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Abstract

In order to realize high performance fusion plasmas, it is crucial to clarify and

predict turbulent transport processes and the associated formations of global pro-

files such as the temperature, density, pressure, electric current, and electric fields.

The turbulent transport is driven by various microinstabilities. There have been

much effort on these subjects from both aspects of theoretical and experimental

studies, and an era of realizing the burning plasma is, nowadays, in prospect.

As a powerful approach, gyrokinetic simulations for the transport and profile

formations in turbulent plasmas have been developed, where the global analyses

over the whole plasma volume are capable, as well as the radially local analyses.

Since the global gyrokinetic simulations require huge computational costs for the

target of analysis, it is often difficult to comprehensively scan the various plasma

states and heating/fueling scenarios. Also, the coupling effects among the pressure

profile evolution, the variation of heating absorption, fueling, plasma current, and

the confinement magnetic field, have not fully been considered, where all above

dynamics are related to the turbulent transport.

In this thesis, a turbulent transport modeling based on the nonlinear gyroki-

netic simulations and mathematical optimization techniques is developed. The

constructed simplified transport model enables us to accurately reproduce the tur-

bulent heat diffusivity in the nonlinear gyrokinetic simulation only by the quan-

tities obtained from the linear calculations. Then, a novel global turbulent trans-

port simulation is developed, where the co–simulation framework with the simpli-

fied turbulent transport model is utilized. This allows us to calculate the spatio–
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temporal evolutions of turbulent transport and the radial profiles under the various

heating scenarios at relatively less computational costs. The impact of the back-

ground variations on the turbulent transport and profile formations is investigated.

The following main results were obtained.

First, a nonlinear functional relation(NFR), which describes a functional re-

lation among the turbulent diffusivity, turbulence intensity, and zonal–flow in-

tensity observed in the local nonlinear gyrokinetic ion temperature gradient(ITG)

turbulence simulation, is identified. Considering several functional forms that

satisfy the phenomenological requirements, the optimal regression parameters in

the NFR are determined by an optimal solution of the mathematical optimization

problem to minimize the deviation from the nonlinear simulation results. The rel-

evant physical interpretations are discussed for the choice of the functional form.

The newly constructed NFR shows a better reproducibility for a wide parameter

region of the temperature gradient including the near– and far–marginal stabil-

ity of the ITG instability, compared to that in the conventional works. Then, a

novel simplified turbulent transport model based on the NFR is constructed by

further modeling of the turbulence intensity and zonal–flow intensity with quanti-

ties in the linear gyrokinetic calculations. The temperature–gradient dependence

is newly incorporated into the modeling of the zonal–flow intensity. The accu-

racy and robustness of the NFR are verified through the comparison against the

conventional model on the turbulent heat diffusivity.

Next, by utilizing the simplified turbulent transport model based on the NFR, a

new global transport simulation, AGITO(Alterable Gyrokinetics–Integrated Trans-

port cO–simulation), has been developed, where discretely distributed linear or

nonlinear local gyrokinetic calculations are directly coupled with a 1–dimensional

transport calculation to solve the time evolution of the temperature, density, and

plasma current profiles. The so–called co–simulation framework is applied in

terms of MPMD (Multiple Program Multiple Data) parallelization. The numeri-

cal verifications for the global ITG-driven turbulence simulation with the station-
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ary heating are carried out. It is confirmed that the time evolution of the turbu-

lent diffusivity and temperature profile towards the power–balanced steady state

is properly solved.

Finally, the impacts of the heating power modulation and background mag-

netic modulation on the global profile evolutions in turbulent plasmas are investi-

gated by means of AGITO. It is found that the different time delay appears in each

profile, depending on the modulation frequency. Then, in some modulation sce-

narios, the time–averaged temperature profile deviates from that in the case with

the stationary heating. Although the feedback from the pressure and bootstrap

current profile evolutions is ignored in the present analysis, a significant devia-

tion from the stationary heating cases suggests new heating and/or modulation

scenarios to expect an improved global confinement.
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Chapter 1

Introduction

1.1 Turbulence and transport phenomena in fusion

plasmas
Fusion reactor is a promising as the innovative power plant in the future. To

obtain the net output power in magnetically confined fusion plasmas, a long–time

stable confinement of high–temperature and high–density plasmas is required.

The confinement performance is often limited by “transport phenomena” that de-

termine the temperature and density profiles, so–called kinetic profiles. In addi-

tion to the macroscopic stability, the study of the transport phenomena in con-

fined plasmas is one of the central issues in fusion plasma research. There are

mainly two types of transport phenomena, i.e., “neoclassical transport” due to the

coulomb collisions in ions and electrons, “anomalous transport” which generally

exceeds the neoclassical one. Nowadays, the anomalous transport is understood as

the transport caused by the turbulent fluctuations driven by microscopic instabili-

ties [1], where the typical spatial scale of the fluctuation is the order of gyroradii.

Since the turbulent transport is dominant transport processes in confined plasmas,

the driving mechanisms and its impacts on the plasma confinement should be clar-

ified for realizing the hith–performance plasmas.
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The turbulent transport on the thermal energy and/or particle is driven by the

microinstabilities, e.g., the ion (or electron) temperature gradient (ITG) modes,

trapped electron modes, kinetic ballooning modes, where the unstable growth of

the fluctuations saturate through their nonlinear interactions. Since the radial in-

homogeneity of the temperature and density profiles, i.e., the pressure gradient,

is the free–energy source of the microinstabilities, the spatio–temporal evolutions

of the kinetic profiles and turbulent transport are mutually influenced each other.

Note that the heating and/or fueling into the plasma, which is attributed to the

external injection or fusion reactions, is also another important mechanism, be-

cause they also contribute to the pressure profile evolution as the source. Toroidal

magnetic geometries that confine the plasma also play a crucial role in control

the transport phenomena. Indeed, the microscopic turbulence and the turbulent

transport is strongly influenced by the magnetic geometry.

For the quantitative prediction of the turbulent transport caused by various

microinstabilities, many efforts have, so far, been devoted to the first-principle-

based nonlinear gyrokinetic simulations [2]. A key finding, which is still one of

the ongoing issues, is a spontaneous generation of the so-called zonal flows to

suppress the turbulent transport. In addition to recent advances in electromagnetic

multi-species and multi–scale local fluxtube simulations [3–6], several validation

studies with the experimental data have been carried out [3, 7, 8]. Furthermore,

global turbulence simulations including external heating and sink have revealed

non–steady and non–local nature of the turbulent transport and zonal–flow dy-

namics [9–14]. However, the global gyrokinetic simulation often requires huge

computational costs to investigate the long–time evolutions of the density and

temperature profiles over the confinement time. The comprehensive numerical

scans for various operation scenarios are, thus, still limited.

As another powerful approach to predict the long–time profile evolution and

the power–balanced steady state, the so–called integrated transport codes, such as

TASK/TASK3D [15–17], TOPICS [18, 19], and GOTRESS+ [20, 21], have been
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developed, where various simplified models of the transport, stability, and heat-

ing proposed by experimental, theoretical, and numerical studies are combined.

Indeed, they can individually calculate the magnetic equilibria, heating, fueling,

neoclassical and turbulent transport, and time evolutions of the kinetic profiles.

However, the models for turbulent transport are over–simplified, making it diffi-

cult to accurately predict the realistic profile evolutions.

In order to accelerate the study of global turbulent transport and profile forma-

tions towards the future burning plasmas, the development of a novel simplified

turbulent transport model, which accurately reproduces the gyrokinetic simula-

tion results but can be evaluated enough quickly, is indispensable. Once such a

transport modeling with a remarkable reduction of computational resources was

established, one can look towards the further capabilities to explore new global

simulations with self–consistent interactions between the turbulent transport and

the spatio–temporal variations of heating and magnetic fields, etc., which have

been ignored in earlier studies. This is a main focus in this study.

The rest of this chapter is organized as follows. The basic theoretical frame-

work on the turbulent transport is briefly reviewed in Sec. 1.2. Then, the scope of

the present study is summarized in Sec. 1.3.

1.2 Brief review of theoretical framework
In this section, the theoretical framework in this study is briefly presented.

One can easily find the details in e.g., Ref. [2]. The basic equation of transport

phenomena in plasmas is given by Boltzmann equation as:

∂

∂t
fs(q,p, t) + {fs,Hs} = C(fs), (1.1)

Hs(q,p, t) =
1

2ms

(p− esA(q))2 + esϕ(q). (1.2)
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Here, fs(q,p, t) and Hs(q,p, t) are 6–dimensional distribution functions and Hamil-

tonian for the particle species “s”, respectively. The Hamiltonian determines the

motion of a single particle in a 6–dimensional phase space, represented by the

canonical coordinates q and p, respectively. The bracket symbol {· · ·} in the

second term on the left-hand side means Poisson brackets, and C(fs) is a col-

lision operator. When the total distribution function fs and the Hamiltonian Hs

are expanded to a series of the macroscopic equilibrium part and the microscopic

fluctuation part, by means of a small expansion parameter ϵ, one finds

fs = Fs,0 + δfs +O(ϵ2), (1.3)

Hs = Hs,0 +Hs,1 +O(ϵ2), (1.4)

where Fs,0 is regarded as ⟨fs⟩ens with the ensemble average. In the microscopic

fluctuations driven by microinstabilities (sometimes called drift–wave instabili-

ties), the spatial scale, the typical frequency, and the magnitude of fluctuation

amplitude are assumed to be related to ϵ as follows:

k∥
k⊥

∼ ωt

Ωs

∼ esδϕ

Ts

∼ δB

B0

∼ ϵ =
ρti
a
, (1.5)

where, ρts = vtsms/esB0 is the gyroradius with the thermal velocity vts, the par-

ticle mass ms, the strength of magnetic field B0, the electric charge es, and the

plasma radius a. ωts = vts/R is the transit frequency, and the gyrofrequency is

given by Ωs = esB0/ms. Also, δϕ and δB = |∇ × δA| denote the potential

and magnetic fluctuations, respectively. The mean temperature is denoted as Ts.

The parallel and perpendicular components of the wavenumber vector correspond

to k∥ and k⊥, respectively. Substituting Eq. (1.3) and Eq. (1.4) into Eq. (1.1)

and separating them into the macroscopic and microscopic parts by taking the
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ensemble average, the following equations are obtained:

∂

∂t
Fs,0 + {Fs,0,Hs,0}+ ⟨{δfs,Hs,1}⟩ens = C(Fs,0), (1.6)

∂

∂t
δfs + {δfs,Hs,0}+ {Fs,0,Hs,1} (1.7)

+{δfs,Hs,1} = C(δfs).

Here, we assume that the time scale of Fs,0 is much smaller than that of δfs, and

the ⟨{δfs,Hs,1}⟩ens term is ignored in Eq. (1.7) since the ensemble averaged quan-

tity is no longer fluctuating variable, and should be treated in macroscopic equa-

tion. These are the time evolution equations for macroscopic and microscopic

distribution functions, but generally it is difficult to deal directly because of the

6–dimensional nature. Therefore, it is necessary to impose an appropriate approx-

imation for each equation. In the following, real–space position x and velocity v

are used as the phase–space variables instead of q and p.

The macroscopic equation (1.6) describes physics in the time scales slower

than that in the microscopic fluctuations. Taking the second-order velocity mo-

ment of Eq. (1.6), the following the energy balance equation is obtained:

3

2

∂

∂t
ps +∇ ·

(
Qs +

5

2
psus + us ·Πs

)
= us · (∇ps +∇ ·Πs) + Ps. (1.8)

Here, ps, Qs, us, and Πs correspond to the scalar pressure, the heat flux, the

velocity field, and the viscosity tensor, respectively. Heat production by collision

is denoted by Ps. For further simplification, we ignore Πs and Ps in the following.

Then, taking the flux surface average to extract only the radial dependence, a one-

dimensional transport equation is obtained as follows:

3

2

∂

∂t
ps = − 1

V ′
∂

∂r
V ′

(
5

2
TsΓs +QNC,s +Qtrb,s

)
+ Ss, (1.9)

where V ′, Γs ≡ ⟨nsus · ∇r⟩, and QNC,s +Qtrb,s ≡ ⟨Qs · ∇r⟩ denote the specific
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volume, the radial particle flux, and the radial heat flux composed of the neoclas-

sical and turbulence parts, respectively. Ss means an ad hoc energy source term

resulting from the external heating. Turbulent radial heat flux is determined by

solving the microscopic equation of Eq. (1.7). The pressure profile, which is ap-

proximately given by ps = nsTs, develops until the right–hand side vanishes. In

other words, a steady state is realized when the heating flux and transport flux are

in balance.

As for the equation of microscopic distribution function Eq. (1.7), the so–

called gyrokinetic equation is derived as follows:[
∂

∂t
+ v∥∇∥ + iωDs −

(
esµ

mi

∇∥B

)
∂

∂v∥

]
δfsk⊥

− 1

B

∑
k′
⊥+k′′

⊥=k⊥

b · (k′
⊥ × k′′

⊥)J0(k
′
⊥ρs)δϕk′

⊥
δfsk′′

⊥

=
esFMs

Ts

(iω∗T s + iωDs − v∥∇∥)J0(k⊥ρs)δϕk⊥ + Cs, (1.10)

where the Fourier representation in the perpendicular spatial coordinate (x⊥ →
k⊥) is applied. One can find the detail derivations of the above gyrokinetic equa-

tion in e.g., Ref. [2,22]. Here, δΨk⊥ = J0δϕk⊥ is the gyrophase–averaged electro-

static potential fluctuations with the zeroth order Bessel function J0. The macro-

scopic distribution function Fs,0 was assumed to be Maxwellian distribution func-

tion FMs = ns(ms/2πTs)
3/2exp[−(msv∥

2 + 2µB)/2Ts]. The drift frequency, and

the diamagnetic frequency are denoted by ωDs, ω∗T s, respectively.

In order to solve Eq. (1.10) self–consistently, the Poisson equation to deter-

mine δϕk⊥ is given by:[
k2
⊥ +

∑
s

1

λDs

(1− Γ0sk⊥)

]
δϕk⊥ =

1

ε0

∑
s

es

∫
dv J0δfsk⊥ . (1.11)

Here, |ei| = |ee| = e and ni = ne = n0 are assumed. The Debye–length, factors

J0,s and Γ0sk⊥ are denoted as λDs ≡ (Teε0/n0e
2)1/2, J0,s ≡ J0(k⊥ρs), and Γ0sk⊥ ≡
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e−bI0(b) with b = (k⊥ρti)
2, respectively.

The radial turbulent flux appearing in Eq. (1.9) is given as the second order

correlation of δfsk⊥ and δϕk in the following form:

Qr = Re

〈∑
k⊥

∫
dv

(
msv

2

2
− Ts

)
δfsk⊥δv

∗
Ek⊥

· ∇r

〉

=

〈∑
k⊥

∫
dv

(
msv

2

2
− Ts

)
b× k⊥ · ∇r

B
Im

[
δfsk⊥

δϕk⊥

]
|δϕk⊥ |2

〉
,(1.12)

where, δvEk⊥ = ib× k⊥δϕk⊥/B denotes the E ×B drift velocity driven by the

electrostatic potential fluctuations.

The equations derived in this section have been utilized extensively in trans-

port studies. In this study, the global profile formation is evaluated by Eq. (1.9),

while the local turbulent transport flux or diffusivity is evaluated by using Eqs.

(1.10), (1.11), and (1.12), keeping Fs,0 to be stationary. Because of the scale sep-

aration assumption in the time scales between Fs,0 and δfsk⊥ , Eq. (1.9) and Eq.

(1.10) are separately calculated in the numerical simulations.

1.3 Scope of this study
In burning plasmas, the confinement performance and the burning efficiency

are dominantly governed by the turbulent transport, where the global analysis of

profile formations becomes more crucial than the local analysis of turbulent trans-

port properties. Also, in addition to the global turbulence dynamics for given

heating and magnetic fields, the spatio–temporal variations of the heating deposi-

tion and confinement magnetic fields coupled with turbulent transport through the

pressure profile formation become more crucial in the high-performance plasmas,

where the most of plasma current is sustained by the pressure–gradient driven

bootstrap current.

To explore such unrevealed physics, a novel simulation framework for the

9



global transport analysis is developed in this study. It is realized by constructing an

extended simplified model to reproduce the turbulent diffusivity and zonal–flow

intensity in the nonlinear gyrokinetic simulation results. The simplified model

provides us with quick and accurate estimations of the turbulent transport only by

the linear calculations, and is utilized to combine into co–simulation framework

for the global transport simulation.

The rest of this thesis is organized as follows. The identification of the nonlin-

ear functional relation (NFR), which is a key building brick to construct the sim-

plified model, is discussed in Chap. 2. Then, Chap. 3 describes how to construct

the turbulent transport model based on the NFR. The basic concept and numeri-

cal verification of the novel global transport simulation by utilizing the simplified

transport model is presented in Chap. 4. The simulations results for transport

and profile evolutions with temporal modulations of the heating and the magnetic

fields are shown in Chap. 5. The summary is given in Chap. 6.
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Chapter 2

Nonlinear functional relation(NFR)

in turbulent transport

2.1 Introduction
For quantitative predictions of turbulent transport, it is useful to clarify the

relationship among the transport fluxes, turbulence intensity, and zonal–flow in-

tensity. Such relationship can provide us with important informations to construct

a simplified transport model, including the effect of transport suppression due

to turbulence nonlinearity. Theoretical and numerical studies on the simplified

models for the turbulent transport have extensively been conducted so far, where

some remarkable models such as GLF23 [23], TGLF [24–26], and QuaLiKiz [27]

have been proposed in the framework of quasi-linear gyrokinetic and gyrofluid

approaches. The effects of multi-scale fluctuations [28] and mean E × B flow

shear [29] are also incorporated. Moreover, a combined modeling based on the

linear and nonlinear gyrokinetic simulations has also been explored, where the

impacts of turbulence nonlinearity and zonal flow generation on the ion temper-

ature gradient(ITG) driven turbulent thermal transport for ions have been taken

into account [30]. An extension to the electron–thermal and particle transport has

been applied in the similar manner [31–34].
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Furthermore, modeling studies with deep neural networks have actively been

addressed as another recent approach [20,35–37]. Experimentally and/or numeri-

cally produced massive datasets regarding the radial kinetic profiles and the trans-

port fluxes, etc., are utilized for the training of deep neural networks. Then, one

can rapidly estimate the turbulent transport fluxes or the related diffusivities from

the several inputs of known physical parameters such as the safety factor, local

background density and temperature, and their logarithmic gradients. Indeed, a

semi-empirical neural network model, which was constructed by using the local

gyrokinetic simulation and JT–60U experiment data, well reproduces the particle

and thermal transport fluxes in neutral-beam-heated plasmas [38–40]. Although

such deep-neural-network-based modeling are powerful, one should note that the

physical expandability or interpretability and the extrapolation capability are gen-

erally limited in the approach with deep neural networks.

In this study, to describe turbulent transport processes in a simplified form,

an extended modeling based on a nonlinear functional relation(NFR) is proposed

[41]. In the NFR, the nonlinearity among turbulence, zonal flows, and thermal

transport flux in tokamak ITG driven turbulence is phenomenologically incorpo-

rated by means of the nonlinear gyrokinetic simulations and mathematical op-

timization techniques. Since significant variations of the profile gradients have

often been observed in the global turbulent transport [10], the NFR is verified to

be valid for a wide range of the physical parameters such as the temperature gra-

dient and the radial domains, including near- and far-marginal linear ITG stability.

Indeed, the importance of the zonal–flow effects in the near–marginal regime, as

known as Dimits-shift [42], has been revealed in several gyrokinetic simulation

studies regarding the near-marginal or sub-critical turbulence dynamics [43, 44]

and the isotope effects [7, 45]. Encompassing such strong zonal–flow effects is

necessary to predict accurately the dynamical evolutions of the kinetic profiles

and the magnetic equilibria in the global transport processes of confined plasmas.

Once the systematic methodology to proposed an accurate NFR is established,
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various simplified transport models can be induced by combining the conven-

tional modeling [30–34] with linear gyrokinetic calculations, as will be shown

later. Also, the phenomenological arguments in the present NFR approach enable

us to extract the physical interpretations and useful suggestions to improve the

accuracy of the model.

The rest of this chapter is organized as follows. In Sec. 2.2, the gyrokinetic

model and the nonlinear simulation results for the tokamak ITG driven turbulence

including the Dimits-shift regime are presented. Then, based on three types of

nonlinear functional relations, the identification of their regression parameters by

using mathematical optimization techniques is discussed in Sec. 2.3. Further

investigations for a key factor to determine the reproduction accuracy are shown

in Sec. 2.4. The verifications of the accuracy and the versatility are given in Sec.

2.5. The robustness of optimal regression parameters is discussed in Sec. 2.6.

2.2 Gyrokinetic ITG turbulence simulation
Gyrokinetic turbulence simulation model and numerical results are shown in

this section. Various datasets regarding the turbulence intensity, the zonal flow

intensity, and the turbulent transport coefficient, which strongly depend on the

temperature gradient, are prepared to construct the NFR, as will be discussed in

Sec. 2.3 and Sec. 2.4.

The ITG driven turbulent transport simulations in a tokamak equilibrium are

performed by using a gyrokinetic Vlasov simulation code GKV [46]. Since the

nonlinear modeling incorporating the strong zonal–flow effects is of particular

focus in this study, the electrostatic limit with the adiabatic electron response is

assumed for simplicity. The gyrokinetic-Poisson equations in Fourier wavenum-
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ber representation derived in Sec. 1.2 are summarized as follows:[
∂

∂t
+ v∥∇∥ + iωDs −

(
esµ

mi

∇∥B

)
∂

∂v∥

]
δfsk⊥

− 1

B

∑
k′
⊥+k′′

⊥=k⊥

b · (k′
⊥ × k′′

⊥)J0(k
′
⊥ρs)δϕk′

⊥
δfsk′′

⊥

=
esFMs

Ts

(iω∗T s + iωDs − v∥∇∥)J0(k⊥ρs)δϕk⊥ + Cs,

[
k2
⊥ +

1

ε0

∑
s

e2sns

Ts

(1− Γ0sk⊥)

]
δϕk⊥

=
1

ε0

∑
s

es

∫
dv J0(k⊥ρs)δfsk⊥ ,

where δfsk⊥ = δfsk⊥(z, v∥, µ, t) denotes the perturbed gyrocenter distribution

function for the particle species “s”, which is represented in the fluxtube coordi-

nates. Here, k⊥ = (kx, ky), b, B, δϕk⊥ , µ, es, ms, and Ts are the perpendicular

wavenumber vector, the unit vector parallel to the field line, the magnetic field

strength, the electrostatic potential fluctuation, the magnetic moment, the electric

charge, the particle mass, and the temperature for each particle species, respec-

tively. The drift frequency, the diamagnetic frequency, and the gyroradius are

denoted by ωDs, ω∗T s, and ρs, respectively. The finite gyroradius effects are repre-

sented by the 0th-order Bessel function J0 and Γ0 = e−bI0(b) with b = (k⊥ρti)
2,

where the 0th-order modified Bessel function, the ion thermal speed, and the ion

thermal gyroradius are I0, vti =
√

Ti/mi, and ρti = mivti/eiB, respectively.

Maxwellian distribution and the collision operator are represented by FM and Cs,

respectively.
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The turbulent thermal transport flux in the radial direction Qr is given by

Qr = Re

〈∑
k⊥

∫
dv

(
msv

2

2
− Ts

)
δfsk⊥δv

∗
Ek⊥

· ∇r

〉

=

〈∑
k⊥

∫
dv

(
msv

2

2
− Ts

)
b× k⊥ · ∇r

B
Im

[
δfsk⊥

δϕk⊥

]
|δϕk⊥ |2

〉
.

Here, δvEk⊥ = ib × k⊥δϕk⊥/B denotes the E ×B drift velocity driven by the

electrostatic potential fluctuations. The superscript “∗” means the complex con-

jugate. The flux surface average is denoted by ⟨· · · ⟩. One finds that the turbulent

flux is proportional to the product of the potential fluctuation amplitude |δϕk⊥ |2

and the phase difference of Im[δfsk⊥/δϕk⊥ ] as shown in the second equality of Eq

(1.12). The turbulent diffusivity is defined by χs = (Qr/nsTsR)(R/LT ), where

ns, r, R, and 1/LT ≡ −(∂ lnTs/∂r) mean the background density, the radial posi-

tion, major radius of the magnetic axis, and the logarithmic temperature gradient,

respectively.

Spatially averaged turbulence potential intensity T and zonal–flow potential

intensity Z are defined as follows:

T ≡ 1

2

∑
kx,ky ̸=0

⟨|δϕkx,ky |2⟩, (2.1)

Z ≡ 1

2

∑
kx

⟨|δϕkx,ky=0|2⟩. (2.2)

In order to identify the nonlinear relationship among T , Z , and χi, R/LT -dependence

of each quantity is investigated by gyrokinetic turbulence simulations.

As shown in Eq. (1.12), the turbulent heat flux Qr is generally given by the

second order correlation of δϕk⊥ and δfsk⊥ . On the other hand, when the non-

linearity in Eq. (1.10) is neglected, the turbulent flux in Eq. (1.12) is reduced to
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so–called quasi–linear flux QQL
r as follows:

QQL
r = Re

〈∑
k⊥

Lk⊥ |δϕk⊥ |2
〉
, (2.3)

Lk⊥ =

∫
dv i

esFMsky
TsB

(
mv2

2

)
ω∗T s + ωDs − k∥v∥
ωk⊥ − ωDs − k∥v∥

.

Here, ωk⊥ = ωr+iγ denotes the complex frequency that is composed of the mode

frequency as the real part and the growth rate as the imaginary part. Through the

relation of |δϕk⊥ |2 ∼ T , QQL
r can be approximated to QQL

r ∼ CT α, where C is a

constant and α = O(1).

Table 2.1 summarizes the physical parameters used in the gyrokinetic simula-

tion. The linear and nonlinear simulations are performed for a wide range of the

ion temperature gradient R/LT at two normalized radial positions ρ ≡ r/a in a

tokamak magnetic configuration as shown in Fig. 2.1, where a is the minor radius

of the plasma. The safety factor and the magnetic shear are denoted by q and ŝ.

The logarithmic density gradient R/Ln is fixed to 2.2. The phase-space grid num-

ber is (nkx , nky , nz, nv∥ , nµ), where µ ≡ msv
2
⊥/2B. The minimum wavenumbers

are represented by ∆kx and ∆ky. The velocity–space domain of 0 ≤ v⊥ ≤ 4vti,

and −4vti ≤ v∥ ≤ 4vti are considered. In total, 17 nonlinear ITG turbulence

simulations for weakly collisional plasmas are performed.
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Table 2.1: Physical parameters used in the gyrokinetic simulations.

Parameter value and range

radial position ρ 0.25 0.5 0.6 0.75

safety factor q 1.00 1.41 1.70 2.39

magnetic shear ŝ 0.231 0.885 1.23 1.84

temperature gradient R/LT 5.1 to 12 4.7 to 12 4.25 to 12 4.2 to 9

density gradient R/Ln 2.2 2.2 2.2 2.2

collisionality ν∗
ii 0.056 0.056 0.056 0.056

minimum wavenumber
(0.054, 0.075) (0.069,0.075) (0.073,0.075) (0.072,0.075)

(∆kx,∆ky)

k–space grid number
(±24, 20) (±64, 20) (±96, 20) (±128, 20)

(nkx , nky)

field line grid number nz 64 64 64 64

velocity–space grid number
(±24,12) (±24,12) (±24,12) (±24,12)

(nv∥ , nµ)
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Fig. 2.1: Tokamak geometry used in the gyrokinetic simulation.

Figure 2.2 shows the time evolution of the turbulent heat diffusivity in the

gyro-Bohm unit χi/χ
GB
i , where χGB

i ≡ ρ2tivti/R. Note that the time in the hor-

izontal axis is normalized by the maximum ITG-mode growth rate γmax. The

quasi–steady states for tγmax ≥ 50 are confirmed for all cases. In this study, the

time window of (100 ≤ tγmax < 300) is considered for the average of χ̄i/χ
GB
i ,

T̄ , and Z̄ . The overline is the time-averaging symbol, which is, hereafter, omitted

for simplicity.
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Fig. 2.2: Time evolutions of turbulent heat diffusivity χi/χ
GB
i at ρ = 0.5. Each curve

corresponds to the cases for R/LT = 6, 8, 12, respectively.

Figure 2.3(a) shows the R/LT -dependence of χi/χ
GB
i and the maximum ITG-

mode growth rate γmax. One can see a slight difference between the critical gradi-

ent of the linear ITG instability growth rate and the effective gradient driving the

turbulent heat transport near R/LT ∼ 4, which is so–called the Dimits–shift [42].

Here, the critical gradient for the ITG instability is estimated by zero value of

the fitting function of data for R/LT = 4 ∼ 5. The width of the Dimits-shift

is evaluated as ∆(R/LT ) = R/LT |finite χi/χ
GB
i

− R/LT |ITG crit. γmax = 0.861 at

ρ = 0.5 and ∆(R/LT ) = 0.296 at ρ = 0.75. The ratio of the zonal–flow po-

tential intensity to the total fluctuations, defined by Z/(T + Z), as a function of

R/LT is shown in Fig. 2.3(b). One finds a significantly larger zonal–flow ratio

Z/(T +Z) near the critical gradient, where the transport reduction can occur. For

the larger temperature gradient region of R/LT ≥ 6, the zonal flow ratio indicates

a moderate dependence. The magnitude of Dimits–shift discussed here indicates

19



a positive correlation not only to the relative intensity Z/(T +Z), but also to the

residual zonal–flow level [47–49]. From the linear zonal–flow response calcula-

tion, the residual zonal–flow levels K are evaluated as K = 0.0428(ρ = 0.5), and

K = 0.0259(ρ = 0.75), where the analytic estimations in the limit of the large–

aspect–ratio circular cross section by Rosenbluth and Hinton [47] are KRH =

0.145(ρ = 0.5), and KRH = 0.0558(ρ = 0.75). These quantities can be useful to

explain the qualitative trends in the nonlinear simulation results in Fig. 2.3.
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Fig. 2.3: (a)Temperature gradient dependence of χi/χ
GB
i evaluated by nonlinear simula-

tions (symbols) and γmax [vti/R] by linear analysis (lines). (b)The ratio of the
zonal–flow potential intensity Z to the total fluctuation amplitude (T + Z).

Furthermore, the spectral shape of the turbulent potential fluctuation in the

wavenumber space is exemplified in Fig. 2.4. It can be seen that for the turbu-
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lence (non-zonal ky ̸= 0) and zonal flow (ky = 0) components, the shape of the

spectrum is rather different between the cases with high and low temperature gra-

dients. Such various nonlinear dependence on R/LT appearing in T , Z , and χi is

crucial for constructing the simplified transport model, which is valid for a wide

parameter range of R/LT .

(a) (b)

Fig. 2.4: Wavenumber spectra of the turbulent potential fluctuations for (a)ρ =
0.5, R/LT = 4.5, and (b)ρ = 0.5, R/LT = 9

2.3 Construction of NFR using mathematical opti-

mization
Construction of nonlinear functional relation(NFR) between T , Z , and χi,

which accurately reproduce the nonlinear gyrokinetic simulation results, is dis-

cussed in this section. Three types of the functional forms FQL, FNFR1, and

FNFR2 for the NFR are examined.

First, we consider a functional form FQL that is similar to the quasi–linear

approximation [cf. Eq.(2.3)]. FQL is a simple regression to express the turbulent
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thermal diffusivity χi/χ
GB
i only by T , which is defined as

χi

χGB
i

∼ FQL(T ) = C1T α, (2.4)

where C1 and α correspond to the regression parameters to be determined. The

relationship between T and χi/χ
GB
i as shown in Fig. 2.5 is useful to determine

the regression parameters. As is seen in the figure, there is the refractive behavior

at χi/χ
GB
i ∼ 2.5, which changes the exponent α remarkably. Indeed, when the

simulation data is classified as the near– and far-marginal cases with the boundary

of χi/χ
GB
i ∼ 2.5, two exponents are evaluated as α = 0.943 and α = 0.608 for

the near– and far–marginal cases, respectively [shown by the two straight lines

in light–green(near–marginal) and magenta(far-marginal) in the Fig. 2.5]. It is,

therefore, hard to reproduce χi/χ
GB
i over a wide parameter range including near–

and far–marginal ITG stability by using the functional form of Eq.(2.4) with only

turbulence potential intensity T . Indeed, as will be discussed later in Tab. 3.5,

relatively larger regression error is found for FQL with C1 = 0.208 and α = 0.733.
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Fig. 2.5: Relation of turbulent potential intensity T and the turbulent heat diffusivity
χi/χ

GB
i calculated by gyrokinetic simulations.

On the other hand, the strong correlation between Z/(T + Z) and χi/χ
GB
i

is shown in Figs. 2.3(a) and 2.3(b) motivate us to consider another type of the

functional form, which is applicable for both near- and far-marginal cases. Here,

two nonlinear functional forms of FNFR1 and FNFR2 are defined as follows:

χi

χGB
i

∼ FNFR1(T ,Z) =
C1T α

1 + C2(Zβ/T )
, (2.5)

χi

χGB
i

∼ FNFR2(T ,Z) =
C1T α

1 + C2(Z/T )β
, (2.6)

where the zonal flow intensity is explicitly incorporated. Note that the choice of

functional forms are not unique, but the above forms still satisfy the fundamental
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phenomenological requirements of

FNFR1,2(T ,Z) ≥ 0,

lim
T →0

FNFR1,2(T ,Z) = 0,

lim
T →∞

FNFR1,2(T ,Z) = FQL(T ), (2.7)

lim
Z→0

FNFR1,2(T ,Z) = FQL(T ),

lim
Z→∞

FNFR1,2(T ,Z) = 0.

Here, (C1, C2, α, β) in Eq.(2.5) and (2.6) are the regression parameters to be de-

termined such that the NFR reproduces the nonlinear gyrokinetic simulation data.

FNFR1 is inspired by the previous research [30] corresponding to the model for

the far-marginal parameter regime. In this study, a more generalized form is con-

sidered, where the exponent of the second term of the denominator is changed

from the fixed value of 1/2 used in Ref. [30] to a variable β. A slightly modified

form of FNFR2 is also considered to treat more explicitly the impact of intensity

ratio of Z/T in the denominator. For both functional forms, the second term in

the denominator plays a role in describing the transport suppression effect by the

zonal–flows, where the importance of the relative zonal–flow intensity in near–

marginal cases has been demonstrated in Sec. 2.2.

The regression error σ to evaluate the reproduction accuracy is defined by the

arithmetic average of the root–mean–square deviations as follows:

σ =

√√√√ 1

n

n∑
j=1

(
F (Tj,Zj)

χi,j/χGB
i

− 1

)2

, (2.8)

where F means the nonlinear function shown in Eqs. (2.4)–(2.6) with no explicit

labels. The total data number and the data index are expressed by n and j, respec-

tively. The identification of the NFR to minimize σ is equivalent to the problem

of finding the optimal regression parameters (C1, C2, α, β). An extremal value of
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σ is given by the solution of a non–convex mathematical optimization problem,

where the word “solution” hereafter means the optimal parameters in FNFR1 and

FNFR2.

Since the regression error σ = σ(C1, C2, α, β), which is the objective function

in the context of mathematical optimization, is a nonlinear multi–modal function

in the 4–dimensional parameter space, a lot of local minima exists in general.

Then, depending on the choice of the initial condition, gradient–descent–based

searching algorithms often lead to the trapping by a single local minimum. Figure

2.6(a) shows the example of the initial–value scan with respect to C1 and C2,

where the contour indicates the different converged values of σ. The existence

of several local minima is also emphasized by the histogram P (σ) shown in Fig.

2.6(b), indicating a multi–modal distribution. Note that the initial values for β and

α are fixed to β0 = 0 and α0 = 0 in this visualization, where the subscript“ 0”
means the initial value.
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(a)

(b)

Fig. 2.6: (a)Visualization of the existence of multiple local minima at (C1,0, C2,0) with
α0 = β0 = 0 fixed. The variations of color correspond to each local optimal
solution. (b)Histogram of σ for the (C1,0, C2,0) subspace.

In order to search the high dimensional solution space as broadly as possible,

systematic scans of the initial values should be performed. However, the dis-

cretized grid scan for (C1,0, C2,0, α0, β0) requires huge computational costs even

for the 4-dimensional cases. Thus, we introduce a technique to scan a broader pa-

rameter range while reducing computational costs. Here, 6 possible combinations

of the 2–dimensional initial–value subspaces of (C1,0, α0),(C1,0, β0), (C1,0, C2,0),

(C2,0, α0), (C2,0, β0), and (α0, β0), which are chosen from the original parame-

ters, are numerically scanned. The other remaining 2 initial values are fixed as
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(C1,0, C2,0, α0, β0) = (1, 1, 0, 0). The numerical scan of each initial value set is

performed in the condition of 200× 200 meshes for −1 ≤ α0 ≤ 1, −1 ≤ β0 ≤ 1,

−10 ≤ C1,0 ≤ 10, and −10 ≤ C2,0 ≤ 10. Then, the best optimal solution

(C1, C2, α, β) and σ are selected from 6 results of the 2-dimensional scans. The

present searching scheme performs the scans in a broader parameter space, but not

whole 4–dimensional space. Thus, the optimal solution may not be necessarily a

unique global solution.

The mathematical optimization algorithm is similar to Levenberg-Marquardt

method [50, 51] which combines gradient descent method and Gauss–Newton

method. Although the Hessian matrix is approximated by using the Jacobian ma-

trix in Levenberg-Marquardt method, our algorithm directly calculates the Hes-

sian matrix to hold the fast convergence near the local minimum. Then, the

Newton method is used if the Hessian matrix is positive definite. Otherwise, the

steepest descent method is applied. Typically, 1.4 × 109 steps are needed for one

calculation.

The optimal solution (C1, C2, α, β) and σ for three nonlinear functional forms

FQL, FNFR1, and FNFR2 are summarized in Tab. 2.2. One finds the smallest

regression error of 0.0569 for FNFR1. As shown in Figs. 2.7(a) and 2.7(b), the

reproduction accuracy of χi/χ
GB
i is examined, where the estimation by NFR is

compared to the nonlinear gyrokinetic simulation results shown in the horizontal

axis. The deviation from χi/χ
GKV
i = 1 in the vertical axis indicates the magnitude

of local errors. It is clarified from the comparison between FQL and FNFR1,2 that

the explicit treatment of zonal–flow potential intensity is crucial for improving

the reproduction accuracy of the NFR. In addition, we found that the form of

intensity ratio of Z to T in the denominator of NFR has a large impact on the

regression error. It is emphasized that σ = 0.0569 for FNFR1 is more than 2.79

times smaller than that in the previous work[σ = 0.159(Ref. [30]), 0.12(Ref. [31]),

0.15(Ref. [32]), 0.30(Ref. [34])], and is valid for wider parameter range including

the near– and far–marginal linear ITG stability.
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Table 2.2: Optimal regression parameters and the regression errors.

parameter FQL FNFR1 FNFR2

C1 0.208 0.485 0.264

C2 - 1.30 0.0142

α 0.733 0.611 0.732

β - 0.243 1.37

σ 0.178 0.0569 0.133
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Fig. 2.7: Comparison between the heat diffusivity approximated by NFR(shown by χi)
and the gyrokinetic simulation results(shown by χGKV

i ) at (a)ρ = 0.5 and
(b)ρ = 0.75. The deviation from line χi/χ
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ror.
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2.4 Impact of zonal–flow effects
As is shown in Tab. 3.5, the regression error of FNFR1 is smaller than that of

FNFR2, where the variation of the zonal–flow potential intensity Z in the denom-

inator is slightly different. In this section, the impact of the intensity ratio of Z to

T on the regression accuracy is examined in more detail to find the reason why

FNFR1 is more accurate. This enables us to find further optimal parameters. To

this end, we define FNFR3 as follows:

χi

χGB
i

∼ FNFR3(T ,Z) =
C1T α

1 + C2(Zξ/T )β
, (2.9)

where the additional parameter ξ is introduced. Using ξ, FNFR1 and FNFR2 are re-

produced by setting ξ = 0.243 with β = 1 and ξ = 1 with β = 1.37, respectively,

so that FNFR3 is regarded as a combined from of FNFR1 and FNFR2.

Figure 2.8 shows the regression error of FNFR3 as a function of ξ, where σ

and the other 4 parameters (C1, C2, α, β) for given ξ are determined by the same

method in Sec. 2.3. One finds a nonlinear ξ-dependence of the regression error in

the domain of 0 < ξ ≤ 1. Even though the regression error for FNFR1 is enough

small compared to that for FNFR2, a slightly more optimal solution at ξ = 0.2 is

identified, where σ = 0.0527.
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Fig. 2.8: Dependence of the error for FNFR3 on ξ, where the cases with ξ = 0.243 and
ξ = 1 correspond to FNFR1 and FNFR2, respectively.

As can be seen in Eq. (2.9), the parameter ξ characterizes the relative magni-

tude of Z in the intensity ratio of Z to T . Indeed, Fig. 2.8 suggests the impor-

tance of considering the appropriate ξ. By introducing Λ := Zξ/T , the param-

eter dependence of Λ for large– and small–σ is compared. This can clarify the

non–negligible physics that improves the accuracy of the NFR. Here, we choose

ξ = {0.1, 0.2, 0.243} and ξ = {0.8, 0.9, 1} as the representative subsets for the

cause with small– and large–σ, respectively.

Figures 2.9(a) and 2.9(b) show Λ for the two subsets as a function of the tem-

perature gradient R/LT . It is demonstrated that the strongly decaying character-

istic appears for the subset of ξ = {0.1, 0.2, 0.243} with small σ, while nearly flat

behavior for R/LT > 5 is observed for the subset of ξ = {0.8, 0.9, 1} with larger

σ. Then, we can discuss more quantitatively the different behavior of Λ for the

various ξ, by assuming Λ ∝ (R/LT )
−η. The fitting exponent η is evaluated as

∼ 4.5 for high accuracy cases in Fig.2.9(a), and as ∼ 1.5 for low accuracy cases
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in Fig.2.9(b). The tendency in the former cases with the small regression error is

qualitatively consistent with the nonlinear simulation results shown in Fig. 2.3(b),

indicating that the intensity of relative zonal flow becomes significant in the near–

marginal regime with the Dimits-shift. On the other hand, for the latter cases with

larger errors, the nearly flat R/LT -dependence of Λ, i.e., Λ ∼ const., implies that

these nonlinear functional relations are effectively equivalent to the quasi–linear

form of Eq.(2.4). Indeed, the regression errors for ξ = {0.8, 0.9, 1} are similar to

that for FQL, where C1 ∼ 0.2, α ∼ 0.7, and C2 ∼ 0. These observations empha-

size the importance of capturing steep behaviors in Λ around the critical gradient

for improing the accuracy of NFR.
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Fig. 2.9: R/LT -dependence of the intensity ratio Λ = Zξ/T in the subsets of (a)ξ =
{0.1, 0.2, 0.243} in small–σ and (b)ξ = {0.8, 0.9, 1} in large–σ.
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2.5 Verification of regression accuracy
In the previous section, the most optimal NFR was identified. The functional

form is same as Eq.(2.9) where (C1, C2, α, β, ξ) = (0.602, 2.01, 0.571, 0.898, 0.2)

and the regression error σ = 0.0527. By using the nonlinear simulation data for

ρ = 0.25, 0.5, 0.6, and 0.75, the verification of reproduction accuracy is carried

out to examine the versatility of radial direction and temperature gradient. Note

that, the data for ρ = 0.25 and ρ = 0.6 are not included in the present regression

for the NFR, so that we can evaluate the prediction capability of NFR as well.

Figure 2.10 shows the turbulent heat diffusivity as a function of the temper-

ature gradient R/LT , where the estimations by the NFR are compared with the

gyrokinetic simulation results. It is found that the NFR well reproduces the sim-

ulation results for ρ = 0.25 and ρ = 0.6 with the prediction error of σ = 0.0658

and σ = 0.0782 , as well as the cases for ρ = 0.5 and ρ = 0.75. In order to

verify the accuracy in near-marginal region, the Dimits-shift widths in the NFR

and gyrokinetic simulation are compared. The Dimits–shift widths evaluated by

the NFR are ∆(R/LT ) = 0.868 at ρ = 0.5, ∆(R/LT ) = 0.294 at ρ = 0.75,

and ∆(R/LT ) = 0.888 at ρ = 0.25. These results well reproduce the gyrokinetic

simulation results ∆(R/LT ) = 0.861(at ρ = 0.5), 0.296(at ρ = 0.75), and 0.9(at

ρ = 0.25), respectively, as discussed in Sec. 2.2. From these results, the accuracy

and versatility of the NFR covering near- and far-marginal ITG stability for the

several radial positions are demonstrated.
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in the regression for NFR.

To verify the applicability of NFR in slightly more collisional cases [10], the

collisionality ν∗ is changed under the conditions of ρ = 0.5 and R/LT = 4.5,

where ν∗ = 0.0824, 0.109, 0.162 is considered. Figure 2.11(a) shows the heat

diffusivity and the relative zonal–flow intensity for each collisionality. As col-

lisionality increases, the heat diffusivity increases while the relative zonal–flow

intensity decreases. The collisional decay of zonal flows and enhanced transport

have been reported in several earlier works [52]. Figure 2.11(b) shows the results

of applying the NFR to the present slightly collisional cases. It is demonstrated

that the accuracy of the present NFR gradually decreases toward the collisional

regime, but still keeps a reasonable reproductivity. Such an insensitive feature is

attributed to the fact that the statistically averaged quantities T and Z in which

the various parameter dependencies like the collisionality and configuration pa-

rameters do not appear explicitly in the functional form of the NFR. Hereafter,
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we focus on the turbulent transport in the weakly collisional regime, where the

degraded accuracy is negligibly small.
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2.6 Robustness of regression parameters in NFR
The parameter ξ, which indicates the magnitude of the zonal–flow contribu-

tion, should also be a free continuous parameter. To verify the robustness of
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optimal regression parameters in the NFR against the case to include ξ as an-

other continuous variable in first place, the five–dimensional optimization for

(C1, C2, α, β, ξ) is examined. The functional form is same as Eq. (2.9), and

mathematical optimization is performed by using techniques described in Sec.

2.3. We found that the optimal regression parameters and the regression error are

(C1, C2, α, β, ξ) = (0.500, 1.06, 0.595, 0.854, 0.201) and σNFR = 0.0778, respec-

tively. Althogh a slighted difference appears in C1, and C2, the overall accuracy

of reproduction by the NFR does not degrade, as shown in Fig. 2.12. From this

figure, one finds the robustness of the optimal regression parameters in the present

NFR.
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Fig. 2.12: Turbulent heat diffusivity estimated by NFR(shown by χi) with ξ as an addi-
tional optimization variable(color plot). Gray plot is the original case of NFR
identified in Sec. 2.3.
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Chapter 3

Turbulent transport modeling based

on NFR

3.1 Introduction
In general, quantitative analysis and prediction of turbulent transport using

gyrokinetic models requires a large computational cost. Since the accurate pre-

dictions of kinetic profile formations can determine the burning efficiency and its

control in fusion plasmas, turbulent transport models, which can quickly be evalu-

ated and be applicable to a wide parameter range, play a crucial role in integrated

transport simulation studies. There are many earlier works on constructing the

simplified turbulent transport models in a wide variety of approaches, e.g., quasi-

linear gyrokinetic and gyrofluid modeling [23–27]. Some works have devoted to

include the effects of multi-scale fluctuations [28], mean E ×B flow shear [29],

and turbulence nonlinearity [30–34,53] cross–field fluxes in the edge and scrape–

off layer (SOL) region [54, 55] had also been modeled. Although the local trans-

port approximation in terms of the turbulent diffusivity is often discussed, the

importance of non–local and non-diffusive nature in a global turbulence system

has also been revealed in several earlier works [10, 56–58]. The modeling studies

with deep neural networks [20,21,36–40], which allow to rapidly estimate the tur-
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bulent diffusivities from the several known physical parameters, recently become

more active.

In the previous chapter, by means of the nonlinear gyrokinetic turbulence

simulations, a novel regression model that describes a nonlinear functional rela-

tion(NFR) between the turbulent heat diffusivity, the turbulence intensity, and the

zonal-flow intensity was proposed. The NFR is identified by using mathematical

optimization techniques to find the optimal parameter sets as the extremum point

in the multi–dimensional solution space. Then, the NFR successfully reproduced

the turbulent diffusivity in the nonlinear gyrokinetic simulations for a wide range

of physical parameters and the radial domains, including near– and far–marginal

ITG stability. However, it should be noted that the NFR is a regression model

which still needs the nonlinear simulation data of the turbulence and zonal–flow

intensities. Further modeling is thus necessary to reduce the NFR to the turbulent

transport model that can be applied to the integrated transport simulations.

To this end, we propose an extended modeling to realize a novel simplified tur-

bulent transport model [59]. Here, the turbulence intensity and the zonal-flow in-

tensity are represented by nonlinear functions of the instability growth rate and the

zonal-flow decay time obtained from the “linear” gyrokinetic simulations, whose

computational costs are 1/200 times less than the typical nonlinear simulations.

Particularly, the turbulence suppression by the zonal flows and its temperature-

gradient dependence, which have been ignored in earlier works [30–34], are in-

corporated. The optimal parameters in the nonlinear model functions are deter-

mined by using the mathematical optimization technique which is partly extended

from that used in the previous chapter.

The rest of this chapter is organized as follows. In Sec. 3.2, we define the

physical quantity to be used in the modeling. The turbulence intensity and zonal–

flow intensity are modeled in Sec. 3.3 and 3.4, respectively. Finally, they are

combined to a simplified transport model based on the NFR in Sec. 3.5.
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3.2 Fundamental variables for simplified modeling
In the previous chapter, a good reproduction accuracy of the NFR was demon-

strated, where the turbulent heat diffusivity is estimated by Eq. (2.9). Here, the

additional modeling for the T and Z appearing in Eq. (2.9) is proposed for con-

structing a novel turbulent transport model.

Following earlier works [30–34], T and Z are approximated by the quan-

tities obtained only by the “linear” gyrokinetic simulations, such as the linear

growth rate γ of the ITG instability and the linear response function of zonal

flows Rkx(t) ≡ ⟨δϕkx,ky=0(t)⟩/⟨δϕkx,ky=0(0)⟩. The examples of the wavenumber

spectrum of γ for several R/LT parameters and the zonal–flow response function

Rkx(t) for several radial positions are shown in Fig. 3.1 (a) and (b), respectively.

For the ITG instability, only the most unstable modes with kx = 0 are considered.

For the zonal–flow response, kx is fixed to kx ∼ 0.1ρT i
−1 that is a typical radial

scale of zonal flows in the ITG turbulence. Note also that the linear zonal–flow

response function does not depend on the temperature and density gradients, but

depends on the radial positions. On the other hand, the simulation results[see

Fig.2.3 (b)] for nonlinearly–generated zonal flows indicate the strong gradient de-

pendence. Thus, one need a special care of incorporating the gradient dependence

to the modeling of the zonal–flow response, but earlier works ignored the gradient

dependence.
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Fig. 3.1: (a)The wavenumber spectra of the ITG instability growth rate γ at the ρ = 0.5,
0.75 and (b)zonal–flow response function Rkx(t) at each radial positions, cal-
culated by the linear gyrokinetic simulations.

In order to approximate T and Z by the quantities obtained from the linear

calculations, the mixing–length diffusivity [53] L and the zonal–flow decay time

τZF are introduced:

L ≡
∑
ky

γ

ky
2 , (3.1)

τZF ≡
∫ τf(γmax)

0

dt Rkx(t), (3.2)

where the upper limit of the integral interval τf(γmax) is given by a typical time

scale of the turbulence growth and the correlation, i.e., τf = C/γmax with a

constant C. It is noted that, in contrast to Rkx(t), the zonal–flow decay time

τZF is a gradient–dependent quantity through the temperature and density gradi-

ent dependence appearing in the maximum ITG growth rate γmax. Indeed, the

R/LT–dependence found in the nonlinear simulations[Fig. 2.3 (b)] is qualita-

tively reproduced, as shown in Fig. 3.2 (a), where C = 10. For comparison, the

gradient-independent τZF used in the earlier works is also displayed by the hori-

zontal lines in the figure. Although τf includes a control parameter C, one can see
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that, as shown in Fig. 3.2(b), the qualitative characteristic of R/LT–dependence

still holds even for C = 2.5. In the present study, C = 10 is chosen from the

reproduction accuracy point of view.
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∫ τf
0 dtRkx(t)

(symbols), where τf ≡ C/γmax. (a)C = 10 and (b)C = 2.5. The horizontal
lines in (a) indicate the gradient–independent τZF, assumed in earlier works.

3.3 Modeling of turbulence intensity T
A model for the turbulence intensity T is discussed in this section. It is

stressed that the modeling only by L (or similarly by the linear growth rate γ)

is not appropriate particularly for the cases in the near–marginal stability, because
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the turbulence intensity T is influenced by the suppression effects of zonal flows

through the nonlinear interactions. Indeed, the distribution of T in L–τZF space

shown by the symbols in Fig. 3.3 indicates a strong dependence on both L and

τZF. Especially, in the low–τZF region(τZF < 2), T shows a significant decay in

comparison to that in high–τZF region(τZF ≥ 2). Therefore, the model function

for T has to reproduce such tendency. Two kinds of the model function in the

similar manner for the NFR that satisfies the phenomenological requirements as

discussed in the previous chapter is considered. The model functions fT 1 and fT 2

are defined as:

T ∼ fT 1 (L, τZF) =
CT 1LαT

1 + CT 2τZFβT
, (3.3)

T ∼ fT 2 (L, τZF) =
C ′

T Lα′
T

exp(β′
T 1τZF

β′
T 2)

, (3.4)

where (CT 1, CT 2, αT , βT ) and (C ′
T , α

′
T , β

′
T 1, β

′
T 2) are regression parameters to be

determined. The zonal–flow effects corresponding to the strong decay of T in the

low–τZF region are treated in the form of a rational or an exponential function in

fT 1 and fT 2, respectively.
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Fig. 3.3: Distribution of T in L–τZF space, and overplot of the surfaces [Eqs. (3.3) and
(3.4)] to reproduce T . The open symbols denote the data points located behind
the surfaces.

The optimal parameters are identified by the mathematical optimization in

similar way discussed in Sec. 2.3, where the regression error σT is defined as

follows:

σT
2 =

1

n

n∑
j

(
fT (Lj, τZF,j)

Tj

− 1

)2

, (3.5)

for fT = fT 1 or fT = fT 2. The optimal regression parameters are identi-

fied as (CT 1, CT 2, αT , βT ) = (100, 0.472, 0.996, 1.50) and (C ′
T , α

′
T , β

′
T 1, β

′
T 2) =

(520, 0.970, 1.93, 0.365) for fT 1 and fT 2, respectively, where the regressions error

are σT = 0.181 for fT 1, and σT = 0.179 for fT 2. As shown by the surfaces in Fig.
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3.3, either functional form of fT 1 or fT 2 reasonably reproduces the nonlinear sim-

ulation dataset T . Equation (3.4), which has a slightly smaller error, is considered

in the followings.

3.4 Modeling of zonal–flow intensity Z
In this section, the modeling for the zonal–flow suppression effect Zξ/T ap-

pearing in the NFR[Eq. (2.9)] is presented. From the view point of the similarity

to the zonal–flow response function Rkx(t), the relative zonal–flow intensity Z/T
[or equivalently Z/(T + Z) in Fig. 2.3(b)] is modeled here. Since the parameter

ξ is an optimal parameter in the determination of the NFR, the parameter may

change for rather different magnetic configuration such as stellarators. Thus, the

model function for the zonal–flow suppression effect should not include ξ explic-

itly. To treat ξ separately, the zonal–flow suppression term in NFR is rewritten

as:

Zξ

T
= T (ξ−1)

(
Z
T

)ξ

(3.6)

∼ [fT 2(L, τZF)](ξ−1) [H(τZF)]
ξ ,

where Eq. (3.4) is used for T (ξ−1). Also, H(τZF) is an additional model function

to approximate Z/T by τZF. Figure 3.4 shows the relation between τZF and Z/T .

It shows that Z/T ∼ const. in the region of τZF < 2, and increases with τZF in

the region of τZF ≥ 2. From this observation, the functional form of H is defined

as follows:

Z
T

∼ H(τZF;CZ1, CZ2, αZ , βZ) = CZ1 + CZ2exp
(
αZτZF

βZ
)
. (3.7)

In the similar manner for FNFR and T , the optimal parameter are identified as

(CZ1, CZ2, αZ , βZ) = (0.883, 0.0236, 0.140, 2.47) with the error σZ = 0.354. A

43



relatively larger error compared to the modeling for T is associated with scattered

distribution of Z/T for τZF ≥ 2 in Fig. 3.4. On the other hand, a nearly–constant

characteristic for the smaller τZF is well described in Eq. (3.7).
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Z
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ρ=0.6

ρ=0.75
H(τZF)
const.

Fig. 3.4: τZF–dependence of Z/T . The model function H is shown by the curve. The
horizontal line means the constant value of 1 for the reference.

3.5 Simplified transport model
Finally, the above modeling for T and Z are combined to the NFR in this

section. Substituting the model functions Eqs. (3.4) and (3.7) into Eq. (2.9), a

new transport model for the ITG driven turbulent heat diffusivity is expressed as

follows:

χi

χGB
i

∼ χmodel
i

χGB
i

(L, τZF) =
Θ1LΘ2exp

(
Θ3τZF

Θ4
)

1 + Θ5LΘ6exp (Θ7τZFΘ4) [H(τZF)]
Θ8

. (3.8)
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Here, {Θi} for 1 ≤ i ≤ 8 are the parameters, which were already determined

by the combinations of the regression parameters summarized in Tab. 3.1. The

model function H(τZF) with (CZ1, CZ2, αZ , βZ) is given by Eq. (3.7).

Table 3.1: Parameters in the simplified transport model

Parameter Expression Value

Θ1 C1C
′
T
α 20.7

Θ2 αα′
T 0.577

Θ3 −αβ′
T 1 -1.15

Θ4 β′
T 2 0.365

Θ5 C2C
′
T
β(ξ−1) 0.0127

Θ6 βα′
T (ξ − 1) -0.662

Θ7 −ββ′
T 1(ξ − 1) 1.32

Θ8 βξ 0.172

The regression error of the transport model Eq. (3.8), σmodel, is evaluated as

σmodel = 0.157 for the regression datasets(ρ = 0.5, 0.6, and 0.75), and σmodel =

0.211 for extrapolation dataset(ρ = 0.25). Figure 3.5 shows the comparison be-

tween the newly constructed transport model and the nonlinear gyrokinetic simu-

lations. The result demonstrates that the present transport model has a good accu-

racy for the turbulent heat diffusivity χi/χ
GB
i . The total regression error is similar

or less compared to those in the earlier works [σ = 0.129(Ref. [30]), 0.16(Ref.

[31]), 0.20(Ref. [32]), 0.27(Ref. [34])]. It is however emphasized that the present

transport model is much improved to be valid for the range of 0.4 < χi/χ
GB
i < 17

corresponding to wider parameter regions including near- and far-marginal ITG

stability. Indeed, as shown by grey symbols in Fig. 3.5, a significant deviation for

χi/χ
GB
i ≲ 4 appears when the previously proposed functional form [30] is applied

to the datasets in this work. Note again that, the nonlinear turbulent heat diffusiv-
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ity χi/χ
GB
i is reproduced only by linear gyrokinetic calculations with Eq. (3.8),

where the computational amount is reduced to ∼ 1/200 of that in the nonlinear

simulations.
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Fig. 3.5: Comparison of the turbulent heat diffusivities between the nonlinear gyrokinetic
simulation results χGK

i /χGB
i and simplified transport model χmodel

i /χGB
i (col-

ored symbols). The conventional model in the earlier work [30] is displayed by
grey symbols. The circle and triangle symbols correspond to the data for regres-
sion and prediction, respectively.

An alternative form is also derived by imposing the approximation of H(τZF) ∼
1 when one focuses on the feature of Z/T ∼ const. in low–τZF region (see Fig.

3.4). Such approximation leads to

χi

χGB
i

∼ χmodel
i

χGB
i

(L, τZF) =
Θ1LΘ2exp

(
Θ3τZF

Θ4
)

1 + Θ5LΘ6exp (Θ7τZFΘ4)
. (3.9)

Here, the parameters are the same as Tab. 3.1. The above more simplified form

with 7 parameters indicates a slight increase of the regression error σmodel = 0.161

and σmodel = 0.280 for extrapolation dataset(ρ = 0.25), but still holds a reason-
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able applicability to the practical analysis. It is also noted that further extensions

are necessary to include the particle transport and electron thermal transport, but

the similar ways in Refs. [31–34] can straightforwardly be applicable.
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Chapter 4

Co–simulation framework with

simplified transport model

4.1 Introduction
In fusion burning plasmas, the confinement performance and the burning ef-

ficiency are dominantly governed by the turbulent thermal and mass transport,

where the global analysis of kinetic profile formations becomes more crucial than

the local analysis of turbulent transport properties. The integrated transport sim-

ulation approach(e.g., Refs. [15–17, 60]) is a typical way to address such issues.

Also, global full-f gyrokinetic simulations(e.g., Ref. [9–14, 61–63]) are the other

powerful approach to elucidate the non-local dynamics of global transport and

profile formations in confined plasmas. However, they often require enormous

computational costs, and comprehensive studies for the various operation scenar-

ios in burning plasmas are still limited.

As another promising approach is so–called co–simulation framework [64],

which is widely utilized to solve fluid–structure interactions in e.g., fluid engi-

neering [65, 66], geophysics [67, 68], and biomedical science [69, 70]. In the

co-simulation, several different physical models, coupled each other, are solved

in parallel, and the information are mutually exchanged at appropriate frequen-
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cies. There is an earlier work on developing the co-simulation framework with a

particular focus on turbulent transport in fusion plasmas [71], where the nonlinear

local turbulence simulations are directly coupled to 1–dimensional temperature

profile solver.

As shown above, the global transport dynamics has extensively been investi-

gated so far from several different aspects, e.g., integrated simulation, global full-f

simulation, co-simulation, towards the high–performance plasmas. However, the

stationary situations have often been assumed for the macroscopic quantities such

as the heating deposition inside the plasma and the confinement magnetic fields.

In the fusion burning plasma, one can expect non-negligible spatio-temporal

variations of the heating deposition, plasma current, and confinement magnetic

fields, which are mutually coupled through the turbulent transport processes. For

instance, the absorption power from the external heating and/or fusion reaction

can vary in time, depending on the kinetic profiles (density and temperature pro-

files) in plasmas. Also, more than about 60% of the total plasma current is sup-

posed to be sustained by the pressure-gradient driven bootstrap current. The vari-

ations of the plasma current yield fluctuations in confinement magnetic fields, and

consequently the microinstabilities and turbulent transport to determine the kinetic

profile evolutions are affected.

In this study, a novel co–simulation framework, AGITO, for global turbulent

transport and profile formation is developed by utilizing the simplified transport

model in Chap. 3., where the spatio–temporal variation effects of the heating and

confinement magnetic fields are incorporated. The basic concept and numerical

setup are presented in this chapter, and the first application to practical problems

will be discussed in Chap. 5.

The rest of this chapter is organized as follows. In Sec. 4.2, the basic concept

of the new co–simulation is presented. The physical models and other numeri-

cal schemes used in the co–simulation are described in Sec. 4.3. Finally, some

numerical verifications with the stationary heating are shown in Sec. 4.4.
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4.2 Concept of AGITO(Alterable Gyrokinetics-Integrated

Transport cO-simulation)
As a novel co-simulation framework for the global turbulent transport, an

Alterable Gyrokinetics-Integrated Transport cO-simulation(abbreviated as AG-

ITO) is developed, where the dynamical variations of heating and confinement

magnetic fields, which have been ignored in earlier works, are taken into account.

The highlighted features of AGITO are summarized as follows:

(I) Direct coupling of a 1-dimiensional transport solver TRESS [72],

gyrokinetic solver GKV [46], and neoclassical transport solver

[73] enables us to calculate the global evolutions of transport

and kinetic profiles over the energy confinement time, under the

stationary/non-stationary heating and sink profiles.

(II) Fast turbulent transport calculations by the NFR-based simpli-

fied transport model presented in Chap. 3, and the combina-

tional usage with fully nonlinear gyrokinetic calculations are

possible.

(III) High extensibilities hold by utilizing so–called MPMD(Multiple

Program Multiple Data) parallelization, where the separation or

further coupling of the other physical effects or simulation codes

is easily achieved.

It also should be emphasized that AGITO with the new simplified transport

model enables us to evaluate not only turbulent diffusivity χi but also zonal–flow

related quantities such as Z/T or τZF. As shown in Fig. 4.1, the several gyroki-

netic calculations are discretely located in the radial direction. They evaluate the

local turbulent diffusivity at each position, where the instantaneous local density

and temperature gradients are used as the input parameters. Then, the evaluated
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turbulent diffusivities are transferred to the 1–dimensional global transport solver

to compute the time evolution of the pressure profile towards the next time step.

閉じ込め磁場の変動計算

AGITO(Alterable Gyrokinetics-Integrated 
Transport cO-simulation) coupled for; 
• Local gyrokinetic solver
• Global transport solver

Local gyrokinetic 
solver GKV 

1-D transport 
solver TRESS

Fig. 4.1: Schematic image of co–simulation AGITO.

It is noted that both the simplified transport model with the linear calculation

and the fully nonlinear turbulence simulation are applicable in the evaluation of

turbulent diffusivities. This is a remarkable point of this study that has not been

addressed in the previous studies. This realizes a flexible switching of the turbu-

lent transport model during the global simulation. For instance, after the global

simulation to nearly steady–state profile based on the simplified model, more ac-

curate calculations can seamlessly be carried out by using the nonlinear gyroki-

netic calculations. AGITO can provide a fast global profile prediction with nearly

first-principle-based evaluations of turbulent transport including the zonal-flow

effects.
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4.3 Physical model and numerical setup
A theoretical framework of AGITO and the numerical set up are presented in

this section. The calculation of turbulent transport is based on Eqs. (1.10), and

(1.11), where the equations are shown again for completeness:[
∂

∂t
+ v∥∇∥ + iωDs −

(
esµ

mi

∇∥B

)
∂

∂v∥

]
δfsk⊥

− 1

B

∑
k′
⊥+k′′

⊥=k⊥

b · (k′
⊥ × k′′

⊥)J0(k
′
⊥ρs)δϕk′

⊥
δfsk′′

⊥

=
esFMs

Ts

(iω∗T s + iωDs − v∥∇∥)J0(k⊥ρs)δϕk⊥ + Cs,

[
k2
⊥ +

∑
s

1

λDs

(1− Γ0sk⊥)

]
δϕk⊥ =

1

ε0

∑
s

es

∫
dv J0δfsk⊥ ,

Then, the turbulent heat flux Qtrb,s is calculated by the perturbed distribution func-

tion δfs,k⊥ and the potential fluctuation δϕk⊥ based on Eq. (1.12). Then, substitut-

ing into the 1–dimensional transport equation in Eq. (1.9) as well as the neoclassi-

cal flux QNC,s, the time evolution of the pressure profile ps(r, t) = ns(r, t)Ts(r, t)

is calculated. The transport equation is also shown again for completeness:

3

2

∂

∂t
ps = − 1

V ′
∂

∂r
V ′

(
5

2
TsΓs +QNC,s +Qtrb,s

)
+ Ss, (4.1)

where, Γs and Ss denote the particle flux and the external heating source/sink, re-

spectively. Although the particle flux is evaluated in gyrokinetic simulations with

the kinetic electron response, we impose Γs = 0 by the assumption of adiabatic

electron response. Therefore, the density profile does not change in time.

The convective form of Eq. (4.1) can be rewritten as the following diffusion
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form with the effective thermal diffusivity χs = Qs/(−ns∇Ts · ∇r):

3

2

∂

∂t
ps =

1

V ′
∂

∂ρ
V ′

(
⟨|∇ρ|2⟩(χtrb,s + χNC,s)ns

∂Ts

∂ρ

)
+ Ss, (4.2)

where ρ denotes the normalized radius defined by flux surface label in general

non–circular tokamak geometry. Note that the turbulent diffusivities are calcu-

lated at discrete radial locations. Then, they are treated as a system-wide con-

tinuous turbulent diffusivity profile by Akima interpolation [74, 75] which is a

piecewise cubic interpolation with the advantages of “always passing through a

given data point”, “hard to overshooting”, and “unaffected by distant interpola-

tion points”. These characteristics contribute to numerically stable calculations.

The turbulent heat diffusivity χtrb,s generally has a strong nonlinear depen-

dence on the local temperature gradient. When a numerical time–integration

scheme, such as backward–time centered–space method and Crank–Nicolson method,

is used without accounting for this nonlinearity, a numerical instability can occur.

A simple prescription for this problem is to update the profile evolution with a

time scale as much as shorter than that of turbulent transport. However, this is

often not practicable for long–time simulations because of a significant increase

of computational iterations. In this study, we introduce a stabilization technique

called Newton iteration [76], which treats the turbulent diffusivity in an implicit

form. Indeed, the turbulent heat diffusivity is Taylor expanded in time so as to be

evaluated implicitly, as follows:

χn+1
s = χn+1

s +
∑
j

∂χn
s

∂T ′
j

(
T ′n+1

j − T ′n
j

)
. (4.3)

Here, n, j, and T ′ ≡ ∂T/∂ρ mean time step, species index, and, the temperature

gradient, respectively. Equation (4.3) introduces a nonlinear temperature gradi-

ent dependence of thermal diffusivity, which can stabilize time integration in Eq.

(4.2). As for the neoclassical transport, χNC,s is evaluated by the matrix inversion
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method based on the moment approach [73]. Also, the pressure–gradient driven

bootstrap current is obtained in the same manner.

For the spatial discretization, the Galerkin method with Hermite basis func-

tions is used to solve the transport equation as a partial differential equation. This

is a special type of finite element methods that utilizes a structured/unstructured

mesh to find a weak–form solution of the partial differential equation with spa-

tially discretized variables. For the boundary condition, the symmetric condition

at the magnetic axis of ρ = 0 is imposed for the profiles and heat diffusivity [76],

while the Neumann or Dirichlet condition is selected at the plasma edge of ρ = 1,

depending on the problem.

Because of the implicit treatment to solve Eq. (4.2), a convergence criteria ϵT

is necessary to ensure the calculation accuracy. Here, we consider ϵT = 0.01 for

the maximum residual error in Ts(ρ, t) at each time step.

4.4 Numerical verification of AGITO
In this section, numerical verifications of newly developed AGITO are pre-

sented. First, the convergence of the turbulent diffusivity profile regarding the

number of gyrokinetic calculation points in the radial direction is investigated.

Secondly, global profile evolutions under the stationary heating are examined, as

well as including the heating power scan.

The initial conditions of kinetic profiles, safety factor profile, and heating pro-

file are summarized in Fig. 4.2. Here, since the electron response is assumed to be

adiabatic, the particle transport does not occur. Thus, the density profile is fixed

in time. The turbulent diffusivity is evaluated by the simplified transport model in

Eq. (3.8). We consider a tokamak configuration which is same as considered in

Chap. 2 and Chap. 3. The heating and magnetic fields are assumed to be station-

ary. The Dirichlet boundary is imposed at the plasma edge of ρ = 1. The time step

of global transport solver is assumed as ∆t = 1 msec, which is determined such
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that ∆t is enough smaller than the energy confinement time, but enough larger

than the characteristic time scale of turbulence in the order of 1/γ. Therefore, the

turbulent transport level is treated to be constant within ∆t.
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Fig. 4.2: Initial profiles of (a) ion temperature, (b) ion temperature gradient, (c) electron
density, (d) electron density gradient, (e) safety factor, and (f) heating flux.
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4.4.1 Radial resolution of turbulent transport calculations

In AGITO, the turbulent diffusivity is evaluated by several local simulations

distributed in the radial direction. Then, the global profile is obtained by Akima

interpolation. In this subsection, the convergence regarding the number of gyroki-

netic calculation points is examined.

The number of gyrokinetic calculation points in the radial direction can be

regarded as the radial resolution of the turbulent transport profile. To understand

the convergence regarding the resolution, a comparison of the turbulent heat dif-

fusivity profile evaluated by varying the number of local gyrokinetic simulations

is performed. The comparisons are made by calculating one time step from the

initial profile. The local simulations of 5, 9, and 17 points are distributed in equal

spacing from ρ = 0.1 to 0.9. As shown in Fig. 4.3, the turbulent diffusivity

profiles are almost identical, regardless of the number of local simulations in the

radial direction. It should be noted that Akima interpolation is not applicable for

ρ < 0.1 and ρ > 0.9 since there are no gyrokinetic calculation in those regions.

Then, the extrapolation is performed such that the transport flux is zero at the mag-

netic axis of ρ = 0. On the other hand, on the boundary side, the value is assumed

to be constant toward the plasma edge of ρ = 1 In the following, 9 points calcu-

lation is employed from the view point of the both resolution and computational

cost.
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Fig. 4.3: Comparison of the turbulent diffusivity profiles for the cases with different num-
ber of local simulations. The symbols and lines represent gyrokinetic calcula-
tions and interpolated data, respectively.

4.4.2 Global transport simulation with stationary heating

In this subsection, we discuss the numerical verifications of AGITO in terms of

global profile evolutions towards the power-balanced steady state with and with-

out heating. As shown in Fig. 4.4, three heating flux profiles, which are constant

in time, are considered, i.e., decaying simulation with zero heating, 5MW station-

ary heating, and 8MW case. The total heating power (in MW unit) is obtained by

the volume integral of the heating flux profile. Any sink regions are not considered

in these simulations, and Dirichlet boundary condition is imposed at the plasma

edge. We also assume that the heating flux is totally absorbed in the plasma with-

out any losses.
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Fig. 4.4: Heating flux profiles for stationary heating simulations

Figure 4.5 shows the spatio-temporal profile evolutions in the case without

the external heating. The initial profiles continuously decay in time, and eventu-

ally relax into a critical state where the turbulent transport vanishes, as expected.

Then, the temperature profile is determined by the marginal condition of the lin-

ear ITG instability , i.e., R/LT ≤ R/LT |crit., when the neoclassical transport is

negligibly small compared to the turbulent transport. Indeed, one can see that the

heat diffusivity profile χi significantly decays at t = 0.5, but not strictly indicates

the zero state. It still needs a time for fully relaxed state. From the simulation

results, the temperature gradients R/LT for the inner core region of ρ = 0.25, 0.5

at t = 0.5sec are evaluated as 4.76, 4.66, respectively. These values are consis-

tent with the ITG critical gradients R/LT |crit. calculated from the local nonlinear

gyrokinetic simulation as discussed in Chap. 2. For the outer core region of

ρ = 0.6, 0.75, we observe R/LT as 4.97 and 5.83, respectively, which is slightly

larger compared to that in the ITG critical gradients. The difference is attributed

to the fact that the temperature profile is not yet a fully relaxed state with vanished

turbulent transport. It is noted that the time evolution of the bootstrap current
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is determined by the neoclassical transport coefficient and the pressure gradient

profile that is dominantly determined by the turbulent transport.

(a)

(b)

(c)

(d)

(e)

(f)

Fig. 4.5: Spatio–temporal evolution of the profiles in decaying transport simulation with-
out heating. (a) ion temperature, (b) turbulent heat diffusivity, (c) τZF defined
by Eq. (3.2), (d) ion temperature gradient, (e) bootstrap current, (f)heating
flux(constant in time).

As for the cases with stationary heating, the spatio-temporal profile evolutions

in 5MW heating are shown in Fig. 4.6. Unlike the previous decaying simulations,

one finds a significant drive of the turbulent transport. In this case, the profiles

quickly develop towards a steady state that the total transport flux is balanced

with the external heating flux. This is confirmed from the integrated heating flux

profiles at t = 0.4sec, as shown in Fig. 4.7. One also finds the large τZF in the

inner core region, where the strong generation of zonal flows is expected. It is

noted that the fine oscillations of τZF is attributed to a numerical oscillation of the

ITG growth rate γmax, which appears in the integral interval of τZF in Eq. (3.2) in

the inner core region. Indeed, since the ITG instability becomes marginal around

the magnetic axis, the numerical convergence for the growth rate tends to de-
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grade in the initial–value gyrokinetic solver. This will be improved by using more

long–time linear gyrokinetic simulations or imposing more elaborate convergence

criteria.

(a)

(b)

(c)

(d)

(e)

(f)

Fig. 4.6: Spatio–temporal evolution of the profiles in decaying transport simulation with
5MW heating. (a) ion temperature, (b) turbulent heat diffusivity, (c) τZF de-
fined by Eq. (3.2), (d) ion temperature gradient, (e) bootstrap current, (f)heating
flux(constant in time).
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4.6.

The results of 8MW heating simulation are shown in Fig. 4.8, where a quali-

tatively similar time evolution of the profiles compared to 5MW case is observed.

The power balanced steady temperature profiles and turbulent diffusivity profiles

evaluated at t=0.4sec are compared in Fig. 4.9. One can see a physically reason-

able tendency of the heating power dependence of the steady temperature profiles.

Note that the increaseing temperature gradient around the plasma edge is resulting

from the Dirichlet boundary condition, i.e., Ti(ρ = 1, t) = Ti(ρ = 1, 0). Although

the numerical verification is successfully confirmed, further validations with com-

parisons to the experiments are needed to confirm the quantitative reproducibility

in further works. It is also noted that the physical effect of zonal flows is taken

into account in the simplified transport model constructed in Chap. 3, and cannot

be reproduced by a turbulent transport model that ignores nonlinearities [23–27],

especially in near–marginal stability regimes around the magnetic axis of ρ ∼ 0.1.
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Fig. 4.8: Spatio–temporal evolution of the profiles in decaying transport simulation with
8MW heating. (a) ion temperature, (b) turbulent heat diffusivity, (c) τZF defined
by Eq. (3.2), (d) ion temperature gradient, (e) bootstrap current, (f) heating
flux(constant in time).
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Chapter 5

Impacts of background variations

on profile formation

5.1 Introduction
As a powerful approach to study the global transport and profile formation

in fusion plasmas, global full–f gyrokinetic simulations have been developed.

Then, the various non–local dynamics of turbulent transport, including the radial

electric fields [77, 78], avalanche [79–82], and ballistic propagation of fluctua-

tions [83–85] has been revealed. Since such global simulation requires the huge

computational cost, the comprehensive scan of the various heating scenarios is

still limited. Also, the macroscopic background quantities such as the heating and

confinement magnetic fields have been assumed to be stationary.

In burning plasmas, not only the global turbulence dynamics described above,

but also spatio-temporal variations of the background quantities coupled with tur-

bulent transport through the pressure profile formation are expected. In order to

explore such unrevealed interactions between the turbulent transport and the varia-

tions of heating and magnetic fields, a novel co–simulation for the global transport

analysis, AGITO, was developed. The numerical verifications with the stationary

heating were discussed in Chap. 4. Then, this chapter presents the AGITO cal-
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culations for primitive cases with (i)heating power variation or (ii)magnetic field

variation, which can interact with the turbulent transport and profile formation.

The rest of this chapter is organized as follows. The AGITO simulation results

with background variations are presented in Sec. 5.2. Some further discussions

for more practical problems are given in Sec. 5.3.

5.2 AGITO simulation with background variations
Impacts of background variations on global transport and profile formation

are investigated by means of AGITO, where the temporal variations of the heating

power and magnetic fields are treated as sinusoidal modulations. In this study,

to elucidate the fundamental impacts from the modulations, an analytic time de-

pendence is imposed to the modulation without any feedback from the kinetic

profiles. The other simulation conditions are assumed to be the same as in Sec.

4.4.

5.2.1 Heating power modulation

In this subsection, the impact of the heating power modulation is investigated.

The temporal variation of the heating power PH(t) is given by the following ex-

pression:

PH(t) = (1 + λHsin(2πωHt))Pave, (5.1)

where, λH , ωH, and Pave correspond to the modulation amplitude, the modulation

frequency, and the average heating power, respectively. Table 5.1 summarizes the

values used in the present simulations. Except for the amplitude, the radial profile

of the heating density is the same as in Sec. 4.4.

The simulation results of heating power modulation in case 1 to 4 are shown
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Table 5.1: Parameters for heating power modulation

λH ωH [sec−1] Pave[MW]
case 1 0.4 5 5
case 2 0.4 10 5
case 3 0.4 100 5
case 4 0.6 5 5
case 5 0.4 5 8

in Figs. 5.1 to 5.4, respectively. Note that, in order to highlight the fluctuation

components, the steady–state profile in the stationary 5MW heating (Fig. 4.6) is

subtracted from the contour maps in the figures. The result of the case 5 is shown

in Fig. 5.5, where the similar subtraction is applied with the steady–state profile in

the stationary 8MW heating(Fig. 4.8). The fluctuation component is expressed by

the symbol ∆ for each physical quantity. For example, the fluctuation component

of ion temperature ∆Ti(ρ, t) is defined as

∆Ti(ρ, t) = Tmod.
i (ρ, t)− T steady

i (ρ). (5.2)

Here, Tmod.
i and T steady

i correspond to the ion temperature in the heating power

modulation case and the steady–state profile in the steady heating case, respec-

tively. The steady profile T steady
i is evaluated at t = 0.4sec in the steady heating

case, as shown in Fig. 4.9. It is found that, in all cases, the physical quantities are

affected by the heating power modulation involving a time delay. Focusing this

point, Fig. 5.6 shows the time evolutions of the heating density, ion temperature,

and turbulent diffusivity at ρ = 0.2 in the cases of heating frequencies ωH = 5

and 10. We can see that the negative phase shift, i.e., time delay, against the si-

nusoidal heating modulation becomes large for the turbulent diffusivity following

the ion temperature. Note also that the time delay indicates a radial dependence.

Especially in the inner core region, we can see a moderate radial propagation of

the turbulent diffusivity in the case 1, 2, and 4. In the case 3 with higher frequency

modulation, the fluctuation amplitude is relatively small compared to that in the
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cases with lower frequency. This suggests the existence of an upper limit for the

heating modulation frequency to be responded by the other physical quantities.

The time delays and frequencies of temperature profiles and turbulent diffusivity

at ρ = 0.2(inner core) and ρ = 0.5(mid–radius) are summarized in Tabs. 5.2

and 5.3. Here, the time delay and frequency for the turbulent diffusivity and ion

temperature are denoted by ∆tχ, ∆tT , ωχ and ωT , respectively. Note that these

parameters are normalized by the heating modulation frequency ωH. First, we find

that the normalized frequencies ωχ/ωH and ωT/ωH show the almost unity for both

the inner core and mid–radius regions, indicating that the period of the fluctuating

quantities matches with the heating power modulation. On the other hand, as for

the time delay, we can see a significant difference between ∆tχωH and ∆tTωH,

where a drastic change appears in the turbulent diffusivity depending on the mod-

ulation scenario. In particular, we observe that the time delay of heat diffusivity in

the inner core region is larger than mid–radius, corresponding to the propagation

of heat diffusivity from the edge side to the core region. In case 3, such propaga-

tion becomes less significant compared to the temporal variation of the heating,

resulting in a relatively larger normalized time delay.
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(f)

Fig. 5.1: Spatio-temporal evolutions in heating modulation with case 1, where the fluctu-
ation component is displayed. Amplitude, frequency, and average heating power
are, λH = 0.4, ωH = 5sec−1, and Pave = 5MW , respectively. (a) heating den-
sity, (b) ion temperature, (c) turbulent diffusivity, (d) zonal–flow decay time, (e)
ion temperature gradient, (f) bootstrap current.
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(f)

Fig. 5.2: Spatio-temporal evolutions in heating modulation with case 2, where the fluctu-
ation component is displayed. Amplitude, frequency, and average heating power
are, λH = 0.4, ωH = 10sec−1, and Pave = 5MW , respectively. (a) heating den-
sity, (b) ion temperature, (c) turbulent diffusivity, (d) zonal–flow decay time, (e)
ion temperature gradient, (f) bootstrap current.
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Fig. 5.3: Spatio-temporal evolutions in heating modulation with case 3, where the fluctu-
ation component is displayed. Amplitude, frequency, and average heating power
are, λH = 0.4, ωH = 100sec−1, and Pave = 5MW , respectively. (a) heating
density, (b) ion temperature, (c) turbulent diffusivity, (d) zonal–flow decay time,
(e) ion temperature gradient, (f) bootstrap current.
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Fig. 5.4: Spatio-temporal evolutions in heating modulation with case 4, where the fluctu-
ation component is displayed. Amplitude, frequency, and average heating power
are, λH = 0.6, ωH = 5sec−1, and Pave = 5MW , respectively. (a) heating den-
sity, (b) ion temperature, (c) turbulent diffusivity, (d) zonal–flow decay time, (e)
ion temperature gradient, (f) bootstrap current.
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(f)

Fig. 5.5: Spatio-temporal evolutions in heating modulation with case 5, where the fluctu-
ation component is displayed. Amplitude, frequency, and average heating power
are, λH = 0.4, ωH = 5sec−1, and Pave = 8MW , respectively. (a) heating den-
sity, (b) ion temperature, (c) turbulent diffusivity, (d) zonal–flow decay time, (e)
ion temperature gradient, (f) bootstrap current.
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Table 5.2: Normalized time delay and frequency at ρ = 0.2

case 1 case 2 case 3 case 4 case 5

∆tχωH 0.25 0.36 0.60 0.26 0.21

∆tTωH 0.16 0.21 0.20 0.15 0.15

ωχ/ωH 1.04 0.99 1.0 1.01 1.10

ωT/ωH 1.03 1.0 1.0 1.02 1.07

Table 5.3: Normalized time delay and frequency at ρ = 0.5

case 1 case 2 case 3 case 4 case 5

∆tχωH 0.16 0.20 0.20 0.155 0.14

∆tTωH 0.16 0.20 0.20 0.16 0.14

ωχ/ωH 1.01 1.01 1.0 1.02 1.09

ωT/ωH 1.03 1.02 1.0 1.01 1.08
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Fig. 5.6: Time evolution of physical quantities at ρ = 0.2 for heating frequency ωH = 5
and 10. (a) heating density, (b) ion temperature, (c) turbulent diffusivity.

For comparisons with the stationary heating case, the time evolution of ion

temperature at ρ = 0.2 and 0.5 is shown in Fig. 5.7. We can see that the case

2 and 4 indicate a stronger deviation from the stationary heating case, while the

other cases show oscillation around the stationary heating case. Although the

deviation amplitude is not so large in the present simulation settings, the above

feature appears in the time-averaged temperature profile t ≥ 0.2sec, as shown in

Fig. 5.8.
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Fig. 5.7: Time evolution of ion temperature (a) at ρ = 0.2, Pave = 5MW, (b) at ρ = 0.2,
Pave = 8MW, (c) at ρ = 0.5, Pave = 5MW, and (d) at ρ = 0.5, Pave = 8MW.
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Fig. 5.8: Time averaged temperature profiles in a time window of t ≥ 0.2sec, (a) Pave =
5MW, and (b) Pave = 8MW.
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5.2.2 Magnetic field modulation

In this subsection, magnetic field modulation is considered. Since the geome-

try of confinement magnetic fields has stronger impacts on the transport dynamics

in comparison to the heating modulation, we first start to treat the sinusoidal mod-

ulation of the several metric tensor components rather than directly varying the

whole magnetic fields. Here, the three components in the metric tensor gxx, gxy,

and gyy are modulated by the following expression,

gij(t) = (1 + λBsin(2πωBt)) g
ij
ave, (5.3)

where (i, j) = {(x, x), (x, y), (y, y)}. The metric tensor gij is defined by the

contravariant basis vector ei, gij ≡ ei·ej(i, j = {x, y, z}), and (x, y, z) represents

the fluxtube coordinates in the toroidal magnetic geometry. The magnetic field

strength and the metric tensor components satisfy the following relation,

B = RB0 (1 + λBsin(2πωBt))
(
gyyaveg

xx
ave − (gxyave)

2) 1
2

= CB(t)
(
gyyaveg

xx
ave − (gxyave)

2) 1
2 , (5.4)

where, CB(t) ≡ RB0 (1 + λBsin(2πωBt)) is the modulation coefficient of mag-

netic field. Thus, the periodic modulation in the three metric tensor components

yields the periodic modulation in the magnetic field intensity as well. The condi-

tions of the magnetic modulation are summarized in Tab. 5.4. Here, the heating is

treated to be stationary in 5MW.

Table 5.4: Parameters for magnetic modulation

λB ωB [sec−1]
case 1 0.3 5
case 2 0.3 10
case 3 0.3 100

The simulation results for cases 1 to 3 are shown in Figs. 5.9 to 5.11, respec-
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tively. As in Sec. 5.2.1, the fluctuating components are displayed by subtracting

the steady–state profiles in the case with stationary heating. Unlike the heating

power modulation, one finds complicated spatio–temporal evolutions rather than a

simple sinusoidal response. Nevertheless, the turbulent diffusivity and zonal–flow

decay time are periodically suppressed or enhanced. It is noted that the fluctua-

tion amplitude of τZF is larger in comparison to that in the heating power mod-

ulation case. This is because the zonal-flow response is nonlinearly influenced

by the magnetic geometry [86, 87]. As a result, relatively stronger transport sup-

pression occurs in the magnetic modulation cases. It is however noted that some

discontinuous–like behaviors are also observed in, e.g., the temperature gradient

and bootstrap current, and one needs to optimize the numerical conditions (time

step, radial resolution, etc. ) to examine them.

The time evolution of the ion temperature for ρ = 0.2 and 0.5 is shown in

Fig. 5.12, where the stationary heating case is also displayed for comparison. It is

found that, in all cases, the time evolution of ion temperature in the magnetic mod-

ulation cases much deviates from the stationary heating case. This point is also

reflected in the time-averaged temperature profile shown in Fig. 5.13, where al-

most similar profiles are observed in the magnetic modulation cases regardless of

ωB. Even though fully consistent modulations of the whole confinement magnetic

fields are not treated in the present study, the simulation results imply a nonlin-

ear impact of the magnetic modulation on the transport reduction to improve the

thermal confinement.
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(a)

(b)

(c)

(d)

(e)

(f)

Fig. 5.9: Spatio-temporal evolutions in magnetic modulation with case 1, where the fluc-
tuation components are displayed. Amplitude, frequency, and average heating
power are, λB = 0.3, and ωB = 5sec−1, respectively. (a) modulation coefficient
of magnetic field, (b) ion temperature, (c) turbulent diffusivity, (d) zonal–flow
decay time, (e) ion temperature gradient, (f) bootstrap current.
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(a)

(b)

(c)

(d)

(e)

(f)

Fig. 5.10: Spatio-temporal evolutions in magnetic modulation with case 2, where the fluc-
tuation components are displayed. Amplitude, frequency, and average heating
power are, λB = 0.3, and ωB = 10sec−1, respectively. (a) modulation co-
efficient of magnetic field, (b) ion temperature, (c) turbulent diffusivity, (d)
zonal–flow decay time, (e) ion temperature gradient, (f) bootstrap current.
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(a)

(b)

(c)

(d)

(e)

(f)

Fig. 5.11: Spatio-temporal evolutions in magnetic modulation with case 3, where the fluc-
tuation components are displayed. Amplitude, frequency, and average heating
power are, λB = 0.3, and ωB = 100sec−1, respectively. (a) modulation co-
efficient of magnetic field, (b) ion temperature, (c) turbulent diffusivity, (d)
zonal–flow decay time, (e) ion temperature gradient, (f) bootstrap current.
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Fig. 5.12: Time evolution of ion temperature at (a)ρ = 0.2 and (b)ρ = 0.5 with the
magnetic modulation.
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Fig. 5.13: Time averaged temperature profiles in a time window of t ≥ 0.2sec, with the
magnetic modulation.
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5.3 Discussion
In this chapter, a new global transport simulation based on the co–simulation

framework and the simplified turbulent transport model is presented. Then, the

impacts of the temporal modulation in the heating power and the magnetic fields

on the turbulent diffusivity, zonal-flows, and pressure profiles are investigated.

Although the modulation considered here, which is analytically given, is not in-

fluenced by the feedback from the pressure profile formation, the several funda-

mental behaviors in the global transport with background variations are revealed

as follows:

(i) Profile formation responds to the heating power modulation, where the time

delay appears depending on the modulation frequency.

(ii) A slight radial propagation of turbulent thermal diffusivity was observed.

(iii) An increase in the average temperature profile was observed in the case with

heating power modulation.

(iv) Temporal modulation of the magnetic field directly affects turbulent thermal

diffusivity and zonal flows.

(v) Non–sinusoidal temperature profile response is found even in the case with

sinusoidal magnetic field modulation.

In the present analysis, we consider separately the heating modulation and

magnetic modulation, and the different magnitude of fluctuation amplitude are

observed in the physical quantities. It should be noted that these two modulation

effects are not independent, but couple each other through the variation of the

bootstrap current determined by the pressure profile evolution. To evaluate the

consistent magnetic modulation from the bootstrap current, one needs to couple

the MHD equilibrium solver with AGITO by utilizing MPMD advantages. Also,
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the magnetic modulation can be extended to the 3-dimensional variations which

are inspired from the RMP control magnetic coils and fully 3-dimendional stel-

larators.

Since the pressure profile evolution depends not only on the temperature pro-

file but also the density profile, the extension of incorporating the turbulent particle

transport and the fueling modulation effects is another important task. There are

many capabilities to explore the new scenarios of the global profile evolution with

background variation in fusion burning plasmas by these extensions. These issues

will be addressed in future works.

The AGITO code is based on the local gyrokinetic model connected through

the radial diffusion of the temperature profile. When increasing the number of

local gyrokinetic calculations with enough small time steps, non–local turbu-

lent transport is expected to be more significant. In particular, comparing such

results with global full–f simulation results can highlight the origin of turbu-

lence locality/non–locality. The transient behavior of non–local turbulence and

its relationship to the internal transport barrier(ITB) formation has also been sug-

gested [88], and such dedicated comparisons to explore new physical insights to

control the turbulent transport.
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Chapter 6

Summary

One of the most important issues in fusion plasma research is to clarify global

dynamics of turbulent transport and profile formations. Particularly, the impacts

of background variation on the global transport dynamics, which is expected in

burning plasmas, are still unclear. For instance, the background variation appears

as a spatio–temporal variation of the heating, fueling, and confinement magnetic

fields, which is strongly coupled with the pressure profile evolution in plasmas.

The conventional approaches based on the integrated transport simulation or the

global full–f gyrokinetic simulation have often ignored this point.

In this study, a novel global transport simulation code, AGITO, is developed

by utilizing the co–simulation framework, where discretely distributed local gy-

rokinetic calculations are directly coupled with a 1–D transport calculation to

solve the time evolution of kinetic profiles. An extended simplified modeling of

the ITG driven turbulent transport and zonal flows, which enable us to accurately

evaluate the nonlinear gyrokinetic simulation results, plays a crucial role in the es-

tablishment of the new global transport simulation mentioned above. This simpli-

fied transport model introduces a zonal–flow decay time related to the correlation

time between zonal–flow and turbulence, which has not been considered in the

previous fluid–based models such as TGLF [24]. In addition to the phenomeno-

logical arguments, mathematical optimization techniques are utilized to identify
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an optimal formula for the simplified turbulent transport model. By means of

AGITO, which solves global profile evolutions based on the co-simulation frame-

work, several new findings on the impacts of the heating power modulation and

the magnetic modulation on the turbulent transport are obtained in this study.

Highlighted findings are summarized as follows:

(i) A nonlinear functional relation(NFR), which describes a phenomenological

functional relation among the turbulent diffusivity, turbulence intensity, and

zonal–flow intensity observed in the nonlinear gyrokinetic ITG turbulence

simulation, has successfully been identified by means of mathematical op-

timization techniques.

(ii) A novel simplified turbulent transport model based on the NFR has been

constructed by further modeling of the turbulence intensity and zonal–flow

intensity with quantities in the linear gyrokinetic calculations. It reproduces

the results of nonlinear simulations from linear calculations and signifi-

cantly reduces computational costs. An improved reproduction accuracy

for a wider parameter range including near– and far–marginal ITG stability

has also been verified.

(iii) A new global transport simulation, AGITO, has been developed by utilizing

a co–simulation framework with the simplified turbulent transport model

developed above. The numerical verification of AGITO is successfully

confirmed by global ITG–driven turbulence simulations with the stationary

heating.

(iv) The impacts of the heating power modulation and background magnetic

modulation on the global profile evolutions in turbulent plasmas have been

also investigated. A significant deviation from the cases with the station-

ary heating has been identified. In some cases, heating power modulation

causes an increase in the temperature profile even though the average heat-

ing power remains the same.
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There are still some capabilities of extending the present study. Here, we fo-

cused on the simplified modeling of the local turbulent heat diffusivity, but the

simultaneous modeling with the turbulent particle transport is an important task

for more quantitative predictions including the density profile evolution. Also, the

consideration of electromagnetic turbulence appearing in high–beta plasmas is an-

other work to be addressed. As for the AGITO, some optimizations of numerical

scheme including more robust convergence criteria are necessary to enhance the

applicability to wider practical problems e.g. magnetic field modulation driven

by bootstrap currents. As discussed in Sec. 5.3, the self–consistent coupling

between background variation and the pressure profile evolution through the tur-

bulent transport should be incorporated in future works. We expect that these new

frameworks on the modeling and simulation contribute to explore further possi-

bilities of the plasma confinement in the burning plasmas.
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