
Cut-elimination and Completeness in Cyclic Proof
Systems

Yukihiro Oda

Doctor of Philosophy

Department of Informatics
School of Multidisciplinary Sciences

The Graduate University for Advanced Studies, SOKENDAI

March 2024

Acknowledgements

Throughout the writing of this thesis, I have received a lot of support and assistance.
I gratefully acknowledge my supervisor, Makoto Tatsuta, for his valuable technical advice,

references, ideas, useful feedback and personal support.
I am deeply indebted to James Brotherston for laying the groundwork for this thesis and

for his advice.
I am grateful to Daisuke Kimura, Koji Nakazawa, and Kenji Saotome for helpful suggestions

from the early stage of this work.
I would also like to thank Taro Sekiyama, Ichiro Hasuo, and Kanae Tsushima for giving me

some useful comments about my work.
I thank the staff in SOKENDAI and NII for a lot of their support.
I wish to express my thanks to the following people for their support, without whose help

at the time I was too poor to go on to graduate school, this work would never have been
possible: Genji Arashida, Hiromichi Kimura, Motooki Nagaoka, Kouichi Nakagawa, Akira
Sato, and Katsumi Taki.

Special thanks must be given to my late father-in-law, Masahisa Miyashita. He helped me
like my real father. He is one of the greatest men I have met. I am regretful to see him no
longer.

I would like to thank my mother, Mineko, and my sister, Miki, for their support and
encouragement throughout my study.

Finally, I give much thanks and love to my wife, Shino, and my daughter, Yukino.

i

Abstract

Cyclic proof systems, or circular proof systems, are proof systems which allow proof figures to
contain cycles. Some cyclic proof systems are alternative proof systems for induction. Such
systems are regarded as the formalisation of infinite descent. Since there is no induction rule
in such proof systems, the formulas to apply induction need not to be found. This point
is an advantage of cyclic proof systems for proof search. Since every cyclic proof is finite,
every cyclic proof can be simulated on computers. Therefore, it can be used for automated
reasoning. Indeed, cyclic proofs are useful for software verification.

The application of cyclic proof systems has been widely studied. However, more is needed
to know about the theoretical property of cyclic proof systems involving predicate logic. The
aim of this thesis is to investigate cyclic proof systems from a view point of proof theory.
More precisely, this thesis focuses on the cut-elimination property and the equivalence between
a cyclic proof system and the corresponding ordinary proof system with induction.

The cut-elimination property of a proof system is the following property: any provable
sequent in the system is provable without the cut-rule in the system. The property is fun-
damental and desirable for proof systems. If the cut-elimination property of a cyclic proof
system holds, formulas in each proof can be restricted. Therefore, the cut-elimination prop-
erty of a cyclic proof system suggests that there is an efficient way for proof search in the
cyclic proof system.

Generally, the provable sequent in the system with induction is provable in the correspond-
ing cyclic proof system. However, the converse is not obvious when the systems do not include
Peano Arithmetic. The known cases where a proof system with induction is equivalent to the
corresponding cyclic proof system are those where the systems involve Peano Arithmetic or
do not involve predicate logic.

This thesis describes three results and discusses issues around them. The first and second
results are about the cut-elimination property of cyclic proof systems. The third results is
about the equivalence between a cyclic proof system and the corresponding ordinary proof
system with induction.

Firstly, this thesis gives a counterexample to cut-elimination in CLKIDω, a cyclic proof
system for first-order logic with inductive definitions. In other words, this thesis shows that
the cut-elimination property of CLKIDω does not hold. It had been an open problem for 15
years whether or not the cut-elimination property of CLKIDω holds. The counterexample is
the sequent representing that an addition predicate implies the other addition predicate with
a different definition. In order to show that it is not cut-free provable, under the assumption
that it is cut-free provable, an infinite sequence of nodes in a finite proof figure is constructed,
which leads to a contradiction.

Secondly, this thesis gives a simpler counterexample to cut-elimination in CLKIDω with only
unary predicates. The proof for the simpler counterexample is similar to the first one.

Thirdly, this thesis defines a cyclic proof system for Presburger Arithmetic, called Cyclic
Presburger Arithmetic, and show the equivalence between Presburger Arithmetic and Cyclic
Presburger Arithmetic. It is a complete and decidable theory. Since Presburger Arithmetic
does not involve Peano Arithmetic, the equivalence between Presburger Arithmetic and Cyclic
Presburger Arithmetic was not known. The equivalence is proved by using the completeness
of Presburger Arithmetic.

iii

Contents

1 Introduction 1
1.1 Cyclic proof system . 1
1.2 Cut-elimination . 1
1.3 Equivalence between cyclic proof system and ordinary proof system 2
1.4 Our contributions . 2
1.5 Synopsis . 3

2 Background: inductive definitions, non-well-founded proof system, cyclic proof
system 5
2.1 Language for first-order logic with inductive definitions 5
2.2 Derivation tree . 12
2.3 LKID: ordinary proof system for first-order logic with inductive definitions . . . 13
2.4 LKIDω: non-well-founded infinitary proof system for first-order logic with in-

ductive definitions . 15
2.5 CLKIDω: cyclic proof system for first-order logic with inductive definitions . . . 18
2.6 Cycle-normalisation . 19

3 Counterexample to cut-elimination in first-order logic with inductive definitions 23
3.1 A CLKIDω proof of the counterexample with (Cut) 23
3.2 The outline of the proof . 23
3.3 Another cyclic proof system CLKIDωa . 24
3.4 The proof of Theorem 3.1 (2) . 26
3.5 Discussion . 35

4 The cut-elimination property and the arity of predicates 37
4.1 Counterexample to cut-elimination with only unary predicates 37
4.2 Discussion about the arity of predicates and the cut-elimination property . . . 43

5 Cyclic proof system for Presburger Arithmetic 45
5.1 Presburger Arithmetic . 45
5.2 Completeness of Presburger Arithmetic . 46
5.3 Infinitary Presburger Arithmetic . 52
5.4 Cyclic Presburger Arithmetic is equivalent to Presburger Arithmetic 54
5.5 Discussion . 57

6 Conclusions 61
6.1 Summary of our contributions . 61
6.2 Future Work . 61

v

1 Introduction

1.1 Cyclic proof system

Every proof figure in ordinary proof systems is a finite tree. However, there are proof systems
that prevent proof figures from being a finite tree. For example, any proof with the ω-rule is
an infinite tree since the assumptions of the ω-rule are infinitely many [22].

A proof containing no infinite path is called a well-founded proof. Each proof in ordinary
proof systems and the sequent calculus with the ω-rule is well-founded.

On the other hand, a proof containing infinite paths is called a non-well-founded proof.
A proof figure with infinite paths seems strange since there is no axiom on the paths, and
therefore, we may have the conclusion without axioms. Indeed, there is a derivation tree with
infinite paths for a contradiction. For this reason, each non-well-founded proof must satisfy
the condition of soundness.

Cyclic proof systems, or circular proof systems, are one of non-well-founded proof systems
which allows any proof figure to contain cycles. Almost all cyclic proof systems are alternatives
to proof systems with induction; they are regarded as the formalisation of infinite descent,
a proof technique for propositions that can be proved by induction. Such a proof system
is obtained by replacing induction rules with other rules and some conditions for soundness
and by allowing proof figures containing cycles. Since there is no induction rule in the proof
systems, we do not have to find formulas to apply induction. This point is an advantage of
cyclic proof systems for proof search.

Because of the finiteness of each cyclic proof, we can simulate cyclic proofs on computers.
Therefore, it can be used for automated reasoning. Indeed, cyclic proofs are useful for software
verification, such as verifying properties of concurrent processes [16], termination of pointer
programs [5], and decision procedures for symbolic heaps [7, 9, 20, 21].

The application of cyclic proof systems has been widely studied. However, more is needed to
know about the property of cyclic proof systems involving predicate logic from the standpoint
of proof theory. We aim to investigate cyclic proof systems from this standpoint. More
precisely, we have researched the cut-elimination property and the equivalence between a
cyclic proof system and the corresponding ordinary proof system with induction. The former
clarifies a fundamental property of each cyclic proof system, whereas the latter pertains to
the power of each cyclic proof system. Both issues are important from the standpoint of proof
theory. We hope that our investigation will not only develop the proof theory for non-well-
founded and cyclic proofs but also contributes to the study of automated inductive theorem
proving.

1.2 Cut-elimination

The cut-elimination property of a proof system is the following property: if a sequent is prov-
able in the proof system, then the sequent is provable without the cut-rule in the system. The
property is fundamental and desirable for proof systems. For example, the cut-elimination
theorem for first-order logic immediately implies consistency of the proof system, the subfor-
mula property, and Craig’s interpolation theorem [8].

1

1 Introduction

Suppose the cut-elimination property of a cyclic proof system holds. In that case, there is
no logical rule in which an arbitrary formula can occur as the principal formula, and therefore,
we can restrict formulas in each proof to those obtained from the goal sequent. It means there
is an efficient way to search for proof in the cyclic proof system.

Despite its importance, it was an open problem whether the cut-elimination property in the
cyclic proof system CLKIDω for first-order logic with inductive definitions holds. In Conjecture
5.2.4. of [4], Brotherston has conjectured that the cut-elimination property in the system does
not hold.

This thesis provides a counterexample to cut-elimination in CLKIDω. In other words, we
show that the conjecture is correct.

The research community, including ourselves, thought that the cut-elimination property
might hold if we restrict the language, such as the arity of predicates. However, we show that
the cut-elimination property of CLKIDω does not hold even if we restrict the arity of predicates
to one.

1.3 Equivalence between cyclic proof system and ordinary proof
system

A provable sequent in the system with induction is generally provable in the corresponding
cyclic proof system. However, whether the converse holds is not obvious when the systems do
not include Peano Arithmetic.

Brotherston and Simpson [6] conjectured that an ordinary system for first-order logic with
inductive definitions, written by LKID, might be equivalent to the corresponding cyclic proof
system, written by CLKIDω. However, Berardi and Tatsuta [3] refuted the conjecture by giving
a sequent provable in CLKIDω but not in LKID. In other words, they showed that CLKIDω is
more powerful than LKID.

On the other hand, Berardi and Tatsuta [2] showed that the system obtained by adding
Peano Arithmetic to CLKIDω is equivalent to that obtained by adding Peano Arithmetic to
LKID.

Presburger Arithmetic is a subsystem of Peano Arithmetic obtained by removing multipli-
cation from Peano Arithmetic. It is a complete and decidable theory [11, 19]. We show that
Presburger Arithmetic is equivalent to the corresponding cyclic proof system. The equivalence
is proved by using the completeness of Presburger Arithmetic.

1.4 Our contributions
In this section, we discuss our contributions. We research cyclic proof systems from the cut-
elimination property and the equivalence between a cyclic proof system and the corresponding
ordinary proof system with induction. Our first and second contributions are about the cut-
elimination property. Our third contribution is about the equivalence between a cyclic proof
system and the corresponding ordinary proof system with induction.

1.4.1 Counterexample to cut-elimination in cyclic proof system

We provide a counterexample to cut-elimination in the cyclic proof system CLKIDω for first-
order logic with inductive definitions.

Our counterexample is the sequent representing that an addition predicate implies another
addition predicate with a different definition. It is easy to give a proof of the counterexample
with the cut-rule in CLKIDω. In order to show that it is not cut-free provable, we assume it

2

1.5 Synopsis

is cut-free provable for contradiction. Then, we construct an infinite sequence of nodes in the
cyclic proof, which contradicts the finiteness of occurring sequents.

1.4.2 The cut-elimination property in cyclic proof system and the arity of
predicates

Our counterexample we discuss in the previous section includes ternary predicates. We inves-
tigate whether there is a simpler counterexample.

We conjectured the cut-elimination property held if we restricted the arity of predicates
to one, but this conjecture is wrong; there is a counterexample with only unary predicates,
which we show in this thesis.

1.4.3 Cyclic proof system for Presburger arithmetic

In this thesis, we define a cyclic proof system for Presburger Arithmetic, called Cyclic Pres-
burger Arithmetic, and show that Presburger Arithmetic is equivalent to Cyclic Presburger
Arithmetic. Since Presburger Arithmetic does not include Peano Arithmetic, we show the
equivalence between Presburger Arithmetic and Cyclic Presburger Arithmetic. The equiva-
lence is proved by the completeness of Presburger Arithmetic.

For the equivalence between Presburger Arithmetic and Cyclic Presburger Arithmetic, the
completeness of Presburger Arithmetic seems to be essential. Indeed, we can show the equiv-
alence between a proof system for the theory of successor and order, obtained by removing
addition from Presburger Arithmetic, and the corresponding cyclic proof system in the same
way as this thesis since the theory is complete [11, 19]. However, in some cases the equivalence
holds for incomplete theories, as discussed later in Section 5.5.

1.5 Synopsis

This section outlines the remainder of this thesis.

Chapter 2: We define the syntax and semantics of the language for first-order logic with
inductive definitions (Section 2.1). Then, we define the derivation tree (Section 2.2) and
three proof systems for first-order logic with inductive definitions, LKID (Section 2.3),
LKIDω (Section 2.4), and CLKIDω (Section 2.5). They are an ordinary proof system with
induction, a non-well-founded infinitary proof system, and a cyclic proof system. At
the end of this chapter, we show the property of CLKIDω, called the cycle-normalisation
property (Section 2.6).

Chapter 3: We give a counterexample to cut-elimination in CLKIDω. The counterexample is
a sequent that says an addition predicate implies the other addition predicate with a
different definition. We show that there is a CLKIDω-proof of the counterexample with
the cut-rule (Section 3.1), We outline the proof (Section 3.2). To show the unprovability,
we define CLKIDωa (Section 3.3). After the proof (Section 3.4), we discuss related work
and the reason why the cut-elimination property does not hold in some cyclic proof
systems.

Chapter 4: We discuss the cut-elimination property and the arity of predicates. First, we pro-
vide a simpler counterexample to cut-elimination in CLKIDω than in the previous chapter
(Section 4.1). After the proof, we discuss the cut-elimination property of CLKIDωand
the arity of inductive predicates (Section 4.2).

3

1 Introduction

Chapter 5: We discuss a cyclic proof system for Presburger Arithmetic. First, we define
Presburger Arithmetic (Section 5.1) and show its completeness (Section 5.2). Then,
we define two non-well-founded proof systems, Infinitary Presburger Arithmetic and
Cyclic Presburger Arithmetic (Section 5.3). We show the equivalence of three systems,
Presburger Arithmetic, Infinitary Presburger Arithmetic, and Cyclic Presburger Arith-
metic (Section 5.4). After the proof, we discuss the equivalence between ordinary and
cyclic proof systems and the cut-elimination property of Cyclic Presburger Arithmetic
(Section 5.5).

Chapter 6: We conclude (Section 6.1) and give ideas for future work (Section 6.2).

4

2 Background: inductive definitions,
non-well-founded proof system, cyclic proof
system

This chapter introduces first-order logic with inductive definitions and describes its three proof
systems, LKID, LKIDω, and CLKIDω. These systems are the same as LKID, LKIDω and CLKIDω

in [4, 6].
LKID is an ordinary proof system obtained by adding the rules for induction to the sequent

calculus for first-order logic with equality. Someone guesses that the cut-elimination property
of this system does not hold because there are rules for induction, but it is wrong. In return
for the cut-elimination property, the subformula property of this system does not hold.
LKIDω is a non-well-founded infinitary proof system. Each proof figure in this system is a

possibly infinite tree where an infinite path can exist. The rules in this system are the same
as in LKID except for the induction rule. The induction rule is replaced by the case-split rule.
Since there is an infinite derivation tree of a contradiction, each proof in this system must
satisfy the condition for soundness, the global trace condition. We note that the cut-elimination
property of this system holds.
CLKIDω is a cyclic proof system. This system allows any proof figure containing cycles. The

rules in this system are the same as in LKIDω. We can understand CLKIDω as a subsystem
of LKIDωobtained by restricting proof figures to regular trees, that is to say, possibly infinite
trees, each of which has finitely many subtrees. In Chapter 3, we show that the cut-elimination
property of this system does not hold as opposed to LKIDω.

Section 2.1 describes the language for first-order logic with inductive definitions. Section 2.2
defines the derivation tree. Section 2.3 gives an ordinary proof system LKID. Section 2.4
introduces LKIDω. In Section 2.5, we define CLKIDω. Section 2.6 shows the cycle-normalisation
property for CLKIDω.

2.1 Language for first-order logic with inductive definitions

This section defines the language for first-order logic with inductive definitions and its seman-
tics. This language is the same as given in [6].

2.1.1 Syntax

We give the syntax of the language for first-order logic with inductive definitions.
In this thesis, we write N for the set of natural numbers and N>0 for the set of positive

natural numbers.

Definition 2.1 (Ranked alphabet). A ranked alphabet of the language for first-order logic
with inductive definitions is a tuple (Σ,#) satisfying the following conditions:

(1) Σ denotes a set of symbols including

• an infinite set of variable symbols (we assume they are ordered),

5

2 Background: inductive definitions, non-well-founded proof system, cyclic proof system

• a set of function symbols,
• a set of predicate symbols constructed by

– a set of ordinary predicate symbols and
– a set of inductive predicate symbols,

• the set of logical symbols {¬,∧,∨,→,∀,∃} and
• the set of parentheses {(,)}.

(2) The set of inductive predicate symbols in Σ is finite.

(3) The ordinary predicate symbol = belongs to Σ.

(4) # denotes a function from Σ to N. #(a) is called the arity of the symbol a.

(5) #(=) = 2.

(6) #(R) > 0 for every predicate symbol R in Σ.

As usual, we call a symbol whose arity is 0, 1, 2, 3, a nullary symbol, a unary symbol,
a binary symbol, a ternary symbol, respectively. A function symbol whose arity is 0 is
called a constant symbol.

Throughout the remainder of this section, we use “ranked alphabet” as a shorthand for
“ranked alphabet of the language for first-order logic with inductive definitions.”

Definition 2.2 (Term). The set of terms is defined inductively as follows:

(1) A variable symbols v as a string is a term.

(2) If t1, t2, . . ., tn are terms for n ∈ N, then the string ft1t2 . . . tn is a term for a function
symbol f with #(f) = n.

Var(t) denotes the set of variables occurring in t. For a tuple of terms u, Var(u) denotes
the set of variables occurring in u.

We sometimes write u(x) for a tuple of terms, where x denotes a tuple of variable symbols
and all variable symbols in Var(u) occur in x.

Definition 2.3 (Atomic formula). An atomic formula is defined as a string whose form t1 = t2
or Rt1t2 . . . tn, where t1, t2, . . ., tn denote terms and R denotes a predicate symbol except for
= with #(R) = n.

For readability, we sometimes write R(t1, . . . , tn) for the atomic formula Rt1 . . . tn. For
simplicity, we sometimes write Rt with t = (t1, . . . , tn) for the atomic formula Rt1 . . . tn. We
call an atomic formula with an inductive predicate symbol an I-atomic formula.

Definition 2.4 (Formulas). The set of formulas for first-order logic with inductive definitions
is defined inductively as follows:

(1) An atomic formula is a formula.

(2) If ϕ is a formula, the string ¬ϕ is a formula.

(3) If ϕ and ψ are formulas, the three strings (ϕ ∧ ψ), (ϕ ∨ ψ), and (ϕ→ ψ) are formulas.

(4) If ϕ is a formula, the two strings ∀xϕ and ∃xϕ are formulas.

6

2.1 Language for first-order logic with inductive definitions

For simplicity, we sometimes write ϕ ? ψ with ? ∈ {∧,∨,→} for the formula (ϕ ? ψ). We
sometimes abbreviate (ϕ→ ψ) ∧ (ψ → ϕ) to ϕ↔ ψ.

Definition 2.5 (Bound occurrence, free occurrence). Let ϕ be a formula in which a formula
Qxψ occurs as a substring with Q ∈ {∀, ∃}.

We call each occurrence of x in ψ a bound occurrence.
Each occurrence of a variable in ϕ which is not a bound occurrence is called a free occurrence.

We say that a variable occurs freely if the occurrence of it is a free occurrence. We define a
free variable in ϕ to be a variable occurring freely in ϕ. FV(ϕ) denotes the set of free variables
in ϕ.

We define FV(Γ) =
⋃

ϕ∈Γ FV(ϕ) for a set of formulas Γ.

Definition 2.6 (Substitution of terms). Let t be a term.
The term t[x := u] obtained by substituting a term u for a variable symbol x is defined

inductively as follows:

(1) If t ≡ x, then t[x := u] ≡ u.

(2) If t ≡ y with a variable symbol y, where y 6≡ x, then t[x := u] ≡ y.

(3) If t ≡ ft1 . . . tn with a function symbol f and terms t1, . . ., tn, then t[x := u] ≡
ft1[x := u] . . . tn[x := u].

The term t[x1 := u1, . . . , xn := un] obtained by substituting terms u1, . . . , un for variable
symbols x1, . . . , xn is defined similarly.

t[x1 := u1, . . . , xn := un] with t = (t1, . . . , tm) denotes the tuple
(t1[x1 := u1, . . . , xn := un], . . . , tm[x1 := u1, . . . , xn := un]). For a tuple of terms t(x1, . . . , xn),
we sometimes write t(u1, . . . , un) for t[x1 := u1, . . . , xn := un].

We call a substitution a sequence of expressions whose each form is x := t for a variable
symbol x and a term t.

Definition 2.7 (Substitution of formulas). Let ϕ be a formula.
The formula ϕ[x := u] obtained by substituting a term u for a variable symbol x is defined

inductively as follows:

(1) If ϕ ≡ Rt with a predicate symbol R and a tuple of terms t, then ϕ[x := u] ≡ Rt[x := u].

(2) If ϕ ≡ ¬ψ with a formula ψ, then ϕ[x := u] ≡ ¬ψ[x := u].

(3) If ϕ ≡ (ψ1 ? ψ2) with formulas ψ1, ψ2 and ? ∈ {∧,∨,→}, then ϕ[x := u] ≡ (ψ1[x := u] ?
ψ2[x := u]).

(4) If ϕ ≡ Qyψ with a variable symbol y and a formula ψ, y ≡ x and Q ∈ {∀,∃}, then
ϕ[x := u] ≡ Qyψ.

(5) If ϕ ≡ Qyψ with a variable symbol y and a formula ψ, where y /∈ Var(u) and Q ∈ {∀,∃},
then ϕ[x := u] ≡ Qyψ[x := u].

(6) If ϕ ≡ Qyψ with a variable symbol y and a formula ψ, where y ∈ Var(u), y 6≡ x and
Q ∈ {∀, ∃}, then ϕ[x := u] ≡ Qzψ[y := z][x := u], where z is the first variable symbol
in the order for the set of variable symbols does not occur in ϕ, x, u.

The formula ϕ[x1 := u1, . . . , xn := un] obtained by substituting terms u1, . . . , un for variable
symbols x1, . . . , xn is defined similarly.

For a set of formulas Γ, we write Γ[x1 := u1, . . . , xn := un] for {ϕ[x1 := u1, . . . , xn := un] | ϕ ∈ Γ}.

7

2 Background: inductive definitions, non-well-founded proof system, cyclic proof system

Definition 2.8 (Inductive definition set). A production is defined to be a pair of a finite set
of atomic formulas (empty set possibly) and an I-atomic formula.

We sometimes write

Q1u1 · · · Qhuh P1t1 · · · Pmtm
P t

for a production ({Q1u1, . . . , Qhuh, . . . , P1t1, . . . , Pmtm} , P t).
We call the finite set of atomic formulas of a production the assumption of the production.

We call the I-atomic formula of a production the conclusion of the production. We call a
production whose conclusion is an I-atomic formula with an inductive predicate symbol P a
production of P .

An inductive definition set is a finite set of productions.

We defined a language for first-order logic with inductive definitions as a pair of a ranked
alphabet and an inductive definition set.

For simplicity, with a unary function symbol s, we write
m︷ ︸︸ ︷

ss · · · sx for smx.

Example 2.9 (Productions for N, E, and O). Let N, E, and O be a unary inductive predicates.
Let 0 be a constant symbol, and s be a unary function symbol.

Define the productions of N, E, and O by

N(0)
, N(x)

N(sx)
,

E(0)
, E(x)

O(sx)
, O(x)

E(sx)
.

N, E, and O intuitively represent the set of natural numbers, even numbers, and odd
numbers, respectively.

Definition 2.10 (Sequent). A sequent is a pair of finite sets of formulas denoted by Γ ⇒ ∆,
where Γ, ∆ are the finite sets of formulas. Γ is called the antecedent of Γ ⇒ ∆ and ∆ is called
the succedent of Γ ⇒ ∆.

2.1.2 Semantics

In this section, we introduce the semantics of the language for first-order logic with inductive
definitions. Like the second-order logic, there are at the least two different semantics of
the language for first-order logic with inductive definitions, Standard semantics and Henkin
semantics.

Complete lattice, fixed point

To introduce the semantics of the language for first-order logic with inductive definitions, we
define some concepts and show a theorem.

Definition 2.11 (Complete lattice). For a poset (P,≤P) and its subset S ⊆ P , we define
the supremum and infimum of S as the least upper bound and greatest lower bound of S,
respectively.

A complete lattice (L,≤L) is defined as a poset, where for any subset S ⊆ L there exist the
supremum and infimum of S.

8

2.1 Language for first-order logic with inductive definitions

We note that the supremum of ∅ is the minimum of (L,≤L), and the infimum of ∅ is the
maximum of (L,≤L). Then, for each complete lattice, there exist its maximum and minimum
by the definition. For simplicity, we sometimes write L for a complete lattice (L,≤L).

For a complete lattice (L,≤L) and a function f : L→ L, a pre-fixed point and a fixed point
of f are defined as an element x ∈ L, where f(x) ≤ x and f(x) = x, respectively. The
least fixed point of a function f is defined as the minimum of {x ∈ L | f(x) = x}. For posets
(L,≤L) and (L′,≤L′), a function f : L→ L′ satisfying that x ≤L y implies f(x) ≤L′ f(y) is
called a monotone function.

We show Knaster–Tarski theorem.

Theorem 2.12 (Knaster–Tarski theorem). For a complete lattice (L,≤) and a monotone
function f : L→ L, there is the least fixed point of f .

Proof. Let (L,≤) be a complete lattice and f : L→ L be a monotone function.
For a set S ⊆ L, we write ⊔S for the infimum of S i.e. the greatest lower bound of S.

We define a set PreFixf by PreFixf = {x ∈ L | f(x) ≤ x}. We define lfpf by lfpf =⊔PreFixf .
We show that f

(
lfpf

)
is a lower bound i.e. f

(
lfpf

)
≤ x holds for all x ∈ PreFixf . Let

x ∈ PreFixf . By the definition of lfpf , we have lfpf ≤ x. Since f is a monotone function,
we have f

(
lfpf

)
≤ f(x). By x ∈ PreFixf , we have f

(
lfpf

)
≤ f(x) ≤ x.

Since f
(
lfpf

)
is a lower bound, we have f

(
lfpf

)
≤ lfpf . Then, lfpf ∈ PreFixf .

Since f
(
lfpf

)
≤ lfpf and f is a monotone function, we see f

(
f
(
lfpf

))
≤ f

(
lfpf

)
. Hence,

f
(
lfpf

)
∈ PreFixf . Since f

(
lfpf

)
is the greatest lower bound of PreFixf , we have f

(
lfpf

)
=

lfpf . Therefore, lfpf is a fixed point of f . Since any fixed point of f belongs to PreFixf ,
lfpf is the least fixed point of f .

Standard semantics

We give Standard semantics. In Standard semantics, the interpretation of the inductive
predicates is the least fixed point of a monotone operator constructed from the inductive
definition set of the considered language.

For simplicity, throughout the remainder of this section, fix ((Σ, L,#),Φ) be a language for
first-order logic with inductive definitions with a ranked alphabet (Σ, L,#) and an inductive
definition set. Let P1, . . . , Pn be all inductive predicates of Σ. Let ki be the arity of Pi.

We define Φi = {φ ∈ Φ | The conclusion of φ is an atomic formula with Pi}.
For a set X, we write P(X) for the power set of X i.e. the set of subsets of X.

Definition 2.13 (First-order structure). We define a first-order structure as a pair of non-
emptyset |M | and a function M satisfying the following conditions:

(1) For a constant symbol c, M(c) ∈ |M |.

(2) For a natural number n > 0 and an n-ary function symbol f , M(f) is a function whose
domain is |M |n and range is |M |.

(3) For a natural number n > 0 and an n-ary predicate symbol R which is not =, M(R) is
a subset of |M |n.

(4) M(=) is the set {(m,m) | m ∈ |M |}.

For a first-order structure (|M |,M), |M | is called the underlying set of (|M |,M). For a symbol
C and a first-order structure (|M |,M), M(C) is called the interpretation of C in (|M |,M).

9

2 Background: inductive definitions, non-well-founded proof system, cyclic proof system

We define a valuation on a first-order structure (|M |,M) as a function from the set of variable
symbols to the underlying set of (|M |,M).

For a term t, a first-order structure (|M |,M), and a valuation ρ on a first-order structure
(|M |,M), we inductively define the interpretation of t in (|M |,M) with ρ as follows:

(1) If t is a constant symbol, the interpretation of t in (|M |,M) with ρ is M(t).

(2) If t is a variable symbol, the interpretation of t in (|M |,M) with ρ is ρ(t).

(3) If t is the form ft1 . . . tn with an n-ary function symbol f and terms t1, . . . , tn, and di is
the interpretation of ti in (|M |,M) with ρ for each i = 0, . . . , n, then the interpretation
of t in (|M |,M) with ρ is M(f)(d1, . . . , dn).

For a first-order structure M and a predicate symbol Q, we write QM for the interpretation
of Q in M . For a first-order structure M , a valuation ρ and a term t, we write tMρ for the
interpretation of t in M with a valuation ρ. For a first-order structure M , a valuation ρ and
a tuple of terms t = (t1, . . . , tm), we write tMρ for

(
t1

M
ρ , . . . , tm

M
ρ

)
. For a function ρ, we write

ρ[x 7→ d] for the function which maps x to d and y to ρ(y) with y 6= x.

Definition 2.14 (|=ρ). For a first-order structure M , a valuation ρ on M , and a formula ϕ,
we inductively define the ternary relation M |=ρ ϕ as follows:

(1) M |=ρ t1 = t2 holds if and only if t1Mρ = t2
M
ρ .

(2) M |=ρ Rt1 . . . tm holds if and only if
(
t1

M
ρ , t2

M
ρ

)
∈ RM .

(3) M |=ρ ¬ψ holds if and only if M |=ρ ψ does not hold.

(4) M |=ρ ψ1 ∧ ψ2 holds if and only if both M |=ρ ψ1 and M |=ρ ψ2 hold.

(5) M |=ρ ψ1 ∨ ψ2 holds if and only if either M |=ρ ψ1 or M |=ρ ψ2 holds.

(6) M |=ρ ψ1 → ψ2 holds if and only if either M |=ρ ψ1 does not hold or M |=ρ ψ2 holds.

(7) M |=ρ ∀xψ holds if and only if M |=ρ[x 7→d] ψ holds for all elements d ∈ |M |, where |M |
is the underlying set of M .

(8) M |=ρ ∃xψ holds if and only if M |=ρ[x 7→d] ψ holds for some elements d ∈ |M |, where
|M | is the underlying set of M .

Definition 2.15 (Definition set operator). Let M be a first-order structure with the domain
D. For a production π

Q1u1 · · · Qhuh Pj1t1 · · · Pjmtm
Pit

,

we define a function ϕπ : P
(
Dk1

)
× · · · × P

(
Dkn

)
→ P

(
Dki

)
by

ϕπ(X1, . . . , Xn) =
{
tMρ

∣∣ u1
M
ρ ∈ Q1

M , . . . ,uh
M
ρ ∈ Qh

M , t1
M
ρ ∈ Xj1 , . . . tm

M
ρ ∈ Xjm , ρ is a valuation

}
.

Then, for each i = 1, . . . , n, we define a function ϕi : P
(
Dk1

)
× · · · × P

(
Dkn

)
→ P

(
Dki

)
by

ϕi(X1, . . . , Xn) =
⋃
π∈Φi

ϕπ(X1, . . . , Xn).

We define the definition set operator ϕΦ : P
(
Dk1

)
×· · ·×P

(
Dkn

)
→ P

(
Dk1

)
×· · ·×P

(
Dkn

)
by

ϕΦ(X1, . . . , Xn) = (ϕ1(X1, . . . , Xn), . . . , ϕn(X1, . . . , Xn)).

10

2.1 Language for first-order logic with inductive definitions

We write (A1, . . . , An) ⊆ (B1, . . . , Bn) for Ai ⊆ Bi for each i = 1, . . . , n.
Then, we note that

(
P
(
Dk1

)
× · · · × P

(
Dkn

)
,⊆
)

is a complete lattice, and ϕΦ is a monotone
function on ⊆ i.e. ϕΦ(X1, . . . , Xn) ⊆ ϕΦ(Y1, . . . , Yn) if (X1, . . . , Xn) ⊆ (Y1, . . . , Yn). By
Theorem 2.12, Knaster–Tarski theorem, we see that there is the least fixed point of ϕΦ. We
write lfpϕΦ

for the least fixed point of ϕΦ For i = 1, . . . , n, we define a function πi : P
(
Dk1

)
×

· · · × P
(
Dkn

)
→ P

(
Dki

)
by πi(X1, . . . , Xn) = Xi.

Definition 2.16 (Standard model). A first-order structure M is said to be a standard model
for ((Σ, L,#),Φ) if Pi

M = πi
(
lfpϕΦ

)
for each i = 1, . . . , n.

Henkin semantics

We give Henkin semantics. In the semantics, the interpretation of the inductive predicates is
the least fixed point of the definition set operator in the special class of tuples of sets, called
Henkin class.
Definition 2.17 (Henkin class). Let M be a first-order structure with the domain D. H ={
Hl ⊆ P

(
Dl
) ∣∣ l ∈ N

}
is called a Henkin class for M if H satisfies the following conditions:

(H1) {(d, d) | d ∈ D} ∈ H2.

(H2) If Q is any predicate symbol of arity l, then
{
(d1, . . . , dl)

∣∣ (d1, . . . , dl) ∈ QM
}
∈ Hl.

(H3) If R ∈ Hl+1 and d ∈ D, then {(d1, . . . , dl) | (d1, . . . , dl, d) ∈ R} ∈ Hl.

(H4) If R ∈ Hl holds, t1, . . . , tl are terms, and x1, . . . , xm are all variable symbols, then{
(ρ(x1), . . . , ρ(xm))

∣∣ (t1Mρ , . . . , tkMρ) ∈ R, ρ is a valuation on M
}
∈ Hm.

(H5) If R ∈ Hl, then Dl \R ∈ Hl.

(H6) If R1, R2 ∈ Hl, then R1 ∩R2 ∈ Hl.

(H7) If R ∈ Hl+1, then {(d1, . . . , dl) | There exists d ∈ D such that (d1, . . . , dl, d) ∈ R} ∈
Hl.

Remark. We note that Henkin classes contain enough sets of tuples to interpret any formula of
the language for first-order logic with inductive definitions [4, 6]. It means that the following
statement holds: If H =

{
Hk ⊆ P

(
Dk
) ∣∣ k ∈ N

}
is a Henkin class for a structure M , ρ is a

valuation, F is a formula, and x1, . . . , xk are distinct variables, then{
(d1, . . . , dk)

∣∣ M |=ρ[x1 7→d1,...,xk 7→dk] F
}
∈ Hk

holds, where ρ[x1 7→ d1, . . . , xk 7→ dk](xi) = di holds for i = 1, . . . , k and ρ[x1 7→ d1, . . . , xk 7→ dk](y) =
ρ(y) holds with y 6= x1, . . . , y 6= xk.
Definition 2.18 (H-point). Let M be a structure, H be a Henkin class for M . (X1, . . . , Xn) ∈
P
(
Dk1

)
× · · · × P

(
Dkn

)
is said to be an H-point if Xi ∈ Hki for each i = 1, . . . , n.

Remark. H-points are under the definition set operator [4, 6]. It means that the following
statement holds: If (X1, . . . ,Xn) is an H-point, then so is ϕΦ(X1, . . . ,Xn).

A pre-fixed H-point is defined as a pre-fixed point of ϕΦ which is also an H-point. We define
the least pre-fixed H-point as the minimum of the set of pre-fixed H-points.
Definition 2.19 (Henkin model). Let M be a structure, H be a Henkin class for M . (M,H)
is called a Henkin model if the following conditions hold:

(1) There exists the least pre-fixed H-point µH.ϕΦ.

(2) Pi
M = πi(µH.ϕΦ) for each i = 1, . . . , n.

We note that a standard model is a Henkin model.

11

2 Background: inductive definitions, non-well-founded proof system, cyclic proof system

2.2 Derivation tree

In this section, we define a derivation tree.

Definition 2.20 (Derivation tree). Let Rule be the set of names for the inference rules of each
proof system. Let Seq be the set of sequents. N∗ denotes the set of finite sequences of natural
numbers. We write 〈n1, . . . , nk〉 for the sequence of the numbers n1, . . . , nk. We write σ1σ2
for the concatenation of σ1 and σ2 with σ1, σ2 ∈ N∗. We write σn for σ〈n〉 for σ ∈ N∗ and
n ∈ N. We define a derivation tree to be a partial function D : N∗ ⇀ Seq× (Rule ∪ {(Bud)})
satisfying the following conditions:

(1) Dom(D) is prefix-closed, that is to say, if σ1σ2 ∈ Dom(D) for σ1, σ2 ∈ N∗, then σ1 ∈
Dom(D).

(2) If σn ∈ Dom(D) for σ ∈ N∗ and n ∈ N, then σm ∈ Dom(D) for all m ≤ n.

(3) Define D(σ) = (Γσ ⇒ ∆σ, Rσ).

(a) If Rσ = (Bud), then σ0 /∈ Dom(D).

(b) If Rσ 6= (Bud), then

Γσ0 ⇒ ∆σ0 · · · Γσn ⇒ ∆σn

Γσ ⇒ ∆σ

is a rule Rσ and σ(n+ 1) /∈ Dom(D).

We write concD(σ) and ruleD(σ) for Γ ⇒ ∆ and (R), respectively, where D(σ) = (Γ ⇒ ∆, (R)).
An element in the domain of a derivation tree is called its node. The empty sequence as a
node is called the root. The node σ is called a bud if ruleD(σ) is (Bud). The node σ is called
a leaf if σ is not a bud and σ0 /∈ Dom(D). The node which is not a bud and a leaf is called an
inner node. A derivation tree is called infinite if the domain of the derivation tree is infinite.

For each derivation tree D and each sequence σ ∈ Dom(D), we define a derivation tree D(σ)

as D(σ)(σ1) = D(σσ1). It is called the subtree of D from σ. We say that the derivation tree D
is regular if the set of subtrees

{
D(σ)

∣∣ σ ∈ Dom(D)
}

is finite.
We sometimes identify a node σ with the sequent concD(σ).

Definition 2.21 (Path). We define a path in a derivation tree D to be a (possibly infinite)
sequence {σi}0≤i<α of nodes in Dom(D) such that σi+1 = σin for some n ∈ N and α ∈
N>0∪{ω}, where N>0 is the set of positive natural numbers and ω is the least infinite ordinal.
A finite path σ0, σ1, . . . , σn is called a path from σ0 to σn. The length of a finite path {σi}0≤i<α

is defined as α. We define the height of a node as the length of the path from the root to the
node.

We sometimes write {Γi ⇒ ∆i}0≤i<α for the path {σi}0≤i<α in a derivation tree D if D(σi) =
(Γi ⇒ ∆i, Ri).

Definition 2.22 (Parent, child, ancestor, descendant). Let D be a derivation tree.

(1) For each node σ of D, σn with n ∈ N is called a child of σ if σn ∈ Dom(D). In the case,
we call σ is a parent of σn.

(2) For nodes σ1, σ2 of D, we call σ1 an ancestor of σ2 if there exists the path from σ1 to
σ2. In the case, σ2 is called a descendant of σ1.

12

2.3 LKID: ordinary proof system for first-order logic with inductive definitions

Logical Rules:
(Γ ∩∆ 6= ∅) (Axiom)

Γ ⇒ ∆
Γ ⇒ ϕ,∆ (¬ L)
Γ,¬ϕ⇒ ∆

Γ, ϕ⇒ ∆ (¬ R)
Γ ⇒ ¬ϕ,∆

Γ, ϕ⇒ ∆ Γ, ψ ⇒ ∆ (∨ L)
Γ, ϕ ∨ ψ ⇒ ∆

Γ ⇒ ϕ,ψ,∆ (∨ R)
Γ ⇒ ϕ ∨ ψ,∆

Γ, ϕ, ψ ⇒ ∆ (∧ L)
Γ, ϕ ∧ ψ ⇒ ∆

Γ ⇒ ϕ,∆ Γ ⇒ ψ,∆ (∧ R)
Γ ⇒ ϕ ∧ ψ,∆

Γ ⇒ ϕ,∆ Γ, ψ ⇒ ∆ (→ L)
Γ, ϕ→ ψ ⇒ ∆

Γ, ϕ⇒ ψ,∆ (→ R)
Γ ⇒ ϕ→ ψ,∆

Γ, ϕ[x := t] ⇒ ∆
(∀ L)

Γ,∀xϕ⇒ ∆

Γ ⇒ ϕ[x := y],∆
(y 6∈ FV(Γ ∪∆ ∪ {ϕ})) (∀ R)

Γ ⇒ ∀xϕ,∆

Γ, ϕ[x := y] ⇒ ∆
(y 6∈ FV(Γ ∪∆ ∪ {ϕ})) (∃ L)

Γ, ∃xϕ⇒ ∆

Γ ⇒ ϕ[x := t],∆
(∃ R)

Γ ⇒ ∃xϕ,∆

Γ[x := u1, y := u2] ⇒ ∆[x := u1, y := u2] (= L)
Γ[x := u2, y := u1], u1 = u2 ⇒ ∆[x := u2, y := u1]

(= R)
Γ ⇒ t = t,∆

Structural Rules:
Γ ⇒ ∆ (Weak)

Γ,Γ′ ⇒ ∆′,∆
Γ ⇒ ϕ,∆ Γ, ϕ⇒ ∆ (Cut)

Γ ⇒ ∆

Γ ⇒ ∆ (Sub)
Γ[x1 := u1, . . . , xm := um] ⇒ ∆[x1 := u1, . . . , xm := um]

Figure 2.1 Rules for first-order logic with equality

2.3 LKID: ordinary proof system for first-order logic with inductive
definitions

In this section, we define an ordinary proof system LKID for first-order logic with inductive
definitions.

The inference rules of LKID except for rules of inductive predicates are the same as that
of first-order logic with equality. They are in Figure 2.1. The principal formula of a rule is
the distinguished formula introduced by the rule in its conclusion. We use the commas in
sequents for a set union. We note that the contraction rule is implicit.

We present the two inference rules for inductive predicates. Let P1, . . . , Pn be all inductive
predicates of the language we consider.

First, for each production

Q1 u1(x) · · · Qh uh(x) Pj1 t1(x) · · · Pjm tm(x)

Pj t(x)
,

13

2 Background: inductive definitions, non-well-founded proof system, cyclic proof system

there is the inference rule

Γ ⇒ Q1 u1(u),∆ · · · Γ ⇒ Qh uh(u),∆ Γ ⇒ Pj1 t1(u),∆ · · · Γ ⇒ Pjm tm(u),∆
(Pj R)

Γ ⇒ Pj t(u),∆
.

Next, we introduce induction rule as the left introduction rule for the inductive predicate
symbol. To formulate the rule, we define some concepts.

Definition 2.23 (Mutual dependency). We define

Prem =

{
(Pj1 , Pj2)

∣∣∣∣∣ Pj1 , Pj2 are inductive predicate symbols, and
Pj2 occurs in the assumptions of a production of Pj1 in Φ

}
.

We define a binary relation Prem∗ to be the smallest reflexive-transitive closure on inductive
predicate symbols including the binary relation Prem.

For two inductive predicate symbols Pj1 and Pj2 , we say that Pj1 is mutually dependent on
Pj2 if both Prem∗(Pj1 , Pj2) and Prem∗(Pj2 , Pj1) hold.

To introduce induction rule (Ind Pj), for each i = 1, . . . , n, we fix an arbitrary formula Fi,
called an induction hypothesis.

For an inductive predicates Pj and induction hypotheses {Fi}i∈{1,...,n}, a minor assumption
of Γ, Pju ⇒ ∆ for a production

Q1 u1(x) · · · Qh uh(x) Pj1 t1(x) · · · Pjm tm(x)

Pi t(x)
,

is defined as a sequent

Γ, Q1 u1(y), . . . , Qh uh(y), Gj1 [zj1 := t1(y)], . . . , Gjm [zjm := tm(y)] ⇒ Fi[zi := t(y)],∆

where zk is a tuple of distinct variables of the same length as the arity of Pk for all k = 1, . . . , n,
y is a tuple of distinct variables of the same length as x, y ∈ FV(Γ ∪∆ ∪ {Pju}) for all y
occurring in y, and for each i = 1, . . . , n,

Gi =

{
Fi, if Pi is mutually dependent on Pj ,

Pizi, otherwise.

The induction rule for Pj (Ind Pj) with induction hypotheses {Fi}i∈{1,...,n} is

All minor assumptions of Γ, Pju ⇒ ∆ for produc-
tions each of whose conclusion is an atomic formula
with an inductive predicate which is mutually de-
pendent on Pj

Γ, Fj [zj := u] ⇒ ∆

(Ind Pj)
Γ, Pju ⇒ ∆

,

where zj is a tuple of distinct variables of the same length as the arity of Pj . We call the
assumption of (Ind Pj) whose form is Γ, Fj [zj := u] ⇒ ∆ the major assumption.

Example 2.24 (Rules for N, E, and O). Let N, E, and O be the same predicates in Exam-
ple 2.9. The rules for N, E, and O are

14

2.4 LKIDω: non-well-founded infinitary proof system for first-order logic with inductive definitions

⇒ E(0),O(0),E(x) ∨ O(x)

⇒ E(0) ∨ O(0),E(x) ∨ O(x)

E(y) ⇒ E(sy),E(y),E(x) ∨ O(x)

E(y) ⇒ E(sy),O(sy),E(x) ∨ O(x)

E(y) ⇒ E(sy) ∨ O(sy),E(x) ∨ O(x)

O(y) ⇒ O(y),O(sy),E(x) ∨ O(x)

O(y) ⇒ E(sy),O(sy),E(x) ∨ O(x)

O(y) ⇒ E(sy) ∨ O(sy),E(x) ∨ O(x)

E(y) ∨ O(y) ⇒ E(sy) ∨ O(sy),E(x) ∨ O(x) E(x) ∨ O(x) ⇒ E(x) ∨ O(x)

N(x) ⇒ E(x) ∨ O(x)

Figure 2.2 LKID proof

(N R1)
Γ ⇒ ∆,N(0)

, Γ ⇒ ∆,N(t)
(N R2)

Γ ⇒ ∆,N(st)
,

(E R1)
Γ ⇒ ∆,E(0)

, Γ ⇒ ∆,O(t)
(E R2)

Γ ⇒ ∆,E(st)
, Γ ⇒ ∆,E(t) (O R)

Γ ⇒ ∆,O(st)
,

Γ ⇒ F [v := 0],∆ Γ, F [v := x] ⇒ F [v := sx],∆ Γ, F [v := t] ⇒ ∆
(Ind N)

Γ,N(t) ⇒ ∆
,

Γ ⇒ FE[v := 0],∆ Γ, FE[v := y] ⇒ FO[v := sy],∆ Γ, FO[v := y] ⇒ FE[v := sy],∆ Γ, FE[v := t] ⇒ ∆
(Ind E)

Γ,E(t) ⇒ ∆
,

Γ ⇒ FE[v := 0],∆ Γ, FE[v := z] ⇒ FO[v := sz],∆ Γ, FO[v := z] ⇒ FE[v := sz],∆ Γ, FO[v := t] ⇒ ∆
(Ind O)

Γ,O(t) ⇒ ∆
,

where x /∈ FV(Γ ∪∆ ∪ {N(t)}), y /∈ FV(Γ ∪∆ ∪ {E(t)}), and z /∈ FV(Γ ∪∆ ∪ {O(t)}).

Definition 2.25 (LKID proof). We define an LKID proof to be a finite derivation tree without
buds.

Example 2.26. The derivation tree in Figure 2.2 is a LKID proof (labels of rules are omitted
for limited space).

The soundness of LKID for the Henkin models holds. To be more accurate, if there exists
an LKID proof of a sequent Γ ⇒ ∆, then Γ ⇒ ∆ is valid in all Henkin models. Moreover,
the cut-free completeness of LKID for the Henkin models holds, but completeness of LKID for
the standard models does not hold. In other words, if Γ ⇒ ∆ is valid in all Henkin models,
there exists an LKID cut-free proof of Γ ⇒ ∆, and there is a sequent not provable in LKID

but valid in all standard models. The soundness and cut-free completeness of LKID imply the
cut-elimination property of that, i. e. all provable sequents in LKID are cut-free provable in
LKID [4, 6].

2.4 LKIDω: non-well-founded infinitary proof system for first-order
logic with inductive definitions

In this section, we introduce a non-well-founded infinitary proof system LKIDω for first-order
logic with inductive definitions.

The inference rules of LKIDω are the same as that of LKID except for (Ind Pj). The induction
rule is replaced by the case-split rule.

To define the case-split rule, we define some concepts. A case distinctions of Γ, Pu ⇒ ∆
for a production

Q1 u1(x) · · · Qh uh(x) P1 t1(x) · · · Pm tm(x)

P t(x)
,

15

2 Background: inductive definitions, non-well-founded proof system, cyclic proof system

⇒ (Weak)⇒ (Weak)⇒

Figure 2.3 Infinite derivation tree of the empty sequent

is defined as a sequent

Γ,u = t(y), Q1 u1(y), . . . , Qh uh(y), P1 t1(y), . . . , Pm tm(y) ⇒ ∆,

where y is a tuple of distinct variables of the same length as x and y 6∈ FV(Γ ∪∆ ∪ {Pu})
for all y ∈ y.

The case-split rule (Case P) is

All case distinctions of Γ, Pu ⇒ ∆ for productions of P (Case P)
Γ, Pu ⇒ ∆

.

The formulas P1 t1(y), . . . , Pm tm(y) in case distinctions are said to be case-descendants of
the principal formula Pu.

Example 2.27 (The case-split rules for N, E, and O). Let N, E, and O be the same predicates
in Example 2.9. The case-split rules for N, E, and O are

Γ, t = 0 ⇒ ∆ Γ, t = sx,N(x) ⇒ ∆
(Case N)

Γ,N(t) ⇒ ∆
,

Γ, t = 0 ⇒ ∆ Γ, t = sy,O(y) ⇒ ∆
(Case E)

Γ,E(t) ⇒ ∆
,

Γ, t = sz,E(z) ⇒ ∆
(Case O)

Γ,O(t) ⇒ ∆
,

where x /∈ FV(Γ ∪∆ ∪ {N(t)}), y /∈ FV(Γ ∪∆ ∪ {E(t)}), and z /∈ FV(Γ ∪∆ ∪ {O(t)}).

There is an infinite derivation tree of the empty sequent, representing a contradiction (Fig-
ure 2.3), and therefore each proof in this system must satisfy the condition for soundness, the
global trace condition. To describe the condition, we define the following concepts.

Definition 2.28 (Trace). For a path {Γi ⇒ ∆i}0≤i<α in a derivation tree D, we define a trace
following {Γi ⇒ ∆i}0≤i<α to be a sequence of formulas {τi}0≤i<α such that the following hold:

(1) τi is an I-atomic formula in Γi.

(2) If Γi ⇒ ∆i is the conclusion of (Sub) with θ, then τi ≡ τi+1[θ].

(3) If Γi ⇒ ∆i is the conclusion of (= L) with the principal formula t = u and τi ≡
F [x := t, y := u], then τi+1 ≡ F [x := u, y := t].

(4) If Γi ⇒ ∆i is the conclusion of (Case Pi), then either
• τi is the principal formula of the rule and τi+1 is a case-descendant of τi, or
• τi+1 is the same as τi.

In the former case, τi is said to be a progress point of the trace.

16

2.4 LKIDω: non-well-founded infinitary proof system for first-order logic with inductive definitions

(E R1)
⇒ E(0),O(0)

(= L)
xn = 0 ⇒ E(xn),O(xn)

N(xn+1) ⇒ E(xn+1),O(xn+1)
(E R2)

N(xn+1) ⇒ E(sxn+1),E(xn+1)
(O R)

N(xn+1) ⇒ E(sxn+1),O(sxn+1)
(= L)

xn = sxn+1,N(xn+1) ⇒ E(xn),O(xn)
(Case N)

N(xn) ⇒ E(xn),O(xn)

Figure 2.4 A derivation tree πn

(E R1)
⇒ E(0),O(0)

(= L)
x = 0 ⇒ E(x),O(x)

πn

π2
π1

N(x1) ⇒ E(x1),O(x1)
(E R2)

N(x1) ⇒ E(sx1),E(x1) (O R)
N(x1) ⇒ E(sx1),O(sx1) (= L)

x = sx1,N(x1) ⇒ E(x),O(x)
(Case N)

N(x) ⇒ E(x),O(x)
(∨ R)

N(x) ⇒ E(x) ∨O(x)

Figure 2.5 LKIDω proof

(5) If Γi ⇒ ∆i is the conclusion of any other rule, then τi+1 ≡ τi.

Definition 2.29 (Global trace condition). If a trace has infinitely many progress points, we
call the trace an infinitely progressing trace. For a derivation tree, if, for every infinite path
{Γi ⇒ ∆i}i≥0 in the derivation tree, there exists an infinitely progressing trace following a
tail of the path {Γi ⇒ ∆i}i≥k with some k ≥ 0, we say the derivation tree satisfies the global
trace condition.

Definition 2.30 (LKIDω pre-proof). We define an LKIDω pre-proof to be a (possibly infinite)
derivation tree D without buds. When the root is Γ ⇒ ∆, we call Γ ⇒ ∆ the conclusion of
the proof.

Definition 2.31 (LKIDω proof). We define an LKIDω proof to be an LKIDω pre-proof that
satisfies the global trace condition.

Example 2.32. Let N, E, and O be the same predicates in Example 2.9.
The derivation tree in Figure 2.5 is a LKIDω proof of N(x) ⇒ E(x) ∨O(x) (πn in Figure 2.5

is a derivation tree in Figure 2.4). We use the underlined formulas to denote the infinitely
progressing trace for some tails of any infinite path.

Because of the global trace condition, the soundness of LKIDω for the standard models hold.
In other words, if there exists an LKIDω proof of a sequent Γ ⇒ ∆, then Γ ⇒ ∆ is valid in
any standard model. Moreover, cut-free completeness of LKIDω for the standard models hold.

17

2 Background: inductive definitions, non-well-founded proof system, cyclic proof system

(
√

) ⇒ ¬ϕ ∧ ϕ
(Weak)⇒ ¬ϕ ∧ ϕ,¬ϕ

(
√

) ⇒ ¬ϕ ∧ ϕ
(Weak)⇒ ¬ϕ ∧ ϕ,ϕ (∧ R)

(
√

) ⇒ ¬ϕ ∧ ϕ

Figure 2.6 CLKIDω pre-proof of a contradiction

(E R1)
⇒ E(0),O(0)

(= L)
x = 0 ⇒ E(x),O(x)

(♣) N(x) ⇒ E(x),O(x)
(Sub)

N(x1) ⇒ E(x1),O(x1)
(E R2)

N(x1) ⇒ E(sx1),E(x1)
(O R)

N(x1) ⇒ E(sx1),O(sx1)
(= L)

x = sx1,N(x1) ⇒ E(x),O(x)
(Case N)

(♣) N(x) ⇒ E(x),O(x)
(∨ R)

N(x) ⇒ E(x) ∨O(x)

Figure 2.7 CLKIDω proof

In other words, if Γ ⇒ ∆ is valid in any standard model, there exists an LKIDω cut-free proof
of Γ ⇒ ∆. Soundness and cut-free completeness of LKIDω imply the cut-elimination property
of it, i. e. all provable sequents in LKIDω are cut-free provable in LKIDω [4, 6].

2.5 CLKIDω: cyclic proof system for first-order logic with inductive
definitions

This section gives a cyclic proof system CLKIDω for first-order logic with inductive definitions.

Definition 2.33 (Companion). For a finite derivation tree D, we define the companion for a
bud µ as an inner node σ in D with concD(σ) = concD(µ).

Definition 2.34 (CLKIDω pre-proof). We define a CLKIDω pre-proof to be a pair (D, C) such
that D is a finite derivation tree and C is a function mapping each bud to its companion.
When the root is Γ ⇒ ∆, we call Γ ⇒ ∆ the conclusion of the proof.

The graph of a pre-proof (D, C), written G (D, C), is the graph obtained from D by identifying
each bud µ in D with its companion C(µ).

Definition 2.35 (CLKIDω proof). We define a CLKIDω proof of a sequent Γ ⇒ ∆ to be a
CLKIDω pre-proof of Γ ⇒ ∆ whose graph satisfies the global trace condition. If a CLKIDω

proof of Γ ⇒ ∆ exists, we say Γ ⇒ ∆ is provable in CLKIDω. A CLKIDω proof in which (Cut)
does not occur is called cut-free. If a cut-free CLKIDω proof of Γ ⇒ ∆ exists, we say Γ ⇒ ∆
is cut-free provable in CLKIDω.

Since there is a CLKIDω pre-proof of a contradiction (Figure 2.6), the global trace condition
is necessary for soundness.

Example 2.36. Let N, E, and O be the same predicates in Example 2.9.
The derivation tree in Figure 2.7 is a CLKIDω proof of N(x) ⇒ E(x) ∨O(x), where (♣)

indicates the pairing of the companion with the bud. We use the underlined formulas to
denote the infinitely progressing trace for some tails of any infinite path.

To see the relation between LKIDω and CLKIDω, we define the following concept.

18

2.6 Cycle-normalisation

Definition 2.37 (Tree-unfolding). For a CLKIDω pre-proof (D, C), a tree-unfolding T (D, C)
of (D, C) is recursively defined by

T (D, C)(σ) =

{
D(σ), if σ ∈ Dom(D) \ Bud(D),
T (D, C)(σ2σ1), if σ /∈ Dom(D) \ Bud(D) with σ ≡ σ0σ1, σ0 ∈ Bud(D) and σ2 ≡ C(σ0),

where Bud(D) is the set of buds in D.

The tree-unfolding of a CLKIDω pre-proof is a LKIDω pre-proof whose the set of subtrees is
finite. It is straightforward to show that, for a cyclic pre-proof (D, C), the graph of (D, C)
satisfies the global trace condition if and only if the tree-unfolding of (D, C) satisfies the global
trace condition. Then, we can understand CLKIDω as a subsystem of LKIDω.

Recall that an infinite tree is regular if the set of its subtrees is finite. Then, we say that
CLKIDω is the subsystem LKIDω whose the underlying tree of each proof is restricted to a
regular tree.

Brotherston [6] showed that each sequent provable in LKID is provable in CLKIDω and conjec-
tured that the converse holds. However, Berardi and Tatsuta [3] showed that the conjecture
is incorrect i.e. there is a sequent provable in CLKIDω but not in LKID. Moreover, Berardi
and Tatsuta [2] showed that the system obtained by adding Peano Arithmetic to CLKIDω is
equivalent to that obtained by adding Peano Arithmetic to LKID. The semantics, in which
both soundness and completeness of CLKIDω hold, is unknown.

2.6 Cycle-normalisation

This section shows the cycle-normalisation property for CLKIDω. It is proved in [4]. If each
companion is an ancestor of the corresponding bud in a CLKIDω pre-proof, we say that the pre-
proof is cycle-normal. The following proposition states that the cycle-normalisation property
for CLKIDω holds.

Proposition 2.38. For a CLKIDω pre-proof (D, C), we have a CLKIDω cycle-normal pre-proof
(D′, C′) such that the tree-unfolding of (D′, C′) is that of (D, C).

To show Proposition 2.38, we show a lemma, which is called König’s lemma.

Lemma 2.39 (König’s lemma). There exists an infinite path in a finitely branching infinite
tree.

Proof. Let D be a finitely branching infinite tree.
We show that there exists a sequence of nodes {σi}i∈N, which satisfies the following condi-

tions:

(1) σi is a child of σi−1 for 1 ≤ i.

(2) The set of descendants of σi is infinite.

We inductively construct {σi}i∈N.
We consider the case i = 0. Define σ0 as the root. It satisfies (1) and (2), obviously.
We consider the case i > 0. Since the set of descendants of σi−1 is infinite and the children

of σi−1 are finitely many, there exists a child σ of σi−1 such that the set of descendants of σ
is infinite. Let σi be σ. It satisfies (1) and (2), obviously.

We complete the construction. Then, we have the infinite path {σi}i∈N.

19

2 Background: inductive definitions, non-well-founded proof system, cyclic proof system

For σ, σ′ ∈ N∗, we write σ � σ′ when σ is an initial segment of σ′. We write σ ≺ σ′ when
σ � σ′ and σ 6= σ′. We write |σ| for the length of a sequence σ. For a set of finite sequences
S, let S = {σ | σ � σ′ ∈ S} and S◦ = {σ | σ ≺ σ′ ∈ S}.

Proof of Proposition 2.38. Let (D, C) be a CLKIDω pre-proof.
For simplicity, we write D∞ for T (D, C).
Define

S1 =

σ ∈ Dom(D∞)

∣∣∣∣∣∣∣
There exists σ′ ≺ σ such that D∞

(σ) = D∞
(σ′),

for all σ1 ≺ σ and σ2 ≺ σ, D∞
(σ1) 6= D∞

(σ2), and
for all n ∈ N, there exists σ1 � σ such that σ1 ∈ Dom(D∞), and |σ1| ≥ n

,
S2 =

{
σ ∈ Dom(D∞)

∣∣ σ0 /∈ Dom(D∞), and σ′ /∈ S1 for all σ′ � σ
}
.

S1 is the set of nodes each of which is on some infinite path, and which is of the smallest
height on the path among nodes each of which has some inner node of the same subtree. S2
is the set of leafs of which any ancestor is not in S1.

We show that, for σ ∈ Dom(D∞), either σ belongs to S1◦ ∪ S2, or there exists σ0 ∈ S1 such
that σ0 � σ.

Let σ ∈ Dom(D∞). If there exists σ0 ∈ S1 such that σ0 � σ, we have done. Assume σ0 6� σ
for all σ0 ∈ S1.

If there exists no infinite path through σ, then there exists σ′ such that σσ′0 /∈ Dom(D∞).
Assume there exists σ′0 ∈ S1 such that σ′0 � σσ′. Since we assume σ0 6� σ for all σ0 ∈ S1, we
have σ ≺ σ′0. Then, σ ∈ S1

◦. Assume σ′0 /∈ S1 for all σ′0 � σσ′, then we have σσ′ ∈ S2. Then,
σ ∈ S2.

Assume there exists an infinite path through σ. Let {σi}i∈N be an infinite path in D∞,
where σ ≡ σm.

Since D∞ is regular, the set
{
D∞

(σi)
∣∣∣ i ∈ N

}
is finite. Hence, there exist j < k such that

D∞
(σj) = D∞

(σk). Let k0 the smallest k among such k’s. By the definition of S1 and that of
k0, we have σk0 ∈ S1. Since σ0 6� σ for all σ0 ∈ S1, we have σ ≺ σk0 . Then, we have σ ∈ S1

◦.
Now, we see either σ belongs to S1◦ ∪ S2, or there exists σ0 ∈ S1 such that σ0 � σ.
We define D′ by

D′(σ) =

{
D∞(σ), if σ ∈ S1

◦ ∪ S2,
(Γ ⇒ ∆, (Bud)), if σ ∈ S1,D∞(σ) = (Γ ⇒ ∆, (R)),

and C′ by C′(σ) = σ′ for a bud of D′ where σ′ ≺ σ, and D∞
(σ) = D∞

(σ′).
We show that Dom(D′) is finite. Assume Dom(D′) is infinite, for contradiction. Since

Dom(D′) = S1 ∪ S2, We have Dom(D′) ⊆ Dom(D∞). Since there is no inference rule of
CLKIDω whose assumptions are infinitely many, D∞ is finite branching. Hence, is also finite
branching. From the assumption, D′ is a finite branching infinite tree. By Lemma 2.39,
König’s lemma, there exists an infinite path {σi}i∈N in D′. By Dom(D′) ⊆ Dom(D∞), the
infinite path {σi}i∈N is also a path in D∞. Since D∞ is regular, the set

{
D∞

(σi)
∣∣∣ i ∈ N

}
is

finite. Hence, there exist j < k such that D∞
(σj) = D∞

(σk). Let k0 the smallest k among such
k’s. By the definition of S1 and that of k0, we have σk0 ∈ S1. Hence, σk0+1 /∈ S1. Since σk0+2

is a child of σk0+1, we see σk0+1 /∈ S2. Therefore, σk0+1 /∈ D′. This contradicts the definition
of σi’s.

Since Dom(D′) is finite and C′(σ) is an ancestor of σ, we see that (D′, C′) is a CLKIDω

cycle-normal pre-proof.
We show that the tree-unfolding of (D, C) is that of (D′, C′).

20

2.6 Cycle-normalisation

For simplicity, we write D′
∞ for T (D′, C′).

We show that D′
∞(σ) = D∞(σ) on σ ∈ Dom(D′

∞).
Let σ ∈ Dom(D′

∞). We show the statement by induction on |σ|.
Assume σ ∈ S1

◦ ∪ S2. By the definition of D′ and D′
∞, D′

∞(σ) = D′(σ) = D∞(σ).
Assume σ /∈ S1

◦ ∪ S2. By the definition of D′
∞, there exists σ0 � σ such that σ0 ∈ S1.

Let σ ≡ σ0σ1 and C′(σ0) ≡ σ2. By the definition of D′
∞, D′

∞(σ) = D′
∞(σ0σ1) = D′

∞(σ2σ1).
Since σ2 � σ0, we have σ2σ1 � σ0σ1. By the induction hypothesis, D′

∞(σ2σ1) = D∞(σ2σ1).
Thus, D′

∞(σ) = D∞(σ2σ1) = D∞(σ).
We show that Dom(D′

∞) = Dom(D∞). Since we have Dom(D′
∞) ⊆ Dom(D∞), it suffices

to show Dom(D′
∞) ⊇ Dom(D∞).

We show that σ ∈ Dom(D∞) implies σ ∈ Dom(D′
∞) by induction on |σ|.

Assume σ ∈ Dom(D∞).
Assume σ ∈ S1

◦ ∪ S2. Then, σ ∈ S1
◦ ∪ S2 ⊂ Dom(D′). Hence, σ ∈ Dom(D′

∞).
Assume σ /∈ S1

◦ ∪ S2. Since we assume σ ∈ Dom(D∞), there exists σ0 ∈ S1 such that
σ0 � σ. Let σ ≡ σ0σ1 for a sequence σ1 and C′(σ0) ≡ σ2. By the induction hypothesis, σ2σ1 ∈
Dom(D′

∞). By the definition of D′
∞, D′

∞(σ0σ1) = D′
∞(σ2σ1). Hence, σ0σ1 ∈ Dom(D′

∞).
Therefore, Dom(D′

∞) ⊇ Dom(D∞). Thus, Dom(D′
∞) = Dom(D∞).

Now, we have D∞ = D′
∞.

Proposition 2.38 implies the following proposition, immediately.

Proposition 2.40. For a CLKIDω proof (D, C), we have a CLKIDω cycle-normal proof (D′, C′)
such that the tree-unfolding of (D′, C′) is that of (D, C).

Proof. Let (D, C) be a CLKIDω proof. By Proposition 2.38, there exists a CLKIDω cycle-
normal pre-proof (D′, C′) such that the tree-unfolding of (D′, C′), is that of (D, C). Since
(D, C) satisfies the global trace condition, the tree-unfolding of (D, C) satisfies the global trace
condition. Hence, (D′, C′) satisfies the global trace condition. Thus, (D′, C′) is a CLKIDω

cycle-normal.

21

3 Counterexample to cut-elimination in
first-order logic with inductive definitions

In this chapter, we prove the following theorem.

Theorem 3.1. Let 0 be a constant symbol, s be a unary function symbol. Let Add1 and Add2
be ternary inductive predicates with the following productions:

Add1(0, y, y)
, Add1(x, y, z)

Add1(sx, y, sz)
,

Add2(0, y, y)
, Add2(x, sy, z)

Add2(sx, y, z)
.

(1) Add2(x, y, z) ⇒ Add1(x, y, z) is provable in CLKIDω.

(2) Add2(x, y, z) ⇒ Add1(x, y, z) is not cut-free provable in CLKIDω.

This theorem means that Add2(x, y, z) ⇒ Add1(x, y, z) is a counterexample to cut-elimination
in CLKIDω.

In Section 3.1, we give a CLKIDω proof of Add2(x, y, z) ⇒ Add1(x, y, z) with (Cut), and
therefore we have Theorem 3.1 (1). Section 3.2 outline the proof of Theorem 3.1 (2). Sec-
tion 3.1 gives another cyclic proof system CLKIDωa to show Theorem 3.1 (2). Section 3.4
shows Theorem 3.1 (2). Section 3.5 discusses related work and the reason the cut-elimination
property in the cyclic proof systems does not hold.

3.1 A CLKIDω proof of the counterexample with (Cut)
In this section, we show Theorem 3.1 (1).

We give the inference rules for Add1 and Add2 in Figure 3.1.
The derivation tree in Figure 3.3 is a CLKIDω proof of Add2(x, y, z) ⇒ Add1(x, y, z), where

(♦) indicates the pairing of the companion with the bud, and D1 is the CLKIDω proof in
Figure 3.2, where (♦♦) indicates the pairing of the companion with the bud, (some applying
rules and some labels of rules are omitted for limited space). We use the underlined formulas
to denote the infinitely progressing trace for some tails of any infinite path.

Since there is a CLKIDω proof of Add2(x, y, z) ⇒ Add1(x, y, z), we have Theorem 3.1 (1).
We henceforth prove Theorem 3.1 (2).

3.2 The outline of the proof
We outline our proof of Theorem 3.1 (2).

Assume there exists a cut-free CLKIDω proof of Add2(x, y, z) ⇒ Add1(x, y, z), for contra-
diction. By the cycle-normalization property of CLKIDω, there exists a cut-free cycle-normal
CLKIDω proof of Add2(x, y, z) ⇒ Add1(x, y, z). Let

(
D1

cf , C1
cf

)
be the CLKIDω proof.

The key concepts for the proof are an index sequent, a switching point, and an idling path.
To define these concepts, we define the relation ∼=Γ for a finite set of formulas Γ to be the

23

3 Counterexample to cut-elimination in first-order logic with inductive definitions

(Add1 R1)
Γ ⇒ Add1(0, b, b),∆

Γ ⇒ ∆,Add1(a, b, c) (Add1 R2)
Γ ⇒ ∆,Add1(sa, b, sc)

Γ, a = 0, b = y, c = y ⇒ ∆ Γ, a = sx, b = y, c = sz,Add1(x, y, z) ⇒ ∆
(Case Add1)

Γ,Add1(a, b, c) ⇒ ∆

(x, y, z 6∈ FV(Γ ∪∆ ∪ {Add1(a, b, c)}) and x, y, z are all distinct)

(Add2 R1)
Γ ⇒ Add2(0, b, b),∆

Γ ⇒ ∆,Add2(a, sb, c) (Add2 R2)
Γ ⇒ ∆,Add2(sa, b, c)

Γ, a = 0, b = y, c = y ⇒ ∆ Γ, a = sx, b = y, c = z,Add2(x, sy, z) ⇒ ∆
(Case Add2)

Γ,Add2(a, b, c) ⇒ ∆

(x, y, z 6∈ FV(Γ ∪∆ ∪ {Add2(a, b, c)}) and x, y, z are all distinct)

Figure 3.1 The rules for Add1 and Add2

smallest congruence relation on terms containing t1 = t2 ∈ Γ (Definition 3.4) and the index
of Add2(a, b, c) in a sequent Γ ⇒ ∆ (Definition 3.12). If there uniquely exists n − m such
that n, m ∈ N and snb ∼=Γ s

mb′ for some Add1(a
′, b′, c′) ∈ ∆, then the index of Add2(a, b, c)

is defined as m − n. If snb 6∼=Γ s
mb′ for each Add1(a

′, b′, c′) ∈ ∆ and all n, m ∈ N, the index
of Add2(a, b, c) is defined as ⊥. The index of Add2(a, b, c) may be undefined, but the index is
always defined in a special sequent, called an index sequent (Definition 3.13). A switching point
is defined as a node that is the conclusion of (Case Add2) with the principal formula whose
index is ⊥ (Definition 3.15). An idling path is defined as a path {Γi ⇒ ∆i}0≤i<α of T

(
D1

cf , C1
cf

)
such that Γ0 ⇒ ∆0 is an index sequent and Γi ⇒ ∆i is a switching point if Γi+1 ⇒ ∆i+1 is
the left assumption of Γi ⇒ ∆i (Definition 3.16). Then, the following statements hold:

(1) The root is an index sequent;

(2) Every sequent in an idling path is an index sequent (Lemma 3.17);

(3) There exists a switching point on an infinite idling path (Lemma 3.19); and

(4) The rightmost path from an index sequent is infinite (Lemma 3.21).

At last, we show there exist infinite nodes in the derivation tree D1
cf . Because of (1) and (4),

the rightmost path from the root is an infinite idling path. By (3), there exists a switching
point on the path. Let σ̃0 be the node of the smallest height among such switching points.
Let α0 be the left assumption of σ̃0. By (2), the sequent of α0 is an index sequent. By (4),
the rightmost path from α0 is infinite. Therefore, there exists a bud µ0 in the rightmost path
from α0. By (3) and the definition of σ̃0, there exists a switching point between α0 and µ0.
Let σ̃1 be the node of the smallest height among such switching points. The nodes σ̃0 and σ̃1
are distinct by their definitions. By repeating this process as in Figure 3.4, we get a set of
infinite nodes {σ̃i | i ∈ N}. It is a contradiction since the set of nodes of D1

cf is finite.

3.3 Another cyclic proof system CLKIDωa

We give some definitions and lemmas for proving (2) of Theorem 3.1.
We consider a cyclic proof system CLKIDωa , which is obtained by changing the left introduc-

tion rule for “=” slightly.

24

3.3 Another cyclic proof system CLKIDωa

(Add1 R1)
⇒ Add1(0, y1, y1) (Add1 R2)
⇒ Add1(s0, y1, sy1)

sy1 = y2 ⇒ Add1(s0, y1, y2)

x1 = 0,

sy1 = y2,

z1 = y2

⇒ Add1(sx1, y1, z1)

(♦♦) Add1(x1, sy1, z1) ⇒ Add1(sx1, y1, z1)

Add1(x2, sy1, z2) ⇒ Add1(sx2, y1, z2)
(Add1 R2)

Add1(x2, sy1, z2) ⇒ Add1(ssx2, y1, sz2)

x1 = sx2,

sy1 = y2,

z1 = sz2,

Add1(x2, y2, z2) ⇒ Add1(sx1, y1, z1)

(Case Add1)
(♦♦) Add1(x1, sy1, z1) ⇒ Add1(sx1, y1, z1)

Figure 3.2 CLKIDω proof D1

(Add1 R1)
⇒ Add1(0, y1, y1)

x = 0,

y = y1,

z = y1

⇒ Add1(x, y, z)

(♦) Add2(x, y, z) ⇒ Add1(x, y, z)

Add2(x1, sy1, z1) ⇒ Add1(x1, sy1, z1)

D1

Add1(x1, sy1, z1) ⇒ Add1(sx1, y1, z1)
(Cut)

Add2(x1, sy1, z1) ⇒ Add1(sx1, y1, z1)

x = sx1,

y = y1,

z = z1,

Add2(x1, sy1, z1) ⇒ Add1(x, y, z)

(Case Add2)
(♦) Add2(x, y, z) ⇒ Add1(x, y, z)

Figure 3.3 CLKIDω proof of Add2(x, y, z) ⇒ Add1(x, y, z)

Definition 3.2 (CLKIDωa). CLKIDωa is the cyclic proof system obtained by replacing (= L)
with

Γ[x := u, y := t], t = u⇒ ∆[x := u, y := t]
(= La)

Γ[x := t, y := u], t = u⇒ ∆[x := t, y := u]
.

The principal formula of the rule of (= La) is defined as t = u.
Definitions of derivation trees, companions, pre-proofs, proofs for CLKIDωa are similar to

CLKIDω.

The provability of CLKIDω is the same as that of CLKIDωa , since (= L) is derivable in CLKIDωa
by

Γ[x := u, y := t] ⇒ ∆[x := u, y := t]
(Weak)

Γ[x := u, y := t], t = u⇒ ∆[x := u, y := t]
(= La)

Γ[x := t, y := u], t = u⇒ ∆[x := t, y := u]

.

CLKIDωa is necessary because of Lemma 3.18 (3). For CLKIDω, Lemma 3.18 (3) does not
hold.

Proposition 3.3. If there exists a cut-free CLKIDω proof of Γ ⇒ ∆, then there exists a cut-free
cycle-normal CLKIDωa proof of Γ ⇒ ∆.

Proof. Let P0 be a cut-free CLKIDω proof of Γ ⇒ ∆. By Proposition 2.40, there exists a
cycle-normal CLKIDω pre-proof P1 whose tree-unfolding is the same as that of P0. Since the

25

3 Counterexample to cut-elimination in first-order logic with inductive definitions

...
α2

µ1
...

(Case Add2)σ̃2
...
α1

µ0
...

(Case Add2)σ̃1
...
α0

µ

...
(Case Add2)

σ̃0
...

Add2(x, y, z) ⇒Add1(x, y, z)

Figure 3.4 Construction of {σ̃i}i∈N

tree-unfolding of P1 satisfies the global trace condition, P1 is a cycle-normal cut-free CLKIDω

proof of Γ ⇒ ∆.
A cut-free cycle-normal CLKIDω proof of Γ ⇒ ∆ is transformed into the CLKIDωa proof

of Γ ⇒ ∆ by replacing all applications from (= L) to (= La)and weakening. Since this
replacement does not change the rules except (= L) in the CLKIDω proof and the sequents of
buds and companions, the obtained CLKIDωa proof is cut-free and cycle-normal.

3.4 The proof of Theorem 3.1 (2)

In this section, we prove Theorem 3.1 (2).
Throughout the remainder of this chapter, we assume there exists a cut-free CLKIDω proof

of Add2(x, y, z) ⇒ Add1(x, y, z) for contradiction. By Proposition 3.3, there exists a cut-free
cycle-normal CLKIDωa proof of Add2(x, y, z) ⇒ Add1(x, y, z). We write

(
D1

cf , C1
cf

)
for a cut-free

cycle-normal CLKIDωa proof of Add2(x, y, z) ⇒ Add1(x, y, z).

Remark. Let Γ ⇒ ∆ be a sequent in
(
D1

cf , C1
cf

)
. By induction on the height of sequents in D1

cf ,
we can easily show the following statements:

(1) Γ consists of only atomic formulas with =, Add2.

(2) ∆ consists of only atomic formulas with Add1.

(3) A term in Γ and ∆ is of the form sn0 or snx with some variable x.

(4) The possible rules in
(
D1

cf , C1
cf

)
are (Weak), (Sub), (= La), (Case Add2), (Add1 R1)

and (Add1 R2).

By (3), without loss of generality, we can assume terms are of the form sn0 or snx with
some variable x throughout the remainder of this chapter.

To define the key concept of the proof, called an index, we define the equality ∼=Γ in a
sequent Γ ⇒ ∆ and show some properties.

26

3.4 The proof of Theorem 3.1 (2)

Definition 3.4 (∼=Γ). For a set of formulas Γ, we define the relation ∼=Γ to be the smallest
congruence relation on terms which satisfies the condition that t1 = t2 ∈ Γ implies t1 ∼=Γ t2.

Definition 3.5 (∼Γ). For a set of formulas Γ and terms t1, t2, we define t1 ∼Γ t2 by snt1 ∼=Γ

smt2 for some n,m ∈ N.

For a term t, we define Var(t) as a variable or a constant in t. Note that ∼Γ is a congruence
relation and also note that t ∼Γ u if Var(t) = Var(u).

Lemma 3.6. Let Γ be a set of formulas and θ be a substitution.

(1) For terms t1 and t2, t1[θ] ∼=Γ[θ] t2[θ] if t1 ∼=Γ t2.

(2) For terms t1 and t2, t1 6∼Γ t2 if t1[θ] 6∼Γ[θ] t2[θ].

Proof. (1) We prove the statement by induction on the definition of ∼=Γ. We only show the
base case. Assume t1 = t2 ∈ Γ. Then, t1[θ] = t2[θ] ∈ Γ[θ]. Thus, t1[θ] ∼=Γ[θ] t2[θ].

(2) By Definition 3.5 and (1), we have the statement.

Lemma 3.7. Let Γ be a set of formulas, u1, u2 be terms, v1, v2 be variables, Γ1 ≡
(Γ[v1 := u1, v2 := u2], u1 = u2), and Γ2 ≡ (Γ[v1 := u2, v2 := u1], u1 = u2).

(1) For terms t1 and t2, t1[v1 := u1, v2 := u2] ∼=Γ1 t2[v1 := u1, v2 := u2] if t1[v1 := u2, v2 := u1] ∼=Γ2

t2[v1 := u2, v2 := u1].

(2) For terms t1 and t2, t1[v1 := u2, v2 := u1] 6∼Γ2 t2[v1 := u2, v2 := u1] if t1[v1 := u1, v2 := u2] 6∼Γ1

t2[v1 := u1, v2 := u2].

Proof. (1) We prove the statement by induction on the definition of ∼=Γ2 . We only show the
base case. Assume t1[v1 := u2, v2 := u1] = t2[v1 := u2, v2 := u1] ∈ Γ2 to show t1[v1 := u1, v2 := u2] ∼=Γ1

t2[v1 := u1, v2 := u2]. If t1[v1 := u2, v2 := u1] = t2[v1 := u2, v2 := u1] is u1 = u2, then t1 = t2 is
v2 = v1, v2 = u2, u1 = v1, or u1 = u2. Therefore, t1[v1 := u1, v2 := u2] ∼=Γ1 t2[v1 := u1, v2 := u2].

Assume t1[v1 := u2, v2 := u1] = t2[v1 := u2, v2 := u1] is not u1 = u2. By case analysis, we
have t1 = t2 ∈ Γ. Hence, t1[v1 := u1, v2 := u2] = t2[v1 := u1, v2 := u2] ∈ Γ1. Therefore, we
have t1[v1 := u1, v2 := u2] ∼=Γ1 t2[v1 := u1, v2 := u2].

(2) By Definition 3.5 and (1), we have the statement.

Lemma 3.8. For a set of formulas Γ, the following statements are equivalent:

(1) u1 ∼=Γ u2.

(2) There exists a finite sequence of terms {ti}0≤i≤n with n ≥ 0 such that t0 ≡ u1, tn ≡ u2
and ti = ti+1 ∈ [Γ] for 0 ≤ i < n, where

[Γ] = {snt1 = snt2 | n ∈ N and either t1 = t2 ∈ Γ or t2 = t1 ∈ Γ}.

Proof. (1) ⇒ (2): Assume u1 ∼=Γ u2 to prove (2) by induction on the definition of ∼=Γ. We
consider cases according to the clauses of the definition.

Case 1. If u1 = u2 ∈ Γ, then we have u1 = u2 ∈ [Γ]. Thus, we have (2).
Case 2. If u1 ≡ u2, then we have (2).
Case 3. We consider the case where u2 ∼=Γ u1. By the induction hypothesis, there exists

a finite sequence of terms {ti}0≤i≤n such that t0 ≡ u2, tn ≡ u1 and ti = ti+1 ∈ [Γ] with
0 ≤ i < n. Let t′i ≡ tn−i. The finite sequence of terms {t′i}0≤i≤n satisfies t′0 ≡ u1, t′n ≡ u2 and
t′i = t′i+1 ∈ [Γ]. Thus, we have (2).

27

3 Counterexample to cut-elimination in first-order logic with inductive definitions

Case 4. We consider the case where u1 ∼=Γ u3, u3 ∼=Γ u2. By the induction hypothesis, there
exist two finite sequences of terms {ti}0≤i≤n,

{
t′j

}
0≤j≤m

such that t0 ≡ u1, tn ≡ t′0 ≡ u3,

t′m ≡ u2, ti = ti+1 ∈ [Γ] and t′j = t′j+1 ∈ [Γ] with 0 ≤ i < n, 0 ≤ j < m. Define t̂k as tk
if 0 ≤ k < n and t′k−n if n ≤ k ≤ n +m. The finite sequence of terms

{
t̂k
}
0≤k≤n

satisfies
t̂0 ≡ u1, t̂n ≡ u2 and t̂k = t̂k+1 ∈ [Γ]. Thus, we have (2).

Case 5. We consider the case where û1 ∼=Γ û2, u1 ≡ u[v := û1] and u2 ≡ u[v := û2]. By the
induction hypothesis, there exists a finite sequence of terms {ti}0≤i≤n with n ∈ N such that
t0 ≡ û1, tn ≡ û2, ti = ti+1 ∈ [Γ] with 0 ≤ i < n.

Assume v does not occur in u. In this case, we have u1 ≡ u[v := û1] ≡ u ≡ u[v := û2] ≡ u2.
Hence, (2) holds.

Assume v occurs in u. In this case, we have u ≡ smv for some natural numbers m. Let
t′i = smti for 0 ≤ i ≤ n. The finite sequence of terms {t′i}0≤i≤n satisfies t′0 ≡ u1, t′n ≡ u2 and
t′i = t′i+1 ∈ [Γ].

(2) ⇒ (1): Assume (2) to show (1). By the assumption, there exists a finite sequence of
terms {ti}0≤i≤n with n ∈ N such that t0 ≡ u1, tn ≡ u2 and ti = ti+1 ∈ [Γ] with 0 ≤ i < n.
If ti = ti+1 ∈ [Γ], then ti = ti+1 is snt̂1 = snt̂2, where t̂1 = t̂2 ∈ Γ or t̂2 = t̂1 ∈ Γ. Therefore,
ti ∼=Γ ti+1. Because of the transitivity of ∼=Γ, we have u1 ∼=Γ u2.

Lemma 3.9. For a set of formulas Γ1 and Γ2 ≡ (Γ1, u1 = u′1, . . . , un = u′n) with a natural
number n, if Var(u′i) (i = 1, . . . , n) do not occur in Γ1, u1, . . . , un, t, t

′ and are all distinct
variables, then t ∼=Γ2 t

′ implies t ∼=Γ1 t
′.

Proof. Let Var(u′i) = vi for each i = 1, . . . , n. Assume t ∼=Γ2 t
′, t 6∼Γ1 vi for all i = 1, . . . , n.

By Lemma 3.8, there exists a sequence {tj}0≤j≤m with m ∈ N such that t0 ≡ t, tm ≡ t′ and
tj = tj+1 ∈ [Γ2] with 0 ≤ j < m. We show t ∼=Γ1 t

′ by induction on m.
For m = 0, we have t ∼=Γ1 t

′ immediately.
We consider the case where m > 0.
If tj 6≡ slu′i for all i = 1, . . . , n, 0 ≤ j ≤ m and l ∈ N, then tj = tj+1 ∈ [Γ1] with 0 ≤ i < m.

By Lemma 3.8, we have t ∼=Γ1 t
′.

Assume that there exists j0 with 0 ≤ j0 ≤ m such that tj0 ≡ slu′i for some i = 1, . . . , n and
l ∈ N. Since any formula of [Γ2] in which u′i occurs is either sl0ui = sl0u′i or sl0u′i = sl0ui with
l0 ∈ N and Var(u′i) (i = 1, . . . , n) do not occur in t, t′, we have tj0−1 ≡ tj0+1 ≡ slui. Define t̄k
as tk if 0 ≤ k < j0 and tk+1 if j0 ≤ k ≤ m − 1. Then, t̄0 ≡ t, t̄m−1 ≡ t′ and t̄k = t̄k+1 ∈ [Γ2]
with 0 ≤ k < m− 1. By the induction hypothesis, we have t ∼=Γ1 t

′.

Lemma 3.10. For a set of formulas Γ1 and Γ2 ≡ (Γ1, u1 = u′1, . . . , un = u′n) with a natural
number n, if t 6∼Γ1 ui and t 6∼Γ1 u

′
i with i = 1, . . . , n, then t ∼=Γ2 t

′ implies t ∼=Γ1 t
′.

Proof. Assume t 6∼Γ1 ui, t 6∼Γ1 u
′
i for i = 1, . . . , n, and t ∼=Γ2 t

′. By Lemma 3.8, there exists a
sequence {tj}0≤j≤m with m ∈ N such that t0 ≡ t, tm ≡ t′ and tj = tj+1 ∈ [Γ2] with 0 ≤ j < m.

Assume, for all 0 ≤ j ≤ n, i = 1, . . . , n, tj 6≡ slui and tj 6≡ slu′i with all l ∈ N. Then,
tj = tj+1 ∈ [Γ1] with all 0 ≤ j < m. By Lemma 3.8, we have t ∼=Γ1 t

′.
Assume that there exists j with 0 ≤ j ≤ n, such that tj ≡ slui or tj ≡ slu′i for i = 1, . . . , n,

and some l ∈ N. Let j0 be the least number among such j’s. Since j0 is the least, we have
tj = tj+1 ∈ [Γ1] for all 0 ≤ j < j0. By Lemma 3.8, we have t ∼=Γ1 s

lui or t ∼=Γ1 s
lu′i. This

contradicts t 6∼Γ1 ui and t 6∼Γ1 u
′
i.

We call the assumption of (Case Add2) whose form is

Γ, a = sx, b = y, c = z,Add2(x, sy, z) ⇒ ∆

28

3.4 The proof of Theorem 3.1 (2)

the right assumption of the rule. The other assumption is called the left assumption of the
rule.

Lemma 3.11. Let Γ ⇒ ∆ be in D1
cf and

A(Γ ⇒ ∆) = {a | Add2(a, b, c) ∈ Γ,Add1(a, b, c) ∈ ∆, or a ≡ 0} and
BC(Γ ⇒ ∆) = {b | Add2(a, b, c) ∈ Γ or Add1(a, b, c) ∈ ∆} ∪ {c | Add2(a, b, c) ∈ Γ or Add1(a, b, c) ∈ ∆}.

If t ∈ A(Γ ⇒ ∆) and u ∈ BC(Γ ⇒ ∆), then t 6∼Γ u.

Proof. We prove the statement by induction on the height of the node Γ ⇒ ∆ in D1
cf .

The root of D1
cf satisfies the statement.

Assume Γ ⇒ ∆ is not the root. Let Γ′ ⇒ ∆′ be the parent of Γ ⇒ ∆. We consider cases
according to the rule with the conclusion Γ′ ⇒ ∆′.

Case 1. In the case (Weak), we have the statement by Γ ⊆ Γ′.
Case 2. In the case (Sub), we have the statement by Lemma 3.6 (2).
Case 3. In the case (= La), we have the statement by Lemma 3.7 (2).
Case 4. We consider the case where the rule is (Case Add2) and Γ ⇒ ∆ is the right

assumption of the rule. Let Add2(a, b, c) be the principal formula of the rule. There exists
Π such that Γ′ ≡ (Π,Add2(a, b, c)) and Γ ≡ (Π, a = sx, b = y, c = z,Add2(x, sy, z)) for fresh
variables x, y, z.

Assume t ∈ A(Γ ⇒ ∆) and u ∈ BC(Γ ⇒ ∆) and t ∼Γ u for contradiction.
Define t̂ as a if t ≡ x and t otherwise. We also define û as b if u ≡ sy, c if u ≡ z and

u otherwise. Since t ∼Γ u holds, we have t̂ ∼Γ û. By Lemma 3.9, we have t̂ ∼Γ′ û. Since
t̂ ∈ A(Γ′ ⇒ ∆′) and û ∈ BC(Γ′ ⇒ ∆′) hold, this contradicts the induction hypothesis.

Case 5. We consider the case where the rule is (Case Add2) and Γ ⇒ ∆ is the left
assumption of the rule.

Let Add2(a, b, c) be the principal formula of the rule. There exists Π such that Γ′ ≡
(Π,Add2(a, b, c)) and Γ ≡ (Π, a = 0, b = y, c = y) for a fresh variable y. Let Π′ ≡ (Π, b = y, c = y).

Let t ∈ A(Γ ⇒ ∆) and u ∈ BC(Γ ⇒ ∆). Since A(Γ ⇒ ∆) ⊆ A(Γ′ ⇒ ∆′) holds, we have t ∈
A(Γ′ ⇒ ∆′). By BC(Γ ⇒ ∆) ⊆ BC(Γ′ ⇒ ∆′), we have u ∈ BC(Γ′ ⇒ ∆′). By the induction
hypothesis, t 6∼Γ′ u, t 6∼Γ′ b and t 6∼Γ′ c. Since the set of formulas with = in Π is the same as
the set of formulas with = in Γ′, we have t 6∼Π u, t 6∼Π b and t 6∼Π c. By Lemma 3.10, t 6∼Π′ u.

By the induction hypothesis, u 6∼Γ′ a, a 6∼Γ′ b and a 6∼Γ′ c. Since the set of formulas with
= in Π is the same as the set of formulas with = in Γ′, u 6∼Π a, a 6∼Π b and a 6∼Π c. By
Lemma 3.10, u 6∼Π′ a.

By the induction hypothesis, u 6∼Γ′ 0, 0 6∼Γ′ b and 0 6∼Γ′ c. Since the set of formulas with
= in Π is the same as the set of formulas with = in Γ′, u 6∼Π 0, 0 6∼Π b and 0 6∼Π c. By
Lemma 3.10, u 6∼Π′ 0.

By Lemma 3.10 and these three facts, t 6∼Γ u.
Case 6. In the case (Add1 R2), Γ ≡ Γ′ implies the statement by the induction hypothesis.

We define a key concept, called an index.

Definition 3.12 (Index). For a sequent Γ ⇒ ∆ and Add2(a, b, c) ∈ Γ, we define the index of
Add2(a, b, c) in Γ ⇒ ∆ as follows:

(1) If b 6∼Γ b
′ for all Add1(a

′, b′, c′) ∈ ∆, then the index of Add2(a, b, c) in Γ ⇒ ∆ is ⊥, and

(2) if there exists uniquely m− n such that n, m ∈ N, snb ∼=Γ s
mb′ and Add1(a

′, b′, c′) ∈ ∆,
then the index of Add2(a, b, c) in Γ ⇒ ∆ is m − n (namely the uniqueness means that
sn

′
b ∼=Γ s

m′
b′′ for m′,n′ ∈ N and Add1(a

′′, b′′, c′′) ∈ ∆ imply m− n = m′ − n′).

29

3 Counterexample to cut-elimination in first-order logic with inductive definitions

Note that if there exists n,m ∈ N such that snb ∼=Γ s
mb′ for some Add1(a

′, b′, c′) and m−n
is not unique, then the index of Add2(a, b, c) in Γ ⇒ ∆ is undefined.

Definition 3.13 (Index sequent). The sequent Γ ⇒ ∆ is said to be an index sequent if the
following conditions hold:

(1) If t ∈ B1(Γ ⇒ ∆) and u ∈ C(Γ ⇒ ∆), then t 6∼Γ u, and

(2) if snb ∼=Γ s
mb′ with b, b′ ∈ B1(Γ ⇒ ∆), then n = m, where

B1(Γ ⇒ ∆) = {b | Add1(a, b, c) ∈ ∆}, and
C(Γ ⇒ ∆) = {c | Add2(a, b, c) ∈ Γ or Add1(a, b, c) ∈ ∆}.

This condition (2) guarantees the existence of an index, as shown in the following lemma.
We will use (1) to calculate an index in Lemma 3.18 (1) and an infinite sequence in Lemma 3.21.

Lemma 3.14. If Γ ⇒ ∆ is an index sequent, the index of each Add2(a, b, c) ∈ Γ in Γ ⇒ ∆
is defined.

Proof. If b 6∼Γ b
′ for all Add1(a

′, b′, c′) ∈ ∆, then the index is ⊥.
Assume b ∼Γ b

′
0 for some Add1(a

′
0, b

′
0, c

′
0) ∈ ∆. By Definition 3.5, there exist n0 and m0

such that sn0b ∼=Γ sm0b′0. To show the uniqueness, we fix Add1(a
′
1, b

′
1, c

′
1) ∈ ∆ and assume

sn1b ∼=Γ s
m1b′1. Since sn0+n1b ∼=Γ s

m0+n1b′0 and sn1+n0b ∼=Γ s
m1+n0b′1, we have sm0+n1b′0

∼=Γ

sm1+n0b′1. From (2) of Definition 3.13, m0 + n1 = m1 + n0. Thus, m0 − n0 = m1 − n1.

Definition 3.15 (Switching point). A node σ in a derivation tree is called a switching point
if the rule with the conclusion σ is (Case Add2) and the index of the principal formula for
the rule in the conclusion is ⊥.

Definition 3.16 (Idling path). A path {Γi ⇒ ∆i}0≤i<α in T
(
D1

cf , C1
cf

)
with some α ∈ N∪{ω}

is said to be an idling path if the following conditions hold:

(1) Γ0 ⇒ ∆0 is an index sequent, and

(2) if the rule for Γi ⇒ ∆i is (Case Add2) and Γi+1 ⇒ ∆i+1 is the left assumption of the
rule, then Γi ⇒ ∆i is a switching point.

Lemma 3.17. Every sequent in an idling path is an index sequent.

Proof. Let {Γi ⇒ ∆i}0≤i<α be an idling path. We use B1(Γ ⇒ ∆) and C(Γ ⇒ ∆) in Defini-
tion 3.13. We prove the statement by the induction on i.

For i = 0, Γ0 ⇒ ∆0 is an index sequent by Definition 3.16.
For i > 0, we consider cases according to the rule with the conclusion Γi−1 ⇒ ∆i−1.
Case 1. The case (Weak).
(1) Assume that t ∈ B1(Γi ⇒ ∆i) and u ∈ C(Γi ⇒ ∆i). Since B1(Γi ⇒ ∆i) ⊆ B1(Γi−1 ⇒ ∆i−1)

holds, we have t ∈ B1(Γi−1 ⇒ ∆i−1). By C(Γi ⇒ ∆i) ⊆ C(Γi−1 ⇒ ∆i−1), we have u ∈
C(Γi−1 ⇒ ∆i−1). By the induction hypothesis (1), we have t 6∼Γi−1 u. By Γi ⊆ Γi−1, we have
t 6∼Γi u.

(2) Assume that snb ∼=Γi s
mb′ with b, b′ ∈ B1(Γi ⇒ ∆i) for n, m ∈ N. By Γi ⊆ Γi−1,

we have snb ∼=Γi−1 smb′. Since B1(Γi ⇒ ∆i) ⊆ B1(Γi−1 ⇒ ∆i−1) holds, we have b, b′ ∈
B1(Γi−1 ⇒ ∆i−1). By the induction hypothesis (2) , we have n = m.

Case 2. The case (Sub) with a substitution θ.

30

3.4 The proof of Theorem 3.1 (2)

(1) Assume that t ∈ B1(Γi ⇒ ∆i) and u ∈ C(Γi ⇒ ∆i). Since Γi−1 ≡ Γi[θ] and ∆i−1 ≡
∆i[θ] hold, we have t[θ] ∈ B1(Γi−1 ⇒ ∆i−1) and u[θ] ∈ C(Γi−1 ⇒ ∆i−1). By the induction
hypothesis (1) , we have t[θ] 6∼Γi−1 u[θ]. By Lemma 3.6 (2), we have t 6∼Γi u.

(2) Assume that snb ∼=Γi s
mb′ with b, b′ ∈ B1(Γi ⇒ ∆i) for n, m ∈ N. By Lemma 3.6 (1),

snb[θ] ∼=Γi−1 s
mb′[θ]. Since ∆i−1 ≡ ∆i[θ] holds, we have b[θ], b′[θ] ∈ B1(Γi−1 ⇒ ∆i−1). By the

induction hypothesis (2), we have n = m.
Case 3. The case (= La).
Let u1 = u2 be the principal formula of the rule. There exist Γ and ∆ such that

Γi−1 ≡ (Γ[v1 := u1, v2 := u2], u1 = u2),

∆i−1 ≡ (∆[v1 := u1, v2 := u2], u1 = u2),

Γi ≡ (Γ[v1 := u2, v2 := u1], u1 = u2), and
∆i ≡ (∆[v1 := u2, v2 := u1], u1 = u2).

(1) Assume that t ∈ B1(Γi ⇒ ∆i) and u ∈ C(Γi ⇒ ∆i). From the definition of Γi and
∆i, there exist terms t̂, û such that t ≡ t̂[v1 := u2, v2 := u1] and u ≡ û[v1 := u2, v2 := u1].
Then, t̂[v1 := u1, v2 := u2] ∈ B1(Γi−1 ⇒ ∆i−1) and û[v1 := u1, v2 := u2] ∈ C(Γi−1 ⇒ ∆i−1).
By the induction hypothesis (1), we have t̂[v1 := u1, v2 := u2] 6∼Γi−1 û[v1 := u1, v2 := u2]. By
Lemma 3.7 (2), we have t̂[v1 := u2, v2 := u1] 6∼Γi û[v1 := u2, v2 := u1]. Thus, t 6∼Γi u.

(2) Assume that snb ∼=Γi s
mb′ with b, b′ ∈ B1(Γi ⇒ ∆i) for n, m ∈ N. From the defini-

tion of Γi and ∆i, there exist terms b̂, b̂′ ∈ ∆ such that b ≡ snb̂[v1 := u2, v2 := u1] and b′ ≡
smb̂′[v1 := u2, v2 := u1]. By Lemma 3.7 (1), snb̂[v1 := u1, v2 := u2] ∼=Γi−1 s

mb̂′[v1 := u1, v2 := u2].
From the definition of Γi−1 and ∆i−1, b̂[v1 := u1, v2 := u2], b̂′[v1 := u1, v2 := u2] ∈ B1(Γi−1 ⇒ ∆i−1).
By the induction hypothesis (2), we have n = m.

Case 4. The case (Case Add2) with the right assumption Γi ⇒ ∆i.
Let Add2

(
a, b̂, c

)
be the principal formula of the rule. There exists Π such that Γi−1 ≡(

Π,Add2

(
a, b̂, c

))
and Γi ≡

(
Π, a = sx, b̂ = y, c = z,Add2(x, sy, z)

)
for fresh variables x, y,

z.
(1) Assume that t ∈ B1(Γi ⇒ ∆i) and u ∈ C(Γi ⇒ ∆i). Assume that t ∼Γi u for contra-

diction. Define û as c if u ≡ z and u otherwise. Since t ∼Γi u holds, we have t ∼Γi û. By
Lemma 3.9, we have t ∼Γi−1 û. Since t ∈ B1(Γi−1 ⇒ ∆i−1) and û ∈ C(Γi−1 ⇒ ∆i−1) hold,
this contradicts the induction hypothesis (1).

(2) Assume that snb ∼=Γi s
mb′ with b, b′ ∈ B1(Γi ⇒ ∆i) for n, m ∈ N. By Lemma 3.9,

snb ∼=Γi−1 s
mb′. Since ∆i−1 ≡ ∆i holds, we have b, b′ ∈ B1(Γi−1 ⇒ ∆i−1). By the induction

hypothesis (2), we have n = m.
Case 5. The case (Case Add2) with the left assumption Γi ⇒ ∆i. In this case, Γi−1 ⇒ ∆i−1

is a switching point.
Let Add2

(
a, b̂, c

)
be the principal formula of the rule. There exists Π such that Γi−1 ≡(

Π,Add2

(
a, b̂, c

))
and Γi ≡

(
Π, a = 0, b̂ = y, c = y

)
with a fresh variable y.

(1) Assume that t ∈ B1(Γi ⇒ ∆i) and u ∈ C(Γi ⇒ ∆i). Since B1(Γi ⇒ ∆i) = B1(Γi−1 ⇒ ∆i−1)
holds, we have t ∈ B1(Γi−1 ⇒ ∆i−1). By C(Γi ⇒ ∆i) ⊆ C(Γi−1 ⇒ ∆i−1), we have u ∈
C(Γi−1 ⇒ ∆i−1). By the induction hypothesis (1), t 6∼Γi−1 u and t 6∼Γi−1 c. By Lemma 3.11,
t 6∼Γi−1 a and t 6∼Γi−1 0. Since y is fresh, we have t 6∼Γi−1 y. Since Γi−1 ⇒ ∆i−1 is a switching
point, we have t 6∼Γi−1 b̂. By Lemma 3.10, t 6∼Γi u.

(2) Assume that snb ∼=Γi s
mb′ with b, b′ ∈ B1(Γi ⇒ ∆i) for n, m ∈ N to show n = m. By

Lemma 3.11, snb 6∼Γi a and snb 6∼Γi 0. Since Γi−1 ⇒ ∆i−1 is a switching point, we have
snb 6∼Γi−1 b̂. By the induction hypothesis (1), snb 6∼Γi−1 c. Since y is fresh, we have snb 6∼Γi−1

31

3 Counterexample to cut-elimination in first-order logic with inductive definitions

y. By Lemma 3.10, we have snb ∼=Γi−1 s
mb′. Because of B1(Γi ⇒ ∆i) = B1(Γi−1 ⇒ ∆i−1), we

have b, b′ ∈ B1(Γi−1 ⇒ ∆i−1). By the induction hypothesis (2), we have n = m.
Case 6. The case (Add1 R2). Let Add1

(
sa, b̂, sc

)
be the principal formula of the rule.

(1) Assume that t ∈ B1(Γi ⇒ ∆i) and u ∈ C(Γi ⇒ ∆i) and t ∼Γi u for contradiction. Define
û as sc if u ≡ c and u otherwise. Since t ∼Γi u holds, we have t ∼Γi û. Since Γi−1 = Γi holds,
we have t ∼Γi−1 û. Since t ∈ B1(Γi−1 ⇒ ∆i−1) and û ∈ C(Γi−1 ⇒ ∆i−1) hold, this contradicts
the induction hypothesis (1).

(2) Assume that snb ∼=Γi s
mb′ with b, b′ ∈ B1(Γi ⇒ ∆i) for n, m ∈ N. Because Γi−1 = Γi,

we have snb ∼=Γi−1 s
mb′. Since the second argument of a formula with Add1 in ∆i is that in

∆i−1, we have b, b′ ∈ B1(Γi−1 ⇒ ∆i−1). By the induction hypothesis (2), we have n = m.

Lemma 3.18. For an idling path {Γi ⇒ ∆i}0≤i<α and a trace {τk}k≥0 following {Γi ⇒ ∆i}i≥p,
if dk is the index of τk, the following statements holds:

(1) If dk = ⊥, then dk+1 = ⊥.

(2) If the rule with the conclusion Γp+k ⇒ ∆p+k is (Weak) or (Sub), then dk+1 = dk or
dk+1 = ⊥.

(3) If the rule with the conclusion Γp+k ⇒ ∆p+k is (= La)or (Add1 R2), then dk+1 = dk.

(4) Assume the rule with the conclusion Γp+k ⇒ ∆p+k is (Case Add2).

(a) If Γp+k+1 ⇒ ∆p+k+1 is the left assumption of the rule, then dk+1 = dk.

(b) If Γp+k+1 ⇒ ∆p+k+1 is the right assumption of the rule and τk is not a progress
point of the trace, then dk+1 = dk.

(c) If Γp+k+1 ⇒ ∆p+k+1 is the right assumption of the rule and τk is a progress point
of the trace, then dk+1 = dk + 1.

Proof. Let τk ≡ Add2(ak, bk, ck).
(1) It suffices to show that bk+1 6∼Γp+k+1

b′ holds for all Add1(a
′, b′, c′) ∈ ∆p+k+1 if bk 6∼Γp+k

b
holds for all Add1(a, b, c) ∈ ∆p+k. We consider cases according to the rule with the conclusion
Γp+k ⇒ ∆p+k.

Case 1. If the rule is (Weak), we have the statement by Γp+k+1 ⊆ Γp+k and ∆p+k+1 ⊆
∆p+k.

Case 2. If the rule is (Sub), we have the statement by Lemma 3.6 (2).
Case 3. If the rule is (= La), we have the statement by Lemma 3.7 (2).
Case 4. The case (Case Add2) with the right assumption Γp+k+1 ⇒ ∆p+k+1. Let

Add2(a, b, c) be the principal formula of the rule. There exists Π such that Γp+k ≡ (Π,Add2(a, b, c))
and Γp+k+1 ≡ (Π, a = sx, b = y, c = z,Add2(x, sy, z)) for fresh variables x, y, z.

We prove this case by contrapositive. To show bk ∼Γp+k
b′, assume bk+1 ∼Γp+k+1

b′ for some
Add1(a

′, b′, c′) ∈ ∆p+k+1. Define t as b if bk+1 ≡ sy and bk+1 otherwise. Since bk+1 ∼Γp+k+1
b′

holds, we have t ∼Γp+k+1
b′. By Lemma 3.9, t ∼Γp+k

b′. By bk ≡ t, we have bk ∼Γp+k
b′.

Case 5. The case (Case Add2) with the left assumption Γp+k+1 ⇒ ∆p+k+1. In this case,
Γp+k ⇒ ∆p+k is a switching point. Let Add2(a, b, c) be the principal formula of the rule.
There exists Π such that Γp+k ≡ (Π,Add2(a, b, c)) and Γp+k+1 ≡ (Π, a = 0, b = y, c = y) with
a fresh variable y.

Assume bk 6∼Γp+k
b′′ for all Add1(a

′′, b′′, c′′) ∈ ∆p+k. Fix Add1(a
′, b′, c′) ∈ ∆p+k+1 to show

bk+1 6∼Γp+k+1
b′. By bk+1 ≡ bk and ∆p+k ≡ ∆p+k+1, we have bk+1 6∼Γp+k

b′. From Lemma 3.11,
b′ 6∼Γp+k

a and b′ 6∼Γp+k
0. Since y is fresh, we have b′ 6∼Γp+k

y. Since Γp+k ⇒ ∆p+k is

32

3.4 The proof of Theorem 3.1 (2)

a switching point, b′ 6∼Γp+k
b. By Lemma 3.17, Γp+k ⇒ ∆p+k is an index sequent. By

Definition 3.13 and ∆p+k ≡ ∆p+k+1, b′ 6∼Γp+k
c. By Lemma 3.10, bk+1 6∼Γp+k+1

b′.
Case 6. The case (Add1 R2).
In this case, Γp+k is the same as Γp+k+1 and the second argument of a formula with Add2 or

Add1 in Γp+k ⇒ ∆p+k is the same as that in Γp+k+1 ⇒ ∆p+k+1. We thus have the statement.
(2) Let dk = n.

Case 1. The case (Weak).
If bk+1 6∼Γp+k+1

b for all Add1(a, b, c) ∈ ∆p+k+1, then dk+1 = ⊥.
Assume bk+1 ∼Γp+k+1

b for some Add1(a, b, c) ∈ ∆p+k+1. By Definition 3.5, there exist m,
l ∈ N such that smbk+1

∼=Γp+k+1
slb. By Γp+k+1 ⊆ Γp+k, we have smbk+1

∼=Γp+k
slb. Since

bk ≡ bk+1, we have smbk ∼=Γp+k
slb. Since ∆p+k+1 ⊆ ∆p+k holds, we have Add1(a, b, c) ∈ ∆p+k.

By dk = n, we have l −m = n. Thus, dk+1 = n.
Case 2. The case (Sub) with a substitution θ. Note that bk ≡ bk+1[θ].
If bk+1 6∼Γp+k+1

b for all Add1(a, b, c) ∈ ∆p+k+1, then dk+1 = ⊥.
Assume that bk+1 ∼Γp+k+1

b for some Add1(a, b, c) ∈ ∆p+k+1. By Definition 3.5, there
exist m, l ∈ N such that smbk+1

∼=Γp+k+1
slb. By Lemma 3.6 (1), smbk+1[θ] ∼=Γp+k

slb[θ].
Since bk ≡ bk+1[θ] holds, we have smbk ∼=Γp+k

slb[θ]. Since ∆p+k ≡ ∆p+k+1[θ] holds, we have
Add1(a[θ], b[θ], c[θ]) ∈ ∆p+k. By dk = n, we have l −m = n. Thus, dk+1 = n.
(3) Let dk = n.

Case 1. The case (= La)with the principal formula u1 = u2.
Let bk ≡ b[v1 := u1, v2 := u2] and bk+1 ≡ b[v1 := u2, v2 := u1] for variables v1, v2.
By dk = n, there existm, l ∈ N such that smb[v1 := u1, v2 := u2] ∼=Γp+k

slb[v1 := u1, v2 := u2]
for some Add1(a[v1 := u1, v2 := u2], b[v1 := u1, v2 := u2], c[v1 := u1, v2 := u2]) ∈ ∆p+k and l−
m = n. From Lemma 3.7 (1), smb[v1 := u2, v2 := u1] ∼=Γp+k+1

slb[v1 := u2, v2 := u1]. More-
over,
Add1(a[v1 := u2, v2 := u1], b[v1 := u2, v2 := u1], c[v1 := u2, v2 := u1]) ∈ ∆p+k+1. Thus, dk+1 =
l −m = n.

Case 2. The case (Add1 R2).
Since τp+k+1 ≡ τp+k holds, Γp+k is the same as Γp+k+1 and the second argument of a

formula with Add1 in ∆p+k is the same as that in ∆p+k+1, we have dk+1 = dk.
(4) Let dk = n. Let Add2(a, b, c) be the principal formula of the rule (Case Add2) with the
conclusion Γp+k ⇒ ∆p+k.
(4)(a) The case where Γp+k+1 ⇒ ∆p+k+1 is the left assumption of the rule. In this case,
Γp+k ⇒ ∆p+k is a switching point.

There exists Π such that Γp+k ≡ (Π,Add2(a, b, c)) and Γp+k+1 ≡ (Π, a = 0, b = y, c = y)
with a fresh variable y. By dk = n, there exist m, l ∈ N such that smbk ∼=Γp+k

slb′ for
some Add1(a

′, b′, c′) ∈ ∆p+k and l − m = n. Since the set of formulas with = in Γp+k+1

includes the set of formulas with = in Γp+k, we have smbk ∼=Γp+k+1
slb′. By τk+1 ≡ τk, we

have smbk+1
∼=Γp+k+1

slb′. Since ∆p+k ≡ ∆p+k+1, we have Add1(a
′, b′, c′) ∈ ∆p+k+1. Thus,

dk+1 = l −m = n.
(4)(b) The case where Γp+k+1 ⇒ ∆p+k+1 is the right assumption of the rule and τk is not a
progress point of the trace.

Since τk is not a progress point of the trace, we have τk+1 ≡ τk. By dk = n, there exist
m, l ∈ N such that smbk ∼=Γp+k

slb′ for some Add1(a
′, b′, c′) ∈ ∆p+k and l − m = n. Since

the set of formulas with = in Γp+k includes the set of formulas with = in Γp+k+1, we have
smbk ∼=Γp+k+1

slb′. By τk+1 ≡ τk, we have smbk+1
∼=Γp+k+1

slb′. Since ∆p+k ≡ ∆p+k+1 holds,
we have Add1(a

′, b′, c′) ∈ ∆p+k+1. Thus, dk+1 = l −m = n.
(4)(c) The case where Γp+k+1 ⇒ ∆p+k+1 is the right assumption of the rule and τk is a
progress point of the trace.

33

3 Counterexample to cut-elimination in first-order logic with inductive definitions

There exists Π such that Γp+k ≡ (Π,Add2(a, b, c)) and Γp+k+1 ≡ (Π, a = sx, b = y, c = z,Add2(x, sy, z))
for fresh variables x, y, z. Since τk is a progress point of the trace, we have τk ≡ Add2(a, b, c)
and τk+1 ≡ Add2(x, sy, z). Therefore, bk ≡ b and bk+1 ≡ sy. By dk = n, there exist m,
l ∈ N such that smb ∼=Γp+k

slb′ for some Add1(a
′, b′, c′) ∈ ∆p+k and l − m = n. Since

the set of formulas with = in Γp+k+1 includes the set of formulas with = in Γp+k, we have
smb ∼=Γp+k+1

slb′. By b ∼=Γp+k+1
y, we have smy ∼=Γp+k+1

slb′. Hence, smbk+1
∼=Γp+k+1

sl+1b′.
Thus, dk+1 = l + 1−m = n+ 1.

Lemma 3.19. For an infinite idling path {Γi ⇒ ∆i}i≥0 in T
(
D1

cf , C1
cf

)
, there exists l ∈ N

such that the following conditions hold:

(1) Γl ⇒ ∆l is a switching point in T
(
D1

cf , C1
cf

)
, and

(2) Γl+1 ⇒ ∆l+1 is the right assumption of the rule with the conclusion Γl ⇒ ∆l.

Proof. Since {Γi ⇒ ∆i}i≥0 is an infinite path and T
(
D1

cf , C1
cf

)
satisfies the global trace condi-

tion, there exists an infinitely progressing trace following a tail of the path. Let {τk}k≥0 be an
infinitely progressing trace following {Γi ⇒ ∆i}i≥p. Let dk be the index of τk in Γp+k ⇒ ∆p+k.

We show that there exists l ∈ N such that dl = ⊥. The set {dk | k ≥ 0} is finite since the
set of sequents in {Γi ⇒ ∆i}i≥0 is finite and we have a unique index of an atomic formula with
Add2 in Γi ⇒ ∆i. Since {τk}k≥0 is an infinitely progressing trace following {Γi ⇒ ∆i}i≥p,
if there does not exist k′ ∈ N such that dk′ = ⊥, Lemma 3.18 implies that {dk | k ≥ 0} is
infinite. Thus, there exists k′ ∈ N such that dk′ = ⊥.

Since {τk}k≥0 is an infinitely progressing trace following {Γi ⇒ ∆i}i≥p, there exists a
progress point τl with l > k′. By Lemma 3.18, dl = ⊥. Since τk is a progress point,
Γp+k ⇒ ∆p+k is a switching point and Γp+k+1 ⇒ ∆p+k+1 is the right assumption of the
rule.

Definition 3.20 (Rightmost path). For a derivation tree D and a node σ in D , we define
the rightmost path from the node σ as the path {σi}0≤i<α satisfying the following conditions:

(1) The node σ0 is σ.

(2) If σi is the conclusion of (Case Add2), the node σi+1 is the right assumption of the rule.

(3) If σi is the conclusion of the rules (Weak), (Sub), (= La), or (Add1 R2), the node σi+1

is the assumption of the rule.

Lemma 3.21. The rightmost path from an index sequent in T
(
D1

cf , C1
cf

)
is infinite.

Proof. By Definition 3.16, the rightmost path from an index sequent in T
(
D1

cf , C1
cf

)
is an idling

path. By Lemma 3.17, every sequent on the path is an index sequent. By Definition 3.13,
(Add1 R1) does not occur in the path. Thus, the path is infinite.

Remark. For an infinite path in T
(
D1

cf , C1
cf

)
, the corresponding path in D1

cf has a bud.
We have proved all lemmata for Theorem 3.1 (2).
We show that there exists a sequence {σ̃i}i∈N of switching points in D1

cf which satisfies the
following conditions:

(i) The height of σ̃i is greater than the height of σ̃i−1 in D1
cf for i > 0.

(ii) For any node σ on the path from the root to σ̃i in D1
cf excluding σ̃i, σ is a switching

point if and only if the child of σ on the path is the left assumption of the rule (Case
Add2).

34

3.5 Discussion

We construct {σ̃i}i∈N and show (i) and (ii) by induction on i.
We consider the case i = 0.
The rightmost path in T

(
D1

cf , C1
cf

)
from the root is an infinite idling path since Add2(x, y, z) ⇒

Add1(x, y, z) is an index sequent and there exists no node which is the left assumption of (Case
Add2) on the path. By Lemma 3.19, there exists a switching point on the path. Hence, there
exists a switching point on the rightmost path from the root in D1

cf . Let σ̃0 be the switching
point of the smallest height among such switching points. (i) and (ii) follow immediately for
σ̃0.

We consider the case i > 0.
Let α be the left assumption of the rule with the conclusion σ̃i−1. Because of (ii), the path

from the root to σ̃i−1 is also an idling path. Since σ̃i−1 is a switching point, the path from the
root to α is also an idling path. By Lemma 3.17, α is an index sequent. By Lemma 3.21, the
rightmost path from α in T

(
D1

cf , C1
cf

)
is infinite. Therefore, there is a bud on the rightmost

path in D1
cf from α. Let µ be the bud.

Let π1 be the path from the root to µ in D1
cf and π2 be the path from C1

cf(b) to µ in D1
cf .

We define the path π in T
(
D1

cf , C1
cf

)
as π1π2ω. Let {σi}0≤i be π. Because of (ii), π is an idling

path. By Lemma 3.19, there is a switching point σl and σl+1 is the right assumption of the
rule. Hence, there is a switching point on π1π2 in D1

cf such that its child on the path is the
right assumption of the rule. Define σ̃i as the switching point of the smallest height among
such switching points.

We show σ̃i satisfies the conditions (i) and (ii).
(i) By the definition of σ̃i, σ̃i is on the path from the root to µ. By the condition (ii), σ̃i is

not on the path from the root to σ̃i−1. Hence, the height of σ̃i is greater than that of σ̃i−1.
(ii) Let σ be a node on the path from the root to σ̃i excluding σ̃i. We can assume σ is on

the path from σ̃i−1 to σ̃i excluding σ̃i by the induction hypothesis.
The “only if” part: Assume that σ is a switching point. By the definition of σ̃i, we see that

σ is σ̃i−1. The child of σ̃i−1 on the path from the root to σ̃i is α, which is the left assumption
of the rule.

The “if” part: Assume that the child of σ on the path is the left assumption of the rule.
Since there is not the left assumption of a rule on the path from α to σ̃i, we see that σ is σ̃i−1.
Thus, σ is a switching point.

We complete the construction and the proof of the properties.
Because of (i), σ̃0, σ̃1, . . . are all distinct in D1

cf . Hence, {σ̃i | i ∈ N} is infinite. This is a
contradiction since the set of nodes in D1

cf is finite. Thus, we have Theorem 3.1 (2).

3.5 Discussion

We discuss related work and why the cut-elimination property in the cyclic proof systems
does not hold.

3.5.1 Related work

Kimura et al. [12] gave a counterexample to cut-elimination in cyclic proofs for separation logic.
They also suggested that their proof technique cannot be applied to show a counterexample
to cut-elimination in a cyclic proof system with contraction and weakening rules [12].

We discuss why we cannot apply the proof technique. In order to show that their coun-
terexample is not provable without a cut rule, they have assumed that there exists a cut-free
proof of it. Then, they have proven that the rightmost path from the root has no infinitely
progressing trace following a tail of the path if the path has a companion.

35

3 Counterexample to cut-elimination in first-order logic with inductive definitions

(♥) Add2(x1, sy1, z1),Add2(x, y, z) ⇒ Add1(x, y, z)

Add2(x2, sy2, z2),Add2(x, y, z) ⇒ Add1(x, y, z)

x1 = sx2, sy1 = y2, z1 = z2,Add2(x2, sy2, z2),Add2(x, y, z) ⇒ Add1(x, y, z)
(Case Add2)

(♥) Add2(x1, sy1, z1),Add2(x, y, z) ⇒ Add1(x, y, z)

x = sx1, y = y1, z = z1,Add2(x1, sy1, z1),Add2(x, y, z) ⇒ Add1(x, y, z) (Case Add2)
Add2(x, y, z) ⇒ Add1(x, y, z)

Figure 3.5 An example to which the technique in [12] cannot be applied

In contrast, the rightmost path from the root in a cut-free CLKIDω pre-proof of Add2(x, y, z) ⇒
Add1(x, y, z) might have a companion and an infinitely progressing trace following a tail of
the path that might use contraction and weakening rules. For example, pay attention to
the rightmost path from the root in Figure 3.5. It has both a companion and an infinitely
progressing trace following a tail of the path. Thus, we cannot use their proof technique.

Das [10] showed that the cut-elimination property of Cyclic Arithmetic, a cyclic proof
system for Peano Arithmetic, does not hold, which is the conclusion of Gödel’s incompleteness
theorem. It seems to be unable to use providing a counterexample to cut-elimination in CLKIDω

since CLKIDω does not include arithmetic. Nevertheless, since Peano Arithmetic theorems can
be shown in CLKIDω by adding some finitely many axioms, the counterexample in Cyclic
Arithmetic might be transformed into the one in CLKIDω.

Saotome, Nakazawa, and Kimura [15] provided a counterexample to cut-elimination in the
cyclic proof system for bunched logic with inductive definitions. It is extraordinary that the
counterexample includes only nullary predicates. Their proof technique, called proof unrolling,
may be used to show that our counterexample is not provable, but this topic is reserved for
future work.

3.5.2 The cut-elimination property in cyclic proof systems
Why does not the cut-elimination property hold in the cyclic proof systems? The reason is
not yet fully understood, but we will discuss it briefly. In common, the proofs in [12, 15]
and this thesis have used the finiteness of sequents occurring in the proof figure. The more
important fact is that the cut-elimination property of LKIDω, the infinitary proof system,
holds [6]. These facts suggest that the cut-elimination property does not hold in the cyclic
proof systems because of the finiteness. This observation is interesting to compare with the
following fact: the cut-elimination property of a sequent calculus for Peano Arithmetic does
not hold, but the system obtained from the system by replacing the schema for induction
with the ω-rule whose assumptions are infinitely many, can eliminate the cut-rule [14]. The
finiteness also seems to relate to the cut-elimination property of first-order arithmetic.

36

4 The cut-elimination property and the arity
of predicates

This chapter discusses the cut-elimination property in cyclic proof systems and the arity of
predicates.

In Chapter 3, we gave the counterexample to cut-elimination of CLKIDω with ternary pred-
icates. Is there any simpler counterexample? If there is, the counterexample may suggest
something to find out why the cut-elimination property in CLKIDω does not hold.

Actually, there is a counterexample with predicates whose arity is less than three. In this
chapter, we give the counterexample with only unary predicates. By the counterexample we
give in this chapter, we see that we cannot eliminate the cut rule in first-order logic with
inductive definitions if we restrict predicates in the language to unary predicates and =.

Section 4.1 provides a counterexample to cut-elimination with only unary predicates. Then,
we discuss the cut-elimination property in cyclic proof systems and the arity of predicates in
Section 4.2.

4.1 Counterexample to cut-elimination with only unary predicates
In this section, we prove the following theorem.

Theorem 4.1. Let f, l be a constant symbol, s be a unary function symbol. Let FfT and
TlF be unary inductive predicates with the following productions:

FfT(f)
, FfT(x)

FfT(sx)
,

TlF(l)
, TlF(sx)

TlF(x)
.

(1) TlF(f) ⇒ FfT(l) is provable in CLKIDω.

(2) TlF(f) ⇒ FfT(l) is not cut-free provable in CLKIDω.

This theorem means that TlF(f) ⇒ FfT(l) is a counterexample with only unary inductive
predicates to cut-elimination in CLKIDω.

There are the inference rules for TlF and FfT in Figure 4.1.
A CLKIDω proof of TlF(f) ⇒ FfT(l) is the derivation tree given in Figure 4.2, where (†)

indicates the pairing of the companion with the bud and the underlined formulas denotes the
infinitely progressing trace for some tails of any infinite path (some applying rules and some
labels of rules are omitted for limited space). Thus, Theorem 4.1 (1) is correct.

In the remainder of this section, we prove Theorem 4.1 (2) by the way similar to Theorem 3.1
(2).

Throughout the remainder of this section, we assume there exists a cut-free CLKIDω proof of
TlF(f) ⇒ FfT(l), for contradiction. By Proposition 3.3, there exists a cut-free cycle-normal
CLKIDωa proof of TlF(f) ⇒ FfT(l). We write

(
D2

cf , C2
cf

)
for a cut-free cycle-normal CLKIDωa

proof of TlF(f) ⇒ FfT(l).

37

4 The cut-elimination property and the arity of predicates

(FfT R1)
Γ ⇒ ∆,FfT(f)

Γ ⇒ ∆,FfT(t)
(FfT R2)

Γ ⇒ ∆,FfT(st)

Γ, t = l ⇒ ∆ Γ, t = sx,TlF(x) ⇒ ∆
(Case FfT)

Γ,TlF(t) ⇒ ∆

(x /∈ FV(Γ ∪∆ ∪ {TlF(t)}))

(FfT R1)
Γ ⇒ ∆,TlF(l)

Γ ⇒ ∆,FfT(st)
(FfT R2)

Γ ⇒ ∆,FfT(t)

Γ, t = l ⇒ ∆ Γ, t = x,TlF(sx) ⇒ ∆
(Case TlF)

Γ,TlF(t) ⇒ ∆

(x /∈ FV(Γ ∪∆ ∪ {TlF(t)}))

Figure 4.1 The rules for TlF and FfT

⇒ FfT(f)

f = l ⇒ FfT(l)

⇒ FfT(f)

⇒ FfT(sf)

f = x ⇒ FfT(sx)

FfT(l) ⇒ FfT(l)

sx = l,FfT(sx) ⇒ FfT(l)

FfT(sx) ⇒ FfT(sx)

FfT(sx) ⇒ FfT(ssx)

(†) TlF(sx),FfT(sx) ⇒ FfT(l)

TlF(ssx),FfT(ssx) ⇒ FfT(l)
(Cut)

TlF(ssx),FfT(sx) ⇒ FfT(l)

sx = y,TlF(sy),FfT(sx) ⇒ FfT(l)
(Case TlF)

(†) TlF(sx),FfT(sx) ⇒ FfT(l)

f = x,TlF(sx),FfT(sx) ⇒ FfT(l)
(Cut)

f = x,TlF(sx) ⇒ FfT(l)
(Case TlF)

TlF(f) ⇒ FfT(l)

Figure 4.2 The CLKIDω proof of TlF(f) ⇒ FfT(l)

Remark. Let Γ ⇒ ∆ be a sequent in D2
cf . By induction on the height of sequents in D2

cf , we
can easily show the following statements:

(1) Γ consists of only atomic formulas with =, TlF.

(2) ∆ consists of only atomic formulas with FfT.

(3) A term in Γ and ∆ is of the form snf, snl, or snx with some variable x.

(4) The possible rules in
(
D2

cf , C2
cf

)
are (Weak), (Sub), (= La), (FfT R1), (FfT R2), and

(Case TlF).

Without loss of generality, we can assume terms are of the form snf, snl, or snx with some
variable x throughout the remainder of this section.

We define an index, which is a concept similar to Definition 3.12. ∼=Γ and ∼Γ in the following
definition is the same relation as Definition 3.4 and Definition 3.5, respectively.

Definition 4.2 (Index). For a finite set Γ and TlF(t) ∈ Γ, we define the index of TlF(t) in
Γ as follows:

(1) If t 6∼Γ f, then the index of TlF(t) in Γ is ⊥, and

(2) if there uniquely exists m − n such that n, m ∈ N, and snt ∼=Γ smf, then the index of
TlF(t) in Γ is m − n (namely the uniqueness means that sn

′
t ∼=Γ sm

′
f for n, m ∈ N

implies m− n = m′ − n′).

38

4.1 Counterexample to cut-elimination with only unary predicates

Note that if there exists n0, m0, n1, m1 ∈ N such that sn0t ∼=Γ sm0f, sn1t ∼=Γ sm1f and
m0 − n0 6= m1 − n1, then the index of TlF(t) in Γ is undefined.

Definition 4.3 (Index sequent). The sequent Γ ⇒ ∆ is said to be an index sequent if the
following conditions hold:

(1) f 6∼Γ l,

(2) t 6∼Γ f for all FfT(t) ∈ ∆, and

(3) if snf ∼=Γ smf, then n = m.

An index sequent does not occur as a conclusion of (FfT R1) by the first and second
conditions. The third condition guarantees the existence of an index, as shown in the following
lemma.

Lemma 4.4. If Γ ⇒ ∆ is an index sequent, the index of all TlF(t) in Γ is defined.

Proof. Let TlF(t) ∈ Γ. If t 6∼Γ f, then the index is ⊥.
Assume t ∼Γ f. By Definition 3.5, there exist n0 and m0 such that sn0t ∼=Γ sm0f. To

show the uniqueness, assume sn1t ∼=Γ sm1f for n1 and m1 . Since sn0+n1t ∼=Γ sm0+n1f and
sn1+n0t ∼=Γ sm1+n0f, we have sm0+n1f ∼=Γ sm1+n0f. From (3) of Definition 4.3, m0 + n1 =
m1 + n0. Thus, m0 − n0 = m1 − n1.

Definition 4.5 (Switching point). A node σ in a derivation tree is called a switching point if
the rule with the conclusion σ is (Case TlF) and the index of the principal formula for the
rule in the conclusion is ⊥.

We call the assumption of (Case TlF) whose form is Γ, t = x,TlF(sx) ⇒ ∆ the right
assumption of the rule. The other assumption is called the left assumption of the rule.

Definition 4.6 (Idling path). A path {Γi ⇒ ∆i}0≤i<α in T
(
D2

cf , C2
cf

)
with some α ∈ N∪{ω}

is said to be an idling path if the following conditions hold:

(1) Γ0 ⇒ ∆0 is an index sequent, and

(2) if the rule for Γi ⇒ ∆i is (Case TlF) and Γi+1 ⇒ ∆i+1 is the left assumption of the
rule, then Γi ⇒ ∆i is a switching point.

The following lemma corresponds to Lemma 3.17.

Lemma 4.7. Every sequent in an idling path is an index sequent.

Proof. Let {Γi ⇒ ∆i}0≤i<α be an idling path. We prove the statement by the induction on i.
For i = 0, Γ0 ⇒ ∆0 is an index sequent by Definition 4.6.
For i > 0, we consider cases according to the rule with the conclusion Γi−1 ⇒ ∆i−1.
Case 1. The case (Weak).
(1) By the induction hypothesis (1), we have f 6∼Γi−1 l. By Γi ⊆ Γi−1, we have f 6∼Γi l.
(2) Let FfT(t) ∈ ∆i. By ∆i ⊆ ∆i−1, we have FfT(t) ∈ ∆i−1. By the induction hypothesis

(2), t 6∼Γi−1 f. By Γi ⊆ Γi−1, we have t 6∼Γi f.
(3) Assume snf ∼=Γi smf. By Γi ⊆ Γi−1, we have snf ∼=Γi−1 smf. By the induction

hypothesis (3), n = m.
Case 2. The case (Sub) with a substitution θ.
(1) By the induction hypothesis (1), we have f 6∼Γi−1 l. By Lemma 3.6 (2), we have f 6∼Γi l.
(2) Let FfT(t) ∈ ∆i. By ∆i−1 ≡ ∆i[θ], FfT(t[θ]) ∈ ∆i−1. By the induction hypothesis (2),

t[θ] 6∼Γi−1 f. By Lemma 3.6 (2), t 6∼Γi f.

39

4 The cut-elimination property and the arity of predicates

(3) Assume snf ∼=Γi smf. By Lemma 3.6 (1), we have snf ∼=Γi−1 smf By the induction
hypothesis (3), n = m.

Case 3. The case (= La).
Let u1 = u2 be the principal formula of the rule. There exists Γ and ∆ such that

Γi−1 ≡ (Γ[v1 := u1, v2 := u2], u1 = u2),

∆i−1 ≡ (∆[v1 := u1, v2 := u2], u1 = u2),

Γi ≡ (Γ[v1 := u2, v2 := u1], u1 = u2), and
∆i ≡ (∆[v1 := u2, v2 := u1], u1 = u2).

(1) By the induction hypothesis (1), we have f 6∼Γi−1 l. By Lemma 3.7 (2), we have f 6∼Γi l.
(2) Let FfT(t) ∈ ∆i. By the definition of ∆, there exists a term t̂ such that t ≡

t̂[v1 := u2, v2 := u1]. Then, FfT
(
t̂[v1 := u1, v2 := u2]

)
∈ ∆i−1. By the induction hypothe-

sis (2), t̂[v1 := u1, v2 := u2] 6∼Γi−1 f. By Lemma 3.7 (2), t̂[v1 := u2, v2 := u1] 6∼Γi f. Thus,
t 6∼Γi f.

(3) Assume snf ∼=Γi smf. By Lemma 3.7 (1), we have snf ∼=Γi−1 smf By the induction
hypothesis (3), n = m.

Case 4. The case (Case TlF) with the right assumption Γi ⇒ ∆i.
Let TlF(t) be the principal formula of the rule. There exists Π such that Γi−1 ≡ (Π,TlF(t))

and Γi ≡ (Π, t = x,TlF(sx)) for a fresh variable x.
(1) If f ∼Γi l, then we have f ∼Γi−1 l by Lemma 3.9. It contradicts the induction hypothesis

(1). Thus, f 6∼Γi l.
(2) Let FfT(t′) ∈ ∆i. If t′ ∼Γi f, then we have t′ ∼Γi−1 f by Lemma 3.9. It contradicts the

induction hypothesis. Thus, t′ 6∼Γi f.
(3) Assume snf ∼=Γi s

mf. By Lemma 3.9, snf ∼=Γi−1 smf. By the induction hypothesis (3),
n = m.

Case 5. The case (Case TlF) with the left assumption Γi ⇒ ∆i. In this case, Γi−1 ⇒ ∆i−1

is a switching point.
Let TlF(t) be the principal formula of the rule. There exists Π such that Γi−1 ≡ (Π,TlF(t))

and Γi ≡ (Π, t = l).
Since Γi−1 ⇒ ∆i−1 is a switching point, we have t 6∼Γi−1 f. By the induction hypothesis

(1), f 6∼Γi−1 l.
(1) Assume f ∼Γi l for contradiction. By t 6∼Γi−1 f, f 6∼Γi−1 l and Lemma 3.10, we have

f ∼Γi−1 l. It contradicts the induction hypothesis (1). Thus, f 6∼Γi l.
(2) Let FfT(t′) ∈ ∆i. Assume t′ ∼Γi f for contradiction. By t 6∼Γi−1 f, f 6∼Γi−1 l and

Lemma 3.10, we have t′ ∼Γi−1 f. It contradicts the induction hypothesis (2). Thus, t′ 6∼Γi f.
(3) Assume snf ∼=Γi s

mf. By t 6∼Γi−1 f, f 6∼Γi−1 l and Lemma 3.10, we have snf ∼=Γi−1 smf.
By the induction hypothesis (3), n = m.

Case 6. The case (FfT R2). Let FfT(st) be the principal formula of the rule.
(1) By the induction hypothesis (1), we have f 6∼Γi−1 l. Since Γi−1 ≡ Γi, we have f 6∼Γi l.
(2) Let FfT(t′) ∈ ∆i. Define t̂ as st if t′ ≡ t and t′ otherwise. By the induction hypothesis

(2), we have t̂ 6∼Γi f. Since Γi−1 ≡ Γi, we have t̂ 6∼Γi f. Then, t′ 6∼Γi f.
(3) Assume snf ∼=Γi smf. Since Γi−1 ≡ Γi, we have snf ∼=Γi−1 smf. By the induction

hypothesis (3), n = m.

The following lemma corresponds to Lemma 3.18.

Lemma 4.8. For an idling path {Γi ⇒ ∆i}0≤i<α and a trace {τk}k≥0 following {Γi ⇒ ∆i}i≥p,
if dk is the index of τk, the following statements holds:

(1) If dk = ⊥, then dk+1 = ⊥.

40

4.1 Counterexample to cut-elimination with only unary predicates

(2) If the rule with the conclusion Γp+k ⇒ ∆p+k is (Weak) or (Sub), then dk+1 = dk or
dk+1 = ⊥.

(3) If the rule with the conclusion Γp+k ⇒ ∆p+k is (= La) or (FfT R2), then dk+1 = dk.

(4) Assume the rule with the conclusion Γp+k ⇒ ∆p+k is (Case TlF).

(a) If Γp+k+1 ⇒ ∆p+k+1 is the left assumption of the rule, then dk+1 = dk.

(b) If Γp+k+1 ⇒ ∆p+k+1 is the right assumption of the rule and τk is not a progress
point of the trace, then dk+1 = dk.

(c) If Γp+k+1 ⇒ ∆p+k+1 is the right assumption of the rule and τk is a progress point
of the trace, then dk+1 = dk + 1.

Proof. Let τk ≡ TlF(tk).
(1) It suffices to show that tk+1 6∼Γp+k+1

f holds if tk 6∼Γp+k
f. We consider cases according

to the rule with the conclusion Γp+k ⇒ ∆p+k.
Case 1. If the rule is (Weak), we have the statement by Γp+k+1 ⊆ Γp+k.
Case 2. If the rule is (Sub), we have the statement by Lemma 3.6 (2).
Case 3. If the rule is (= La), then we have the statement by Lemma 3.7 (2).
Case 4. The case (Case TlF) with the right assumption Γp+k+1 ⇒ ∆p+k+1.
Let TlF(t) be the principal formula of the rule. There exists Π such that Γp+k ≡ (Π,TlF(t))

and Γp+k+1 ≡ (Π, t = x,TlF(sx)) with a fresh variable x.
We prove this case by contrapositive. To show tk ∼Γp+k

f, assume tk+1 ∼Γp+k+1
f. Define

t̂ as t if tk+1 ≡ sx and tk+1 otherwise. Since tk+1 ∼Γp+k+1
f holds, we have t̂ ∼Γp+k+1

f. By
Lemma 3.9, t̂ ∼Γp+k

f. By tk ≡ t̂, we have tk ∼Γp+k
f.

Case 5. The case (Case TlF) with the left assumption Γp+k+1 ⇒ ∆p+k+1. In this case,
Γp+k ⇒ ∆p+k is a switching point.

Let TlF(t) be the principal formula of the rule. There exists Π such that Γp+k ≡ (Π,TlF(t))
and Γp+k+1 ≡ (Π, t = l).

We prove this case by contrapositive. To show tk ∼Γp+k
f, assume tk+1 ∼Γp+k+1

f. Since
Γp+k ⇒ ∆p+k is a switching point, we have t 6∼Γp+k

f. Since Γp+k ⇒ ∆p+k is an index sequent,
we have f 6∼Γp+k

l. By Lemma 3.10, we see that tk ∼Γp+k
f.

Case 6. The case (FfT R2).
In this case, since Γp+k is the same as Γp+k+1, we have the statement.

(2) Let dk = n.
Case 1. The case (Weak).
If tk+1 6∼Γp+k+1

f, then dk+1 = ⊥.
Assume tk+1 ∼Γp+k+1

f. By Definition 3.5, there exist m, l ∈ N such that sm0tk+1
∼=Γp+k+1

sm1f. By Γp+k+1 ⊆ Γp+k, we have sm0tk+1
∼=Γp+k

sm1f. Since tk ≡ tk+1, we have sm0tk ∼=Γp+k

sm1f. By dk = n, we have m1 −m0 = n. Thus, dk+1 = n.
Case 2. The case (Sub) with a substitution θ. Note that tk ≡ tk+1[θ].
If tk+1 6∼Γp+k+1

f, then dk+1 = ⊥.
Assume that tk+1 ∼Γp+k+1

f. By Definition 3.5, there exist m0, m1 ∈ N such that
sm0tk+1

∼=Γp+k+1
sm1f. By Lemma 3.6 (1), sm0 tk+1[θ] ∼=Γp+k

sm1f. Since tk ≡ tk+1[θ] holds,
we have sm0tk ∼=Γp+k

sm1f. By dk = n, we have m1 −m0 = n. Thus, dk+1 = n.
(3) Let dk = n.

Case 1. The case (= La)with the principal formula u1 = u2.
In this case, there exists a term t such that tk ≡ t[v1 := u1, v2 := u2] and tk+1 ≡ t[v1 := u2, v2 := u1]

for variables v1, v2.

41

4 The cut-elimination property and the arity of predicates

By dk = n, there exist m0, m1 ∈ N such that sm0 t[v1 := u1, v2 := u2] ∼=Γp+k
sm1f and

m1 − m0 = n. From Lemma 3.7 (1), sm0 t[v1 := u2, v2 := u1] ∼=Γp+k+1
sm1f. Thus, dk+1 =

m1 −m0 = n.
Case 2. The case (FfT R2).
Since τp+k+1 ≡ τp+k holds and Γp+k is the same as Γp+k+1, we have dk+1 = dk.

(4) Let dk = n. Let TlF(t) be the principal formula of the rule (Case TlF) with the
conclusion Γp+k ⇒ ∆p+k.
(4)(a) The case where Γp+k+1 ⇒ ∆p+k+1 is the left assumption of the rule. In this case,
Γp+k ⇒ ∆p+k is a switching point. There exists Π such that Γp+k ≡ (Π,TlF(t)) and Γp+k+1 ≡
(Π, t = l).

By dk = n, there exist m0, m1 ∈ N such that sm0tk ∼=Γp+k
sm1f and m1 −m0 = n.

Since the set of formulas with = in Γp+k+1 includes the set of formulas with = in Γp+k,
we have sm0tk ∼=Γp+k+1

sm1f. By τk ≡ τk+1, we have sm0tk+1
∼=Γp+k+1

sm1f. Thus, dk+1 =
m1 −m0 = n.
(4)(b) The case where Γp+k+1 ⇒ ∆p+k+1 is the right assumption of the rule and τk is not a
progress point of the trace.

Since τk is not a progress point of the trace, we have τk+1 ≡ τk. By dk = n, there exist m0,
m1 ∈ N such that sm0tk ∼=Γp+k

sm1f and m1 −m0 = n.
Since the set of formulas with = in Γp+k includes the set of formulas with = in Γp+k+1,

we have sm0tk ∼=Γp+k+1
sm1f. By τk+1 ≡ τk, we have sm0tk+1

∼=Γp+k+1
sm1f. Thus, dk+1 =

m1 −m0 = n.
(4)(c) The case where Γp+k+1 ⇒ ∆p+k+1 is the right assumption of the rule and τk is a
progress point of the trace.

There exists Π such that Γp+k ≡ (Π,TlF(t)) and Γp+k+1 ≡ (Π, f = x,TlF(sx)) for a fresh
variable x. Since τk is a progress point of the trace, we have τk ≡ TlF(t) and τk+1 ≡ TlF(sx).
Therefore, tk ≡ t and tk+1 ≡ sx. By dk = n, there exist m0, m1 ∈ N such that sm0t ∼=Γp+k

sm1f

and m1 −m0 = n. Since the set of formulas with = in Γp+k+1 includes the set of formulas
with = in Γp+k, we have sm0t ∼=Γp+k+1

sm1f. By f ∼=Γp+k+1
x, we have sm0x ∼=Γp+k+1

sm1f.
Hence, smsx ∼=Γp+k+1

sm1sf. Therefore, smtk+1
∼=Γp+k+1

sm1+1f. Thus, dk+1 = m1 +1−m0 =
n+ 1.

The following lemma corresponds to Lemma 3.19.

Lemma 4.9. For an infinite idling path {Γi ⇒ ∆i}i≥0 in T
(
D2

cf , C2
cf

)
, there exists l ∈ N such

that the following conditions hold:

(1) Γl ⇒ ∆l is a switching point in T
(
D2

cf , C2
cf

)
, and

(2) Γl+1 ⇒ ∆l+1 is the right assumption of the rule with the conclusion Γl ⇒ ∆l.

Proof. We have the statement in the same way as proving Lemma 3.19.

Definition 4.10 (Rightmost path). For a derivation tree D and a node σ in D , we define
the rightmost path from the node σ as the path {σi}0≤i<α satisfying the following conditions:

(1) The node σ0 is σ.

(2) If σi is the conclusion of (Case TlF), the node σi+1 is the right assumption of the rule.

(3) If σi is the conclusion of the rules (Weak), (Sub), (= La), or (FfT R2), the node σi+1

is the assumption of the rule.

The following lemma corresponds to Lemma 3.21.

42

4.2 Discussion about the arity of predicates and the cut-elimination property

nullary
predicates

unary
predicates

N -ary
(N ≥ 2)
predicates

CLKIDω with function symbols Yes4 No1 No1

CLKIDω without function symbols Yes4 ? ?
Separation Logic No2 No2 No3

Bunched Logic No2 No2 No2

1By this chapter. 2By [15]. 3By [12]. 4By [13].

Table 4.1 Arity of inductive predicates and the cut-elimination property in each cyclic proof
system for some logics

Lemma 4.11. The rightmost path from an index sequent in T
(
D2

cf , C2
cf

)
is infinite.

Proof. We have the statement in the same way as proving Lemma 3.21.

We have proved the lemmata to show Theorem 4.1 (2).
In the same way as the construction in the last part of Section 3.4, we can construct a

sequence {σ̃i}i∈N of switching points in D2
cf which satisfies the following conditions:

(i) The height of σ̃i is greater than the height of σ̃i−1 in D2
cf for i > 0.

(ii) For any node σ on the path from the root to σ̃i in D2
cf excluding σ̃i, σ is a switching

point if and only if the child of σ on the path is the left assumption of the rule (Case
TlF).

Because of (i), σ̃0, σ̃1, . . . are all distinct in D2
cf . Thus, {σ̃i | i ∈ N} is infinite. It is a

contradiction since the set of nodes in D2
cf is finite. We have Theorem 4.1 (2).

4.2 Discussion about the arity of predicates and the
cut-elimination property

Since TlF(f) ⇒ FfT(l) is a counterexample to cut-elimination in CLKIDω, the cut-elimination
property in CLKIDω does not hold even if we restrict predicates in the language to unary
predicates and =.

Table 4.1 shows the results we obtained about the cut-elimination property of each cyclic
proof system for some logics. “Yes” means that the cut-elimination property holds. “No”
means that the cut-elimination property does not hold. The second and third column re-
sults in the “Separation Logic” row are easily obtained from the result in [15] because the
counterexample for the cyclic proof system of bunched logic also works for separation logic.

In Section 3.5, we have guessed that the reason the cut-elimination property does not hold
in cyclic proof systems is the finiteness of sequents in each proof. By our observation, with
“?” in Table 4.1, it can restrict possible occurring sequents in each proof to finitely many.
Therefore, we conjecture that the cut-elimination property of CLKIDω holds in the case.

We also conjecture that the cut-elimination property of CLKIDω does not hold with “?”
in Table 4.1, i.e. if we restrict the arity of each predicate to two and restrict the term of
language to variables. There is one possibility for a counterexample to cut-elimination in the
case: RTL(x, y) ⇒ RTR(x, y) with productions

RTL(x, x)
, S(x, z) RTL(z, y)

RTL(x, y)
,

43

4 The cut-elimination property and the arity of predicates

RTR(x, x)
, RTR(x, z) S(z, y)

RTR(x, y)
,

where S is a binary ordinary predicate. We guess this sequent might be a counterexample to
cut-elimination in the case, but we have not proved it because we have never come up with
the definition of “index” for the sequent. An issue of our proof technique is that the “index”
is defined for each counterexample. Can the definition of “index” be generalised?

44

5 Cyclic proof system for Presburger
Arithmetic

Chapters 2–4 discussed the cut-elimination property of the cyclic proof system for first-order
logic with inductive definitions. This chapter discusses a first-order arithmetic, Presburger
Arithmetic, and its cyclic proof system.

This chapter aims to define a cyclic proof system for Presburger Arithmetic and to show
the equivalence between Presburger Arithmetic and the cyclic proof system.

Presburger Arithmetic is a theory obtained by removing multiplication from Peano Arith-
metic. It is known as a complete theory [11, 19].

Generally, the cyclic proof system is more powerful than the corresponding proof system
with induction, but the converse is not obvious when they do not include Peano Arithmetic.

In this thesis, we show that Presburger Arithmetic is equivalent to the corresponding cyclic
proof system. The equivalence is proved by the completeness of Presburger Arithmetic.

Section 5.1 introduces Presburger Arithmetic. Section 5.2 shows the completeness of Pres-
burger Arithmetic. Section 5.3 provides Infinitary Presburger Arithmetic, a non-well-founded
infinitary proof system for Presburger Arithmetic. Section 5.4 defines Cyclic Presburger Arith-
metic, a cyclic proof system for Presburger Arithmetic, and shows the equivalence between
Presburger Arithmetic and Cyclic Presburger Arithmetic. Section 5.5 discusses related work.

5.1 Presburger Arithmetic
In this section, we introduce Presburger Arithmetic. Presburger Arithmetic is usually defined
as the set of formulas in the language of Presburger Arithmetic which is valid in the standard
interpretation in the set of natural numbers [11, 19], but, our aim is to study the proof
system of Presburger Arithmetic, so we define Presburger Arithmetic as a subsystem of Peano
Arithmetic, PA.

We write LPA for the first-order language with equality, with signature (0, s,+, ·, <), where
0 is a constant, s is a unary function symbol, +, · are binary function symbols, and < is a
binary predicate symbol. We write LP+ for the first-order language obtained by removing the
binary function symbol · from LPA.

We call LP+ and LPA the language of Presburger Arithmetic and Peano Arithmetic, respec-
tively. We use infix notation for +, ·, and < .

Peano Arithmetic, PA, is the theory in the language LPA axiomatised by the following eight
axioms and one axiom scheme:

(A1) ∀x¬(sx = 0),

(A2) ∀x1∀x2(sx1 = sx2 → x1 = x2),

(A3) ∀x(x + 0 = x),

(A4) ∀x1∀x2(x1 + sx2 = sx1 + x2),

(A5) ∀x(x · 0 = 0),

45

5 Cyclic proof system for Presburger Arithmetic

Γ ⇒ ∆,One of the axioms of theory (Axiom of theory)
Γ ⇒ ∆

Figure 5.1 The axiom rule for first-order theory

(A6) ∀x1∀x2(x1 · sx2 = x1 + (x1 · x2)),

(A7) ∀x¬(x < 0),

(A8) ∀x1∀x2(x1 < sx2 ↔ (x1 < x2 ∨ x1 = x2)),

(A9) ϕ(0) ∧ ∀x(ϕ(x) → ϕ(sx)) → ∀xϕ(x) for any first-order formula ϕ(x).

We sometimes call (A9) induction scheme.
Presburger Arithmetic, P+, is the theory in the language LP+ axiomatised by six axioms,

(A1), (A2), (A3), (A4), (A7) and (A8), and one axiom scheme (A9). You see that Presburger
Arithmetic is a theory obtained by removing the multiplication from Peano Arithmetic.

We define a proof in first-order theory as a finite derivation tree with rules in Figures 2.1 and
5.1 and without buds. A proof for first-order theory whose root is assigned to (Γ ⇒ ∆, (R))
with a rule (R) is called a proof of Γ ⇒ ∆. For first-order theory T, we write T ` Γ ⇒ ∆ if
there is a proof of Γ ⇒ ∆ in T. For simplicity, we write T ` ϕ for T `⇒ ϕ.

The following theorem is known [11, 19]. For self-containedness, we include its proof in the
next section.

Theorem 5.1 (Completeness of Presburger Arithmetic). Presburger Arithmetic is complete
i.e. for any closed formula ϕ, either P+ ` ϕ or P+ ` ¬ϕ.

5.2 Completeness of Presburger Arithmetic

In this section, we show Theorem 5.1. To show the completeness of Presburger Arithmetic,
we define Presburger Arithmetic extended with modulo, P+,≡ , which admits the quantifier-
elimination property. Then, we show the completeness of P+,≡ , and it implies the completeness
of Presburger Arithmetic.

5.2.1 Quantifier-elimination property

In this section, we define the quantifier-elimination property and introduce a condition for
first-order theory admitting the quantifier-elimination property.

Definition 5.2 (Quantifier-elimination property). We say that a first-order theory T admits
quantifier-elimination if, for any formula ϕ, there exists a quantifier-free formula ψ such that
T ` ϕ↔ ψ.

The following proposition gives a condition for first-order theory admitting the quantifier-
elimination property. It is used to prove the quantifier-elimination property of Presburger
Arithmetic extended with modulo.

Proposition 5.3. Let T be a first-order theory. Assume, for any atomic formula α, there
exists a quantifier-free formula α′ where ¬ and → do not occur and T ` ¬α ↔ α′. If, for
atomic formulas α0, . . . , αn, where a variable x occurs freely, there exists a quantifier-free
formula ψ such that T ` ∃x(α0 ∧ · · · ∧ αn) ↔ ψ, then T admits quantifier-elimination.

46

5.2 Completeness of Presburger Arithmetic

To prove this proposition, we show some lemmata.
A literal is defined as an atomic formula or its negation.

Lemma 5.4 (Disjunctive normal form). Let T be a first-order theory. For any quantifier-free
formula ϑ, there exist literals αi,j such that T ` ϑ↔ (α0,0 ∧ · · · ∧ α0,k0)∨ (α1,0 ∧ · · · ∧ α1,k1)∨
· · · ∨ (αm,0 ∧ · · · ∧ αm,km).

Proof. We show the statement by induction on construction of ϑ.
Case 1. If ϑ is an atomic formula, then T ` ϑ↔ ϑ. Thus, we have the statement.
Case 2. Assume ϑ is the form of ¬ϑ0. By the induction hypothesis,

T ` ϑ0 ↔ (α0,0 ∧ · · · ∧ α0,k0) ∨ (α1,0 ∧ · · · ∧ α1,k1) ∨ · · · ∨ (αm,0 ∧ · · · ∧ αm,km)

for literals αi,j . Then,

T ` ¬ϑ0 ↔ ¬((α0,0 ∧ · · · ∧ α0,k0) ∨ (α1,0 ∧ · · · ∧ α1,k1) ∨ · · · ∨ (αm,0 ∧ · · · ∧ αm,km)).

By De Morgan’s law,

T ` ¬ϑ0 ↔ (¬α0,0 ∨ · · · ∨ ¬α0,k0) ∧ (¬α1,0 ∨ · · · ∨ ¬α1,k1) ∧ · · · ∧ (¬αm,0 ∨ · · · ∨ ¬αm,km).

By the distributive law T ` (ϕ0 ∨ ϕ1) ∧ ψ ↔ (ϕ0 ∧ ψ) ∨ (ϕ1 ∧ ψ), we have the statement.
Case 3. Assume ϑ is the form of ϑ0 ∧ ϑ1. By the induction hypothesis,

T ` ϑ0 ↔ ((α0,0 ∧ · · · ∧ α0,k0) ∨ (α1,0 ∧ · · · ∧ α1,k1) ∨ · · · ∨ (αm,0 ∧ · · · ∧ αm,km)),

T ` ϑ1 ↔ ((α′
0,0 ∧ · · · ∧ α′

0,k0) ∨ (α′
1,0 ∧ · · · ∧ α′

1,k1) ∨ · · · ∨ (α′
m,0 ∧ · · · ∧ α′

m,km))

for literals αi,j , α′
i,j . Thus,

T ` ϑ0∧ϑ1 ↔ ((α0,0∧· · ·∧α0,k0)∨· · ·∨(αm,0∧· · ·∧αm,km))∧((α′
0,0∧· · ·∧α′

0,k0)∨· · ·∨(α
′
m,0∧· · ·∧α′

m,km)).

By the distributive law T ` (ϕ0 ∨ ϕ1) ∧ ψ ↔ (ϕ0 ∧ ψ) ∨ (ϕ1 ∧ ψ), we have the statement.
Case 4. Assume ϑ is the form of ϑ0 ∨ ϑ1. By the induction hypothesis,

T ` ϑ0 ↔ ((α0,0 ∧ · · · ∧ α0,k0) ∨ (α1,0 ∧ · · · ∧ α1,k1) ∨ · · · ∨ (αm,0 ∧ · · · ∧ αm,km)),

T ` ϑ1 ↔ ((α′
0,0 ∧ · · · ∧ α′

0,k0) ∨ (α′
1,0 ∧ · · · ∧ α′

1,k1) ∨ · · · ∨ (α′
m,0 ∧ · · · ∧ α′

m,km))

for literals αi,j , α′
i,j . Thus,

T ` ϑ0∨ϑ1 ↔ ((α0,0∧· · ·∧α0,k0)∨· · ·∨(αm,0∧· · ·∧αm,km))∨((α′
0,0∧· · ·∧α′

0,k0)∨· · ·∨(α
′
m,0∧· · ·∧α′

m,km)).

Case 5. Assume ϑ is the form of ϑ0 → ϑ1. Then, T ` ϑ0 → ϑ1 ↔ ¬ϑ0∨ϑ1. By the induction
hypothesis,

T ` ¬ϑ0 ↔ ((α0,0 ∧ · · · ∧ α0,k0) ∨ (α1,0 ∧ · · · ∧ α1,k1) ∨ · · · ∨ (αm,0 ∧ · · · ∧ αm,km)),

T ` ϑ1 ↔ ((α′
0,0 ∧ · · · ∧ α′

0,k0) ∨ (α′
1,0 ∧ · · · ∧ α′

1,k1) ∨ · · · ∨ (α′
m,0 ∧ · · · ∧ α′

m,km))

for literals αi,j , α′
i,j . Thus,

T ` ϑ0 → ϑ1 ↔ ((α0,0∧· · ·∧α0,k0)∨· · ·∨(αm,0∧· · ·∧αm,km))∨((α′
0,0∧· · ·∧α′

0,k0)∨· · ·∨(α
′
m,0∧· · ·∧α′

m,km)).

47

5 Cyclic proof system for Presburger Arithmetic

Proposition 5.5. Let T be a first-order theory. Assume, for any atomic formula α, there
exists a quantifier-free formula α′ where ¬ and → do not occur and T ` ¬α ↔ α′. For any
quantifier-free formula ϑ, there exist atomic formulas αi,j such that T ` ϑ ↔ (α0,0 ∧ · · · ∧
α0,k0) ∨ (α1,0 ∧ · · · ∧ α1,k1) ∨ · · · ∨ (αm,0 ∧ · · · ∧ αm,km).
Proof. Assume, for any atomic formula α, there exists a quantifier-free formula α′ where ¬
and → do not occur and T ` ¬α ↔ α′. Because of the distributive law T ` (ϕ0 ∨ ϕ1) ∧ ψ ↔
(ϕ0∧ψ)∨(ϕ1∧ψ), the form of α′ is (α0,0∧· · ·∧α0,k0)∨(α1,0∧· · ·∧α1,k1)∨· · ·∨(αm,0∧· · ·∧αm,km)
for atomic formulas αi,j without loss of generality.

Let ϑ be a quantifier-free formula. By Lemma 5.4, there exist literals αi,j such that T `
ϑ↔ (α0,0 ∧ · · · ∧ α0,k0) ∨ (α1,0 ∧ · · · ∧ α1,k1) ∨ · · · ∨ (αm,0 ∧ · · · ∧ αm,km). By the assumption,
there exists a formula ϑ′ where ∨, ∧ and atomic formulas only occur and T ` ϑ′ ↔ (α0,0 ∧
· · · ∧ α0,k0) ∨ (α1,0 ∧ · · · ∧ α1,k1) ∨ · · · ∨ (αm,0 ∧ · · · ∧ αm,km). Because of the distributive law
T ` (ϕ0 ∨ ϕ1) ∧ ψ ↔ (ϕ0 ∧ ψ) ∨ (ϕ1 ∧ ψ), we have the statement.

Proposition 5.6. Let T be a first-order theory. If, for any quantifier-free formula ϑ, there
exists a quantifier-free formula ψ such that T ` ∃xϑ↔ ψ, then T admits quantifier-elimination.
Proof. Assume that, for any quantifier-free formula ϑ, there exists a quantifier-free formula ψ
such that T ` ∃xϑ↔ ψ.

Let ϕ be a formula. It suffices to show that there exists a quantifier-free formula ϕ0 such
that T ` ϕ ↔ ϕ0. Since T ` ∀xχ ↔ ¬∃¬χ for any formula χ, we can assume ∀ does not
occur in ϕ without loss of generality. We show the statement by induction on the number of
occurrences of ∃ in ϕ.

If the number of occurrences of ∃ in ϕ is 0, then ϕ0 is ϕ itself.
Let i be the number of occurrences of ∃ in ϕ and assume i > 0. Then, a formula whose

form is ∃xθ where θ is a quantifier-free formula occurs in ϕ. By the assumption, there exists a
quantifier-free formula ψ such that T ` ∃xθ ↔ ψ. Let ϕ′ be the formula obtained by replacing
∃xθ with ψ. Then, T ` ϕ↔ ϕ′. The number of occurrences of ∃ in ϕ′ is less than the number
of occurrences of ∃ in ϕ. By the induction hypothesis, there exists a quantifier-free formula
ϕ0 such that T ` ϕ′ ↔ ϕ0. Because of T ` ϕ↔ ϕ′, we have T ` ϕ↔ ϕ0.

We show Proposition 5.3.

Proof of Proposition 5.3. Assume, for atomic formulas α0, . . . , αn, where a variable x occurs
freely, there exists a quantifier-free formula ψ such that T ` ∃x(α0 ∧ · · · ∧ αn) ↔ ψ. By
Proposition 5.6, it suffices to show that, for a quantifier-free formula ϑ, there exists a quantifier-
free formula ϕ such that T ` ∃xϑ↔ ϕ.

Let ϑ be a quantifier-free formula. By Proposition 5.5, there exist atomic formulas αi,j such
that

T ` ϑ↔ (α0,0 ∧ · · · ∧ α0,k0) ∨ (α1,0 ∧ · · · ∧ α1,k1) ∨ · · · ∨ (αm,0 ∧ · · · ∧ αm,km).

Then,

T ` ∃xϑ↔ ∃x((α0,0 ∧ · · · ∧ α0,k0) ∨ (α1,0 ∧ · · · ∧ α1,k1) ∨ · · · ∨ (αm,0 ∧ · · · ∧ αm,km)).

Hence,

T ` ∃xϑ↔ (∃x(α0,0 ∧ · · · ∧ α0,k0) ∨ ∃x(α1,0 ∧ · · · ∧ α1,k1) ∨ · · · ∨ ∃x(αm,0 ∧ · · · ∧ αm,km)).

By the assumption, for i = 0, . . . ,m there exists a quantifier-free formula ψi such that T `
∃x(αi,0 ∧ · · · ∧ αi,ki) ↔ ψi. Thus,

T ` ∃xϑ↔ ψ0 ∨ · · · ∨ ψm.

48

5.2 Completeness of Presburger Arithmetic

5.2.2 Presburger arithmetic extended with modulo
In this section, we define Presburger arithmetic extended with modulo and show that it admits
the quantifier-elimination property.

Presburger Arithmetic does not admit quantifier-elimination since there does not exist
quantifier-free formula ψ such that P+ ` ∃x(y = x + x) ↔ ψ, but Presburger arithmetic ex-
tended with modulo, P+,≡ , admits the quantifier-elimination [11].

We write LP+,≡ for the first-order language obtained by adding infinitely many binary
relation symbols ≡2,≡3, . . . , to LP+ . We abbreviate

(. . . (

m︷ ︸︸ ︷
z + z) + z) + · · · + z)

to m × z. We define Presburger Arithmetic extended with modulo, P+,≡ , as the theory in the
language LP+,≡ axiomatised by six axioms, (A1), (A2), (A3), (A4), (A7) and (A8), and two
axiom schemes (A9) and

(Modm) ∀x1∀x2(x1 ≡m x2 ↔ ∃z(x1 = m × z + x2 ∨ x2 = m × z + x1)).

We note that P+,≡ is a conservative extension of Presburger Arithmetic since each ≡m is
definable in Presburger Arithmetic.

For simplicity, we write sm0 for m.

Lemma 5.7. P+,≡ admits quantifier-elimination.

Sketch of proof. We can show

P+ ` ¬(t = u) ↔ t < u ∨ u < t,

P+ ` ¬(t < u) ↔ t = u ∨ u < t,

P+,≡ ` ¬(t ≡m u) ↔ t ≡m u + 1 ∨ · · · ∨ t ≡m u + m− 1 for all m > 1.

Then, by Proposition 5.3, it suffices to show that, for atomic formulas α1, . . . , αl, where a vari-
able x occurs freely, there exists a quantifier-free formula ψ such that P+,≡ ` ∃x(α1 ∧ · · · ∧ αl) ↔
ψ.

Let α1, . . . , αl be atomic formulas where a variable x occurs freely.
Since we can show P+ ` (t1 + t2) + t3 = t1 + (t2 + t3), P+ ` t + u = u + t, P+ ` skt = t + k

for all k ∈ N, P+ ` t1 = t2 ↔ t1 + u = t2 + u, P+ ` t1 < t2 ↔ t1 + u < t2 + u, and P+,≡ `
t1 ≡m t2 ↔ t1 + u ≡m t2 + u, we can assume that the form of each αi is

n × x + t1 = t2, n × x + t1 < t2, t1 < n × x + t2, or n × x + t1 ≡m t2,

where x does not occur in t1, t2 and n > 0 without loss of generality. Since
P+ ` t1 = t2 ↔ k × t1 = k × t2, P+ ` t1 < t2 ↔ k × t1 < k × t2,
and P+,≡ ` t1 ≡m t2 ↔ k × t1 ≡km k × t2, for all k ∈ N>0, without loss of generality, we can
assume that the number of occurrences of x in each αi equals that of each other.

We consider the case n > 1. Let βi be an atomic formula obtained by replacing the
occurrence of n × x in αi with a fresh variable y for each i = 1, . . . , l. Then, we can show
P+,≡ ` ∃x(α1 ∧ · · · ∧ αl) ↔ ∃y(y ≡n 0 ∧ β1 ∧ · · · ∧ βl).

Thus, we can assume the form of each αi is

x + t1 = t2, x + t1 < t2, t1 < x + t2, or x + t1 ≡m t2,

where x does not occur in t1, t2 without loss of generality.

49

5 Cyclic proof system for Presburger Arithmetic

Assume there exists j ∈ {1, . . . , l} such that the form of αj is x + u1 = u2. Define α̂i by
setting

α̂i ≡



u1 < su2, i = j;

u2 + t1 = u1 + t2, if the form of αi is x + t1 = t2;
u2 + t1 < u1 + t2, if the form of αi is x + t1 < t2;
u1 + t1 < u2 + t2, if the form of αi is t1 < x + t2;
u2 + t1 ≡m u1 + t2, if the form of αi is x + t1 ≡m t2,

where x does not occur in t1, t2 and n > 0. Then, we can show P+,≡ ` ∃x(α1 ∧ · · · ∧ αl) ↔
∃x(α̂1 ∧ · · · ∧ α̂l). Since x does not occur in t1, t2, u1, and u2, we have P+,≡ ` ∃x(α̂1 ∧ · · · ∧ α̂l) ↔
α̂1 ∧ · · · ∧ α̂l. Thus, P+,≡ ` ∃x(α1 ∧ · · · ∧ αl) ↔ α̂1 ∧ · · · ∧ α̂l.

Assume the form of each atomic formula αi is not x + t1 = t2. Then, the form of each αi is

x + t1 < t2, t1 < x + t2, or x + t1 ≡m t2,

where x does not occur in t1, t2 and m > 0.
Assume the form of each αi is either x + t1 < t2 or t1 < x + t2, where x does not occur in

t1, t2. Then, the form of ∃x(α1 ∧ · · · ∧ αl) is

∃x

(l′∧
i=1

t1,i< x + t2,i

)
∧

 l∧
j=l′+1

x + t1,j < t2,j

.
Then, we can show

P+,≡ ` ∃x

(l′∧
i=1

t1,i < x + t2,i

)
∧

 l∧
j=l′+1

x + t1,j < t2,j

↔

∃x

((
l′∧

i=1

u
(i)
1 < x + t2,1 + · · · + t2,l′ + t1,l′+1 + · · · + t1,l

)
∧ l∧

j=l′

x + t2,1 + · · · + t2,l′ + t1,l′+1 + · · · + t1,l < u
(j)
2

,
where u(i)1 ≡ t2,1 + · · · + t2,i−1 + t1,i + t2,i+1 + · · · + t2,l′ + t1,l′+1 + · · · + t1,l and
u
(j)
2 ≡ t2,1 + · · · + t2,l′ + t1,l′+1 + · · · + t1,j−1 + t2,j + t1,j+1 + · · · + t1,l. Then, we can show

P+,≡ ` ∃x

(l′∧
i=1

t1,i < x + t2,i

)
∧

 l∧
j=l′+1

x + t1,j < t2,j

↔ ∃x


∧

i ∈ {1, . . . , l′}
j ∈ {l′ + 1, . . . , l}

su
(i)
1 < u

(j)
2

.

Since x does not occur in u
(i)
1 and u

(j)
2 , we have

P+,≡ ` ∃x

(l′∧
i=1

t1,i < x + t2,i

)
∧

 l∧
j=l′+1

x + t1,j < t2,j

↔
∧

i ∈ {1, . . . , l′}
j ∈ {l′ + 1, . . . , l}

su
(i)
1 < u

(j)
2 .

50

5.2 Completeness of Presburger Arithmetic

Assume there exists the form of x + t1 ≡m t2 among αi’s. Then, the form of ∃x(α1 ∧ · · · ∧ αl+1)
is

∃x

(l1∧
i=1

t1,i < x + t2,i

)
∧

 l2∧
j=l1+1

x + t1,j < t2,j

 ∧

 l∧
k=l2+1

x + t1,k ≡mk
t2,k

.
LetM be the least common multiple ofml2+1, . . . ,ml. Intuitively, the solution of t1,i < x + t2,i∧(∧l

k=l2+1 x + t1,k ≡mk
t2,k

)
is among st1,q−t2,i+1, st1,q−t2,i+2, . . . , st1,q−t2,i+M . Indeed,

we can show

P+,≡ ` ∃x

(l1∧
i=1

t1,i < x + t2,i

)
∧

 l2∧
j=l1+1

x + t1,j < t2,j

 ∧

 l∧
k=l2+1

x + t1,k ≡mk
t2,k

↔

∃x

 l1∨
q=1

M∨
p=1

(
l1∧
i=1

t1,i + t2,q < st1,q + p + t2,i

)
∧

 l2∧
j=l1+1

st1,q + p + t1,j < t2,j + t2,q

∧

 l∧
k=l2+1

st1,q + p + t1,k ≡mk
t2,k + t2,q

.
Since x does not occur in the right-hand side, we have

P+,≡ ` ∃x

(l1∧
i=1

t1,i< x + t2,i

)
∧

 l2∧
j=l1+1

x + t1,j < t2,j

 ∧

 l∧
k=l2+1

x + t1,k ≡mk
t2,k

↔

 l1∨
q=1

M∨
p=1

(
l1∧
i=1

t1,i + t2,q < st1,q + p + t2,i

)
∧

 l2∧
j=l1+1

st1,q + p + t1,j < t2,j + t2,q

∧

 l∧
k=l2+1

st1,q + p + t1,k ≡mk
t2,k + t2,q

.

5.2.3 Completeness

In this section, we show the completeness of Presburger Arithmetic. To show the completeness,
we show that the completeness of Presburger Arithmetic extended with modulo.

Lemma 5.8. The following statements hold:

(1) For any variable-free LP+,≡ term, there exists n ∈ N such that P+,≡ ` t = n.

(2) For any variable-free atomic formula α, either P+,≡ ` α or P+,≡ ` ¬α.

(3) For any quantifier-free variable-free formula ϑ, either P+,≡ ` ϑ or P+,≡ ` ¬ϑ.

Sketch of proof. (1) We show the statement by induction on the construction of t.
If t is 0, then we have the statement.
Assume t is of the form st′ with a term t′. By the induction hypothesis, P+,≡ ` t′ = n for

n ∈ N. Then, we have P+,≡ ` t = n+ 1.

51

5 Cyclic proof system for Presburger Arithmetic

Assume t is of the form st′ with a term t1 + t2. By the induction hypothesis, P+,≡ ` t1 = n
and P+,≡ ` t2 = m for n, m ∈ N. Then, we have P+,≡ ` t1 + t2 = n + m. Since we can show
P+,≡ ` n + m = n+m, we see that P+,≡ ` t1 + t2 = n+m.
(2) By (1), without loss of generality, we can assume that the form of α is n = m, n < m, or
n ≡l m. We can show the following statements:

• If n = m, we have P+,≡ ` n = m; otherwise we have P+,≡ ` ¬(n = m).

• If n < m, we have P+,≡ ` n < m; otherwise we have P+,≡ ` ¬(n < m).

• If there exists an integer k such that n −m = l · k, we have P+,≡ ` n ≡l m; otherwise
we have P+,≡ ` ¬(n ≡l m).

Then, we have the statement.
(3) We show the statement by induction on the construction of ϑ.

In the case where ϑ is an atomic formula, we have the statement by (2).
Assume ϑ is of the form ¬ϑ1. Assume P+,≡ 6` ¬ϑ1. By the induction hypothesis, we have

P+,≡ ` ϑ1. Because of P+,≡ ` ϑ1 ↔ ¬¬ϑ1, we have P+,≡ ` ¬ϑ.
Assume ϑ is of the form ϑ1 ∧ ϑ2. Assume P+,≡ 6` ϑ1 ∧ ϑ2. Then, we have P+,≡ 6` ϑ1 or

P+,≡ 6` ϑ2. We consider the case P+,≡ 6` ϑ1. By the induction hypothesis, P+,≡ ` ¬ϑ1.
Hence, we have P+,≡ ` ¬ϑ1 ∨ ¬ϑ2. Because of P+,≡ ` ¬ϑ1 ∨ ¬ϑ2 ↔ ¬(ϑ1 ∧ ϑ2), we see that
P+,≡ ` ¬(ϑ1 ∧ ϑ2). In the case P+,≡ 6` ϑ2, we can show P+,≡ ` ¬(ϑ1 ∧ ϑ2) in the similar way.

Assume ϑ is of the form ϑ1 ∨ ϑ2. Assume P+,≡ 6` ϑ1 ∨ ϑ2. Then, we have P+,≡ 6` ϑ1
and P+,≡ 6` ϑ2. By the induction hypothesis, P+,≡ ` ¬ϑ1 and P+,≡ ` ¬ϑ2. Hence, we have
P+,≡ ` ¬ϑ1 ∧ ¬ϑ2. Because of P+,≡ ` ¬ϑ1 ∧ ¬ϑ2 ↔ ¬(ϑ1 ∨ ϑ2), we see that P+,≡ ` ¬(ϑ1 ∨ ϑ2).

Assume ϑ is of the form ϑ1 → ϑ2. Assume P+,≡ 6` ϑ1 → ϑ2. Because of P+,≡ 6` (ϑ1 → ϑ2) ↔ (¬ϑ1 ∨ ϑ2),
we have P+,≡ 6` ¬ϑ1 ∨ ϑ2. By the induction hypothesis, P+,≡ ` ϑ1 and P+,≡ ` ¬ϑ2.
Hence we have P+,≡ ` ϑ1 ∧ ¬ϑ2. Because of P+,≡ ` ϑ1 ∧ ¬ϑ2 ↔ ¬(ϑ1 → ϑ2), we see that
P+,≡ ` ¬(ϑ1 → ϑ2).

Proposition 5.9. P+,≡ is complete i.e. for any closed formula ϕ, either P+,≡ ` ϕ or P+,≡ `
¬ϕ.

Proof. Let ϕ be a closed formula. By Lemma 5.7, there exists a quantifier-free formula
ψ such that P+,≡ ` ϕ ↔ ψ. Let x0, . . . , xn be all free variables in ψ. Then, we have
P+,≡ ` ϕ[x0 := 0, . . . , xn := 0] ↔ ψ[x0 := 0, . . . , xn := 0]. Since ϕ is a closed formula, we have
P+,≡ ` ϕ ↔ ψ[x0 := 0, . . . , xn := 0]. Let ϑ ≡ ψ[x0 := 0, . . . , xn := 0]. Then, ϑ is a quantifier-
free variable-free formula where P+,≡ ` ϕ ↔ ϑ and P+,≡ ` ¬ϕ ↔ ¬ϑ. By Lemma 5.8 (3),
either P+,≡ ` ϑ or P+,≡ ` ¬ϑ. Thus, we have either P+,≡ ` ϕ or P+,≡ ` ¬ϕ.

Now, we show the completeness of Presburger Arithmetic, Theorem 5.1.

Proof of Theorem 5.1. Assume P+ 6` ϕ. Since P+,≡ is a conservative extension of P+, we have
P+,≡ 6` ϕ. By Proposition 5.9, we have P+,≡ ` ¬ϕ. Since P+,≡ is a conservative extension of
P+, we have P+ ` ¬ϕ.

5.3 Infinitary Presburger Arithmetic

In this section, we define an infinitary proof system for Presburger Arithmetic Pω+, called
Infinitary Presburger Arithmetic, and show its soundness. This proof system is inspired by
[18].

52

5.3 Infinitary Presburger Arithmetic

(<1)Γ, t < 0 ⇒ ∆
Γ, t < u⇒ ∆ Γ, t = u⇒ ∆ Γ, u < t⇒ ∆ (<2)Γ ⇒ ∆

Γ, t < st⇒ ∆ (<3)Γ ⇒ ∆

Γ, t = sx⇒ ∆(x is fresh) (<4)Γ, 0 < t⇒ ∆

Γ, t1 = t2 ⇒ ∆ (s=)
Γ, st1 = st2 ⇒ ∆

Γ, t1 < t2 ⇒ ∆ (s<)
Γ, st1 < st2 ⇒ ∆

Γ, t + 0 = t⇒ ∆ (+1)Γ ⇒ ∆

Γ, t + su = st + u⇒ ∆ (+2)Γ ⇒ ∆

Figure 5.2 Rules for Infinitary Presburger Arithmetic and Cyclic Presburger Arithmetic

We define a Pω+-pre-proof as a possibly infinite derivation tree with rules in Figures 2.1
and 5.2 and without buds. A Pω+-pre-proof whose root is assigned to (Γ ⇒ ∆, (R)) called a
Pω+-pre-proof of Γ ⇒ ∆.

To define the global trace condition for Pω+, we give the following concepts.

Definition 5.10 (Precursor, trace, progress). Let {Γi ` ∆i}i≥0 be an infinite path through
a Pω+-pre-proof. For terms t, t′, a precursor of t at i is defined as t′ satisfying the following
conditions:

(1) Γi ` ∆i is the conclusion of (Sub) with a substitution θ, and t is θ(t′).

(2) Γi ` ∆i is the conclusion of (= L) with the principal formula u1 = u2, and there exists
a term u such that t is u[x := u2, y := u1] and t′ is u[x := u1, y := u2] for some variables
x, y.

(3) Γi ` ∆i is the conclusion of other rules, and t′ is t.

We say that a term t occurs in a sequent Γ ` ∆ if it appears within some formula in Γ,∆
(possibly as a subterm of another term). A trace along {Γi ` ∆i}i≥0 is a sequence {ti}i≥0

such that each term ti occurs in Γi ` ∆i and one of the following conditions holds:

(1) Either ti+1 is a precursor of ti at i, or

(2) there exists (ti+1 < t) ∈ Γi+1 such that t is a precursor of ti at i.

When the latter case holds, we say that the trace progresses at i+ 1. We call a trace {ti}i≥0

that progresses at infinitely many i an infinitely progressing trace.

Definition 5.11 (Global trace condition). For a derivation tree, if, for every infinite path
{Γi ⇒ ∆i}i≥0 in the derivation tree, there exists an infinitely progressing trace following a
tail of the path {Γi ⇒ ∆i}i≥k with some k ≥ 0, we say the derivation tree satisfies the global
trace condition.

Definition 5.12 (Pω+-proof). A Pω+-proof is a Pω+-pre-proof that satisfies the global trace
condition.

We show the soundness of Pω+ for the standard interpretation in the set of natural numbers.
It is proved in the same way as proving the soundness for ∞-proofs in [18].

If there is a Pω+-proof of Γ ⇒ ∆, we write Pω+ ` Γ ⇒ ∆. For simplicity, for a formula ϕ, we
write Pω+ ` ϕ for Pω+ ` ⇒ ϕ. We write N |=ρ ϕ to say that formula ϕ is true in the standard

53

5 Cyclic proof system for Presburger Arithmetic

interpretation in the set of natural numbers under a valuation ρ, which is a function mapping
each free variable of ϕ to a natural number. We write N |=ρ Γ ⇒ ∆ if N |=ρ ϕ for all ϕ ∈ Γ
implies that there exists ψ ∈ ∆ such that N |=ρ ψ. We write N |= Γ ⇒ ∆ if N |=ρ Γ ⇒ ∆ for
all valuations ρ holds.

Theorem 5.13 (Soundness for Pω+-proofs). If there exists a Pω+ -proof of Γ ⇒ ∆, then we
have N |= Γ ⇒ ∆.

Proof. We consider a Pω+-proof of Γ ⇒ ∆. Assume N 6|=ρ Γ ⇒ ∆ with a valuation ρ, for
contradiction.

We inductively construct an infinite path {Γi ⇒ ∆i}i≥0 from Γ ⇒ ∆ in the Pω+-proof and
an associated sequence {ρi}i≥0 of valuations such that N 6|=ρi Γi ⇒ ∆i on i ≥ 0.

In the case i = 0, we define Γ0 ⇒ ∆0 to be Γ ⇒ ∆, and ρ0 to be ρ.
We consider the case i > 0. By the induction hypothesis, N 6|=ρi−1 Γi−1 ⇒ ∆i−1 for all

i ≥ 0. Hence, the sequent Γi−1 ⇒ ∆i−1 is not the conclusion of an inference rule with no
assumption. If Γi−1 ⇒ ∆i−1 is the conclusion of (Sub) with a substitution θ, then we define
ρi to be ρi−1 ◦ θ. Otherwise define ρi to be ρi−1. By the soundness of inference rules, there
exists a sequent Γ′ ⇒ ∆′ which is an assumption of the rule such that N 6|=ρi Γ′ ⇒ ∆′ holds.
We define Γi ⇒ ∆i to be Γ′ ⇒ ∆′.

By the global trace condition, there is a infinitely progressing trace {ti}i≥N following a
tail of the infinite path {Γi ⇒ ∆i}i≥k. Consider the sequence of numbers {tρii }i≥N . Since
N 6|=ρi Γi ⇒ ∆i, we see that N |=ρi ϕ for every ϕ ∈ Γi. By the definitions of precursor and of
ρi+1, we see the following statements:

(1) t
ρi+1

i+1 is tρii if ti+1 is a precursor of ti.

(2) t
ρi+1

i+1 is less than tρii if the trace progress at i + 1 i.e. there exists a term t such that
(ti+1 < t) ∈ Γi+1 and t is a precursor of ti.

By the global trace condition, the second case applies infinitely often. Thus, {tρii }i≥N is an
infinite descending sequence of natural numbers. This is a contradiction.

5.4 Cyclic Presburger Arithmetic is equivalent to Presburger
Arithmetic

In this section, we define a cyclic proof system for Presburger Arithmetic CPω+, called Cyclic
Presburger Arithmetic, and show the equivalence between Presburger Arithmetic and Cyclic
Presburger Arithmetic.

We define a CPω+-pre-proof as a Pω+-pre-proof whose underlying tree is regular. A CPω+-proof
is a CPω+-pre-proof that satisfies the global trace condition.

If there is a CPω+-proof of Γ ⇒ ∆, we write CPω+ ` Γ ⇒ ∆. For simplicity, for a formula ϕ,
we write CPω+ ` ϕ for CPω+ ` ⇒ ϕ.

To show the equivalence between P+ and CPω+, we show the following lemma.

Lemma 5.14. The following rules are derivable without (Cut) in CPω+:

t = 0,Γ ⇒ ∆ 0 < t,Γ ⇒ ∆ (<2′)Γ ⇒ ∆
.

Proof. It is simulated by the proof below without (Cut).

(<1)t < 0,Γ ⇒ ∆ t = 0,Γ ⇒ ∆ 0 < t,Γ ⇒ ∆ (<2)Γ ⇒ ∆

54

5.4 Cyclic Presburger Arithmetic is equivalent to Presburger Arithmetic

We show the following theorem, which states the equivalence between P+ and CPω+.

Theorem 5.15. For any formula ϕ, the following statements are equivalent:

(1) P+ ` ϕ,

(2) CPω+ ` ϕ,

(3) Pω+ ` ϕ,

(4) N |= ϕ.

Proof. (1) ⇒(2) It is sufficient to show that (Ai) for i = 1, 2, 3, 4, 7, 8, 9 are provable in CPω+.
(A1)

(<1)y < 0 ⇒ (= L)
sy = 0, y < sy ⇒ (<3)sy = 0 ⇒ (¬ R)

⇒ ¬(sy = 0)
(∀ R)

⇒ ∀x¬(sx = 0)

(A2)

(Axiom)y1 = y2 ⇒ y1 = y2 (s=)sy1 = sy2 ⇒ y1 = y2 (→ R)⇒ sy1 = sy2 → y1 = y2 (∀ R)
⇒ ∀x2(sy1 = sx2 → y1 = x2) (∀ R)

⇒ ∀x1∀x2(sx1 = sx2 → x1 = x2)

(A3)

(Ax)
y + 0 = y ⇒ y + 0 = y (+1)⇒ y + 0 = y (∀ R)

⇒ ∀x(x + 0 = x)

(A4)

(Ax)
y1 + sy2 = sy1 + y2 ⇒ y1 + sy2 = sy1 + y2 (+2)⇒ y1 + sy2 = sy1 + y2 (∀ R)

⇒ ∀x2(y1 + sx2 = sy1 + x2) (∀ R)
⇒ ∀x1∀x2(x1 + sx2 = sx1 + x2)

(A7)

(<1)y < 0 ⇒ (¬ R)
⇒ ¬(y < 0)

(∀ R)
⇒ ∀x¬(x < 0)

55

5 Cyclic proof system for Presburger Arithmetic

(A8)

(A8)-1.1
y1 < sy2 ⇒ y1 < y2 ∨ y1 = y2 (→ R)

⇒ y1 < sy2 → (y1 < y2 ∨ y1 = y2)

(A8)-2.1
y1 < y2 ∨ y1 = y2 ⇒ y1 < sy2 (→ R)

⇒ (y1 < y2 ∨ y1 = y2) → y1 < sy2 (∧ R)
⇒ y1 < sy2 ↔ (y1 < y2 ∨ y1 = y2) (∀ R)

⇒ ∀x2(y1 < sx2 ↔ (y1 < x2 ∨ y1 = x2)) (∀ R)
⇒ ∀x1∀x2(x1 < sx2 ↔ (x1 < x2 ∨ x1 = x2))

(A8)-1.1

(Axiom)
y1 < sy2,
y1 < y2

⇒ y1 < y2,
y1 = y2

(Axiom)
y1 < sy2,
y1 = y2

⇒ y1 < y2,
y1 = y2

(A8)-1.2
y1 < sy2,
y2 < y1

⇒ y1 < y2,
y1 = y2 (<2)

y1 < sy2 ⇒ y1 < y2, x2 = y2 (∨ R)
y1 < sy2 ⇒ y1 < y2 ∨ y1 = y2

(A8)-1.2

(<1)0 < sy2, y2 < 0 ⇒ (= L)
y1 = 0, y1 < sy2, y2 < y1 ⇒

(?) y1 < sy2, y2 < y1 ⇒ (Sub)z0 < y2, y2 < sz0 ⇒ (s<)sz0 < sy2, y2 < sz0 ⇒ (Weak)z0 < sz0, sz0 < sy2, y2 < sz0 ⇒ (= L)y1 = sz0, z0 < sz0, y1 < sy2, y2 < y1 ⇒ (<3)y1 = sz0, y1 < sy2, y2 < y1 ⇒ (<4)0 < y1, y1 < sy2, y2 < y1 ⇒ (<2′)(?) y1 < sy2, y2 < y1 ⇒ (Weak)y1 < sy2, y2 < y1 ⇒ y1 < y2, y1 = y2

We identify (?) nodes. The infinitely progressing trace along a tail of each infinite path
that the (?) nodes occur infinitely many times is {y1, y1, y1, y1, z0, z0, z0}ω, and the progress
point is underlined.
(A8)-2.1

(Ax)y1 < sy2 ⇒ y1 < sy2 (<3)⇒ y1 < sy1 (= L)y1 = y2 ⇒ y1 < sy2

(A8)-2.2
y1 < y2 ⇒ y1 < sy2 (∨ L)

y1 < y2 ∨ y1 = y2 ⇒ y1 < sy2

56

5.5 Discussion

(A8)-2.2

(Ax)
y1 < y2,
y1 < sy2

⇒ y1 < sy2

(??) sy2 < y2 ⇒
(Weak)

sy2 < y2, y2 < sy2 ⇒
(<3)

(??) sy2 < y2 ⇒
(Weak)

sy2 < y1 ⇒ sy2 < sy2 (= L)
y1 < y2,
y1 = sy2

⇒ y1 < sy2

(? ? ?) y1 < y2 ⇒ y1 < sy2
(Weak)

y1 < y2,
sy2 < y1,
y2 < sy2

⇒ y1 < sy2

(<3)
y1 < y2,
sy2 < y1

⇒ y1 < sy2

(<2)
(? ? ?) y1 < y2 ⇒ y1 < sy2

We identify (??) and (? ? ?), respectively. The infinitely progressing trace along a tail of
each infinite path that the (??) nodes occur infinitely many times is {y2, sy2, sy2, y2}ω, and
the progress point is underlined. The infinitely progressing trace along a tail of each infinite
path that the (???) nodes occur infinitely many times is {y1, sy2, y2}ω, and the progress point
is underlined.
(A9)

ϕ(0), ∀x(ϕ(x) → ϕ(sx)) ⇒ ϕ(0)

y = 0, ϕ(0), ∀x(ϕ(x) → ϕ(sx)) ⇒ ϕ(y)

(♠) ϕ(0), ∀x(ϕ(x) → ϕ(sx)) ⇒ ϕ(y)

ϕ(0), ∀x(ϕ(x) → ϕ(sx)) ⇒ ϕ(z)

z < sz, ϕ(0), ∀x(ϕ(x) → ϕ(sx)) ⇒ ϕ(z), ϕ(sz)

ϕ(0), ∀x(ϕ(x) → ϕ(sx)) ⇒ ϕ(z), ϕ(sz) ϕ(0), ϕ(sz), ∀x(ϕ(x) → ϕ(sx)) ⇒ ϕ(sz)

ϕ(0), ϕ(z) → ϕ(sz), ∀x(ϕ(x) → ϕ(sx)) ⇒ ϕ(sz)

y = sz, ϕ(0), ϕ(z) → ϕ(sz), ∀x(ϕ(x) → ϕ(sx)) ⇒ ϕ(y)

y = sz, ϕ(0), ∀x(ϕ(x) → ϕ(sx)) ⇒ ϕ(y)

0 < y, ϕ(0), ∀x(ϕ(x) → ϕ(sx)) ⇒ ϕ(y)

(♠) ϕ(0), ∀x(ϕ(x) → ϕ(sx)) ⇒ ϕ(y)

ϕ(0), ∀x(ϕ(x) → ϕ(sx)) ⇒ ∀xϕ(x)

ϕ(0) ∧ ∀x(ϕ(x) → ϕ(sx)) ⇒ ∀xϕ(x)

⇒ ϕ(0) ∧ ∀x(ϕ(x) → ϕ(sx)) → ∀xϕ(x)

We identify (♠). Labels of rules are omitted for limited space. The infinitely progressing
trace along a tail of each infinite path that the (♠) nodes occur infinitely many times is
(y, y, y, y, y, sz, sz, z, z)ω, and the progress point is underlined.

(2) ⇒(3) Obvious.
(3) ⇒(4) By Theorem 5.13.
(4) ⇒(1) We show the statement by contrapositive. Assume P+ 6` ϕ. Let ϕ be the universal

closure of ϕ. Then, P+ 6` ϕ. By Theorem 5.1, we have P+ ` ¬ϕ. Since N is a model of P+, we
have N |= ¬ϕ. Hence, N 6|= ϕ. Thus, N 6|= ϕ.

5.5 Discussion
This section discusses the equivalence between ordinary and cyclic proof systems and the
cut-elimination property of Cyclic Presburger Arithmetic.

5.5.1 The equivalence between ordinary and cyclic proof systems

What is the condition for equivalence between a proof system with induction and the corre-
sponding cyclic proof system? To show the equivalence between Presburger Arithmetic and
Cyclic Presburger Arithmetic, the completeness of Presburger Arithmetic seems to be essen-
tial. Indeed, we can show the equivalence between a proof system for the theory of successor

57

5 Cyclic proof system for Presburger Arithmetic

Γ[0] ⇒ ∆[0]
(= L)

t = 0,Γ[t] ⇒ ∆[t]

Γ[s(0)] ⇒ ∆[s(0)]
(= L)

x1 = 0,Γ[s(x1)] ⇒ ∆[s(x1)]

Γ[s(s(0))] ⇒ ∆[s(s(0))]

...
0 < x2,Γ[s(s(x2))] ⇒ ∆[s(s(x2))]

x2 < x1,Γ[s(s(x2))] ⇒ ∆[s(s(x2))]
(= L)

x1 = s(x2), x2 < s(x2),Γ[s(x1)] ⇒ ∆[s(x1)] (<3)
x1 = s(x2),Γ[s(x1)] ⇒ ∆[s(x1)] (<4)

0 < x1,Γ[s(x1)] ⇒ ∆[s(x1)] (<2′)
x1 < t,Γ[s(x1)] ⇒ ∆[s(x1)]

(= L)
t = s(x1), x < s(x1),Γ[t] ⇒ ∆[t]

(<3)
t = s(x1),Γ[t] ⇒ ∆[t]

(<4)
0 < t,Γ[t] ⇒ ∆[t]

(<2′)
Γ[t] ⇒ ∆[t]

Figure 5.3 A simulation of ω-rule in Infinitary Presburger Arithmetic

and order, obtained by removing addition from Presburger Arithmetic, and the corresponding
cyclic proof system obtained by removing addition from Cyclic Presburger Arithmetic in the
same way as this thesis since the theory is complete [11, 19].

However, Peano Arithmetic is not complete, but Cyclic Arithmetic, the corresponding cyclic
system for Peano Arithmetic, is equivalent to Peano Arithmetic [18]. Moreover, Berardi
and Tatsuta [2] showed that the system obtained by adding Peano Arithmetic to CLKIDω is
equivalent to that obtained by adding Peano Arithmetic to LKID.

On the other hand, Berardi and Tatsuta [3] gave a sequent provable in CLKIDω but not in
LKID. Das [10] showed that the cyclic proof system for IΣn is more powerful than IΣn.

There are some equivalence cases for theories not including Arithmetic. Afshari and Leigh
[1] gave cyclic proof systems and a cut-free ordinary proof system for µ-calculus. They also
showed that these proof systems are equivalent by transforming from each proof in one to a
proof in others. Shamkov [17] showed the equivalence between an ordinary proof system and
a cyclic proof system for Gödel-Löb provability logic by transforming each proof in the cyclic
proof system into a proof in the ordinary system.

Someone may consider the issue of equivalence between ordinary and cyclic proof systems
to depend on how to formalise the cyclic proof system. However, we do not imagine a more
natural cyclic proof system for first-order logic with inductive definitions than CLKIDω. For
this reason, we cannot entirely agree with the idea

5.5.2 The cut-elimination property of Cyclic Presburger Arithmetic

The sequent calculus for first-order logic with the ω-rule

Γ[x := 0] ⇒ ∆[x := 0] Γ[x := s(0)] ⇒ ∆[x := s(0)] Γ[x := s(s(0))] ⇒ ∆[x := s(s(0))] · · · · · ·
(ω)

Γ[t] ⇒ ∆[t]
can eliminate the cut-rule [22].

The ω-rule is derivable in Infinitary Presburger Arithmetic. It is simulated as in Figure 5.3.
We note that the infinitely progressing trace along the infinite path is
{t, t, t, t, x1, x1, x1, x1, x2, x2, x2, x2, . . .}. Therefore, the cut-elimination property of Infinitary
Presburger Arithmetic holds.

However, it does not implies the cut-elimination property of Cyclic Presburger Arithmetic.
In general, the cut-elimination property of an infinitary proof system does not imply that of
the corresponding cyclic proof system, as we have seen in Chapters 3 and 4.

We conjecture that the cut-elimination property of Cyclic Presburger Arithmetic holds
because of the equivalence between Cyclic Presburger Arithmetic and Infinitary Presburger
Arithmetic. Shamkov [17] showed the equivalence between a cut-free infinitary proof system

58

5.5 Discussion

GL∞ for Gödel-Löb provability logic and the corresponding cut-free cyclic proof system GLcirc
by giving the transformation of each proof in GL∞ to a proof in GLcirc. We conjecture that
there is such a transformation of each cut-free proof in Infinitary Presburger Arithmetic to a
cut-free proof in Cyclic Presburger Arithmetic.

59

6 Conclusions

This section concludes this thesis.
Section 6.1 summarise our contributions. Section 6.2 provides ideas for future work.

6.1 Summary of our contributions

In this thesis, we address three contributions.
Firstly, we have given a counterexample to cut-elimination in CLKIDω, a cyclic proof sys-

tem for first-order logic with inductive definitions. In other words, we have shown that the
cut-elimination property of CLKIDω does not hold, which has been an open problem since
Brotherston provided Conjecture 5.2.4. of [4].

Secondly, we have given a simpler counterexample to cut-elimination in CLKIDω with only
unary predicates. Therefore, we have shown that the cut-elimination property in CLKIDω does
not hold even if we restrict predicates in the language to unary predicates and =.

Thirdly, we have shown the equivalence between Presburger Arithmetic and Cyclic Pres-
burger Arithmetic, a cyclic proof system for Presburger Arithmetic.

6.2 Future Work

There are five ideas for future work.
Firstly, we will examine the cases of “?” ’s in Table 4.1. As mentioned in Section 4.2, we

conjectured that the cut-elimination property of CLKIDω holds with “?” in Table 4.1 but does
not hold with “?” in Table 4.1. Through this thesis, we have discussed how to show that the
cut-elimination property of a cyclic proof system does not hold. Now, we discuss how to show
the cut-elimination property of a cyclic proof system. To show the cut-elimination in first-
order logic could be considered only around the cut-rule, but the global trace condition does
not allow it in the cyclic proof system. Moreover, we cannot use a famous cut-elimination
procedure for first-order logic since we cannot assure ourselves that the procedure in the
cyclic proof system terminates and that the transformed proof figure is a regular tree. The
cut-elimination property in cyclic proof systems is probably shown by either transforming
from the corresponding cut-free infinitary proof into a cyclic proof, such as [17], or going
through semantics, such as the proof of LKIDω.

Secondly, we will examine the cut-elimination property of Cyclic Presburger Arithmetic.
As mentioned inSection 5.5, the cut-elimination property of Infinitary Presburger Arithmetic
holds, but it cannot imply that of Cyclic Presburger Arithmetic. We conjecture that the
cut-elimination property of Cyclic Presburger Arithmetic holds, and it may be shown, as
mentioned in the previous paragraph.

Thirdly, we will examine how to restrict cut formulas in CLKIDω without changing provabil-
ity. Saotome, Nakazawa, and Kimura [15] showed that we could not restrict the cut formulas
to formulas presumable from the goal sequent in the cyclic proof system for symbolic-heaps,
a fragment of separation logic. The cut formulas in Figures 3.3 and 4.2 are presumable. Can
we restrict the cut formulas to presumable formulas?

61

6 Conclusions

Fourthly, we will examine the efficiency of an algorithm to determine, for each given se-
quent, whether the sequent is provable in Presburger Arithmetic by using Cyclic Presburger
Arithmetic.

Lastly, we will examine a subsystem of LKIDω, which includes CLKIDω and satisfies the
cut-elimination property.

62

Bibliography

[1] B. Afshari and G. E. Leigh. Cut-free completeness for modal mu-calculus. In 2017 32nd
Annual ACM/IEEE Symposium on Logic in Computer Science (LICS), pp. 1–12, June
2017.

[2] Stefano Berardi and Makoto Tatsuta. Equivalence of inductive definitions and cyclic
proofs under arithmetic. In 2017 32nd Annual ACM/IEEE Symposium on Logic in
Computer Science (LICS), pp. 1–12. IEEE, 2017.

[3] Stefano Berardi and Makoto Tatsuta. Classical system of martin-löf’s inductive defini-
tions is not equivalent to cyclic proofs. Logical Methods in Computer Science, Vol. 15,
No. 3, 2019.

[4] J. Brotherston. Sequent Calculus Proof Systems for Inductive Definitions. PhD thesis,
University of Edinburgh, 2006.

[5] James Brotherston, Richard Bornat, and Cristiano Calcagno. Cyclic proofs of program
termination in separation logic. SIGPLAN Not., Vol. 43, No. 1, pp. 101–112, January
2008.

[6] J. Brotherston and A. Simpson. Sequent calculi for induction and infinite descent. Journal
of Logic and Computation, Vol. 21, No. 6, pp. 1177–1216, 2011.

[7] James Brotherston, Nikos Gorogiannis, and Rasmus L. Petersen. A Generic Cyclic The-
orem Prover. In Programming Languages and Systems, Vol. 7705, pp. 350–367. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2012.

[8] Samuel R Buss. An introduction to proof theory. Handbook of proof theory, Vol. 137, pp.
1–78, 1998.

[9] Duc-Hiep Chu, Joxan Jaffar, and Minh-Thai Trinh. Automatic induction proofs of data-
structures in imperative programs. In Proceedings of the 36th ACM SIGPLAN Conference
on Programming Language Design and Implementation, pp. 457–466, 2015.

[10] Anupam Das. On the logical complexity of cyclic arithmetic. Logical Methods in Computer
Science, Vol. 16, No. 1, 2020.

[11] Herbert B. Enderton. A mathematical introduction to logic. Academic Press, 1972.

[12] Daisuke Kimura, Koji Nakazawa, Tachio Terauchi, and Hiroshi Unno. Failure of cut-
elimination in cyclic proofs of separation logic. Computer Software, Vol. 37, No. 1, pp.
39–52, 2020.

[13] Daisuke Kimura, Koji Nakazawa, and Kenji Saotome. Cut-elimination for cyclic proof
systems with inductively defined propositions. RIMS Kôkûroku Theory and Applications
of Proof and Computations, Vol. 2228, pp. 59–72, August 2022.

[14] Georg Kreisel. A survey of proof theory. The Journal of Symbolic Logic, Vol. 33, No. 3,
pp. 321–388, 1968.

63

Bibliography

[15] Kenji Saotome, Koji Nakazawa, and Daisuke Kimura. Failure of cut-elimination in the
cyclic proof system of bunched logic with inductive propositions. In 6th International
Conference on Formal Structures for Computation and Deduction, FSCD 2021, Vol. 195
of LIPIcs, pp. 11:1–11:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021.

[16] Ulrich Schöpp and Alex Simpson. Verifying Temporal Properties Using Explicit Ap-
proximants: Completeness for Context-free Processes. In Mogens Nielsen and Uffe Eng-
berg, editors, Foundations of Software Science and Computation Structures, pp. 372–386.
Springer Berlin Heidelberg, 2002.

[17] Daniyar Salkarbekovich Shamkanov. Circular proofs for the gödel-löb provability logic.
Mathematical Notes, Vol. 96, No. 3-4, pp. 575–585, 2014.

[18] Alex Simpson. Cyclic Arithmetic Is Equivalent to Peano Arithmetic. In Javier Esparza
and Andrzej S. Murawski, editors, Foundations of Software Science and Computation
Structures, pp. 283–300. Springer Berlin Heidelberg, 2017.

[19] Craig Smoryński. Logical Number Theory I. Springer, Berlin, Heidelberg, 1991.

[20] Quang-Trung Ta, Ton Chanh Le, Siau-Cheng Khoo, and Wei-Ngan Chin. Automated
lemma synthesis in symbolic-heap separation logic. Proceedings of the ACM on Program-
ming Languages, Vol. 2, No. POPL, pp. 1–29, 2017.

[21] Makoto Tatsuta, Koji Nakazawa, and Daisuke Kimura. Completeness of Cyclic Proofs
for Symbolic Heaps with Inductive Definitions. In Anthony Widjaja Lin, editor, Pro-
gramming Languages and Systems, pp. 367–387. Springer International Publishing, 2019.

[22] Anne Sjerp Troelstra and Helmut Schwichtenberg. Basic proof theory, Second Edition,
Vol. 43 of Cambridge tracts in theoretical computer science. Cambridge University Press,
2000.

64

	Introduction
	Cyclic proof system
	Cut-elimination
	Equivalence between cyclic proof system and ordinary proof system
	Our contributions
	Synopsis

	Background: inductive definitions, non-well-founded proof system, cyclic proof system
	Language for first-order logic with inductive definitions
	Derivation tree
	LKID: ordinary proof system for first-order logic with inductive definitions
	LKID: non-well-founded infinitary proof system for first-order logic with inductive definitions
	CLKID: cyclic proof system for first-order logic with inductive definitions
	Cycle-normalisation

	Counterexample to cut-elimination in first-order logic with inductive definitions
	A CLKID proof of the counterexample with (Cut)
	The outline of the proof
	Another cyclic proof system CLKIDa
	The proof of thm:counterexample item:thm-counterexample-not-cut-free-provable
	Discussion

	The cut-elimination property and the arity of predicates
	Counterexample to cut-elimination with only unary predicates
	Discussion about the arity of predicates and the cut-elimination property

	Cyclic proof system for Presburger Arithmetic
	Presburger Arithmetic
	Completeness of Presburger Arithmetic
	Infinitary Presburger Arithmetic
	Cyclic Presburger Arithmetic is equivalent to Presburger Arithmetic
	Discussion

	Conclusions
	Summary of our contributions
	Future Work

