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L H ¢ Identification of Importance-Weighting and Geodesics on Statistical Manifolds

A set of probability distributions forms a Riemannian manifold, namely, the statistical manifold. By studying
the geometric properties of this statistical manifold, we can expect to gain various insights. The framework for
analyzing the geometric properties of statistical manifolds, known as information geometry, is notably used in
various applied studies.

Within the framework of information geometry when considering statistical procedures, we can identify
several statistical concepts with geometric objects, which leads to a deeper understanding of statistical
procedures, improvements to existing methods, and geometrically natural generalizations of algorithms. In this
study, we demonstrate the equivalence between the weighting of probability distributions and the selection of
curves on a manifold. Furthermore, we show that this identification leads to the following two generalizations:
(i) a generalization of algorithms designed to handle differences in the distribution of input variables between
training and testing data, known as the covariate shift adaptation, and (ii) a generalization of a stable version of
a divergence, known as the skew divergence, used to measure differences between probability distributions. In
the following, we introduce the background for each problem setting.

In this study, we particularly focus on supervised learning, which is an approach that uses pairs of input data
and output labels to learn the rules between inputs and outputs. Supervised learning aims to acquire a function
that best approximates the relationship between input vectors and outputs using pairs of input vectors and
corresponding outputs as labeled training data. Since he procedures of supervised learning algorithms all
depend on the provided training dataset, the similarity in distribution between the training and test data seems
to be a necessary assumption in supervised learning. As a stronger assumption, the well-known independent
and identically distributed (i.i.d.) assumption is often imposed, requiring the independence of each instance.
Supervised learning, which optimizes with respect to the empirical risk of the training data, is often formulated
within the framework of empirical risk minimization (ERM). The reason why it can be concluded that ERM
works well is that this framework exhibit statistically desirable properties namely consistency and
unbiasedness. These properties are based on the i.i.d. assumption between the training and test data.

However, such assumptions are often violated in real-world problem settings. The situation where the
distributions of the training and test datasets differ is referred to as distribution shift, also known as dataset
shift. The covariate shift assumption is one of the problem settings within the context of distribution shift.
Covariate shift assumes that the marginal distributions of input vectors between the training and test data are
different. The most fundamental strategy for covariate shift adaptation is importance weighting. The key idea
behind importance weighting is to adjust the weights of data points, assigning lower weights to the data
generated from the training distribution and higher weights to the data generated from the test distribution, to
perform parameter estimation effectively. The most typical weighting is based on the density ratio between the
training distribution and the test distribution. Moreover, for reasons such as stability and model constraints,
several variants exist. In this study, we focus on the observation that a certain group of these covariate shift
adaptation methods can be identified with a collection of geometric objects on the statistical manifold formed
by sets of probability distributions. We demonstrate that the selection of covariate shift adaptation methods can
be identified with the choice of curves that connects the training and test distributions.

Through this identification, we introduce the pair of parameters that determine the shape of the curve and its
position on the curve. This enables us to generalize multiple covariate shift adaptation methods. Furthermore,
we experimentally demonstrate that the performance of the trained model changes relatively smoothly with
variations in these parameters. On the basis of these observations, we show that through appropriate parameter
optimization, our generalized covariate shift adaptation outperforms existing methods in terms of performance.

Moreover, we introduce that the equivalence between weighting and curves on the manifold leads to a
generalization of divergence. Here, in statistics, divergence refers to a type of pseudo-distance used to evaluate
the differences between probability distributions. The term pseudo-distance is used because divergence does
not satisfy symmetry or triangle inequality. In particular, one of the most important divergences in statistics



and machine learning is the KL-divergence. The KL-divergence plays a central role in many contexts. For
instance, cross-entropy, which commonly appears as an objective function in machine learning, is closely
related to the KL-divergence. Mathematically, the KL-divergence is given as the expectation of the logarithm
of the density ratio of two probability distributions with respect to one of the distributions. Owing to the
inclusion of the density ratio in its definition, the KL-divergence has the potential to diverge to infinity if there
is a discrepancy in the supports of the two probability distributions. Furthermore, there are cases in which the
asymmetry of the KL-divergence becomes problematic. To address these limitations, there are various variants
and symmetrizations of the KL-divergence.

The skew divergence is one of the variants of the KL-divergence and has numerous applications. The skew
divergence addresses the issue of the KL-divergence by using a weighted average of the densities of the two
distributions as the denominator, which alleviates the problem of divergence to infinity that was present in the
KL-divergence. Here, we introduce how the generalization of the skew divergence can also be derived through
the equivalence between averaging operations and the selection of curves on the manifold. This generalization
exhibits the properties that the divergence should satisfy.

In Chapter 3, we introduce the generalization of covariate shift adaptation methods from the viewpoint of
information geometry. The main contributions of this chapter are: (i) generalization of a class of covariate shift
adaptation algorithms by identifying importance weighting and the selection of the curve connecting the
training distribution and the test distribution, (ii) geometric interpretation of algorithms through generalization
(e.g., an algorithm called Adaptive Importance Weighted ERM connects two distributions with a straight
curve), and (iii) improvement of existing methods through optimization of parameters introduced by
generalization. In Chapter 4, we generalize the skew-divergence family on the basis of the identified weighting
and geodesics. In this chapter, we show that generalized skew divergence satisfies several properties that make
it desirable as a divergence.
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