K

4 Nguyen Trong Bach
AL (R oy BF) il ()
AL E B RAFRHEE 2496 5
FALE G- O H A 202443 H 22 H
PG OEAME BEREIER BT HEK
ENRCEIELE S AR B

AL G SCRE B Synthesizing Bidirectional Programs on Relations

i X HEAEZER

¥ & HE — R
fEWFEa—2 Hi%
SN N2
o —2 HEHIR
ik 5Lz
fHFEa—2 B
B RIT

ERKRT FHEETE #oR
Hm % —HB

HEBORT A7 #0%




Summary of Doctoral Thesis

Name in full: Nguyen Trong Bach

Title: Synthesizing Bidirectional Programs on Relations

Bidirectional transformations, originated from the view update problem in
relational databases, are an important mechanism for synchronizing or maintaining
consistency between two related information where one is specified as the source, and
the other as the view. If either the source or the view is changed, the other will be
changed as well to restore consistency. People apply bidirectional transformations to
solve a diversity of synchronization problems such as relational view update, model-
driven software development, data exchange, and serializer/deserializer.

A program that expresses a bidirectional transformation is called a bidirectional
program. Essentially, a bidirectional program comprises a pair of programs — a forward
program get that defines a view over a source and a backward program put that
translates view updates to source updates — and provides strong guarantees about the
well-behavedness of the get and the put. It is known to be challenging to develop
bidirectional programs that are both well-behaved and practically useful.

Automatic synthesis of bidirectional programs is practically important to solve the
synchronization problems, since manually writing such programs is non-trivial and
error-prone. We focus more on solving the view update problem in relational database
applications by studying the synthesis of well-behaved bidirectional programs
(get,put) onrelations (tables of relational database systems) from user-given examples
over specified data schemas.

We surveyed existing example-based synthesis methods and found that these
methods cannot address both the well-behavedness of bidirectional programs and the
complexity of relations. There are three main methods of program synthesis that are
most related. First, several synthesis algorithms have been developed to obtain
programs written in bidirectional languages. These obtained programs are guaranteed
to be well-behaved based on the well-behavedness of the underlying bidirectional
languages. However, these algorithms are restricted to domains of either regular
expressions or trees, and do not operate on relations. Second, relational program
synthesis allows us to simultaneously generate multiple programs that satisfy a given
relational specification (e.g., the well-behavedness of a bidirectional program) through
example-based dual synthesis. It uses hierarchical tree automata to represent a relational
version space that encodes all tuples of satisfying programs. As the space of the
automata grows dramatically when dealing with complex underlying languages, it

becomes challenging to handle practical relational query languages. Third, many other



general example-guided synthesis methods (e.g., PROSYNTH) possibly take examples
on relations as input and independently synthesize a get and a put, but they cannot
guarantee the well-behavedness of the synthesized pair. PROSYNTH is able to use a
tabular input-output example to synthesize a program written in Datalog. Since a
Datalog program is largely a set of rules, PROSYNTH reduces the synthesis problem to
a rule-selection problem by (1) requiring the preparation of a fixed finite set of
candidate rules by using templates and enumerations, and (2) selecting a subset of the
prepared set that satisfies the given example. The reason that keeps PROSYNTH from
guaranteeing the well-behavedness between two separately synthesized programs get
and put is that there is no relationship between two sets of templates or candidate rules
of the two programs. Naively enumerating all gets and puts rarely produces a well-
behaved program.

Although many advanced synthesizers can generate unidirectional programs on
relations from user-provided examples, the difficulty of synthesizing bidirectional
programs from examples, especially the ones involving tables that have internal
functional dependencies, still remains an unsolved issue.

In this thesis, we propose an approach to synthesizing well-behaved and practical
bidirectional programs on relations from user-provided examples and data schemas with
functional dependencies.

We start by synthesizing a get and decomposing it into a set of simple and atomic
get, whose corresponding put, exists. With user-given functional dependencies and
the set of atomic get,, we forward-propagate functional dependencies from the a source
through intermediate relations to the view, so that the functional dependencies imposed
on all relations can be clearly determined. We also compute atomic examples
corresponding to (get,, put,). Then, the synthesis of (get,put) could be reduced into
sub-synthesis of (get,, put,). To solve each sub-synthesis task, we design well-behaved
templates for put, given get,. These templates encode not only the existing minimal-
effect atomic view update strategies but also the extra constraints and effects of
functional dependencies, following the knowledge in the database community. With the
set of well-designed templates, we adopt the modern example-and-template-based
synthesizer PROSYNTH to find put,, and then combine all results (get,, put,)s to form
the final bidirectional program (get, put).

We have implemented our approach in two prototypes, SynthBX and SynthBP,
which are developed using two different template designs. On a benchmark suite of 56
tasks from three sources, SynthBX successfully synthesizes well-behaved bidirectional
programs for 52 tasks, with an average synthesis time of 19 seconds per task and within
3 seconds each for 37 of them, which shows practical usefulness of our approach.
SynthBX is limited in supporting functional dependencies. SynthBP is a more advanced
prototype with supporting templates for functional dependencies. It can automatically

solve 37 out of 38 practical benchmarks. The overheads for handling functional



dependencies are not too significant when the number of functional dependencies is

reasonable.



(BI#% 1 Separate Sheet 1)

Results of the doctoral thesis defense

LR CEEM R

N e in Full

K % Nguyen Trong Bach

?‘nﬁﬁ(%ﬁ &l Synthesizing Bidirectional Programs on Relations

AR EFANL G CIX, [Synthesizing Bidirectional Programs on Relations (VL —va> LD 56~
Oy ILDERK) L, KEETRRBINTEY, 26EMNOE KR IILTVD,

FBITE I CTHD, MO 5, AT OB, WF5E B iy, TELRRRL | M 2ROk
B2~ TN D,

F2RIT B O N THD, R T —FZRXR—RLZDOM WA DY SFETHD Datalog DR
TN, B — S B &R ) 28 48 0 F i gk . B L OV EH B X — R (example—based) 7 1/ T LA
FIEICE T2 98I oW il LT d,

FIEIIIRBE FLEOMECTHDL, WG M T T TEDEREIDDATY Iy T, £, 520
NI EBIABIE R M7 a7 Z 5 (7)) %(Eﬂffiﬁ'@)/‘\ﬁkﬁ‘é RIZ, Jllﬁﬁﬁ7ﬂﬁ7bé”7}\:
VI I ZV T D, B, KT MRy 77 0ICk LT @ a7 7L — Mg L 7 e
7T L BHINOE T HIEE ST R T as T 2EM R T 5,

WA TIT, 7ZUDNBT Iy 7TV R T AT AT R AL R HE LRI B YD H %
TR 72V ik THFEE 5 2 T0n5,

HHETIX, TR I 7 VIR LT, D H a7 al I b HPNoE R TH-0DT 7L —h
ERESRE T A ERE 2 TWD, BTN 7 as T L505MEE PEE (roundtrip property)Ziii 7=
FTEER L, R FIEOER LT MAERL TOD,

FOTETIE, WEED FIEABBIE RIS LT DIk T2 ik z#im L T\ D,
FIREITim LDEEDES R OBRBETHD,

KPR ETIEME LR LOBES T > TREPITON, TORIITbh R XEFEES L TN
W TIE, FABDNOOERICH L THEYICEIE N Rshie, BRICERICFAZARZHM
L. FEZB CTHEmEIT ol FAZB S TIE, HEEE O LA FE2H BLA0 THY 78 47 7K
ZFFOTWAHIENFHT ST,

UL B2 IR G ST, V=2 ay ECREEMRE 2T R G M7 es 7 L5068 K en)
AR IS LT %ﬁm By RIMIBIE THBIICA T2 HIEELRLIZLOTHY, Bl 72
TR KRB RBIAN D bARMIEOBEA K E W H O T, AINBIMES RSV, £, K

FALEM SCDORCR T, P HERS R 2L TN — R =BT S E R S R 2 L TR RS,



SRR MHE WD, L EOBEICEY, B#EE B DT AP DA O 5 IET D
CHEr L7z,



	
	数理3_情報3・Nguyen_Trong_Bach（論文要旨）
	数理3_情報3・Nguyen_Trong_Bach（審査報告書）


