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Abstract

Galactic Magnetic fields play important roles in various astrophysical processes. There
are unresolved problems about Galactic magnetic fields. One of the problems is that
the cosmological evolution of galactic magnetic field is largely unknown. To solve this
problem, we need to observe magnetic fields of distant galaxies.

First, Observation of the magnetic fields of distant galaxies can be achieved by
observing intervening galaxies. External galaxies often intervene in front of background
radio sources such as quasars and radio galaxies. Linear polarization of the background
emission is depolarized by Faraday rotation of inhomogeneous magnetized plasma of
the intervening galaxies. Exploring the depolarizing intervening galaxies (DINGs) can
be a powerful tool to investigate the cosmological evolution of the galactic magnetic
field. In this theisis, we focus on the global disk magnetic field, a primary component
of galactic magnetic fields, and investigate the effects of DINGs on background radio
emission using a simple model. We find that the degree of depolarization significantly
depends on the inclination angle and the impact parameter of the DING. We found
that the larger the standard deviation, the more likely it is that depolarization will
occur. When the DING is close to an edge-on view, depending on the angular size
of the background source relative to the DING, the polarization fraction converges,
behaving like oscillations at low frequencies. The Faraday dispersion function (FDF)
represents the RM structure within the beam. The FDF exhibits multi components due
mainly to the RM structure within the beam and the fraction of the DING that covers
the background emission (the filling factor). The peak Faraday depth of the FDF
is different from the beam-averaged RM of the DING. The Monte-Carlo simulations
indicate that DING’s contribution to the standard deviation of observed RMs follows
σRM ∝ 1/(1 + z)k with k ∼ 2.7 and exhibits a steeper redshift dependence than the
wavelength squared. DINGs will have a significant impact on RM catalogs created by
future survey projects such as the SKA and SKA Precursor/Pathfinder.

Next, the applying the gravitational lensing effect has been considered as an obser-
vation of the magnetic field of distant galaxies. Mao et al. (2017) [1] used Faraday
tomography to determine the magnetic field from the difference in Faraday depths at
which the emission of the background source passes through different positions of the
intervening galaxy due to the gravitational lensing effect. In the future, it is expected
to find many polarization sources affected by gravitational lensing effects. All-sky po-
larization surveys using the SKA predecessor have now begun. We focus on the ”Polar-
isation Sky Survey of the Universe’s Magnetism” (POSSUM) with the Australian SKA
Pathfinder (ASKAP). However, POSSUM may not be able to spatially resolve gravi-
tational lensing sources. Previously, we have shown that Faraday spectrum represents
the RM structure within the beam, even when they are unresolved. We investigate
whether the RM structure of lensing galaxies can be extracted from the spectra. We



used a model fitting method that fits stokes Q and U spectra to extract the RM struc-
ture of lensing galaxies. At first, we consider the simple case that the RM structure is
uniform on each path. In this case, using the model which has 2 components of RM,
we can get the mean and variance of the RMs experienced by each path and these
values are the same as given RM structures, even if they were not spatially resolved.
Next, we consider the case of the existence of RM structure within the beam (complex
case). In this case, using the model which has multi components of RM, comparing
the observed spectrum with the model spectrum, we found a good match. However,
we found physically strange values in the parameters. In particular, the polarization
angle of the background polarization source is different from given angle. To solve this
problem, we propose reducing the polarization angle of the background polarization
source as the parameter. In the case of gravitational lensing objects, we can impose
the requirement that the polarization angle of the background polarization source is
the same. We can reduce one parameter. In the case of imposing this requirement,
we found the model which has multi components of RM is the best fitting model. The
polarization angle of the background polarization source is the same as given angle and
we resolve uncertainty about the polarization angle. We could separate complex RM
structure of unsolved source. It does not matter whether the radio image is spatially
resolved or not and we will attempt to resolve the lensed components.
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Chapter 1

Introduction

1.1 Galactic magnetic fields

The existence of magnetic fields in the interstellar medium (ISM) of the Milky Way and
other galaxies has been known for over 60 years. There are various types of galaxies,
such as spiral galaxies and elliptical galaxies, and spiral galaxies in particular are known
to have magnetic field structures along their spiral arms. Such a magnetic field is called
a global magnetic field and has a value of a few µG. In particular, we will focus on
the fact that the spiral galaxies often exhibit global magnetic fields over a wide area of
the galaxy. How do such global magnetic fields originate and survive in the turbulence
and chaos of the interstellar medium? Because global magnetic fields are subject to
turbulent diffusion and the time scale of vertical diffusion is typically less than 10 times
the age of the Universe [2], these fields must be replenished in situ, no matter what
seed magnetic field is supplied. Since diffusion implies exponential decay, growth and
replenishment must themselves be exponential. These facts led to the in-situ galaxy
dynamo theory and its modeling to explain the large-scale magnetic fields of galaxies.

It is still unclear how magnetic fields affect galaxy formation and evolution [3, 4, 5].
The developing magnetohydrodynamic (MHD) models of galaxies is computationally
challenging and requires various simplifications. Thanks to the development of modern
high-sensitivity, broadband radio telescopes and new observational and data analysis
methods, much more are known about the magnetic fields in the interstellar medium
(ISM) of nearby galaxies and the Milky Way. Significant progress has also been achieved
in the numerical modeling of the magnetized ISM (e.g. [6, 7, 8, 9, 10]). Naturally,
further efforts on both sides are needed, as they do not always agree with observations.

Extensive arguments in the past for ignoring the galactic magnetic field were based
on the assumption that the strength of the magnetic field derived from Faraday rotation
data of the Milky Way galaxy, which tracks a small fraction of the total magnetic field,
is a few µG. The importance of the galactic field dynamically is widely recognized
in many areas of astrophysics. Magnetic fields and cosmic ray pressure control the
overall star formation rate [11]. Magnetic fields are important for the gas dynamics of
molecular clouds [12]. Stronger magnetic fields result in fewer but more massive cloud
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nuclei being formed [13]. Cosmic rays propagating along magnetic field lines within the
galactic halo can heat warm ionized gas, potentially explaining the line ratio [14].

1.1.1 Origin of galactic magnetic fields

The galactic magnetic field consists of a three-step process: (1) seeding, (2) amplifi-
cation, and (3) ordering and maintaining. Seed fields can be primordial generated in
the early Universe [15], or they may form at later stages. For example, they could
emerge during cosmic structure formation due to Weibel instabilities [16], from plasma
fluctuations within primordial galaxies [17, 18], through emissions from the first stars
[19] and the first black holes [20], or via the Biermann mechanism of the first supernova
[21]. An efficient source of amplification arises from turbulence triggered by phenomena
like supernova explosions [22] or spiral shocks [23], known as small-scale dynamos. This
mechanism within protogalaxies can enhance a weak seed to an intensity of a few µG
within 108 years [24, 25, 26, 27]. The final phase involves the ordering of the turbulent
field. Evolving galaxy simulations through numerical models demonstrate the amplifi-
cation and alignment of rapid magnetic fields aided by differential rotation [3, 28]. This
alignment is potentially facilitated by the magnetic rotational instability (MRI) [4, 9].
Within these models, the ordered magnetic field takes shape in helical arm segments
but experiences frequent reversals in both azimuthal and radial directions, ultimately
resulting in anisotropic turbulence.

1.2 Observations of magnetic fields in galaxies

The spiral galaxies are known to have magnetic field structures along their spiral arms.
Such a magnetic field is called a global magnetic field and has a value of a few µG.
Because we are in the Milky Way, it is difficult to observe the overall pattern of the
magnetic field in the Milky Way. The Planck satellite drive a detailed picture of the
magnetic field in the Milky Way through dust polarization measurements in Figure 1.1.
It shows that the magnetic field is the most ordered and strongest on the Galactic plane.
The Milky Way magnetic field is smooth and regular on large scales, but random on
small scales. Synchrotron polarization gradients can be used to extract the properties
of ISM turbulence within the Milky Way galaxy [29]. External galaxies show the overall
pattern of large-scale magnetic fields. However, the reduced spatial resolution makes
it difficult for existing radio telescopes to direct survey the small-scale ISM properties
within these systems. The magnetic field of the spiral galaxy M51 was studied in detail
by Fletcher et al. (2011) [30]. The regular spiral pattern of the magnetic field shown in
figure 1.2 does not produce a similar pattern in Faraday rotation measurements. Thus,
the ordered field is a combination of a large-scale (or mean-field) dynamo-generated
field and an anisotropic turbulent random field, the correlation length of the small-scale
magnetic field is estimated to be about 50 pc by analyzing the polarization resolution
of the synchrotron radiation. Many properties of the magnetic fields observed in the

2



Figure 1.1: Figure taken from Planck ’s webpage -
http://www.esa.int/spaceinimages/Images/2015/02/ Polarised emission from Milky
Way dust. It shows the dust emission at 353 GHz and the colour scale represents the
total intensity of dust emission. The texture shpws show the direction of the Milky
Way magnetic field projected on the plane of the sky.

Milky Way and nearby spiral galaxies are consistent with galaxy dynamo theory [31]. It
is important to measure the magnetic fields of galaxies with high-z and young galaxies
in order to constrain the parameters of galaxy dynamo theory. However, the sensitivity
and resolution of existing radio telescopes are limited, making it very difficult to do the
same. The magnetic fields of young galaxies have been studied by numerical simulations
[5, 32, 33], but there have been few attempts to study the magnetic fields by observation.
Magnetic field observations of distant galaxies will be discussed in section 1.5.

1.2.1 Optical Polarization

Dust particles are aligned with the local galactic magnetic field because of the magnetic
moment (Davis-Greenstein effect [34]). The major axis of the dust is perpendicular to
the interstellar magnetic field lines. Starlight coming from behind the dust is quenched
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Figure 1.2: Contours of λ20 cm total radio emission at 15 arcsec resolution, overlaid on
the same optical image from [30]. Also shown are the B-vectors of polarized emission:
the plane of polarization of the observed electric field rotated by 90◦, not corrected for
Faraday rotation.
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to different degrees along its major and minor axes. The linear polarization (E-vector)
of the starlight is parallel to the magnetic field components projected onto the sky
plane. The resulting linearly polarized light also depends on the properties of the dust,
especially its size and magnetic properties. Extinction is most efficient for particles
with sizes close to their wavelength.

Polarization of stellar light has been used to determine the direction of the large-
scale magnetic fields of the Milky Way Galaxy, M51[35] in Figure , NGC 6946[36], and
the Small Magellanic Cloud[37]. There are problems with this method: the light may
be polarized by scattering, which is independent of the magnetic field. In addition, the
spatial sampling is sharply coarsened in high-density interstellar clouds because of high
attenuation and few background stars.

1.2.2 Dust polarization

The type of polarization is due to background light stars as well as dust particles emit-
ting at the sub-millimeter and far-infrared wavelengths. The direction of this polarized
light (E-vector) is perpendicular to the magnetic field. The properties of this polarized
radiation also depend on the properties of the dust particles. This polarized radiation
is not affected by scattering. It has been used to observe the magnetic field structure
of the Milky Way gas cloud massive star forming site W51 [38] and the magnetic field
structure of the galaxy NGC 891 [39].

In the interstellar medium, the magnetic force (total magnetic field strength Btot)
competes with the kinetic force due to turbulent gas motion (turbulent velocity vturb
and density ρ).The perpendicular component of total field strength Btot,⊥ of the sky
plane can be estimated from the following equation [40].

Btot,⊥ ∼
√

4

3
πρ
vturb
σ

. (1.1)

σ is the dispersion of the direction of the polarization angle. In a strong magnetic
field, σ is small because the magnetic field lines are straight. This method is called the
Chandrasekhar-Fermi method.

1.2.3 Zeeman effect

The Zeeman effect is one of the most direct methods of magnetic field observation. A
magnetic field splits the electron energy levels of an atom and depends on the strength of
the magnetic field. This is called the Zeeman effect (Zeeman splitting). This is a direct
observation of the magnetic field, not a tracer as described above. When measuring
the magnetic field strength in interstellar space, Zeeman splitting has been observed
in the 21cm emission lines of neutral hydrogen atoms, emission and absorption lines of
OH molecules, and emission lines of CN molecules. However, the frequency difference
of the radio spectral lines is so small that they can be used only in the strong magnetic
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Figure 1.3: An optical linear polarization map of M51/NGC 5195. The integration bins
are 18 arcsec square, spaced at 12 arcsec intervals. Figure taken from Scarrott et al.
1987.
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field region. The temperature of the region must also be sufficiently low to compete
with the Doppler broadening of those lines.

1.2.4 Radio synchrotron emission

Continuous radio emission from galaxies combines thermal and non-thermal compo-
nents (synchrotron). At longer wavelengths, the thermal radiation is negligible and the
synchrotron radiation is dominant. The first step in separating the thermal and non-
thermal components is to use the spectral exponent (I ∝ ν−α) where I is the radiation
intensity, ν is the frequency, and α is the spectral exponent. See appendix for details.
The spectral exponent of non-thermal radiation, α ∼ 0.8 − 1.0, can be separated by
assuming a spectral exponent of α ∼ 0.1 for thermal radiation in an optically thin
layer. However, the synchrotron radiation intensity depends on the energy and age of
the cosmic ray electrons. Cosmic ray electrons propagate from the spiral arms and lose
energy due to inverse Compton scattering with synchrotron radiation and photons, so
the synchrotron radiation spectrum is flatter in the spiral arms than in the inter-arm
region, outer disk and halo. Additionally, there is a separation method [41] that uses a
combination of Hα and 24 µm infrared images as a template for thermal radiation and
subtracts it from the total radiation.

The energy density of total cosmic rays (protons are dominant) and the energy
density of the total magnetic field are expected to be equally distributed. Since the
energy density of cosmic rays is determined by integrating their energy spectrum, the
total magnetic field intensity can be calculated from the synchrotron intensity [42]. The
synchrotron intensity Isyn is proportional to the total field strength as Isyn ∝ B3+α and
Btot,⊥ is written by

Btot,⊥ ∝ (Isys(K0 + 1)/L)1/(3+α), (1.2)

where α is the spectral index of the synchrotron (Isyn ∝ ν−α), L is the path length
through the radiation source, and K0 is the ratio of the number density of CR protons
to electrons. K0 ∼ 100 is a reasonable assumption in star-forming regions of the disk
[43]. For electron-positron plasmas, e.g., in jets of radio galaxies, K0 = 0. The input
parameters, in particular the path length L and the ratio K0 , are not well constrained.
There are several problems with the equipartition estimation. First, the equation 1.2.4
is only applicable to steeped spectra with α > 0.5. For flat spectra, the integration over
the energy spectrum of cosmic rays is restricted to a limited energy interval. Second,
when the energy loss of cosmic-ray electrons is large, for example in the starburst region
and in the spiral arms, the equipartition value is a lower limit and the strength of the
magnetic field is underestimated. Since the energy loss of aging cosmic-ray electrons is
much more severe than that of cosmic-ray protons, the ratio K becomes large. Using
the standard value K0, the total magnetic field in such regions is estimated by a factor
of (K/K0)

1/(3+α) [42]. Cosmic ray electrons need to propagate farther away from the
place of generation, so the energy loss is higher. Hence, this problem can occur in
the outer disks and haloes of galaxies. Third, it takes time for energy equipartition to
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take place, so it is not valid on small scales of time and space. Analysis of the radio
continuum from the Milky Way and the nearby galaxy M33 shows that equipartition
does not hold at scales smaller than about 1 kpc [44].

Rotation measure

Linear polarization Faraday rotation is a phenomenon in which the polarization angle
rotates when a polarization wave passes through a magnetic fluid. If the polarization
angle before the passage is χ, the polarization angle after the passage χ is proportional
to the square of the wavelength λ and can be written as

χ = RMλ2 + χ0, (1.3)

where RM is called a Rotation Measure. The RM can be physically written as

RM = 0.81

∫ 0

∞

( ne

cm−3

)(
B∥

µG

)
d

(
z

pc

)
rad m−2, (1.4)

where ne is the free electron density, B∥ is the component of the magnetic field parallel
to the line of sight, and z is the line of sight distance. The integral is oriented toward
the observer, and RM is positive if the magnetic field is oriented toward the observer.
If χ is obtained from the polarization Stokes parameters Q and U, RM is obtained from
the wavelength dependence of χ, and the free electron distribution is given in some way,
the integral of the line-of-sight parallel component of the magnetic field can be found.
See appendix A.1 for a detailed derivation of the Stokes parameters.

Recently, RM has been estimated using a technique called Faraday tomography
[45, 46]. While RM gives the line-of-sight integral, Faraday tomography gives the
line-of-sight distribution. See appendix A.4 for details. The expression for the linear
polarized intensity P (λ2) can be written as

P (λ2) =

∫ ∞

−∞
F (ϕ)e2iϕλ

2

dϕ. (1.5)

This F (ϕ) is called the Faraday Dispersion Function (FDF) or Faraday spectrum, and
represents the polarized intensity distribution in ϕ space. ϕ is written as

ϕ(r) = 0.81

∫ 0

r

ne(r
′)B∥(r

′)dr′. (1.6)

It is a physical quantity similar to RM, but it is an integral up to position r, whereas
RM is an integral from the observer to infinity. ϕ(r) is called the Faraday depth. Also,
Equation A.60 is a Fourier transform with ϕ and λ2 as conjugate variables. The inverse
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transformation can be written as

F (ϕ) =
1

2π

∫ ∞

−∞
P (λ2)e−2iϕλ2

dϕ. (1.7)

We can estimate F (ϕ) from the observables P (λ2).

Depolarization

Depolarization is a mechanism by which an observer receives a weaker polarized emis-
sion than that emitted at the origin. It leads to a decrease in the polarization fraction
since this mechanism does not affect the total intensity. Because depolarization is com-
mon in many astronomical cases, the properties of depolarization can be a useful tool
for revealing the structure of the line of sight and the source itself. Analytical works
have demonstrated various possible cases of depolarization [45, 47, 48, 49, 50]. Because
the diffuse polarized emission of a DING is expected to be several orders of magnitude
weaker than those of quasars and radio galaxies, we can safely neglect the polarized
emission of the DING. Thus, the DING plays the role of Faraday screen and the external
Faraday dispersion depolarization or the beam depolarization emerges [48].

Faraday screen consists of magnetized plasma that causes Faraday rotation. If there
are only coherent magnetic fields and a constant RM structure in this Faraday screen,
the emission of the background source experiences the same amount of Faraday rotation
and the screen does not cause any depolarization. On the other hand, if the emission
experiences different amounts of Faraday rotation at different positions, cancellation of
the linear polarization can take place. This is the beam depolarization and is considered
to be the primary mechanism of depolarization. Depolarization is thus more likely to
occur when there is a RM gradient and/or there are turbulent magnetic fields within
an observing radio beam (see, e.g., [48]).

In the case of the beam depolarization, the effect of depolarization is greater at
longer wavelengths in general, because the effect of Faraday rotation is stronger at longer
wavelengths. If the relationship between the total intensity I(ν) ∝ ναI and the linearly-
polarized intensity P (ν) ∝ ναP holds, the most general expression for depolarization
can be expressed as follows;

p = P/I ∝ ναP−αI = νβ, (1.8)

where p is the polarization fraction, ν is the observed frequency, αI is the total intensity
spectral index, αP is the polarization spectral index, and β = αP − αI . In reality, the
emission of the background source is considered to be non-uniform and depolarized by
itself. We will address these effects in future work.

The polarization that passes through regions of large RM tends to be more depo-
larized than that passes through regions of small RM, so that the polarization fraction
is biased and the observed RM tends to be smaller than the average of intrinsic values
within the beam. Furthermore, an observed RM is always smaller than the intrinsic
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value by 1/(1 + z)2, where z is the redshift at which Faraday rotation happens because
the rotation takes place at a higher rest-frame frequency.

The following are some examples of depolarization.
(1) Wavelength independent depolarization: This occurs when the magnetic field

causing synchrotron polarization is non-uniform. Polarization is emitted with different
polarization angles for each line of sight in the beam to be observed and reaches the
observer, so that polarization cancellation can occur in the beam.

(2) Differential Faraday rotation depolarization: This occurs when cosmic ray elec-
trons emitting synchrotron polarization and thermal electrons causing Faraday rotation
coexist. Even if the far-field polarization and the near-field polarization are emitted at
the same polarization angle in the line of sight, they reach the observer with different
Faraday rotations, so that polarization cancellation can occur.

(3) Beam depolarization: Occurs when there is structure in the RM within the beam
being observed. Even if the polarization waves in the beam are emitted at the same
polarization angle, they reach the observer with different Faraday rotations for each
line of sight in the beam, which can cause polarization cancellations.

1.3 Dynamo theory

The evolution and maintenance of magnetic fields are generally explained by dynamo
theory, which converts kinetic energy into magnetic energy. Turbulence is common
in astrophysics and is maintained by physical mechanisms that occur in interstellar
convection, supernova explosions, and mergers within galaxy clusters. The dynamo
process uses the kinetic energy of this turbulence to amplify an initially weak seed
magnetic field.

The magnetic fields in these systems can be classified into two types based on scale.
One is a large-scale or mean magnetic field that is consistent over scales comparable to
the size of the system, and the other is a small-scale or fluctuating field. The length of
the small-scale magnetic field is on the order of the driving scale of the turbulence. Both
types of magnetic fields are equally important to ISM dynamics, since the root-mean-
square (rms) magnitudes of both fields are usually comparable in the case of galaxies.
Dynamos fall into two categories for producing each type of magnetic field: mean-field
(or large-scale) dynamos and fluctuating (or small-scale) dynamos.

1.3.1 Mean-field dynamos

The most promising mechanism to sustain magnetic fields and generate large regular
magnetic fields from the turbulent fields of the interstellar material in galaxies is the
α − Ω dynamo. It is based on differential rotation (Ω), expanding gas flows driven by
supernova explosions [9, 22] or cosmic rays [51], and describes the Coriolis force (α effect)
and the magnetic diffusivity (η) driven by turbulence. The ”mean-field” approximation
of the α − Ω dynamo equation allows for an analytical solution by mathematically
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separating the large and small parts of the velocity and magnetic fields. The mean-field
dynamo equation for the regular field B is

∂B

∂t
= ∇× (u×B) + ∇× αB + η∇2B. (1.9)

Since magnetic fields do not diverge, they can be decomposed into toroidal and poloidal
components. The mean-field dynamo is the process by which the toroidal and poloidal
components of a magnetic field are mutually generated.

Using a cylindrical coordinate system, assume that the velocity field of the galactic
gas disk is (0, V (r), 0). Considering the axisymmetric case for simplicity, the equations
describing the time evolution of each component of the magnetic field are as follows
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+
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∂z2
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)
= 0, (1.10)
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+
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η

∂Bϕ

∂z

)
= 0. (1.12)

The term containing (dV/dr − 1/r) = rdΩ/dr represents the Ω effect, which produces
an azimuthal magnetic field from a radial magnetic field due to the difference in radial
rotational angular velocity (differential rotation). In the equations for the radial and
vertical components, the term including α generates the radial and vertical magnetic
fields from the azimuthal magnetic field.

Various criticisms have been made of mean-field galaxy dynamo theory in its current
form. Of particular importance are the poorly understood nonlinear geometry and
physics of turbulent diffusion, uncertainties in the explanation of flux removal from the
disk, the effect of the multiphase structure of the ISM on the magnetic field, and its
effect on the magnetic field. strong fluctuating magnetic fields that grow rapidly above
the mean magnetic field [52, 53]. Most of the uncertainties are related to the α effect
since the role of the Ω effect is physically and mathematically simple. One possible
mechanism is the Parker instability. The Parker instability is a magnetic instability
that grows when the buoyancy force acting on the lighter part of the magnetic fluid as
it falls along the magnetic field lines exceeds the magnetic tension, and perturbations
with a long wavelength of about 10 times or more the thickness of the disk grow.
When the Parker instability grows in a disk with an initially azimuthal horizontal
magnetic field, a magnetic loop emerges and a vertical magnetic field is generated
from the azimuthal magnetic field. In a coordinate system rotating with the disk, the
Coriolis force acting on the falling flow along the magnetic field lines twists the magnetic
loop and generates a radial magnetic field. Other mechanisms in galactic gas disks
include the generation of radial and vertical magnetic fields from azimuthal magnetic
fields caused by supernova explosions. Although the equation of evolution of the mean
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magnetic field does not include the Parker instability and the velocity field generated
by supernova explosions, their effects on the mean magnetic field are approximated
by a term including α. Another important contribution to the large-scale magnetic
field may be due to magneto-rotational instability (MRI), a local shear instability that
occurs in weakly magnetized differential rotating disks [54]. Originally, MRI is cosidered
to explain the loss of angular momentum in accretion disks. It generates turbulence
and amplifies the magnetic fields. The appearance of large magnetic fields with this
instability has been confirmed by numerical simulations [55, 56].

1.3.2 Small-scale dynamos

The existence of small-scale dynamos is fundamentally important to the evolution of the
galaxy’s magnetic field. Without the small-scale dynamo, the seed fields of primordial
galaxies would be much weaker and it would take much longer to generate a large-scale
normal field. Small-scale dynamos amplify the magnetic field on scales smaller than
the driving scale of turbulence due to random stretching and contraction of magnetic
field lines caused by turbulent velocities [57]. Fluctuation dynamos work on faster time
scales, aligned with turbulent eddy turnover time, contrasting with the time scales of
large-scale dynamos decided by rotation or turbulent diffusion [58]. The fluctuation
dynamo rapidly amplifies an initial weak seed magnetic field, reaches saturation, and
subsequently serves as the seed for the mean-field dynamo. The mean-field dynamo
then controls the field over the size of the system.

1.4 Theoretical models of galactic magnetic fields

The global magnetic field structure of disk galaxies has a variety of configurations. For
example, the magnetic field is ring-shaped or axisymmetric (ASS; the magnetic field
has an apparent non-zero divergence) or bisymmetric spiral (BSS). The composition of
the magnetic field in a disk galaxy can be determined by Faraday rotation observations.
In this method, the value of RM (or polarization angle χ) is plotted as a function of
azimuthal angle θ. where θ is the azimuthal angle along the circle on the plane of the
galactic disk at a fixed radius. If the magnetic field of the galactic disk is a ring or ASS,
the RM shows a single sinusoidal variation as a function of θ. In the case of BSS, RM
is a double-peaked sinusoidal wave along the circle. A simpler analysis can be obtained
by measuring the RM or χ relationship along the long axis. In the case of a ring or
ASS field, the variation is asymmetric with respect to the galactic center. On the other
hand, the BSS variation is symmetric. There are many galaxies for which the field
configuration has been determined. Examples of intrinsic magnetic fields in galaxies
include IC342, M31, and the Milky Way. Examples of possible BSS magnetic fields in
galaxies are M81, M33, and M51.

ASS is produced by the winding of a vertical component. The twisted vertical
magnetic field bends toward the galactic disk, creating a spiral structure. The direction
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of the helically twisted magnetic field is consistently outward on one side of the disk and
inward on the other side, forming the ASS configuration. The figure shows the numerical
results of magnetohydrodynamic (MHD) simulations of the ASS field formation.

Large-scale BSS configurations of the galactic magnetic field cannot be produced
by the dynamo mechanism. BSS is believed to have been created during the formation
of protogalaxies. Based on this primordial origin hypothesis, BSS is interpreted as
fossils of intergalactic fields that were entrained during the formation and contraction
of protogalactic disks. It should also be noted that the BSS is ∇B ̸= 0.

Magnetic fields models of Milky Way galaxy

The Milky Way galaxy has been the subject of various radio observations. Models can
be constrained from all-sky observations of synchrotron radiation total intensity, linear
polarization, and RM, and analytical models exist. The magnetic fields (ASS and BSS)
can be written in the cylindrical coordinate system as (following the equation in Sun
et al. (2008) [59]), 

BR(R,Θ, z) = D1(R, z)D2(R,Θ) sin p
BΘ(R,Θ, z) = −D1(R, z)D2(R,Θ) cos p
Bz(R,Θ, z) = 0,

(1.13)

where p is the pitch angle of arms in a Milky-way like galaxy, and

D1(R, z) =

 B0 exp
{(

−R−R⊙
R0

− |z|
z0

)}
, R > Rc,

Bc exp
{(

− |z|
z0

)}
, R ≤ Rc.

(1.14)

We adopt the ASS+RING model for the ASS model, and the magnetic field reversals
are written in the following way;

D2(R,Θ) =


+1, R > 7.5 kpc,
−1, 6 < R ≤ 7.5 kpc,
+1, 5 < R ≤ 6 kpc,
−1, R ≤ 5 kpc,

(1.15)

where +1 means the clockwise direction as seen from the north pole. We adopt R0 =
10 kpc, z0 = 1 kpc,Rc = 5 kpc, B0 = 2 µG, Bc = 2 µG, and p = −12◦. For BSS model,
D2 is written in the following way;

D2(R,Θ) = sin

(
Θ +

1

tan p
+ ln

R

Rsb

)
. (1.16)

We adopt R0 = 6 kpc, z0 = 1 kpc,Rc = 3 kpc, B0 = 2 µG and Bc = 2 µG. We also set
Rsb = 9 kpc and p = −10◦ for R > 6 kpc, and otherwise Rsb = 6 kpc and p = −15◦.
The all-sky RM maps suggest that milky-way galaxy has the existence of halo toroidal
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fields because we observe reverse RM structure across the galactic plane and across the
galactic center (e.g.,[60]). The halo toroidal field is written in the following way [61]:

BtR(R,Θ, z) = 0

BtΘ(R,Θ, z) = Bt0
sign(z)v

1+
(

|z|−zt0
zt1

)2
R
Rt0

exp
{(

−R−Rt0

Rt0

)}
Btz(R,Θ, z) = 0,

(1.17)

where sign(z) is the sign of z, the v is the parity of the toroidal field configuration. If we
consider the asymmetric configuration in longitude and latitude relative to the Galactic
plane and centre and the axisymmetric configuration without reversals relative to the
Galactic plane, we adopt v = 1 and v = 2, respectively.The parameters are Bt0 = 2µG,
Rt0 = 4kpc, zt0 = 1.5kpc, and zt1 = 0.2kpc for |z| < zt0 and otherwise zt1 = 4kpc. The
paramerters are based on Sun et al. (2010) [62].

1.5 Evolution of galactic magnetic fields

Typical models of the global magnetic field structure of spiral galaxies include the ring
model, the ASS (Axy-Symmetric Spiral) model, and the BSS (Bi-Symmetric Spiral)
model. Due to the lack of sensitivity in radio emission, few observations of extragalactic
galaxies with redshift z > 0.1 have been achieved. Using the Faraday rotation and
depolarization, the investigation of intervening galaxies that behave as absorption line
systems has recently been progressing. One of the possible, less-biased ways to study
galactic magnetic fields is to investigate the depolarizing intervening galaxies (hereafter,
DINGs). There are a lot of external galaxies in intergalactic space so that the galaxies
can intervene in the emission from background astronomical objects such as quasars and
radio galaxies. Indeed, 40,429 out of 84,533 SDSS quasars are known to accompany Mg
II absorber systems in front of the quasars [63]. Such absorber systems are likely DINGs,
whose magnetic fields can depolarize background polarized emission and can contribute
to Faraday rotation measure (RM). This overlap happens randomly in space, reducing
the selection bias. The correlation between polarization properties and the existence of
Mg II absorber systems has been reported in the literature [64, 65, 66, 67, 68]. Figure
1.4 shows cumulative distributions of RM of sightlines with and without strong MgII
absorption line systems. It can be seen that the RM tends to be larger when the DING
is in the line of sight. Large surveys of extragalactic sources with the Square Kilometre
Array (SKA) (e.g., [69]) and its precursors/pathfinders will dramatically increase the
number of extragalactic polarized sources, allowing us to improve previous statistical
works for DINGs.

Recently, observations of background polarization sources using gravitational lensing
effects of objects at z = 0.439 detected that galaxies at z = 0.439 also have ordered
magnetic fields [1]. They used a method to determine the magnetic field from the
difference in RMs of background source emissions passing through different positions of
the lens galaxy due to the gravitational lensing effect of the lens galaxy. The difference
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Figure 1.4: Cumulative distributions of Rotation Measures of sightlines with and with-
out strong MgII absorption line systems. Figure taken from Bernet et al. (2008) [65].
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Figure 1.5: Faraday depth spectra of two gravitationally lensed images (blue and red)
with lensing galaxy at a redshift of 0.439. Figure taken from Mao et al. (2017) [1].

between the means of the two components (the difference in RM between the two
images) gives an estimate of the large-scale magnetic field in the lensing galaxy (see
Figure 1.5). The difference in the standard deviations of the two components (difference
in the standard deviations of the RM) gives information about the small-scale magnetic
field. In the Square Kilometer Array (SKA) era, it is expected to find 105 polarization
sources subject to gravitational lensing effects [70]. All-sky polarization surveys using
the SKA predecessor have now begun.

It is expected that the small-scale magnetic field is genarated quickly by turbulence
[71], while the global magnetic field is constructed over a long time (about the rota-
tional period of a disk) [72]. According to numerical experiments [73], if a kpc-scale
magnetic field of µG intensity is generated in a galactic disk at z = 2, it will take up
to z = 0.5 for it to grow into a galaxy-scale aligned magnetic field. During this period,
especially from redshift z = 2 to the present, when star formation was active, the effect
of star formation will also be important to verify by direct observation by providing the
SKA with a large light gathering power and observing even the high distant galaxies.
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Faraday rotation and polarization resolution can also be discussed in more detail by
increasing the number of background detectable polarization sources. Plasma density is
expected to be explored through synchrotron polarization of galaxies, Faraday rotation
and polarization resolution, and the Zeeman effect.

1.6 Aim of the thesis

We should know when a galaxy has a coherent magnetic field and how much the strength
of it is. The Milky Way and nearby galaxies have been observed to have coherent mag-
netic fields and turbulent magnetic fields. Galactic magnetic fields affect star formation
in galaxies and galactic evolution through the formation of interstellar gas clouds and
the propagation of cosmic rays. Observations of the magnetic fields in distant galaxies
are necessary to understand how the galactic magnetic field evolves and to put limits on
theories of the evolution of galactic magnetic fields. One method to study the magnetic
fields in distant galaxies is to observe intervening galaxies. The magnetic fields of inter-
vening galaxies will be extracted from the observational data for the back ground source
such as quasars, when the next-generation radio interferometer, the Square Kilometre
Array (SKA), is going to be active in the late 2020s. Therefore, we will investigate the
possibility of using the SKA predecessor to get information on the magnetic fields of
the intervening galaxies using two different methods.

The first is to reveal how the magnetic field of an intervening galaxy affects the
observed RM when there is an intervening galaxy in the line of sight. The major issues
in chapter 2 are to determine if the characteristic magnetic field information (RM) of
DING can be retrieved by examining the depolarization spectrum and FDF, and to
determine on what effects the bias depends in a large survey of polarization sources.
In addition, we will investigate their statistical importance for future large surveys of
RM, and determine what redshift dependence there is on RM and which parameters of
DING have a large effect.

The second is to determine how the RM structure behaves when the background
polarization source is subjected to gravitational lensing effects. The Polarization All-
Sky Survey (POSSUM) with the Australian SKA Pathfinder (ASKAP) has begun, and
it is expected to detect polarization sources subject to gravitational lensing effects.
However, POSSUM will not be able to spatially resolve gravitational lensing sources.
Therefore, it is necessary to examine whether it is possible to extract the RM structure
of lensing galaxies from lensing polarization sources that are not spatially resolved. The
major issue in chapter 3 is whether it is possible to separate information about the RMs
of intervening galaxies and background sources in cases where they are not spatially
resolved.

In chapter 2, we show the depolarization spectra and FDFs caused by DING with
various physical parameters. We show how the RM of DING can be estimated from the
depolarization spectra and FDFs, and which parameters they depend on. In addition,
we will investigate their statistical importance in future large surveys of RM and de-
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termine what redshift dependence of RM there is and which parameters of DING have
a large effect. In chapter 3, we will investigate whether it is possible to extract the RM
structure of lensing galaxies using QU-fitting when the background polarization source
is subject to gravitational lensing and the polarization is observed.
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Chapter 2

Effects of Depolarizing Intervening
Galaxies on Background Radio
Emission

2.1 Introduction

Various simple models have been used and many studies have been done to understand
DING. (e.g., [45, 48]) and galaxy models (e.g., [66, 74, 75]). However, the redshift
dependence of depolarization caused by a DING is not systematically addressed, re-
maining statistical contribution of DINGs in RM catalogs unclear. In addition, while
modern radio polarimetry adopts Faraday tomography to estimate RM (e.g., [76, 77],
[78]), DING’s effects on Faraday dispersion function (FDF) is not paid much attention
[79]. Clarification of DING’s effects is crucial for exploring galactic [59, 80, 81, 82, 83]
and intergalactic [84, 85, 86, 87, 88] magnetic fields with future large surveys.

In this paper, we show depolarized spectra and FDFs caused by the DINGs with
various physical parameters and explore their statistical significance for large surveys
of RM in the future, using theoretical DING models. The paper is organized as follows.
We briefly summarize the nature of depolarization in Section 1.2.4 and describe our
model and calculation in Section 2.2. We find that, while multiple galactic structures
result in complicated depolarization features, the essence is made by the global disk
magnetic field which is the primary component of galactic RM. Based on this fact, we
show the results for the simplest, ring magnetic field in the galactic disk to clarify how
DING’s depolarization takes place in Section 2.3. Other galactic components, such as
the disk spiral, the halo, and turbulent magnetic fields, are added in our discussion
(Section 2.4). We also discuss systematic errors in estimating DING’s RM mean and
dispersion by the FDF peak and Burn’s depolarization law, respectively. Finally, we
discuss the redshift dependence of the DING’s RM dispersion and a future prospect to
study the intergalactic magnetic field. We summarize this work in Section 2.5.
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2.2 Model and calculation

In this section, we describe our model and calculation. When we refer the angular
size, we adopt a ΛCDM cosmology with Ωm0 = 0.27 and ΩΛ0 = 0.73, and H0 =
70 km s−1Mpc−1 in this paper. One arcsecond (1′′) corresponds to 1.8, 6.2, and 8.2 kpc
for redshifts of z = 0.1, 0.5, and 1.0, respectively.

2.2.1 Numerical models

We consider observing a radio lobe as a background polarized source behind a DING. We
only consider RM of the DING and ignore any other RMs such as RMs of a background
source and the Milky Way Galaxy; those are beyond the scope of this paper. Although
a background radio source likely has inhomogeneous morphology, we assume that the
source has uniform emission and a circular shape with 1′′ in diameter to focus on the
effect of the DING.

We define the Stokes parameters, I(ν), Q(ν), U(ν), V (ν), and the polarized inten-
sity, P (ν) = Q(ν) + jU(ν), of a background source as

I(ν) = I0ν
αI , (2.1)

P (ν) = P0ν
αP = p(ν)I(ν)e2jχ0 , (2.2)

where χ0 is the intrinsic polarization angle, j is the imaginary unit, and we consider no
circular polarization, i.e. V (ν) = 0. For the intrinsic emission of the background source,
we adopt the simplest parameters; αI = αP = −1 and p0 = P0/I0 = 1. The choice of
the parameters is useful to visualize depolarization effects of our interest in this paper,
and does not affect our conclusion of depolarization effects caused by a DING.

DINGs are external galaxies that are dark in any observing frequency but are de-
polarizing background polarization. We consider a low surface brightness, disk galaxy
as a DING since the field sky dominates a large survey volume. Magnetic fields in disk
galaxies have been investigated in the literature (e.g., [59, 89, 90, 91]). They consist of
global, regular components and local, turbulent components, where we only consider
the former component as stated in Section 2.1.

We adopt the RING model as a global regular magnetic field of a DING (e.g.,
[92]). The ring-shape magnetic field can be written in the cylindrical coordinate system
(R, ϕ, z′) as 

BR = 0,
Bϕ = B0 (0 kpc ≤ R ≤ 10 kpc),
Bz′ = 0,

(2.3)

where we adopt the disk scale height of 1 kpc and the strength of B0 = 5 µG;

B0 =

{
5 (−1 kpc ≤ z′ ≤ 1 kpc),
0 (z′ < −1 kpc, 1 kpc < z′).

(2.4)
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ObserverSource

Inclination angle

Figure 2.1: Schematic picture of the coordinates for observation.

The global electron distribution is assumed to be uniform with the density of ne =
0.01 cm−3. This assumption is reasonable while we consider the disk component up
to the scale height of the disk. We do not consider synchrotron emission from cosmic-
rays in the DING because it is negligibly weak by the definition of the DING. For the
study of FDF of diffuse polarized emission from external galaxies, see e.g., Eguchi et
al. (2020) [93] and references therein.

Figure 2.1 depicts the definition of the Cartesian coordinates in this work. We set
the z-axis becomes the direction of the sightline and the remaining x-axis and y-axis
are on the projection screen perpendicular to the z-axis. The vertical direction from
the disk mid-plane is z′-axis and we define the inclination angle, i, as the angle from
the z-axis to the z′-axis, where i = 0◦ is the face-on view and i = 90◦ is the edge-on
view. We place a DING at a redshift, z, from 0.1 to 1.0. Nearby DINGs with z < 0.1
are not considered because nearby galaxies are likely visible in optical and IR bands
and those galaxies are no longer DING.

2.2.2 Observing specification and calculation

As described above, we assume that the background source has diffuse, uniform emis-
sion of a circular beam with a 1′′ diameter. The beam passes through the DING,
experiencing Faraday rotation by the RM of the DING (see Figure 2.2). This effect is
calculated as follows. The DING is produced in a cubic box consisting of 200×200×200
computational grids. The grid size, which determines the spatial resolution of the cal-
culation, is 100 pc which is sufficiently smaller than the curvature scale (∼kpc) of the
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Figure 2.2: A schematic picture of observed polarized emission in situation of right
panel of figure 2.4

disk magnetic field. The RM and Faraday rotation within the k-th grid along a certain
line of sight are given by {

∆RMk = 0.81neBk,∥∆l
∆χ = RMkλ

2∆l
(2.5)

where Bk,∥ is the magnetic field parallel to the line of sight, ∆l = 100 pc is the line
element, and ∆χ is the Faraday rotation of the polarization angle. We integrate RM
and Faraday rotation along the z-axis and project the cumulative RM and Faraday
rotation on the x-y plane as follows.

RM =
∑N

k=1 ∆RMk

χ = χ0 + RMλ2

Q = Q0 cosχ− U0 sinχ
U = Q0 sinχ+ U0 cosχ.

(2.6)

We sum up Q (or U) for the projected grids within the beam and obtain the observed
Q (or U) within the beam. The observed polarization fraction, p, is calculated by
using the observed Q and U as p =

√
Q2 + U2/I. The observed polarization fraction

is written as p ∝ ναI−αP = νβ, so β will change if the depolarization takes place. We
perform the least-square-fits for the p-ν relation using the power-law form to estimate
β.

Figure 2.3 shows the distributions of rest-frame intrinsic RM of the DING for the
inclination angle i = 30◦. We define the beam offset parameters from the center of the
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Figure 2.3: Example of the rest-frame intrinsic RM of a DING with inclination angle
i = 30◦. The solid, dashed, and dotted circles display the references of a 1′′ beam for
z = 0.1, 0.5 and 1.0, respectively, centered at x1 = 5 kpc and y1 = 5 kpc.

DING, 10 kpc ≤ x1 ≤ 10 kpc in x-axis and 10 kpc ≤ y1 ≤ 10 kpc in y-axis. The solid,
dashed, and dotted circles display the references of a 1′′ beam for z = 0.1, 0.5 and 1.0,
respectively, centered at x1 = 5 kpc and y1 = 5 kpc.

In addition to the numerical integration of RM, we derive the observed RM, RMpeak,
using Faraday RM synthesis (or Faraday Tomography; [45, 46]). We define RMpeak as
the Faraday depth at which the amplitude of the cleaned Faraday dispersion function
(FDF) is maximum, where the RM CLEAN, a technique that removes the side lobes
of the dirty FDF, is used [94]. Such a way of RM measurement will be considered in
future large surveys of extragalactic RMs such as the SKA. We prepare the sufficiently-
large number of frequency channels so as to avoid numerical errors regarding a lack
of channels. Hence, in the Fourier transform for Faraday tomography we use the data
with the sufficiently-large number of λ2 channels, ensuring an ideal rotation measure
spread function (RMSF). Any effects caused by coarse and/or unevenly-sampled data
for Faraday tomography is beyond the scope of this paper, although the effects can be
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Table 2.1: Frequency coverage and FWHM in this work.

Band Frequency FWHM
[MHz] [rad/m2]

Low 150 – 700 0.9098
Mid 700 – 1800 22.81
High 1800 – 4000 162.5

†The frequency bin is sufficiently narrow to minimize the resolution dependence.

crucial in actual observational work [95, 96]. The Frequency coverage and the corre-
sponding full width at half maximum (FWHM) of the RMSF, i.e. the resolution of
Faraday depth, is listed in table 2.1.

We also estimate the RM using the classical χ−λ2 relation (see equation 2.6), RMcls,
and compare it with RMpeak. Because the χ−λ2 relation does not follow a linear relation
because of depolarization (e.g., [48]), it is in general difficult to derive RMcls from such
a polarization spectrum. We attempt to derive RMcls using χ − λ2 relation at the
relatively-high frequency, 3000 – 4000 MHz, at which we see a nearly-linear relation for
our simulations.

We perform Monte-Carlo simulations and investigate the statistical contribution
of DINGs on background polarization. We set the beam offsets, x1 and y1, and each
inclination angle from 0 degrees to 90 degrees with a 5-degree step as the free parameters
of Monte-Carlo simulations and calculate the FDF for each redshift of 0.1, 0.3, 0.5,
0.75, and 1.0. We performed 100,000 realizations for each redshift. The convergence
of the results was confirmed from the runs with different realization numbers. We
adopt RMpeak as the observed RM for each background source and measure the DING’s
RM from the shift of the RMpeak from zero because we do not consider any other
RM contribution in the simulation. We consider the 700-1800 MHz band for Faraday
tomography but RMpeak does not significantly depend on the frequency coverage (see
discussion).

2.3 Results

2.3.1 Depolarization caused by a DING

Figure 2.4 shows the frequency dependence of the polarization fraction for a different
inclination angle and a different beam offset. The left and right panels show the results
with (z, x1, y1) = (1.0, 5, 0) and (z, x1, y1) = (1.0, 5, 3), respectively, and the top to bot-
tom panels show the results for the inclination angles of 30◦, 60◦, and 90◦, respectively.
The insets show the RM maps, where the black circles indicate the 1′′ beam. The av-
erage and the standard deviation of RM within the beam are summarized in table 2.2.
They monotonically increase with increasing the inclination angle and decrease with
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(z, x1, y1) = (1.0, 5, 0) (z, x1, y1) = (1.0, 5, 3)

Figure 2.4: The polarization fraction as a function of the frequency. The left and right
panels show the cases for (z, x1, y1) = (1.0, 5, 0) and (z, x1, y1) = (1.0, 5, 3), respectively,
where the insets show the RM maps and the 1′′ beam position is shown as the black
circle. The color scale is the same as that in Figure 2.3. The top and bottom panels
show the results for the inclination angles of 30◦, 60◦, and 90◦, respectively. The yellow,
red, magenta and blue lines indicate the best fits assuming p ∝ νβ for the four different
bands of 700−1000 MHz, 1100−1400 MHz, 1500−1800 MHz, and blue 2000−4000 MHz,
respectively.
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Table 2.2: The average and the standard deviation of the observer-frame, in-beam RMs
of the DING for z = 1.0 and x1 = 5 kpc.

y1 i average standard deviation
(kpc) (degree) ( rad/m2) ( rad/m2)

0 30 10 1.3
0 60 26 6.5
0 90 35 54
3 30 8.7 2.6
3 60 16 13
3 90 25 50

increasing the beam offset.
In Figure 2.4, we see that background polarization is depolarized at low frequencies.

However, although the standard deviation of RM monotonically increases with increas-
ing the inclination angle, the degree of depolarization at low frequency does not. We
see the decaying oscillation of the polarization fraction and its convergence at a certain
value depending on i and y1. The color lines in Figure 2.4 show what we obtain from
the linear fit for such an oscillated profile.

Comparison between right and left panels indicates that the profile of the polariza-
tion fraction significantly depends on the beam offset. A decaying oscillation caused
by depolarization appears at a smaller inclination angle (see the results for i = 60◦)
as we increase the beam offset. Since the beam offset determines the filling factor
or the covering fraction of the DING for a beam, the filling factor is an essential pa-
rameter. Actually, for (y1, i) = (3, 60◦), the polarization fraction converges at about
0.2 because the filling factor is about 0.8. The profile of the polarization fraction for
(y1, i) = (3, 60◦) is similar to that for (y1, i) = (0, 60◦), but the polarization fraction
of the former converges at a higher value than that of latter, because the polarized
emission passes through more 0 rad/m2 regions. As for i = 30◦, we do not see the
convergence of the polarization fraction. This is reasonable because the DING fully
covers the beam area and the filling factor is unity. Similar results are found for x1
instead of y1.

The RMcls derived from the χ − λ2 relation within the beam are summarized in
table 2.3. RMcls are mostly identical to the beam-averaged RM for i = 30◦ and i = 60◦,
while they are very different from each other for i = 90◦. The difference is made by
significant depolarization which is seen even at the high frequency of 4 GHz (see Figure
2.4). The χ − λ2 relation suffers from estimating the beam-averaged RM in such a
strongly-depolarized spectrum.
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Figure 2.5: Histograms of RM (gray) and simulated FDFs (red and blue) for different
inclination angles of the DING (left to right) and different frequency coverage (top to
bottom). The gray color shows the histogram of RM, where the histograms are normal-
ized by 1/(1 + z)2. Red and blue lines show the dirty and cleaned FDFs, respectively.
Panels from left to right correspond to the cases for the left to right panels shown in
Figure 2.4.
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Table 2.3: The observed RM, RMcls, with the χ−λ2 relation in-beam RMs of the DING
for z = 1.0 and x1 = 5 kpc.

y1 i RMcls

(kpc) (degree) ( rad/m2)

0 30 10
0 60 26
0 90 12
3 30 8.7
3 60 16
3 90 -0.85

2.3.2 Estimation of DING’s RM

Figure 2.5 shows the Faraday spectra obtained from Stokes parameters within the beam
with (z, x1, y1) = (1.0, 5, 0). Panels from the top to bottom show the results for low,
mid, and high bands, respectively. The red and blue lines show the amplitudes of the
dirty FDF obtained from Fourier transform of the complex polarized intensity and the
cleaned FDF obtained from RM CLEAN, respectively. We also show the histograms of
RM as the filled gray boxes, where the histograms are for observer-frame RMs of the
projected numerical grids within the beam. If one refers to a rest-frame value of RM,
it is reproduced by multiplying (1 + z)2. The bin size of x-axis (RM or Faraday depth)
is equal to the FWHM of the RMSF for each band. The histogram does not depend on
the observing band, but its appearance changes according to the adopted bin size.

If there is no DING, both the FDF and the histogram should have one peak at
RM = 0 rad/m2 with the zero width (i.e. the delta function). Figure 2.5 clearly
indicates non-zero values of them, confirming that the DING significantly contributes
to the FDF. Interestingly, the FDF and the histogram tend to show two peaks as the
inclination angle increases (see e.g., the case with Mid band for i = 90◦). The emission
passing through a larger RM of the DING appears as a peak at non-zero Faraday
depth, while the emission passing through a smaller RM of the DING or the emission
not passing through the DING form another peak around RM = 0 rad/m2. For i = 90◦,
most of the emission does not pass through the DING. Thus, the component around
RM = 0 rad/m2 becomes the dominant component of the FDF. The inclination angle
close to the edge-on results in a larger RM gap between the two components than the
case of a face-on, which means that the gap can be found at higher frequency even with
a larger FWHM. Indeed, for i = 60◦, it is difficult to identify the two component with
high band, while for i = 90◦ the two components are seen in the FDF even with high
band. We note that this component may be numerical artifacts in Fourier transform
(see Section 2.4.3).

We find that RMpeak tends to represent the RM value of the peak position of the
histogram, and is clearly different from the actual, beam-averaged, observer-frame RM

28



of the DING. The trend is clearly seen at the low band. For example, for i = 30◦,
RMpeak ∼ 12 rad/m2 overestimates the beam-averaged RM, ∼ 10 rad/m2, by about
15 %. Similarly, for i = 60◦, RMpeak ∼ 34 rad/m2 overestimates the beam-averaged
one, 26 rad/m2. Then, when the undepolarized, intrinsic component dominates the
FDF such as the case for i = 90◦, RMpeak suggests 0.0 rad/m2, although the beam-
averaged RM is 35 rad/m2. The classical estimate of RM, RMcls, tends to represent the
mean RM of the LOS and is hence close to the beam-averaged RM value. As a result,
RMpeak is also different from RMcls.

Overall, the shape of the cleaned FDF is similar to the histogram, except the result of
Low band for i = 60◦ which shows that the position of the secondary peak component
is not at the peak of the histogram but around the edge of the histogram. We will
discuss the reason in Section 2.4.3.

2.3.3 Statistical contribution of DING

Although our model of the DING is too simple to make quantitative predictions, we
demonstrate how the effect of the DING qualitatively emerges (or is hidden) in statis-
tical studies. Particularly, we focus on the redshift evolution of observed RMs, because
such a study is one of the key Magnetism science of forthcoming surveys (Section 2.1).

To study the statistical contribution of the DING, we carry out Monte-Carlo simu-
lations as described in Section 2.2. A foreground RM screen such as the DING shifts
the Faraday depth of a background source, and the amount of the shift depends on the
strength of DING’s magnetic field as well as the DING’s parameter such as the incli-
nation angle and the beam offset. Thus, in a catalog of background polarized sources,
DING’s RM appears as the standard deviation of the observed RMs, σRM, where the
observed RM is defined as the Faraday depth at the FDF peak, RMpeak, using Faraday
tomography.

The standard deviation of the DING’s RMs as a function of the DING’s redshift is
shown as the circles in Figure 2.6. We fit σRM with the following exponential function;

σRM(z) =
A

(1 + z)k
[rad/m2]. (2.7)

The best-fit (the solid line) values are A ∼ 60 and k ∼ 2.7.
The observed RM is always 1/(1 + z)2 times the intrinsic value because RM is

proportional to the square of the wavelength. To confirm this dependence, we perform
the control run in which the region where the emission passes through the DING is
constant regardless of the redshift (the beam size is changed at each redshift). The
size of the region to be passed through is thus fixed at 1.8 kpc in diameter. The result
is also shown as the triangles in Figure 2.6. The best-fit (the dashed line) values are
A ∼ 51 and k ∼ 1.8 which is marginally consistent with the dependence of 1/(1 + z)2.
Therefore, the steeper redshift dependence of k ∼ 2.7 relates to the change of the
physical size of the beam. We discuss this mechanism in section 2.4.4.
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Figure 2.6: Standard deviation of RMpeak, σRM, as a function of the redshift, z. The
circles and triangles, respectively, show the results of our fiducial runs and our control
runs for which we fix the physical beam size of 1.8 kpc in diameter. The solid and
dashed lines are the best least-square fit assuming the power-law, for our fiducial and
control runs, respectively.
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2.4 Discussion

2.4.1 Model dependence

We conducted numerical simulations of depolarization caused by a DING using the
simplest model consisting of a uniform density and a ring magnetic field. In this sub-
section, we expand our simulations to more complicated but more realistic models of a
DING, although the essence of depolarization effects caused by a DING can be under-
stood based on the results of our simplest model. The magnetic field models are from
the section 1.4.

Density profile

First, the global electron distribution is assumed to be uniform in this paper. The
global electron distribution has been studied in the literature and some realistic models
have been proposed such as NE2001 [97] and YMW16 [98]. These works suggest that
the global electron distribution basically follows an exponential profile as functions of
the distances from the galactic center and the disk mid-plane. Such a profile induces
the two additional effects, bias and gradient. The bias effect is that RM is the largest
around the central part of the DING and weaker at its outskirt. Nevertheless, the
electron density is positive definite, so that the change of the sign of RM caused by the
disk magnetic field remains regardless of the electron distribution model. The gradient
effect is that the density gradient induces the RM gradient as well, resulting in more
depolarization within the beam in general.

We consider exponential distribution for the electron density distribution, n(z):

n(z) = n0 exp
{
−
( z
H

)}
. (2.8)

We adopt n0 = 0.014 cm−3 and scale height, H = 1.83 kpc [99]. To see the effect
of the density profile, we adopt the exponential distribution for the electron density
(Equation 2.8) on our simplest ring magnetic field model and study the same case of
(z, x1, y1) = (1.0, 5, 0). We then see no apparent change of the results for i = 30◦ and
i = 60◦, because the main disk component has approximately the same density value
for the uniform and exponential models. Meanwhile, we see a difference between the
two models for i = 90◦. The second peak of FDFs, as seen in the right column of Figure
2.5, looks flat, because the electron distribution is exponential.

The above result clarifies that the exponential distribution does not significantly
change the depolarization through the galactic disk. Hereafter, we consider the expo-
nential distribution of the electron density to incorporate this effect on our additional
simulations shown in the following sections.
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Table 2.4: The average and the standard deviation of the observer-frame, in-beam RMs
of the DING.

Model type (z, x1, y1) i average σRM

(degree) ( rad/m2) ( rad/m2)

ASS (1.0, 5, 0) 30 0.87 3.6
BSS (1.0, 5, 0) 30 -3.1 2.7
BSS (0.1, 0, 8) 90 0.0 0.0

BSS + D (0.1, 0, 8) 90 0.0 0.17
BSS + Q (0.1, 0, 8) 90 0.0 0.17

ASS (0.3, 5, 0) 30 3.6 9.4
ASS + random (0.3, 5, 0) 30 3.5 10

Disk fields

We considered the ring magnetic fields which indicate one pair of positive and negative
RM structures through the disk (see e.g., Figure 2.3). Such pairs can be obtained if
we consider a spiral magnetic field such as the axi-symmetric spiral (ASS). Significant
depolarization and the bi-modal FDF profile are expected, if the beam covers such
the pairs producing the large RM dispersion. If we consider even higher-mode spirals
such as the bi-symmetric spiral (BSS), there are more reversals of magnetic fields and
multiple pairs of positive and negative RM structures through the disk. Thus, the
number of the peak components in the FDF depends on the mode. The mode also
changes the amount of depolarization, because the dispersion of RM within the beam
depends on the mode.

To assess the above speculation, we show the results for the ASS and BSS models
[59]. The results with the inclination angle of 30◦ and (z, x1, y1) = (1.0, 5, 0) are shown
in Figure 2.7. The top panels are the same as Figure 2.4 but for ASS (left) and BSS
(right) models. The middle and bottom panels are the same as Figure 2.5 but for ASS
(left) and BSS (right) models. The average and the standard deviation of RM within
the beam are summarized in table 2.4.

As expected, the dispersion of RM caused by the positive and negative RM pairs
within the beam for the ASS and BSS models are larger than that for the RING
model (tables 2.2 and 2.4), because the ASS and BSS models have more magnetic field
reversals. A significant depolarization spectrum is seen as well (the top panels of Figure
2.7). As shown in the insets of the top panels, the ASS and BSS models possess positive
and negative RM regions within the beam, so we expect multiple peaks in the FDF.
Actually, the peaks can be resolved with the low-band data (the middle panels), and
we can clearly see two peaks for the ASS model. Meanwhile, such multiple peaks are
not apparent in the FDF with the mid-band data (the bottom panels), since the RM
structure within the beam is smaller than the resolution of the FDF.
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Figure 2.7: Top panels: The polarization fraction as a function of the frequency. The
left to right panels show the results for the inclination angles of 30◦ with ASS and BSS
model, respectively, where the insets show the RM maps and the 1′′ beam position is
shown as the black circle. The color scale is the same as that in Figure 2.3. The both
panels show the cases for (z, x1, y1) = (1.0, 5, 0). The yellow, red, magenta and blue
lines indicate the best fits that is the same as that in Figure 2.4.Center and bottom:
Histograms of RM (gray) and simulated FDFs (red and blue) for different models of
the DING and different frequency coverage. The gray color shows the histogram of
RM, where the histograms are normalized by 1/(1 + z)2. Red and blue lines show the
dirty and cleaned FDFs, respectively. Panels from center to bottom show the results
for the frequency coverage of low (150 MHz – 700 MHz), mid (700 MHz – 1800 MHz),
respectively.
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Halo Fields

We did not consider magnetic fields in the galactic halo. Previous works have shown
that there are global magnetic fields in the halo of the Milky Way [62, 100] and external
galaxies [101, 102, 103]. Because of a lack of the halo component in this work, RM is
exactly zero through the halo direction when we observe the DING in the edge-on
view. This would be unlikely because the global electron and magnetic fields in the
halo should have non-zero RM structures. Such RM can be small (say ≲ 1 rad/m2)
because of an exponential decrease of the electron density toward the halo, supporting
that the disk component is predominant for the DING.

To examine the contribution of halo magnetic fields to the DING’s depolarization
quantitatively, we add a toroidal magnetic field with the asymmetric configuration in
longitude and latitude relative to the galactic plane and the center, respectively (labelled
D), or an axisymmetric magnetic field without reversals relative to the plane (labelled
Q) [62]. The results are shown in Figure 2.8. The average and the standard deviation
of RM within the beam are summarized in table 2.4.

This additional halo component produces more complex RM structures in the FDF
in general, regardless of the model (not shown). A clear difference made by the halo
field is seen when we view the DING through the edge-on. The top panels in Figure 2.8
show the frequency dependence of the polarization fraction for the inclination angles
of 90◦ and (z, x1, y1) = (0.1, 0, 8). The left to right panels compare the results with
BSS, BSS + D and BSS + Q models, respectively, showing that the additional halo
component causes depolarization at low frequency because the BSS + D and BSS +
Q models have non-zero standard deviations within the beam (table 2.4). The bottom
panels in Figure 2.8 show the Faraday spectra respectively corresponding to the top
panels. Because the RM structure within the beam is finer than the resolution of the
Faraday depth, the FDF apparently indicates one component. This demonstrates that,
even when the effect of DING is not clearly seen in the Faraday spectrum, we may be
able to find depolarization caused by a weak magnetic field such as a halo magnetic
field at very low frequencies.

Note that galaxies including DINGs probably possess the circumgalactic medium
(CGM) that extends to 400 – 500 kpc from the center [33, 104]. Although the typical
values of the density and magnetic field of the CGM are not clear, CGM’s RM could
be small like the gas in the halo. With realistic halo gas and RM, our results relating
to the filling factor will be improved.

Turbulence

We did not consider small-scale random and turbulent magnetic fields which have been
addressed in the previous works as a source of depolarization (e.g., [59]). If we consider
turbulent magnetic fields, our results will largely change. More specifically, our results
show the minimum case and an additional depolarization takes place by the turbulent
component. For example, for the case with i = 30◦ in Figure 2.4, the polarization
fraction remains almost unity at above 1000 MHz. This is because the standard de-
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Figure 2.8: Top: The polarization fraction as a function of the frequency. The left to
right panels show the results for the inclination angles of 90◦ with BSS, BSS + D and
BSS + Q model, respectively, where the insets show the RM maps and the 1′′ beam
position is shown as the black circle. The color scale is the same as that in Figure 2.3.
The panels show the cases for (z, x1, y1) = (0.1, 0, 8). The yellow, red, magenta and blue
lines indicate the best fits that is the same as that in Figure 2.4. Bottom: Histograms
of RM (gray) and simulated FDFs for different models of the DING (left to right).
The gray color shows the histogram of RM, where the histograms are normalized by
1/(1 + z)2. Red show the dirty.
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viation of intrinsic RM within the beam, 5.6 rad/m2, does not significantly rotate the
polarization angles at those frequencies. Such a result varies if there is an additional
RM dispersion induced by turbulent magnetic fields. The significance of this addition
depends on the model of turbulence and hence accurate modeling of turbulent magnetic
fields is crucial [81].

To explore the contribution of the random component, we adopt a simple model that
the random component is homogeneous and follow a Gaussian distribution in strength
with an average of zero and a scatter of σb/

√
3 in each dimension, where σb is the

standard deviation of the random component. We set the parameter, σb = 3 (µG),
based on the previous work [59].

The results for the ASS model and the ASS + random field model are compared
to each other in Figure 2.9. The average and the standard deviation of RM within the
beam are summarized in table 2.4. As expected, the random component induces more
depolarization, because the random component increases the standard deviation of RM
within the beam. The FDF has two peaks for both the ASS and ASS + random models,
but the latter indicates a broader FDF with more spikes. The random magnetic field
can smooth the coherent RM structure formed by the global magnetic field, because
random components have a Gaussian distribution. Thus, the amplitude of the FDF
will become lower and the width of the FDF will become wider, but remaining the split
of FDF. We note that we see one Gaussian RM structure if RM structure has no global
component.

2.4.2 Quantification of depolarization

The polarization spectral index β of p ∝ νβ has been adopted to quantify the degree
of depolarization (e.g., [67]). We derived the best-fit values of β for the four frequency
bands (color lines in Figure 2.4), but it demonstrates that the linear fit is unreasonable
to represent the oscillation of the polarization fraction caused by the DING. Such
oscillation happens when the DING’s RM is large. Here, as already shown, a larger
inclination angle causes a larger RM, because not only the path length through the disk
but also its B∥ component becomes larger. Hence, a larger inclination angle results in
stronger depolarization, because the standard deviation of intrinsic RM for the DING
becomes larger. However, a larger inclination angle can reduce the chance for the beam
to overlap the disk (see Figure 2.2), i.e. reduce the filling factor from unity. As a result,
two components of polarization are found within a beam; one is the emission which
is significantly depolarized by passing through the galactic plane with a large RM,
showing a decaying oscillation in the profile of the polarization fraction. The other is
the emission that can reach us without passing through the galactic plane, determining
the convergence of the observed polarization fraction at the value of 1 - the filling factor.

The“ Burn law” [45] is another analytic formula to quantify the depolarization.
The formula is written as

p(λ) = p0(λ) exp
{

(−2σ2λ4)
}
, (2.9)

36



50 0 50
RM(rad/m2)

0.0

0.2

0.4

A
m

pl
itu

de
 (1

0
6 )

0.0

0.1

0.2
# 

of
 d

gr
ee

50 0 50
RM(rad/m2)

0.00

0.02

0.04

A
m

pl
itu

de
 (1

0
6 )

0.00

0.02

0.04

0.06

# 
of

 d
gr

ee

50 0 50
RM(rad/m2)

0.0

0.2

0.4

0.6

A
m

pl
itu

de
 (1

0
6 )

0.0

0.2

0.4

0.6

# 
of

 d
gr

ee

ASS model

50 0 50
RM(rad/m2)

0.0

0.2

0.4

A
m

pl
itu

de
 (1

0
6 )

0.0

0.2

0.4

0.6

# 
of

 d
gr

ee

ASS + random model

Figure 2.9: Top: The polarization fraction as a function of the frequency. The left
to right panels show the results for the inclination angles of 60◦ with, ASS and ASS
+ random model, respectively, where the insets show the RM maps and the 1′′ beam
position is shown as the black circle. The color scale is the same as that in Figure 2.3.
The panels show the cases for (z, x1, y1) = (0.3, 5, 0). The yellow, red, magenta and blue
lines indicate the best fits that is the same as that in Figure 2.4. Bottom: Histograms
of RM (gray) and simulated FDFs for different models of the DING (left to right).
The gray color shows the histogram of RM, where the histograms are normalized by
1/(1 + z)2. Red and blue lines show the dirty and cleaned FDFs, respectively.
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where λ is the wavelength and σ is the standard deviation of RMs within a considering
beam. Obviously, the exponential formula is difficult to reproduce the non-monotonic
change of the polarization fraction caused by the DING. But this discrepancy is rea-
sonable because RMs within the beam do not follow the Gaussian distribution which
is assumed in the Burns law. Moreover, a condition that a typical size of incoherent
structures is sufficiently smaller than the beam is not satisfied.

These results indicate that the above traditional methods can only quantify a part of
the DING’s broadband depolarization properties at relatively high frequency of ∼GHz.
Careful examination of the profile of the polarization fraction at a few to several hundred
MHz is important to understand the depolarization caused by the DING. Fitting of the
profile of the polarization fraction with advanced models such as the two components
model (see Appendix of [67]) would be useful to extract the features caused by the
filling factor.

2.4.3 Shapes of the Faraday spectrum

The shape of the FDF obtained from RM CLEAN is similar to the shape of the his-
togram of RM within the beam. While the histogram is the normalized histogram of
RMs for the pixels within the beam, the FDF is the sum of the FDFs for the pixels
within the beam. Because we consider a uniform linear polarization within the beam,
the sum of the FDFs results in the histogram of Faraday depths for the pixels within
the beam and the histogram can be compared to the normalized histogram of RMs.
In reality, the shape of the FDF can depart from the shape of the histogram, if the
amplitude of linear polarization is very inhomogeneous within the beam. This situa-
tion can occur when the emission has a significant structure, such as radio lobes, or
when there is strong intrinsic depolarization due to small-scale turbulence. Another
factor that causes the departure is numerical artifacts in the Fourier transform. We
can see the artifact at the edge of the histogram in the top-middle panel of Figure
2.5. We speculate that the peak is spurious that appears at the edge when we repro-
duce a square wave using a sine wave in the Fourier series expansion. A sophisticated
method of Faraday tomography is required to make sure that we obtain the FDF which
accurately reproduces the shape of the histogram.

We find that the beam-averaged RM of the DING deviates from RMpeak, Faraday
depth at the peak of the FDF. The reason why the peak of the FDF stands at a
non-average RM position within the beam is that the region through which polarized
emission passes contains many 0 rad/m2 regions. The discrepancy is, however, not
surprised because the mean value and the mode value of the distribution are not always
the same for a statistical distribution like the histogram. In the future, we need to
perform Faraday RM synthesis for millions of sources obtained from large surveys. A
choice of RMpeak as the RM toward the source is reasonable because that is easy to
obtain from a simple Faraday RM synthesis (and RM CLEAN as an option). But it is
not reasonable to refer RMpeak for the study of magnetic fields of DINGs because RMpeak

(the mode value) can be far from the average RM (the mean value, i.e. the first moment
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of the FDF) which is a more representative value for the study of DING’s magnetic
fields. Another problem relating to the RM catalog is that we can obtain multiple
FDF peaks (Figure 2.5) depending on the filling factor, although we consider a single
background source. The split of a single source into multiple sources by a DING impacts
on the studies of, for example, modeling of the foreground Milky Way RM map, study
of the luminosity distribution function, and exploration of the intergalactic magnetic
field (IGMF). Examining the profile of the polarization fraction as well as referring to
optical absorption lines are promising ways to identify the existence of DINGs along
the line of sight.

2.4.4 Redshift dependence of σRM

The standard deviation of DING’s RM, σRM, depends on the redshift (Section 2.3.3).
But the dependence, k ∼ 3 for σRM ∝ (1 + z)−k, deviates from the expectation of k ∼ 2
based on the wavelength-squared dependence of the RM. We claim that this steeper
redshift dependence relates to the change of the physical size of the beam, i.e. the
filling factor of the DING in the beam. To understand the effect of the filling factor
more clearly, we again perform the control runs in which we fix the physical size of the
beam. Since the filling factor significantly depends on the inclination angle of the DING,
we separately show the results of the Monte-Carlo simulations for different inclination
angles. The results are shown in Figure 2.10. As expected, we obtain k ∼ 2.1 and
k ∼ 2.0, for i = 30◦ and i = 60◦, respectively, both in good agreement with k ∼ 2
based on the wavelength-squared dependence. Meanwhile, for i = 90◦with a small
filling factor, we find that the result does not follow the expected dependence; σRM

of ∼ 80 rad/m2quickly decreases as the redshift increases and then it reaches about 0
rad/m2at z ≳ 0.3.

Let σRMsum be the sum of the standard deviations for the three inclination angles,
σRM30, σRM60, and σRM90, respectively,

σRMsum =
√
σ2
RM90 + σ2

RM60 + σ2
RM30, (2.10)

we obtain Figure 2.11 and k ∼ 2.9, which is closer to k ∼ 2.7 of our Monte-Carlo
simulations. This simple test suggests that the deviation from k ∼ 2 is caused mainly
by the quick drop of σRM90 in redshift. This drop is caused by an enlarge of the physical
beam size and a quick decrease of the filling factor for the case of the edge-on. Note that
we consider 700 -1800 MHz to determine RMpeak. Even if we consider wider frequency
coverage such as 120 -1800 MHz, the result does not significantly change.

Understanding the above statistical property of the DING’s contribution to observed
RM is crucial to exploring the IGMF. Recent works adopt the idea to see the RM gap
between extragalactic polarized sources located at different redshifts [105] and reduce
foreground contributions by comparing random and physical pair-sources [87, 88]. Here,
for random pair-sources, the sources at a higher redshift have more chance to be in-
tervened by DINGs as well as more contribution from the IGMF. It would be difficult
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Figure 2.10: Same as the control run in Figure 2.6 but separately shows the results of
a different inclination angle, the circles for i = 30◦, the triangles for i = 60◦, and the
stars for i = 90◦. The solid and dashed lines indicate the best-fit power laws for i = 30◦

and 60◦, respectively.
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Figure 2.11: Same as the control run in Figure 2.6 but the sum of only the cases for
i = 30◦, 60◦, and 90◦. The solid line indicates the best-fit power laws.
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to distinguish these contributions from RM data only, remaining a large uncertainty
of the estimation of the IGMF. This contamination is also a major problem when we
probe the IGMF from the relationship between the RM and redshift of extragalactic
sources ([85], [86], [106]). Our results suggest that to reduce this uncertainty, we should
either focus on polarized sources found at low frequencies and/or select sources that do
not show strong depolarization features. In both cases, it is expected no strong DING
along the line of sight. Consequently, we obtain a limited number of available sources
so far, but future large surveys of RM would deliver a sufficient number of the sources
to detect the excess RM caused by the IGMF (see [107]).

2.5 Conclusion

In order to clarify the contribution of intervening galaxies to the observed polarization
properties, we simulated the depolarizing intervening galaxy (DING) along the line of
sight when observing a uniform background source. We find that the degree of depo-
larization depends on the inclination angle and the impact parameter of the DING. We
found that the larger the standard deviation, the more likely it is that depolarization
will occur. The shape of the Faraday dispersion function (FDF) obtained from RM
CLEAN represents the shape of the histogram of RM within the beam and the multi
components are clearly visible in the FDF. The appearance of the multi components
depends on the model of the DING, but the fraction of the DING that covers the back-
ground emission (the filling factor) and the RM structure within the beam are essential.
Faraday tomography indicated that the peak Faraday depth of the FDF is different from
the beam-averaged RM and the observed RM with the classical style of the DING. We
performed Monte-Carlo simulations to understand statistics of polarization properties.
The simulations suggest that the standard deviation of observed RMs for the DINGs
follows σRM ∝ 1/(1 + z)k with k ∼ 2.7.

Finally, the SKA and SKA Precursor/Pathfinder will probe a large number of ex-
tragalactic polarized sources that can be depolarized by DINGs discussed in this paper.
Although we did not consider observational specifications in detail such as angular reso-
lution and frequency coverage, our simulations indicate that the specifications are very
important to accurately evaluate the impact of DINGs on these observations. Such
work should be achieved along with the development of survey strategies in the future.
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Chapter 3

Polarization Analysis of
Gravitational Lens Galaxies for
Future Polarization Surveys

3.1 Introduction

We should know when a galaxy has a coherent magnetic field and how much the strength
of it is. Strong gravitational lensing galaxies have been focused on for their importance
in magnetic field observations of distant galaxies. Polarization of the background source
passes through different parts of the gravitational lensing galaxy and experiences dif-
ferent Faraday rotations. Since the paths are the same except for the region passing
through the gravitational lensing galaxy, it can be assumed that the Faraday effect
of the background source and the foreground of the Milky Way are negligible for the
galaxy. Therefore, the Faraday rotation of each path represents information about the
large-scale and small-scale magnetic fields of the gravitational lensing galaxy.

Greenfield et al. (1985)[108] studied radio polarization from two gravitational lens-
ing images of quasar 0957 +561 at multiple wavelengths and found that the RMs of
the two paths differ by 100 rad/m2. However, this study did not discuss magnetic
field information in detail due to frequency bandwidth and channel number issues.
Approximately 30 years later, Mao et al.(2017)[1] performed broadband polarization
observations of the gravitational lensing galaxy CLASS B1152+199. They used Fara-
day tomography to obtain Faraday spectra of the lensing images and found that the
RMs of the two paths differ by 500rad/m2. Using this technique, they detected a coher-
ent magnetic field with a magnitude of about µG at z = 0.439. More recently, Geach et
al. (2023)[109] focused on a lensed galaxy and detected linearly polarized thermal radi-
ation from dust in a strongly gravitationally lensed galaxy (z = 2.6). It was suggested
that the dust has a coherent magnetic field of 5 kpc with an intensity of less than about
500 µG parallel to the molecular gas disk. As described above, the method using strong
gravitational lensing is very useful for observing the magnetic field of distant galaxies.
However, the separation of gravitational lensing images is typically less than 1 arcsec-
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ond, which makes spatial resolution difficult with existing radio interferometers. In
other words, the development of magnetic field observations of distant galaxies should
be advanced if we can use the same gravitational lensing RM differencing technique,
even if it is spatially unresolved in radio observations. As we show in chapter 3, we
can use Faraday tomography to determine the RM structure in the beam as multiple
peaks [110]. Therefore, we focused on the possibility of using this feature to extract
the RM structure of lensing galaxies from the unresolved spectrum. We will investigate
whether this feature can be used to extract the RM structure of lensing galaxies from
the unresolved spectra.

In the Square Kilometer Array (SKA) era, it is expected to find 105 polarization
sources subject to gravitational lensing effects [70]. All-sky polarization surveys using
the SKA predecessor have now begun. Thus, it is an excellent opportunity to observe
the magnetic fields of distant galaxies. This method should be established because
many polarization sources affected by gravitational lensing effects will be found in the
next few years.

In this chapter, we investigate whether it is possible to retrieve the RM structure of
lensing galaxies when the background polarization sources are subject to gravitational
lensing effects and are spatially unresolved. In Section 3.2 we discuss the model and
calculations, and in Section 3.3 we show the results of estimating the RM structure
using QU-fitting with and without the requirement of the same polarization angle. We
also will investigate what paths the method can be applied to. We show the statistical
trends. In Section 3.4, we discuss whether the multiple peaks in the Faraday spectrum
can be distinguished from background sources. We also discuss the extent to which
QU-fitting can be applied when the gravitational potential is changed. Finally, we
summarize this work in Section 3.5.

3.2 Calculation

We use a similar observation simulation method as described in Omae et al. (2023)
[110], with the exception of our consideration of background emission passing through
two lines of sight (LOS). The Stokes parameters, polarized angle, and RM are calculated
by 

RMk = 0.81
(

ne

cm−3

) (B∥
µG

)(
∆l
pc

)
RM =

∑N
k=1 RMk

χ = χ0 + RMλ2

Q = Q0 cosχ− U0 sinχ
U = Q0 sinχ+ U0 cosχ,

(3.1)

where RMk is RM within the k-th grid along a certain line of sight, ne is thermal
electron density within the k-th grid, B∥ is the component of the magnetic field that
is parallel to the line of sight within the k-th grid, ∆l = 100 pc is the line element.
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We integrate the RM and the polarized angle, χ, along the z-axis and project the
cumulative values onto the x-y plane. We sum up Q (or U) values for the projected
grids that the background emission passes through and obtain the observed Q (or U)
within that region. In this chapter, we consider two lines of sight at the lens. After
calculating each path using Equation 3.2, we add them together to obtain the observed
quantity.

We perform Monte Carlo simulations and investigate the statistical feature. We
set the positions of background sources as the free parameters of Monte-Carlo simu-
lations. We use the background source as a point source of quasars and supernovae
to calculate the light path. As we calculate the light path through the intervining
galaxy, we adopt the lens model software PyAutoLens (AutoLens) [111, 112, 113]. We
use PyAutoLens′s ′PositionSolver′ for this purpose. This study assumes a strong gravi-
tational lens with two separate images. We choose only two of these solutions through
the path. We consider the point source as the background source and the mass model of
the lensing galaxy is the point source. The Einstein radius is 1”. Figure 3.1 shows the
positions of two split images. We calculate the RM within the beam and polarization
data, then adopt QU-fitting, and estimate RM structures.

3.2.1 Fitting models

We considered the following two Faraday screen models for QU-fitting. These models
are based on the external Faraday screen mode [114]. This model consists of isotropic
turbulent magnetic fields within the beam and the gradient of RM within the beam.
The external Faraday screen model was written by

P (λ2) = A exp
(
2i(RM0λ

2 + χ0) − 2σ2
RMλ

4
)sin ∆RMλ2

∆RMλ2
, (3.2)

where P = q + ju, q = Q/I, u = U/I, A is amplitude of FDF, RM0 is RM of intrinsic
background source, σRM is the standard deviation of RM within a beam and ∆RM
is the variation in RM across the beam. Since the Stokes parameters Q and U are
proportional to frequency, we need to divide each polarization Stokes parameter by the
radiation intensity, I, to remove this effect.

The first model is the external screen model as above [48], and we will refer to
this model as m1 for ease of reference. The second model is a model that reduces
uncertainties in the initial polarization angle. This model has imposed a requirement,
which is the initial polarization angles are the same. In the case of gravitational lensing
systems, both polarization sources visible in the image are the same background source,
so the polarization angles are the same. This is why we can reduce parameters by
imposing this requirement. We call this model m2 hereafter. Even if there are multiple
screens, i.e., multiple parameters, χ0 is treated as a common parameter.

The χ2 test is used to see the accuracy of the fitting, where χ2 is written by

Σ (observed−expected)2

expected
.
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Figure 3.1: The positions of two split images overlap RM map and the Einstein radius
of the mass model of the lensing galaxy is 1”. The black circle is the position through
which the background emission passes.
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Table 3.1: parameters

RM1 σRM1 RM2 σRM2

(rad/m2) (rad/m2) (rad/m2) (rad/m2))

-24.4 5.72 13.8 4.76

3.2.2 Mock data for fitting

This study aims to investigate whether we can separate spatially resolved emissions
affected by gravitational lensing using QU fitting. To achieve this goal, we will generate
mock data for analysis. We consider 2 types of mock data. First, we consider the
simplest case where no sign conversion of RM occurs along each path. Second, we
consider the case of the existence of RM structure within the beam (complex case).
One path has no sign of conversion of RM, the same as the simple case, and the other
path has a sign of conversion of RM. Figure 3.2 and 3.4 show the RM map of the galaxy,
where the big black circle indicates the observed beam and the small circles indicate
the region that emission passes through. The small circles of Figure 3.2 and 3.4 show
simple case and complex case, respectively Figure 3.3 and 3.5 show RM distribution
in the beam of the simple case and complex case, respectively. We observe strokes
parameter I, Q, U that are the sum of small circles in figure 3.2 (and figure 3.4).
Table 3.1 contains the mean and standard deviation of this distribution.

3.3 Results

We investigate whether the RM structure of lensing galaxies can be extracted from the
QU spectra. We show the results of estimating the RM structure using QU-fitting with
(m1) and without (m2) the requirement of the same polarization angle. At first, the
simple case where no sign conversion of RM occurs along each path (case 1). Next, we
consider the case of the existence of RM structure within the beam (complex case, case
2). In each case, the two fitting models described in section 3.2.1 are used. In section
3.3.3,

we will calculate various paths and consider what paths this method can be applied
to when passing through them. We will examine the extent to which the method can
be applied to this statistical result with (m1) and without (m2) the same polarization
angle requirement. As in Section 3.2, we select only those that result in two lens images.
We consider each path to have an RM screen and fit it with a two-screen model which
means we apply Equation 3.2 to each path. Due to the computational cost of fitting,
we apply the two-screen model, but it is important as a first attempt because we fit the
two-screen model first when applying it to actual observations.
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Figure 3.2: RM map of the galaxy, where the big black circle indicates the observed
beam and the small circles indicate the region that emission passes through in case of
simple case.
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Figure 3.3: RM distribution in the beam of the simple case.
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Figure 3.4: RM map of the galaxy, where the big black circle indicates the observed
beam and the small circles indicate the region that emission passes through in case of
complex case.
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Figure 3.5: RM distribution in the beam of the complex case
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Table 3.2: Best fit parameters in the case1

RM1 σRM1 RM2 σRM2 χ1 χ2

(rad/m2) (rad/m2) (rad/m2) (rad/m2) (rad) (rad)

-24.70 5.495 13.70 3.331 0.017 0.012
-24.65 5.600 13.68 3.341 0.014 —

3.3.1 Simple case, case1

We consider each path to have an RM screen and fit it with a two-screen model which
means we apply Equation 3.2 to each path. In the case of the m2 model, we apply
Equation 3.2 to each path but χ0 is the same. The table shows the best-fit parameters
of both cases. Both models can explain the mock data of the simple case comparing
parameters. Figure 3.6 shows the observed QU spectrum and fitted one with the m1
model. As you can see in figure 3.6, fitting data is adapted to observed data well.
Figure 3.7 shows the observed QU spectrum and fitted one with the m2 model. The
values of RM1, σRM1 , and χ0 are almost the same in the two models and the accuracy is
similar. In both cases m1 and m2, we can say that using QU fitting (model fitting), we
can obtain the mean and variance of the RM generated in each path, even if they are
spatially unresolved. In other words, if there is no RM reversal (magnetic field reversal)
in each path, as in case 1, this method can prove the existence of a global magnetic
field structure. Furthermore, if we assume an electron number density model as in Mao
et al. (2017)[1], we can also estimate the magnetic field strength.

3.3.2 Complex case, case2

We fit the m1 and m2 to the data like the simple case. The table shows the best-fit
parameters of both cases. We consider each pathway to have an RM screen and fit it
with a multi-screen model. Four-screen model is better in both cases. Figure 3.8 shows
the observed QU spectrum and fitted one with the m1 model. As you can see in figure
3.8, fitting data is adapted to observed data well. Figure 3.9 shows the observed QU
spectrum and fitted one with the m2 model. The fitted values are then shown in the
table 3.3. In the case of m1, we can see physically strange values in the parameters. For
example, in the case of m1, one of the best values is RM0 = 4984, which is a strange
value. In addition, the polarization angle is not zero and does not match the mock
data. In contrast, in the case of m2, the polarization angle is zero and matches the
mock data. Looking at the RM0 value, it is almost identical to the RM that peaks in
Figure 3.5.

Using m2, we find that QU-fitting can be used to estimate the spatially unresolved
RM structure, even in complex cases such as case 2. In this calculation, we know from
the mock data that one path corresponds to one screen and the other to three screens,
but it should be noted that we do not know which path each parameter corresponds
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Figure 3.6: The observed QU spectrum and fitted one with the m1 model. Blue:
observed data, orange: fitting data using 2 screen model.
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Figure 3.7: The observed QU spectrum and fitted one with the m2 model. Blue:
observed data, orange: fitting data using 2 screen model.
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Figure 3.8: The observed QU spectrum and fitted one with the m1 model. Blue:
observed data, orange: fitting data using 4 screen model.
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Figure 3.9: The observed QU spectrum and fitted one with the m2 model. Blue:
observed data, orange: fitting data using 4 screen model.
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to in the actual observation. However, we do know that there is an RM difference for
each path, so we know that there is a global magnetic field structure. In other words, if
such a fitting is successful for a high-redshift gravitationally lensing galaxy, it suggests
the existence of a coherent magnetic field from that redshift galaxy.

3.3.3 Statistical results

The position of the split into two images was fitted with the two-screen models m1
and m2, respectively. To check if the fitting is successful, we examine χ2 < 10 and
|ϕ−RM| < 3 with initial polarization angles less than 1 degree, where ϕ is the Faraday
depth. The upper row of Figure 3.10 is the result for m1 and the lower row is the result
for m2. The left side is the one that satisfies the above conditions, and the right side
is the one that does not. In the case of the m1, 8 satisfy the condition, or about 10
percent and 76 do not satisfy the condition, or about 90 percent. In the case of m2,
37 satisfy the condition, or about 44 percent and 47 do not, or about 56 percent. The
case of m2 is better than that of m1. We will focus on the cases where the fitting is
successful and the cases where it is not. If we focus on the areas that did not go well
from Fig. 3.3.2, we can see that the RM inversion (reversal of the magnetic field) is
concentrated in certain areas. This is an area that must be fitted with a multiscreen,
as can be seen in Section 3.3.2, case2. We can also see that cases like case1 in Section
3.3.1 tend to work well. However, it is important to note that m2 is more accurate than
m1, even in cases like case1. To see where this difference comes from, consider the case
where the accuracy of the polarization angle is not evaluated for m1. Then, we check
m1 with χ2 < 10 and |ϕ − RM| < 3. There are 49 percent that satisfy these. This is
close to the percentage (44 percent) for which m2 satisfies χ2 < 10 and |ϕ − RM| < 3
and the condition that the polarization angle is less than 1 degree. Thus, this result
shows that the accuracy of the polarization angle is not particularly good for m1.
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Figure 3.10: The upper row is the result for m1 and the lower row is the result for m2
in the case of the Einstein radius of the mass model of the lensing galaxy is 1”. The
left side is the one that satisfies the above conditions, and the right side is the one that
does not.
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Table 3.4: Best fit parameters in the case that the background source has two RM
components

RM σRM χ0

(rad/m2) (rad/m2) (rad)

-23.76 5.83 0.00
26.24 5.812 0.6998

3.4 Discussion

In the section 3.3, when two peaks appear on the FDF, it is not possible to distinguish
whether the source has two RM components or whether a source with one RM element
is split into two by the lens. We will discuss whether they can be distinguished using
the method in this chapter. We investigate whether it is possible to distinguish between
background sources and galaxies when sources with different intrinsic polarization an-
gles and different RMs pass through the same region (one region).

We also discuss the extent to which QU-fitting can be applied when the gravitational
potential is changed.

3.4.1 Differences in initial polarization angles and RM

The background source has two RM components, (RM0, χ0(rad)) = (0, 0), (50, 0.698).
Suppose background source passes through a region with RM = −23.72, σRM = 5.965
(Figure 3.11). When background source with (RM0, χ0[rad]) = (0, 0), (50, 0.698) passes
through the region, we get Q1 and U1, Q2 and U2, respectively. We sum up Q1
and Q2 (U2 and U2) values for the projected grids that the background emission
passes through and obtain the observed Qsum and Usum. Figure 3.12 shows each QU
spectrum. We discuss whether we can distinguish between two background sources,
each with different polarization angles and RMs. If the background radiation passes
through the foreground region with RM = −23.72, σRM = 5.965, then we should get
(RM0, σRM, χ0[rad]) = (−23.72, 5.965, 0), (26.28, 5.965, 0.698) from the QU spectrum.
We fit the m1 to the data. The table 3.4 shows the best-fit parameters. As can be
seen from the table, QU fitting can be used to distinguish between background sources
with two RM elements when they pass through the same area with RM distribution
(one area). If two RM components in the FDF have different polarization angles of the
background source, the RM components can be distinguished as originating from the
background source.

3.4.2 Identification of well-fitting paths

Referring to section 3.3.3, the most successful cases are those in which no magnetic field
reversal occurs in the field of view, while the least successful cases are those in which
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Figure 3.11: RM distribution in the region which background source passes through.
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magnetic field reversal occurs. This is because, as shown in Section 3.3.2, when there
is a magnetic field inversion, fitting must be performed on multiple screens. It is clear
that this does not work well when the foreground is complex. Thus, if the two-screen
model does not fit well, multiple screens are needed.

We consider Einstein radius to be larger than in the case of section 3.3.3. When
Einstein radius is larger, there are cases that the paths do not pass through the magnetic
field reversal region. Fig 3.13 shows the result for m1 and the lower row is the result
for m2 with Einstein radius at 1.5”. The left side is the one that satisfies the above
conditions, and the right side is the one that does not. In the case of the m1, 7 satisfy
the condition, or about 7 percent and 98 do not satisfy the condition, or about 93
percent. In the case of m2, 53 satisfy the condition, or about 50 percent and 51 do
not, or about 49 percent. As in Section 3.3.3, the case of m2 is better than that of
m1. Focusing on the areas that fit well shows that many of them have no RM reversal
(magnetic field reversal). In contrast, focusing on where things are not going well is
when the RM passes through an area that is inverted as in Section 3.3.3. However,
there are other cases where things are not going well. This is the case if there are two
paths through the region causing the same degree of RM. The polarization rotates the
same amount on each path, so they are indistinguishable. We note that the pathway is
potential-dependent.

Based on these, if the two-screen model fits well, then the two paths have different
RMs. In other words, the galaxy has coherent magnetic field structure.

3.5 Conclusion

We focused on using strong gravitational lensing to observe distant galaxies. In the next
few years, we expect to find many polarization sources affected by gravitational lensing.
However, current radio interferometers can’t resolve gravitational lensed images.

We investigated whether it is possible to extract the RM structure of spatially un-
resolved lensing galaxies from Faraday spectra. Even if the background polarization
source is not resolved, the Faraday depth difference appears when using Faraday to-
mography. Using QU-fitting (model fitting), get the mean and variance of the RMs
experienced by each path, even if they were spatially unresolved. In the case of gravi-
tational lensing objects, we can require that the polarization angle of the background
polarization source is the same. We can reduce one parameter. In the case of the
existence of RM structure within the beam (complex case), using the model that has
multi-components of RM, we compared the observed spectrum with the model spec-
trum. In the case of imposing this requirement, we found the model which has multi-
components of RM is the best fitting model. The polarization angle of the background
polarization source is the same as the given angle and we resolve uncertainty about the
polarization angle. We could separate complex RM structures of unsolved sources. We
calculated many paths and examined what paths the method could be applied to when
they passed through. We considered only those that resulted in two lens images being

63



10 0 10

10

0

10

40

20

0

20

40

R
M

 [r
ad

/m
2 ]

10 0 10

10

0

10

40

20

0

20

40

R
M

 [r
ad

/m
2 ]

10 0 10

10

0

10

40

20

0

20

40

R
M

 [r
ad

/m
2 ]

10 0 10

10

0

10

40

20

0

20

40

R
M

 [r
ad

/m
2 ]

Figure 3.13: The upper row is the result for m1 and the lower row is the result for m2
in the case of the Einstein radius of the mass model of the lensing galaxy is 1.5”. The
left side is the one that satisfies the above conditions, and the right side is the one that
does not.

selected, and two screens were adapted as the screen model. The results showed that
the method can be successfully applied when the polarization passes through each path
where there is no RM reversal and that it is difficult when there are RM reversals. It
was also found that the model works better when conditions regarding the polarization
angle are imposed. The other case where it could not be applied was when the two
paths experienced the same Faraday rotation.

We show that the RM structure can be extracted even in the spatially unresolved
case for the first time in the world. It is possible to prove the existence of a coherent
magnetic field structure.
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Chapter 4

Discussion

4.1 Estimation of the galactic magnetic field

From model fitting to a Faraday spectrum, we can estimate the Faraday depth (RM),
the variance of the Faraday spectrum (σRM), and third and fourth order moment quanti-
ties such as skewness and kurtosis of the spectrum (∆RM). The following is an example
of the estimation of the spectra. In this study, σRM corresponds to the variance of the
RM in the beam, and ∆RM is the gradient of the global RM in the beam.

The strength of the global and turbulent magnetic fields can be estimated from
σRM assuming the magnetic field model and electron number density. Assuming that
the turbulent magnetic field is uniformly isotropic turbulence, using the random walk
approach, the variance of the RM in the beam is equal to the variance of the RM in one
path if it is a random walk. The σRM can be written as σRM = 0.821Br∥neN

1/2 [31],

where Br∥ =
√

1/3Br for the intensity of the isotropic turbulent field [µG], ne is the
electron density [cm−3] in cells of size d [pc], N = Lf/d is the number of cells along line
of sight L [pc] with volume filling factor f and It is. Let ⟨ne⟩ = ne/f be the average
electron number density

σRM = 0.821Br⟨ne⟩
√
Ld/f (4.1)

is obtained. Since the model used in this study is a uniformly isotropic turbulent field,
and the electron number density is dependent only on the height direction, σRM should
be constant for any path. However, the model σRMs (table 3.1) are different. This is
because there is a global RM structure (∆RM) in the beam, so σRM is different. It is
possible that the ∆RM behaves as an anisotropic turbulence in the beam. In previous
studies, it has been found that the global magnetic field component is involved in the
skewness and kurtosis of the Faraday spectrum. It is important to investigate the
relationship between ∆RM, skewness and kurtosis in the future.
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Figure 4.1: Modified distribution of inclination angle of galaxies given by Equation 4.2

4.2 Detection probability of inclination angles

As we discussed the validity of the uniform distribution of galaxy inclination angles in
chapter 2, we should consider the dependence of the detection probability for inclination
angles. Since face-on galaxies have a relatively large projected area in the sky, the
probability of overlapping a quasar behind them is higher than for heavily inclined
galaxies. We test how the RMs vary for a different assumption of the distribution of
inclination angles. We model the distribution of inclination angles [115] as in

f(i) =
6

imaxΓ(1/6)
exp

{
−(i/imax)

6
}
. (4.2)

Figure 4.1 shows a modified distribution of inclination angles for imax = 90◦ so that
galaxies with lower inclination are given priority.

The observed RM is always 1/(1 + z)2 times the intrinsic value because RM is
proportional to the square of the wavelengt. According to the Monte Carlo simulations
in chapter 2, the DING contribution to the standard deviation of the observed RM is
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Figure 4.2: Standard deviation of RMpeak, σRM, as a function of the redshift, z. The
circles and triangles, respectively, show the results of our fiducial runs and our control
runs for which we weighted by inclination angles. The solid and dashed lines are the best
least-square fit, assuming the power-law, for our fiducial and control runs, respectively.

σRM ∝ 1/(1 + z)k and k ∼ 2.7, which is steeper. The reason for the large value of k is
caused by the increase in physical beam size and the rapid decrease in filling factor in
the edge-on case. The best fit (dashed line) in Figure 4.2 shows the results weighted
by inclination angles. The values are A ∼ 54 and k ∼ 1.9, which is consistent with
the 1/(1 + z)2 dependency. Therefore, it can be suggested that a polarization source
passing through an intervening galaxy is more likely to observe an RM experienced by
the intervening galaxy.

The probability that the observed RM has a value (i.e., passes through the inter-
vening galaxy) is about 78% when the inclination angle is 30◦, about 53% when the
angle is 60◦, and about 14% when the angle is 90◦. Furthermore, if the distribution of
inclination angles (Equation 4.2) is also considered, it is about 58%. The size of the
galaxy in this paper is about 10 kpc radius. This means that by restricting the impact
parameter to 10 kpc in actual observations, the RM of the intervening galaxy can be
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observed with a probability of about 58%. This is also true for gravity lenses.
Next, consider the effect of the error of the inclination angle on the RM estimation.

If the magnetic field is a ring field, the line-of-sight magnetic field is given by

B∥ = −B0 cos θ sin i (4.3)

where θ is the azimuthal angle and i is the iclination angle. We also assume that the
electron number density is in a disk of uniform thickness, hion. For a line of sight at an
inclination angle i with respect to the sky plane, the optical path length through the
disk is L = hion/ cos i. From this, RM can be written in

RM = −0.81B0n0hion tan i. (4.4)

Considering the error δ in the inclination angle, the line-of-sight direction RM can be
written as

RM = −0.81B0n0hion tan (i+ δ). (4.5)

From this, the impact of the error δ of the inclination angle on the estimated RM
increases as i increases, but the probability of a large inclination angle is decreased
shown in Equation 4.2. Thus, it is unlikely that our approximation has a large impact
on the results.

4.3 Future observation of galactic magnetic fields

This thesis focuses on one of the open questions regarding the galactic magnetic field:
the cosmological evolution of the galactic magnetic field. It is expected that the small-
scale magnetic field is genarated quickly by turbulence [71], while the global magnetic
field is constructed over a long time (about the rotational period of a disk) [72]. Ac-
cording to numerical experiments [73], if a kpc-scale magnetic field of µG intensity is
generated in a galactic disk at z = 2, it will take up to z = 0.5 for it to grow into a
galaxy-scale aligned magnetic field.

During that time, especially from redshift z = 2 to the present, when star formation
has been active, the effects of star formation will also be important. Direct observation
of magnetic fields at the distant galaxy over z ∼ 2 give us the evidence how magnetic
fields affect the cosmological evolution, and upcoming SKA with high sensitivity and
wide field-of-view, will provide us that information. In this study, we reported the ob-
servation of distant galactic magnetic fields by using two methods. One is to investigate
whether the magnetic field information can be extracted from the effects of intervening
galaxies when observing distant polarization sources, and the other is to investigate
whether the RM structure of lensing galaxies can be extracted when polarization waves
are observed due to gravitational lensing effects. The results show that it is possible to
extract the magnetic field information even when direct observation of the galaxies is
not possible.
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However, the present study does not include redshift dependence in the magnetic
field model and does not show how the observed results are obtained until the magnetic
field grows into a galaxy-scale aligned magnetic field. Future studies are needed to in-
vestigate how the magnetic field model behaves with redshift dependence (evolutionary
model). We also believe that this study can be applied to elliptical galaxies. For exam-
ple, if we can observe elliptical galaxies that may still have the initial dynamo magnetic
field as a gravitational lensing object, and if the RM varies with position, it means that
there is a small amount of global magnetic field, and we can provide feedback to the
turbulent dynamo theory. Shah & Seta (2021 )[116] examined the possibility of detect-
ing RMs in elliptical galaxies using background sources. They summarized that σRM

is 4 − 30 [rad/m2] and observable in POSSUM when the intensity of the background
source is 14.7 - 440 µJy and the polarization ratio is 75%.

4.4 Impact on other fields

This study has great significance for the theory of galaxy magnetic field evolution. This
study is expected to obtain global magnetic field strength and turbulent magnetic field
strength of distant galaxies, which will provide new constraints on the theory of the
evolution of the galactic magnetic field. In addition, if elliptical galaxies, which may still
have the initial dynamo magnetic field, can be observed as gravitational lensing sources,
feedback can be provided to turbulent dynamo theories. If the polarized radiation of
background sources passes through the CGM region due to the gravitational lensing
effect, individual CGM magnetic fields can be obtained; although the observation of
CGM magnetic fields has been limited to a limited extent, new knowledge will be
obtained through this study. Combining the obtained CGM magnetic field distribution
(spread and bias) with visible light observations of the outflow of metallic elements into
intergalactic space will provide new insights into the chemical evolution of intergalactic
material in terms of the transport of metallic elements produced in the galactic interior.
Observations on cosmological magnetic field evolution have been made to measure the
magnetic field from the polarization properties of high-redshift sources (e.g., [117]).
However, it has been reported that the presence of an intervening galaxy in the line of
sight of the polarization source can affect the observation results (e.g., [118]). Therefore,
this study can provide magnetic field information and models to remove the influence of
intervening galaxies, which should be useful for understanding cosmological magnetic
field evolution.
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Chapter 5

Summary

This thesis focuses on one of the unsolved problems regarding the galactic magnetic
field: the cosmological evolution of the galactic magnetic field. To solve this problem, it
is necessary to observe the magnetic fields of distant galaxies. We investigated whether
the magnetic field information can be extracted from the effects of intervening galaxies
when observing distant polarization sources.

First, in order to determine the contribution of intervening galaxies to the observed
results, we investigated the effect of intervening galaxies on the observed polarization
when they are in the line of sight. The main results are summarized below.

• Depolarization by the intervening galaxies strongly depends on the inclination an-
gle of the intervening galaxies, and the more edge-on the galaxies are, the larger
the RM and the stronger the depolarization is. On the other hand, when the
proportion of intervening galaxies in the beam becomes smaller, the proportion
of the region where the polarization of the intervening galaxies and the back-
ground source do not overlap increases, resulting in a smaller RM and weaker
depolarization.

• The Faraday spectra represent the RM structure in the beam region, and the
information in the beam can be extracted, showing the possibility of detecting
magnetic fields that cannot be extracted by conventional methods.

• We found that the number of spectral peaks increases with the presence of an
intervening galaxy in the line of sight when observing a polarized source.

• Monte Carlo simulations with the parameters of the inclination angle and the
central position of the beam showed a redshift dependence in the standard devi-
ation of the observed RM. The dependence depends on the redshift dependence
of wavelength and the inclination angle.

Next, we turned our attention to a method that uses strong gravitational lensing
as an observation of intervening galaxies. In this method, since the background po-
larization sources that are subject to the gravitational lensing effect are the same, the
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effect of the background polarization sources can be ignored, and the focus can be on
the magnetic field of the galaxy itself. However, recent radio interferometers cannot
spatially resolve objects subjected to gravitational lensing effects. Therefore, we in-
vestigated whether it is possible to extract the RM structure of spatially unresolved
lensing galaxies from Faraday spectra. The main results are summarized below.

• Even if the background polarization source is not resolved, the Faraday depth
difference appears when using Faraday tomography.

• Using QU-fitting (model fitting), get the mean and variance of the RMs experi-
enced by each path, even if they were not spatially resolved.

• In the case of the existence of RM structure within the beam (complex case),
using the model that has multi-components of RM, we compared the observed
spectrum with the model spectrum. In the case of gravitational lensing objects,
we can require that the polarization angle of the background polarization source is
the same. We can reduce one parameter. In the case of imposing this requirement,
we found the model which has multi-components of RM is the best fitting model.
The polarization angle of the background polarization source is the same as the
given angle and we resolve uncertainty about the polarization angle. We could
separate complex RM structures of unsolved sources.

In order to clarify the contribution of intervening galaxies to the observed results,
we investigated the effect of intervening galaxies on the observed polarization when
they are in the line of sight. We found that the RM structure in the beam is reflected
in the FDF. This allows us to examine the existence of a global magnetic field in the
galaxy by the FDF. We were the first in the world to show that the RM structure can be
extracted even in the spatially unresolved case by a method using gravitational lensing.
In other words, it is possible to prove the existence of a global magnetic field structure.
Since these methods are observable even at a distance, we can observe when and how
large the global magnetic field exists in a galaxy. The galactic magnetic field model
used in this thesis does not apply redshift dependence (evolution). Future simulations
that apply these dependence will allow us to investigate in detail which redshifts can
be observed.
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Appendix A

Appendix

A.1 Polarization observation Stokes parameter

Radio waves from celestial objects are represented as a superposition of electromagnetic
waves with various phases and intensities. Electromagnetic waves in which the oscil-
lation direction of the electric field is biased in a certain direction are called polarized
waves. Polarization is an important element in magnetic field observation because it
allows us to determine the direction of the cosmic magnetic field. Here, we explain the
basic properties of polarized waves and the Stokes parameter, which is an observable
quantity.

The direction of propagation of a plane wave with a single frequency is the z-axis,
and the x-axis and y-axis are on the plane of vibration. If x and y are the unit vectors
in the x-axis and y-axis directions, respectively, the electric field E of a plane wave can
be expressed as

E = Re
[
(E1e

iδ1x + E2e
iδ2y)ei(ωt−kz)

]
. (A.1)

The x and y components of the electric field E are

Ex = E1 cos (ωt− kz + δ1) (A.2)

Ey = E2 cos (ωt− kz + δ2), (A.3)

where ω is the angular frequency, k is the wave number, and δ1 and δ2 are the phases
of the x and y components. The trajectory of the electric field is (Fig A.1)(

Ex

E1

)2

+

(
Ey

E2

)2

–2
ExEy

E1E2

cos δ = sin δ2, (A.4)

where δ = δ1−δ2. Polarization behaves differently for E1 and E2 and phase difference δ.
For example, when E1 = E2 and δ = π/2, the electric field rotates leftward toward the
direction of the radio wave. This is called left circular polarization. When δ = −π/2,
it rotates rightward and is called right circularly polarized. When either E1 or E2 is
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Figure A.1: Schematic figure of elliptical polarization
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zero or δ = nπ, the electric field oscillates in one direction and is linearly polarized. In
other cases, the wave is elliptically polarized.

For elliptical polarization, let the X-axis be the major axis of the ellipse and the
Y -axis be the minor axis, and the projected component of the electric field E is(

EX

EY

)
=

(
cosχ sinχ
− sinχ cosχ

)(
Ex

Ey

)
, (A.5)

where χ is the angle between the x-axis and the X-axis (0 ≤ χ ≤ π). If the length of
the major axis of the ellipse is 2a and the length of the minor axis is 2b, then

a2 + b2 = E2
1 + E2

2

tan 2χ = tan 2α cos δ

sin 2β = sin 2α sin δ

(A.6)

holds, where tanα = E2/E1(0 ≤ χ ≤ π/2)、tan β = ±b/a.
Since radio wave strength is measured in actual observations, it is very convenient

to express the polarization information in terms of radio wave strength. This value is
called the Stokes parameter. Let us consider the case of perfect polarization and define
the Stokes parameter as follows.

I = E2
1 + E2

2

Q = E2
1–E2

2 = I cos 2β cos 2χ

U = 2E1E2 cos δ = I cos 2β sin 2χ

V = 2E1E2 sin δ = I sin 2β

(A.7)

I is the intensity of the radio wave. The Q shows the dominance of the x-axis component
of linear polarization over the y-axis component. The U shows the dominance of the
linearly polarized wave component in the direction of the axis tilted π/4 from the
x-axis over the linearly polarized wave component in the axis perpendicular to that
axis. Also, V indicates how dominant the right circularly polarized component is over
the left circularly polarized component. Based on the above characteristics, Q and U
are linearly polarized components and V is the circularly polarized component. The
relations

I2 = Q2 + U2 + V 2 (A.8)

χ =
1

2
arctan

(
U

Q

)
(A.9)

are established for these parameters. Hereafter, the χ is called the polarization angle.
Polarized waves in nature are not perfectly polarized and contain unpolarized waves

that randomly vary in amplitude and phase. The electric field of a radio wave containing
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both polarized and unpolarized components can be expressed as

Ex(t) = E1(t) cos [ωt− kz + δ1(t)] (A.10)

Ey(t) = E2(t) cos [ωt− kz + δ2(t)]. (A.11)

If the observation time is long compared to the time-varying scale of amplitude and
phase, what we obtain in actual observation is a time-averaged ⟨E(t)2⟩ = 1

T

∫ T

0
E(t)dt (T ≫

1/ω).
The Stokes parameters are

I = ⟨E1(t)
2⟩ + ⟨E2(t)

2⟩ = IU + IP

Q = ⟨E1(t)
2⟩–⟨E2(t)

2⟩ = IP cos 2χ

U = 2⟨E1(t)E2(t) cos δ(t)⟩ = IP sin 2χ

V = 2⟨E1(t)E2(t) sin δ(t)⟩,

(A.12)

where IU represents the unpolarized component and IP the polarized component. At
this time I2 ≥ Q2 + U2 + V 2 holds. In addition, the polarization factor P is defined as
the value that expresses the degree of polarization as follows.

p =

√
Q2 + U2 + V 2

I
. (A.13)

Since the circular polarization component is very small and negligible in the actually
observed polarization, it is sufficient to consider only the linear polarization component,
and the dgree of polarization can be written as

p =

√
Q2 + U2

I
. (A.14)

When considering only linear polarization, polarization may be described in the
complex plane with Stokes parameters Q and U . The polarization rate on the complex
plane can be expressed as:

pe2iχ =
IP
I
e2iχ =

IP
I

(cos 2χ+ i sin 2χ) =
Q+ iU

I
=
P

I
. (A.15)

The P is called the polarization intensity and P = Q+ iU .

A.2 Synchrotron radiation mechanism

Synchrotron radiation is observed from active objects where high-energy electrons are
present. Synchrotron radiation is electromagnetic radiation produced by the motion of
high-energy electrons in a magnetic field and the bending of their orbits. Synchrotron
radiation is observed in a wide frequency range from radio waves to γ rays. Radio
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waves observed in radio galaxies are synchrotron radiation, and active galaxies emit
synchrotron radiation up to X-rays. Since synchrotron radiation is polarized, it is
important for observing magnetic fields.

First consider the non-relativistic case where the electron has low kinetic energy.
An electron of mass me entering a magnetic field B with velocity v is subjected to the
Lorentz force of

me
dv

dt
= −e

c
v ×B (A.16)

and is in spiral motion around the magnetic field, with radius

rg =
mecv

eB sinψ
, (A.17)

where me is the electron mass, e is the elementary charge, c is the speed of light, and
ψ is the pitch angle of the helix. This radius is called the cyclotron radius. Electrons
emit electromagnetic radiation in order to undergo acceleration. This radiation is called
cyclotron radiation. The frequency at which this occurs is

νg =
v

2πrg
=
eB sinψ

2πmec
. (A.18)

When the electron is in motion at relativistic energy, the effective mass of the
electron can be expressed as meγ using the Lorentz factor γ = (1 − v2/c2)−1/2. The
cyclotron radiation at this time is called synchrotron radiation. Therefore, the cyclotron
frequency in the relativistic case is

νs =
eB sinψ

2πγmec
=

eB⊥

2πγmec
=
νg
γ
, (A.19)

where B⊥ = B sinψ is the magnetic field perpendicular to the line of sight. The
synchrotron radiation is emitted as a sharp beam in the direction tangent to the electron
orbit. The angular width of the beam is about 1/γ. This is called the relativistic
beaming effect.

The observer can only observe the radiation for the short period of time that this
beam passes. Therefore, a periodic pulse of radio waves is observed. Since this period
corresponds to the period of the spiral motion, the reciprocal of the frequency is

τ =
1

νs
=

2πγmec

eB⊥
. (A.20)

The time at which the pulse is observed is

∆t ∼ mec

eB⊥γ2
, (A.21)

considering the spiral motion from the observation of the end of the cone to the obser-
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vation of the opposite end. From the Fourier transform relationship, a pulse wave with
a time width ∆t can be transformed into a decreasing function with a frequency width
of 1/∆t. In radio astronomy, 1/∆t multiplied by 3/4π is used as the critical frequency
νc in synchrotron radiation and is expressed as

νc ≡
3eB⊥γ

2

4πmec
(A.22)

The radiation intensity peaks near the critical frequency. Also, from ω = 2πν, the
critical angular frequency is

ωc ≡
3eB⊥γ

2

2mec
. (A.23)

The frequency distribution of synchrotron radiation intensity from electrons of energy
E = mec

2γ is obtained by Fourier transforming the electric field and is given by

P (ω) =

√
3

2π

e3B⊥

mec2
F

(
ω

ωc

)
, (A.24)

where

F (x) = x

∫ ∞

x

K5/3(η)dη (A.25)

and K is a Bessel function. If we divide this radiation into a vertical component relative
to the magnetic field and a horizontal component, we can express it as

P⊥(ω) =

√
3e3B⊥

4πmec2
[F (x) +G(x)] (A.26)

P∥(ω) =

√
3e3B⊥

4πmec2
[F (x)–G(x)] , (A.27)

where x ≡ ωc/ω. Also,
G(x) = xK2/3(x). (A.28)

In actual observations, it is necessary to consider synchrotron radiation from the
electron population. The energy distribution of high-energy electrons produced by
Fermi acceleration, etc., can usually be approximated (e.g. [43]) by the power function
shown below and expressed as

N(E)dE = C(r)E−sdE or N(γ)dγ = C(r)γ−sdγ (A.29)

N(E) is the number of electrons whose energy is between E −E −E + dE, C(r) is the
number density of electrons at position r, and s is the power exponent of the electron
energy distribution. The frequency spectrum of synchrotron radiation can be integrated
over the entire energy range of electrons for each ν, and if we take care of ωc ∝ γ2, we
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get

Ptot(ω) =

√
3e3B⊥

2πmec2
C(r)

∫
F

(
ω

ωc

)
γ−sdγ ∝ ω− s−1

2

∫
F (x) x

s−3
2 dx (A.30)

. From this, the frequency spectrum of synchrotron radiation when the power exponent
of the electron energy distribution is s is Ptot(ω) ∝ ωalpha ∝ να, where

α =
s− 1

2
(A.31)

and α is called the spectral index.∫ ∞

0

xµF (x)dx =
2µ+1

µ+ 2
Γ

(
µ

2
+

7

3

)
Γ

(
µ

2
+

2

3

)
(A.32)∫ ∞

0

xµG(x)dx = 2µΓ

(
µ

2
+

4

3

)
Γ

(
µ

2
+

2

3

)
(A.33)

holds for F (x) and G(x) using the Γ function. From the above, the frequency distribu-
tion of the synchrotron radiation spectrum per unit solid angle and frequency from the
electron population per unit volume of the radiation source can be expressed as

Ptot(ω) = 2g1(s)j(s)C(r)B
1+s
2

⊥ ω
1−s
2 (A.34)

g1(s) =
1

1 + s
2

1+s
2 Γ

(
s

4
+

19

12

)
Γ

(
s

4
− 1

12

)
(A.35)

j(s) =
1

4π

√
3e3

8πmec2

(
2mec

3e

) 1−s
2

(A.36)

In actual observations, the information in the line-of-sight direction is degenerate, and
the frequency distribution of the synchrotron radiation spectrum obtained is given by

I =

∫
Ptot(ω)dr =

∫
2g1(s)j(s)C(r)B

1+s
2

⊥ ω
1−s
2 dr. (A.37)

The I is called the characteristic Stokes parameter.
Polarization due to synchrotron radiation can be regarded as linear polarization.

From the above discussion, since the polarization wave due to synchrotron radiation
is perpendicular to the magnetic field, the polarization wave P⊥ has the maximum
intensity, and the intensity of the polarization wave Pparallel parallel to the magnetic
field has the minimum intensity. Here, the linear polarization rate can be expressed as

p =
P⊥ − P∥

P⊥ + P∥
(A.38)
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from the discussion of the Stokes parameter. Replacing this equation with the actual
observation, we can express it as

p =

∫
(P⊥ − P∥)dr∫
(P⊥ + P∥)dr

=
Q+ iU

I
(A.39)

The I, Q, and U are the characteristic Stokes parameters. Furthermore, Q+ iU can be
expressed as

Q+ iU =

∫
2g2(s)j(s)C(r)B

1+s
2

⊥ ω
1−s
2 e2iχdr (A.40)

g2(s) = 2
s−3
2 Γ

(
s

4
− 1

12

)
Γ

(
s

4
+

7

12

)
(A.41)

A.3 Faraday rotation

The polarization angle is known to rotate under the influence of magnetized plasma in
the line of sight. This phenomenon is called Faraday rotation. In the following, we will
explain the principle and the method of observing the magnetic field in the line-of-sight
direction using Faraday rotation.

There are many plasma gases in space. Radio waves emitted from celestial objects
are observed after being affected by that plasma gas. The electric field of a radio wave
propagating in plasma is denoted as

E = E0 exp{[i(ωt− k · r)]}, (A.42)

where K is the wave number vector, R is the position vector, and ω is the frequency.
For simplicity, let us consider a situation where a magnetic field H exists uniformly in
the z-axis direction and a radio wave propagates in the xz plane. In this case, k can
be expressed as k = (k sin θ, 0, k cos θ) using the angle θ between the direction of the
radio wave and the z axis. Electrons in the plasma are subject to the Lorentz force as
follows.

d(mev)

dt
= −e

(
E +

1

c
v ×H

)
(A.43)

Considering that the motion of electrons varies with |v| ∝ eiωt in the same way as the
electric field, each component of the velocity is

vx = ie
me(ω2−ω2

g)
(ωEx + iωgEy)

vy = −ie
me(ω2−ω2

g)
(iωgEx − ωEy)

vz = ie
meω

Ez

(A.44)
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where ωg is the cyclotron frequency, which can be written as

ωg =
eHz

mec
(A.45)

If the current density is
j = −neev (A.46)

and so, from the Ampere-Maxwell equation

∇×H = −4π

c
neev +

iω

c
E (A.47)

is obtained. From equation A.44, we get

(∇×H)i =
iω

c
ϵijEj (A.48)

ϵ =


1 +

ω2
p

ω2
g−ω2

iω2
pωg

ω(ω2
g−ω2)

0
iω2

pωg

ω(ω2
g−ω2)

1 +
ω2
p

ω2
g−ω2 0

0 0 1 − ω2
p

ω2

 =

 ϵ11 ϵ12 ϵ13
ϵ21 ϵ22 ϵ23
ϵ31 ϵ32 ϵ33

 , (A.49)

where ω2
p = 4πe2ne

me
. This ωp is called the plasma frequency.

From the electromagnetic wave equation propagating in vacuum and the equation
(A.48),

{k× (k× E)}i =
ω

c
(k×H)i = −ω

2

c2
ϵijEj (A.50)

is obtained. Using the formula for vector analysis, k × (k × E) = (k · E)k − (k · k)E,
it can be transformed to

k2Ei − kikjEj −
ω2

c2
ϵijEj = 0. (A.51)

The equation is ∣∣∣∣k2δij − kikj −
ω2

c2
ϵij

∣∣∣∣ = 0 (A.52)

from the dispersion formula of the determinant = 0 for this equation to have a solution.
Because ω ≫ ωg in the radio observation, we can approximate ϵ11 = ϵ22 ∼ ϵ33. Then,
we get

k2 =
ω2

c2
ϵ11

1 − ϵ212
2ϵ211

sin2 θ ±

√
sin4 θ +

(
2ϵ11 cos θ

ϵ12

)2


 . (A.53)

Here, when the radio wave propagates in a direction parallel to the magnetic field
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of the plasma, that is, θ ∼ 0, the wave number is

k∓ =
ω

c

√
ϵ11 ∓ ϵ12 cos θ. (A.54)

The k− represents a right circularly polarized wave rotating clockwise toward the direc-
tion of propagation, and k+ represents a left circularly polarized wave rotating coun-
terclockwise toward the direction of propagation.

Next, consider the case where the radio wave is linearly polarized. Linearly polarized
waves can be described by superposition of right circularly polarized waves and left cir-
cularly polarized waves with the same amplitude. These circularly polarized waves have
wave numbers k− and k+, respectively, from the equation (A.54). Therefore, a phase
shift occurs in the circularly polarized wave as it propagates through the magnetized
plasma, and the direction of oscillation of the electric field changes. This phenomenon
is called Faraday rotation.

Suppose that under the conditions ω ≫ ωg and ω ≫ ωp, the magnetic field exists
along the z axis and the linearly polarized wave propagates in the z direction (θ ∼ 0).
In this case, the phase change when the wave travels dz in the plasma is

dϕ− = k−dz, dϕ+ = k+dz. (A.55)

Because the amount of change in this linear polarization is equal to the total phase
shift, we get

ϕ =

∫ 0

∞

k− − k+
2

dz =
ω

2c

∫ 0

∞

[√
ϵ11 − ϵ12 cos θ −

√
ϵ11ϵ12 cos θ

]
dz

=
e3λ2

8π2c3m2
eϵ0

∫ 0

∞
ne(z)B∥(z)dz = RMλ2, (A.56)

where B∥ is the magnetic field strength parallel to the line of sight and ne is the electron
number density. RM is called Rotation Measure and is written as

RM = 0.81

∫ 0

∞

( ne

cm−3

)(
B∥

µG

)
d

(
z

pc

)
rad m−2, (A.57)

where the unit of wavelength is m. RM is defined as positive if the magnetic field is in
direction toward the observer and negative if it is in the opposite direction.

These results indicate that when a linearly polarized wave passes through a magne-
tized plasma, the polarization angle changes in proportion to the square of the observed
wavelength. From this relationship, if the observed polarization angle is χ and the po-
larization angle of the polarization source itself is χ0, it can be written as

χ = RMλ2 + χ0. (A.58)

From this equation (A.58), information on the polarization angle of the polarization
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Figure A.2: Polarization angle vs. wavelength squared

source and the magnetic field parallel to the line of sight on the line of sight can
be obtained. In actual observation, the Stokes parameters Q and U are observed at
multiple wavelengths, the polarization angle χ is obtained, and a straight line fit is
made to a plot with χ− λ2. The slope is RM, and the Y -intercept is χ0 (FigureA.2).

A.4 Faraday tomography

RM stands for Rotation Measure which can be written as

RM = 0.81

∫ 0

∞

( ne

cm−3

)(
B∥

µG

)
d

(
r

pc

)
rad/m2, (A.59)

where ne is the number density of electron, B∥ is line of sight component of the magnetic
field strength and r is the physical distance to the source. It is clear from this equation
that the observed RM has degenerated information in the line of sight. Then, Faraday
tomography, proposed by Burn (1966) [45], has been attracting attention as a new
method for estimating material structure in the line of sight. The expression for the
linear polarized intensity P (λ2) can be written as

P (λ2) =

∫ ∞

−∞
F (ϕ)e2iϕλ

2

dϕ. (A.60)

This F (ϕ) is called the Faraday Dispersion Function (FDF) or Faraday spectrum, and
represents the polarized intensity distribution in ϕ space. ϕ is written as

ϕ(r) = 0.81

∫ 0

r

ne(r
′)B∥(r

′)dr′. (A.61)
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It is a physical quantity similar to RM, but it is an integral up to position r, whereas
RM is an integral from the observer to infinity. ϕ(r) is called the Faraday depth. Also,
Equation A.60 is a Fourier transform with ϕ and λ2 as conjugate variables. The inverse
transformation can be written as

F (ϕ) =
1

2π

∫ ∞

−∞
P (λ2)e−2iϕλ2

dϕ. (A.62)

We can estimate F (ϕ) from the observables P (λ2).
However, in reality, it is impossible to observe all the points in λ2 space, which results

in an incomplete Fourier transform and makes it difficult to obtain a true Faraday
spectrum. Then, a method of estimation using the window function W was proposed
by Brentjens & de Bruyn (2005) [46]. The Faraday spectrum F̃ (ϕ), which consists only
of the polarized intensity of the observed wavelength, can be written as,

F̃ (ϕ) =
1

2π

∫ ∞

−∞
W (λ2)P (λ2)e−2iϕλ2

dϕ, (A.63)

where F̃ (ϕ) is called the dirty FDF. Furthermore, because of the convolution, we can
write

F̃ (ϕ) =
1

K
F (ϕ) ∗R(ϕ), (A.64)

K−1 =

∫ ∞

−∞
W (λ2)dλ2, (A.65)

R(ϕ) = K

∫ ∞

−∞
W (λ2)e−2iϕλ2

dλ2. (A.66)

The R(ϕ) is called the Rotation Measure Spread Function (RMSF) and the Full Width
at Half Maximum (FWHM) of the RMSF is the RM resolution of Faraday tomography.
In general, the window function takes the value, in the observable wavelength band
(λ2min ≤ λ2 ≤ λ2max), with W (λ2) = 1 and 0 otherwise. In this case, the FWHM of the
RMSF is written as,

FWHM [rad/m2] =
2
√

3

∆λ2 [m2]
, ∆λ2 = λ2max − λ2min. (A.67)

As can be seen from this equation, the range of the wavelength squared space determines
the RM resolution.

A.4.1 QU-fitting

QU-fitting is a method of constructing an FDF by model fitting without an incomplete
Fourier transform of the polarization spectrum, which is an observable. The first model
assumption considers functions that can be mathematically fully Fourier transformed
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(e.g., delta, Gaussian, top-hat, etc.) (generally to reduce computational complexity).
The form and number of functions are inferred from simple inverse transforms and
RM CLEAN results. Next, the model parameters are estimated using the Metropolis-
Hasting algorithm in the Markov Chain Monte Carlo (MCMC) method. This is a
method to estimate the value of the best-fit parameter by adopting the parameter
value with the highest likelihood when randomly transitioning in a step width with a
certain defined width in the parameter space. In addition, since this algorithm adopts
the parameter value with a certain probability even when the likelihood drops, it is less
likely to be trapped by local minima in the likelihood than simpler methods such as
the steepest descent method.
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