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Abstract

Positive definite kernels play a significant role in modern machine learning. Kernel
methods opened up possibilities for analyzing complex data that may be governed
by nonlinear structure because of the rich representational power and nice theoretical
properties. Intuitively a positive definite kernel realizes nonlinear data processing
on the input space in which data points are located by determining a metric on a
possibly infinite-dimensional space. Related to the kernel methods, probabilistic models
characterized by a positive definite kernel have also attracted attention. Gaussian
processes (GPs) and determinantal point processes (DPPs) fall into these models. These
models offer choices of methodologies for dealing with complex data as well as the
kernel methods. This dissertation addresses the following two topics about probabilistic
models with a positive definite kernel:

(i) We propose a GP-based generative model for multivariate time-series data via a
physics approach and developing an efficient inference method for the model.

(ii) We develop a simple and fast learning method for DPPs.

For (i), we propose a nonlinear and probabilistic generative model of Koopman
mode decomposition (KMD) based on the framework of unsupervised GPs. Differential
equations appear in many fields of science, including materials science, geophysics,
epidemiology, and social informatics. In these fields, multivariate time-series data
governed by an unknown differential equation is sometimes obtained, and we may want
to know about the underlying dynamics. One of the factors that make the estimation
problem of the underlying dynamics difficult is nonlinearity. Through KMD, nonlinear
dynamics on a finite-dimensional space is lifted into an infinite-dimensional space in
which the dynamics behaves linearly. That leads concrete algorithms to find the modes
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characterizing the dynamics, such as dynamic mode decomposition (DMD). While
DMD and other related algorithms have been successful in many fields, resulting values
yielded by the algorithms are sometimes not very easy-to-interpret. On the other hand,
our model makes it possible to estimate the physical quantities associated with the
Koopman modes and the (low-dimensional) latent variables simultaneously by taking an
approach of generative modeling. Our model is the first to give a way to estimate KMD
latent variables, and we show the usefulness through some numerical experiments with
both of synthetic and real-world datasets. Moreover, we develop a scheme that reduces
the computational complexity to learn our model for scalability.

For (ii), we develop a fast, stable, and simple learning rule for DPPs on the basis of
MM (minorization-maximization) algorithms, which increases the objective values
monotonically. DPPs are powerful probabilistic models that generate random subsets
with diverse items from a ground set. For example, let us consider a recommender
system on an e-commerce site in which a variety of home appliances are handled. Then,
the purchasing histories can be regarded as samples of a DPP on the finite ground set,
which consists of all the products handled by the site. Now, we may want to assume that
“rarely do consumers buy more than one refrigerator at a time,” or more conceptually:
“a random subset tends not to have similar items simultaneously.” Such a concept
is called negative dependence, and DPPs take it into account. Since the similarities
between items are parameterized as a kernel matrix in DPPs on a finite set, the fitting
problem of DPPs becomes a problem of estimating a positive definite matrix. Although
some existing studies have addressed the problem, there is room for improving the
stability and speed of convergence. In this work, we show that the learning problem of
DPPs can be resulted in iterative solving of a continuous algebraic Riccati equation
(CARE), which is a solvable class of quadratic matrix equations. The monotonicity of
our algorithm follows the property of MM algorithms. We also develop an acceleration
technique for our algorithm by introducing a step size parameter whose value can be
determined adaptively in each iteration. We numerically compare our algorithm and
existing methods with synthetic and real-world data in experiments. Our algorithm
outperforms existing methods in convergence speed for most of the datasets, and we
additionally discuss what contributes the efficiency of our algorithm.

This dissertation is organized as follows. In Chapter 1, we give an introduction
motivating us to study probabilistic models parameterized by a kernel matrix. In Chapter
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2, we present technical preliminaries related to kernel methods, GPs, and DPPs. In
Chapter 3, we develop GPKMD based on Bayesian DMD. We show that Bayesian
DMD can be extended to a GP-based probabilistic generative model naturally. We also
propose a computational scheme to improve the time complexity of learning GPKMD.
Experimental results find that GPKMD can capture important dynamics from observed
data. In Chapter 4, we study an efficient and simple rule to learn full-rank DPPs. We
prove that maximum likelihood estimation of a DPP can be reduced to iterative solving of
some matrix quadratic equation by using MM algorithm. We also develop an accelerated
version of the algorithm which is no longer monotone increasing but possibly converges
faster. Numerical results on both synthetic and real-world datasets show our algorithm
outperforms existing methods. Finally, we give concluding remarks in Chapter 5.
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1
Introduction

The remarkable and rapid progress of information technology in recent years is beyond
dispute. One crucial factor contributing to this progress is the concept of “data
accumulation,” which has become a pillar alongside the evolution of hardware and
infrastructures and the sophistication of software for information processing over the
past quarter century. As a result, technological possibilities have taken a significant leap
forward. For instance, being stored diverse data, including multivariate time-series
histories for weather forecasting, purchase histories on e-commerce sites, and videos,
images, and texts shared on social media, a mathematical foundation for extracting
non-trivial knowledge from such complex-structured data becomes necessary. This
social background has driven the development of machine learning methodologies that
go beyond classical statistics.

What kind of data are difficult to handle using classical statistics? Now consider the
following three sentences:

• Seeing an aquarium is one of my hobbies.
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• I would like to see aquatic life.

• Tokyo is the greatest prefecture in Japan.

When we imagine a hypothetical space in which pairs of sentences with similar meanings
are placed closer together, it is guessed that “Seeing an aquarium is one of my hobbies”
and “I would like to see aquatic life” are closely located, while “Tokyo is the greatest
prefecture in Japan” is farther away from them. And we can have an intuition that
a difficulty lies in determining an appropriate origin in the space, namely, treating
natural languages as vectors (i.e., elements of a vector space) may not be appropriate.
This is one of the reasons that classical statistics is not applicable to modern complex
data. On the other hand, many machine learning algorithms essentially depend on only
pairwise similarities between data points. Even if an appropriate origin is undetermined,
quantifying similarities can suffice. In the example above, we may know that “Seeing
an aquarium is one of my hobbies” is similar to “I would like to see aquatic life,” but
dissimilar to “Tokyo is the greatest prefecture in Japan.”

Methods based on kernel functions explicitly leverage this concept of similarity. A
kernel function maps a pair of data points to the non-negative similarity value. Its shape
can be specified flexibly according to the structure of the problem. To be precise, this is
equivalent to determining the reproducing kernel Hilbert space (RKHS) which associates
with the feature map of the data points. The Gaussian kernel

𝑘 (𝒙, 𝒙′) = exp ©­«−
∥𝒙 − 𝒙′∥2

2ℓ
ª®¬ ,

where 𝒙, 𝒙′ ∈ X are the inputs in the input space X and ℓ > 0 is the hyperparameter, is
one of the most representative kernel functions. In the Gaussian kernel, the data points 𝒙
and 𝒙′ contribute to the value solely through their difference 𝒙 − 𝒙′, implying that the
input space X can be an affine space, which has no origin. Furthermore, by choosing
such a kernel which induces a nonlinear metric, we can handle nonlinear-structured data
with taking the higher moments into account. This is because by “kernelizing” linear
methods, data points are mapped to an infinite-dimensional feature space and then the
linear processing is applied in the feature space.

Methods associated with a kernel function are called kernel methods, and they have



3

been used to nonlinearize many machine learning algorithms since around 2000. Kernel
methods find application in various problem types including supervised/unsupervised
learning and classification/regression like support vector machines [Cortes and Vapnik,
1995], ridge regression [Shawe-Taylor and Cristianini, 2004, Chapter 7], and principal
component analysis [Schölkopf et al., 1997]. Nowadays the scope of kernel methods
extends beyond primitive extensions of linear algebraic techniques. Nonparametric
statistical tests of independence [Gretton et al., 2005], two-sample tests [Gretton et al.,
2012], and nonparametric variational inference [Liu and Wang, 2016] are the excellent
examples that exploit good mathematical properties of RKHSs.

Gaussian processes (GPs) are one of the probabilistic models characterized by
kernel functions. GPs are nonparametric stochastic processes on a function space
and can be seen as the probabilistic models of kernel methods in a sense. GPs can
be, therefore, seemlessly integrated into probabilistic modeling frameworks. While
functions following GPs take the value range (−∞,∞) in general, they can be flexibly
incorporated into probabilistic models in various ways:

• predict probabilities within (0, 1) through a logistic likelihood [Rasmussen and
Williams, 2008, Chapter 3]

• model intensity functions in Poisson point processes with exponential transforma-
tion which ensures non-negative values [Samo and Roberts, 2015].

Another notable advantage of GPs lies in their ability to quantify prediction uncertainty,
supporting many applications in engineering such as Bayesian optimization [Shahriari
et al., 2016].

Determinantal point processes (DPPs) are alternative probabilistic models character-
ized by a kernel function. A DPP generates random subsets from a universal set, and the
kernel function controls how the items co-occur within the subsets. Originating in the
field of statistical physics, DPPs have been introduced to describe the probabilistic
behavior of fermions in [Macchi, 1975]. While they initially piqued the interest of
mathematical physicists and probability mathematicians, DPPs later caught the attention
of mathematical engineers due to their attractive property called negative dependence,
which makes the random subsets tending not to have similar items simultaneously. Now
DPPs have gained attention in many application fields, including the machine learning
community inspired by the excellent review article [Kulesza and Taskar, 2012].
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Based on the background, we develop probabilistic methods stand on a kernel
matrix. As complexity of data increases, machine learning methods need to be more
interpretable. In this sense, probabilistic modeling has an advantage over deterministic
kernel methods. Since we usually build probabilistic models based on some prior
knowledge, the learning results may provide meaningful insight about the data. In
particular, this dissertation addresses the following two topics:

• We propose a GP-based generative model for multivariate time-series data via a
physics approach and an efficient inference method for the model.

• We develop a simple and fast learning method for DPPs.

We discuss these two topics based on the published papers [Kawashima and Hino, 2022,
2023], after presenting a technical introduction about kernel methods, GPs, and DPPs in
Chapter 2.

We propose a probabilistic generative model of multivariate time-series data with an
unsupervised GP in Chapter 3. Triggered by neural ODEs [Chen et al., 2018], many
researchers are addressing data-driven identification problems of unknown differential
equations, and these studies continue to evolve as part of physics-informed machine
learning (PIML) [Karniadakis et al., 2021]. Because differential equations and related
complex data appear in various fields of science, PIML methods have a wide range of
applications, including plasma physics [Mathews et al., 2021], materials science [Lu
et al., 2020], and geophysics [Zhu et al., 2021]. In particular, an approach known as
operator-theoretic data analysis aims to describe data generation processes dependent
on unknown differential equations using an operator such as a Koopman operator
[Mezić, 2005, Rowley et al., 2009, Schmid, 2010]. This approach transforms the
problem of finding a solution to the differential equation into a task of estimating
quantities characterizing the operator. Operator-theoretic data analysis starts with
viewing the nonlinear time evolution on a finite-dimensional space as a linear time
evolution on an infinite-dimensional space. This concept resembles the kernel methods
that perform nonlinear data processing by lifting the finite-dimensional data into an
infinite-dimensional RKHS. In fact, Kostic et al. [2022] have found a kind of duality
between Koopman operator regression and conditional kernel embedding. Inspired
by this similarity, we propose a nonlinear and probabilistic generative model for
operator-theoretic data analysis based on GPs.
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In Chapter 4, we develop an inference method for DPPs on a finite ground set on the
basis of MM (minorization-maximization) algorithms [Hunter and Lange, 2004, Sun
et al., 2017]. DPPs on a finite ground set are generally parameterized by a positive
semidefinite kernel matrix (Gram matrix) consists of pairwise similarities of the items.
From this tractable property, a finite ground set is likely to be considered while DPPs can
also be defined on an infinite set (possibly uncountable). Because DPPs have negative
dependence, by which dissimilar items tend to be yielded in random subsets, such an
approach can be applied to recommender systems for example; we may assume “rarely
do consumers buy more than one refrigerator at a time.” Currently the learning problem
of DPPs arises in somewhat limited applications such as recommendation [Gillenwater
et al., 2014], image search [Kulesza and Taskar, 2011], and document summarization
[Dupuy and Bach, 2018], but it is expected to have wider applications as DPPs become
more widespread in the machine learning community. Although some structure is often
assumed to a kernel matrix for reducing the computational cost [Gartrell et al., 2017,
Mariet and Sra, 2016, Dupuy and Bach, 2018], it may be preferred to give no specific
structure if we have no prior knowledge. We thus develop an algorithm for learning
DPPs without specific structure for the kernel matrix.

Chapter 5 concludes this dissertation. While our methods developed in this
dissertation show certain levels of effectiveness with numerical experiments, there is still
future work to be considered. The future directions of our study are also discussed in
Chapter 5.
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2
Preliminary

In this dissertation, we consistently consider probabilistic models characterized by a
kernel matrix. In this section, we introduce kernel methods and probabilistic models
associated with a kernel: Gaussian processes and determinantal point processes.

2.1 Kernel Methods

2.1.1 From Linear to Nonlinear: an Example on Kernel Ridge
Regression

We start from finite-dimensional multivariate analysis with an example on ridge
regression. Let {(𝒙𝑖, 𝑦𝑖)}𝑁𝑖=1 be the data consisting of 𝑁 pairs of points in X × Y, where
X ⊆ R𝐷 is the input space (including intercepts) and Y ⊆ R is the output space. Ridge
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regression learns a linear function 𝑓 (𝒙) = 𝒘⊤𝒙 by solving

min
𝒘∈R𝐷

𝑁∑︁
𝑖=1
(𝑦𝑖 −𝒘⊤𝒙𝑖)2 + 𝜆∥𝒘 ∥2, (2.1)

where 𝜆 ≥ 0 is the regularization parameter which controls the smoothness of 𝑓 . The
problem (2.1) has an analytic solution. With the input matrix 𝑿 = (𝒙1, . . . , 𝒙𝑁 )⊤ ∈ R𝑁×𝐷

and the output vector 𝒚 = (𝑦1, . . . , 𝑦𝑁 )⊤ ∈ R𝑁 , the solution is

𝒘 = (𝑿⊤𝑿 + 𝜆𝑰 )−1𝑿⊤𝒚 = 𝑿⊤(𝑿𝑿⊤ + 𝜆𝑰 )−1𝒚, (2.2)

where the second equality holds from the following identity (see Lemma 2 in [Welling,
2010])

(𝑷−1 + 𝑩⊤𝑹−1𝑩)𝑩⊤𝑹−1 = 𝑷𝑩⊤(𝑩𝑷𝑩⊤ + 𝑹)−1.

By plugging-in the solution (2.2), we can predict an output value 𝑦∗ corresponding to a
new input 𝒙∗ as

𝑦∗ = 𝒘⊤𝒙∗ = 𝒚⊤(𝑿𝑿⊤ + 𝜆𝑰 )−1𝑿𝒙∗. (2.3)

Since the prediction (2.3) depends only on the Euclidean inner products of the input
points, it can be rewritten as

𝑦∗ = 𝒚⊤(𝑲 + 𝜆𝑰 )−1𝒌∗, (2.4)

where

𝑲 =

©­­­­­«
⟨𝒙1, 𝒙1⟩ ⟨𝒙1, 𝒙2⟩ · · · ⟨𝒙1, 𝒙𝑁 ⟩
⟨𝒙2, 𝒙1⟩ ⟨𝒙2, 𝒙2⟩ · · · ⟨𝒙2, 𝒙𝑁 ⟩

...
...

. . .
...

⟨𝒙𝑁 , 𝒙1⟩ ⟨𝒙𝑁 , 𝒙2⟩ · · · ⟨𝒙𝑁 , 𝒙𝑁 ⟩

ª®®®®®¬
, (2.5)

𝒌∗ = (⟨𝒙1, 𝒙∗⟩, ⟨𝒙2, 𝒙∗⟩, . . . , ⟨𝒙𝑁 , 𝒙∗⟩)⊤, (2.6)

with the Euclidean inner product ⟨·, ·⟩.
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The inner product view of the ridge regression (2.3) motivates us to consider its
nonlinear generalization; kernel ridge regression uses a generally nonlinear similarity
measure 𝑘 : X × X → R, which is called the kernel function, in (2.5) and (2.6). By
choosing an appropriate kernel function and the regularization parameter 𝜆, the kernel
ridge regression produces a good nonlinear predictor 𝑓 : X → Y.

2.1.2 Fundamentals of Kernel Methods

In the previous subsection, we saw that the ridge regression is naturally generalized to be
nonlinear by the “kernelization.” Many other linear machine learning methods can also
be kernelized in similar manners. However, we need to introduce some mathematical
preparations to understand why, when, and how the kernel methods work.

A kernel method does not work with any kernel function. As seeing later, a kernel
function satisfying the following properties induces an appropriate inner product space.

Definition 2.1 (Positive definite kernel). A kernel 𝑘 : X × X → R is positive definite if

𝑘 (𝒙, 𝒙′) = 𝑘 (𝒙′, 𝒙) for any 𝒙, 𝒙′ ∈ X and

𝑁∑︁
𝑖, 𝑗=1

𝑐𝑖𝑐
∗
𝑗𝑘 (𝒙𝑖, 𝒙 𝑗 ) ≥ 0

for any 𝑁 ∈ N, 𝑐1, . . . , 𝑐𝑁 ∈ C, and 𝒙1, . . . , 𝒙𝑁 ∈ X, where 𝑐∗ denotes the complex

conjugate of 𝑐.

Definition 2.1 is equivalent to the kernel matrix (or Gram matrix)

𝑲 =

©­­­­­«
𝑘 (𝒙1, 𝒙1) 𝑘 (𝒙1, 𝒙2) · · · 𝑘 (𝒙1, 𝒙𝑁 )
𝑘 (𝒙2, 𝒙1) 𝑘 (𝒙2, 𝒙2) · · · 𝑘 (𝒙2, 𝒙𝑁 )

...
...

. . .
. . .

𝑘 (𝒙𝑁 , 𝒙1) 𝑘 (𝒙𝑁 , 𝒙2) · · · 𝑘 (𝒙𝑁 , 𝒙𝑁 )

ª®®®®®¬
(2.7)

being positive (semi-) definite for any 𝑁 ∈ N and 𝒙1, . . . , 𝒙𝑁 ∈ X. Given 𝒙 ∈ X, we
denote 𝑘 (·, 𝒙) as the function on X with the fixed second argument: 𝑘 (·, 𝒙) : 𝒙′ ↦→
𝑘 (𝒙′, 𝒙).

An inner product spaceH is called a Hilbert space if it is complete, that is, every
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Cauchy sequence inH has its limit also inH . In particular, the following reproducing
kernel Hilbert spaces are the stages on which kernel methods are based.

Definition 2.2 (Reproducing kernel Hilbert space [Saitoh and Sawano, 2016]). LetH be

a Hilbert space consisting of functions whose input space is X and denote the inner

product on H as ⟨𝑓 , 𝑔⟩H for 𝑓 , 𝑔 ∈ H . If there exists 𝑘 (·, 𝒙) ∈ H for any 𝒙 ∈ X that

satisfies

⟨𝑓 , 𝑘 (·, 𝒙)⟩H = 𝑓 (𝒙)

for an arbitrary 𝑓 ∈ H ,H is called the reproducing kernel Hilbert space (RKHS), and 𝑘

is called the reproducing kernel.

The following theorem states about the indivisible connection between a positive
definite kernel and an RKHS.

Theorem 2.3 (Moore–Aronszajn [Aronszajn, 1950, Berlinet and Thomas-Agnan, 2004,
Theorem 3]). For a positive definite kernel 𝑘 : X × X → R, there exists a unique RKHS

H of functions on X with the reproducing kernel 𝑘 .

Conversely, the reproducing kernel 𝑘 of an RKHSH is also a positive definite kernel
since

𝑁∑︁
𝑖, 𝑗=1

𝑐𝑖𝑐
∗
𝑗𝑘 (𝒙𝑖, 𝒙 𝑗 ) =

〈
𝑁∑︁
𝑖=1

𝑐𝑖𝑘 (·, 𝒙𝑖),
𝑁∑︁
𝑗=1
𝑐 𝑗𝑘 (·, 𝒙 𝑗 )

〉
H

=






 𝑁∑︁
𝑖=1

𝑐𝑖𝑘 (·, 𝒙𝑖)





2

H
≥ 0

holds for any 𝑁 ≥ 0, 𝑐1, . . . , 𝑐𝑁 ∈ C, and 𝒙1, . . . , 𝒙𝑁 ∈ X, where ∥ 𝑓 ∥H is the norm of
𝑓 ∈ H defined as ∥ 𝑓 ∥H =

√︁
⟨𝑓 , 𝑓 ⟩H These results states that we can equate positive

definite kernels and reproducing kernels.

Let us define a map 𝝓 : X ∋ 𝒙 ↦→ 𝑘 (·, 𝒙) ∈ H . Given a positive definite kernel 𝑘 , the
value at (𝒙, 𝒙′) is

𝑘 (𝒙, 𝒙′) = ⟨𝑘 (·, 𝒙), 𝑘 (·, 𝒙′)⟩H = ⟨𝝓 (𝒙), 𝝓 (𝒙′)⟩H . (2.8)

In general, an inner product is said to give a similarity measure on the space, since the
value takes zero iff the parameters are orthogonal and becomes larger if the parameters
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point in similar directions. The value of the kernel function (2.8), therefore, can be
regarded as the similarity between 𝒙 and 𝒙′ on the high-dimensional spaceH . In this
sense, 𝝓 and H are often called a feature map and a feature space, respectively. If
the representation power of 𝑘 (·, 𝒙) is enough, kernel methods using the kernel 𝑘 may
perform well even for complex and nonlinear data.

2.1.3 Nyström Approximation

As we see in Subsection 2.1.1, kernel methods based on a positive definite kernel
𝑘 depend on the 𝑁 × 𝑁 kernel matrix 𝑲 (defined in (2.7)) and involve some O(𝑁 3)
operations such as matrix inverses. This implies that kernel methods do not scale for
problems with large samples. One conceivable approach to address this problem is
low-rank approximation of 𝑲 . For example, if we have 𝑹 ∈ R𝑁×𝑃 , N ∋ 𝑃 < 𝑁 such that
𝑲 ≈ 𝑹𝑹⊤, the inverse of 𝑲 + 𝜆𝑰 in (2.3) is approximated by

(𝑲 + 𝜆𝑰 )−1 ≈ (𝑹𝑹⊤ + 𝜆𝑰 )−1 = 𝜆−1(𝑰 − 𝑹 (𝑹⊤𝑹 + 𝜆𝑰 )−1𝑹⊤)

and the computational cost reduces down to O(𝑁 2𝑃) (and O(𝑁𝑃2) for approximating
(𝑲 + 𝜆𝑰 )−1𝒚).

One favorable approach to get 𝑹 is Nyström approximation. The Nyström approx-
imation was first introduced in [Williams and Seeger, 2000], and its variation and
theoretical analysis were proposed in [Drineas and Mahoney, 2005]. Drineas and
Mahoney [2005] showed that we can obtain a rank-𝑃 approximation of 𝑲 ∈ S𝑁+ by:

1. Choose 𝑁̃ ∈ N such that 𝑃 ≤ 𝑁̃ ≤ 𝑁 .

2. Compute 𝑝𝑖 = 𝐾2
𝑖𝑖/

∑𝑁
𝑗=1𝐾

2
𝑗 𝑗 for 𝑖 = 1, . . . , 𝑁 .

3. Sample 𝑁̃ times from the set {1, . . . , 𝑁 } with replacement and with respect to the
probabilities {𝑝1, . . . , 𝑝𝑁 }, and let I be the set of the sampled indices1.

4. Assign 𝑪 = (𝐾𝑖 𝑗 )𝑖∈{1,...,𝑁 }, 𝑗∈I ∈ R𝑁×𝑁̃ ,𝑾 = (𝐾𝑖 𝑗 )𝑖, 𝑗∈I ∈ R𝑁̃×𝑁̃ , and 𝑫 = diag({(𝑁̃𝑝𝑖)−
1
2 }𝑖∈I).

5. Obtain 𝑲 ≈ 𝑲̃𝑃 ≔ 𝑪𝑾+
𝑃
𝑪⊤, where 𝑾𝑃 denotes the best rank-𝑃 approximation of

𝑫𝑾𝑫 and 𝑾+
𝑃

is its pseudoinverse.

1We allow duplication of elements within the set I. Thus I is precisely a tuple.
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The following theorem justifies the Nyström approximation.

Theorem 2.4 (Drineas and Mahoney [2005], Theorem 3). Let 𝜀 > 0, 𝛿 ∈ (0, 1), 𝜂 =

1 +
√︁

8 log(1/𝛿), and 𝑲𝑃 be the best rank-𝑃 approximation to 𝑲 . If 𝑁̃ ≥ 64𝑃/𝜀4, then

E[∥𝑲 − 𝑲̃𝑃 ∥𝐹 ] ≤ ∥𝑲 − 𝑲𝑃 ∥𝐹 + 𝜀
𝑁∑︁
𝑛=1

𝐾2
𝑛𝑛 .

And if 𝑁̃ ≥ 64𝜂2𝑃/𝜀4, then

P

(
∥𝑲 − 𝑲̃𝑃 ∥𝐹 ≤ ∥𝑲 − 𝑲𝑃 ∥𝐹 + 𝜀

𝑁∑︁
𝑛=1

𝐾2
𝑛𝑛

)
≥ 1 − 𝛿

also holds.

Note that a similar result has also shown in the sense of the spectral norm in [Drineas
and Mahoney, 2005]. The advantage of Nyström approximation is that we need not
to compute and store the large matrix 𝑲 . Once the sampling probabilities {𝑝𝑖}𝑁𝑖=1 are
computed from the diagonal elements {𝐾𝑖𝑖}𝑁𝑖=1 and the set of the sampled indices I
is obtained, our requirements are the submatrices of 𝑲 : 𝑪 ∈ R𝑁×𝑁̃ and 𝑾 ∈ R𝑁̃×𝑁̃ .
This leads to a remarkable reduction in both computational and space complexity. The
computational complexity of the Nyström approximation is O(𝑁̃ 3 + 𝑁𝑁̃𝑃) and the
space complexity is also reduced to O(𝑁̃𝑁 ) from O(𝑁 2).

2.2 Gaussian Processes

A Gaussian process (GP) is an infinite-dimensional distribution on a function space. GPs
are often understood to be probabilistic variants of kernel methods. This subsection
gives a brief introduction to GPs.

2.2.1 From Bayesian Linear Regression to GP Regression

Consider a Bayesian linear regression problem from the input space X ⊆ R𝐷 to the
output space Y ⊆ R with given observations {(𝒙𝑖, 𝑦𝑖)}𝑁𝑖=1, where 𝑥𝑖1 = 1 for 𝑖 = 1, . . . , 𝑁 .
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The Bayesian linear regression problem is to find the posterior 𝑝 (𝒘 |{𝒙𝑖}𝑁𝑖=1,𝒚) from the
following Bayesian model:

𝑝 (𝑦𝑖 |𝒙𝑖,𝒘 ;𝜎2) = N(𝒘⊤𝒙𝑖, 𝜎2) for 𝑖 = 1, . . . , 𝑁 ,

𝑝 (𝒘 ;𝜎2
𝑤 ) = N(0𝐷 , 𝜎2

𝑤 𝑰𝐷).

Denoting 𝑿 = (𝒙1, . . . , 𝒙𝑁 )𝑇 , the posterior is yielded analytically as

𝑝 (𝒘 |{𝒙 𝒊}𝑁𝑖=1,𝒚) = N(𝚺𝑿⊤𝒚, 𝜎2
𝚺), (2.9)

where 𝚺 = (𝑿⊤𝑿 + 𝜎2

𝜎2
𝑤
𝑰 )−1. Note that the mean vector in (2.9) has the same form as

the solution of the ridge regression (2.2) and the noise ratio 𝜎2

𝜎2
𝑤

is corresponding to the
regularization parameter 𝜆. The marginal likelihood is also obtained analytically:

𝑝 (𝒚 |{𝒙𝑖}𝑁𝑖=1;𝜎2) =
∫

𝑝 (𝒚 |{𝒙𝑖}𝑁𝑖=1,𝒘 ;𝜎2)𝑝 (𝒘 ;𝜎2
𝑤 )𝑑𝒘

= N(0, 𝜎2
𝑤𝑿𝑿⊤ + 𝜎2𝑰 )

= N(0,𝑲 + 𝜎2𝑰 ), (2.10)

where

𝑲 = 𝜎2
𝑤

©­­­­­«
⟨𝒙1, 𝒙1⟩ ⟨𝒙1, 𝒙2⟩ · · · ⟨𝒙1, 𝒙𝑁 ⟩
⟨𝒙2, 𝒙1⟩ ⟨𝒙2, 𝒙2⟩ · · · ⟨𝒙2, 𝒙𝑁 ⟩

...
...

. . .
...

⟨𝒙𝑁 , 𝒙1⟩ ⟨𝒙𝑁 , 𝒙2⟩ · · · ⟨𝒙𝑁 , 𝒙𝑁 ⟩

ª®®®®®¬
(2.11)

is the Gram matrix with the Euclidean inner product. GP regression replaces the
inner product in the Gram matrix (2.11) with a positive definite kernel 𝑘 (·, ·) to capture
nonlinear relationship between 𝒙𝑖 and 𝑦𝑖 (the positive coefficient 𝜎2

𝑤 > 0 can be
incorporated into the kernel 𝑘).

In Bayesian linear regression, the predictive distribution of 𝑦∗ ∈ Y, the output value
of a new input 𝒙∗ ∈ X, is obtained easily as

∫
𝑝 (𝑦∗ |𝒙∗,𝒘)𝑝 (𝒘 |{𝒙𝑖}𝑁𝑖=1,𝒚)𝑑𝒘, which is

analytically treatable. On the other hand, the GP regression requires an additional
assumption to construct the predictive distribution because the marginal likelihood
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(2.10) says nothing about relationships between 𝒚 and 𝑦∗. In the next subsection, we
see that the assumption “the regression function 𝑓 : X → Y follows a GP” suffices to
determine the predictive distribution of the GP regression.

2.2.2 Bottom-Up View of GP Modeling

To obtain the predictive distribution of the GP regression, we restart from the definition
of GPs.

Definition 2.5 (Gaussian process). Let 𝑓 : X → Y be a random function. 𝑓 is said to

follow a Gaussian process (GP) if the marginal distribution 𝑝 (𝑓 (𝒙1), . . . , 𝑓 (𝒙𝑁 )) is a

multivariate Gaussian for any 𝑁 ∈ N and 𝒙1, . . . , 𝒙𝑁 ∈ X.

If 𝑓 follows a GP, the marginal distribution 𝑝 (𝑓 (𝒙1), . . . , 𝑓 (𝒙𝑁 )) is characterized by
the values of a mean function𝑚𝑋 (𝒙) ≔ E[𝑓 (𝒙)] and a covariance function 𝑘𝑋 (𝒙, 𝒙′) ≔
E[𝑓 (𝒙) 𝑓 (𝒙′)] − E[𝑓 (𝒙)]E[𝑓 (𝒙′)]. That is, denoting 𝒇 = (𝑓 (𝒙1), . . . , 𝑓 (𝒙𝑁 ))⊤,𝒎𝑋 =

(𝑚𝑋 (𝒙1), . . . ,𝑚𝑋 (𝒙𝑁 ))⊤, and 𝑲𝑋 = (𝑘𝑋 (𝒙𝑖, 𝒙 𝑗 ))𝑁𝑖,𝑗=1, the marginal distribution is 𝑝 (𝒇 ) =
N(𝒎𝑋 ,𝑲𝑋 ). We often denote 𝑓 ∼ GP(𝑚𝑋 , 𝑘𝑋 ) when 𝑓 follows a GP with the mean
function𝑚𝑋 and the convariance function 𝑘𝑋 .

The covariance function 𝑘𝑋 should yield a positive (semi-) definite covariance
matrix 𝑲𝑋 for any 𝑁 ∈ N and 𝒙1, . . . , 𝒙𝑁 ∈ X. Since positive definite kernels satisfy
this property from Definition 2.1, we can use a positive definite kernel 𝑘 to define the
covariance function 𝑘𝑋 as 𝑘 = 𝑘𝑋 . In practice, GPs are expressive enough even without
explicit modeling for the mean function𝑚𝑋 . We thus assume 𝑓 ∼ GP(0, 𝑘) usually.

Let us review the GP regression discussed in the previous subsection with a latent
function 𝑓 ∼ GP(0, 𝑘). Consider the Bayesian generative model with a GP prior:

𝑝 (𝑦 (𝒙) |𝑓 (𝒙);𝜎2) = N(𝑓 (𝒙), 𝜎2) for any 𝒙 ∈ X,
𝑝 (𝑓 ) = GP(0, 𝑘).

If observations {(𝒙𝑖, 𝑦𝑖)}𝑁𝑖=1 are given, the model becomes

𝑝 (𝑦𝑖 |𝑓𝑖 ;𝜎2) = N(𝑓𝑖, 𝜎2) for 𝑖 = 1, . . . , 𝑁 ,

𝑝 (𝒇 |{𝒙𝑖}𝑁𝑖=1) = N(0,𝑲 ),
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where 𝒇 = (𝑓 (𝒙1), . . . , 𝑓 (𝒙𝑁 ))⊤ and 𝑲 = (𝑘 (𝒙𝑖, 𝒙 𝑗 ))𝑁𝑖,𝑗=1. By marginalizing 𝒇 , we have

𝑝 (𝒚 |{𝒙𝑖}𝑁𝑖=1;𝜎2) =
∫

𝑝 (𝒚 |𝒇 ;𝜎2)𝑝 (𝒇 |{𝒙𝑖}𝑁𝑖=1)𝑑𝒇

= N(0,𝑲 + 𝜎2𝑰 ).

This is exactly Equation (2.10), the marginal likelihood of the Bayesian linear regression.

We now reconsider the predictive distribution 𝑝 (𝑦∗ |𝒙∗,𝒚, {𝒙𝑖}𝑁𝑖=1;𝜎2). Let 𝑦𝑁+1 =
𝑦∗, 𝒙𝑁+1 = 𝒙∗, and 𝑓𝑁+1 = 𝑓 (𝒙𝑁+1). The generative model then becomes

𝑝 (𝑦𝑖 |𝑓𝑖 ;𝜎2) = N(𝑓𝑖, 𝜎2) for 𝑖 = 1, . . . , 𝑁 + 1,

𝑝 (𝒇 , 𝑓𝑁+1 |{𝒙𝑖}𝑁+1𝑖=1 ) = N
((

𝒇

𝑓𝑁+1

) ����� 0,

(
𝑲 𝒌⊤∗
𝒌∗ 𝑘∗∗

) )
,

where 𝒌∗ = (𝑘 (𝒙1, 𝒙𝑁+1), 𝑘 (𝒙2, 𝒙𝑁+1), . . . , 𝑘 (𝒙𝑁 , 𝒙𝑁+1))⊤ and 𝑘∗∗ = 𝑘 (𝒙𝑁+1, 𝒙𝑁+1). The
predictive distribution is derived as

𝑝 (𝑦𝑁+1 |𝒚, {𝒙𝑖}𝑁+1𝑖=1 ;𝜎2) =
𝑝 (𝒚, 𝑦𝑁+1 |{𝒙𝑖}𝑁+1𝑖=1 ;𝜎2)

𝑝 (𝒚 |{𝒙𝑖}𝑁𝑖=1;𝜎2)

=

∫
𝑝 (𝒚, 𝑦𝑁+1 |𝒇 ,𝒇𝑁+1;𝜎2)𝑝 (𝒇 , 𝑓𝑁+1 |{𝒙𝑖}𝑁+1𝑖=1 )𝑑𝒇

𝑝 (𝒚 |{𝒙𝑖}𝑁𝑖=1;𝜎2)
= N(𝒚⊤(𝑲 + 𝜎2𝑰 )−1𝒌∗, 𝑘∗∗ − 𝒌⊤∗ (𝑲 + 𝜎2)−1𝒌∗). (2.12)

The predictive mean of GP regression coincides with the prediction of kernel ridge
regression (2.4).

2.2.3 Some Topics about GPs

Efficient Computation for GPs

Computational costs of GP methods is the key issue as in kernel methods. While the
Nyström approximation is also effective for GPs, a sparse variational Gaussian process
(SVGP) approach has been developed in [Titsias, 2009]. SVGP has an equivalence to the
Nyström approximation Wild et al. [2021] but can take a fully Bayesian approach to
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obtain posterior predictive distributions.

Unsupervised Learning

The GP regression can be extended to unsupervised dimensionality reduction. Consider
𝐷-dimensional outputs 𝒀 = (𝒚(1), . . . ,𝒚(𝐷)) ∈ R𝑁×𝐷 and 𝑃-dimensional latent variables
𝑿 = (𝒙1, . . . , 𝒙𝑁 )⊤ ∈ R𝑁×𝑃 , where 𝑃 ≤ 𝐷. From a similar procedure as the GP
regression, the marginal likelihood

𝑝 (𝒀 |𝑿 ) =
𝐷∏
𝑑=1
N(𝒚(𝑑) |0,𝑲 + 𝜎2𝑰 )

can be obtained. The posterior of the latent variables 𝑝 (𝑿 |𝒀 ) ∝ 𝑝 (𝒀 |𝑿 )𝑝 (𝑿 ) is then
learnable with an appropriate prior 𝑝 (𝑿 ). This method is called the Gaussian process
latent variable model (GPLVM) approach [Lawrence, 2005]. We can apply a SVGP-like
method for learning GPLVM [Titsias and Lawrence, 2010, Damianou et al., 2016]
while a scaled conjugate gradient algorithm is used in the original GPLVM paper
[Lawrence, 2005]. Wang et al. [2005, 2008] have developed a Gaussian process
dynamical model (GPDM), which incorporates temporal dynamics to GPLVM. GPDM
employs a GP-based vector auto-regressive prior for 𝑝 (𝑿 ) (see Subsection 3.3.1 for
details).

Connection to Kernel Methods

The equivalence of kernel ridge regression (2.4) and GP regression (2.12) implies close
connections between kernel methods and GP methods. While GPs are often said to be
probabilistic versions of kernel methods, the kernel methods and the GP methods have
been developed separately due to their historical background; the kernel methods have
been studied in the context of RKHS theory, and the GP methods have been studied via
theory of stochastic processes and perspectives from probabilistic modeling. In recent
years, theoretical connections between kernel methods and GPs were systematized
[Kanagawa et al., 2018].

Although the connections between the kernel methods and GPs are being understood,
we should be aware of differences of them sometimes. One of the phenomena specific to
GPs is Driscoll’s zero-one law [Driscoll, 1973], which states about the question: “do
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sample paths 𝑓 ∼ GP(0, 𝑘) belong to the RKHS induced by the covariance function 𝑘?”
The Driscoll’s zero-one law says:

• If the covariance function 𝑘 is finite-dimensional (e.g., Euclidean inner product), a
stochastic process 𝑓 which satisfies that 𝑓 (𝒙) = 𝑓 (𝒙) holds for any 𝒙 ∈ X and 𝑓
belongs to the RKHS induced by 𝑘 exists, with probabilty 1.

• If 𝑘 is infinite-dimensional (e.g., Gaussian kernel), 𝑓 does not belong to the RKHS
induced by 𝑘 almost surely.

2.3 Determinantal Point Processes

A determinantal point process (DPP) is a kind of point processes and produces random
subsets with diverse elements of a ground set. DPPs are alternative probabilistic models
associated with positive definite kernels. We present an introduction to DPPs.

2.3.1 Point Processes

First of all, we introduce point processes without mathematical rigor. Consider a possibly
uncountable ground set Ω and let 𝑛 ∈ N ∪ {0} be a random integer and 𝑥1, . . . , 𝑥𝑛 ∈ Ω be
random points. We denote the random collection as 𝑍 = {𝑥1, . . . , 𝑥𝑛}.

Definition 2.6 (Point process2). A point process 𝜂 on Ω is a random measure such that

𝜂 =

𝑛∑︁
𝑖=1

𝛿𝑥𝑖 ,

where 𝛿𝑥 is the Dirac measure.

For any compact A ⊆ Ω we have

𝜂 (A) =
𝑛∑︁
𝑖=1

𝛿𝑥𝑖 (A) = |𝑍 ∪ A|,

2Although such 𝜂 is called a proper point process in [Last and Penrose, 2017], we use this as the
definition of general point processes for simplicity.
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which means a number of 𝑥𝑖s that belong to A. In other words, a point process
determines which (at most countable) random point configurations on Ω tend to be
realized. For example, we can consider the intensity measure defined by

𝛽1(A) = E[𝜂 (A)] .

This represents the expected number of points, or the density, in A.

Definition 2.6 implies that the space of all possible 𝜂 is too large to write probability
distributions on the space directly. Instead, we consider another way to characterize the
randomness of 𝜂.

Definition 2.7 (Moment measure and joint intensity). Let 𝑛 ∈ N and A1,A2, . . .A𝑛 be

disjoint and compact subsets of Ω. Then, the 𝑛-th moment measure of a point process 𝜂

is the measure 𝛽𝑚 defined by

𝛽𝑛 (A1,A2, . . . ,A𝑛) = E[𝜂 (A1)𝜂 (A2) · · ·𝜂 (A𝑛)] .

Specifically, if 𝜌𝑛 : Ω × Ω × · · · × Ω︸               ︷︷               ︸
𝑛 times

→ R exists such that

𝛽𝑛 (A1,A2, . . . ,A𝑛) =
∫
A1×A2×···×A𝑛

𝜌𝑛 (𝑥1, 𝑥2, . . . , 𝑥𝑛)𝑑𝑥1𝑑𝑥2 · · ·𝑑𝑥𝑛, (2.13)

𝜌𝑛 is called an 𝑛-th joint intensity function of the point process 𝜂.

Intuitively, moment measures work like moments of a probability distribution. If we
know the forms of 𝜌𝑛 for all 𝑛 ∈ N, we may know the underlying point process.

For example, let us consider Poisson point processes, the most representative point
processes, according to the above preparation.

Definition 2.8 (Poisson point process [Last and Penrose, 2017]). Let 𝜂 be a point process

and 𝛽1 be the intensity measure (or the first moment measure). If 𝜂 satisfies the following

two properties, 𝜂 is said to be a Poisson point process:

(i) For every 𝑛 ∈ N and disjoint and compact subsets A1, . . . ,A𝑛 ⊆ Ω, the random

variables 𝜂 (A1), . . . , 𝜂 (A𝑛) are independent.
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(ii) For every compact A ⊆ Ω, 𝜂 (A) ∼ Poisson(𝛽1(A)).

In addition, if 𝛽1(A) = 𝑐Vol(A), 𝑐 > 0 for any compact A ⊆ Ω, 𝜂 is said to be a

homogeneous (or stationary) Poisson point process with the intensity 𝑐.

For a homogeneous Poisson point process we can immediately see that the 𝑛-
th joint intensity is 𝜌𝑛 (𝑥1, . . . , 𝑥𝑛) ≡ 𝑐𝑛 for every 𝑛 ∈ N. This is because assuming
𝜌𝑛 (𝑥1, . . . , 𝑥𝑛) ≡ 𝑐𝑛 for 𝑛 = 1, 2, . . ., the left-hand side of (2.13) becomes

𝛽𝑛 (A1,A2, . . . ,A𝑛) = E[𝜂 (A1)𝜂 (A2) · · ·𝜂 (A𝑛)] (from Definition 2.7)

= E[𝜂 (A1)]E[𝜂 (A2)] · · ·E[𝜂 (A𝑛)] (from (i) in Definition 2.8)

= 𝑐𝑛
𝑛∏
𝑖=1

Vol(A𝑖) (from the homogeneity)

and the right-hand side is∫
A1×A2×···×A𝑛

𝜌𝑛 (𝑥1, 𝑥2, . . . , 𝑥𝑛)𝑑𝑥1𝑑𝑥2 · · ·𝑑𝑥𝑛 = 𝑐𝑛
∫
A1×A2×···×A𝑛

𝑑𝑥1𝑑𝑥2 · · ·𝑑𝑥𝑛

= 𝑐𝑛
𝑛∏
𝑖=1

Vol(A𝑖),

for every 𝑛 ∈ N and every compact and disjoint A1, . . . ,A𝑛 ⊆ Ω.

2.3.2 Determinantal Point Processes

Definition 2.9 (Determinantal point process [Hough et al., 2009]). Let 𝑘 : Ω × Ω → R+
be a positive definite kernel. A determinantal point process (DPP) with the kernel 𝑘 is a

point process on Ω whose joint intensities are formed as

𝜌𝑛 (𝑥1, 𝑥2, . . . , 𝑥𝑛) = det(𝑲 [𝑛])

for any 𝑛 ∈ N, 𝑥1, 𝑥2, . . . , 𝑥𝑛 ∈ Ω and 𝑲 [𝑛] = (𝑘 (𝑥𝑖, 𝑥 𝑗 ))𝑛𝑖, 𝑗=1.
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The following theorem gives a sufficient condition for the existence and uniqueness
of DPP:

Theorem 2.10 (Soshnikov [2000], Shirai and Takahashi [2000]). Let K be a self-adjoint

integral operator determined by a kernel function 𝑘 and be of locally trace class. Then,

the kernel function 𝑘 (·, ·) determines a DPP if and only if all the eigenvalues of K are in

[0, 1].

If the restriction of an operator K to an arbitrary compact subset of Ω is of trace
class, K is said to be locally trace class. Roughly speaking, Theorem 2.10 states that a
positive definite kernel 𝑘 (·, ·) defines a DPP under appropriate scaling which ensures the
resulting probabilities in [0, 1].

In the context of machine learning, DPPs on a finite ground set Y = {1, 2, . . . , 𝑁 } are
typically considered. On the finite ground set Y, a point process P(·) is a DPP with a
kernel matrix 𝑲 ∈ S𝑁+ if

P(S ⊆ A) = det( [𝑲 ]S)

for a random subsetA ⊆ Y drawn by P and an arbitraryS ⊆ Y. [𝑲 ]S = (𝐾𝑖 𝑗 )𝑖, 𝑗∈S ∈ S|S|+
denotes the principal submatrix of 𝑲 and the kernel matrix 𝑲 must be 𝑶 ⪯ 𝑲 ⪯ 𝑰 from
an analogy with the DPPs on a general ground set3.

For instance, the inclusion probability of 𝑖 ∈ Y is

P({𝑖} ⊆ A) = det(𝐾𝑖𝑖) = 𝐾𝑖𝑖 = 𝑘 (𝑖, 𝑖).

For |S| = 2, we have

P({𝑖, 𝑗} ⊆ A) = det

(
𝐾𝑖𝑖 𝐾𝑖 𝑗

𝐾𝑖 𝑗 𝐾 𝑗 𝑗

)
= 𝐾𝑖𝑖𝐾 𝑗 𝑗 − 𝐾2

𝑖 𝑗 (2.14)

= P({𝑖} ⊆ A)P({ 𝑗} ⊆ A) − 𝐾2
𝑖 𝑗 .

A DPP on a finite ground set has an alternative representation called the 𝑳-ensemble
[Borodin and Rains, 2005], which defines the occurrence probability of a random subset

3We use ≺, ⪯, ≻, and ⪰ in the sense of positive (semi-)definite ordering.
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A ⊆ Y as

𝑃𝑳 (A) =
det( [𝑳]A)
det(𝑳 + 𝑰 ) , (2.15)

where 𝑳 ∈ S𝑁+ is a positive semidefinite kernel matrix. We can commute between 𝑲

and 𝑳 using the equation 𝑲 = 𝑳(𝑳 + 𝑰 )−1 or its inversion 𝑳 = 𝑲 (𝑰 − 𝑲 )−1 if 𝑰 − 𝑲 is
invertible.

2.3.3 Properties of DPPs

Negative Dependence

One of the most notable properties of DPPs is negative dependence, which encourages
inter-element repulsion within the random subsets. Borcea et al. [2009] introduced
strongly Rayleigh measures, which include DPPs, as a class of measures that suffice for
negative dependence. The Ph.D. thesis by [Mariet, 2019] provides a good review about
negative dependence.

Some characterizations exists for negative dependence. When

P({𝑖} ⊆ A)P({ 𝑗} ⊆ A) ≥ P({𝑖, 𝑗} ⊆ A) for all 𝑖, 𝑗 ∈ Y

holds, one is said to satisfy the pairwise negative correlation. The negative lattice
condition

𝑃 (A1)𝑃 (A2) ≥ 𝑃 (A1 ∪ A2)𝑃 (A1 ∩ A2) for all A1,A2 ⊆ Y

is also defined other than the pairwise negative correlation. The negative lattice condition
is equivalent to the log-submodularity of the distribution over 2Y .

Because DPPs satisfy both the pairwise negative correlation and negative lattice
condition, the sampled subsets from a DPP tend to contain diverse items. In fatc,
Equation (2.14) represents the negative dependence of DPPs with the inter-element
repulsion 𝐾2

𝑖 𝑗 ≥ 0.
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Figure 2.1: Geometry of DPPs. Larger norms and larger angles of feature vectors
increase the occurrence probability.

Geometric Interpretation

We can see the negative dependence of DPPs from a geometric view. Now, we consider
the 𝑳-ensemble (2.15). Without loss of generality, we write the kernel matrix as 𝑳 = 𝑽𝑽⊤

with some 𝑽 ∈ R𝑁×𝐷 , 𝐷 ∈ N.

Denoting the 𝑖-th row vector of 𝑽 as 𝒗𝑖 , we can regard 𝒗𝑖 as the feature vector
of 𝑖 ∈ Y and 𝐿𝑖 𝑗 = ⟨𝒗𝑖, 𝒗 𝑗 ⟩ means the similarity of 𝑖-th and 𝑗-th feature vectors. The
occurrence probability of A ⊆ Y is

𝑃𝑳 (A) ∝ det( [𝑳]A) = Vol2({𝒗𝑖}𝑖∈A),

where Vol({𝒗𝑖}𝑖∈A) is the |A|-dimensional volume of the parallelepiped spanned by the
feature vectors {𝒗𝑖}𝑖∈A . Figure 2.1 illustrates the geometry of the 𝑳-ensemble in the case
|A| = 2. The realization A = {𝑖, 𝑗} is more likely to appear as the norms ∥𝒗𝑖 ∥ and ∥𝒗 𝑗 ∥
become larger. Additionally, we can find that the closer 𝒗𝑖 and 𝒗 𝑗 are to orthogonal, the
larger 𝑃 ({𝑖, 𝑗}) is induced. This is considered to be the mechanism that results in the
negative dependence of DPPs.

Other Properties

Notably DPPs support analytic expressions about some elementary probabilistic op-
erations. For example, suppose that A1 ⊆ Y and A2 ⊆ Y are disjoint, and let A1

be observed. Then, the conditional probability of A1 ∪ A2 is 𝑃𝑳 (A1 ∪ A2 |A1) ∝
det( [𝑳]A1∪A2), and this is also the DPP [Borodin and Rains, 2005]. Marginal probabili-
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ties can also be computed with 𝑲 as done in (2.14). See [Kulesza and Taskar, 2012] for
the other operations.

Sampling from a DPP on a possibly infinite ground set can be done by a simple
algorithm [Hough et al., 2006, Theorem 7]. MCMC samplers have also been developed
[Anari et al., 2016, Li et al., 2016, Derezinski et al., 2019] while a neural network-based
fast approximate sampler for DPPs is proposed [Mariet et al., 2019b]. We also note that
DPPy, the sampling toolbox for DPPs in Python, is developed by [Gautier et al., 2019].
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3
Gaussian Process Koopman Mode

Decomposition

3.1 Background

Many real-world phenomena are observed as multivariate (time) series data. Although
they sometimes appear to be disorderly, the obtained data may be governed by some
intrinsic law. Because such laws are expressed as dynamical systems in many fields, the
development of data-driven approaches to understand unknown dynamical systems is
probably inevitable.

One data-driven strategy for dynamical systems is to employ state space models,
classically represented by the Kalman filter [Kalman, 1960], ensemble Kalman filter
[Evensen, 2003], particle filter [Gordon et al., 1993, Kitagawa, 1996], and 4D-Var
[Lewis and Derber, 1985, Dimet and Talagrand, 1986]. An alternative approach
is mode decomposition, which extracts some oscillating components from data. If
some background knowledge validates the assumption of a dynamical system, we can
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comprehend the data by estimating time-invariant parameters, including the modes.
Koopman mode decomposition (KMD) enables us to specify the quantities to

be estimated on the basis of the Koopman operator theory [Mezić, 2005, Rowley
et al., 2009]. Although only limited special systems enable analytic calculations of
the quantities, dynamic mode decomposition (DMD) provides a general data-driven
algorithm to approximate them [Rowley et al., 2009, Schmid, 2010]. DMD is primitively
divided into two types: the Arnoldi type [Rowley et al., 2009] and SVD-based type
[Schmid, 2010]. Both types give a simple linear approximation of the dynamics on an
observation space, thus various DMD extensions have been developed in the last decade
[Jovanović et al., 2014, Dawson et al., 2016, Le Clainche and Vega, 2017, Héas and
Herzet, 2020]. To overcome the limitations of linear approximations, some nonlinear
extensions of DMD have been proposed on the basis of user-defined bases [Williams
et al., 2015a], kernel methods [Williams et al., 2015b, Kawahara, 2016], or neural
networks [Takeishi et al., 2017a]. Nonetheless, nonlinear probabilistic generative models
of KMD have not yet been studied, as mentioned in Section 3.1.2.

3.1.1 Contributions

In this chapter, we develop a nonlinear generative model for KMD with an unsupervised
Gaussian process (GP) named Gaussian process Koopman mode decomposition
(GPKMD). An existing unsupervised GP method for dynamical systems known
as Gaussian process dynamical model (GPDM) [Wang et al., 2005] already exists.
The GPDM was derived from the Gaussian process latent variable model (GPLVM)
[Lawrence, 2005], which is the GP form of probabilistic principal component analysis
(probabilistic PCA), and can be viewed as a GP-based extension of an autoregressive
model. Whereas GPLVM and GPDM only focus on dimensionality reduction or learning
nonlinear mappings from a latent space to an observation space, our method can be used
to estimate the latent variables and quantities of KMD simultaneously.

This work has the following main contributions:

• We provide a novel perspective of KMD through the GP-based nonlinear generative
model named GPKMD. The generative modeling enables us to estimate not only
the quantities specified by KMD but also the latent variables and enables us to
obtain richer information from estimands.
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• We propose an efficient computing strategy for GPKMD using low-rank ap-
proximations of Gram matrices and matrix diagonalization. We show that the
complexity of our strategy is markedly superior to the existing one.

• We demonstrate our proposed method on synthetic data generated from a nonlinear
limit cycle and a real-world epidemiological dataset. We show the usefulness of
the proposed method for interpreting the data from various viewpoints.

3.1.2 Related Works

3.1.3 Gaussian Processes and KMD

In previous works, researchers have attempted to connect KMD and GP regressions.
Masuda et al. [2019] proposed a GP-based algorithm for Arnoldi-type DMD. This
algorithm determines the coefficients of the companion matrix based on the prediction by
GP regression, which is conditioned by past observations. Although the method employs
GP regression, it requires a posteriori deterministic matrix factorization processes to
obtain the Koopman eigenvalues and modes. Therefore, the advantages of probabilistic
methods and interpretability are limited. Lian and Jones [2020] studied a model
predictive control method based on Koopman operator theory. Because the work focused
on control design, they did not discuss an inference framework for Koopman quantities.

Estimating Koopman quantities can be regarded as an inverse problem. This
perspective implies that KMD is essentially an unsupervised task; therefore, as a
complementary to the existing works, we take an unsupervised approach.

3.1.4 Bayesian Models of KMD

In some Bayesian models, KMD (or DMD) is treated as unsupervised learning. Takeishi
et al. [2017b] proposed Bayesian DMD and an efficient sampling algorithm for the
posterior. In the Bayesian DMD model, each output of the Koopman eigenfunction is
parameterized as a scalar-valued i.i.d. random variable as seen in Subsection 3.2.3.
However, this simplification may discard important structures in the eigenfunctions and
latent variables. To alleviate this shortcoming, the Bayesian DMD with variational
matrix factorization (BDMD-VMF) model was developed [Kawashima et al., 2021], in
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which an explicit treatment of the eigenfunctions is avoided. Moreover, BDMD-VMF
employs VMF [Lim and Teh, 2007, Nakajima and Sugiyama, 2011] to determine its prior
and marginalize its higher-dimensional parameters; thus, the computational stability is
improved even for incomplete observations.

In this chapter, we develop a GP-based generative model of KMD as an extension of
Bayesian DMD. Whereas both Bayesian DMD and BDMD-VMF are based on linear
parameterizations of the output of the Koopman eigenfunctions, not the latent variables
{𝒙𝑡 }, our model explicitly incorporates the latent variables as model parameters (i.e.,
random variables). To the best of our knowledge, this is the first work enabling the latent
variables to be directly estimated from observations in the framework of KMD.

3.2 Koopman Mode Decomposition and Computational
Methods

We give a brief introduction of existing methods in relation to our proposal.

3.2.1 Koopman Mode Decomposition

Koopman mode decomposition (KMD) is a framework to transform multidimensional
series data into a tractable sum-of-modes representation. We provide a brief introduction
to KMD.

Let the latent variables 𝒙𝑡 ∈ X ⊆ R𝑃 be evolved deterministically by an unknown
map 𝒇 : X → X,

𝒙𝑡+1 = 𝒇 (𝒙𝑡 ). (3.1)

Observations that we can treat are obtained through an observable G ∋ 𝑔 : X → C as
𝑔(𝒙𝑡 ), where G is an appropriate complex-valued function space. The Koopman operator
K : G → G is defined as an operator that maps the observable at 𝑡 to that at 𝑡 + 1:

(K𝑔) (𝒙𝑡 ) = (𝑔 ◦ 𝒇 ) (𝒙𝑡 ) = 𝑔(𝒙𝑡+1).

Although we considered the latent dynamics 𝒇 above, the Koopman operator K can also
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describe the evolution of a system on the function space G. Despite the nonlinearity of 𝒇 ,
the Koopman operator is linear owing to its lifting to the infinite-dimensional space.
This property permits the spectral decomposition of K,

K𝜙𝑘 = 𝜆𝑘𝜙𝑘 , (3.2)

where 𝜆𝑘 ∈ C and 𝜙𝑘 : X → C are the 𝑘-th Koopman eigenvalue and the corresponding
Koopman eigenfunction, respectively. Suppose that there are 𝐷 distinct observables
𝑔1, . . . , 𝑔𝐷 such that 𝑔𝑑 ∈ G, 𝑑 = 1, . . . , 𝐷, then we define a 𝐷-dimensional observation
𝒚𝑡 = 𝒈(𝒙𝑡 ) = (𝑔1(𝒙𝑡 ), . . . , 𝑔𝐷 (𝒙𝑡 ))⊤ ∈ C𝐷 . Assuming that the 𝐷-dimensional observable
𝒈 is expanded by Koopman eigenfunctions {𝜙𝑘}, we obtain

𝒚𝑡 = 𝒈(𝒙𝑡 ) =
∞∑︁
𝑘=1

𝜙 (𝒙𝑡 )𝒘𝑘 , (3.3)

where𝒘𝑘 ∈ C𝐷 is the 𝑘-th coefficient called the Koopman mode. By applying spectral
decomposition (3.2) to (3.3), observations can be transformed recurrently as

𝒚𝑡 = 𝒈(𝒙𝑡 ) = (K𝒈) (𝒙𝑡−1) =
∞∑︁
𝑘=1
(K𝜙𝑘) (𝒙𝑡−1)𝒘𝑘

=

∞∑︁
𝑘=1

𝜆𝑘𝜙𝑘 (𝒙𝑡−1)𝒘𝑘

= · · · =
∞∑︁
𝑘=1

𝜆𝑡
𝑘
𝜙𝑘 (𝒙0)𝒘𝑘 . (3.4)

Note that the Koopman operator K has not only the discrete spectra but also continuous
spectra because of the infinite dimensionality. Roughly speaking, discrete and continuous
spectra represent the quasi-periodic and chaotic parts of the evolving process, respectively
[Mezić, 2005, Colbrook et al., 2023, Colbrook and Townsend, 2024]. Given observations
(𝒚0, )𝒚1, . . . ,𝒚𝑇 , we can unravel the hidden quasi-periodic dynamics governing the
system by estimating the Koopman quantities {𝜆𝑘}, {𝜙𝑘}, and {𝒘𝑘} in (3.4), instead of 𝒇 .
KMD is the framework used to understand the data-generating system with this scheme.
The inferable quantities depend on the algorithm; for example, DMD approximates 𝒇 by
low-rank linear dynamics and provides the finite sets {𝜆𝑘} and {𝒘𝑘}.
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3.2.2 Dynamic Mode Decomposition

Dynamic mode decomposition (DMD), proposed in [Rowley et al., 2009, Schmid,
2010], is the representative method to obtain Koopman quantities from a data series. By
defining 𝑏𝑘 B 𝜙𝑘 (𝒙0) and truncating the infinite sum up to 𝐾 , Equation (3.4) becomes

𝒚𝑡 ≈
𝐾∑︁
𝑘=1

𝜆𝑡
𝑘
𝒘𝑘𝑏𝑘 =𝑾𝚲

𝑡𝒃

for 𝑡 = 0, . . . ,𝑇 , where 𝑾 B (𝒘1, . . . ,𝒘𝐾 ),𝚲 B diag(𝜆1, . . . , 𝜆𝐾 ), and 𝒃 B (𝑏1, . . . , 𝑏𝐾 )⊤.
We then define

𝑨 B 𝑾𝚲𝑾+, (3.5)

where 𝑾+ indicates the pseudo-inverse of 𝑾 . When 𝐾 ≤ 𝐷 and 𝑾 ∈ C𝐷×𝐾 is full-rank:
rank(𝑾 ) = 𝐾 , we have 𝑨𝑡 = 𝑾𝚲

𝑡𝑾+ and 𝑨𝑡𝑾 = 𝑾𝚲
𝑡 . Now, recalling 𝑾𝒃 ≈ 𝒚0, we

can confirm that

𝒚𝑡 ≈𝑾𝚲
𝑡𝒃 = 𝑨𝑡𝑾𝒃 ≈ 𝑨𝑡𝒚0 (3.6)

holds for 𝑡 = 0, . . .𝑇 . Equation (3.6) implies that the solution of

min
𝑨∈C𝐷×𝐷

𝑇∑︁
𝑡=1
∥𝒚𝑡 −𝑨𝒚𝑡−1∥2 (3.7)

has entire information about the (approximated) system. Indeed, we can see that the
eigenvalues and eigenvectors of 𝑨 can be regarded as estimated Koopman eigenvalues
{𝜆𝑘}𝐾𝑘=1 and Koopman modes {𝒘𝑘}𝐾𝑘=1, respectively, from (3.5). The DMD algorithm
provided in [Schmid, 2010] produces an efficient numerical method to find the dominant
𝐾 eigenvalues and corresponding eigenvectors of the solution matrix of (3.7).

3.2.3 Bayesian Dynamic Mode Decomposition

Takeishi et al. [2017b] proposed a Bayesian variant of DMD. Let (𝑌𝑡 , 𝑌 ′𝑡−1) be a pair
of C𝐷-valued random vectors for 𝑡 = 1, . . . ,𝑇 . Given observations 𝒚1, . . . ,𝒚𝑇 ∈ C𝐷 ,
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Bayesian DMD models its likelihood as:

𝑝 (𝒚𝑡 |{𝜆𝑘}𝑘 , {𝜙𝑘,𝑡 }𝑘,𝑡 , {𝒘𝑘}𝑘 , 𝜎2)

B
1
𝑍
𝑝𝑌𝑡 ,𝑌 ′𝑡−1

(𝒚𝑡 ,𝒚′𝑡 |{𝜆𝑘}𝑘 , {𝜙𝑘,𝑡 }𝑘,𝑡 , {𝒘𝑘}𝑘 , 𝜎2)1(𝒚𝑡 = 𝒚′𝑡 ),

where 𝑍 is an appropriate normalizing constant and

𝑝𝑌𝑡 (𝒚𝑡 |{𝜙𝑘,𝑡 }𝑘,𝑡 , {𝒘𝑘}𝑘 , 𝜎2) = CN
(
𝒚𝑡

����� 𝐾∑︁
𝑘=1

𝜙𝑘,𝑡𝒘𝑘 , 2𝜎2𝑰

)
,

𝑝𝑌 ′
𝑡−1
(𝒚𝑡 |{𝜆𝑘}𝑘 , {𝜙𝑘,𝑡 }𝑘,𝑡 , {𝒘𝑘}𝑘 , 𝜎2) = CN

(
𝒚𝑡

����� 𝐾∑︁
𝑘=1

𝜆𝑘𝜙𝑘,𝑡−1𝒘𝑘 , 2𝜎2𝑰

)
,

(3.8)

are conditionally independent densities for 𝑡 = 1, . . . ,𝑇 1. Note that CN(·, ·) denotes
a complex normal distribution. Takeishi et al. [2017b] developed an efficient Gibbs
sampler for the Bayesian DMD under appropriate prior distributions.

What does the likelihood (3.8) mean? Now, we can find that

𝑝 (𝒚𝑡 |{𝜆𝑘}𝑘 , {𝜙𝑘,𝑡 }𝑘,𝑡 , {𝒘𝑘}𝑘 , 𝜎2)

= CN
(
𝒚𝑡

����� 𝐾∑︁
𝑘=1

𝜙𝑘,𝑡𝒘𝑘 , 2𝜎2𝑰

)
CN

(
𝒚𝑡

����� 𝐾∑︁
𝑘=1

𝜆𝑘𝜙𝑘,𝑡−1𝒘𝑘 , 2𝜎2𝑰

)
,

∝ CN ©­«𝒚𝑡
������ 1

2

(
𝐾∑︁
𝑘=1

𝜙𝑘,𝑡𝒘𝑘 +
𝐾∑︁
𝑘=1

𝜆𝑘𝜙𝑘,𝑡−1𝒘𝑘

)
, 𝜎2𝑰

ª®¬ , (3.9)

where we used the following relation:

CN(𝒙 |𝝁1, 𝜎
2
1 𝑰 )CN (𝒙 |𝝁2, 𝜎

2
2 𝑰 ) ∝ CN

©­«𝒙
������𝜎

2
2𝝁1 + 𝜎2

1𝝁2

𝜎2
1 + 𝜎2

2
,
𝜎2

1𝜎
2
2

𝜎2
1 + 𝜎2

2

ª®¬ .

1The scaling of the variances are different with the original paper, but this does not lose generality.
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Equation (3.9) implies that the expectation of the likelihood (3.8) is

E[𝒚𝑡 |{𝜆𝑘}𝑘 , {𝜙𝑘,𝑡 }𝑘,𝑡 , {𝒘𝑘}𝑘 , 𝜎2] =
1
2

(
𝐾∑︁
𝑘=1

𝜙𝑘,𝑡𝒘𝑘 +
𝐾∑︁
𝑘=1

𝜆𝑘𝜙𝑘,𝑡−1𝒘𝑘

)
,

and it encourages to be

𝒚𝑡 ≈
𝐾∑︁
𝑘=1

𝜙𝑘,𝑡𝒘𝑘 ≈
𝐾∑︁
𝑘=1

𝜆𝑘𝜙𝑘,𝑡−1𝒘𝑘 , for 𝑡 = 1, . . . ,𝑇 . (3.10)

The approximation (3.10) has the similar form with the KMD (3.4). We can see that
Bayesian DMD truncates the infinite sums in KMD by finite ones as in DMD, and each
value of the eigenfunction 𝜙𝑘 (𝒙𝑡 ) is treated as a random variable 𝜙𝑘,𝑡 . While {𝜙𝑘,𝑡 }𝑘,𝑡 are
i.i.d. random variables in Bayesian DMD, some structural assumption is considered to
be more suitable rather than i.i.d. modeling. That is, 𝜙𝑘,𝑡 and 𝜙𝑘,𝑡+1 may take close values
if the underlying eigenfunction 𝜙𝑘 (·) is not ill-shaped. We introduce Gaussian processes
to overcome this issue in the next section.

3.3 Gaussian Process Koopman Mode Decomposition

Gaussian processes (GPs) are representative nonparametric methods for learning
nonlinear mappings from an input space X to an output space Y. By formulating KMD
as an unsupervised GP, we establish a nonlinear generative model of KMD.

Let 𝒀 = (𝒚1, . . . ,𝒚𝑇 ) ∈ C𝐷×𝑇 be the data matrix and 𝑿 = (𝒙0, . . . , 𝒙𝑇 ) ∈ R𝑃×(𝑇+1) be
the latent variables. We start by assuming that the value of each Koopman eigenfunction
𝜙𝑘 evaluated as any 𝒙 ∈ R𝑃 is represented as the inner product ⟨·, ·⟩H on a reproducing
kernel Hilbert space (RKHS)H . We then expand as

𝜙𝑘 (𝒙) = ⟨𝒃𝑘 , 𝝍 (𝒙)⟩H =
∑︁
𝑙

𝑏𝑘𝑙𝜓𝑙 (𝒙)

using coefficients 𝒃𝑘 = (𝑏𝑘1, 𝑏𝑘2, . . .) ∈ H and the feature map 𝝍 = (𝜓1,𝜓2, . . .) : X → H .
We define the likelihood of KMD by incorporating the equalities (3.3) and (3.4) up to
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the first-order,

𝑝 (𝒚𝑡 |{𝒙𝑡 }, {𝜆𝑘}, {𝒘𝑘}, {𝑏𝑘𝑙 }, 𝜎2) B
1
𝑍
CN

(
𝒚𝑡

����� 𝐾∑︁
𝑘=1

(∑︁
𝑙

𝑏𝑘𝑙𝜓𝑙 (𝒙𝑡 )
)
𝒘𝑘 , 𝜎

2𝑰

)
× CN

(
𝒚𝑡

����� 𝐾∑︁
𝑘=1

𝜆𝑘

(∑︁
𝑙

𝑏𝑘𝑙𝜓𝑙 (𝒙𝑡−1)
)
𝒘𝑘 , 𝜎

2𝑰

)
,(3.11)

which coincides with Bayesian DMD (3.9), and 𝑍 denotes a normalizing constant. In
(3.11), the countably infinite summations of the modes are truncated at 𝐾 . The expansion
coefficients {𝑏𝑘𝑙 } can be marginalized out from each CN(·, ·) in the likelihood (3.11):
with the i.i.d. prior 𝑝 (𝑏𝑘𝑙 ) = CN(𝑏𝑘𝑙 |0, 𝜎2

𝑏
/2) ∝ CN(𝑏𝑘𝑙 |0, 𝜎2

𝑏
)2. We then obtain the

following marginalized likelihood (see Section 3.7 for derivation details):

𝑝 (𝒀 |𝑿 ,𝚲,𝑾 , 𝜎2, 𝜎2
𝑏
) ∝ CN(vec(𝒀 ) |0, 𝜎2𝑰 + 𝜎2

𝑏
(𝑲1 ⊗𝑾𝑾∗))

× CN(vec(𝒀 ) |0, 𝜎2𝑰 + 𝜎2
𝑏
(𝑲0 ⊗𝑾𝚲𝚲

∗𝑾∗)), (3.12)

where𝑾 = (𝒘1, . . . ,𝒘𝐾 ) and 𝚲 = diag({𝜆𝑘}𝐾𝑘=1). 𝑲1 and 𝑲0 are𝑇 ×𝑇 Gram matrices con-
sisting of {𝒙𝑡 }𝑇𝑡=1 and {𝒙𝑡 }𝑇−1

𝑡=0 with a positive definite kernel 𝑘 (𝒙, 𝒙′) = ⟨𝝍 (𝒙), 𝝍 (𝒙′)⟩H ,
respectively. 𝑾∗ denotes the Hermitian transpose of 𝑾 . The marginalized likelihood
(3.12) appears unnatural because it is divided into two terms, but we can merge them into
a single zero-mean CN(·, ·). Since the covariance matrices of the joint likelihood (3.12)
are formed by the Gram matrices of latent variables, we obtain the GP formulation for
KMD. We define (3.12) as the likelihood of our proposal, Gaussian process Koopman
mode decomposition (GPKMD).

3.3.1 Prior Distributions for GPKMD

We should also consider rational priors for the parameters 𝑿 ,𝑾 ,𝚲, 𝜎2, and 𝜎2
𝑏
. Similar to

the configuration of KMD (3.1), GPKMD should incorporate latent dynamics explicitly
as its prior in a probabilistic sense. Thus, we adopt a GPDM-inspired prior for the latent
variable 𝑿 [Wang et al., 2005]. That is, denoting 𝑿1 = (𝒙1, . . . , 𝒙𝑇 ) ∈ R𝑃×𝑇 and a Gram
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matrix consisting of {𝒙𝑡 }𝑇−1
𝑡=0 with a kernel function 𝑘𝑥 (·, ·) by 𝑲𝑋 , we use

𝑝 (𝑿 ) = N(𝒙0 |0, 𝑠2
𝑥 𝑰 )MN(𝑿1 |𝑶, 𝑰 ,𝑲𝑋 + 𝑠2

𝑥 𝑰 ) (3.13)

for the prior 𝑝 (𝑿 ). Here,MN(·, ·, ·) denotes a matrix normal distribution. Note that the
prior can be regarded as a GP extension of the first-order autoregressive model. Unless
there is a particular reason, it is reasonable to employ simple priors for other parameters,
such as

𝑝 (𝑤𝑑𝑘) = CN(𝑤𝑑𝑘 |0, 𝑠2
𝑤 ),

𝑝 (𝜆𝑘) = CN(𝜆𝑘 |0, 𝑠2
𝜆
),

𝑝 (𝜎2) = InvGamma(𝜎2 |𝛼, 𝛽),
𝑝 (𝜎2

𝑏
) = InvGamma(𝜎2

𝑏
|𝛼𝑏, 𝛽𝑏).

3.4 Scalable Inference

In theory, the posterior or its point estimates of the GPKMD parameters can be obtained
using the marginal likelihood (3.12) with appropriate priors. However, the GPKMD
likelihood contains very large 𝐷𝑇 ×𝐷𝑇 -sized covariance matrices, which inhibit scalable
inference. Straightforward computations of the GPKMD likelihood (3.12) and its
gradients require an extremely high computational cost of O(𝐷3𝑇 3). Hereafter, we tackle
the scalability of GPKMD. We only consider the first CN(·, ·) in (3.12) for simplicity in
this section, but the same approach applies to the second CN(·, ·).

3.4.1 Stegle’s Method

Multioutput or multitask GPs often have Kronecker-structured covariance matrices, and
are sometimes called Kronecker GPs [Stegle et al., 2011]. GPKMD can be considered
a type of Kronecker GP. Stegle et al. [2011] and Rakitsch et al. [2013] proposed an
efficient inference method for Kronecker GPs using an eigendecomposition-based trick.
First, consider the eigendecomposition 𝑲1 = 𝑼𝐾𝑺𝐾𝑼⊤𝐾 , 𝑾𝑾∗ = 𝑼𝑊 𝑺𝑊 𝑼 ∗

𝑊
. Following

Stegle’s method, the inversion of the GPKMD covariance matrix is exactly transformed
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into

(𝜎2𝑰 + 𝜎2
𝑏
(𝑲1 ⊗𝑾𝑾∗))−1

= (𝑼𝐾 ⊗ 𝑼𝑊︸     ︷︷     ︸
𝐷𝑇×𝐷𝑇

) (𝜎2𝑰 + 𝜎2
𝑏
(𝑺𝐾 ⊗ 𝑺𝑊 )︸                  ︷︷                  ︸

𝐷𝑇×𝐷𝑇 (diagonal)

)−1(𝑼𝐾 ⊗ 𝑼𝑊︸     ︷︷     ︸
𝐷𝑇×𝐷𝑇

)∗.

Because the matrix to be inverted is reformed into a diagonal matrix, the complexity of
the inversion is reduced to O(𝐷3 +𝑇 3), which is dominated by the eigendecomposition
for 𝑲1 and 𝑾𝑾∗. log det(·) is similarly computed as

log det(𝜎2𝑰 + 𝜎2
𝑏
(𝑲1 ⊗𝑾𝑾∗)) = log det(𝜎2𝑰 + 𝜎2

𝑏
(𝑺𝐾 ⊗ 𝑺𝑊 )︸                  ︷︷                  ︸

𝐷𝑇×𝐷𝑇 (diagonal)

),

and the gradients of the likelihood can also be converted to reduced forms.
Stegle’s method is effective for GPKMD; however, we still have some considerations:

• For the interpretability, we often use a small number of Koopman modes, 𝐾 ,
typically about 5–30. For 𝐾 ≪ 𝐷 , the diagonal elements of the eigenvalue matrix
𝑺𝑊 are sparse since rank(𝑾𝑾∗) = 𝐾 . This implies the possibility of further
reducing in the computational cost.

• The space complexity of Stegle’s method is O(𝐷2 +𝑇 2). For large 𝐷 or/and 𝑇
(e.g., > 100, 000), ordinary computers may run out of memory.

3.4.2 Low-rank Approximations

In kernel methods, Gram matrices can be well approximated by low-rank matrices in
many practical cases. Bonilla et al. [2007] proposed an efficient prediction strategy for
multitask GPs by applying low-rank approximations to Gram matrices. We propose a
considerably more efficient strategy for various computations of GPKMD by combining
the above-explained Stegle’s method and low-rank approximations.

By applying an appropriate algorithm (e.g., incomplete Cholesky decomposition
or the Nyström method [Drineas and Mahoney, 2005]), we can approximate the
Gram matrix as 𝑲1 ≈ 𝑹𝑹⊤, where 𝑹 ∈ R𝑇×𝑆 for 𝑆 < 𝑇 . If the Nyström method
(described in Subsection 2.1.3) is employed, we can obtain 𝑪 ∈ R𝑇×𝑆 and 𝛀 ∈ R𝑆×𝑆
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such that 𝑲1 ≈ 𝑪𝛀𝑪⊤. Then, the eigendecomposition of the symmetric matrix 𝛀

enables us to obtain the desired matrix 𝑹. Subsequently, by using the thin SVD
𝑹 = 𝑼𝐾𝚺𝐾𝑽𝑇𝐾 , 𝑾 = 𝑼𝑊 𝚺𝑊 𝑽 ∗

𝑊
and the Woodbury identity, the inverse covariance matrix

of GPKMD is approximated as

(𝜎2𝑰 + 𝜎2
𝑏
(𝑲1 ⊗𝑾𝑾∗))−1 ≈ (𝜎2𝑰 + 𝜎2

𝑏
(𝑹𝑹⊤ ⊗𝑾𝑾∗))−1

= 𝜎−2𝑰 − 𝜎−2𝜎2
𝑏
(𝑼𝐾𝚺𝐾 ⊗ 𝑼𝑊 𝚺𝑊 )︸                 ︷︷                 ︸

𝐷𝑇×𝐾𝑆

× (𝜎2𝑰 + 𝜎2
𝑏
(𝚺2

𝐾 ⊗ 𝚺
2
𝑊 )︸                   ︷︷                   ︸

𝐾𝑆×𝐾𝑆 (diagonal)

)−1 (𝑼𝐾𝚺𝐾 ⊗ 𝑼𝑊 𝚺𝑊 )∗︸                  ︷︷                  ︸
𝐾𝑆×𝐷𝑇

.

On the other hand, the log det(·) of the covariance matrix can be transformed by the
Weinstein–Aronszajn identity [Katō, 1995],

log det(𝜎2𝑰 + 𝜎2
𝑏
(𝑲1 ⊗𝑾𝑾∗))

≈ log det(𝜎2𝑰 + 𝜎2
𝑏
(𝑹𝑹⊤ ⊗𝑾𝑾∗))

= (𝐷𝑇 − 𝐾𝑆) log𝜎2 + log det (𝜎2𝑰 + 𝜎2
𝑏
(𝚺2

𝐾 ⊗ 𝚺
2
𝑊 ))︸                      ︷︷                      ︸

𝐾𝑆×𝐾𝑆 (diagonal)

.

Since the computational complexity of our approach is dominated by the Nyström
method (or incomplete Cholesky decomposition) and SVD, it is markedly reduced to
O(𝐷𝐾2+𝑇𝑆2) for 𝐾 ≪ 𝐷 and 𝑆 ≪ 𝑇 . Notably, it is unnecessary to store the𝑇 ×𝑇 matrix
𝑲1 (and 𝑲0) in memory in both the Nyström and incomplete Cholesky decomposition
algorithms. Therefore, the space complexity of GPKMD can be reduced to O(𝐷𝐾 +𝑇𝑆).
The gradients of GPKMD can also be evaluated in a short time, as shown in Section 3.8.

3.5 Experiments

In this section, we demonstrate GPKMD in two experimental settings, one with a
synthetic dataset and one with a real-world dataset. Through the experiments below, we
show that a wide range of information about given data is available from the estimated
parameters of GPKMD. We employed MAP estimation by the conjugate gradient method
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(a) 𝜎𝑦 = 0, PCA (b) 𝜎𝑦 = 0.01, PCA (c) 𝜎𝑦 = 0.2, PCA

(d) 𝜎𝑦 = 0, GPKMD (e) 𝜎𝑦 = 0.01, GPKMD (f) 𝜎𝑦 = 0.2, GPKMD

Figure 3.1: Latent variables estimated by PCA and GPKMD for 𝑃 = 2 and different
noise levels, 𝜎𝑦 = 0, 0.01, 0.2.

for learning GPKMD. The estimation of GPKMD parameters is sensitive to the initial
values since the posterior defined with (3.12) and (3.13) is non-convex. For the initial
values of GPKMD, we used PCA results for the latent variables 𝑿 and standard DMD
results for the Koopman eigenvalues {𝜆𝑘} and modes {𝒘𝑘}. For the kernel functions of
GPKMD, we employed an RBF kernel for 𝑘 (·, ·) in (3.12) and an RBF+linear kernel for
𝑘𝑥 (·, ·) in (3.13).

3.5.1 Stuart–Landau Equation

First, we applied GPKMD to a synthetic dataset that follows the Stuart–Landau equation.
The Stuart–Landau equation is a well-known nonlinear dynamical system that has the
discretized form

𝑟𝑡+1 = 𝑟𝑡 + (𝛿𝑟𝑡 − 𝑟 3
𝑡 )Δ𝑡

𝜃𝑡+1 = 𝜃𝑡 + (𝛾 − 𝛽𝑟 2
𝑡 )Δ𝑡

in polar coordinates. The behavior of the system is determined by the parameters 𝛿,𝛾,
and 𝛽. For example, 𝛿 > 0 induces the limit cycle.
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(a) 𝜎 = 0 (b) 𝜎 = 0.01 (c) 𝜎 = 0.2

Figure 3.2: Eigenvalues {𝜆cont
𝑘
} estimated by DMD and GPKMD.

Table 3.1: Absolute errors of the estimated eigenvalues ∥Re(𝝀exact − 𝝀cont)∥.

𝜎 = 0 𝜎 = 0.01 𝜎 = 0.2

DMD 0.49 1.06 4.32
GPKMD 0.37 0.71 3.61

We generated data with 𝛿 = 0.5, 𝛽 = 𝛾 = 1,Δ𝑡 = 0.05, and data length 𝑇 = 751. As
the observed data 𝒀 = (𝑦𝑑𝑡 ) obtained through an observable, we employed

𝑦𝑑𝑡 = 𝑔𝑑 (𝑟𝑡 , 𝜃𝑡 ) + 𝜖𝑑𝑡 = exp(𝑖𝑑′𝜃𝑡 ) + 𝜖𝑑𝑡

𝑑′ =

{
𝑑′ = 𝑑 − ⌈𝐷/2⌉ (𝑑 is odd)
𝑑′ = 𝑑/2 (𝑑 is even)

𝜖𝑑𝑡 ∼ CN(0, 𝜎2
𝑦 ),

with input dimension 𝐷 = 35 and noise levels 𝜎𝑦 = 0, 0.01, 0.2. We used 𝐾 = 16 modes,
𝑃 = 2 latent dimensions, and 𝑆 = 50 as the rank of the Gram matrices. Figure 3.1 shows
the latent variables estimated by PCA and GPKMD. Although PCA and GPKMD
estimates nearly the same trajectories for 𝜎𝑦 = 0, 0.01, at the higher noise level 𝜎𝑦 = 0.2,
the latent variables of PCA are buried in the noise around the origin 𝒙𝑡 = (0, 0)⊤. In
contrast, GPKMD captures a contiguous and periodic trajectory around the origin
for 𝜎𝑦 = 0.2. The estimated Koopman eigenvalues corresponding to the continuous
system 𝜆cont

𝑘
= log(𝜆𝑘)/Δ𝑡 are shown in Figure 3.2. Note that the exact eigenvalues of
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the continuous system are known:

𝜆exact
𝑙𝑛

= −2𝑙𝛿 + 𝑖𝑛𝜔0,

𝜔0 = 𝛾 − 𝛽𝛿,

where 𝑙 ∈ N and 𝑛 ∈ Z [Črnjarić-Žic et al., 2020]. As seen in Figure 3.2 and Table 3.1 2,
GPKMD estimates the Koopman eigenvalues more accurately than DMD. The estimates
of DMD tend to shrink as the noise level increases. Meanwhile, though depending
on initial values and hyperparameters, GPKMD is more robust than DMD for this
dynamical system.

3.5.2 Google Flu Trends

Google has attempted to predict weekly spatiotemporal flu activity from query data
from its search engine. The project Google Flu Trends has been discontinued, but the
predicted results are available3. Proctor and Eckhoff [2015] analyzed the Google Flu
Trends data by DMD, and we take a similar approach here. We focus on the values in
the US and extracted the interval from 2007–12–02 to 2015–08–09 to avoid missing
data, so that the input size was 𝐷 = 51,𝑇 = 402. Considering the nature of the data, we
applied log-transformation before statewise standardization as preprocessing. In the
preprocessed input shown in Figure 3.3a, a rough periodicity can be observed. We set
𝐾 = 6 modes, 𝑃 = 2 latent dimensions, and 𝑆 = 50 as the rank of the Gram matrices.

Figures 3.3b and 3.3c show the latent variables estimated by PCA and GPKMD,
respectively. Note that the latent variables estimated by PCA are used as the initial
values of those estimated by GPKMD. The latent variables estimated by GPKMD clearly
show anomalous behavior at 𝑡 = 74, unlike those estimated by PCA. An anomalous spike
at 𝑡 = 74 can also be observed in the original input (Figure 3.3a), but it does not appear
to be outlying in the sense of i.i.d. observation. 𝑡 = 74 indicates the period between
2009–04–26 to 2009–05–02. At the time, interestingly, the US was in turmoil due to the

2Because Im(𝜆cont
𝑘
) is equal for DMD and GPKMD in our setting, as discussed in Section 3.6, we only

consider the real parts to obtain the errors.
3The estimates can be accessed at https://www.google.com/publicdata/explore?ds=z3bsqef7ki44ac_

&hl=en&dl=en, and the raw data is archived at http://web.archive.org/web/*/http://www.google.org/
flutrends/.

https://www.google.com/publicdata/explore?ds=z3bsqef7ki44ac_&hl=en&dl=en
https://www.google.com/publicdata/explore?ds=z3bsqef7ki44ac_&hl=en&dl=en
http://web.archive.org/web/*/http://www.google.org/flutrends/
http://web.archive.org/web/*/http://www.google.org/flutrends/
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(a) Input (b) Latents (PCA) (c) Latents (GPKMD)

Figure 3.3: (a) Input from Google Flu Trends in the US. (b) Latent variables estimated
by PCA. (c) Latent variables estimated by GPKMD.
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Figure 3.4: Phases of 1, 3, and 5-th modes estimated by (a) DMD and (b) GPKMD. Each
phase indicates the time of a year between 0 and 1.

pandemic by the new influenza A (H1N1). In fact, WHO has raised the level of influenza
pandemic alert to phase 4 on 2009–04–27, and again raised to phase 5 on 2009–04–29
[World Health Organization, 2013]. The spike may reflect this social situation. It
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is considered that the temporal structure and nonlinearity of GPKMD increase the
sensitivity to such temporally anomalous behavior. In addition, the estimated modes
{𝒘𝑘} provide information about the phase shifts, that is, the phase of the 𝑘-th mode in
the 𝑑-th state is computed from arg𝑤𝑑𝑘 . Suppose that arg𝑤𝑑𝑘 is wrapped to [0, 2𝜋),
then arg𝑤𝑑𝑘 / 2𝜋 ∈ [0, 1) expresses the shift within a year. Figure 3.4 shows the phases
of the modes corresponding to the indices 𝑘 = 1, 3, 5, estimated by DMD and GPKMD.
The modes indexed by even numbers are omitted because they have conjugate elements
of odd numbers. The first modes of DMD and GPKMD indicate some state clusters. We
also find a clustered relationship in the northern states at 𝑘 = 3 and a gradual slope from
the southeast to the northwest at 𝑘 = 5. Such phase structures are considered to reflect
seasonal transitions of flu trends. Notably a similar smooth phase transition of a dynamic
mode has also been reported in a previous work [Proctor and Eckhoff, 2015], but the
transition is more pronounced for our method.

3.6 Discussion

In this chapter, we developed a nonlinear probabilistic generative model of KMD based
on unsupervised GP, and we also proposed its efficient inference scheme via low-rank
approximations of covariance matrices. Our method, named GPKMD, is advantageous
in terms of the comprehensiveness of the parameter set to be estimated. Since each
quantity in KMD (3.4) is physically meaningful, the comprehensiveness of GPKMD
directly means that rich information can be obtained. We also examined the scalability
of GPKMD in Section 3.4. By exploiting the properties of the Kronecker product
and low-rank approximations of matrices, we markedly reduced the computational
complexity from O(𝐷3 +𝑇 3) to O(𝐷𝐾2 +𝑇𝑆2), where 𝐾 ≪ 𝐷 and 𝑆 ≪ 𝑇 .
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3.7 Derivation of the Marginal Likelihood

Properties of Kronecker Product and Vec Operator

We introduce some properties of the Kronecker product and vec operator for simplicity
in the calculations below:

(𝑨 ⊗ 𝑩) (𝑪 ⊗ 𝑫) = (𝑨𝑪) ⊗ (𝑩𝑫), (3.14)

vec(𝑨𝑩𝑪) = (𝑪⊤ ⊗ 𝑨)vec(𝑩), (3.15)

tr(𝑨 ⊗ 𝑩) = tr(𝑨)tr(𝑩), (3.16)

vec(𝑨)∗vec(𝑩) = tr(𝑨∗𝑩).

Derivation of the Marginal Likelihood

From each CN(·, ·) in (3.11) and the prior 𝑝 (𝑏𝑘𝑙 ) = CN(0, 𝜎2
𝑏
), we can marginalize out

the coefficients {𝑏𝑘𝑙 } analytically. Considering the joint marginal likelihood for the first
CN(·, ·) in (3.11), we have

𝑝 (𝒀 |𝑿 ,𝑾 , 𝜎2) =
∫ 𝑇∏

𝑡=1
𝑝 (𝒚𝑡 |{𝒙𝑡 }, {𝜆𝑘}, {𝒘𝑘}, {𝑏𝑘𝑙 }, 𝜎2) ·

∏
𝑘,𝑙

𝑝 (𝑏𝑘𝑙 )𝑑𝑏𝑘𝑙

=

∫
CN(vec(𝒀 ) |vec(𝑾𝑩𝚿1), 𝜎2𝑰 )CN (vec(𝑩) |0, 𝜎2

𝑏
𝑰 )𝑑𝑩, (3.17)

where 𝚿1 = (𝝍 (𝒙1), 𝝍 (𝒙2), . . .) and 𝑩 is the matrix whose (𝑘, 𝑙)-th element is 𝑏𝑘𝑙 . Using
the relations (3.14) and (3.15), we find that the integrand in (3.17) is proportional to

CN(vec(𝒀 ) |vec(𝑾𝑩𝚿1), 𝜎2𝑰 )CN (vec(𝑩) |0, 𝜎2
𝑏
𝑰 )

∝ exp
(
−𝜎−2∥vec(𝒀 ) − vec(𝑾𝑩𝚿1))∥2 − 𝜎2

𝑏
∥vec(𝑩)∥2

)
= exp

{
−𝜎−2

(
∥vec(𝒀 )∥2 + ∥vec(𝑩) + vec(𝑩̄)∥2

𝚺
−1
𝐵

− ∥vec(𝑩̄)∥2
𝚺
−1
𝐵

)}
, (3.18)
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where

𝚺
−1
𝐵 = (𝚿1𝚿

⊤
1 ) ⊗ (𝑾∗𝑾 ) + 𝜎2𝜎−2

𝑏
𝑰 ,

vec(𝑩̄) = 𝚺𝐵vec(𝑾∗𝒀𝚿⊤1 ),
∥𝒛∥2

𝚺
−1
𝐵

= 𝒛∗𝚺−1
𝐵 𝒛 .

Since (3.18) is the squared exponential form w.r.t. vec(𝑩), the integral (3.17) can be
evaluated as ∫

CN(vec(𝒀 ) |vec(𝑾𝑩𝚿1), 𝜎2𝑰 )CN (vec(𝑩) |0, 𝜎2
𝑏
𝑰 )𝑑𝑩

∝ exp
{
−𝜎−2

(
∥vec(𝒀 )∥2 − ∥vec(𝑩̄)∥2

𝚺
−1
𝐵

)}
, (3.19)

and this should also be Gaussian w.r.t. vec(𝒀 ). Here, applying the Woodbury identity
and (3.15), we obtain

𝚺𝐵 = ((𝚿1𝚿
⊤
1 ) ⊗ (𝑾∗𝑾 ) + 𝜎2𝜎−2

𝑏
𝑰 )−1

= 𝜎−2𝜎2
𝑏
{𝑰 − 𝜎2

𝑏
(𝚿1 ⊗𝑾∗)𝚺−1

𝑌 (𝚿
⊤
1 ⊗𝑾 )},

where we define

𝚺𝑌 = 𝜎2𝑰 + 𝜎2
𝑏
𝑲1 ⊗ (𝑾𝑾∗),

𝑲1 = 𝚿
⊤
1 𝚿1.
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Then, ∥vec(𝑩̄)∥2
𝚺
−1
𝐵

in (3.19) can be simplified to

∥vec(𝑩̄)∥2
𝚺
−1
𝐵

= vec(𝑾∗𝒀𝚿⊤1 )∗𝚺𝐵vec(𝑾∗𝒀𝚿⊤1 )
= 𝜎−2𝜎2

𝑏
∥vec(𝑾∗𝒀𝚿⊤1 )∥2 − 𝜎−2𝜎2

𝑏
∥(𝚿⊤1 ⊗𝑾 )vec(𝑾∗𝒀𝚿⊤1 )∥2𝜎2

𝑏
𝚺
−1
𝑌

= 𝜎−2𝜎2
𝑏
tr(𝚿1𝒀

∗𝑾𝑾∗𝒀𝚿⊤1 ) − 𝜎−2𝜎2
𝑏
∥vec(𝑾𝑾∗𝒀𝑲1)∥2𝜎2

𝑏
𝚺
−1
𝑌

= 𝜎−2𝜎2
𝑏
vec(𝑾𝑾∗𝒀 )∗vec(𝒀𝑲1) − 𝜎−2𝜎2

𝑏
∥(𝑲1 ⊗ (𝑾𝑾∗))vec(𝒀 )∥2

𝜎2
𝑏
𝚺
−1
𝑌

= 𝜎−2𝜎2
𝑏
vec(𝒀 )∗

× [𝑲1 ⊗ (𝑾𝑾∗) − 𝜎2
𝑏
(𝑲1 ⊗ (𝑾𝑾∗))𝚺−1

𝑌 (𝑲1 ⊗ (𝑾𝑾∗))]vec(𝒀 )
= vec(𝒀 )∗(𝑰 − 𝜎2

𝚺
−1
𝑌 )vec(𝒀 ),

where we use the exact relation 𝑨 −𝑨(𝑨 + 𝑩)−1𝑨 = 𝑩 − 𝑩(𝑨 + 𝑩)−1𝑩 for the rightmost
transform. Now, the (unnormalized) marginal likelihood (3.19) becomes

𝑝 (𝒀 |𝑿 ,𝑾 , 𝜎2) ∝ exp
{
−𝜎−2

(
∥vec(𝒀 )∥2 − ∥vec(𝑩̄)∥2

𝚺
−1
𝐵

)}
= exp

{
−𝜎−2 (

vec(𝒀 )∗vec(𝒀 ) − vec(𝒀 )∗(𝑰 − 𝜎2
𝚺
−1
𝑌 )vec(𝒀 )

)}
= exp

(
−vec(𝒀 )∗𝚺−1

𝑌 vec(𝒀 )
)
,

so that 𝑝 (𝒀 |𝑿 ,𝑾 , 𝜎2, 𝜎2
𝑏
) = CN(vec(𝒀 ) |0, 𝚺𝑌 ). Applying a similar manner to the second

CN(·, ·) in (3.11), we can finally obtain the marginal likelihood of GPKMD (3.12).

3.8 Derivatives of the Marginal Likelihood

In Section 3.4, we show that the low-rank approximations for the covariance matrices
reduce the computational cost of evaluating the GPKMD likelihood. Similarly, we can
evaluate derivatives of the likelihood efficiently. For the complex-valued parameters of
GPKMD, we define the complex gradient of 𝑓 : C𝐷 → R w.r.t. 𝜽 ∈ C𝐷 as

∇𝜽 𝑓 (𝜽 ) =
𝜕𝑓 (𝜽 )
𝜕Re(𝜽 ) + 𝑖

𝜕𝑓 (𝜽 )
𝜕Im(𝜽 ).
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In general, we consider the cost function

ℓ (𝜽𝑔, 𝜽ℎ) = log det(𝜎2𝑰 + 𝑮 (𝜽𝑔) ⊗ 𝑯 (𝜽ℎ))
− vec(𝒀 )∗(𝜎2𝑰 + 𝑮 (𝜽𝑔) ⊗ 𝑯 (𝜽ℎ))−1vec(𝒀 ),

where 𝑮 and 𝑯 are positive semidefinite and 𝜽𝑔 and 𝜽ℎ are the parameter vectors to be
learned. As introduced in Section 3.4, suppose that we obtain low-rank representations
such that 𝑮 ≈ 𝑼𝐺𝚺

2
𝐺𝑼
∗
𝐺

and 𝑯 ≈ 𝑼𝐻𝚺
2
𝐻𝑼
∗
𝐻

by SVD. Then, the Woodbury identity
enables the following approximation:

(𝜎2𝑰 + 𝑮 ⊗ 𝑯 )−1

≈ 𝜎−2{𝑰 − [(𝑼𝐺𝚺𝐺 ) ⊗ (𝑼𝐻𝚺𝐻 )] (𝜎2𝑰 + 𝚺2
𝐺 ⊗ 𝚺

2
𝐻 )−1 [(𝑼𝐺𝚺𝐺 ) ⊗ (𝑼𝐻𝚺𝐻 )]∗}.

Derivatives w.r.t. 𝜽𝑔

The derivative of the cost function ℓ (𝜽𝑔, 𝜽ℎ) w.r.t. 𝜃𝑔
𝑖

is

∇𝜃𝑔
𝑖
ℓ = −tr{(𝜎2𝑰 + 𝑮 ⊗ 𝑯 )−1(∇𝜃𝑔

𝑖
𝑮 ⊗ 𝑯 )}

+ vec(𝒀 )∗(𝜎2𝑰 + 𝑮 ⊗ 𝑯 )−1(∇𝜃𝑔
𝑖
𝑮 ⊗ 𝑯 ) (𝜎2𝑰 + 𝑮 ⊗ 𝑯 )−1vec(𝒀 ). (3.20)

The first term in (3.20) can be approximated by

tr{(𝜎2𝑰 + 𝑮 ⊗ 𝑯 )−1(∇𝜃𝑔
𝑖
𝑮 ⊗ 𝑯 )}

≈ 𝜎−2tr(∇𝜃𝑔
𝑖
𝑮 ⊗ 𝑯 ) − 𝜎−2tr{[(𝑼𝐺𝚺𝐺 ) ⊗ (𝑼𝐻𝚺𝐻 )]

× (𝜎2𝑰 + 𝚺2
𝐺 ⊗ 𝚺

2
𝐻 )−1 [(𝑼𝐺𝚺𝐺 ) ⊗ (𝑼𝐻𝚺𝐻 )]∗(∇𝜃𝑔

𝑖
𝑮 ⊗ 𝑯 )}

= 𝜎−2tr(∇𝜃𝑔
𝑖
𝑮)tr(𝑯 ) − 𝜎−2tr{(𝜎2𝑰 + 𝚺2

𝐺 ⊗ 𝚺
2
𝐻 )−1

× [(𝚺𝐺𝑼 ∗𝐺∇𝜃𝑔𝑖 𝑮𝑼𝐺𝚺𝐺 ) ⊗ 𝚺
4
𝐻 ]}

= 𝜎−2tr(∇𝜃𝑔
𝑖
𝑮)tr(𝚺2

𝐻 )

− 𝜎−2diag{(𝜎2𝑰 + 𝚺2
𝐺 ⊗ 𝚺

2
𝐻 )−1}⊤diag{(𝚺𝐺𝑼 ∗𝐺∇𝜃𝑔𝑖 𝑮𝑼𝐺𝚺𝐺 ) ⊗ 𝚺

4
𝐻 }

= 𝜎−2tr(∇𝜃𝑔
𝑖
𝑮)tr(𝚺2

𝐻 )

− 𝜎−2diag{(𝜎2𝑰 + 𝚺2
𝐺 ⊗ 𝚺

2
𝐻 )−1}⊤{diag(𝚺𝐺𝑼 ∗𝐺∇𝜃𝑔𝑖 𝑮𝑼𝐺𝚺𝐺 ) ⊗ diag(𝚺4

𝐻 )},
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where we use (3.16) and tr(𝑫𝑨) = diag(𝑫)⊤diag(𝑨) for any diagonal matrix 𝑫.
Note that if 𝑮 is a Gram matrix of latent variables 𝑿 = (𝒙1, 𝒙2, . . . , 𝒙𝑇 )⊤, i.e., 𝑮 =

(𝑘 (𝒙𝑖, 𝒙 𝑗 ))𝑖 𝑗 (= 𝑲1 in (3.12)), then the elements of ∇𝑥𝑝𝑖𝑮 become zeros except for the
𝑖-th row and column, and tr(∇𝑥𝑝𝑖𝑮) = 0. In such a case, further simplification is possible:

tr{(𝜎2𝑰 + 𝑮 ⊗ 𝑯 )−1(∇𝑥𝑝𝑖𝑮 ⊗ 𝑯 )}
≈ −2𝜎−2diag{(𝜎2𝑰 + 𝚺2

𝐺 ⊗ 𝚺
2
𝐻 )−1}⊤

× {[(𝑼 ∗𝐺∇𝑥𝑝𝑖𝑮 :𝑖) ⊙ 𝑼𝐺,:𝑖 ⊙ diag(𝚺2
𝐺 )] ⊗ diag(𝚺4

𝐻 )},

where ⊙ denotes the Hadamard product and ∇𝑥𝑝𝑖𝑮 :𝑖 and 𝑼𝐺,:𝑖 are the 𝑖-th column vectors
of ∇𝑥𝑝𝑖𝑮 and 𝑼𝐺 , respectively.

We next consider the second term in (3.20). By defining the transformed data onto
the lower dimension

vec(𝒀̃ ) = (𝜎2𝑰 + 𝚺2
𝐺 ⊗ 𝚺

2
𝐻 )−1vec(𝚺𝐻𝑼 ∗𝐻𝒀𝑼𝐺𝚺𝐺 ),

we obtain the following approximation:

vec(𝒀 )∗(𝜎2𝑰 + 𝑮 ⊗ 𝑯 )−1(∇𝜃𝑔
𝑖
𝑮 ⊗ 𝑯 ) (𝜎2𝑰 + 𝑮 ⊗ 𝑯 )−1vec(𝒀 )

≈ 𝜎−4{vec(𝒀 ) − [(𝑼𝐺𝚺𝐺 ) ⊗ (𝑼𝐻𝚺𝐻 )]vec(𝒀̃ )}∗ [∇𝜃𝑔
𝑖
𝑮 ⊗ (𝑼𝐻𝚺2

𝐻𝑼
∗
𝐻 )]

× {vec(𝒀 ) − [(𝑼𝐺𝚺𝐺 ) ⊗ (𝑼𝐻𝚺𝐻 )]vec(𝒀̃ )}
= 𝜎−4vec(𝒀 )∗ [∇𝜃𝑔

𝑖
𝑮 ⊗ (𝑼𝐻𝚺2

𝐻𝑼
∗
𝐻 )]vec(𝒀 )

− 𝜎−4vec(𝒀̃ )∗ [(𝚺𝐺𝑼 ∗𝐺∇𝜃𝑔𝑖 𝑮) ⊗ (𝚺
3
𝐻𝑼
∗
𝐻 )]vec(𝒀 )

− 𝜎−4vec(𝒀 )∗ [(∇𝜃𝑔
𝑖
𝑮𝑼𝐺𝚺𝐺 ) ⊗ (𝑼𝐻𝚺3

𝐻 )]vec(𝒀̃ )

+ 𝜎−4vec(𝒀̃ )∗ [(𝚺𝐺𝑼 ∗𝐺∇𝜃𝑔𝑖 𝑮𝑼𝐺𝚺𝐺 ) ⊗ 𝚺
4
𝐻 )]vec(𝒀̃ )

= 𝜎−4tr(𝚺2
𝐻𝑼
∗
𝐻𝒀∇𝜃𝑔𝑖 𝑮

⊤𝒀 ∗𝑼𝐻 ) − 𝜎−4tr(𝚺3
𝐻𝑼
∗
𝐻𝒀∇𝜃𝑔𝑖 𝑮

⊤𝑼𝐺𝚺𝐺 𝒀̃
∗)

− 𝜎−4tr(𝒀̃𝚺𝐺𝑼⊤𝐺∇𝜃𝑔𝑖 𝑮
⊤𝒀 ∗𝑼𝐻𝚺

3
𝐻 ) + 𝜎

−4tr(𝚺4
𝐻 𝒀̃𝚺𝐺𝑼

⊤
𝐺∇𝜃𝑔𝑖 𝑮

⊤𝑼𝐺𝚺𝐺 𝒀̃
∗),

where 𝑼𝐻 denotes the conjugate matrix without the transpose of 𝑼𝐻 . Furthermore, in the
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particular case where 𝑮 is a Gram matrix consisting of 𝑿 = (𝒙1, 𝒙2, . . . , 𝒙𝑇 )⊤, we have

vec(𝒀 )∗(𝜎2𝑰 + 𝑮 ⊗ 𝑯 )−1(∇𝑥𝑝𝑖𝑮 ⊗ 𝑯 ) (𝜎2𝑰 + 𝑮 ⊗ 𝑯 )−1vec(𝒀 )
≈ 2𝜎−4Re{∇𝑥𝑝𝑖𝑮⊤:𝑖 𝒀 ∗𝑼𝐻𝚺2

𝐻𝑼
∗
𝐻𝒀 :𝑡 − ∇𝑥𝑝𝑖𝑮⊤:𝑖 𝑼𝐺𝚺𝐺 𝒀̃

∗
𝚺

3
𝐻𝑼
∗
𝐻𝒀 :𝑡

− 𝑼⊤𝐺,𝑖:𝚺𝐺 𝒀̃
∗
𝚺

3
𝐻𝑼𝐻𝒀∇𝑥𝑝𝑖𝑮 :𝑖 + ∇𝑥𝑝𝑖𝑮⊤:𝑖 𝑼𝐺𝚺𝐺 𝒀̃

∗
𝚺

4
𝐻 𝒀̃𝚺𝐺𝑼𝐺,𝑖:}.𝑠𝑙𝑒𝑖𝑔𝑣𝑎𝑙𝑠𝑠𝑖𝑔𝑚𝑎0

Derivatives w.r.t. 𝜽ℎ

The derivative of the cost function ℓ (𝜽𝑔, 𝜽ℎ) w.r.t. 𝜃ℎ𝑖 is

∇𝜃ℎ
𝑖
ℓ = −tr{(𝜎2𝑰 + 𝑮 ⊗ 𝑯 )−1(𝑮 ⊗ ∇𝜃ℎ

𝑖
𝑯 )}

+ vec(𝒀 )∗(𝜎2𝑰 + 𝑮 ⊗ 𝑯 )−1(𝑮 ⊗ ∇𝜃ℎ
𝑖
𝑯 ) (𝜎2𝑰 + 𝑮 ⊗ 𝑯 )−1vec(𝒀 ) . (3.21)

We can approximate the first term in (3.21) as

tr{(𝜎2𝑰 + 𝑮 ⊗ 𝑯 )−1(𝑮 ⊗ ∇𝜃ℎ
𝑖
𝑯 )}

≈ 𝜎−2tr(𝑮 ⊗ ∇𝜃ℎ
𝑖
𝑯 ) − 𝜎−2tr{[(𝑼𝐺𝚺𝐺 ) ⊗ (𝑼𝐻𝚺𝐻 )]

× (𝜎2𝑰 + 𝚺2
𝐺 ⊗ 𝚺

2
𝐻 )−1 [(𝑼𝐺𝚺𝐺 ) ⊗ (𝑼𝐻𝚺𝐻 )]∗(𝑮 ⊗ ∇𝜃ℎ

𝑖
𝑯 )}

= 𝜎−2tr(𝑮)tr(∇𝜃ℎ
𝑖
𝑯 ) − 𝜎−2tr{(𝜎2𝑰 + 𝚺2

𝐺 ⊗ 𝚺
2
𝐻 )−1

× [𝚺4
𝐺 ⊗ (𝚺𝐻𝑼 ∗𝐻∇𝜃ℎ

𝑖
𝑯𝑼𝐻𝚺𝐻 )]}

= 𝜎−2tr(𝚺2
𝐺 )tr(∇𝜃ℎ

𝑖
𝑯 )

− 𝜎−2diag{(𝜎2𝑰 + 𝚺2
𝐺 ⊗ 𝚺

2
𝐻 )−1}⊤diag{𝚺4

𝐺 ⊗ (𝚺𝐻𝑼 ∗𝐻∇𝜃ℎ
𝑖
𝑯𝑼𝐻𝚺𝐻 )}

= 𝜎−2tr(𝚺2
𝐺 )tr(∇𝜃ℎ

𝑖
𝑯 )

− 𝜎−2diag{(𝜎2𝑰 + 𝚺2
𝐺 ⊗ 𝚺

2
𝐻 )−1}⊤{diag(𝚺4

𝐺 ) ⊗ diag(𝚺𝐻𝑼 ∗𝐻∇𝜃ℎ
𝑖
𝑯𝑼𝐻𝚺𝐻 )}.

Consider 𝑯 =𝑾𝑾∗ and the derivative with respect to𝑤𝑑𝑘 in the first CN(·, ·) in (3.12).
In this case, a more computationally inexpensive form is available:

tr{(𝜎2𝑰 + 𝑮 ⊗ 𝑯 )−1(𝑮 ⊗ ∇𝑤𝑑𝑘
𝑯 )}

≈ 2𝜎−2tr(𝚺2
𝐺 ) − 2𝜎−2diag{(𝜎2𝑰 + 𝚺2

𝐺 ⊗ 𝚺
2
𝐻 )−1}⊤

× {diag(𝚺4
𝐺 ) ⊗ [(𝑼 ∗𝐻𝒘𝑘) ⊙ 𝑼𝐻,𝑑 : ⊙ diag(𝚺2

𝐻 )]}.
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For the second term in (3.21), the following approximation is similarly obtained:

vec(𝒀 )∗(𝜎2𝑰 + 𝑮 ⊗ 𝑯 )−1(𝑮 ⊗ ∇𝜃ℎ
𝑖
𝑯 ) (𝜎2𝑰 + 𝑮 ⊗ 𝑯 )−1vec(𝒀 )

≈ 𝜎−4{vec(𝒀 ) − [(𝑼𝐺𝚺𝐺 ) ⊗ (𝑼𝐻𝚺𝐻 )]vec(𝒀̃ )}∗ [(𝑼𝐺𝚺2
𝐺𝑼
∗
𝐺 ) ⊗ ∇𝜃ℎ

𝑖
𝑯 ]

× {vec(𝒀 ) − [(𝑼𝐺𝚺𝐺 ) ⊗ (𝑼𝐻𝚺𝐻 )]vec(𝒀̃ )}
= 𝜎−4vec(𝒀 )∗ [(𝑼𝐺𝚺2

𝐺𝑼
∗
𝐺 ) ⊗ ∇𝜃ℎ

𝑖
𝑯 ]vec(𝒀 )

− 𝜎−4vec(𝒀̃ )∗ [(𝚺3
𝐺𝑼
∗
𝐺 ) ⊗ (𝚺𝐻𝑼 ∗𝐻∇𝜃ℎ

𝑖
𝑯 )]vec(𝒀 )

− 𝜎−4vec(𝒀 )∗ [(𝑼𝐻𝚺3
𝐻 ) ⊗ (∇𝜃ℎ

𝑖
𝑯𝑼𝐻𝚺𝐻 )]vec(𝒀̃ )

+ 𝜎−4vec(𝒀̃ )∗ [𝚺4
𝐺 ⊗ (𝚺𝐻𝑼 ∗𝐻∇𝜃ℎ

𝑖
𝑯𝑼𝐻𝚺𝐻 ))]vec(𝒀̃ )

= 𝜎−4tr(𝚺2
𝐺𝑼
⊤
𝐺𝒀
∗∇𝜃ℎ

𝑖
𝑯𝒀𝑼𝐺 ) − 𝜎−4tr(𝒀̃𝚺𝐻𝑼 ∗𝐻∇𝜃ℎ

𝑖
𝑯𝒀𝑼⊤𝐺𝚺

3
𝐺 )

− 𝜎−4tr(𝚺3
𝐺𝑼
⊤
𝐺𝒀
∗∇𝜃ℎ

𝑖
𝑯𝑼 ∗𝐻𝚺𝐻 𝒀̃ ) + 𝜎−4tr(𝚺4

𝐺 𝒀̃
∗
𝚺𝐻𝑼

∗
𝐻∇𝜃ℎ

𝑖
𝑯𝑼𝐻𝚺𝐻 𝒀̃

∗).

When 𝑯 =𝑾𝑾∗ and taking derivative with respect to𝑤𝑑𝑘 ,

vec(𝒀 )∗(𝜎2𝑰 + 𝑮 ⊗ 𝑯 )−1(𝑮 ⊗ ∇𝑤𝑑𝑘
𝑯 ) (𝜎2𝑰 + 𝑮 ⊗ 𝑯 )−1vec(𝒀 )

≈ 2𝜎−4(𝒀⊤
𝑑 :𝑼𝐺𝚺

2
𝐺𝑼
∗
𝐺𝒀
∗𝒘𝑘 − 𝒀⊤𝑑 :𝑼𝐺𝚺

3
𝐺 𝒀̃
∗
𝚺𝐻𝑼

∗
𝐻𝒘𝑘

− 𝑼⊤
𝐻,𝑑 :𝚺𝐻 𝒀̃𝚺

3
𝐺𝑼
⊤
𝐺𝒀
∗𝒘𝑘 + 𝑼⊤𝐻,𝑑 :𝚺𝐻 𝒀̃𝚺

4
𝐺 𝒀̃
∗
𝚺𝐻𝑼

∗
𝐻𝒘𝑘) .

These derivative approximations of ℓ (𝜽𝑔, 𝜽ℎ) imply the effectiveness of our low-rank
approximation in terms of computational costs, which are lower than those of the
Stegle’s method [Stegle et al., 2011, Rakitsch et al., 2013].

3.9 Invariance Under Shuffling Snapshot Pairs

We sometimes know how (𝒚𝑡−1,𝒚𝑡 ), 𝑡 = 1, . . . ,𝑇 are paired, but we do not know the
correct order of the timepoints. More formally, let 𝜏 : {1, . . . ,𝑇 } → {1, . . . ,𝑇 } be a
permutation map. We have the pairs

(𝒚𝜏 (𝑡−1),𝒚𝜏 (𝑡)), for 𝑡 = 2, . . . ,𝑇 ,
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as observed data, but the permutation 𝜏 is unknown. In other words, the shuffled
observation matrices 𝒀̃ 0, 𝒀̃ 1 ∈ C𝐷×(𝑇−1) is obtained as

𝒀̃ 0 = (𝒚𝜏 (1),𝒚𝜏 (2), . . . ,𝒚𝜏 (𝑇−1)),
𝒀̃ 1 = (𝒚𝜏 (2),𝒚𝜏 (3), . . . ,𝒚𝜏 (𝑇 )),

and there exists a (𝑇 − 1) × (𝑇 − 1) permutation matrix 𝑷 such that 𝒀̃ 0 = 𝒀 0𝑷 and
𝒀̃ 1 = 𝒀 1𝑷 .

DMD even works in this setting. The solution of (3.7) is 𝒀 1𝒀 +0 C 𝑨̄ in general.
Recall that the pseudo-inverse is given by

𝒀 +0 =


𝒀 ∗0(𝒀 0𝒀

∗
0)−1 for 𝐷 < 𝑇 − 1

𝒀−1
0 for 𝐷 = 𝑇 − 1

(𝒀 ∗0𝒀 0)−1𝒀 ∗0 for 𝐷 > 𝑇 − 1,

(3.22)

if 𝒀 0 ∈ C𝐷×(𝑇−1) is full-rank4. For every case in (3.22), we can confirm that 𝑨̄ = 𝒀 1𝒀 +0 =

𝒀̃ 1𝒀̃
+
0 holds. This means that the DMD procedure with the shuffled observation matrices

𝒀̃ 1 and 𝒀̃
+
0 produces the same result as the unshuffled observations.

Let us see the invariance of GPKMD under shuffling snapshot pairs. Before
marginalizing {𝑏𝑘𝑙 }, GPKMD has the joint likelihood

𝑝 (𝒀 |{𝒙𝑡 }, {𝜆𝑘}, {𝒘𝑘}, {𝑏𝑘𝑙 }, 𝜎2)

=

𝑇∏
𝑡=1
CN

(
𝒚𝜏 (𝑡)

����� 𝐾∑︁
𝑘=1

(∑︁
𝑙

𝑏𝑘𝑙𝜓𝑙 (𝒙𝜏 (𝑡))
)
𝒘𝑘 , 𝜎

2𝑰

)
× CN

(
𝒚𝜏 (𝑡)

����� 𝐾∑︁
𝑘=1

𝜆𝑘

(∑︁
𝑙

𝑏𝑘𝑙𝜓𝑙 (𝒙𝜏 (𝑡−1))
)
𝒘𝑘 , 𝜎

2𝑰

)
,

from (3.11). After the marginalization, the permutation 𝜏 effects the GPDM prior as:

𝑝 (𝒙1, . . . , 𝒙𝑇 ) =MN(𝑿1𝑷 |𝑶, 𝑰 , 𝑷⊤𝑲𝑋𝑷 + 𝑠2
𝑥 𝑰 ) .

4In this subsection we use 𝑡 = 1, . . . ,𝑇 for timepoints while 𝑡 = 0, . . . ,𝑇 are used in (3.7).
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This reformulation preserves the original value because

𝑝 (𝒙1, . . . , 𝒙𝑇 ) =MN(𝑿1𝑷 |𝑶, 𝑰 , 𝑷⊤𝑲𝑋𝑷 + 𝑠2
𝑥 𝑰 )

∝ exp ©­«−
1
2
tr((𝑷⊤𝑲𝑋𝑷 + 𝑠2

𝑥 𝑰 )−1𝑷⊤𝑿⊤1 𝑿1𝑷 )ª®¬
∝ exp ©­«−

1
2
tr(𝑷𝑷⊤(𝑲𝑋 + 𝑠2

𝑥 𝑰 )−1𝑷𝑷⊤𝑿⊤1 𝑿1)
ª®¬

∝ exp ©­«−
1
2
tr((𝑲𝑋 + 𝑠2

𝑥 𝑰 )−1𝑿⊤1 𝑿1)ª®¬ ∝ MN(𝑿1 |𝑶, 𝑰 ,𝑲𝑋 + 𝑠2
𝑥 𝑰 )

holds.
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4
Minorization-Maximization for
Determinantal Point Processes

4.1 Background

A determinantal point process (DPP) is a probabilistic model that represents the
occurrence probability of random subsets of a ground set. Initially, DPPs introduced in
statistical mechanics to describe the probabilistic behavior of fermions [Macchi, 1975].
In recent years, broader applications of DPPs have been developed in the machine
learning community [Kulesza and Taskar, 2012].

An important feature of DPPs is the presence of negative dependence [Borcea et al.,
2009]. There exist some characterizations of negative dependence [Mariet, 2019],
and here we consider (pairwise) negative correlation as an example. Letting A be a
random subset, 𝑃 ({𝑖, 𝑗} ⊆ A) ≤ 𝑃 (𝑖 ∈ A)𝑃 ( 𝑗 ∈ A) holds for any pair of items 𝑖, 𝑗 in a
ground set when 𝑃 (·) is defined as a DPP. This means that DPPs can take into account
inter-element repulsion, which encourages the occurrence of diverse subsets. This feature
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aligns with a variety of machine learning applications, such as diversity-promoting
image search [Kulesza and Taskar, 2011], recommender systems [Gillenwater et al.,
2014], base station configuration for cellular networks [Miyoshi and Shirai, 2014],
random design regression [Dereziński et al., 2022], and locating inducing points of
sparse variational Gaussian process regression [Burt et al., 2020].

A natural problem on DPPs is efficient learning of the parameters. Since a DPP
defined on a finite ground set is parameterized by a positive semidefinite kernel matrix,
the learning methods are roughly classified into three approaches: (a) assuming the
kernel matrix is full-rank and having no additional structure (full-rank DPPs), (b)
assuming the kernel matrix is low-rank (low-rank DPPs), or (c) assuming other tractable
structure for the kernel matrix.

So far, some learning methods have been designed for full-rank DPPs. Gillenwater
et al. [2014] pioneered the learning problem of DPPs; they developed an EM algorithm
for full-rank DPPs. Mariet and Sra [2015] later proposed a fixed-point algorithm for
full-rank DPPs. They derived a simple update rule for the kernel matrix and showed
its monotonicity by finding its equivalence with a minorization-maximization (MM)
algorithm. Their experiments also showed that the fixed-point algorithm is more efficient
and stable than the EM algorithm.

Gartrell et al. [2017] introduced low-rank DPPs. Learning low-rank DPPs involves
gradient-based optimization. Mariet et al. [2019a] proposed contrastive estimation as an
alternative of the maximum likelihood estimation (MLE), while Osogami et al. [2018]
incorporated temporal dynamics into low-rank DPPs. A Bayesian extension of low-rank
DPPs was also proposed in [Gartrell et al., 2016].

In principle, without special structures, it is difficult to overcome the O(𝑁 3) time
complexity for full-rank DPPs and O(𝑁𝐾2) for low-rank DPPs, where 𝑁 is the size of
the ground set and 𝐾 is the rank of the kernel matrix. To go beyond these complexities,
DPPs with special structure are developed, such as Kronecker DPPs [Mariet and Sra,
2016] and the “diagonal+special low-rank” structure [Dupuy and Bach, 2018].

Our study focuses on learning of full-rank DPPs. While full-rank DPPs are sometimes
not suitable for problems with a large ground set, we often want to conduct an exact
inference for small- to medium-sized problems. For example, consider a hypothetical
application of a DPP. The first step in the data analysis is to assess whether DPP-based
modeling is appropriate for our task or not. Even if our final goal is to handle large data,
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we typically take relatively small data collected provisionally during this assessment
phase. In such a situation, we hope to utilize a ready-made learning algorithm: requiring
less hyperparameter tuning, easily implementable, well-behaved, and good convergence
speed. However, the existing methods for full-rank DPPs have some difficulties; the
EM algorithm [Gillenwater et al., 2014] internally requires optimization on a Stiefel
manifold, making the learning procedure complicated and unstable. In [Mariet and Sra,
2015], the authors introduced a step size in order to accelerate the fixed-point algorithm,
but the step size was fixed throughout the learning.

4.1.1 Contributions

In this chapter, we propose a simple yet powerful learning rule for full-rank DPPs based
on the MM algorithm. Our method increases the log-likelihood monotonically and stably,
and locally provides a tighter minorizer than the fixed-point algorithm. Our minorizer is
concave while the fixed-point algorithm maximizes a non-concave minorizer in the
iteration. This means it has no concern about optimization failure in each iteration.
Moreover, we also develop an accelerated version of the proposed MM algorithm.
Although the accelerated algorithm requires fixed hyperparameters, the step size is
determined adaptively in each iteration. We conduct experiments with both synthetic and
real-world datasets and our method outperforms the existing methods in most settings.

In summary, our main contributions in this chapter are:

• We present an easy-to-implement learning method for full-rank DPPs based on the
MM algorithm. By the property of MM algorithms, our method monotonically
increases the log-likelihood.

• We compare the tightness of the minorizers between the existing and proposed
methods. The fixed-point algorithm for DPPs proposed in [Mariet and Sra, 2015]
can also be viewed as an MM algorithm. Our result indicates that our minorizer
locally provides a tighter lower-bound than the existing method. Moreover, our
method provides a concave minorizer unlike the exsiting method.

• We derive a generalized form of the minorizer and develop an accelerated
algorithm. We also provide an adaptive method to determine the step size values
in iterations for the accelerated algorithm.
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• We conduct experiments to evaluate learning algorithms for full-rank DPPs using
both synthetic and real-world datasets. Our empirical results show the superiority
of our method in convergence speed and stability.

4.2 Learning Algorithm

In this chapter, we develop a learning algorithm for 𝑳-ensembles (2.15). Given 𝑀
samples denoted by A1,A2, . . . ,A𝑀 ⊆ Y, our goal is to solve MLE. That is, to find a
maximizer of the log-likelihood

𝑓 (𝑳) =
1
𝑀

𝑀∑︁
𝑚=1

log det( [𝑳]A𝑚
) − log det(𝑳 + 𝑰 )

=
1
𝑀

𝑀∑︁
𝑚=1

log det(𝑼A𝑚
𝑳𝑼⊤A𝑚

) − log det(𝑳 + 𝑰 ), (4.1)

where 𝑼A𝑚
∈ {0, 1} |A𝑚 |×𝑁 is the submatrix of 𝑰 obtained by keeping the rows corre-

sponding to the elements in A𝑚.

4.2.1 MM Algorithm

A minorization-maximization (MM) algorithm is a powerful meta-algorithm for finding
a local maximizer of a generally non-concave objective 𝑓 (𝜃 ) [Hunter and Lange, 2004,
Sun et al., 2017]. The MM algorithm consists of two steps: (i) find a minorizer 𝑔(𝜃 |𝜃 (𝑡))
of 𝑓 (𝜃 ) that satisfies

• 𝑓 (𝜃 ) ≥ 𝑔(𝜃 |𝜃 (𝑡))

• 𝑓 (𝜃 (𝑡)) = 𝑔(𝜃 (𝑡) |𝜃 (𝑡))

for all 𝜃 and 𝜃 (𝑡) within a feasible region. Then, (ii) maximize the minorizer 𝑔(𝜃 |𝜃 (𝑡))
with respect to 𝜃 and set 𝜃 (𝑡+1) = arg max𝑔(𝜃 |𝜃 (𝑡)). Repeating this process, we can
obtain a sequence of the parameters {𝜃 (𝑡)}𝑡≥0 which monotonically increases the
objective value, because

𝑓 (𝜃 (𝑡+1)) ≥ 𝑔(𝜃 (𝑡+1) |𝜃 (𝑡)) ≥ 𝑔(𝜃 (𝑡) |𝜃 (𝑡)) = 𝑓 (𝜃 (𝑡)) (4.2)
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Figure 4.1: Outline of an MM algorithm. The yielded parameters (shown in pink)
increase the objective function 𝑓 (𝜃 ) monotonically.

holds. Figure 4.1 outlines the MM algorithm. We can see that the yielded parameters
𝜃0, 𝜃1, 𝜃2, . . . increase the objective function 𝑓 (𝜃 ) monotonically.

Since log det(·) is concave on S++, the objective function (4.1) is a combination of
concave and convex functions. From the concavity of log det(·), the following linear
upper bound is derived with the first-order Taylor expansion

log det(𝑿 ) ≤ log det(𝒀 ) + tr{𝒀−1(𝑿 − 𝒀 )} = log det(𝒀 ) + tr(𝒀−1𝑿 ) − 𝑛 (4.3)

for any 𝑿 , 𝒀 ∈ S𝑛++, 𝑛 ∈ N, and by swapping 𝑿 and 𝒀 ,

log det(𝑿 ) ≥ log det(𝒀 ) − tr{𝑿−1(𝒀 − 𝑿 )} = log det(𝒀 ) − tr(𝑿−1𝒀 ) + 𝑛 (4.4)

also holds.

From (4.3) with 𝑿 → 𝑳 + 𝑰 and 𝒀 → 𝑳(𝑡+1) + 𝑰 , we have

− log det(𝑳 + 𝑰 ) ≥ − log det(𝑳(𝑡) + 𝑰 ) − tr{(𝑳(𝑡) + 𝑰 )−1(𝑳 − 𝑳(𝑡))}, (4.5)

which yields a choice for minorizing the objective (4.1). This method is referred to as
the concave-convex procedure (CCCP) [Yuille and Rangarajan, 2001], a special case of
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MM algorithms. However, the minorizer derived by the CCCP has no closed-form
maximizer in our case, therefore, we devise an easy-to-optimize alternative.

4.2.2 Proposed Algorithm

In the proposed minorizer of (4.1), the convex part is lower-bounded linearly by (4.5)
and the concave part log det( [𝑳]A𝑚

) = log det(𝑼A𝑚
𝑳𝑼⊤A𝑚

) is also lower-bounded. The
following proposition provides the concrete form of our proposed minorizer.

Proposition 4.1. Let 𝑓 (𝑳) be given by (4.1) and

𝑔(𝑳 |𝑳(𝑡))

= −
1
𝑀

𝑀∑︁
𝑚=1

tr{𝑳(𝑡)𝑼⊤A𝑚
[𝑳(𝑡)]−1

A𝑚
𝑼A𝑚

𝑳(𝑡)𝑳−1} − tr{(𝑳(𝑡) + 𝑰 )−1𝑳} + 𝜁 (𝑳(𝑡)), (4.6)

where

𝜁 (𝑳(𝑡))

=
1
𝑀

𝑀∑︁
𝑚=1

{
log det(𝑼A𝑚

𝑳(𝑡)𝑼⊤A𝑚
) + |A𝑚 |

}
− log det(𝑳(𝑡) + 𝑰 ) + tr{(𝑳(𝑡) + 𝑰 )−1𝑳(𝑡)}

is a constant term. Then, 𝑓 (𝑳) ≥ 𝑔(𝑳 |𝑳(𝑡)) and 𝑓 (𝑳(𝑡)) = 𝑔(𝑳(𝑡) |𝑳(𝑡)) hold for any

𝑳, 𝑳(𝑡) ∈ S𝑁++.

Proof. For any positive definite 𝑷 , 𝑷 𝑡 ≻ 0 and any square or broad non-degenerate
matrix 𝑨, the following matrix inequality holds [Sun et al., 2016, 2017]:

(𝑨𝑷𝑨⊤)−1 ⪯ 𝑹−1
𝑡 𝑨𝑷 𝑡𝑷

−1𝑷 𝑡𝑨
⊤𝑹−1

𝑡 ,

𝑹𝑡 = 𝑨𝑷 𝑡𝑨
⊤,

and thus we have

tr{(𝑨𝑷𝑨⊤)−1𝑺} ≤ tr{𝑹−1
𝑡 𝑨𝑷 𝑡𝑷

−1𝑷 𝑡𝑨
⊤𝑹−1

𝑡 𝑺} (4.7)
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for any appropriately sized and positive semidefinite 𝑺 ⪰ 𝑶 . Using the lower-bound
(4.4) with the substitutions 𝑿 → 𝑼A𝑚

𝑳𝑼⊤A𝑚
, 𝒀 → 𝑼A𝑚

𝑳(𝑡)𝑼⊤A𝑚
and (4.7) with

𝑨→ 𝑼A𝑚
, 𝑷 → 𝑳, 𝑷 𝑡 → 𝑳(𝑡) and 𝑺 → 𝑼A𝑚

𝑳(𝑡)𝑼⊤A𝑚
, we have

log det(𝑼A𝑚
𝑳𝑼⊤A𝑚

) ≥ |A𝑚 | + log det(𝑼A𝑚
𝑳(𝑡)𝑼⊤A𝑚

) − tr{(𝑼A𝑚
𝑳𝑼⊤A𝑚

)−1𝑼A𝑚
𝑳(𝑡)𝑼⊤A𝑚

}

≥ |A𝑚 | + log det(𝑼A𝑚
𝑳(𝑡)𝑼⊤A𝑚

) − tr{𝑳(𝑡)𝑼⊤A𝑚
[𝑳(𝑡)]−1

A𝑚
𝑼A𝑚

𝑳(𝑡)𝑳−1}.
(4.8)

Combining the lower-bounds (4.5) and (4.8), we can construct the minorizer of 𝑓 (𝑳) as
(4.6). ⊓⊔

In order to obtain the maximizer of (4.1), we iteratively optimize the proposed
minorizer 𝑔(𝑳 |𝑳(𝑡)) by solving the first-order optimality condition for 𝑡 = 1, . . . ,𝑇 . Since
𝑔(𝑳 |𝑳(𝑡)) is concave because of the convexity of tr(𝑿−1) for 𝑿 ≻ 0, a stationary point of
𝑔(𝑳 |𝑳(𝑡)) is also its global maximizer.

Proposition 4.2. A global maximizer of 𝑔(𝑳 |𝑳(𝑡)) satisfies

−𝑳(𝑳(𝑡) + 𝑰 )−1𝑳 + 𝑸 (𝑡)
𝑀

= 𝑶, (4.9)

where

𝑸 (𝑡)
𝑀

= 𝑳(𝑡)
©­«

1
𝑀

𝑀∑︁
𝑚=1

𝑼⊤A𝑚
[𝑳(𝑡)]−1

A𝑚
𝑼A𝑚

ª®¬ 𝑳(𝑡) . (4.10)

Proof. Noting that ∇𝑿 tr(𝑨𝑿 ) = 𝑨⊤ and ∇𝑿 tr(𝑨𝑿−1) = −(𝑿−1𝑨𝑿−1)⊤ for appropriate
matrices 𝑿 and 𝑨, the optimality condition of (4.6) is

∇𝑳𝑔(𝑳 |𝑳(𝑡)) = 𝑳−1𝑸 (𝑡)
𝑀
𝑳−1 − (𝑳(𝑡) + 𝑰 )−1 = 𝑶 . (4.11)

By multiplying both sides of (4.11) by 𝑳, we can see that the stationary points of
𝑔(𝑳 |𝑳(𝑡)) satisfy (4.9). From the concavity of 𝑔(𝑳 |𝑳(𝑡)), we obtain the result. ⊓⊔

The matrix quadratic equation (4.9) is a special case of the continuous algebraic
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Algorithm 1: Minorization-Maximization (MM)
Input: Training set {A1,A2, . . . ,A𝑀 }, initial value 𝑳 ≻ 𝑶 , and machine epsilon

𝜀 ≥ 0
Output: 𝑳
for 𝑡 = 1 to 𝑇 do

𝑨← 𝑶;

𝑸𝜀 ← 𝑳

(
1
𝑀

𝑀∑︁
𝑚=1

𝑼⊤A𝑚
[𝑳]−1
A𝑚

𝑼A𝑚

)
𝑳 + 𝜀𝑰 ;

𝑮 ← (𝑳 + 𝑰 )−1;
𝑳 ← SolveCARE(𝑨,𝑸𝜀, 𝑮); // Solve Equation (4.12)

end

Riccati equation (CARE):

𝑨⊤𝑿 + 𝑿𝑨 − 𝑿𝑮𝑿 + 𝑸 = 𝑶, (4.12)

where 𝑿 ∈ S𝑁 is unknown, and 𝑮,𝑸 ∈ S𝑁 ,𝑨 ∈ R𝑁×𝑁 are fixed coefficient matrices.
CARE is well-studied in control engineering and is solvable by some numerical methods
such as the Schur method [Laub, 1979] and Newton’s method [Bini et al., 2011,
Benner and Byers, 1998]. It is worth noting that CARE solvers are available in most
programming languages through packages for scientific computation; for example,
SciPy in Python and MatrixEquations.jl in Julia.

In addition, we can confirm the following statement as a corollary of Proposition 4.2.

Corollary 4.1. With the same notation as in Proposition 4.2 and a positive definite

initial value 𝑳(0) ≻ 0, we have rank(𝑳(𝑡)) = rank(𝑸 (𝑡)
𝑀
) for 𝑡 = 1, 2, . . ..

Proof. Since 𝑳(0) is positive definite, (𝑳(0) + 𝑰 )−1 is non-singular. Therefore, from the
optimality condition (4.9),

rank(𝑳(1) (𝑳(0) + 𝑰 )−1𝑳(1)) = rank(𝑳(1)) = rank(𝑸 (1)
𝑀
).

By applying similar operations recursively, the result can be confirmed. ⊓⊔

From the assumption in Corollary 4.1, we find that 𝑳(0) should be initialized by
some positive definite matrix. See the experimental settings described in Section 4.4
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for examples of the initialization. Corollary 4.1 also says that if 𝑸 (𝑡)
𝑀

is degenerate,
the solution of (4.9) must also be degenerate. This means that when 𝑸 (𝑡)

𝑀
is singular,

the solution of (4.9) falls outside the feasible region S𝑁++. This problem arises when
some elements of Y are never observed in the given data A1,A2, . . . ,A𝑀 , that is,⋃𝑀
𝑚=1A𝑚 ⊊ Y holds. To avoid this issue and stabilize the numerical computation, we

recommend to solve

−𝑳(𝑳(𝑡) + 𝑰 )−1𝑳 + 𝑸 (𝑡)
𝑀
+ 𝜀𝑰 = 𝑶

with a machine epsilon 𝜀 > 0 instead of (4.9). We note that the choice of the machine
epsilon 𝜀 does not affect the estimate significantly; we use 𝜀 = 10−10 throughout this
chapter. The procedure for the proposed MM-based learning is summarized in Algorithm
1.

4.2.3 Relation to the Existing Method

Mariet and Sra [2015] derived the following update rule to maximize (4.1) as a fixed-point
algorithm:

𝑳(𝑡+1) = 𝑳(𝑡) + 𝑎𝑳(𝑡)∇𝑓 (𝑳(𝑡))𝑳(𝑡), (4.13)

∇𝑓 (𝑳) =
1
𝑀

𝑀∑︁
𝑚=1

𝑼⊤A𝑚
[𝑳]−1
A𝑚

𝑼A𝑚
− (𝑳 + 𝑰 )−1,

where 𝑎 > 0 is a step size. For 𝑎 = 1, they also show that the update rule (4.13) can also
be regarded as an MM algorithm with the non-concave minorizer

ℎ(𝑳 |𝑳(𝑡)) = −
1
𝑀

𝑀∑︁
𝑚=1

tr{𝑳(𝑡)𝑼⊤A𝑚
[𝑳(𝑡)]−1

A𝑚
𝑼A𝑚

𝑳(𝑡)𝑳−1}

− log det(𝑳) − tr{(𝑳(𝑡) + 𝑰 )−1𝑳−1𝑳(𝑡)} + 𝜉 (𝑳(𝑡)), (4.14)

where 𝜉 (𝑳(𝑡)) is a constant term and explicitly given in Section 4.6. Comparing (4.14)
with (4.6), we can see that the lower-bounds for the first term in (4.1) are the same, and
those for the second term only differ. With respect to these minorizers, the following
proposition holds.
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Proposition 4.3. For 𝑔(𝑳 |𝑳(𝑡)) defined in (4.6) and ℎ(𝑳 |𝑳(𝑡)) defined in (4.14), it holds

that 𝑔(𝑳 |𝑳(𝑡)) ≥ ℎ(𝑳 |𝑳(𝑡)) for 𝑳 in the 𝛿-neighborhood of 𝑳(𝑡): B𝛿 (𝑳(𝑡)) = {𝑳(𝑡) + 𝛿𝑴 :
𝑴 is a symmetric matrix whose eigenvalues are all in [−1, 1]} with a sufficiently small

𝛿 > 0.

Proof. We have the following inequality:

𝑔(𝑳 |𝑳(𝑡)) − ℎ(𝑳 |𝑳(𝑡)) ≥ tr{(𝑳(𝑡) + 𝑰 )−1(2𝑳(𝑡) − 𝑳 − 𝑳(𝑡)𝑳−1𝑳(𝑡))}, (4.15)

where the derivation is shown in Section 4.6. If 𝑳 ∈ B𝛿 (𝑳(𝑡)), we have

2𝑳(𝑡) − 𝑳 − 𝑳(𝑡)𝑳−1𝑳(𝑡) ≈ 𝑶 . (4.16)

Details of the derivation can be found in Section 4.6. Applying the approximation (4.16)
to (4.15), we can conclude the proposition. ⊓⊔

Proposition 4.3 states that the proposed minorizer gives a tighter lower-bound of
the objective than that of the existing method locally. This leads to a tighter leftmost
inequality in (4.2), making it likely that the proposed method will produce better
𝑳(𝑡+1). Figure 4.2 shows the behavior of the minorizers in the neighborhood and
non-neighborhood of 𝑳(𝑡) . The proposed minorizer becomes looser as 𝑳 moves farther
away from 𝑳(𝑡), but the experimental results in Section 4.4 show that the proposed
method converges faster in most cases. Note that the minorizer of the fixed-point
algorithm is non-convex as seen in Figure 4.2b. This implies that the fixed-point
algorithm is possible to get trapped in poor stationary points of ℎ(𝑳 |𝑳(𝑡)).

4.2.4 Computational Costs

In our method, the total computational cost per iteration is O(𝑀𝜅3 + 𝑁 3), where
𝜅 = max𝑚 |A𝑚 |. It is computed as follows; the computation of 𝑸 (𝑡)

𝑀
in (4.9) requires

O(∑𝑀
𝑚=1 |A𝑚 |3 + 𝑁 3) = O(𝑀𝜅3 + 𝑁 3) operations, including the evaluation of [𝑳(𝑡)]−1

A𝑚

for all 𝑚 = 1, 2, . . . , 𝑀 and the matrix multiplications of the 𝑁 × 𝑁 matrices. The
inversion (𝑳(𝑡) + 𝑰 )−1 and solving the CARE also cost O(𝑁 3).

The computational complexity of our method is equal to that of the fixed-point
algorithm [Mariet and Sra, 2015]. Although our method incurs additional O(𝑁 3)
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(a) Neighborhood of 𝑳 (𝑡 ) . (b) Non-neighborhood of 𝑳 (𝑡 ) .

Figure 4.2: Behavior of minorizers.

computations due to the CARE, the experimental results in Section 4.4 show faster
convergence of our method in computational time. We note that gradient-based learning
of a low-rank factorized DPP also takes the same O(𝑀𝜅3 + 𝑁 3) per iteration if the
factorization is full-rank [Gartrell et al., 2017, Osogami et al., 2018].

4.3 Generalization and Acceleration

In this section, we develop generalization of the minorizer (4.6) and the CARE (4.9) for
further acceleration of the algorithm.

4.3.1 Generalizing the Minorizer

By adding a penalty term to the mean log-likelihood (4.1), we can generalize the
objective as

𝑓𝜇 (𝑡 ) (𝑳 |𝑳(𝑡)) = 𝑓 (𝑳) − 𝜇 (𝑡)𝑑 (𝑳∥𝑳(𝑡)), (4.17)

where 𝜇 (𝑡) ≥ 0 is a non-negative coefficient and 𝑑 (·∥·) is an appropriate divergence
defined on S𝑁++ × S𝑁++. The additional penalty term 𝜇 (𝑡)𝑑 (𝑳∥𝑳(𝑡)) effects to prevent a
big change from 𝑳(𝑡) to 𝑳(𝑡+1). By the definition of a divergence, 𝑑 (𝑳∥𝑳(𝑡)) ≥ 0 for
any 𝑳, 𝑳(𝑡) ∈ S𝑁++ and the equality holds if and only if 𝑳 = 𝑳(𝑡). This means that the
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Algorithm 2: Accelerated MM
Input: Training set {A1,A2, . . . ,A𝑀 }, initial value 𝑳 ≻ 𝑶 , machine epsilon

𝜀 ≥ 0, tolerance 𝛿 ∈ (0, 1), and acceleration steps 𝑇acc ∈ {0, 1, . . . ,𝑇 }
Output: 𝑳
for 𝑡 = 1 to 𝑇 do

𝑯 ←
(

1
𝑀

𝑀∑︁
𝑚=1

𝑼⊤A𝑚
[𝑳]−1
A𝑚

𝑼A𝑚

)
;

if 𝑡 ≤ 𝑇acc then
𝜇 ← min {max {−1/𝜆max (𝑯 (𝑳 + 𝑰 )) ,−1} + 𝛿, 0};

end
else

𝜇 ← 0;
end
𝑨← 𝑶;
𝑸𝜇,𝜀 ← (1 + 𝜇)𝑳𝑯𝑳 + 𝜀𝑰 ;
𝑮𝜇 ← 𝜇𝑯 + (𝑳 + 𝑰 )−1;
𝑳 ← SolveCARE(𝑨,𝑸𝜇,𝜀, 𝑮𝜇); // Solve Equation (4.12)

end

generalized objective 𝑓𝜇 (𝑡 ) (𝑳 |𝑳(𝑡)) also works as the minorizer of 𝑓 (𝑳). Specifically,
such a scheme is called the proximal point algorithm if the divergence 𝑑 (·∥·) is the
squared Euclidean distance [Parikh and Boyd, 2014]. Or it is also called mirror ascent
(descent) or Bregman minorization (majorization) if 𝑑 (·∥·) is a Bregman divergence
[Nemirovsky, 1983, Beck and Teboulle, 2003, Lange et al., 2021].

In our case, we consider a logdet divergence:

𝐷ld(𝑿 ∥𝒀 ) = − log det(𝑿 ) + log det(𝒀 ) + tr{𝒀−1(𝑿 − 𝒀 )},

and define 𝑑 (·∥·) as

𝑑 (𝑳∥𝑳(𝑡)) =
1
𝑀

𝑀∑︁
𝑚=1

𝐷ld( [𝑳(𝑡)]A𝑚
∥ [𝑳]A𝑚

). (4.18)

The defined 𝑑 (·∥·) in (4.18) satisfies the definition of a divergence if and only if⋃
𝑚A𝑚 = Y holds. The divergence (4.18) leads the following minorizer of 𝑓 (𝑳) and

𝑓𝜇 (𝑡 ) (𝑳 |𝑳(𝑡)).
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Proposition 4.4. Let 𝑓 (𝑳) be defined in (4.1) and 𝑓𝜇 (𝑡 ) (𝑳 |𝑳(𝑡)) be defined in (4.17) with

𝜇 (𝑡) ≥ 0 and the divergence (4.18). Then, the concave function

𝑔𝜇 (𝑡 ) (𝑳 |𝑳(𝑡)) = −
1 + 𝜇 (𝑡)

𝑀

𝑀∑︁
𝑚=1

tr(𝑳(𝑡)𝑼⊤A𝑚
[𝑳(𝑡)]−1

A𝑚
𝑼A𝑚

𝑳(𝑡)𝑳−1)

−
𝜇 (𝑡)

𝑀

𝑀∑︁
𝑚=1

tr( [𝑳(𝑡)]−1
A𝑚
[𝑳]A𝑚

) − tr{(𝑳(𝑡) + 𝑰 )−1𝑳} + 𝜁𝜇 (𝑡 ) (𝑳(𝑡)),

where 𝜁𝜇 (𝑡 ) (𝑳(𝑡)) is a constant term, is the minorizer of 𝑓 (𝑳) and 𝑓𝜇 (𝑡 ) (𝑳 |𝑳(𝑡)).

See Section 4.7 for the proof.

We can maximize 𝑔𝜇 (𝑡 ) (·|𝑳(𝑡)) by solving a CARE in the same manner as Proposition
4.2.

Proposition 4.5. A global maximizer of 𝑔𝜇 (𝑡 ) (𝑳 |𝑳(𝑡)) satisfies the CARE

−𝑳
{
𝜇 (𝑡)𝑯 (𝑡)

𝑀
+ (𝑳(𝑡) + 𝑰 )−1

}
𝑳 + (1 + 𝜇 (𝑡))𝑳(𝑡)𝑯 (𝑡)

𝑀
𝑳(𝑡) = 𝑶, (4.19)

where

𝑯 (𝑡)
𝑀

=
1
𝑀

𝑀∑︁
𝑚=1

𝑼⊤A𝑚
[𝑳(𝑡)]−1

A𝑚
𝑼A𝑚

.

𝑯 (𝑡)
𝑀

degenerates if
⋃𝑀
𝑚=1A𝑚 ⊊ Y holds as well as 𝑸 (𝑡)

𝑀
= 𝑳(𝑡)𝑯 (𝑡)

𝑀
𝑳(𝑡) defined in

(4.10). For 𝜇 (𝑡) = 0, we have 𝑔𝜇 (𝑡 ) (𝑳 |𝑳(𝑡)) = 𝑔(𝑳 |𝑳(𝑡)) and the update rule (4.19) comes
down to the original CARE (4.9). For 𝜇 (𝑡) > 0, the update rule (4.19) also works as the
MM iteration but the convergence may become slower by the penalty term.

4.3.2 Acceleration and Hyperparameter Determination

What happens if the coefficient 𝜇 (𝑡) is set to negative? Then, 𝑓𝜇 (𝑡 ) (𝑳 |𝑳(𝑡)) and 𝑔𝜇 (𝑡 ) (𝑳 |𝑳(𝑡))
can no longer be regarded as the minorizers, but it is expected that the update rule
produces a bigger change from 𝑳(𝑡) to 𝑳(𝑡+1) and the learning speed may become faster.
However, similar to the learning rate of a gradient descent, a too large absolute value for
𝜇 (𝑡) < 0 may lead to bad convergence. Worse still, the solution of the CARE (4.19) can
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even not exist. Our approach to decide the negative 𝜇 (𝑡) < 0 is to ensure that there is at
least a feasible solution to the CARE (4.19).

Lemma 4.1. Let 𝑮 ∈ S𝑁 and 𝑸 ∈ S𝑁++ be fixed coefficients and 𝑿 ∈ S𝑁 be unknown.

Then, the following equation

𝑿𝑮𝑿 = 𝑸 (4.20)

has a solution in S𝑁++ if and only if 𝑮 ≻ 𝑶 .

Proof. If 𝑮 is not positive definite, any 𝑿 does not satisfy (4.20). Taking the
contrapositive, if 𝑿 is the solution of (4.20), 𝑮 must be positive definite. Conversely, if 𝑮
is positive definite, 𝑮

1
2 ≻ 𝑶 exists and the equation (4.20) becomes 𝑿𝑮

1
2 𝑮

1
2𝑿 = 𝑸

1
2𝑸

1
2 .

We thus have 𝑿𝑮
1
2 = 𝑸

1
2 and the equation has the solution 𝑿 = 𝑸

1
2 𝑮−

1
2 ∈ S𝑁++. ⊓⊔

Proposition 4.6. Suppose 𝑯 (𝑡)
𝑀
≻ 𝑶 . Then, the CARE (4.19) has a solution in S𝑁++ if

𝜇 (𝑡) > max{−1,−1/𝜆max(𝑯 (𝑡)𝑀 (𝑳
(𝑡) + 𝑰 ))}, (4.21)

where 𝜆max(𝑿 ) denotes the largest eigenvalue of 𝑿 .

Proof. The right-hand side of the following CARE

𝑳
{
𝜇 (𝑡)𝑯 (𝑡)

𝑀
+ (𝑳(𝑡) + 𝑰 )−1

}
𝑳 = (1 + 𝜇 (𝑡))𝑳(𝑡)𝑯 (𝑡)

𝑀
𝑳(𝑡) (4.22)

is positive definite by the conditions. For 𝜇 (𝑡) ≥ 0, the solution of (4.22) immediately
exists by Lemma 4.1. When −1 < 𝜇 (𝑡) < 0, we can see that the solution exists if and
only if

𝜇 (𝑡)𝑯 (𝑡)
𝑀
+ (𝑳(𝑡) + 𝑰 )−1 ≻ 𝑶
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also from Lemma 4.1. Then, we have

𝜇 (𝑡)𝑯 (𝑡)
𝑀
+ (𝑳(𝑡) + 𝑰 )−1 ≻ 𝑶 ⇐⇒ 𝑯

(𝑡) 1
2

𝑀
(𝑰 + 𝜇 (𝑡)−1𝑯

(𝑡)− 1
2

𝑀
(𝑳(𝑡) + 𝑰 )−1𝑯

(𝑡)− 1
2

𝑀
)𝑯 (𝑡)

1
2

𝑀
≺ 𝑶

⇐⇒ 𝑰 + 𝜇 (𝑡)−1𝑯
(𝑡)− 1

2
𝑀
(𝑳(𝑡) + 𝑰 )−1𝑯

(𝑡)− 1
2

𝑀
≺ 𝑶

⇐⇒ 𝜇 (𝑡)𝑰 ≻ −𝑯 (𝑡)−
1
2

𝑀
(𝑳(𝑡) + 𝑰 )−1𝑯

(𝑡)− 1
2

𝑀

⇐⇒ 𝜇 (𝑡) > 𝜆max(−𝑯 (𝑡)−1
𝑀
(𝑳(𝑡) + 𝑰 )−1)

⇐⇒ 𝜇 (𝑡) > −1/𝜆max(𝑯 (𝑡)𝑀 (𝑳
(𝑡) + 𝑰 )) .

⊓⊔

In the accelerated algorithm, the inequality (4.21) should be satisfied strictly.
Algorithm 2 shows the entire procedure of our MM-based learning with acceleration on
the basis of Proposition 4.6. In Algorithm 2, we introduce two hyperparameters; one is
a tolerance 𝛿 > 0 that guarantees the inequality (4.21) strictly and 𝑇acc ∈ {0, 1, . . . ,𝑇 }
denotes up to how many iterations the acceleration is applied. We can automatically
adjust the step size coefficient 𝜇 (𝑡) at each iteration within the algorithm with fixed
𝛿 > 0, while user-defined fixed step size coefficients are used in the existing fixed-point
algorithm [Mariet and Sra, 2015]. In the resulting algorithm, we decide the step size by

𝜇 = min
{
max

{
−1/𝜆max

(
𝑯 (𝑡)
𝑀
(𝑳(𝑡) + 𝑰 )

)
,−1

}
+ 𝛿, 0

}
to ensure (4.21) and prevent 𝜇 (𝑡) > 0, which may provide monotonic but slower
convergence than 𝜇 (𝑡) = 0. Since only the largest eigenvalue of 𝑯 (𝑡)

𝑀
(𝑳(𝑡)+𝑰 ) incorporates

in the inequality (4.21), determining 𝜇 (𝑡) takes less computational time than solving the
CARE.

4.4 Experiments

4.4.1 Experimental Settings

We evaluate performance of the learning methods for full-rank DPPs through experiments
on synthetic and real-world datasets. For references, we take the fixed-point algorithm
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(FP) [Mariet and Sra, 2015] and Adam [Kingma and Ba, 2015] as a representative
gradient-based method. For Adam, we factorize the kernel matrix as 𝑳 = 𝑽𝑽⊤ by
𝑽 ∈ R𝑁×𝑁 and optimize 𝑽 with the low-rank DPPs [Gartrell et al., 2017, Osogami et al.,
2018]. We adopt full-batch learning for all the algorithms.

We provide the following two initialization schemes with reference to [Mariet and
Sra, 2015]:

• WISHART: We sample an initial value from the Wishart distribution as 𝑳(0) ∼
W(𝑁, 𝑰 )/𝑁 .

• BASIC: We uniformly sample 𝑣 (0)
𝑖 𝑗
∼ U(0,

√
2/𝑁 ) for 𝑖, 𝑗 = 1, 2, . . . , 𝑁 and

initialize as 𝑳(0) = 𝑽 (0)𝑽 (0)⊤.

The WISHART initialization provides a near-identity matrix, while BASIC provides a
unstructured matrix for 𝑳(0) .

We adopt the acceleration schemes for each algorithm. We set the step size 𝑎 = 1.3
for the fixed-point algorithm1 and the tolerance 𝛿 = 0.15 for the proposed MM algorithm.
For 𝑇acc < 𝑡 , we use the default parameter 𝑎 = 1 for the fixed-point algorithm, which
monotonically increases the objective but no acceleration is applied, and the same
way is used for the proposed MM. In Adam optimization, we employ the default
values 𝛽1 = 0.999, 𝛽2 = 0.9 for the decay rates, and the machine epsilon 𝜖 = 10−8. The
acceleration steps 𝑇acc of the fixed-point and MM algorithms and the learning rate 𝜂
of Adam are set to be different with the initialization schemes: 𝑇acc = 5, 𝜂 = 0.1 for
WISHART initialization and 𝑇acc = 10, 𝜂 = 0.01 for BASIC initialization.

In each experiment, we stop learning when the criterion |𝑓 (𝑳
(𝑡 ) )−𝑓 (𝑳 (𝑡−1) ) |
|𝑓 (𝑳 (𝑡−1) ) | ≤ 𝛿tol is

satisfied. We set 𝛿tol = 10−4 as the relative tolerance for all the experiments reported
below. We implemented all the experiments in Julia, and all our experiments were run
on a Linux Mint system with 32GB of RAM and an Intel Core i9-10900K CPU @
3.70GHz.

4.4.2 Datasets

We compare the learning algorithms with the following three datasets.

1This is a possibly large value that does not fail optimization in our datasets.
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Synthetic

We make true parameters as 𝑳∗ = 𝑽 ∗𝑽 ∗⊤ with 𝑣∗𝑖 𝑗 ∼ U(0, 10/𝑁 ) for 𝑖, 𝑗 = 1, 2, . . . , 𝑁 ,
and sample 𝑀 realizations from the DPP 𝑃𝑳∗ (·). We consider three different problem
sizes: (𝑁,𝑀) = (32, 2,500), (𝑁,𝑀) = (32, 10,000), and (𝑁,𝑀) = (128, 2,500). Because
the true parameters are constructed from the uniform distribution, they are likely to have
no clear structure. Using this Synthetic dataset, we test the general applicability of
our method.

In Synthetic, true parameters 𝑳∗ are available; we assess goodness of estimation
using not only log-likelihoods but also the von Neumann divergences 𝐷vN(𝑳, 𝑳∗) =
tr(𝑳 log 𝑳 − 𝑳 log 𝑳∗ − 𝑳 + 𝑳∗), which is a Bregman divergence for positive definite
matrices.

Nottingham

We apply our method to the Nottinghammusic dataset2, which was used in [Boulanger-
Lewandowski et al., 2012, Osogami et al., 2018]. The dataset contains more than 1,000
folk tracks in the ABC format in which a sequence of chords is stored. We treat each
chord in the tracks as an i.i.d. sample of a DPP on the ground set {1, 2, . . . , 88}, where
𝑁 = 88 is the number of keys. We randomly pick 25 tracks and that yields 𝑀 = 6,364
samples on average.

In Nottingham, there is large disparity in the probability of each item appearing,
with very low- and high-pitched keys being rarely used. Moreover, music theory
prohibits certain key combinations within a chord. From these facts, the optimal 𝑳∗ of
the Nottingham dataset is expected to have unknown but particular structure.

Amazon Baby Registry

Amazon baby registry has served as a benchmark for learning methods of DPPs
since [Gillenwater et al., 2014]. It contains 13 categories of child care products, including
“feeding” and “carseats,” and on average, has 𝑁 = 71 items and 𝑀 = 8,585 samples,
respectively. We run our experiment on each of the 13 categories to assess performance
of the learning methods for medium-sized recommender systems.

2Available at https://abc.sourceforge.net/NMD/.

https://abc.sourceforge.net/NMD/
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Table 4.1: Final mean log-likelihoods, runtimes, and von Neumann divergences
𝐷vN(𝑳, 𝑳∗) of the Synthetic datasets. Each value is computed from the average or
standard deviation of 30 trials with the accelerated settings.

WISHART BASIC
Data Size Method Log-likelihood Runtime (s) vN div. Log-likelihood Runtime (s) vN div.

𝑁 = 32
𝑀 = 2,500

FP −15.58 ± 0.15 0.39 ± 0.03 38.22 ± 1.85 −15.61 ± 0.20 1.46 ± 0.31 41.39 ± 4.17
Adam −15.55 ± 0.16 0.36 ± 0.23 56.77 ± 9.40 −15.64 ± 0.34 0.71 ± 0.37 33.42 ± 3.13
MM −15.58 ± 0.15 0.18 ± 0.07 42.63 ± 2.38 −15.45 ± 0.20 0.21 ± 0.03 30.16 ± 1.97

𝑁 = 32
𝑀 = 10,000

FP −15.58 ± 0.17 1.32 ± 0.14 38.05 ± 2.01 −15.71 ± 0.14 5.59 ± 0.85 40.79 ± 3.29
Adam −15.58 ± 0.17 1.23 ± 0.56 49.35 ± 4.54 −15.70 ± 0.22 3.05 ± 1.45 32.50 ± 2.11
MM −15.58 ± 0.18 0.48 ± 0.09 42.53 ± 2.43 −15.55 ± 0.14 0.77 ± 0.09 29.75 ± 1.52

𝑁 = 128
𝑀 = 2,500

FP −30.14 ± 0.18 3.36 ± 0.22 36.17 ± 0.45 −30.34 ± 0.19 6.37 ± 0.48 52.62 ± 1.74
Adam −30.18 ± 0.22 2.50 ± 0.40 44.88 ± 1.53 −30.46 ± 1.08 2.30 ± 0.56 39.44 ± 5.54
MM −30.11 ± 0.18 0.69 ± 0.05 42.54 ± 0.53 −30.08 ± 0.19 1.27 ± 0.21 32.15 ± 0.55

4.4.3 Experimental Results

Synthetic

The final mean log-likelihoods, runtimes, and von-Neumann divergence values of
the Synthetic datasets with the acceleration are presented in Table 4.1. For each
experiment, we conducted 30 trials with different 𝑳∗ and 𝑳(0) and calculated the average
and standard deviation. As shown in Table 4.1, our method (MM) achieves the best
runtimes for all the settings. While the final log-likelihood values are almost equivalent
by the algorithms in WISHART initialization, those obtained by the proposed MM
tend to be larger in BASIC initialization. Furthermore, our method also produces
the best von Neumann divergences 𝐷vN with BASIC initialization and moderately
performs with WISHART initialization. The results show good stablity of our method;
the proposed algorithm is considered to be favorable in standard situations. The result of
the Synthetic datasets without the acceleration is also shown in Section 4.8.

In Figure 4.3, we show the learning curves with and without acceleration. While the
fixed-point algorithm convergences stably yet slightly slow without the acceleration,
the accelerated version becomes competitive in WISHART initialization. The Adam
optimizer may temporarily fall into poor local optima, depending on the initial value. On
the other hand, the proposed MM algorithm consistently indicates stable and rapid
convergence both with and without the acceleration.
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(a) WISHART (b) BASIC

Figure 4.3: Learning curves of the Synthetic datasets. Top: (𝑁,𝑀) = (32, 2,500),
Medium: (𝑁,𝑀) = (32, 10,000), Bottom: (𝑁,𝑀) = (128, 2,500). Results with the default
parameters (𝑇acc = 0 for fixed-point and MM, and 𝜂 = 0.001 for Adam) are also shown.

Nottingham

The results of the Nottingham dataset with the acceleration are presented in Table 4.2,
and the learning curves with and without acceleration are showed in Figure 4.4. The
convergence of Adam is remarkably rapid in the Nottingham dataset.
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Table 4.2: Final mean log-likelihoods and runtimes of the Nottigham dataset. Each
value is computed from the average or standard deviation of 30 trials with the accelerated
settings.

WISHART BASIC
Method Log-likelihood Runtime (s) Log-likelihood Runtime (s)

FP −8.31 ± 0.22 40.68 ± 2.86 −10.13 ± 0.27 33.19 ± 8.08
Adam −7.84 ± 1.02 9.01 ± 1.59 −7.92 ± 0.64 21.05 ± 6.75
MM −9.51 ± 0.24 19.69 ± 4.89 −9.58 ± 0.21 19.11 ± 5.49

(a) WISHART (b) BASIC

Figure 4.4: Learning curves of the Nottingham dataset. Results with the default
parameters (𝑇acc = 0 for fixed-point and MM, and 𝜂 = 0.001 for Adam) are also shown.

Under the BASIC initialization, the fixed-point and MM algorithms get stuck in
poor local optima. Since the optimal 𝑳∗ is considered to have a particular structure, the
BASIC initialization may not be compatible with Nottingham. We can also find the
acceleration scheme of the MM algorithm does not perform well in Figure 4.4 (see also
the result without the acceleration shown in Section 4.8). This may be because the
assumption

⋃𝑀
𝑚=1A𝑚 = Y for the accelerated MM is not satisfied in the Nottingham

dataset.

Amazon Baby Registry

In Table 4.3, we show the results with the accelerated algorithms in all the 13 categories
of Amazon baby registry. Overall, our algorithm achieves moderately better
log-likelihood values and outstanding convergence speeds in most categories. Adam



4.5 Discussion 71

Table 4.3: Final mean log-likelihoods and runtimes of the Amazon baby registry
dataset. Each value is computed from the average or standard deviation of 30 trials with
the accelerated settings and initialized by WISHART.

Category Method Log-likelihood Runtime (s) Category Method Log-likelihood Runtime (s)

Apparel
𝑁 = 100
𝑀 = 14,970

FP −10.20 ± 0.00 24.54 ± 0.69 Gear
𝑁 = 100
𝑀 = 16,823

FP −9.27 ± 0.00 30.54 ± 0.90
Adam −10.08 ± 0.26 17.99 ± 2.61 Adam −9.16 ± 0.41 25.85 ± 5.74
MM −10.17 ± 0.00 3.13 ± 0.30 MM −9.24 ± 0.00 2.02 ± 0.38

Bath
𝑁 = 100
𝑀 = 14,542

FP −8.79 ± 0.00 26.51 ± 0.47 Health
𝑁 = 62

𝑀 = 14,057

FP −7.59 ± 0.00 13.22 ± 0.35
Adam −8.72 ± 0.79 17.97 ± 4.84 Adam −7.37 ± 0.27 10.06 ± 1.66
MM −8.75 ± 0.00 2.06 ± 0.47 MM −7.55 ± 0.00 2.16 ± 0.44

Bedding
𝑁 = 100
𝑀 = 16,370

FP −8.79 ± 0.00 32.23 ± 0.73 Media
𝑁 = 58
𝑀 = 5,904

FP −8.56 ± 0.00 4.01 ± 0.67
Adam −8.59 ± 0.18 23.26 ± 1.31 Adam −8.39 ± 0.16 2.97 ± 1.07
MM −8.77 ± 0.00 4.79 ± 1.10 MM −8.52 ± 0.01 1.75 ± 0.75

Carseats
𝑁 = 34
𝑀 = 7,566

FP −5.18 ± 0.06 5.04 ± 3.27 Safety
𝑁 = 36
𝑀 = 8,892

FP −4.76 ± 0.16 8.93 ± 7.46
Adam −4.82 ± 0.29 2.03 ± 0.33 Adam −4.30 ± 0.00 2.28 ± 0.10
MM −5.00 ± 0.05 4.96 ± 1.45 MM −4.57 ± 0.05 6.19 ± 2.10

Diaper
𝑁 = 100
𝑀 = 16,759

FP −10.71 ± 0.00 27.16 ± 0.83 Strollers
𝑁 = 40
𝑀 = 7,393

FP −5.66 ± 0.06 4.58 ± 3.21
Adam −10.61 ± 0.35 25.75 ± 5.96 Adam −5.25 ± 0.38 2.35 ± 0.39
MM −10.67 ± 0.00 3.21 ± 0.53 MM −5.46 ± 0.05 6.12 ± 2.39

Feeding
𝑁 = 100
𝑀 = 19,001

FP −12.17 ± 0.00 28.97 ± 0.36 Toys
𝑁 = 62

𝑀 = 10,073

FP −8.10 ± 0.00 7.65 ± 0.71
Adam −12.17 ± 0.27 18.38 ± 5.11 Adam −7.94 ± 0.27 5.77 ± 1.25
MM −12.15 ± 0.00 3.11 ± 0.39 MM −8.07 ± 0.00 1.45 ± 0.34

Furniture
𝑁 = 32
𝑀 = 7,093

FP −4.86 ± 0.13 4.93 ± 4.75
Adam −4.40 ± 0.00 1.88 ± 0.05
MM −4.65 ± 0.05 5.37 ± 1.78

tends to produce the best final log-likelihoods but they are not statistically significant in
most cases. Especially, when the sample size is relatively large, such as 𝑀 > 10,000, our
algorithm outperforms in the convergence speed that is about 5-10 times faster than the
fixed-point algorithm.

Although the convergences of the MM algorithm seems to be slow in some of the
smaller categories in Table 4.3, that is not very serious. In these cases, the MM algorithm
quickly reaches a near optimum value, but takes longer to meet the stopping criterion.
By managing the stopping criterion, we may be able to stop its learning much earlier.

4.5 Discussion

In this chapter, we developed an efficient learning method for full-rank DPPs based
on the MM algorithm. Compared with the existing methods, our algorithm has many
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advantages: it has guaranteed convergence and monotonicity, requires no bothersome
hyperparameters, convergences rapidly and stably, and is easy to implement. Upon
considering the performance of our algorithm, we revealed that our algorithm provides
a locally tighter minorizer than the existing method. We also assessed the empirical
performance of our method through experiments on both synthetic and real-world
datasets, outperforming in terms of convergence speed and reaching a better estimate in
most experimental settings.

4.6 Proof of Proposition 4.3

4.6.1 Derivation of Equation (4.15)

In (4.14), the constant term is given by

𝜉 (𝑳(𝑡)) =
1
𝑀

𝑀∑︁
𝑚=1

{
log det(𝑼A𝑚

𝑳(𝑡)𝑼⊤A𝑚
) + |A𝑚 |

}
+ log det{(𝑳(𝑡) + 𝑰 )−1𝑳(𝑡)} + tr{(𝑳(𝑡) + 𝑰 )−1}.

By the following inequality from the Taylor expansion

− log det(𝑳(𝑡)) ≥ − log det(𝑳) − tr{𝑳−1(𝑳(𝑡) − 𝑳)},

we have

𝑔(𝑳 |𝑳(𝑡)) − ℎ(𝑳 |𝑳(𝑡)) = tr{(𝑳(𝑡) + 𝑰 )−1(𝑳−1𝑳(𝑡) − 𝑰 − 𝑳 + 𝑳(𝑡))}
+ log det(𝑳) − log det(𝑳(𝑡))
≥ tr{(𝑳(𝑡) + 𝑰 )−1(𝑳−1𝑳(𝑡) − 𝑰 − 𝑳 + 𝑳(𝑡))} − tr{𝑳−1(𝑳(𝑡) − 𝑳)}
= tr{(𝑳(𝑡) + 𝑰 )−1(𝑳−1𝑳(𝑡) − 𝑳 + 2𝑳(𝑡))} − tr{𝑳−1𝑳(𝑡)} − 𝑁 + 𝑁
= tr{(𝑳(𝑡) + 𝑰 )−1(2𝑳(𝑡) − 𝑳 − 𝑳(𝑡)𝑳−1𝑳(𝑡))}.
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4.6.2 Derivation of Equation (4.16)

Let 𝑳 = 𝑳(𝑡) + 𝛿𝑴 , where 𝛿 > 0 is a sufficiently small coefficient and 𝑴 is a symmetric
matrix whose all eigenvalues are in [−1, 1]. Then, we can approximate the matrix inverse
as 𝑳−1 = (𝑳(𝑡) + 𝛿𝑴)−1 ≈ 𝑳(𝑡)−1 − 𝛿𝑳(𝑡)−1𝑴𝑳(𝑡)−1 by the Taylor expansion. Using this
approximation, we have

2𝑳(𝑡) − 𝑳 − 𝑳(𝑡)𝑳−1𝑳(𝑡) = 2𝑳(𝑡) − (𝑳(𝑡) + 𝛿𝑴) − 𝑳(𝑡) (𝑳(𝑡) + 𝛿𝑴)−1𝑳(𝑡)

≈ 2𝑳(𝑡) − (𝑳(𝑡) + 𝛿𝑴) − 𝑳(𝑡) (𝑳(𝑡)−1 − 𝛿𝑳(𝑡)−1𝑴𝑳(𝑡)−1)𝑳(𝑡)

= 𝑶 .

4.7 Proof of Proposition 4.4

Proof. 𝑓𝜇 (𝑡 ) (𝑳 |𝑳(𝑡)) can be minorized as:

𝑓𝜇 (𝑡 ) (𝑳 |𝑳(𝑡))

=
1
𝑀

𝑀∑︁
𝑚=1
(log det( [𝑳]A𝑚

) − 𝜇 (𝑡) log det( [𝑳]A𝑚
)︸                  ︷︷                  ︸

majorizing by (4.3) w/
𝑿 → [𝑳]A𝑚

,

𝒀 → [𝑳 (𝑡 ) ]A𝑚

−𝜇 (𝑡)tr( [𝑳]−1
A𝑚
[𝑳(𝑡)]A𝑚

))

− log det(𝑳 + 𝑰 )︸           ︷︷           ︸
majorizing by (4.3) w/

𝑿 → 𝑳 + 𝑰 ,
𝒀 → 𝑳 (𝑡 ) + 𝑰

+const.

≥
1
𝑀

𝑀∑︁
𝑚=1
( log det( [𝑳]A𝑚

)︸             ︷︷             ︸
minorizing by (4.4) w/

𝑿 → [𝑳]A𝑚
,

𝒀 → [𝑳 (𝑡 ) ]A𝑚

−𝜇 (𝑡)tr( [𝑳(𝑡)]−1
A𝑚
[𝑳]A𝑚

) − 𝜇 (𝑡)tr( [𝑳]−1
A𝑚
[𝑳(𝑡)]A𝑚

))

− tr{(𝑳 + 𝑰 )−1𝑳} + const.
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≥ −
1
𝑀

𝑀∑︁
𝑚=1
((1 + 𝜇 (𝑡)) tr( [𝑳]−1

A𝑚
[𝑳(𝑡)]A𝑚

)︸                  ︷︷                  ︸
majorizing by (4.7) w/
𝑨𝑷𝑨⊤ → [𝑳]A𝑚

,

𝑺 → [𝑳 (𝑡 ) ]A𝑚

+𝜇 (𝑡)tr( [𝑳(𝑡)]−1
A𝑚
[𝑳]A𝑚

))

− tr{(𝑳 + 𝑰 )−1𝑳} + const.

≥ −
1 + 𝜇 (𝑡)

𝑀

𝑀∑︁
𝑚=1

tr(𝑳(𝑡)𝑼⊤A𝑚
[𝑳(𝑡)]−1

A𝑚
𝑼A𝑚

𝑳(𝑡)𝑳−1)

−
𝜇 (𝑡)

𝑀

𝑀∑︁
𝑚=1

tr( [𝑳(𝑡)]−1
A𝑚
[𝑳]A𝑚

) − tr{(𝑳(𝑡) + 𝑰 )−1𝑳} + const.

= 𝑔𝜇 (𝑡 ) (𝑳 |𝑳(𝑡)).

⊓⊔

4.8 Additional Experimental Results

Table 4.4 shows the learning result of the Synthetic dataset with the default (non-
accelerated) settings. We find that the proposed MM algorithm with the default setting
still performs better than the other algorithms with the accelerated settings, shown in
Table 4.1.

Table 4.5 shows the result of the Nottingham dataset with the default settings. In
contrast to Synthetic, the performance of the MM algorithm with and without the
acceleration is not much different (cf. Table 4.2). This may be due to the absence of the
assumption required in the accelerated MM algorithm. We need

⋃
𝑚A𝑚 = Y in Section

4.3, but Nottingham does not satisfy that as described in Section 4.4.

4.9 Mode Structure of Log-likelihood

While we aimed to reach a local optimum of the (mean) log-likelihood (4.1), the global
structure of the objective may be interested and informative. To seek the modal structure
of the objective, we define a Bayesian model for full-rank DPPs with weakly informative
priors and explore the posterior with a Markov chain Monte Carlo (MCMC) method. We
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Figure 4.5: Posterior marginals of 𝐿𝑖 𝑗 for 𝑖, 𝑗 = 1, . . . , 8 approximated by MCMC samples.
The vertical lines show the ground truth and point estimates by the proposed MM with
WISHART and BASIC initialization schemes.
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Table 4.4: Final mean log-likelihoods, runtimes, and von Neumann divergences
𝐷vN(𝑳, 𝑳∗) of the Synthetic datasets. Each value is computed from the average or
standard deviation of 30 trials with the non-accelerated settings.

WISHART BASIC
Data Size Method Log-likelihood Runtime (s) vN div. Log-likelihood Runtime (s) vN div.

𝑁 = 32
𝑀 = 2,500

FP −15.58 ± 0.15 0.43 ± 0.06 38.20 ± 1.84 −15.61 ± 0.21 1.69 ± 0.22 42.19 ± 4.19
Adam −15.63 ± 0.15 3.29 ± 0.25 63.07 ± 5.71 −15.54 ± 0.20 3.41 ± 0.17 29.51 ± 1.85
MM −15.58 ± 0.15 0.40 ± 0.06 43.94 ± 2.62 −15.46 ± 0.20 0.32 ± 0.03 30.15 ± 1.99

𝑁 = 32
𝑀 = 10,000

FP −15.58 ± 0.18 1.32 ± 0.17 38.03 ± 2.00 −15.72 ± 0.14 5.53 ± 0.96 41.61 ± 3.30
Adam −15.66 ± 0.17 12.83 ± 1.11 61.41 ± 5.40 −15.63 ± 0.14 14.59 ± 0.56 29.08 ± 1.23
MM −15.58 ± 0.18 1.22 ± 0.16 43.95 ± 2.58 −15.56 ± 0.14 1.00 ± 0.11 29.74 ± 1.47

𝑁 = 128
𝑀 = 2,500

FP −30.14 ± 0.18 3.70 ± 0.22 36.20 ± 0.44 −30.35 ± 0.19 6.56 ± 0.45 53.47 ± 1.79
Adam −30.05 ± 0.19 24.05 ± 0.78 85.47 ± 4.02 −30.12 ± 0.19 5.84 ± 0.23 33.44 ± 0.56
MM −30.11 ± 0.18 1.39 ± 0.08 44.68 ± 0.62 −30.10 ± 0.19 1.29 ± 0.07 32.26 ± 0.50

Table 4.5: Final mean log-likelihoods and runtimes of the Nottigham dataset. Each
value is computed from the average or standard deviation of 30 trials with the non-
accelerated settings.

WISHART BASIC
Method Log-likelihood Runtime (s) Log-likelihood Runtime (s)

FP −8.30 ± 0.22 40.92 ± 3.01 −10.14 ± 0.28 33.75 ± 6.84
Adam −7.81 ± 0.25 68.12 ± 4.94 −8.02 ± 0.26 103.27 ± 15.57
MM −9.51 ± 0.25 21.73 ± 6.04 −9.59 ± 0.22 19.95 ± 3.59

use the following Bayesian model:

𝑃 (A𝑚 |𝑳) = 𝑃𝑳 (A𝑚) for 𝑚 = 1, . . . , 𝑀,

𝑳 = diag(𝜎1, . . . , 𝜎𝑁 ) 𝛀 diag(𝜎1, . . . , 𝜎𝑁 ),
𝑝 (𝛀) = LKJ(𝜂),
𝑝 (𝜎𝑛) = Cauchy+(𝛾), for 𝑛 = 1, . . . , 𝑁 ,

where LKJ(𝜂) ∝ (det 𝛀)𝜂−1 denotes the Lewandowski–Kurowicka–Joe (LKJ) distribution
[Lewandowski et al., 2009] and Cauchy+(𝛾) denotes the half-Cauchy distribution with
the half-width at half-maximum (HWHM) parameter 𝛾 > 0. We use the hyperparameters
𝜂 = 1.001 and 𝛾 = 100 which ensure weakly informative priors, and obtain 15,000
MCMC samples3 by the No-U-Turn sampler (NUTS) [Hoffman and Gelman, 2014,

3Without the burn-in periods.
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Betancourt, 2018] implemented on Stan [Carpenter et al., 2017]. We generate a synthetic
dataset consisting of 𝑀 = 1,000 samples from a DPP with the ground truth parameter
𝑳∗ = 𝑽 ∗𝑽 ∗⊤, where 𝑣𝑖 𝑗 ∼ U(−10, 10)/16 for 𝑖 = 1, . . . , 8, 𝑗 = 1, . . . , 16 (i.e., the size of
the ground set is 𝑁 = |Y| = 8).

Figure 4.5 shows the marginal posterior densities 𝑝 (𝐿𝑖 𝑗 |A1, . . . ,A𝑀 ) for 𝑖, 𝑗 =

1, . . . , 8 and the point estimates obtained by the proposed MM algorithm. Notably the
non-diagonal elements of 𝐿𝑖 𝑗 are often bimodal with symmetry around the origin and the
MM reasonably reaches the local optima. As pointed out in [Kulesza, 2012, Section
4.3.1], the kernel matrix 𝑳 in the likelihood of DPPs (2.15) is unidentifiable because the
mapM𝑫 : 𝑳 ↦→ 𝑫𝑳𝑫 with a diagonal matrix 𝑫 such that 𝐷𝑖𝑖 ∈ {−1, +1} for 𝑖 = 1, . . . , 𝑁
does not change the likelihood value: ∀A ⊆ Y, 𝑃𝑳 (A) = 𝑃M𝑫 (𝑳) (A). The symmetric
bimodality shown in Figure 4.5 is led by this unidentifiability.
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5
Conclusion

In this dissertation, we focused on probabilistic models characterized by a kernel matrix
and their learning algorithms. Specifically, we developed a GP-based generative model
of KMD and an efficient algorithm for learning the full-rank kernel matrix of DPPs.

In Chapter 3, we proposed a Bayesian generative model of KMD based on an
unsupervised GP, and named it GPKMD (which stands for Gaussian process Koooman
mode decomposition). The derivation of the GPKMD likelihood was somewhat similar
to the GP regression, as introduced in Section 2.2. This involved the marginalization
of a countably infinite-dimensional coefficient vector within the mean vector. That
results complex normal distributions of which a very high-dimensional vector, and
whose covariance matrices follow a “diagonal + Kronecker factorizable” structure.
GPs with such covariance matrices are called Kronecker GPs, and we developed a
faster evaluation method of the likelihood and its derivatives than the existing method
[Stegle et al., 2011]. Notably, we can estimate the latent variables of KMD {𝒙𝑡 } due to
the generative modeling. Our GPKMD is the first to address direct estimation of the
latent variables within the context of KMD. In Section 3.5, we applied GPKMD to both
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synthetic and real datasets and interpreted the results from various aspects through the
estimated Koopman eigenvalues {𝜆𝑘}, Koopman modes {𝒘𝑘}, and latent variables {𝒙𝑡 }.

This study has some limitations and future work is suggested. In this work, we
did not show the estimated eigenfunctions {𝜙𝑘}. The eigenfunctions are implicitly
determined by the kernel function and the latent variables in our model, but their explicit
estimates are intractable. There is also difficulty in learning the Koopman eigenvalues
{𝜆𝑘}. The angle of the 𝑘-th eigenvalue, arg 𝜆𝑘 , corresponds to the frequency of the 𝑘-th
mode. In (3.12), however, the eigenvalues are included in the form 𝚲𝚲

∗ = diag( |𝜆𝑘 |2);
hence, the angles {arg 𝜆𝑘} do not affect the likelihood. In addition, the gradient of the
likelihood (3.12) w.r.t. 𝜆𝑘 is proportional to 𝜆𝑘 itself, and the angle remains fixed during
gradient-based learning. In the examples in Section 3.5, we practically use the DMD
estimates of {𝜆𝑘} to alleviate this difficulty. One promising approach for estimating
{𝜙𝑘} and {𝜆𝑘} is to use approximated GPs with finite-dimensional features, such as
random Fourier features (RFFs) [Rahimi and Recht, 2007]. Learning GPs with RFFs
reduces to that of a Bayesian linear function model, making it possible to obtain explicit
expressions of the estimated eigenfunctions and the eigenvalues angles. Furthermore,
while we employed gradient-based MAP estimation in Section 3.5, credible interval
estimation of GPKMD could provide more informative results. The sparse variational
Gaussian process (SVGP) is a well-established variational Bayesian method for learning
GPs, which maximizes the evidence lower-bound (ELBO) instead of the marginalized
posterior [Titsias, 2009, Titsias and Lawrence, 2010]. Although Wild et al. [2021] has
explored connections between the Nyström method and SVGP, the development of a
variational inference method for GPKMD remains a potential area for future work.

In Chapter 4, we proposed a learning algorithm that solves MLE for full-rank DPPs
on a finite ground set. Using the MM algorithm, MLE for DPPs was interestingly
transformed into a iterative process of solving CAREs, which belong to a special class of
quadratic matrix equations. In addition, we developed a generalization of our algorithm
for further acceleration. We also conducted a theoretical comparison between our
algorithm and the existing method [Mariet and Sra, 2015] in the sense of the tightness
of the minorizers. One notable feature of our accelerated algorithm is its ability to
adaptively determine the step size in each iteration, whereas the existing method [Mariet
and Sra, 2015] uses fixed step size hyperparameters. As demonstrated in the experiments
in Section 4.4, our algorithm performs the best runtimes across a variety of settings.
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We believe that our algorithm is a strong candidate for learning full-rank DPPs at the
present moment, but there is still much future work to be considered. First, we need to
deepen our understanding of the performance of our method. Proposition 4.3 partially
addresses this question, but it is just an implication. One considerable future direction
is to establish general recipes for comparing MM with different minorizers. Second,
scaling up our method for large 𝑁 is a crucial issue. Several numerical algorithms for
solving large-sized CARE (4.12) have been proposed based on some structure of a
problem: low-rank structure and/or sparsity [Bini et al., 2011, Simoncini, 2016]. On
the other hand, our CARE (4.9) formed by full-rank and dense matrices, therefore,
exploring a good CARE solver is considered to be an essential task.

More broadly, there are many open problems about learning DPPs. For example,
incorporating sparsity into the kernel matrix 𝑳 potentially enhances interpretability and
computational efficiency. Although studies have addressed the sparsity in the context of
(inverse) covariance selection, such as graphical lasso [Banerjee et al., 2008, Friedman
et al., 2008], any existing works have not addressed the sparsity of DPPs. The learning
problem of DPPs on an infinite ground set is also open. While we focused on DPPs on a
finite set in Chapter 4, DPPs on an infinite set become relevant when each item possesses
a feature vector. For example, consider a fashion online store in which each item has a
𝐷-dimensional feature vector extracted from the image. In such cases, the purchasing
behavior of customers could be modeled by a DPP on R𝐷 . Dupuy and Bach [2018]
addressed the problem with Fourier bases, but the applicability to general problems is
questionable because low-rank structure is strongly assumed. Multiple kernel learning
[Gönen and Alpaydin, 2011] could offer a promising approach to this challenge. At a
high level, generalizing DPPs to control negative (or positive) dependence is helpful for
further development of random subset models. Although 𝛼-DPPs have been developed
to bridge the behavior of bosons (having positive dependence) and fermions (having
negative dependence) [Vere-Jones, 1997, Hough et al., 2006], they have a computational
issue for applying to machine learning problems. We thus believe that a machine
learning-compatible generalization of DPPs is a crucial step forward.
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