.6

0.7

0.8

training accuracy
validation accuracy

(b) Accuracy of 30-layers GIN

0 50 100 150 200 250 300 350
epochs

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

GIN: 1-layer
training loss
validation loss

(c) Loss of 1-layers GIN

0 50 100 150 200 250 300 350
epochs

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

GIN: 30-layer
training loss
validation loss

(d) Loss of 30-layers GIN

Figure B.6: GIN: Accuracy and loss on PTC dataset.

APPENDIX B. EXPERIMENTAL RESULTS FOR GNNS ON ANOTHER DATASET86

0 50 100 150 200 250 300 350
epochs

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75 training accuracy
validation accuracy

(a) Accuracy of 1-layer GIN

0 50 100 150 200 250 300 350
epochs

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75 training accuracy
validation accuracy

(b) Accuracy of 30-layers GIN

0 50 100 150 200 250 300 350
epochs

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6
GCN: 1-layer

training loss
validation loss

(c) Loss of 1-layer GIN

0 50 100 150 200 250 300 350
epochs

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

GCN: 30-layer
training loss
validation loss

(d) Loss of 30-layers GIN

Figure B.7: GCN: Accuracy and loss on IMDBBINARY dataset.

APPENDIX B. EXPERIMENTAL RESULTS FOR GNNS ON ANOTHER DATASET87

0 50 100 150 200 250 300 350
epochs

0.400

0.425

0.450

0.475

0.500

0.525

0.550

0.575

0.600
training accuracy
validation accuracy

(a) Accuracy of 1-layer GIN

0 50 100 150 200 250 300 350
epochs

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80 training accuracy
validation accuracy

(b) Accuracy of 30-layers GIN

0 50 100 150 200 250 300 350
epochs

0.0

0.5

1.0

1.5

2.0

2.5

3.0

GIN: 1-layer
training loss
validation loss

(c) Loss of 1-layers GIN

0 50 100 150 200 250 300 350
epochs

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00 GIN: 30-layer
training loss
validation loss

(d) Loss of 30-layers GIN

Figure B.8: GIN: Accuracy and loss on IMDBBINARY dataset.

APPENDIX B. EXPERIMENTAL RESULTS FOR GNNS ON ANOTHER DATASET88

0 50 100 150 200 250 300 350
epochs

0.50

0.55

0.60

0.65

0.70

training accuracy
validation accuracy

(a) Accuracy of 1-layer GCN

0 50 100 150 200 250 300 350
epochs

0.50

0.55

0.60

0.65

0.70

training accuracy
validation accuracy

(b) Accuracy of 30-layers GCN

0 50 100 150 200 250 300 350
epochs

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

GCN: 1-layer
training loss
validation loss

(c) Loss of 1-layer GCN

0 50 100 150 200 250 300 350
epochs

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

GCN: 30-layer
training loss
validation loss

(d) Loss of 30-layers GCN

Figure B.9: GCN: Accuracy and loss on REDDITBINARY dataset.

APPENDIX B. EXPERIMENTAL RESULTS FOR GNNS ON ANOTHER DATASET89

0 50 100 150 200 250 300 350
epochs

0.2

0.3

0.4

0.5

0.6

0.7

0.8
training accuracy
validation accuracy

(a) Accuracy of 1-layer GIN

0 50 100 150 200 250 300 350
epochs

0.3

0.4

0.5

0.6

0.7

0.8 training accuracy
validation accuracy

(b) Accuracy of 30-layers GIN

0 50 100 150 200 250 300 350
epochs

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00 GIN: 1-layer
training loss
validation loss

(c) Loss of 1-layers GIN

0 50 100 150 200 250 300 350
epochs

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00 GIN: 30-layer
training loss
validation loss

(d) Loss of 30-layers GIN

Figure B.10: GIN: Accuracy and loss on REDDITBINARY dataset.

Bibliography

Peter W. Battaglia, Jessica B. Hamrick, Victor Bapst, Alvaro Sanchez-Gonzalez,
Vinicius Zambaldi, Mateusz Malinowski, Andrea Tacchetti, David Raposo,
Adam Santoro, Ryan Faulkner, Caglar Gulcehre, Francis Song, Andrew Ballard,
Justin Gilmer, George Dahl, Ashish Vaswani, Kelsey Allen, Charles Nash,
Victoria Langston, Chris Dyer, Nicolas Heess, Daan Wierstra, Pushmeet Kohli,
Matt Botvinick, Oriol Vinyals, Yujia Li, and Razvan Pascanu. Relational
inductive biases, deep learning, and graph networks, 2018. URL https:
//arxiv.org/abs/1806.01261.

G. R. Bickerton, G. V. Paolini, J. Besnard, S. Muresan, and A. L. Hopkins.
Quantifying the chemical beauty of drugs. Nature Chemistry, 4(2):90–98, 2012.
doi: doi:10.1038/nchem.1243.

Deyu Bo, Xiao Wang, Chuan Shi, and Huawei Shen. Beyond low-frequency
information in graph convolutional networks, 2021. URL https://arxiv.
org/abs/2101.00797.

Karsten Borgwardt, Elisabetta Ghisu, Felipe Llinares-López, Leslie O’Bray, and
Bastian Rieck. Graph kernels: State-of-the-art and future challenges. Foundations
and Trends® in Machine Learning, 13(5-6):531–712, 2020. doi: 10.1561/
2200000076. URL https://doi.org/10.1561%2F2200000076.

Shaked Brody, Uri Alon, and Eran Yahav. How attentive are graph attention
networks?, 2021. URL https://arxiv.org/abs/2105.14491.

Nathan Brown, Marco Fiscato, Marwin H.S. Segler, and Alain C. Vaucher. Gua-
camol: Benchmarking models for de novo molecular design. Journal of
Chemical Information and Modeling, 59(3):1096–1108, Mar 2019. ISSN 1549-
9596. doi: 10.1021/acs.jcim.8b00839. URL https://doi.org/10.1021/
acs.jcim.8b00839.

Cameron B. Browne, Edward Powley, Daniel Whitehouse, Simon M. Lucas,
Peter I. Cowling, Philipp Rohlfshagen, Stephen Tavener, Diego Perez, Spyridon

90

https://arxiv.org/abs/1806.01261
https://arxiv.org/abs/1806.01261
https://arxiv.org/abs/2101.00797
https://arxiv.org/abs/2101.00797
https://doi.org/10.1561%2F2200000076
https://arxiv.org/abs/2105.14491
https://doi.org/10.1021/acs.jcim.8b00839
https://doi.org/10.1021/acs.jcim.8b00839

BIBLIOGRAPHY 91

Samothrakis, and Simon Colton. A survey of monte carlo tree search methods.
IEEE Transactions on Computational Intelligence and AI in Games, 4(1):1–43,
2012. doi: 10.1109/TCIAIG.2012.2186810.

Deli Chen, Yankai Lin, Wei Li, Peng Li, Jie Zhou, and Xu Sun. Measuring
and relieving the over-smoothing problem for graph neural networks from the
topological view. Proceedings of the AAAI Conference on Artificial Intelligence,
34(04):3438–3445, Apr. 2020. doi: 10.1609/aaai.v34i04.5747. URL https:
//ojs.aaai.org/index.php/AAAI/article/view/5747.

Carla J Churchwell, Mark D Rintoul, Shawn Martin, Donald P Visco, Archana Kotu,
Richard S Larson, Laurel O Sillerud, David C Brown, and Jean-Loup Faulon.
The signature molecular descriptor: 3. inverse-quantitative structure–activity
relationship of icam-1 inhibitory peptides. Journal of Molecular Graphics and
Modelling, 22(4):263–273, 2004. doi: https://doi.org/10.1016/j.jmgm.2003.10.
002.

Rémi Coulom. Efficient selectivity and backup operators in monte-carlo tree search.
In Proceedings of the 5th International Conference on Computers and Games,
CG’06, page 72–83, Berlin, Heidelberg, 2006. Springer-Verlag.

David K Duvenaud, Dougal Maclaurin, Jorge Iparraguirre, Rafael Bombarell,
Timothy Hirzel, Alan Aspuru-Guzik, and Ryan P Adams. Convolutional
networks on graphs for learning molecular fingerprints. In C. Cortes,
N. Lawrence, D. Lee, M. Sugiyama, and R. Garnett, editors, Advances
in Neural Information Processing Systems, volume 28. Curran Associates,
Inc., 2015. URL https://proceedings.neurips.cc/paper/2015/file/
f9be311e65d81a9ad8150a60844bb94c-Paper.pdf.

Peter Ertl and Ansgar Schuffenhauer. Estimation of synthetic accessibility score of
drug-like molecules based on molecular complexity and fragment contributions.
Journal of Cheminformatics, 1(1):8, 2009. doi: 10.1186/1758-2946-1-8.

Justin Gilmer, Samuel S. Schoenholz, Patrick F. Riley, Oriol Vinyals, and George E.
Dahl. Neural message passing for quantum chemistry. In Proceedings of the
34th International Conference on Machine Learning - Volume 70, ICML’17,
page 1263–1272. JMLR.org, 2017.

M. Gori, G. Monfardini, and F. Scarselli. A new model for learning in graph
domains. In Proceedings. 2005 IEEE International Joint Conference on Neural
Networks, 2005., volume 2, pages 729–734 vol. 2, 2005. doi: 10.1109/ĲCNN.
2005.1555942.

https://ojs.aaai.org/index.php/AAAI/article/view/5747
https://ojs.aaai.org/index.php/AAAI/article/view/5747
https://proceedings.neurips.cc/paper/2015/file/f9be311e65d81a9ad8150a60844bb94c-Paper.pdf
https://proceedings.neurips.cc/paper/2015/file/f9be311e65d81a9ad8150a60844bb94c-Paper.pdf

BIBLIOGRAPHY 92

Ralf Gugisch, Adalbert Kerber, Reinhard Laue, Axel Kohnert, Markus Meringer,
Christoph Rücker, and Alfred Wassermann. MOLGEN 5.0, A Molecular Structure
Generator, pages 113–138. BENTHAM SCIENCE, 01 2014. doi: 10.2174/
9781608059287114010010.

Gabriel Lima Guimaraes, Benjamin Sanchez-Lengeling, Pedro Luis Cunha Farias,
and Alán Aspuru-Guzik. Objective-reinforced generative adversarial networks
(ORGAN) for sequence generation models. CoRR, abs/1705.10843, 2017. URL
http://arxiv.org/abs/1705.10843.

Rafael Gómez-Bombarelli, Jennifer N. Wei, David Duvenaud, José Miguel
Hernández-Lobato, Benjamín Sánchez-Lengeling, Dennis Sheberla, Jorge
Aguilera-Iparraguirre, Timothy D. Hirzel, Ryan P. Adams, and Alán Aspuru-
Guzik. Automatic chemical design using a data-driven continuous represen-
tation of molecules. ACS Central Science, 4(2):268–276, Jan 2018. ISSN
2374-7951. doi: 10.1021/acscentsci.7b00572. URL http://dx.doi.org/10.
1021/acscentsci.7b00572.

William L. Hamilton, Rex Ying, and Jure Leskovec. Inductive representation
learning on large graphs. In NIPS, 2017.

Maarten Houbraken, Sofie Demeyer, Tom Michoel, Pieter Audenaert, Didier Colle,
and Mario Pickavet. The index-based subgraph matching algorithm with general
symmetries (ismags): Exploiting symmetry for faster subgraph enumeration.
Plos One, 9(5):1–15, 05 2014. doi: 10.1371/journal.pone.0097896. URL
https://doi.org/10.1371/journal.pone.0097896.

John J. Irwin, Teague Sterling, Michael M. Mysinger, Erin S. Bolstad, and Ryan G.
Coleman. Zinc: A free tool to discover chemistry for biology. Journal of Chemical
Information and Modeling, 52(7):1757–1768, 2012. doi: 10.1021/ci3001277.
URL https://doi.org/10.1021/ci3001277.

Sabrina Jaeger, Simone Fulle, and Samo Turk. Mol2vec: Unsupervised machine
learning approach with chemical intuition. Journal of Chemical Information
and Modeling, 58(1):27–35, Jan 2018. ISSN 1549-9596. doi: 10.1021/acs.jcim.
7b00616. URL https://doi.org/10.1021/acs.jcim.7b00616.

Wengong Jin, Regina Barzilay, and Tommi Jaakkola. Junction tree variational
autoencoder for molecular graph generation. In Jennifer G. Dy and Andreas
Krause, editors, Proceedings of the 35th International Conference on Machine
Learning, ICML 2018, Stockholmsmässan, Stockholm, Sweden, July 10-15, 2018,
volume 80 of Proceedings of Machine Learning Research, pages 2328–2337.
PMLR, 2018. URL http://proceedings.mlr.press/v80/jin18a.html.

http://arxiv.org/abs/1705.10843
http://dx.doi.org/10.1021/acscentsci.7b00572
http://dx.doi.org/10.1021/acscentsci.7b00572
https://doi.org/10.1371/journal.pone.0097896
https://doi.org/10.1021/ci3001277
https://doi.org/10.1021/acs.jcim.7b00616
http://proceedings.mlr.press/v80/jin18a.html

BIBLIOGRAPHY 93

Wengong Jin, Regina Barzilay, and Tommi S. Jaakkola. Composing molecules
with multiple property constraints. CoRR, abs/2002.03244, 2020. URL https:
//arxiv.org/abs/2002.03244.

Sham Kakade and John Langford. Approximately optimal approximate re-
inforcement learning. In Proceedings of the Nineteenth International
Conference on Machine Learning, ICML ’02, page 267–274, San Fran-
cisco, CA, USA, 2002. Morgan Kaufmann Publishers Inc. ISBN
1558608737. URL https://people.eecs.berkeley.edu/~pabbeel/
cs287-fa09/readings/KakadeLangford-icml2002.pdf.

Hisashi Kashima, Koji Tsuda, and Akihiro Inokuchi. Marginalized kernels between
labeled graphs. In Proceedings of the Twentieth International Conference on
International Conference on Machine Learning, ICML’03, page 321–328. AAAI
Press, 2003. ISBN 1577351894.

Kristian Kersting, Nils M. Kriege, Christopher Morris, Petra Mutzel, and
Marion Neumann. Benchmark data sets for graph kernels, 2016. http:
//graphkernels.cs.tu-dortmund.de.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization,
2014. URL https://arxiv.org/abs/1412.6980.

Thomas N. Kipf and Max Welling. Semi-supervised classification with graph con-
volutional networks. In International Conference on Learning Representations
(ICLR), 2017.

Levente Kocsis and Csaba Szepesvári. Bandit based monte-carlo planning. In
Johannes Fürnkranz, Tobias Scheffer, and Myra Spiliopoulou, editors, Machine
Learning: ECML 2006, pages 282–293, Berlin, Heidelberg, 2006. Springer
Berlin Heidelberg.

Matt J. Kusner, Brooks Paige, and José Miguel Hernández-Lobato. Grammar
variational autoencoder. arXiv:1703.01925, 2017.

Sunyoung Kwon, Ho Bae, Jeonghee Jo, and Sungroh Yoon. Comprehensive
ensemble in qsar prediction for drug discovery. BMC Bioinformatics, 20(1):521,
2019. doi: 10.1186/s12859-019-3135-4.

Greg Landrum. Rdkit: Open-source cheminformatics. Google Scholar, 2006. URL
https://www.rdkit.org/.

Mufei Li, Jinjing Zhou, Jiajing Hu, Wenxuan Fan, Yangkang Zhang, Yaxin Gu,
and George Karypis. Dgl-lifesci: An open-source toolkit for deep learning on
graphs in life science. ACS Omega, 2021.

https://arxiv.org/abs/2002.03244
https://arxiv.org/abs/2002.03244
https://people.eecs.berkeley.edu/~pabbeel/cs287-fa09/readings/KakadeLangford-icml2002.pdf
https://people.eecs.berkeley.edu/~pabbeel/cs287-fa09/readings/KakadeLangford-icml2002.pdf
http://graphkernels.cs.tu-dortmund.de
http://graphkernels.cs.tu-dortmund.de
https://arxiv.org/abs/1412.6980
https://www.rdkit.org/

BIBLIOGRAPHY 94

Yujia Li, Daniel Tarlow, Marc Brockschmidt, and Richard Zemel. Gated graph se-
quence neural networks, 2015. URL https://arxiv.org/abs/1511.05493.

Yujia Li, Oriol Vinyals, Chris Dyer, Razvan Pascanu, and Peter Battaglia. Learning
deep generative models of graphs, 2018. URL https://arxiv.org/abs/
1803.03324.

Eric Liang, Richard Liaw, Robert Nishihara, Philipp Moritz, Roy Fox, Ken
Goldberg, Joseph Gonzalez, Michael Jordan, and Ion Stoica. RLlib: Abstractions
for distributed reinforcement learning. In Jennifer Dy and Andreas Krause,
editors, Proceedings of the 35th International Conference on Machine Learning,
volume 80 of Proceedings of Machine Learning Research, pages 3053–3062.
PMLR, 10–15 Jul 2018. URL https://proceedings.mlr.press/v80/
liang18b.html.

Brendan D McKay. Isomorph-free exhaustive generation. Journal of Algorithms,
26(2):306–324, 1998. doi: https://doi.org/10.1006/jagm.1997.0898.

Tomoyuki Miyao, Hiromasa Kaneko, and Kimito Funatsu. Inverse qspr/qsar analysis
for chemical structure generation (from y to x). Journal of Chemical Information
and Modeling, 56(2):286–299, 2016. doi: 10.1021/acs.jcim.5b00628.

Marcus Olivecrona, Thomas Blaschke, Ola Engkvist, and Hongming Chen. Molec-
ular de-novo design through deep reinforcement learning. Journal of Cheminfor-
matics, 9(48), 2017.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban
Desmaison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison,
Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai,
and Soumith Chintala. PyTorch: An imperative style, high-performance deep
learning library. In Advances in Neural Information Processing Systems 32,
pages 8024–8035. Curran Associates, Inc., 2019.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine
learning in Python. Journal of Machine Learning Research, 12:2825–2830,
2011.

P. G. Polishchuk, T. I. Madzhidov, and A. Varnek. Estimation of the size of drug-like
chemical space based on gdb-17 data. Journal of Computer-Aided Molecular
Design, 27(8):675–679, 2013.

https://arxiv.org/abs/1511.05493
https://arxiv.org/abs/1803.03324
https://arxiv.org/abs/1803.03324
https://proceedings.mlr.press/v80/liang18b.html
https://proceedings.mlr.press/v80/liang18b.html

BIBLIOGRAPHY 95

Kristina Preuer, Philipp Renz, Thomas Unterthiner, Sepp Hochreiter, and Günter
Klambauer. Fréchet chemnet distance: A metric for generative models for
molecules in drug discovery. Journal of Chemical Information and Modeling,
58(9):1736–1741, Sep 2018. ISSN 1549-9596. doi: 10.1021/acs.jcim.8b00234.
URL https://doi.org/10.1021/acs.jcim.8b00234.

Nataša Pržulj. Biological network comparison using graphlet degree distribution.
Bioinformatics, 23(2):e177–e183, 01 2007. ISSN 1367-4803. doi: 10.1093/
bioinformatics/btl301. URL https://doi.org/10.1093/bioinformatics/
btl301.

David Rogers and Mathew Hahn. Extended-connectivity fingerprints. Journal
of Chemical Information and Modeling, 50(5):742–754, May 2010a. ISSN
1549-9596. doi: 10.1021/ci100050t. URL https://doi.org/10.1021/
ci100050t.

David Rogers and Mathew Hahn. Extended-connectivity fingerprints. Journal
of Chemical Information and Modeling, 50(5):742–754, May 2010b. ISSN
1549-9596. doi: 10.1021/ci100050t. URL https://doi.org/10.1021/
ci100050t.

Christopher D. Rosin. Multi-armed bandits with episode context. Annals of
Mathematics and Artificial Intelligence, 61(3):203–230, 2011. doi: 10.1007/
s10472-011-9258-6.

Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele
Monfardini. The graph neural network model. IEEE Transactions on Neural
Networks, 20(1):61–80, 2009. doi: 10.1109/TNN.2008.2005605.

John Schulman, Sergey Levine, Philipp Moritz, Michael I. Jordan, and Pieter
Abbeel. Trust region policy optimization, 2015a. URL https://arxiv.org/
abs/1502.05477.

John Schulman, Philipp Moritz, Sergey Levine, Michael Jordan, and Pieter Abbeel.
High-dimensional continuous control using generalized advantage estimation,
2015b. URL https://arxiv.org/abs/1506.02438.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov.
Proximal policy optimization algorithms, 2017. URL https://arxiv.org/
abs/1707.06347.

Marwin H. S. Segler, Thierry Kogej, Christian Tyrchan, and Mark P. Waller.
Generating focused molecule libraries for drug discovery with recurrent neural

https://doi.org/10.1021/acs.jcim.8b00234
https://doi.org/10.1093/bioinformatics/btl301
https://doi.org/10.1093/bioinformatics/btl301
https://doi.org/10.1021/ci100050t
https://doi.org/10.1021/ci100050t
https://doi.org/10.1021/ci100050t
https://doi.org/10.1021/ci100050t
https://arxiv.org/abs/1502.05477
https://arxiv.org/abs/1502.05477
https://arxiv.org/abs/1506.02438
https://arxiv.org/abs/1707.06347
https://arxiv.org/abs/1707.06347

BIBLIOGRAPHY 96

networks. ACS central science, 4(1):120–131, 2018a. doi: 10.1021/acscentsci.
7b00512.

Marwin H. S. Segler, Mike Preuss, and Mark P. Waller. Planning chemical syntheses
with deep neural networks and symbolic ai. Nature, 555(7698):604–610, 2018b.
doi: 10.1038/nature25978.

Nino Shervashidze, SVN Vishwanathan, Tobias Petri, Kurt Mehlhorn, and Karsten
Borgwardt. Efficient graphlet kernels for large graph comparison. In David
van Dyk and Max Welling, editors, Proceedings of the Twelth International
Conference on Artificial Intelligence and Statistics, volume 5 of Proceedings of
Machine Learning Research, pages 488–495, Hilton Clearwater Beach Resort,
Clearwater Beach, Florida USA, 16–18 Apr 2009. PMLR. URL https://
proceedings.mlr.press/v5/shervashidze09a.html.

Nino Shervashidze, Pascal Schweitzer, Erik Jan van Leeuwen, Kurt Mehlhorn,
and Karsten M. Borgwardt. Weisfeiler-lehman graph kernels. Journal of
Machine Learning Research, 12(77):2539–2561, 2011a. URL http://jmlr.
org/papers/v12/shervashidze11a.html.

Nino Shervashidze, Pascal Schweitzer, Erik Jan van Leeuwen, Kurt Mehlhorn,
and Karsten M. Borgwardt. Weisfeiler-lehman graph kernels. Journal of
Machine Learning Research, 12(77):2539–2561, 2011b. URL http://jmlr.
org/papers/v12/shervashidze11a.html.

Giannis Siglidis, Giannis Nikolentzos, Stratis Limnios, Christos Giatsidis, Kon-
stantinos Skianis, and Michalis Vazirgiannis. Grakel: A graph kernel library in
python. Journal of Machine Learning Research, 21(54):1–5, 2020.

David Silver, Aja Huang, Chris J. Maddison, Arthur Guez, Laurent Sifre, George
van den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneer-
shelvam, Marc Lanctot, Sander Dieleman, Dominik Grewe, John Nham, Nal
Kalchbrenner, Ilya Sutskever, Timothy Lillicrap, Madeleine Leach, Koray
Kavukcuoglu, Thore Graepel, and Demis Hassabis. Mastering the game of go
with deep neural networks and tree search. Nature, 529(7587):484–489, 2016.
doi: 10.1038/nature16961.

Hartke G. Stephen and Radcliffe J. Andrew. Mckay’s canonical graph labeling
algorithm. In Communicating Mathematics, 479:99–111, 2009.

Mahito Sugiyama and Karsten Borgwardt. Halting in random walk kernels. In
C. Cortes, N. Lawrence, D. Lee, M. Sugiyama, and R. Garnett, editors, Advances
in Neural Information Processing Systems, volume 28. Curran Associates,

https://proceedings.mlr.press/v5/shervashidze09a.html
https://proceedings.mlr.press/v5/shervashidze09a.html
http://jmlr.org/papers/v12/shervashidze11a.html
http://jmlr.org/papers/v12/shervashidze11a.html
http://jmlr.org/papers/v12/shervashidze11a.html
http://jmlr.org/papers/v12/shervashidze11a.html

BIBLIOGRAPHY 97

Inc., 2015. URL https://proceedings.neurips.cc/paper/2015/file/
31b3b31a1c2f8a370206f111127c0dbd-Paper.pdf.

Seĳi Takeda, Toshiyuki Hama, Hsiang-Han Hsu, Victoria A. Piunova, Dmitry
Zubarev, Daniel P. Sanders, Jed W. Pitera, Makoto Kogoh, Takumi Hongo,
Yenwei Cheng, Wolf Bocanett, Hideaki Nakashika, Akihiro Fujita, Yuta Tsuchiya,
Katsuhiko Hino, Kentaro Yano, Shuichi Hirose, Hiroki Toda, Yasumitsu Orii,
and Daĳu Nakano. Molecular inverse-design platform for material industries. In
Proceedings of the 26th ACM SIGKDD International Conference on Knowledge
Discovery; Data Mining, page 2961–2969, 2020. doi: 10.1145/3394486.
3403346.

Youhai Tan, Lingxue Dai, Weifeng Huang, Yinfeng Guo, Shuangjia Zheng, Jinping
Lei, Hongming Chen, and Yuedong Yang. Drlinker: Deep reinforcement learning
for optimization in fragment linking design. Journal of Chemical Information
and Modeling, Nov 2022. ISSN 1549-9596. doi: 10.1021/acs.jcim.2c00982.
URL https://doi.org/10.1021/acs.jcim.2c00982.

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro
Liò, and Yoshua Bengio. Graph attention networks. In International Conference
on Learning Representations, 2018. URL https://openreview.net/forum?
id=rJXMpikCZ.

S.V.N. Vishwanathan, Nicol N. Schraudolph, Risi Kondor, and Karsten M. Borg-
wardt. Graph kernels. Journal of Machine Learning Research, 11(40):1201–1242,
2010. URL http://jmlr.org/papers/v11/vishwanathan10a.html.

Minjie Wang, Da Zheng, Zihao Ye, Quan Gan, Mufei Li, Xiang Song, Jinjing Zhou,
Chao Ma, Lingfan Yu, Yu Gai, Tianjun Xiao, Tong He, George Karypis, Jinyang
Li, and Zheng Zhang. Deep graph library: A graph-centric, highly-performant
package for graph neural networks. arXiv preprint arXiv:1909.01315, 2019.

David Weininger. SMILES, a chemical language and information system. 1. intro-
duction to methodology and encoding rules. Journal of Chemical Information
and Computer Sciences, 28(1):31–36, 1988.

Boris Weisfeiler and AA Lehman. A reduction of a graph to a canonical form and
an algebra arising during this reduction. Nauchno-Technicheskaya Informatsia,
2(9):12–16, 1968.

William WL Wong and Forbes J. Burkowski. A constructive approach for discover-
ing new drug leads: Using a kernel methodology for the inverse-qsar problem.
Journal of Cheminformatics, 1(4), 2009.

https://proceedings.neurips.cc/paper/2015/file/31b3b31a1c2f8a370206f111127c0dbd-Paper.pdf
https://proceedings.neurips.cc/paper/2015/file/31b3b31a1c2f8a370206f111127c0dbd-Paper.pdf
https://doi.org/10.1021/acs.jcim.2c00982
https://openreview.net/forum?id=rJXMpikCZ
https://openreview.net/forum?id=rJXMpikCZ
http://jmlr.org/papers/v11/vishwanathan10a.html

BIBLIOGRAPHY 98

Zhenqin "Wu, Bharath Ramsundar, Evan N. Feinberg, Joseph Gomes, Caleb
Geniesse, Aneesh S. Pappu, Karl Leswing, and Vĳay" Pande. "moleculenet:
a benchmark for molecular machine learning". "Chem. Sci.", "9":"513–530",
"2018". doi: "10.1039/C7SC02664A". URL "http://dx.doi.org/10.1039/
C7SC02664A".

Jiawei Han Xifeng Yan. gspan: Graph-based substructure pattern mining.
International Conference on Data Mining, pages 721–724, 2002. doi:
10.1109/ICDM.2002.1184038.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are
graph neural networks? In International Conference on Learning Representa-
tions, 2019. URL https://openreview.net/forum?id=ryGs6iA5Km.

Xiufeng Yang, Jinzhe Zhang, Kazuki Yoshizoe, Kei Terayama, and Koji Tsuda.
ChemTS: an efficient python library for de novo molecular generation. Science
and Technology of Advanced Materials, 18(1):972–976, 2017. doi: 10.1080/
14686996.2017.1401424.

Xiufeng Yang, Tanuj Aasawat, and Kazuki Yoshizoe. Practical massively parallel
monte-carlo tree search applied to molecular design. In International Conference
on Learning Representations, 2021.

Jiaxuan You, Bowen Liu, Zhitao Ying, Vĳay Pande, and Jure Leskovec. Graph
convolutional policy network for goal-directed molecular graph generation.
In Proceedings of the 32nd International Conference on Neural Information
Processing Systems, page 6412–6422, 2018.

M. J. Zaki and W. Meira, Jr. Data Mining and Analysis: Fundamental Concepts
and Algorithms. Cambridge University Press, 2014.

Ziwei Zhang, Peng Cui, and Wenwu Zhu. Deep learning on graphs: A survey,
2018. URL https://arxiv.org/abs/1812.04202.

"http://dx.doi.org/10.1039/C7SC02664A"
"http://dx.doi.org/10.1039/C7SC02664A"
https://openreview.net/forum?id=ryGs6iA5Km
https://arxiv.org/abs/1812.04202

	Introduction
	Background
	Graph theory
	Graph Kernels
	Vertex Histogram Kernel
	Weisfeiler–Lehman graph kernel
	Extend connectivity Fingerprints

	Molecular Graphs and SMILES
	Graph Neural Networks
	Reinforcement Learning
	Policy Gradient
	Proximal Policy Optimization

	Generative Models for Molecular Graph Generation
	Our Contributions

	Molecular Graph Generation
	Introduction
	Related works
	The Proposed Algorithm: MOLDR
	Problem Setting
	Graph Decomposition via Frequent Subgraph Mining
	Graph Reassembling from Frequent Subgraphs
	Finding Candidate Subgraphs by Monte Carlo tree search

	Experiments
	Results of log P and QED

	Single-objective optimization
	Multi-objective optimization
	Results of GuacaMol

	Conclusion

	Substructure-based Machine Learning
	Introduction
	Methods for Graph Machine Learning
	Notation
	The Vertex Histogram Kernel
	The Weisfeiler–Lehman Kernel
	Graphlet kernel
	Graph convolutional neural networks
	Graph Isomorphism Networks
	Special case of GIN (Pre-fixed GCN)
	Measuring Transition of Node Features

	Experiments
	Experimental Setting
	Results and discussion

	Conclusion

	Summary and Future works
	Summary
	Molecular Graph Generation
	How Graph Features from Message Passing Affect Graph Classification and Regression

	Future Works

	Update Process of MOLDR
	Merge Nodes and Edges
	MOLDR with reinforcement learning
	How to select molecules

	Experimental results for GNNs on another dataset

