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Abstract

Bidirectional transformations between different representations of related information
appear frequently in many different areas like databases, software engineering,
and programming languages. A bidirectional program expressing a bidirectional
transformation includes a pair of programs – a forward program 𝑔𝑒𝑡 that defines a
view over a source and a backward program 𝑝𝑢𝑡 that translates view updates to source
updates – and provides strong guarantees about the well-behavedness of the 𝑔𝑒𝑡 and
the 𝑝𝑢𝑡 . It is known to be challenging to develop bidirectional programs that are both
well-behaved and practically useful.

Although many advanced synthesizers can generate unidirectional programs on
relations (tables of relational database systems) from user-provided examples, the
difficulty of synthesizing bidirectional programs from examples, especially the ones
involving tables that have internal functional dependencies, still remains an unsolved
issue.

In this thesis, we propose an approach to synthesizing well-behaved and practical
bidirectional programs on relations from user-provided examples and data schemas
with functional dependencies.

We start by synthesizing a 𝑔𝑒𝑡 and decomposing it into a set of simple and atomic
𝑔𝑒𝑡𝑎 whose corresponding 𝑝𝑢𝑡𝑎 exists. With user-given functional dependencies
and the set of atomic 𝑔𝑒𝑡𝑎, we forward-propagate functional dependencies from the
source through intermediate relations to the view, so that the functional dependencies
imposed on all relations can be clearly determined. We also compute atomic examples
corresponding to (𝑔𝑒𝑡𝑎, 𝑝𝑢𝑡𝑎). Then, the synthesis of (𝑔𝑒𝑡, 𝑝𝑢𝑡) could be reduced into
sub-synthesis of (𝑔𝑒𝑡𝑎, 𝑝𝑢𝑡𝑎). To solve each sub-synthesis task, we design well-behaved
templates for 𝑝𝑢𝑡𝑎 given 𝑔𝑒𝑡𝑎 . These templates encode not only the existing minimal-
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effect atomic view update strategies but also the extra constraints and effects of
functional dependencies, following the knowledge in the database community. With
the set of well-designed templates, we adopt a modern example-and-template-based
synthesizer named ProSynth to find 𝑝𝑢𝑡𝑎 , and then combine all results (𝑔𝑒𝑡𝑎, 𝑝𝑢𝑡𝑎)𝑠 to
form the final bidirectional program (𝑔𝑒𝑡, 𝑝𝑢𝑡).

We have implemented our approach in two prototypes, SynthBX and SynthBP,
which are developed using two different template designs. On a benchmark suite
of 56 tasks from three sources, SynthBX successfully synthesizes well-behaved
bidirectional programs for 52 tasks, with an average synthesis time of 19 seconds per
task and within 3 seconds each for 37 of them, which shows practical usefulness of our
approach. SynthBX is limited in supporting functional dependencies. SynthBP is a
more advanced prototype with supporting templates for functional dependencies.
It can automatically solve 37 out of 38 practical benchmarks. The overheads for
handling functional dependencies are not too significant when the number of functional
dependencies is reasonable.
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1
Introduction

This chapter includes three sections. First, we present a general background of this
thesis (Section 1.1). Then, we discuss about research objectives (Section 1.2). Finally,
we list the thesis organization and contributions (Section 1.3).

1.1 Background

Bidirectional transformations (BX) [1], originated from the view update problem [2, 3]
in relational databases, are a mechanism for synchronizing or maintaining consistency
between two related information where one is specified as the source, and the other as
the view. If either the source or the view is changed, the other will be changed as well
to restore consistency. People apply bidirectional transformations to solve a diversity
of synchronization problems such as relational view update, model-driven software
development, data exchange, and serializer/deserializer [4].

A typical bidirectional program [1, 5, 6] (Figure 1.1) expressing a bidirectional
transformation consists of a pair of transformations: 𝑔𝑒𝑡 :: S→ V and 𝑝𝑢𝑡 :: S×V→ S,
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Updated 
Source

𝑠’

Source
𝑠

Updated
View
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View
𝑣

𝑔𝑒𝑡

𝑝𝑢𝑡

update

𝑔𝑒𝑡

Figure 1.1: A bidirectional program ∼ A well-behaved pair of (𝑔𝑒𝑡, 𝑝𝑢𝑡)

where S and V are the source and view domains, respectively. The 𝑔𝑒𝑡 , which is a
forward transformation, produces a view over a source. The 𝑝𝑢𝑡 , which is a backward
transformation, takes the original source and a possibly updated view and produces an
updated source.

To ensure consistency of a bidirectional transformation, 𝑔𝑒𝑡 and 𝑝𝑢𝑡 need to satisfy
well-behavedness properties as below:

∀𝑠 . 𝑝𝑢𝑡 (𝑠, 𝑔𝑒𝑡 (𝑠)) = 𝑠 (GetPut)

∀𝑠, 𝑣′. 𝑔𝑒𝑡 (𝑝𝑢𝑡 (𝑠, 𝑣′)) = 𝑣′ (PutGet)

The GetPut law ensures that no change in the view is reflected as no change in the
source, while the PutGet law ensures that all changes in the view are fully reflected
to the source and applying 𝑔𝑒𝑡 on the updated source produces exactly the updated
view [1, 5, 6].

Despite over a decade of active study in developing well-behaved bidirectional
programs, achieving both well-behavedness and practical usability across different
domains remains a recognized challenge in bidirectional program development [7, 1, 8,
9, 10, 11, 12, 13, 14, 15, 16, 17, 18]. A programmer can use a bidirectional language
to write both transformations as a single, well-behaved program; however, existing
bidirectional languages are designed for only a few specific domains. As argued in [14],
such languages can be difficult to program in because they require the programmer
to work in complex type systems and know tricky details. Alternatively, a general
unidirectional language can be used to write two separate programs, 𝑔𝑒𝑡 and 𝑝𝑢𝑡 ;
ensuring the well-behavedness of the two programs poses a challenging task, however.
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1.2 Research Objective

To enable easy construction of bidirectional programs on relational databases, we
aim at an automatic synthesis of well-behaved bidirectional programs (𝑔𝑒𝑡, 𝑝𝑢𝑡) from
user-given examples over specified data schemas.

To see the problem concretely, consider a relational view update task where the
schemas of the source and the view are adapted from a sample on SQLServerTutorial.net.
In this case, the source database consists of two relations staffs and customers of
the schemas

staffs(sid, name, city, active)

customers(cid, name, city)

and the view consists of one relation tokyoac of the schema

tokyoac(name).

The relation staffs stores staff information as records including the staff’s identifier,
name, city and active status. The relation customers stores a list of customers where
each customer has an identifier, name and city. The view tokyoac stores the names of
people whose certain characteristics. For each relation whether of the sources or the
view, there is an updated relation that shares the same schema and describes the state
of the relation after the updates take place (e.g., staffs′, customers′, tokyoac′).

Now the question is how we can automatically synthesize a well-behaved bidirec-
tional program, 𝑔𝑒𝑡 and 𝑝𝑢𝑡 , just from an example that describes the bidirectional
transformation behavior with the original source (Table 1.1a of staffs and Table 1.1b
of customers), the original view (Table 1.1c of tokyoac, which is supposed to be
obtained from 𝑔𝑒𝑡 ), the updated view (Table 1.1c’ of tokyoac′), and the updated source
(Table 1.1a’ of staffs′ and Table 1.1b’ of customers′, both of which are supposed to
be obtained from 𝑝𝑢𝑡 ). In other words, we wish to synthesize from the example a
pair of component programs: a view definition (query) program 𝑔𝑒𝑡 that describes
how tokyoac is relationally defined from staffs and customers, and a view update

program 𝑝𝑢𝑡 that describes how staffs′ and customers′ are computed from staffs,
customers and tokyoac′.

There are three main methods of program synthesis that are most related.
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Table 1.1: A user-provided example including original source ((1.1a), (1.1b)) , original
view ((1.1c)) , updated source ((1.1a’), (1.1b’)) , and updated view ((1.1c’))

(1.1a) staffs

sid name city active
10 Anna Berlin 1
11 Ken Tokyo 1
12 Jose Rio 0
13 Yua Tokyo 0

(1.1b) customers

cid name city
100 Logan Denver
101 Olsen Oslo
102 Kai Tokyo
103 Luis Lisbon
104 Mori Tokyo

(1.1c) tokyoac

name
Ken
Kai
Mori

(1.1a’) staffs′

sid name city active
10 Anna Berlin 1
11 Ken Tokyo 1
12 Jose Rio 0
13 Yua Tokyo 0
14 Shin Tokyo 1

(1.1b’) customers′

cid name city
100 Logan Denver
101 Olsen Oslo
102 Kai Tokyo
103 Luis Lisbon
104 Mori Tokyo
105 Yuri Tokyo

(1.1c’) tokyoac′

name
Ken
Kai
Mori
Shin

Yuri

�� ��original data inserted data deleted data

First, a series of synthesis algorithms have been developed for obtaining bidirectional
programs, as proposed in [14, 13, 15]. While these algorithms can use examples to
derive well-behaved programs written in a bidirectional language, they are designed
specifically for simple string processing and are limited to regular expressions, which
cannot handle relations and query languages. Another algorithm, introduced in [18],
can synthesize bidirectional programs written in a tree-oriented bidirectional language
by constructing a sketch of 𝑝𝑢𝑡 based on the given code of 𝑔𝑒𝑡 , and then fills the sketch
in a modular manner based on the properties of bidirectional programs. However, such
a tree-oriented language is not well-suited for transformations commonly performed
on relations [7].

Second, relational program synthesis [19] allows us to simultaneously generate
multiple programs that satisfy a given relational specification (e.g., the GetPut and the
PutGet laws) through example-based dual synthesis. It uses hierarchical tree automata
to represent a relational version space that encodes all tuples of satisfying programs. As
the space of the automata grows dramatically when dealing with complex underlying
languages, it becomes challenging to handle practical relational query languages.

Third, many other general synthesis methods (e.g., ProSynth [20]) possibly take
examples on relations as input and independently synthesize a 𝑔𝑒𝑡 and a 𝑝𝑢𝑡 , but
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they cannot guarantee the well-behavedness of the synthesized pair. ProSynth,
a state-of-the-art synthesizer, is able to use a tabular input–output example to
synthesize a program written in Datalog. Since a Datalog program is largely a set of
rules, ProSynth reduces the synthesis problem to a rule-selection problem by (1)
requiring the preparation of a fixed finite set of candidate rules by using templates and
enumerations, and (2) selecting a subset of the prepared set that satisfies the given
example. Preparing a “good” set of templates and candidate rules is very important
against ProSynth because it forms a “good” search space where ProSynth can
find an expected program. The reason that keeps ProSynth from guaranteeing the
well-behavedness between two separately synthesized programs 𝑔𝑒𝑡 and 𝑝𝑢𝑡 is that
there is no relationship between two sets of templates or candidate rules of the two
programs. Naively enumerating all 𝑔𝑒𝑡s and 𝑝𝑢𝑡s rarely produces a well-behaved
bidirectional program.

In fact, the essential limitation of the existing approaches to the synthesis of
bidirectional programs is that they cannot directly cope with the complexity of relations
and query languages along with the well-behavedness properties of bidirectional
programs.

To cope with that complexity and well-behavedness, we propose a novel approach
to the synthesis of bidirectional programs on relations, reducing a complex synthesis
problem into simpler ones, solving simpler synthesis to obtain small well-behaved
programs, and combining the results of simpler synthesis to achieve a complete
well-behaved program. Our approach mainly consists of three steps as follows.

First, we synthesize a unidirectional 𝑔𝑒𝑡 from the given tables of the original
source and the original view. Then we can decompose this 𝑔𝑒𝑡 to a combination of
atomic queries C𝑔 (𝑔𝑒𝑡1, . . . , 𝑔𝑒𝑡𝑛) (Figure 1.2a). Now, based on the PutGet law, we can
compute unknown intermediate tables (examples) for 𝑔𝑒𝑡𝑎 and 𝑝𝑢𝑡𝑎 1

Mid1, . . . , Mid𝑛−1,

Mid1′, . . . , Mid𝑛−1′

by applying the decomposed program C𝑔 on the given original and updated source

1The subscript 𝑎 in 𝑔𝑒𝑡𝑎 and 𝑝𝑢𝑡𝑎 indicates “atomic". We employ 𝑔𝑒𝑡𝑎 and 𝑝𝑢𝑡𝑎 to represent abstract
atomic programs.
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Midn-3

get1

getn-1

get2

getn

Si

Mid1

Sj

Mid2

...

Midn-2

Midn-1

V

...

Input  : original source
Output : original view

(a) C𝑔 (𝑔𝑒𝑡1, . . . , 𝑔𝑒𝑡𝑛)

Midn-3'

put1

putn-1

put2

putn

Si'

Mid1'

Sj'

Mid2'

...

Midn-1'

...

V'

Midn-1

Midn-2'

Midn-3 Midn-2

Mid1 Mid2

Si Sj

Input  : original source, updated view
Output : updated source

(b) C𝑝 (𝑝𝑢𝑡1, . . . , 𝑝𝑢𝑡𝑛)

Figure 1.2: An example of combinations for 𝑔𝑒𝑡 and 𝑝𝑢𝑡

tables, one by one. The synthesis of (𝑔𝑒𝑡, 𝑝𝑢𝑡) is now reduced to the sub-synthesis of
(𝑔𝑒𝑡𝑎, 𝑝𝑢𝑡𝑎).

Second, for each atomic query described by 𝑔𝑒𝑡𝑎, we synthesize an atomic view
update 𝑝𝑢𝑡𝑎 such that (𝑔𝑒𝑡𝑎, 𝑝𝑢𝑡𝑎) forms a well-behaved bidirectional program. We
solve this synthesis problem by templatizing the existing minimal well-behaved view

update strategies [21, 22, 23] to generate a set of candidate rules and adapting ProSynth.
With the templates, we can prepare the space for efficient synthesis of 𝑝𝑢𝑡𝑎 for 𝑔𝑒𝑡𝑎
while guaranteeing that they are well-behaved.

Last, we construct a 𝑝𝑢𝑡 program as a combination of atomic view update programs
C𝑝 (𝑝𝑢𝑡1, . . . , 𝑝𝑢𝑡𝑛) (Figure 1.2b) where the evaluation order in C𝑝 is reversed from
that in C𝑔. The final bidirectional program is a pair of (C𝑔, C𝑝) that basically is a
combination of the atomic well-behaved pairs (𝑔𝑒𝑡1, 𝑝𝑢𝑡1), . . . , (𝑔𝑒𝑡𝑛, 𝑝𝑢𝑡𝑛), and this
final program is guaranteed to be well-behaved due to the well-behavedness properties
of a composition of bidirectional programs [1].

A challenge associated with our current approach is that the minimal well-behaved
view update strategies introduced in [21, 22, 23] do not cover extra constraints and
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Table 1.2: A user-provide example related to functional dependencies including original
source (1.2a) , original view (1.2b) , updated source (1.2a’) , and updated view (1.2b’)

(1.2a) original
source

𝑆

𝐴 𝐵 𝐶 𝐷

1 𝑏1 F 𝑑1
1 𝑏1 T 𝑑1
2 𝑏2 T 𝑑2

(1.2b) original
view

𝑉

𝐴 𝐵 𝐶

1 𝑏1 T
2 𝑏2 T

(1.2a’) updated
source

𝑆′

𝐴 𝐵 𝐶 D
1 𝑏1 F 𝑑1
1 𝑏1 T 𝑑1
1 𝑏2 F 𝑑1
1 𝑏2 T 𝑑1
2 𝑏2 T 𝑑2

(1.2b’) updated
view

𝑉 ′

𝐴 𝐵 𝐶

1 𝑏1 T
1 𝑏2 T

2 𝑏2 T

original data inserted data deleted data

effects. Things become more complicated and difficult when the examples are defined
over tables that have internal dependencies such as functional dependencies (FDs).

Let us consider another example in Table 1.2 that contains tables with clearer
functional dependencies. This example includes Table 1.2a of the original source 𝑆 ,
Table 1.2b of the original view 𝑉 , Table 1.2a’ of the updated source 𝑆′, and Table 1.2b’
of the updated view 𝑉 ′, where 𝑆 and 𝑆′ share the same schema of (𝐴, 𝐵,𝐶, 𝐷), while 𝑉
and 𝑉 ′ share the same schema of (𝐴, 𝐵,𝐶).

If we look closely in Tables 1.2a and 1.2a’, there seem to be FDs on the original
and updated sources: 𝐴→ 𝐵 and 𝐴→ 𝐷 . If there are FDs on relation schemas, they
impose some specific internal constraints, such as that data on a relation 𝑟 must agree
on the FDs of 𝑟 (e.g., in the updated source 𝑆′, two tuples with the same 𝐴-value of 1
must have the same 𝐵-value and 𝐷-value).

FDs also cause effects when reflecting view updates into source updates: If we
run a bidirectional program backward, more changes would occur in the source so
that all the data on the source would match the FDs. For instance, when ⟨1, 𝑏1,𝑇 ⟩
is replaced by ⟨1, 𝑏2,𝑇 ⟩ in the updated view 𝑉 ′, then the updated source 𝑆′ includes
not only ⟨1, 𝑏2,𝑇 , 𝑑1⟩ (due to the minimal strategies) but also ⟨1, 𝑏2, 𝐹 , 𝑑1⟩ even though
there is no corresponding tuple ⟨1, 𝑏2, 𝐹 ⟩ in 𝑉 ′.

The existing minimal well-behaved view update strategies are not rich enough to
cover the constraints and effects of FDs.

In practice, tables with dependent data frequently arise. Addressing update
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strategies related to FDs becomes crucial for resolving many practical view update tasks
over these tables. Support for synthesis involving FDs is needed to avoid overlooking
solutions for real-world scenarios.

We propose an approach to synthesizing bidirectional programs on relations from
examples with FDs. To avoid diving into the efficient discovery of essential FDs, which
is a well-known difficult challenge in database research [24, 25], we require the user to
explicitly provide the possible FDs in a special structure called tree form for relations
of the source. This approach improves upon the one mentioned above in the following
two points.

First, we forward-propagate the provided FDs from the source through intermediate
relations to the view once we have the set of atomic 𝑔𝑒𝑡𝑎 satisfying the given example
(i.e., after the decomposition of a synthesized query 𝑔𝑒𝑡 ). Then, for each atomic part,
we obtain the FDs of the corresponding source and view.

Second, besides templates of minimal well-behaved view update strategies, we
prepare more templates for the constraints and effects of FDs to enhance the search
spaces of the synthesis of 𝑝𝑢𝑡𝑎s. The new templates are designed based on the constraint
semantics of FDs and the other non-minimal view update strategies [7] which describe
the effects of FDs in tree form when performing updates. The combination of the
new templates encoding constraints and effects of FDs, and the templates of minimal
well-behaved view update strategies makes the candidate rules more diverse, thereby
giving ProSynh more choices when performing synthesis.

1.3 Organization and Contributions

We organize the rest of the thesis as follows. Chapters 3-6 (Figure 1.3) are the
main contributions of this thesis, which include our approaches, algorithms and
implementations for synthesizing bidirectional programs on relations.

Chapter 2. We present related works on relational databases, non-recursive Datalog
(NR-Datalog∗), bidirectional programs in NR-Datalog∗, constraints and effects of
functional dependencies (FDs) when performing updates, the view update problem and
view update strategies, program synthesis, and a survey of existing example-based
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Figure 1.3: Main contributions

synthesizers including ProSynth which we will rely on to develop our synthesizer
later.

Chapter 3. We present the high-level of our proposed approach to synthesizing
well-behaved bidirectional programs on relations from examples and functional
dependencies (Figure 1.3). Our approach reduces the synthesis of a well-behaved
pair of (𝑔𝑒𝑡, 𝑝𝑢𝑡) to the synthesis of atomic well-behaved pairs. The combination of
atomic well-behaved pairs would be well-behaved because of the well-behavedness of a
composition of bidirectional programs. After we found a query 𝑔𝑒𝑡 with ProSynth, we
decompose the query into a set of atomic queries and forward-propagate information of
FDs from the source through intermediate relations to the view. For each atomic query,
we synthesize a corresponding atomic view update by templatizing minimal view
update strategies and by templatizing the constraints and effects of FDs to generate
candidate rules so that ProSynth can be adapted efficiently. The templates are well-
designed to encode the well-behavedness of the atomic query and the corresponding
atomic view update.

Chapter 4. We present a method for decomposing a query in NR-Datalog∗ to a set of
atomic queries in NR-Datalog∗, and an algorithm for forward-propagating FDs in
tree form from the source to the view over a set of atomic queries. Having access



10 Chapter 1. Introduction

to information about atomic queries and the FDs of all relations is beneficial when
designing templates for the corresponding atomic view updates.

Chapter 5. We present Datalog templates that encode the minimal view update
strategies. We implement our synthesis approach without FDs in a tool called SynthBX
and demonstrate its power, efficiency, and sensitivity to example sizes through 56
benchmark tasks from three different sources. SynthBX successfully solves 52 tasks,
takes an average of 19 seconds to find a solution, and less than 3 seconds each for 37 of
them.

Chapter 6. We present algorithms for templatizing the constraints and effects of
FDs on relations. They help to strengthen the search space of the ProSynth-based
synthesis of well-behaved 𝑝𝑢𝑡𝑎 . We implement our proposed approach with the FDs
processing steps in a tool called SynthBP that can automatically solve 37/38 practical
synthesis benchmarks. The overheads for handling FDs are not too significant when
the number of functional dependencies is reasonable.

Chapter 7. We conclude the thesis by summarizing our contributions and discussing
possible future works.
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2
Related Work

In this chapter, we briefly overview relational databases [26] (Section 2.1), non-recursive
Datalog [27] (Section 2.2), and bidirectional programs [1] (Section 2.3). We then review
the concepts of functional dependencies (FDs), the tree structure of FDs, and relation
revisions over that structure when updating relational views [7] (Section 2.4), and
summarize related work on the view update problem [2] (Section 2.5). Finally, we
cover a bit about program synthesis [28, 29] (Section 2.6) and survey many existing
example-based synthesis approaches (Section 2.7) including ProSynth [20] which we
will rely on to develop our synthesizer later.

2.1 Relational Databases

A database D is a finite map from relation schemas R to relations 𝑅. A relation schema

is a finite nonempty set R of attributes. Each attribute 𝐴 of a relation schema R is
associated with a domain 𝑑𝑜𝑚(𝐴) (or A), which represents the possible values 𝑎 that
could appear in column 𝐴. If 𝑋 and 𝑌 are attribute sets, we may write 𝑋𝑌 for the union
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𝑋 ∪𝑌 . If𝑋 = {𝐴1, 𝐴2, . . . , 𝐴𝑚}, we may write𝐴1𝐴2 . . . 𝐴𝑚 for𝑋 . The singleton {𝐴} may
be written as simply 𝐴. A tuple 𝑡 (alternatively written as ⟨𝑡1, . . . , 𝑡𝑘⟩) over R, written
𝑡 :: R, is a function 𝑡 : R→ ⋃

𝐴∈RA, where ∀𝐴 ∈ R. 𝑡 (𝐴) ∈ A. We write 𝑡 [𝑋 ] for the
projection of a tuple 𝑡 over R to𝑋 if𝑋 ⊆ R. A relation 𝑅 over R, written 𝑅 :: R, is a finite
set of tuples over R. For 𝑅 :: 𝐴1 . . . 𝐴𝑚, we sometimes write 𝑅(𝐴1 : A1, . . . , 𝐴𝑚 : A𝑚)
and say that 𝑅 is of the schema of (𝐴1, . . . , 𝐴𝑚).

For example, in Table 1.2, we said that relations 𝑆 and 𝑆′ share the same schema of
(𝐴, 𝐵,𝐶, 𝐷), which means that

𝑆 :: 𝐴𝐵𝐶𝐷 or 𝑆 (𝐴 : A, 𝐵 : B,𝐶 : C, 𝐷 : D)
𝑆′ :: 𝐴𝐵𝐶𝐷 or 𝑆′(𝐴 : A, 𝐵 : B,𝐶 : C, 𝐷 : D)

We can describe relations 𝑆 and 𝑆′ as sets of tuples as below:

𝑆 = {⟨1, 𝑏1, 𝐹 , 𝑑1⟩, ⟨1, 𝑏1,𝑇 , 𝑑1⟩, ⟨2, 𝑏2,𝑇 , 𝑑2⟩}
𝑆′ = {⟨1, 𝑏2, 𝐹 , 𝑑1⟩, ⟨1, 𝑏2,𝑇 , 𝑑1⟩, ⟨2, 𝑏2,𝑇 , 𝑑2⟩}.

A database D could be represented as a set of 𝑅(𝑡1, . . . , 𝑡𝑘) corresponding to the tuple
⟨𝑡1, . . . , 𝑡𝑘⟩ of relation 𝑅 inD. The source database including only relation 𝑆 in Table 1.2
could be written as

{𝑆 (1, 𝑏1, 𝐹 , 𝑑1), 𝑆 (1, 𝑏1,𝑇 , 𝑑1), 𝑆 (2, 𝑏2,𝑇 , 𝑑2)}

while the source database with two relations staffs and customers in Table 1.1
could be written as

{ staffs(10,Anna,Berlin,1), staffs(11,Ken,Tokyo,1),

staffs(12,Jose,Rio,0), staffs(13,Yua,Tokyo,0),

customers(100,Logan,Denver), customers(101,Olsen,Oslo),

customers(102,Kai,Tokyo), customers(103,Luis,Lisbon),

customers(104,Mori,Tokyo) }
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𝑃𝑟𝑜𝑔𝑟𝑎𝑚 := 𝐶𝑙𝑎𝑢𝑠𝑒+

𝐶𝑙𝑎𝑢𝑠𝑒 := 𝐹𝑎𝑐𝑡 | 𝑅𝑢𝑙𝑒
𝐹𝑎𝑐𝑡 := 𝑅( 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡 (, 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡)∗ ) .
𝑅𝑢𝑙𝑒 := 𝐻𝑒𝑎𝑑 : − 𝐵𝑜𝑑𝑦.
𝐻𝑒𝑎𝑑 := 𝐿𝑖𝑡𝑒𝑟𝑎𝑙

𝐵𝑜𝑑𝑦 := 𝐷𝑖𝑠 𝑗𝑢𝑛𝑐𝑡𝑖𝑜𝑛

𝐷𝑖𝑠 𝑗𝑢𝑛𝑐𝑡𝑖𝑜𝑛 := 𝐶𝑜𝑛𝑗𝑢𝑛𝑐𝑡𝑖𝑜𝑛 (; 𝐶𝑜𝑛𝑗𝑢𝑛𝑐𝑡𝑖𝑜𝑛)∗
𝐶𝑜𝑛𝑗𝑢𝑛𝑐𝑡𝑖𝑜𝑛 := 𝐼𝑡𝑒𝑚 (, 𝐼𝑡𝑒𝑚)∗
𝐼𝑡𝑒𝑚 := 𝐿𝑖𝑡𝑒𝑟𝑎𝑙 | ¬ 𝐿𝑖𝑡𝑒𝑟𝑎𝑙 | 𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡
𝐿𝑖𝑡𝑒𝑟𝑎𝑙 := 𝑅( 𝑇𝑒𝑟𝑚 (, 𝑇𝑒𝑟𝑚)∗ )
𝑇𝑒𝑟𝑚 := 𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒 | 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡
𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 := 𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝑂𝑝 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡

𝑅 ∈ 𝑅𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑆𝑦𝑚𝑏𝑜𝑙 𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒 ∈ {𝑣𝑖}𝑖≥0 ∪ {_}
𝑂𝑝 ∈ {=,≠, >, <, ≥, ≤}

Figure 2.1: Syntax of NR-Datalog∗ (based on Soufflé)

2.2 NR-Datalog
∗

NR-Datalog∗[27] is a fragment of Datalog with negation, built-in predicates of compari-
son and no recursion. We follow the syntax of Datalog given by Soufflé 1 to express
the syntax of NR-Datalog∗ (Figure 2.1).

An NR-Datalog∗ program 𝑃 is a finite nonempty set of clauses, where each clause is
either a fact “𝑅(𝑐1, . . . , 𝑐𝑛).” or a rule “𝐻 :− 𝐵1, . . . , 𝐵𝑛 .”, where 𝑅 is a relation symbol,
the 𝑐𝑖s are constants, 𝐻 is a head, and {𝐵1, . . . , 𝐵𝑛} is a body. Let us consider the
following program:

𝑐𝑙1 𝑆 (0, 1).
𝑐𝑙2 𝑉 (𝑣1) : − 𝑆1(𝑣1, 𝑣2) , ¬ 𝑆2(𝑣1) .
𝑐𝑙3 𝑉 (𝑣1) : − 𝑆1(𝑣1, 𝑣2) , 𝑣2 = 2.

This program consists of one fact 𝑐𝑙1 and two rules {𝑐𝑙2, 𝑐𝑙3}.
The head 𝐻 is a positive literal (or atom) of the form 𝑟 (𝑡1, . . . , 𝑡𝑛) (alternatively

written as 𝑟 (®𝑡)) (e.g., 𝑉 (𝑣1) in 𝑐𝑙2), where 𝑟 is a relation symbol and each argument 𝑡𝑖
is a term, which is generally either a variable or a constant. The body {𝐵1 , . . . , 𝐵𝑛}
is a conjunction of 𝐵𝑖s which are each either a positive literal (e.g., 𝑆1(𝑣1, 𝑣2) in 𝑐𝑙2),

1https://souffle-lang.github.io/program
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a negative literal (e.g., ¬ 𝑆2(𝑣1) in 𝑐𝑙2) or a constraint (e.g., 𝑣2 = 2 in 𝑐𝑙3). A variable
occurring only once in a rule (e.g., 𝑣2 in 𝑐𝑙2) could be conventionally replaced by an
anonymous variable denoted as “_”.

We say a rule is normal if it has form “𝐻 : − 𝐵1 , . . . , 𝐵𝑛 .”. Normal rules with a
common head 𝐻 could be abbreviated as a single-line rule whose head is 𝐻 and whose
body is a disjunction that joins conjunctions, each of which expresses the body of a
normal rule, by “;”s. Simply put, a single-line rule of form “𝐻 :− 𝐵1; . . . ;𝐵𝑛 .” is a short
expression of 𝑛 rules “𝐻 :− 𝐵1.” , . . . , “𝐻 :− 𝐵𝑛 .”. For instance, we can rewrite 𝑐𝑙2 and
𝑐𝑙3 as 𝑐𝑙23 as below:

𝑐𝑙23 𝑉 (𝑣1) : − 𝑆1(𝑣1, 𝑣2) , ¬ 𝑆2(𝑣1) ; 𝑆1(𝑣1, 𝑣2) , 𝑣2 = 2.

To ensure that the set of all facts derived from 𝑃 is finite, 𝑃 needs to satisfy safety

conditions [27]. If we convert all rules in 𝑃 to normal form, for each rule 𝑟 of the form
“𝐻 : − 𝐵”,

1. Each variable appearing in 𝐻 must also appear in 𝐵;

2. Each non-anonymous variable appearing in a negative literal of 𝐵 must also
appear in a positive literal of 𝐵;

3. The variable appearing in a constraint of 𝐵 must be non-anonymous and either
appear in a positive literal of 𝐵 or be bound by equality to a constant.

The semantics of a Datalog program are defined using Herbrandmodels of first-order
logic formulas [27]:

1. Each fact 𝐹 represents an atomic formula.

2. Each rule 𝑅 of the form “𝐻 : − 𝐵1 , . . . , 𝐵𝑛” represents a first-order formula of the
form “∀𝑣1, . . . , 𝑣𝑚 . 𝐵1 ∧ . . . ∧ 𝐵𝑛 → 𝐻”, where the 𝑣𝑖s are all variables occurring
in 𝑅.

For example, 𝑐𝑙1 means that there is a tuple (0, 1) in 𝑆 , and 𝑐𝑙2 means that if (𝑣1, 𝑣2)
exists in 𝑆1 and there is no (𝑣1) in 𝑆2, then (𝑣1) is in 𝑉 .
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2.3 Bidirectional Program

A bidirectional program [1] consists of a pair of transformation programs – a forward
𝑔𝑒𝑡 :: S→ V, which produces a view over a source, and a backward 𝑝𝑢𝑡 :: S × V→ S,
which reflects the changes to a view back to the source – and this pair must satisfy the
following well-behavedness properties:

∀𝑆. 𝑝𝑢𝑡 (𝑆, 𝑔𝑒𝑡 (𝑆)) = 𝑆 [GetPut]
∀𝑆,𝑉 ′. 𝑔𝑒𝑡 (𝑝𝑢𝑡 (𝑆,𝑉 ′)) = 𝑉 ′ [PutGet]

The GetPut states that if one gets a view 𝑉 = 𝑔𝑒𝑡 (𝑆) from a source 𝑆 and puts it back
again, 𝑆 will not change; the PutGet states that an updated view 𝑉 ′ can be fully
restored by applying 𝑔𝑒𝑡 over the updated source 𝑆′ = 𝑝𝑢𝑡 (𝑆,𝑉 ′).

We can use NR-Datalog∗ to construct a bidirectional program in form of a well-
behaved pair (𝑔𝑒𝑡, 𝑝𝑢𝑡). Writing a 𝑔𝑒𝑡 that defines a view over a source is easier since
it is like writing a relational query. The harder problem is to write a 𝑝𝑢𝑡 that describes
update propagation from the view back to the source. To describe such propagation,
the concept of delta relations [30, 31, 16] is used to represent changes to the source and
the view.

A delta relation Δ𝑅 over a schema R, denoted as Δ𝑅 :: ΔR, is a pair (Δ𝑅−,Δ𝑅+) of
disjoint relations of the same schema R. Δ𝑅− and Δ𝑅+ are used to capture insertions
and deletions against 𝑅, respectively. For instance, consider a relation 𝑅 = {⟨1, 2⟩, ⟨3, 4⟩}
and a corresponding updated relation 𝑅′ = {⟨1, 2⟩, ⟨5, 6⟩}, then Δ𝑅− = {⟨3, 4⟩} and
Δ𝑅+ = {⟨5, 6⟩}. We call data in 𝑅 and 𝑅′ as state-based data, and data in Δ𝑅− and Δ𝑅+

as delta-based data. Since a relation appearing in a bidirectional program could be
either a source or a view, we could use different notations to express source delta and
view delta relations. From here on, we denote Δ𝑅 ≡ (Δ𝑅−,Δ𝑅+) :: ΔR as a source delta
relation corresponding to a source relation 𝑅 :: R, and 𝛿𝑅 ≡ (𝛿𝑅−, 𝛿𝑅+) :: 𝛿R as a view
delta relation corresponding to a view relation 𝑅 :: R.

The following two examples describe writing bidirectional programs in NR-Datalog∗.

Example 2.1. Given a source 𝑆 = {⟨1, 2⟩, ⟨3, 4⟩} of schema 𝑆 (𝑁𝑢𝑚, 𝑁𝑢𝑚). We can
define a view𝑉 = {⟨1⟩, ⟨3⟩} of schema𝑉 (𝑁𝑢𝑚) by writing a program 𝑔𝑒𝑡 = {𝑟𝑒1} where

𝑟𝑒1 𝑉 (𝑣1) : − 𝑆 (𝑣1, 𝑣2).
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If the view is changed to 𝑉 ′ = {⟨1⟩, ⟨5⟩}, to propagate the update, we can write a
program 𝑝𝑢𝑡 = {𝑟𝑒𝑖 }6𝑖=1 that takes 𝑆 and 𝑉 ′ as input where

𝑟𝑒2 𝛿𝑉 −(𝑣1) : − 𝑉 (𝑣1) , ¬ 𝑉 ′(𝑣1).
𝑟𝑒3 𝛿𝑉 +(𝑣1) : − 𝑉 ′(𝑣1) , ¬ 𝑉 (𝑣1).
𝑟𝑒4 Δ𝑆−(𝑣1, 𝑣2) : − 𝑉 −(𝑣1) , 𝑆 (𝑣1, 𝑣2).
𝑟𝑒5 Δ𝑆+(𝑣1, 𝑣2) : − 𝑉 +(𝑣1) , ¬ 𝑆 (𝑣1, 𝑣2) , 𝑣2 = 0.
𝑟𝑒6 𝑆′(𝑣1, 𝑣2) : − 𝑆 (𝑣1, 𝑣2), ¬ Δ𝑆−(𝑣1, 𝑣2) ; Δ𝑆+(𝑣1, 𝑣2).

The evaluation of the 𝑝𝑢𝑡 is as follows: deriving 𝑉 = {⟨1⟩, ⟨3⟩} with 𝑔𝑒𝑡 ; computing
delta relations against 𝑉 (𝛿𝑉 − = {⟨3⟩}, 𝛿𝑉 + = {⟨5⟩}); computing delta relations against
𝑆 (Δ𝑆− = {⟨3, 4⟩}, 𝛿𝑆+ = {⟨5, 0⟩}); and outputting 𝑆′ = {⟨1, 2⟩, ⟨5, 0⟩}.

To verify the well-behavedness of the pair (𝑔𝑒𝑡, 𝑝𝑢𝑡), we can either manually
check if it satisfies two laws GetPut and PutGet or adapt an automated tool named
Birds [16]. Birds enables users to write a view update program 𝑝𝑢𝑡 using delta
relations. In certain cases, it can derive a corresponding query 𝑔𝑒𝑡 and validate the
well-behavedness of these two programs through internal logic inferences. If users
write not only 𝑝𝑢𝑡 but also 𝑔𝑒𝑡 , Birds will expand the logic inference with the rules of
𝑔𝑒𝑡 and perform the validation of well-behavedness.

The changes against the view may not uniquely determine the changes against the
source, and in the worst case, it could be impossible to propagate the changes to the
view back to the source [2, 21, 22, 23]. For instance, if we modify rule 𝑟𝑒5 with constraint
𝑣2 = 0 to rule 𝑟𝑒∗5 with constraint 𝑣2 = 1, the program 𝑝𝑢𝑡∗ := 𝑝𝑢𝑡 − {𝑟𝑒5} ∪ {𝑟𝑒∗5 }
returns 𝑆′∗ = {⟨1, 2⟩, ⟨5, 1⟩} and also forms with the given 𝑔𝑒𝑡 = {𝑟𝑒1} a well-behaved
bidirectional program. Using appropriate examples ((𝑆,𝑉 , 𝑆′,𝑉 ′) or (𝑆,𝑉 , 𝑆′∗,𝑉 ′)) can
guide a correct construction of a well-behaved pair (𝑔𝑒𝑡, 𝑝𝑢𝑡). ▲

Example 2.2. Suppose that we have written a program 𝑔𝑒𝑡 = {𝑟𝑏1 } to define a view
𝑉 = {⟨1⟩, ⟨3⟩} of schema 𝑉 (𝑁𝑢𝑚) over a source 𝑆 = {⟨1, 2⟩, ⟨3, 4⟩} of schema 𝑆 (𝑁𝑢𝑚,

𝑁𝑢𝑚).
𝑟𝑏1 𝑉 (𝑣1) : − 𝑆 (𝑣1, 𝑣2).

If the view is changed to 𝑉 ′ = {⟨1⟩, ⟨5⟩}, to propagate the update, we can write a
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program 𝑝𝑢𝑡 = {𝑟𝑏2 , 𝑟𝑏3 , 𝑟𝑏4 } that takes 𝑆 and 𝑉 ′ as input where

𝑟𝑏2 Δ𝑆−(𝑣1, 𝑣2) : − 𝑆 (𝑣1, 𝑣2) , ¬ 𝑉 ′(𝑣1).
𝑟𝑏3 Δ𝑆+(𝑣1, 𝑣2) : − 𝑉 ′(𝑣1) , ¬ 𝑆 (𝑣1, 𝑣2) , 𝑣2 = 0.
𝑟𝑏4 𝑆′(𝑣1, 𝑣2) : − 𝑆 (𝑣1, 𝑣2), ¬ Δ𝑆−(𝑣1, 𝑣2) ; Δ𝑆+(𝑣1, 𝑣2).

Each rule for computing Δ𝑆 (e.g. 𝑟𝑏2 and 𝑟𝑏3 ) describes a view update strategy. A run of
𝑝𝑢𝑡 evaluates Δ𝑆− = {⟨3, 4⟩} and Δ𝑆+ = {⟨5, 0⟩}, then outputs 𝑆′ = {⟨1, 2⟩, ⟨5, 0⟩}. We
can either manually verify the well-behavedness or adapt Birds [16] to perform the
verification.

Note in a special point that the 𝑝𝑢𝑡 here is written in a different way than the
corresponding one in Example 2.1. In the current example, 𝑝𝑢𝑡 computes Δ𝑆 from 𝑆

and 𝑉 ′ (e.g. 𝑟𝑏2 , 𝑟𝑏3 ) rather than from 𝑆 and 𝛿𝑉 (e.g. 𝑟𝑒1, . . . , 𝑟𝑒5) where 𝛿𝑉 is computed
from 𝑉 ′ and the result 𝑉 of applying the given 𝑔𝑒𝑡 . Both ways of writing allow good
programs to be written. ▲

2.4 Functional Dependency: Constraints & Effects

A functional dependency over R is written as 𝑋 → 𝑌 :: R, where 𝑋 ⊆ R and 𝑌 ⊆ R
refer to the left-hand side (lhs) and right-hand side (rhs) of the FD, respectively. If
𝑋 → 𝑌 :: R and 𝑅 :: R, we say that 𝑅 satisfies constraints 𝑋 → 𝑌 , written 𝑅 |= 𝑋 → 𝑌 ,
if 𝑡1 [𝑋 ] = 𝑡2 [𝑋 ] implies 𝑡1 [𝑌 ] = 𝑡2 [𝑌 ] for all 𝑡1, 𝑡2 ∈ 𝑅. It is conventional to write FD
𝐴 → 𝐵𝐶 to mean FD {𝐴} → {𝐵,𝐶}. Let F be a set of FDs over R, written F :: R.
We write 𝑅 |= F to mean that ∀𝑋 → 𝑌 ∈ F . 𝑅 |= 𝑋 → 𝑌 . We can normalize
𝑋 → 𝑌 as {𝑋 → 𝐴𝑖}𝐴𝑖∈𝑌 . To simplify the presentation later, we sometimes write
𝑅(𝐴 : A, 𝐵 : B,𝐶 : C, F = {𝐴 → 𝐵}) for 𝑅 :: 𝐴𝐵𝐶𝐷 , F = {𝐴 → 𝐵}, F :: 𝐴𝐵𝐶𝐷 and
𝑅 |= 𝐹 .

Bohannon et al. [7] introduced a special structure of FDs called a tree form, in
which they can construct properly bidirectional programs with FDs. Given an FD set
F , let 𝑉F = {𝑋 | 𝑋 → 𝑌 ∈ F } ∪ {𝑌 | 𝑋 → 𝑌 ∈ F } and 𝐸F = {(𝑋,𝑌 ) | 𝑋 → 𝑌 ∈ F };
then, we say F is in tree form if the directed graph 𝑇F = (𝑉F , 𝐸F ) is a forest and no
distinct nodes of 𝑇𝐹 have common attributes. If F is in tree form, we write 𝑟𝑜𝑜𝑡𝑠 (F )
and 𝑙𝑒𝑎𝑣𝑒𝑠 (F ) for the sets of root and leaf nodes in 𝑇F , respectively. Every F in tree
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form has a unique canonical tree from F ∗ where 𝑠𝑖𝑧𝑒 (𝑋 ) = 1 for all 𝑋 ∈ 𝑙𝑒𝑎𝑣𝑒𝑠 (F ).
To calculate the effects of FDs putting changes from a view to a source, Bohannon

et al. [7] introduced revision operators. Given an FD set F :: R and relations 𝑅1, 𝑅2 :: R
such that 𝑅1 |= F , a relation revision 𝑅1 ←F 𝑅2 [7] computes a new relation 𝑅∗1 :: R
similar to 𝑅1 whose tuples do not conflict with those of 𝑅2 on F . For example, given
R = 𝐴𝐵, F = {𝐴 → 𝐵}, 𝑅1 = {⟨1, 𝑏2⟩, ⟨2, 𝑏1⟩, ⟨3, 𝑏3⟩}, and 𝑅2 = {⟨2, 𝑏2⟩, ⟨4, 𝑏4⟩}, we
have that 𝑅1 ←F 𝑅2 computes 𝑅∗1 = {⟨1, 𝑏2⟩, ⟨2, 𝑏2⟩, ⟨3, 𝑏3⟩}.

The relation revision operation 𝑅1 ←F 𝑅2 is expressed by a set of tuple revisions
𝑡1 ←F 𝑅2, where 𝑡1 ∈ 𝑅1, 𝑅1 :: R, 𝑅2 :: R, and F :: R is an FD set in tree form such that
𝑅1 |= F .

𝑅1 ←F 𝑅2 = {𝑡1 ←F 𝑅2 | 𝑡1 ∈ 𝑅1}

Tuple revision 𝑡1 ←F 𝑅2 [7] can be defined by recursion over the forest 𝑇F that
indicates the update propagation from the roots to the leaves:

𝑡1 ←∅ 𝑅2 = 𝑡1

𝑡1 ←{𝑋→𝑌 }∪F ′ 𝑅2 =


(𝑡1 ↼ 𝑡2 [𝑌 ]) ←F ′ 𝑅2 if ∃ 𝑡2 ∈ 𝑅2. 𝑡1 [𝑋 ] = 𝑡2 [𝑋 ]

𝑡1 ←F ′ 𝑅2 otherwise
where 𝑋 ∈ 𝑟𝑜𝑜𝑡𝑠 (F ) and F = {𝑋 → 𝑌 } ∪ F ′

If F is empty, tuple revision simply returns 𝑡1. Otherwise, there must be at least
one FD 𝑋 → 𝑌 where 𝑋 ∈ 𝑟𝑜𝑜𝑡𝑠 (𝑇F ). If 𝑡1 and some 𝑡2 ∈ 𝑅2 have the same values
against 𝑋 , we return a copy of 𝑡1 whose 𝑡1 [𝑌 ] has been updated according to 𝑡2 [𝑌 ]
(written as 𝑡1 ↼ 𝑡2 [𝑌 ]); otherwise, 𝑡1 is returned. The remaining FDs continue to be
considered recursively.

From the definitions of revisions, we have:

𝑅1 ←∅ 𝑅2 = 𝑅1

𝑅1 ←{𝑋→𝑌 }∪F ′ 𝑅2 = (𝑅1 ←{𝑋→𝑌 } 𝑅2) ←F ′ 𝑅2

2.5 View Update

The view update problem [2] (Figure 2.2) could be considered as the starting origin of
bidirectional transformations and bidirectional programs. Given a query 𝑔𝑒𝑡 that
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Figure 2.2: View update problem & bidirectional program

defines a view 𝑣 from a source databases 𝑠 , the view update problem is to derive an
update translator 𝑇 that maps each update 𝑢 on 𝑣 to an update 𝑇 (𝑢) on 𝑠 such that
𝑢 (𝑣) = 𝑔𝑒𝑡 (𝑇 (𝑢) (𝑠)).

Constructing bidirectional programs is a common practical solution for the view
update problem, which has been investigated for decades [2, 32, 21, 22, 23, 7, 8, 31, 16].
The view update problem proved to be ambiguous because the update to the view may
not uniquely determine the update to the source, and in the worst case, it could be
impossible to propagate the update to the view back to the source. Keller [21, 22]
presented a complete list of update strategies that satisfy certain criteria for a large
class of selection, projection and join views on BCNF relations, with the choice of
strategies being made through a dialog at the view definition time. Larson [23] listed
update rules for simple and nested views involving set difference, union, intersection,
selection, projection and join views by using both syntactic and semantic knowledge
at the view definition time and the view update time. Bohannon [7] introduced a
𝑔𝑒𝑡-based bidirectional query language (relational lens) targeting selection, projection
and join queries with the use of FDs. Horn [31] made relational lenses more practical by
performing incrementalization through a series of delta relations. Tran [16] proposed a
language-based approach and system called Birds, based on the theory of 𝑝𝑢𝑡-based
bidirectional transformations, to construct bidirectional programs in a fragment of
Datalog as a set of rules of delta relations and verifying well-behavedness.

In our work, the templates of minimal update strategies are designed based on the
works of Keller [21, 22] and Larson [23], while the templates encoding the effects of
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Figure 2.3: Three key dimensions of a typical program synthesis problem

FDs are inspired by the works of Bohannon [7] and Horn [31].

2.6 Program Synthesis

Program synthesis is the task of synthesizing programs in the underlying programming
language that satisfy the user intent expressed in the form of some specification or
constraints. Unlike compilers which take as input programs written in a high-level
code and normally convert them to low-level machine code using syntax-directed
translations, synthesizers typically perform some kind of search over the space of
programs to generate a program that is consistent with diverse constraints [28]. To this
day, program synthesis is applied successfully in various fields, including relational
databases, software development, data cleaning, and biology [29].

A synthesizer is mainly characterized by three key dimensions (Figure 2.3): the
kind of constraints that express user intent, the space of programs over which it
searches, and the search technique it employs [28, 29].

The user intent can be expressed in a variety of forms such as logical specification
which represents logical relations between inputs and outputs of a program, natural
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language descriptions, a set of input-output examples, demonstrations (traces) which
describe, step-by-step, how the program should behave on a given input, and higher-
order, inefficient or partial programs [28].

The search space can be over imperative or functional programs with possible
restrictions on the control structure or the operator set, or over restricted models
of computations such as regular or context-free grammar. It needs a good balance
between expressiveness and efficiency. On one hand, the program space should be
expressive enough to include programs that users care about. On the other hand, the
program space should be restrictive enough so that it is amenable to efficient search,
and it should be over a domain of programs that are amenable to efficient reasoning.
The program space can be restricted to a subset of existing programming language or
to a specifically designed domain-specific language [28].

The search technique can be based on enumerative search, version space algebra,
logical reasoning based techniques, machine learning based techniques, or some
combination of them [28]. The enumerative search techniques enumerate programs
in the search space in some order and check if a program satisfies the synthesis
constraints. Instead of enumerating programs one-by-one, version space algebra
techniques enumerate programs by hypothesis/version spaces which basically group
multiple programs satisfying some condition together. Logical reasoning based
techniques reduce the program synthesis to the problem of solving an SAT/SMT
formula and let an off-the-shelf SAT/SMT solver efficiently explore the search space.
Machine learning based techniques learn a probability distribution over the space of
programs that are more likely to be consistent with the given specification.

2.7 Existing Example-Based Synthesis Approaches

2.7.1 Synthesis of Bidirectional Programs

There is a body of work on the synthesis of bidirectional programs [14, 13, 15, 18].
These works all target the synthesis of well-behaved bidirectional programs written in
a certain bidirectional language. The embedded well-behavedness properties of the
underlying bidirectional languages ensure that the output programs are implicitly
well-behaved.
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Given data format specifications in the form of regular expressions and input-output
examples, Optician [14, 13, 15] synthesizes bidirectional regular expressions written in
Boomerang [8] using type-directed synthesis algorithms over the space of well-behaved
combinators. The given examples of Optician are basically a pair of an updated view
and an updated source, so the synthesized programs are relatively close to bijections.
Meanwhile, the user-provided examples in our approach require more information
about the original data, which helps to guide the synthesis toward finding common
bidirectional transformations. In addition, the synthesis algorithms of Optician are
limited to regular expressions and cannot be adapted to relations and query languages.

SynBit [18] synthesizes bidirectional programs written in HOBiT [33] from the
corresponding unidirectional code of 𝑔𝑒𝑡 plus a few input-output examples of 𝑝𝑢𝑡 . It
sketches the code of 𝑝𝑢𝑡 with some holes based on the given code of 𝑔𝑒𝑡 , then fills the
holes by exploiting the properties of bidirectional programs. The base language -
HOBiT, however, is a tree-oriented language that is not appropriate for transformations
commonly performed on relations [7]. Although sharing the same thoughts of finding
𝑝𝑢𝑡 when 𝑔𝑒𝑡 is specified, our work is different from SynBit. SynBit ensures well-
behavedness by taking advantage of the properties of the underlying bidirectional
language, whereas we employ well-designed templates of well-behaved bidirectional
programs on relations, but uses a non-bidirectional language. While SynBit sketches a
whole program of 𝑝𝑢𝑡 with some incomplete parts that are later filled in, we attempt to
identify smaller, atomic parts and compose them to create a bigger program.

2.7.2 Relational Program Synthesis

The concept of relational program synthesis was first introduced in [19], aiming to
discover one or more programs that collectively meet a relational specification. Rel-
ish [19] is a rare approach to solve this problem. It only allows relational specifications
with functions 𝑓1, . . . , 𝑓𝑛 of the form ∀®𝑥 . 𝜙 ( ®𝑥) where 𝜙 is a quantifier-free formula
with uninterpreted functions 𝑓1, . . . , 𝑓𝑛. The well-behavedness properties, GetPut
and PutGet satisfy that form. It combines the counterexample-guided inductive
synthesis (CEGIS) framework with a bottom-up search engine over a relational version
space. The key idea is to build a relational version space in the form of a hierarchical
tree automaton from a counterexample of a ground formula to encode all tuples of
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programs that satisfy the given specification. Adapting Relish to our problem is
challenging due to the complex structures of relations and tabular examples, which
cause the automata space to grow dramatically. Instead of building a relational version
space, we use well-behaved templates to keep the relational specification.

2.7.3 ProSynth

ProSynth [20] is a state-of-the-art synthesis tool for synthesizing a Datalog program
𝑃 , which is consistent with one input–output example 𝐸 on relations. It supports
a synthesis procedure “ProSynth(S, E,P𝑎𝑙𝑙 )” where E = (𝐼 ,𝑂) is a tabular example
containing input and output tuples, each matching an appropriate schema in S, and
P𝑎𝑙𝑙 = {𝑟1, . . . , 𝑟𝑛} is a fixed set of candidate rules. ProSynth reduces the synthesis to
a rule selection problem, i.e., selecting P𝑠 ⊆ P𝑎𝑙𝑙 such that P𝑠 (𝐼 ) ≡ 𝑂 .

ProSynth uses counterexample-guided inductive synthesis [34] with an SAT
solver to suggest a selection of rules and a Datalog solver named Soufflé [35] to check
whether the selection is consistent with the given example E. Each rule 𝑟𝑖 in 𝑃𝑎𝑙𝑙 is
associated with a Boolean variable 𝑏𝑟𝑖 that describes whether 𝑟𝑖 is selected or not. A
synthesis constraint 𝜑 = 𝑓 (𝑏𝑟1, . . . , 𝑏𝑟𝑛 ) is kept up to date during the synthesis process.
While 𝜑 is satisfiable, its variable 𝑏𝑟𝑖 would be assigned to True or False by the SAT
solver, which corresponds to whether or not 𝑟𝑖 is selected in P𝑠 . Soufflé evaluates the
selection on the given input tuples 𝐼 , checks the result with the expected output tuples
𝑂 . If a match occurs, the current 𝑃𝑠 will be returned immediately. Otherwise, 𝜑 will be
updated with some new constraints. If the SAT solver reports that 𝜑 is unsatisfiable,
ProSynth returns None for no solution.

The original ProSynth only returns a solution if one exists. We later will slightly
adapt it into “ProSynth+(S, E,P𝑎𝑙𝑙 , 𝜑)” that can return a pair of (𝑃𝑠, 𝜑) for further
purposes like searching other programs. We will use ProSynth+ as the name for both
the adapted algorithm and the adapted tool.

One of the most difficult challenges in efficiently using ProSynth is the preparation
of a “good” P𝑎𝑙𝑙 for a specific task. In fact, experiments against ProSynth in [20] use
two approaches to generating candidate rules: (1) instantiating meta-rules or templates

(e.g., 𝐻0(𝑥, 𝑧) : − 𝐻1(𝑥,𝑦) , 𝐻2(𝑦, 𝑧). where each 𝐻𝑖 is a hole that could be replaced
by a relation name) that describe common rules in the task, and (2) enumerating
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all sequences of length 𝑘 ≤ 3 of literals in the body of meta-rules. P𝑎𝑙𝑙 could be
chosen randomly with a fixed size if the number of generated rules is too large. The
experiments only prepare candidate rules with no constants from predefined templates
along with the names and schemas of relations.

ProSynth cannot trivially and directly synthesize a well-behaved pair of (𝑔𝑒𝑡, 𝑝𝑢𝑡)
on relations. Templates for a practical query 𝑔𝑒𝑡 are quite familiar and well known, but
such things for a practical view update 𝑝𝑢𝑡 are rather vague. Ideally, by considerable
efforts for preparing candidates from the common space of Datalog rules, we can use
ProSynth to separately synthesize a 𝑔𝑒𝑡 and a 𝑝𝑢𝑡 . However, this approach cannot
guarantee the well-behavedness between the 𝑔𝑒𝑡 and the 𝑝𝑢𝑡 , since there is no clear
relationship between the search spaces (candidate rules) of the two programs.

Example 2.3. To specifically observe the challenge faced by ProSynth, let us consider
the problem of synthesizing a well-behaved bidirectional program (𝑔𝑒𝑡, 𝑝𝑢𝑡) satisfying
the example given in Table 1.2. With two examples of 𝑔𝑒𝑡 (Table 1.2a→ Table 1.2b
and Table 1.2a’→ Table 1.2b’) and one example of 𝑝𝑢𝑡 ((Table 1.2a, Table 1.2b’)→
Table 1.2a’), ProSynth may be adapted independently to synthesize a 𝑔𝑒𝑡 = 𝑔𝑒𝑡𝑖 = {𝑟 𝑖1}
and a 𝑝𝑢𝑡 = 𝑝𝑢𝑡𝑖 = {𝑟 𝑖2} where

𝑟 𝑖1 𝑉 (𝑣0, 𝑣1, 𝑣2) : − 𝑆 (𝑣0, 𝑣1, 𝑣2, 𝑣3) , 𝑣2 = “𝑇 ”.
𝑟 𝑖2 𝑆′(𝑣0, 𝑣1, 𝑣2, 𝑣3) : − 𝑆 (𝑣0, _, 𝑣2, 𝑣3) , 𝑉 ′(𝑣0, 𝑣1, _).

Unfortunately, (𝑔𝑒𝑡𝑖, 𝑝𝑢𝑡𝑖) is not well-behaved. Indeed, for instance, if𝑉 ′ contains tuple
⟨3, 𝑏2,𝑇 ⟩, then 𝑝𝑢𝑡𝑖 (𝑆,𝑉 ′) will evaluate 𝑆′ excluding any tuples with an 𝐴-value of
3. As a consequence, we cannot recover the new 𝑉 ′ by applying 𝑔𝑒𝑡𝑖 on the newly
evaluated 𝑆′, which violates one of the well-behavedness properties. ▲

Example 2.4. To demonstrate another failure of ProSynth in finding a well-behaved
pair (𝑔𝑒𝑡, 𝑝𝑢𝑡), we utilize a concrete example shown in Table 2.1, where 𝑆1 and 𝑆2 are
sources, 𝑉 is a view, and all relations share the same schema of (𝑋,𝑌, 𝑍 ).

From two examples of 𝑔𝑒𝑡 (i.e., {Table 2.1a, Table 2.1b}→ Table 2.1c and {Table 2.1a’,
Table 2.1b’}→ Table 2.1c’), and one example of 𝑝𝑢𝑡 (i.e., ({Table 2.1a, Table 2.1b},
Table 2.1c’)→ {Table 2.1a’, Table 2.1b’}), ProSynth can independently find a 𝑔𝑒𝑡 = {𝑟𝑔1 }
where

𝑟
𝑔

1 𝑉 (𝑥,𝑦, 𝑧) : − 𝑆1(𝑥,𝑦, _) , 𝑆2(_, 𝑦, 𝑧) .
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Table 2.1: An example of (𝑔𝑒𝑡, 𝑝𝑢𝑡) provided to ProSynth

(2.1a) 𝑆1

X Y Z
x1 y1 z1

(2.1b) 𝑆2

X Y Z
x2 y1 z1

(2.1c) 𝑉

X Y Z
x1 y1 z1

(2.1a’) 𝑆 ′1
X Y Z
x1 y1 z1
x2 y2 z1

(2.1b’) 𝑆 ′2
X Y Z
x2 y1 z1
x2 y2 z2

(2.1c’) 𝑉 ′

X Y Z
x1 y1 z1
x2 y2 z2

and a 𝑝𝑢𝑡 = {𝑟𝑝1 , 𝑟
𝑝

2 , 𝑟
𝑝

3 , 𝑟
𝑝

4 } where

𝑟
𝑝

1 𝑆′1(𝑥,𝑦, 𝑧) : − 𝑉 ′(𝑥,𝑦, 𝑧) , 𝑆1(𝑥,𝑦, 𝑧).
𝑟
𝑝

2 𝑆′1(𝑥,𝑦, 𝑧) : − 𝑉 ′(𝑥,𝑦, _) , 𝑆2(𝑥, _, 𝑧).
𝑟
𝑝

3 𝑆′2(𝑥,𝑦, 𝑧) : − 𝑆2(𝑥,𝑦, 𝑧).
𝑟
𝑝

4 𝑆′2(𝑥,𝑦, 𝑧) : − 𝑉 ′(𝑥,𝑦, 𝑧) , ¬ 𝑆1(𝑥,𝑦, 𝑧).

These two programs are not well-behaved because they violate the PutGet law: If we
insert a new tuple ⟨𝑥0, 𝑦0, 𝑧0⟩ to𝑉 ′ and run the 𝑝𝑢𝑡 , then 𝑆′1 = {⟨𝑥1, 𝑦1, 𝑧1⟩, ⟨𝑥2, 𝑦2, 𝑧1⟩}
and 𝑆′2 = {⟨𝑥2, 𝑦1, 𝑧1⟩, ⟨𝑥2, 𝑦2, 𝑧2⟩, ⟨𝑥0, 𝑦0, 𝑧0⟩}. However, a run of the 𝑔𝑒𝑡 over the new
𝑆′1 and 𝑆′2 does not produce any ⟨𝑥0, 𝑦0, 𝑧0⟩ in 𝑉 ′. ▲

2.7.4 Template-Based Synthesis

Templates are commonly used to guide the search in program synthesis [36, 37, 38, 20].
Zaatar [37] encodes templates as SMT formulas whose solutions produce the expected
program. ALPS [38] and ProSynth [20] search for the target program as a subset of
templates. Template-based synthesizers depend greatly on the quantity and quality of
templates. In this thesis, we provide a set of templates for synthesizing atomic view
update programs 𝑝𝑢𝑡𝑎s given atomic queries 𝑔𝑒𝑡𝑎s. The provided templates encode the
existing minimal-effect view update strategies and the constraints and effects imposed
by FDs.
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2.7.5 Datalog Synthesis

There has been significant work on automatically synthesizing Datalog programs
from examples [38, 39, 20, 40]. Alps [38] adopts a bidirectional search strategy with
top-down and bottom-up refinement operators over the syntax of Datalog programs to
traverse the space of possible programs efficiently. DiffLog [39] and ProSynth [20]
perform the synthesis by solving the equivalent rule selection problems from the given
candidate rules. While DiffLog minimizes the difference between the weighted set of
candidate rules and the reference output using numerical optimization, ProSynth
uses query provenance to scale the CEGIS procedure and employs an SAT solver for
constraint solving. GenSynth [40] learns Datalog programs from examples without
requiring any templates, by introducing an evolutionary search strategy that mutates
candidate programs and evaluates their fitness on examples using a Datalog solver.
While we aim at the synthesis of well-behaved bidirectional programs (𝑔𝑒𝑡, 𝑝𝑢𝑡) on
relations, those works only target the synthesis of unidirectional programs. They
cannot guarantee the well-behavedness of two independently synthesized programs,
𝑔𝑒𝑡 and 𝑝𝑢𝑡 . We later would adapt ProSynth as the unidirectional synthesizer inside
our systems since ProSynth proved to be more effective than Alps and DiffLog [20].
We also observed that the well-behaved templates for updating the atomic views
are small-sized and could be categorizable, so we did not consider any dedicated
template-free algorithms like GenSynth.

2.7.6 Query Synthesis

Many studies have been proposed to synthesize relational queries from input–output
tables [41, 42, 38, 43, 44, 20, 45, 40]. SQLSynthesizer [41] employed an adaptive
decision tree algorithm to build suitable predicates in the where clauses of SQL
queries. SqlSol [43] used an off-the-shelf modern SMT solver to construct a whole
query by encoding SQL components and tables into logic constraints. Scythe [42]
enumerated abstract queries in a bottom-up manner and instantiated each query by
encoding tables in bit vectors. PatSql [45] synthesized a SQL query by employing
a form of constraint and its top-down propagation mechanism for efficient sketch
completion. While SQLSynthesizer [41], SqlSol [43], Scythe [42] and PatSql [45]
specialize in synthesizing SQL queries, Alps [38], ProSynth [20] and GenSynth[40]
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target Datalog query synthesis. Alps and ProSynth are template-guided synthesizers,
whereas GenSynth synthesizes programs without templates. These synthesizers
cannot directly and efficiently synthesize well-behaved bidirectional programs on
relations and cannot work successfully with examples containing internal FDs.

In fact, the primary limitation of current approaches to the synthesis of bidirectional
programs on relations is their inability to effectively handle the complexity of relations
and query languages, while also maintaining the desired well-behaved properties of
bidirectional programs. They also cannot directly cope with examples having internal
dependencies like functional dependencies.

In the next chapter, we will present a novel approach to synthesize well-behaved
bidirectional programs on relations from examples with functional dependencies.
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3
A Proposed Approach to Synthesizing
Bidirectional Programs on Relations

Existing synthesizers for bidirectional programs do not work on the complex domains
of relations and query languages. Other example-based synthesizers are only unidirec-
tional and cannot guarantee the well-behavedness of two programs 𝑔𝑒𝑡 and 𝑝𝑢𝑡 . They
also cannot directly cope with tables containing internal functional dependencies.

In this chapter, after we define our target synthesis problem of bidirectional
programs on relations from examples with functional dependencies in Section 3.1,
we propose a novel approach to solving that problem in Section 3.2, and describe a
high-level algorithm corresponding to the proposed approach in Section 3.3.

3.1 Problem Definition

Definition 3.1 (Synthesis problem of bidirectional programs on relations). Given a

specification (S, E) where
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• S = (S,V) where

– S = {S1, . . . , S𝑛} includes 𝑛 schemas of source relations 𝑆1, . . . , 𝑆𝑛 correspond-

ingly associated with 𝑛 sets of functional dependencies F𝑆1, . . . , F𝑆𝑛 ,

– V is a schema of a view 𝑉

• E = (𝑇𝑠𝑜𝑢𝑟𝑐𝑒,𝑇𝑣𝑖𝑒𝑤 ,𝑇𝑠𝑜𝑢𝑟𝑐𝑒′,𝑇𝑣𝑖𝑒𝑤 ′) is an example where

– 𝑇𝑠𝑜𝑢𝑟𝑐𝑒 and𝑇𝑠𝑜𝑢𝑟𝑐𝑒′ include 𝑛 original source tables and 𝑛 updated source tables,

respectively, each agreeing with an appropriate schema in S,

– 𝑇𝑣𝑖𝑒𝑤 and 𝑇𝑣𝑖𝑒𝑤 ′ include one original view table and one updated view table,

respectively, each agreeing with schema V,

the problem is to synthesize a pair (𝑔𝑒𝑡, 𝑝𝑢𝑡) satisfying the example E and two well-

behavedness laws GetPut and PutGet, which is denoted as

Prob(𝑠𝑐ℎ𝑒𝑚𝑎 =S, 𝑒𝑥𝑎𝑚𝑝𝑙𝑒 =E)1.

■

Example 3.2. Let us consider

S1 = (
S ={
staffs(sid:SID,name:NAME,city:CITY,active:ACTIVE,Fstaffs = ∅),

customers(cid:CID,name:NAME,city:CITY,Fcustomers = ∅)

},
V =tokyoac(name:NAME),

)

consisting of the schemas of the sources staffs and customers, as well as the
schema of the view tokyoac, all of which were mentioned in Section 1.2. There
are no functional dependencies associated with the sources staffs and customers.

1Keyword-arguments (e.g., 𝑠𝑐ℎ𝑒𝑚𝑎 =, 𝑒𝑥𝑎𝑚𝑝𝑙𝑒 =) are used to clearly identify arguments of a structure.
They can be omitted for brevity (e.g., Prob(S, E)).
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We sometimes use a relation name as a shorthand for a schema for brevity, e.g.,
S1 = ({staffs, customers}, tokyoac).

Table 1.1 provides an example

E1 = (𝑇𝑠𝑜𝑢𝑟𝑐𝑒 ={1.1𝑎, 1.1𝑏},𝑇𝑣𝑖𝑒𝑤 ={1.1𝑐},𝑇𝑠𝑜𝑢𝑟𝑐𝑒′ ={1.1𝑎′, 1.1𝑏′},𝑇𝑣𝑖𝑒𝑤 ′ ={1.1𝑐′})

Problem Prob(S1, E1) is to synthesize a well-behaved pair of NR-Datalog∗ programs
(𝑔𝑒𝑡, 𝑝𝑢𝑡) consistent with E1. ▲

Example 3.3. Let us see another problem in which nonempty functional dependencies
are given. Suppose that we provide a specification (S2, E2) where

S2 = (
S = {𝑆 (𝐴 : A, 𝐵 : B,𝐶 : C, 𝐷 : D, F𝑆 = {𝐴→ 𝐵,𝐴→ 𝐷})},
V = 𝑉 (𝐴 : A, 𝐵 : B,𝐶 : C),

)

E2 = (𝑇𝑠𝑜𝑢𝑟𝑐𝑒 ={1.2𝑎},𝑇𝑣𝑖𝑒𝑤 ={1.2𝑏},𝑇𝑠𝑜𝑢𝑟𝑐𝑒′ ={1.2𝑎′},𝑇𝑣𝑖𝑒𝑤 ′ ={1.2𝑏′})

In this specification, S2 consists of a schema of the source 𝑆 associated with a
nonempty set of FDs F𝑆 , and a schema of the view 𝑉 , while E2 consists of original and
updated tables listed in Table 1.2.

Problem Prob(S2, E2) is to synthesize a well-behaved pair of NR-Datalog∗ programs
(𝑔𝑒𝑡, 𝑝𝑢𝑡) consistent with E2. ▲

Given a specification (S, E), from the example E, we have two examples of 𝑔𝑒𝑡

E𝑔𝑒𝑡 := 𝑇𝑠𝑜𝑢𝑟𝑐𝑒 → 𝑇𝑣𝑖𝑒𝑤

E′𝑔𝑒𝑡 := 𝑇𝑠𝑜𝑢𝑟𝑐𝑒′ → 𝑇𝑣𝑖𝑒𝑤 ′

and one example of 𝑝𝑢𝑡

E𝑝𝑢𝑡 := (𝑇𝑠𝑜𝑢𝑟𝑐𝑒,𝑇𝑣𝑖𝑒𝑤 ′) → 𝑇𝑠𝑜𝑢𝑟𝑐𝑒′

The example E′𝑔𝑒𝑡 is a consequence of the PutGet law which says that the updated
view could be recovered by applying 𝑔𝑒𝑡 on the updated source.
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Figure 3.1: A proposed approach to synthesizing bidirectional programs on relations

Example E can describe one or many small update strategies, each involving the
deletion or insertion of a tuple. If a user provides a specification with many examples,
it is possible to reasonably modify values of tuples in these examples, and merge the
new examples into one “big” example called E. In this work, we simplify the problem
by considering only such a “big” example.

3.2 Approach

Following the introduction in Section 1.2, the main keywords behind our proposed
approach to synthesizing a well-behaved bidirectional program (𝑔𝑒𝑡, 𝑝𝑢𝑡) on relations
are “decomposition”, “composition”, and “templates”.

On relations, we know a 𝑔𝑒𝑡 is a query that is possibly decomposable. If we have a
set of atomic queries 𝑔𝑒𝑡𝑎 and we synthesize the corresponding atomic view update 𝑝𝑢𝑡𝑎
such that (𝑔𝑒𝑡𝑎, 𝑝𝑢𝑡𝑎) is well-behaved, then we can compose all pairs to obtain a bigger
program that is also well-behaved. Given 𝑔𝑒𝑡𝑎 , to synthesize 𝑝𝑢𝑡𝑎 such that (𝑔𝑒𝑡𝑎, 𝑝𝑢𝑡𝑎)
is well-behaved, we design templates that encode both existing minimal-effect view
update strategies for atomic queries and the constraints along with effects of functional
dependencies. The well-behavedness is embedded in these templates. With the
templates, we can generate candidate rules for 𝑝𝑢𝑡𝑎 and adapt the state-of-the-art
example-and-template-based synthesizer ProSynth to find 𝑝𝑢𝑡𝑎 .
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Figure 3.1 show our proposed approach more concretely. Given a specification
(S, E), we can easily separate out the input-output examples of 𝑔𝑒𝑡 and 𝑝𝑢𝑡 . Our
approach consists of three steps.

1. We synthesize a query 𝑄 satisfying the examples of 𝑔𝑒𝑡 by adapting ProSynth
over the predefined templates for relational queries. These templates are
extensively provided in the database community.

2. We process the obtained query and the given example as follows.

• We decompose the query 𝑄 to a set of atomic queries {𝑔𝑒𝑡1, . . . , 𝑔𝑒𝑡𝑛}.

• We forward-propagate FDs from the source through intermediate relations
that appear in {𝑔𝑒𝑡1, . . . , 𝑔𝑒𝑡𝑛} to the view, so that we are aware of FDs 𝐹𝑆𝑎
and 𝐹𝑉𝑎 respectively associated with relations 𝑆𝑎 and𝑉𝑎 , both corresponding
to 𝑔𝑒𝑡𝑎 .

• We compute atomic examples 𝐸𝑥𝑎 for (𝑔𝑒𝑡𝑎, 𝑝𝑢𝑡𝑎) by apply {𝑔𝑒𝑡1, . . . , 𝑔𝑒𝑡𝑛}
to the original and updated source tables

3. We synthesize a view update satisfying the example of 𝑝𝑢𝑡 as follows.

• We design templates that encode minimal-effect view update strategies
for atomic queries (based on the works of Keller [21] and Larson [23]), to
generate candidate rules of 𝑝𝑢𝑡𝑎 given 𝑔𝑒𝑡𝑎 .

• We templatize more with the constraints and effects of FDs (based on the
work of Bohannon [7]), to enrich the candidate rules of 𝑝𝑢𝑡𝑎 given 𝑔𝑒𝑡𝑎 .

• We adapt ProSynth to synthesize 𝑝𝑢𝑡𝑎 from the input-output example
in 𝐸𝑥𝑎 and the generated rules above. We compose programs 𝑝𝑢𝑡𝑎s by
merging their rules.

The well-behavedness of a synthesized bidirectional program is achieved by

1. the well-behavedness of each atomic pair (𝑔𝑒𝑡𝑎, 𝑝𝑢𝑡𝑎) (inherited from well-
behaved strategies in the works of Keller [21], Larson [23] and Bohannon [7]).

2. the well-behavedness of the composition of bidirectional programs [1].
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Algorithm 1: SynthB: Synthesizing bidirectional programs on relations
Input: specification (S, E)
Output: a bidirectional program (C𝑔, C𝑝) or 𝑁𝑜𝑛𝑒

1 procedure SynthB(S, E):
2 P𝑔𝑒𝑡 ← PrepareGetCand(S, E)
3 E𝑔𝑒𝑡 , E

′
𝑔𝑒𝑡 ← examples of 𝑔𝑒𝑡 based on E

4 𝜑 ← True

5 while True do

6 𝑔, 𝜑 ← ProSynth+(S, E𝑔𝑒𝑡 ,P𝑔𝑒𝑡 , 𝜑)
7 if 𝑔 = None then return None

8 if 𝑔 is not consistent with E ′𝑔𝑒𝑡 then
9 𝜑 ← Strengthen(𝜑,𝑔,P𝑔𝑒𝑡 ) ; continue

10 C𝑔,S𝑓 ← Decompose(𝑔,S)
11 S𝑓 ← ForwardPropagateFDs(C𝑔,S𝑓 )
12 E𝑓 ← Eval(C𝑔, E)
13 for 𝑟𝑎 ∈ C𝑔 do
14 P𝑟𝑎

𝑝𝑢𝑡 ← PreparePutCandMEVUS(S𝑓 , E𝑓 , 𝑟𝑎)
15 P𝑟𝑎

𝑝𝑢𝑡 ← P𝑟𝑎

𝑝𝑢𝑡 ∪ PreparePutCandCEFDs(S𝑓 , E𝑓 , 𝑟𝑎)
16 P𝑝𝑢𝑡 ← Combine({P𝑟

𝑝𝑢𝑡 | 𝑟 ∈ C𝑔})
17 C𝑝, _← ProSynth+(S𝑓 , E𝑓 ,P𝑝𝑢𝑡 , True)
18 if C𝑝 ≠ None then return (C𝑔, C𝑝)
19 else 𝜑 ← Strengthen(𝜑,𝑔,P𝑔𝑒𝑡 )

3.3 High-Level Algorithm

Algorithm 1 gives a high-level description of the algorithm solving problem Prob(S, E).
The procedure SynthB takes as input a specification (S, E), and returns as output

either a well-behaved pair (C𝑔, C𝑝) consistent with E or None if no such a pair exists.
SynthB would internally use an adaptation of ProSynth called ProSynth+ to

unidirectionally synthesize Datalog programs from input-output examples and a
fixed set of candidate rules. While the original “ProSynth(S, E,P𝑎𝑙𝑙 )” (Section 2.7.3)
only returns a solution 𝑃𝑠 if one exists, “ProSynth+(S, E,P𝑎𝑙𝑙 , 𝜑)” can return a pair of
(𝑃𝑠, 𝜑) for searching other programs, where 𝜑 is the synthesis constraints.

At the beginning of the synthesis, SynthB prepares a fixed set P𝑔𝑒𝑡 = {𝑟1, . . . , 𝑟𝑛}
consisting of candidate rules for query 𝑔𝑒𝑡 by invoking PrepareGetCand (line 2) (or
by asking the user to provide such a set).
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Next, it extracts two examples of 𝑔𝑒𝑡 , E𝑔𝑒𝑡 and E′𝑔𝑒𝑡 , from E (line 3), and initializes a
synthesis constraint 𝜑 = 𝑓 (𝑏𝑟1, . . . , 𝑏𝑟𝑛 ) as True (line 4).

Then, the loop in lines 5-19 iteratively:

1. synthesizes a query 𝑔 (𝑔 ⊆ P𝑔𝑒𝑡 ) consistent with E𝑔𝑒𝑡 , and stores the state of
synthesis constraint 𝜑 (ProSynth+ - line 6);

2. immediately returns 𝑁𝑜𝑛𝑒 if no such a 𝑔 exists (line 7);

3. if 𝑔 is not consistent with E′𝑔𝑒𝑡 (which serves only to check the correctness of 𝑔),
strengthens 𝜑 then goes to a new loop (lines 8-9), otherwise, decomposes 𝑔 into
an equivalent query C𝑔 consisting of only atomic queries that are specified over
a schema S𝑓 (Decompose - line 10);

4. forward-propagates FDs from the source to the view over C𝑔 to compute the FDs
of all relations in S𝑓 (ForwardPropagateFDs - line 11);

5. evaluates C𝑔 one by one on𝑇𝑠𝑜𝑢𝑟𝑐𝑒 and𝑇𝑠𝑜𝑢𝑟𝑐𝑒′ in E to obtain full examples (Eval -
line 12);

6. prepares candidate rules for atomic view update programs corresponding to
the atomic queries, based on templates encoding minimal-effect view update
strategies (PreparePutCandMEVUS - line 14) and templates encoding the
constraints along with effects of FDs (PreparePutCandCEFDs - line 15), then
combines them into a set P𝑝𝑢𝑡 including candidate rules of 𝑝𝑢𝑡 (Combine - line
16);

7. synthesizes a 𝑝𝑢𝑡 program C𝑝 that, when combined with C𝑔, can form a well-
behaved bidirectional program (ProSynth+ - lines 17-18) (equivalent to simulta-
neously synthesizing atomic view update programs and automatically combining
results);

8. strengthens 𝜑 if no 𝑝𝑢𝑡 is found (Strengthen - line 19) and goes to a new loop.

Algorithm 1 will terminate if

1. no more query 𝑔 can be synthesized (line 7);
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2. a query 𝑔 is synthesized and decomposed to C𝑔 and the corresponding C𝑝 can be
synthesized (line 18).

We skip the details of PrepareGetCand since the preparation of candidates for
relational queries is well-discussed in [38, 20].

Procedure Eval basically calls the Datalog solver Soufflé to evaluate an NR-
Datalog∗ program on specific inputs.

Procedure Strengthen(𝜑,𝑔,P𝑔𝑒𝑡 ) boosts the synthesis constraint 𝜑 as

𝜑 ← 𝜑 ∧ ¬ (
∧
𝑟𝑖∈𝑔

𝑏𝑟𝑖 ∧
∧

𝑟 𝑗∈P𝑔𝑒𝑡−𝑔
¬𝑏𝑟 𝑗 )

to ignore the found query 𝑔 (𝑔 ⊆ P𝑔𝑒𝑡 ) in the next loops in which the SAT solver inside
ProSynth+(S, E𝑔𝑒𝑡 ,P𝑔𝑒𝑡 , 𝜑) (line 6) is unsatisfiable for the rule selection corresponding
to 𝑔.

In the next chapters, we will explain more about the remaining procedures. Chap-
ter 4 presents Decompose and ForwardPropagateFDs for decomposing queries,
propagating FDs and dividing synthesis into sub-synthesis. Chapter 5 presents
PreparePutCandMEVUS/Combine for solving/combining the sub-synthesis with
only templates of minimal-effect view update strategies. Chapter 6 presents Pre-
parePutCandCEFDs for solving the sub-synthesis by enriching the templates with the
ones encoding the constraints and effects of FDs.
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4
Processing Over Synthesized Queries

In this chapter, we focus more on two procedures after a query is synthesized: the
query decomposition in NR-Datalog∗ and the forward propagation of functional
dependencies. These procedures are meaningful in reducing the synthesis problem to
smaller problems in which the relevant relations may be specifically constrained by
FDs.

The following sections are organized as follows. Section 4.1 discusses decomposing
queries in NR-Datalog∗. Section 4.2 covers forward-propagating FDs from the source
to the view over a set of atomic queries. Section 4.3 summarizes this chapter.

4.1 Decomposing Queries

If a query 𝑔𝑒𝑡 is synthesized, by decomposing it into a set of atomic queries 𝑔𝑒𝑡𝑎s that
each defines an atomic view, we can reduce the synthesis of (𝑔𝑒𝑡, 𝑝𝑢𝑡) to the synthesis
of (𝑔𝑒𝑡𝑎, 𝑝𝑢𝑡𝑎)s, which, as you will see later, can be automatically synthesized by our
approach. In this section, we focus on describing the query decomposition to obtain
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atomic queries in NR-Datalog∗, and at the end, we will provide an example showing
the sub-synthesis problems that are reduced after the decomposition.

While query decomposition and atomic queries are recognized as standard concepts
in relational algebra, their discussions in the context of Datalog have been limited. We
aim to bridge this gap by exploring these aspects within Datalog. Specifically, we
formulate atomic queries in Datalog and demonstrate how a complex Datalog query,
satisfying decomposable conditions (to be discussed later), can be decomposed into
these atomic queries. The choice of Datalog over relation algebra is also driven by our
awareness of the framework Birds [29], which utilizes Datalog to write bidirectional
programs, motivating our objective to establish a solid foundation to construct both
query and view update programs in Datalog.

When considering atomic queries, our focus lies on those for which well-behaved
view update strategies exist and have been extensively studied. The theoretical research
described in [21, 22, 23] investigates view update strategies for the selection (𝜎),
projection (𝜋 ), natural join (Z), union (∪), intersection (∩) and set difference (\) queries.
Furthermore, the practical research outlined in [16] enables the construction of view
update programs for a rename (𝜌) query and a specialized cross-product (×) query.
From both theory and practice, we carefully select eight essential atomic queries and
formulate them as atomic NR-Datalog∗ rules in Figure 4.1. We say that an atomic rule 𝑟
is of type 𝛼 if 𝑟 is an 𝛼-rule where 𝛼 ∈ {𝜌,∪, \,∩, 𝜎, 𝜋,Z,×}.

Due to limitations in [21, 22, 23, 16], the atomic rules have restricted forms:

• Each constraint in a 𝜎-rule is a comparison between a variable and a constant.

• A 𝜋-rule defines a proper projection.

• A ×-rule describes a cross-product between a relation 𝑆 and a relation 𝐸1×𝑚

which can be expressed by a list of equality constraints.

Despite their restrictions, the selected atomic rules remain valuable for composing a
wide range of practical queries (e.g. in [16]).
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𝜌-rule 𝑉 ( ®𝑥) : − 𝑆 (𝑝 ( ®𝑥)). where 𝑝 is a permutation function
∪-rule 𝑉 ( ®𝑥) : − 𝑆1( ®𝑥) ; 𝑆2( ®𝑥).
\-rule 𝑉 ( ®𝑥) : − 𝑆1( ®𝑥) , ¬ 𝑆2( ®𝑥).
∩-rule 𝑉 ( ®𝑥) : − 𝑆1( ®𝑥) , 𝑆2( ®𝑥).
𝜎-rule 𝑉 ( ®𝑥) : − 𝑆 ( ®𝑥), 𝑣1 ⊕1 𝑐1, . . . , 𝑣𝑚 ⊕𝑚 𝑐𝑚 .

where𝑚 > 0, {𝑣1, . . . , 𝑣𝑚} ⊆ 𝑠𝑒𝑡 ( ®𝑥)
𝜋-rule 𝑉 ( ®𝑥) : − 𝑆 ( ®𝑦). where 𝑠𝑒𝑡 ( ®𝑥) ⊊ 𝑠𝑒𝑡 ( ®𝑦)
Z-rule 𝑉 ( ®𝑥) : − 𝑆1( ®𝑦1) , 𝑆2( ®𝑦2).

where 𝑠𝑒𝑡 ( ®𝑦1) ∪ 𝑠𝑒𝑡 ( ®𝑦2) = 𝑠𝑒𝑡 ( ®𝑥)
and 𝑠𝑒𝑡 ( ®𝑦1) ∩ 𝑠𝑒𝑡 ( ®𝑦2) ≠ ∅

×-rule 𝑉 ( ®𝑥) : − 𝑆 ( ®𝑦) , 𝑣1 = 𝑐1 , . . . , 𝑣𝑚 = 𝑐𝑚 .

where𝑚 > 0, 𝑠𝑒𝑡 ( ®𝑦) ∪ {𝑣1, . . . , 𝑣𝑚} = 𝑠𝑒𝑡 ( ®𝑥)
and 𝑠𝑒𝑡 ( ®𝑦) ∩ {𝑣1, . . . , 𝑣𝑚} = ∅

Note: ®𝑥 , ®𝑦, ®𝑦1 and ®𝑦2 are tuples, each containing only variables.
𝑠𝑒𝑡 ( ®𝑥) converts a tuple ®𝑥 to a set.
𝑣𝑖 is a variable, 𝑐𝑖 is a constant, ⊕𝑖 ∈ {=,≠, >, <, ≤, ≥}.

Figure 4.1: Atomic rules/queries in NR-Datalog∗

Example 4.1. The following eight rules are instances of the atomic rules in Figure 4.1:

𝜌 − 𝑟𝑢𝑙𝑒 𝑋 (𝑎, 𝑏, 𝑐, 𝑑) : − 𝑌 (𝑏, 𝑑, 𝑎, 𝑐).
∪ − 𝑟𝑢𝑙𝑒 𝑋 (𝑎, 𝑏, 𝑐, 𝑑) : − 𝑌 (𝑎, 𝑏, 𝑐, 𝑑) ; 𝑍 (𝑎, 𝑏, 𝑐, 𝑑).
\ − 𝑟𝑢𝑙𝑒 𝑋 (𝑎, 𝑏, 𝑐, 𝑑) : − 𝑌 (𝑎, 𝑏, 𝑐, 𝑑) , ¬ 𝑍 (𝑎, 𝑏, 𝑐, 𝑑).
∩ − 𝑟𝑢𝑙𝑒 𝑋 (𝑎, 𝑏, 𝑐, 𝑑) : − 𝑌 (𝑎, 𝑏, 𝑐, 𝑑) , 𝑍 (𝑎, 𝑏, 𝑐, 𝑑).
𝜎 − 𝑟𝑢𝑙𝑒 𝑋 (𝑎, 𝑏, 𝑐, 𝑑) : − 𝑌 (𝑎, 𝑏, 𝑐, 𝑑) , 𝑑 ≠ "0" , 𝑑 ≠ "1".

𝜋 − 𝑟𝑢𝑙𝑒 𝑋 (𝑎, 𝑏, 𝑐, 𝑑) : − 𝑌 (𝑎, 𝑏, 𝑒, 𝑐, 𝑑, 𝑓 ).
Z −𝑟𝑢𝑙𝑒 𝑋 (𝑎, 𝑏, 𝑐, 𝑑) : − 𝑌 (𝑎, 𝑑, 𝑏) , 𝑍 (𝑏, 𝑐).
× − 𝑟𝑢𝑙𝑒 𝑋 (𝑎, 𝑏, 𝑐, 𝑑) : − 𝑌 (𝑎, 𝑑, 𝑏) , 𝑐 = "0".

where 𝑋,𝑌, 𝑍 are relation symbols, 𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓 are variables.

In the 𝜌 − 𝑟𝑢𝑙𝑒 , 𝑋 is a view, and 𝑌 is a source. In the ∪ − 𝑟𝑢𝑙𝑒 , 𝑋 is a view, and 𝑌
and 𝑍 are sources. Similarly, we can specify the source and the view for the remaining
rules. ▲
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Example 4.2. The following NR-Datalog∗ rules are also atomic

𝑟𝑎1 M1(i,n,c,a) :- staffs(i,n,c,a) , c="Tokyo" , a="1".

𝑟𝑎2 M2(i,n,c) :- customers(i,n,c) , c="Tokyo".

𝑟𝑎3 tokyoac0(n) :- M1(i,n,c,a).

𝑟𝑎4 tokyoac1(n) :- M2(i,n,c).

𝑟𝑎5 tokyoac(n) :- tokyoac0(n) ; tokyoac1(n).

where 𝑟𝑎1 and 𝑟𝑎2 are 𝜎-rules, 𝑟𝑎3 and 𝑟𝑎4 𝜋-rules, and 𝑟𝑎5 a ∪-rule. ▲

A query 𝑔 is written in NR-Datalog∗ as a set of rules. To successfully decompose 𝑔
into atomic queries, we require that each rule 𝑟 in 𝑔 needs to satisfy decomposable

conditions as follows:

1. 𝑟 satisfies safety conditions [27];

2. there is at least one positive literal in the body of 𝑟 ;

3. variables in a literal of 𝑟 are different;

4. all positive literals in the body of 𝑟 can be joined without cross-product

The first two conditions are essential for query practicality. The third condition is
necessary to prevent implicit comparisons between two attributes of a relation, while
the last condition is crucial for avoiding non-specialized cross-products.

We next describe the behavior of Decompose(𝑔,S), which takes a query 𝑔 defined
over a schema set S as input, performs rewrite laws (later denoted by L...) to decompose
𝑔, and returns a set C𝑔 of atomic rules over a new schema set S𝑓 . After presenting the
flow inside Decompose, we will briefly explain an example shown in Figure 4.2, which
demonstrates the use of rewrite laws.

If 𝑔 satisfies decomposable conditions, the flow to decompose 𝑔 is a sequence

𝑔
L1−−→ 𝑇1

L2−−→ 𝑇2
L3−−→ 𝑇3

L4−−→ C𝑔 (F1)

using the following laws to rewrite sets of rules:

L1 rewriting 𝑔 to 𝑇1 by converting all rules in 𝑔 to normal form;
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L2 rewriting 𝑇1 to 𝑇2 by repeatedly decomposing each normal rule in 𝑇1 to a set of
atomic rules and then merging these sets;

L3 rewriting 𝑇2 to 𝑇3 by updating rules with the same head in 𝑇2 and pushing out
unions (∼ extracting ∪-rules);

L4 rewriting 𝑇3 to 𝐶𝑔 by renaming relations whose names occur more than once in
the bodies of rules in 𝑇3.

When processing L2, if a normal rule 𝑟 is atomic, we can move on to consider
another rule. Otherwise, the flow to decompose a normal, non-atomic rule 𝑟 is a
sequence

𝑟
L2.1−−−−→
↩→∗𝜎

𝑟1
L2.2−−−−→
↩→∗𝜋

𝑟2
L2.3−−−−−−→

↩→∗Z,∩
𝑟3
L2.4−−−−→
↩→∗𝜋

𝑟4
L2.5−−−−−→

↩→∗Z,\
𝑟5
L2.6−−−−→
↩→∗𝜋

𝑟6 (F2)

using the following sub-laws, each of which extracts zero or more (↩→∗) atomic rules
that define possible new intermediate states, updates the remaining form of 𝑟 with
these states to form 𝑟𝑖 , and progressively rewrites until the remainder 𝑟𝑖 becomes
atomic:

L2.1 pushing out selections (∼ extracting 𝜎-rules);

L2.2 pushing out projections before joins (∼ extracting 𝜋-rules)

L2.3 rewriting multi-ary joins as binary joins and replacing binary joins over the
same schema with intersections (∼ extracting Z- and ∩-rules);

L2.4 pushing out projections after joins (∼ extracting 𝜋-rules);

L2.5 handling negative literals with left-anti-semi-joins (∼ extracting Z- and \-rules);

L2.6 pushing out projections after joins (∼ extracting 𝜋-rules);

In Figure 4.2, Decompose applies L1 to change one rule with two conjunctions in
C2 into two normal rules in D2. Each rule in D2 is decomposed using L2. In the first
use of L2, the non-atomic rule in C3 is decomposed to two 𝜎-rules in D3 and another
rule in C4 by L2.1. Decompose similarly performs the next sub-laws until finishing
L2.6 in which the remaining rule in C9 is atomic. In the second use of L2, the rule in
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A B C D
1 Laws NR-Datalog∗Rules Extracted Rules

2 L1

𝑉 (𝑎, 𝑑) : −𝑆1(𝑎, 𝑏, 𝑐, 𝑒), 𝑆2(𝑎),
𝑆3(𝑎, 𝑐),¬𝑆4(𝑏),
𝑏 = "T", 𝑑 = "0"
; 𝑆2(𝑎), 𝑆5(𝑎, 𝑑).

𝑉 (𝑎, 𝑑) : −𝑆1(𝑎, 𝑏, 𝑐, 𝑒), 𝑆2(𝑎),
𝑆3(𝑎, 𝑐),¬𝑆4(𝑏),
𝑏 = "T", 𝑑 = "0".

𝑉 (𝑎, 𝑑) : −𝑆2(𝑎), 𝑆5(𝑎, 𝑑) .

3

L2

L2.1

𝑉 (𝑎, 𝑑) : −𝑆1(𝑎, 𝑏, 𝑐, 𝑒), 𝑆2(𝑎),
𝑆3(𝑎, 𝑐),¬𝑆4(𝑏),
𝑏 = "T", 𝑑 = "0".

𝑀0(𝑎, 𝑏, 𝑐, 𝑒) : −𝑆1(𝑎, 𝑏, 𝑐, 𝑒),
𝑏 = "T".

𝑀1(𝑏) : −𝑆4(𝑏), 𝑏 = "T".

4 L2.2

𝑉 (𝑎, 𝑑) : −𝑀0(𝑎, 𝑏, 𝑐, 𝑒), 𝑆2(𝑎),
𝑆3(𝑎, 𝑐),¬𝑀1(𝑏),
𝑑 = "0".

𝑀2(𝑎, 𝑏, 𝑐) : −𝑀0(𝑎, 𝑏, 𝑐, 𝑒).

5 L2.3

𝑉 (𝑎, 𝑑) : −𝑀2(𝑎, 𝑏, 𝑐), 𝑆2(𝑎),
𝑆3(𝑎, 𝑐),¬𝑀1(𝑏),
𝑑 = "0".

𝑀3(𝑎, 𝑏, 𝑐) : −𝑀2(𝑎, 𝑏, 𝑐), 𝑆2(𝑎) .
𝑀4(𝑎, 𝑏, 𝑐) : −𝑀3(𝑎, 𝑏, 𝑐), 𝑆3(𝑎, 𝑐) .

6 L2.4
𝑉 (𝑎, 𝑑) : −𝑀4(𝑎, 𝑏, 𝑐),¬𝑀1(𝑏),

𝑑 = "0".
𝑀5(𝑎, 𝑏) : −𝑀4(𝑎, 𝑏, 𝑐).

7 L2.5
𝑉 (𝑎, 𝑑) : −𝑀5(𝑎, 𝑏),¬𝑀1(𝑏),

𝑑 = "0".
𝑀6(𝑎, 𝑏) : −𝑀5(𝑎, 𝑏), 𝑀1(𝑏).
𝑀7(𝑎, 𝑏) : −𝑀5(𝑎, 𝑏),¬𝑀6(𝑎, 𝑏).

8 L2.6 𝑉 (𝑎, 𝑑) : −𝑀7(𝑎, 𝑏), 𝑑 = "0". 𝑀8(𝑎) : −𝑀7(𝑎, 𝑏).
9 𝑉 (𝑎, 𝑑) : −𝑀8(𝑎), 𝑑 = "0".
10 L2 𝑉 (𝑎, 𝑑) : −𝑆2(𝑎), 𝑆5(𝑎, 𝑑).

11 L3
𝑉 (𝑎, 𝑑) : −𝑀8(𝑎), 𝑑 = "0".
𝑉 (𝑎, 𝑑) : −𝑆2(𝑎), 𝑆5(𝑎, 𝑑).

𝑉0(𝑎, 𝑑) : −𝑀8(𝑎), 𝑑 = "0".
𝑉1(𝑎, 𝑑) : −𝑆2(𝑎), 𝑆5(𝑎, 𝑑).
𝑉 (𝑎, 𝑑) : −𝑉0(𝑎, 𝑑);𝑉1(𝑎, 𝑑).

12 L4
𝑀3(𝑎, 𝑏, 𝑐) : −𝑀2(𝑎, 𝑏, 𝑐), 𝑆2(𝑎).
𝑉1(𝑎, 𝑑) : −𝑆2(𝑎), 𝑆5(𝑎, 𝑑).

𝑀3(𝑎, 𝑏, 𝑐) : −𝑀2(𝑎, 𝑏, 𝑐), 𝑆02 (𝑎).
𝑉1(𝑎, 𝑑) : −𝑆12 (𝑎), 𝑆5(𝑎, 𝑑).
𝑆02 (𝑎) : −𝑆2(𝑎).
𝑆12 (𝑎) : −𝑆2(𝑎).

Figure 4.2: An application example of rewrite laws
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C10 is already atomic, so no sub-laws need to be applied. A set of the atomic rules
decomposed by L2 is further revised in sequence by L3 and L4, where rules in C11

and C12 are rewritten into rules in D11 and D12, respectively.

Example 4.3. Let Hd(𝑟 ) and Bd(𝑟 ) be the head and the body of a rule 𝑟 . A more
detailed explanation of Figure 4.2 is as follows.

• L1

𝑟 𝑉 (𝑎, 𝑑) : − 𝑆1(𝑎, 𝑏, 𝑐, 𝑒), 𝑆2(𝑎), 𝑆3(𝑎, 𝑐),¬ 𝑆4(𝑏), 𝑏 = "T", 𝑑 = "0"

; 𝑆2(𝑎), 𝑆5(𝑎, 𝑑).

Because Bd(𝑟 ) has two conjunctions ([𝑐𝑜𝑛 𝑗1, 𝑐𝑜𝑛 𝑗2]), 𝑟 will be rewritten as two rules
like Hd(𝑟 ) : − 𝑐𝑜𝑛 𝑗1 and Hd(𝑟 ) : − 𝑐𝑜𝑛 𝑗2. So, we obtain two following rules:

𝑟1 𝑉 (𝑎, 𝑑) : − 𝑆1(𝑎, 𝑏, 𝑐, 𝑒), 𝑆2(𝑎), 𝑆3(𝑎, 𝑐),¬ 𝑆4(𝑏), 𝑏 = "T", 𝑑 = "0".

𝑟2 𝑉 (𝑎, 𝑑) : − 𝑆2(𝑎), 𝑆5(𝑎, 𝑑).

• L2 While 𝑟2 is atomic (Z −𝑟𝑢𝑙𝑒), 𝑟1 is non-atomic. We will perform a series of
sub-laws to decompose 𝑟1.

• L2.1 Bd(𝑟1) has two constraints 𝑏 = "T" and 𝑑 = "0". Variable 𝑏 in constraint
𝑏 = "T" appears in some literals in Bd(𝑟1), which show an indication of 𝜎 − 𝑟𝑢𝑙𝑒(s).
Variable 𝑑 in constraint 𝑑 = "0" doesn’t appear in any literals in Bd(𝑟1) and just
appear in Hd(𝑟1), which show an indication of × − 𝑟𝑢𝑙𝑒(s). For L2.1, we only extract
𝜎 − 𝑟𝑢𝑙𝑒(s) if any. Two literals in Bd(𝑟1), 𝑆1(𝑎, 𝑏, 𝑐, 𝑒) and 𝑆4(𝑏), contain variable 𝑏, so
we can obtain two following 𝜎 − 𝑟𝑢𝑙𝑒𝑠 with new intermediate relations,𝑀0 and𝑀1:

𝑟3 𝑀0(𝑎, 𝑏, 𝑐, 𝑒) : − 𝑆1(𝑎, 𝑏, 𝑐, 𝑒) , 𝑏 = "T".

𝑟4 𝑀1(𝑏) : − 𝑆4(𝑏) , 𝑏 = "T".

Then the head of 𝑟3 and 𝑟4 will respectively replace literals 𝑆1(𝑎, 𝑏, 𝑐, 𝑒) and 𝑆4(𝑏) in
𝑟1, and the constraint 𝑏 = "T" will be removed from 𝑟1. So 𝑟1 is updated to 𝑟5 as
follows:

𝑟5 𝑉 (𝑎, 𝑑) : −𝑀0(𝑎, 𝑏, 𝑐, 𝑒), 𝑆2(𝑎), 𝑆3(𝑎, 𝑐),¬𝑀1(𝑏), 𝑑 = "0".
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• L2.2 In Bd(𝑟5), we found that variable 𝑒 only appears once in Bd(𝑟5) (only in literal
𝑀0(𝑎, 𝑏, 𝑐, 𝑒)), but doesn’t appear in Hd(𝑟5). So from 𝑟5, we can extract a 𝜋 − 𝑟𝑢𝑙𝑒
with new intermediate relation𝑀2 as follows:

𝑟6 𝑀2(𝑎, 𝑏, 𝑐) : − 𝑀0(𝑎, 𝑏, 𝑐, 𝑒).

Then the head of 𝑟6 will replace literals𝑀0(𝑎, 𝑏, 𝑐, 𝑒) in 𝑟5, so we have an updated
remaining rule 𝑟7 as below:

𝑟7 𝑉 (𝑎, 𝑑) : − 𝑀2(𝑎, 𝑏, 𝑐), 𝑆2(𝑎), 𝑆3(𝑎, 𝑐),¬𝑀1(𝑏), 𝑑 = "0"

• L2.3 In Bd(𝑟7), there are three positive literals,𝑀2(𝑎, 𝑏, 𝑐), 𝑆2(𝑎) and 𝑆3(𝑎, 𝑐), which
could be joined together. But we only allow binary joins as atomic rules. To rewrite
the multi-join into binary joins, we extract from 𝑟7 two following Z −𝑟𝑢𝑙𝑒𝑠 with
new intermediate relations,𝑀3 and𝑀4:

𝑟8 𝑀3(𝑎, 𝑏, 𝑐) : − 𝑀2(𝑎, 𝑏, 𝑐) , 𝑆2(𝑎).
𝑟9 𝑀4(𝑎, 𝑏, 𝑐) : − 𝑀3(𝑎, 𝑏, 𝑐) , 𝑆3(𝑎, 𝑐) .

𝑀4(𝑎, 𝑏, 𝑐) is similar to the results of multi-joins, so it will replace three positive
literals in Bd(𝑟7). The updated remaining rule 𝑟10 is as follows:

𝑟10 𝑉 (𝑎, 𝑑) : − 𝑀4(𝑎, 𝑏, 𝑐),¬𝑀1(𝑏), 𝑑 = "0".

• L2.4 After joining, there may be some variables that could be projected, such as
variable 𝑐 in literal𝑀4(𝑎, 𝑏, 𝑐) in 𝑟10. We perform such a projection by extract from
𝑟10 a following 𝜋 − 𝑟𝑢𝑙𝑒 with new intermediate relation𝑀5:

𝑟11 𝑀5(𝑎, 𝑏) : − 𝑀4(𝑎, 𝑏, 𝑐).

The head of 𝑟11 will replace literals𝑀4(𝑎, 𝑏, 𝑐) in 𝑟10, so we have an updated remaining
rule 𝑟12 as below:

𝑟12 𝑉 (𝑎, 𝑑) : − 𝑀5(𝑎, 𝑏),¬𝑀1(𝑏), 𝑑 = "0".
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• L2.5 We continue to decompose 𝑟12 with negation in its body by using left anti semi
join to extract the following atomic rules with new intermediate relations,𝑀6 and
𝑀7:

𝑟13 𝑀6(𝑎, 𝑏) : − 𝑀5(𝑎, 𝑏) , 𝑀1(𝑏).
𝑟14 𝑀7(𝑎, 𝑏) : − 𝑀5(𝑎, 𝑏) , ¬𝑀6(𝑎, 𝑏).

The result of the left anti semi join,𝑀7(𝑎, 𝑏), will replace the literals of𝑀5 and𝑀1 in
𝑟12, then we obtain an updated rule 𝑟15 as below:

𝑟15 𝑉 (𝑎, 𝑑) : − 𝑀7(𝑎, 𝑏), 𝑑 = "0".

• L2.6 After joining, there may be some variables that could be projected, such as
variable 𝑏 in literal𝑀7(𝑎, 𝑏) in 𝑟15. We perform such a projection by extract from 𝑟15

a following 𝜋 − 𝑟𝑢𝑙𝑒 with new intermediate relation𝑀8:

𝑟16 𝑀8(𝑎) : − 𝑀7(𝑎, 𝑏).

The updated remaining rule is as below:

𝑟17 𝑉 (𝑎, 𝑑) : − 𝑀8(𝑎), 𝑑 = "0".

𝑟17 is a × − 𝑟𝑢𝑙𝑒 .

• L3 Because 𝑟17 and 𝑟2 have the same head but different bodies, we rewrite them with
the necessary appearance of binary unions. Two heads of 𝑟17 and 𝑟2 will be replaced
with two new relations, e.g., 𝑉0 and 𝑉1, like 𝑟18 and 𝑟19 as below:

𝑟18 𝑉0(𝑎, 𝑑) : − 𝑀8(𝑎), 𝑑 = "0".

𝑟19 𝑉1(𝑎, 𝑑) : − 𝑆2(𝑎), 𝑆5(𝑎, 𝑑).

and we can have a union rule 𝑟20 as follows:

𝑟20 𝑉 (𝑎, 𝑑) : − 𝑉0(𝑎, 𝑑) ; 𝑉1(𝑎, 𝑑).

• L4 Each of two rules 𝑟8 and 𝑟19 has multiple sources, and 𝑆2 appears in both Bd(𝑟8)
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and Bd(𝑟19). We would like to create aliases of 𝑆2, e.g., 𝑆02 and 𝑆12 , to replace such
appearances of 𝑆2.

𝑟21 𝑀3(𝑎, 𝑏, 𝑐) : − 𝑀2(𝑎, 𝑏, 𝑐), 𝑆02 (𝑎).
𝑟22 𝑉1(𝑎, 𝑑) : − 𝑆12 (𝑎), 𝑆5(𝑎, 𝑑) .
𝑟23 𝑆02 (𝑎) : − 𝑆2(𝑎).
𝑟24 𝑆12 (𝑎) : − 𝑆2(𝑎).

Only 𝜎 − 𝑟𝑢𝑙𝑒𝑠 , 𝜋 − 𝑟𝑢𝑙𝑒𝑠 and 𝜌 − 𝑟𝑢𝑙𝑒𝑠 should define a view relation over the same
source relation.

▲

Proposition 4.4. Given 𝑔 is a nonempty set of NR-Datalog
∗
rules over schemas in S, each

of which satisfies the decomposable conditions, Decompose(𝑔,S) returns (𝐶𝑔,S𝑓 ) where
(1) 𝐶𝑔 is a nonempty set of only atomic rules over a new schema set S𝑓 ; (2) S𝑓 ⊇ S; (3) if
two rules in 𝐶𝑔 have a common relation name in their bodies, each of the rules is either a

𝜌-rule or a 𝜎-rule or a 𝜋-rule. ■

Proof Sketch. (1) We show that the sequence of laws, comprising L1, L2 (with L2.1

through L2.6 inside), L3 and L4, is sufficient to rewrite a set 𝑔 to a set C𝑔 of only atomic
rules. In the flow (F1), L1 rewrites 𝑔 to a set 𝑇1 of only normal rules, each of which
cannot directly decompose to any ∪-rules. L2 decomposes each normal rule in 𝑇1 to
atomic rules without ∪-rules (as explained a bit later) and then merges the results into
𝑇2, so 𝑇2 contains only atomic rules but has no ∪-rules. L3 and L4 update the atomic
rules and introduce possible ∪-rules and 𝜌-rules. Consequently, all rules in the final set
C𝑔 of (F1) are atomic. When handling L2, to prove a normal rule is decomposed to a set
of atomic rules, we can go step-by-step with the flow (F2). If a normal, non-atomic rule
𝑟 has some constraints in the body, each constraint may be part of either a selection or
a cross-product. Based on the constraints, it is possible to extract 𝜎-rules first (L2.1)
and keep all constraints not belonging to these rules to the end of (F2) (i.e., in 𝑟6).
Without constraints, the body of 𝑟 with positive literals and potential negative literals
generally expresses a combination of projections and joins (e.g. a binary joins between
two positive literals, a left-anti-semi-join between a positive literal and a negative
literal). Before and after extracting Z-rules (L2.3, L2.5), we may drop unnecessary
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Table 4.1: Intermediate tables of middle relations.

(4.1a) M1

sid name city active
11 Ken Tokyo 1

(4.1b) M2

cid name city
102 Kai Tokyo
104 Mori Tokyo

(4.1c) tokyoac0

name
Ken

(4.1d) tokyoac1

name
Kai
Mori

(4.1a’) M′1
sid name city active
11 Ken Tokyo 1
14 Shin Tokyo 1

(4.1b’) M′2
cid name city
102 Kai Tokyo
104 Mori Tokyo
105 Yuri Tokyo

(4.1c’) tokyoac′0
name
Ken
Shin

(4.1d’) tokyoac′1
name
Kai
Mori
Yuri

attributes with 𝜋-rules (L2.2, L2.4, L2.6). If all middle forms 𝑟1, . . . , 𝑟5 in (F2) are not
atomic and 𝑟6 is reached, then 𝑟6 would contain a positive literal and possibly some
constraints not in any extracted 𝜎-rules. Due to the safety, 𝑟6 will be either a 𝜌-rule or a
×-rule. (2) The new set S𝑓 includes not only the existing schemas in S but also the
schemas of intermediate relations introduced in the decomposition. (3) With L4, we
can rename so that only rename, selection, and projection views can be defined over
the same source. □

Next, let us follow an example of query decomposition in NR-Datalog∗ and another
example of obtaining sub-synthesis problems after the decomposition.

Example 4.5. Consider problem Prob(S1, E1) in Example 3.2. Suppose that we synthe-
sized a𝑔𝑒𝑡 program𝑔 = {𝑟1, 𝑟2} over schemas inS = ({staffs, customers}, tokyoac)
where where

𝑟1 tokyoac(n) :- staffs(i,n,c,a) , c="Tokyo" , a="1".

𝑟2 tokyoac(n) :- customers(i,n,c) , c="Tokyo".

Decompose(𝑔,S) outputs (C𝑔,S𝑓 ) where 𝐶𝑔 = {𝑟𝑎1 , 𝑟𝑎2 , 𝑟𝑎3 , 𝑟𝑎4 , 𝑟𝑎5 }, 𝑟𝑎𝑖 s are in Example 4.2,
and S𝑓 = S ∪ {M1, M2, tokyoac0, tokyoac1}. ▲

Example 4.6. Let us see how to divide the synthesis after obtaining the decomposed
set 𝐶𝑔 in Example 4.5. Suppose that we skip the step of forward-propagating FDs. By
applying 𝐶𝑔 on 𝑇𝑠𝑜𝑢𝑟𝑐𝑒 = (1.1𝑎, 1.1𝑏) and 𝑇𝑠𝑜𝑢𝑟𝑐𝑒′ = (1.1𝑎′, 1.1𝑏′), one by one, we obtain
a full example E𝑓 (Tables 1.1 and 4.1).
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Then, we can divide the synthesis in a loop of SynthB into five subproblems:

PA1 := ProbA(({staffs}, M1), E1, {𝑟𝑎1 })
PA2 := ProbA(({customers}, M2), E2, {𝑟𝑎2 })
PA3 := ProbA(({M1}, tokyoac0), E3, {𝑟𝑎3 })
PA4 := ProbA(({M2}, tokyoac1), E4, {𝑟𝑎4 })
PA5 := ProbA(({tokyoac0, tokyoac1}, tokyoac), E5, {𝑟𝑎5 })

where ProbA(𝑠𝑐ℎ𝑒𝑚𝑎 =S𝑖, 𝑒𝑥𝑎𝑚𝑝𝑙𝑒 =E𝑖, 𝑎𝑡𝑜𝑚𝑖𝑐_𝑞𝑢𝑒𝑟𝑦 ={𝑟𝑎𝑖 }), whichwill be discussed
in Chapter 5, denotes the problem to synthesize a well-behaved pair (𝑔𝑒𝑡𝑎, 𝑝𝑢𝑡𝑎) such
that the pair is consistent with E𝑖 and 𝑔𝑒𝑡𝑎 = {𝑟𝑎𝑖 }.

Each example E𝑖 = (𝑇 𝑖
𝑠𝑜𝑢𝑟𝑐𝑒,𝑇

𝑖
𝑣𝑖𝑒𝑤 ,𝑇

𝑖
𝑠𝑜𝑢𝑟𝑐𝑒′,𝑇

𝑖
𝑣𝑖𝑒𝑤 ′) includes tables in both forward and

backward transformations corresponding to query {𝑟𝑎𝑖 }:

E1 = ({1.1𝑎}, {4.1𝑎}, {1.1𝑎′}, {4.1𝑎′})
E2 = ({1.1𝑏}, {4.1𝑏}, {1.1𝑏′}, {4.1𝑏′})
E3 = ({4.1𝑎}, {4.1𝑐}, {4.1𝑎′}, {4.1𝑐′})
E3 = ({4.1𝑏}, {4.1𝑑}, {4.1𝑏′}, {4.1𝑑′})
E5 = ({4.1𝑐, 4.1𝑑}, {1.1𝑐}, {4.1𝑐′, 4.1𝑑′}, {1.1𝑐′})

▲

4.2 Forward-Propagating Functional Dependencies

At the end of the previous section, we saw that the synthesis could be reduced to
many sub-synthesis after the query decomposition. However, relations involving a
sub-synthesis task are not associated with any functional dependencies. The lack of
this information will cause a loss of templates or candidate rules for future synthesis.
To address this shortage, we will forward-propagate FDs attached to the source to all
other relations through the specified set of atomic queries.

Suppose that we have a set C𝑔 of atomic queries 𝑔𝑒𝑡𝑎s that form a query 𝑔𝑒𝑡

satisfying the given example.
Algorithm 2 describes how to forward-propagate FDs from the source to the view.

The procedure ForwardPropagateFDs takes as input a set of schemas S (of the
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Table 4.2: Forward propagation of FDs for atomic rules

Type Atomic Rule 𝑟 Schema & Mapping FDs: F𝑉
𝜌

𝑉 (𝑥1, . . . , 𝑥𝑛) : − 𝑆 (𝑦1, . . . , 𝑦𝑛).
where (𝑥1, . . . , 𝑥𝑛) = 𝜌 (𝑦1, . . . , 𝑦𝑛)

𝜌 is a permutation function

S = 𝐴
𝑦

1𝐴
𝑦

2 . . . 𝐴
𝑦
𝑛

V = 𝐴1𝐴2 . . . 𝐴𝑛

M𝑟 [𝐴𝑦

𝑗
] = 𝐴𝑖 if ∃𝑖 . 𝑦 𝑗 = 𝑥𝑖

F𝑉 = AdaptAttr(F𝑆 ,M𝑟 )

Example:
𝑉 (𝑣2, 𝑣1, 𝑣0) : − 𝑆 (𝑣0, 𝑣1, 𝑣2).

S = 𝐴𝐵𝐶 , V = 𝐴1𝐴2𝐴3
M𝑟 [𝐴] = 𝐴3,M𝑟 [𝐵] = 𝐴2,M𝑟 [𝐶] = 𝐴1

F𝑆 = {𝐴→ 𝐵}
F𝑉 = {𝐴3 → 𝐴2}

∪ 𝑉 (𝑥1, . . . , 𝑥𝑛) : − 𝑆1(𝑥1, . . . , 𝑥𝑛);
𝑆2(𝑥1, . . . , 𝑥𝑛).

S1 = S2 = V = 𝐴1𝐴2 . . . 𝐴𝑛

M𝑟 [𝐴 𝑗 ] = 𝐴 𝑗

F𝑉 = ∅

Example:
𝑉 (𝑣0, 𝑣1, 𝑣2) : − 𝑆1(𝑣0, 𝑣1, 𝑣2); 𝑆2(𝑣0, 𝑣1, 𝑣2).

S1 = S2 = 𝐴𝐵𝐶 , V = 𝐴1𝐴2𝐴3
M𝑟 [𝐴] = 𝐴1,M𝑟 [𝐵] = 𝐴2,M𝑟 [𝐶] = 𝐴3

F𝑆1 = {𝐴→ 𝐵}, F𝑆2 = {𝐴→ 𝐵}
F𝑉 = ∅

\ 𝑉 (𝑥1, . . . , 𝑥𝑛) : − 𝑆1(𝑥1, . . . , 𝑥𝑛),
¬ 𝑆2(𝑥1, . . . , 𝑥𝑛).

S1 = S2 = V = 𝐴1𝐴2 . . . 𝐴𝑛

M𝑟 [𝐴 𝑗 ] = 𝐴 𝑗

F𝑉 = AdaptAttr(F𝑆1,M𝑟 )

Example:
𝑉 (𝑣0, 𝑣1, 𝑣2) : − 𝑆1(𝑣0, 𝑣1, 𝑣2),¬ 𝑆2(𝑣0, 𝑣1, 𝑣2).

S1 = S2 = 𝐴𝐵𝐶 , V = 𝐴1𝐴2𝐴3
M𝑟 [𝐴] = 𝐴1,M𝑟 [𝐵] = 𝐴2,M𝑟 [𝐶] = 𝐴3

F𝑆1 = {𝐴→ 𝐵}, F𝑆2 = {𝐵 → 𝐶}
F𝑉 = {𝐴1 → 𝐴2}

∩ 𝑉 (𝑥1, . . . , 𝑥𝑛) : − 𝑆1(𝑥1, . . . , 𝑥𝑛),
𝑆2(𝑥1, . . . , 𝑥𝑛).

S1 = S2 = V = 𝐴1𝐴2 . . . 𝐴𝑛

M𝑟 [𝐴 𝑗 ] = 𝐴 𝑗

F𝑉 = AdaptAttr(F𝑆1,M𝑟 )
∪AdaptAttr(F𝑆2,M𝑟 )

Example:
𝑉 (𝑣0, 𝑣1, 𝑣2) : − 𝑆1(𝑣0, 𝑣1, 𝑣2), 𝑆2(𝑣0, 𝑣1, 𝑣2).

S1 = S2 = 𝐴𝐵𝐶 , V = 𝐴1𝐴2𝐴3
M𝑟 [𝐴] = 𝐴1,M𝑟 [𝐵] = 𝐴2,M𝑟 [𝐶] = 𝐴3

F𝑆1 = {𝐴→ 𝐵}, F𝑆2 = {𝐵 → 𝐶}
F𝑉 = {𝐴1 → 𝐴2, 𝐴2 → 𝐴3}

𝜎 𝑉 (𝑥1, . . . , 𝑥𝑛) : − 𝑆 (𝑥1, . . . , 𝑥𝑛),
𝑣1 ⊕ 𝑐1, . . . , 𝑣𝑚 ⊕ 𝑐𝑚 .

where𝑚 > 0, {𝑣1, . . . , 𝑣𝑚} ⊆ {𝑥1, . . . , 𝑥𝑛}

S = V = 𝐴1𝐴2 . . . 𝐴𝑛

M𝑟 [𝐴 𝑗 ] = 𝐴 𝑗

F𝑉 = AdaptAttr(F𝑆 ,M𝑟 )

Example:
𝑉 (𝑣0, 𝑣1, 𝑣2) : − 𝑆 (𝑣0, 𝑣1, 𝑣2), 𝑣1! = “𝑏1”.

S = 𝐴𝐵𝐶 , V = 𝐴1𝐴2𝐴3
M𝑟 [𝐴] = 𝐴1,M𝑟 [𝐵] = 𝐴2,M𝑟 [𝐶] = 𝐴3

F𝑆 = {𝐴→ 𝐵, 𝐵 → 𝐶},
F𝑉 = {𝐴1 → 𝐴2, 𝐴2 → 𝐴3}

𝜋 𝑉 (𝑥1, . . . , 𝑥𝑚) : − 𝑆 (𝑦1, . . . , 𝑦𝑛) .
where
{𝑥1, . . . , 𝑥𝑚} ⊊ {𝑦1, . . . , 𝑦𝑛}

S = 𝐴
𝑦

1𝐴
𝑦

2 . . . 𝐴
𝑦
𝑛

V = 𝐴1𝐴2 . . . 𝐴𝑛

M𝑟 [𝐴𝑦

𝑗
] = 𝐴𝑖 if ∃𝑖 .𝑦 𝑗 = 𝑥𝑖 else 𝑛𝑢𝑙𝑙

F𝑉 = AdaptAttr(
RepairTree(F𝑆 ,M𝑟 )
)

Example:
𝑉 (𝑣1, 𝑣2, 𝑣3) : −𝑆 (𝑣0, 𝑣1, 𝑣2, 𝑣3).

S = 𝐴𝐵𝐶𝐷 , V = 𝐴1𝐴2𝐴3
M𝑟 [𝐴] = 𝑛𝑢𝑙𝑙,M𝑟 [𝐵] = 𝐴1
M𝑟 [𝐶] = 𝐴2,M𝑟 [𝐷] = 𝐴3

F𝑆 = {𝐵 → 𝐴, 𝐵 → 𝐶,𝐴→ 𝐷}
F𝑉 = {𝐴1 → 𝐴2, 𝐴1 → 𝐴3}

Z 𝑉 (𝑥1, . . . , 𝑥𝑚) : − 𝑆1(𝑦1, . . . , 𝑦𝑛),
𝑆2(𝑣1, . . . , 𝑣𝑜).

where
{𝑦1, . . . , 𝑦𝑛} ∪ {𝑣1, . . . , 𝑣𝑜} = {𝑥1, . . . , 𝑥𝑚},
{𝑦1, . . . , 𝑦𝑛} ∩ {𝑣1, . . . , 𝑣𝑜} ≠ ∅

S1 = 𝐴
𝑦

1𝐴
𝑦

2 . . . 𝐴
𝑦
𝑛

S2 = 𝐴𝑣
1𝐴

𝑣
2 . . . 𝐴

𝑣
𝑜

V = 𝐴1𝐴2 . . . 𝐴𝑚

M𝑟 [𝐴𝑦

𝑗
] = 𝐴𝑖 if ∃𝑖 . 𝑦 𝑗 = 𝑥𝑖

M𝑟 [𝐴𝑣
𝑗 ] = 𝐴𝑖 if ∃𝑖 . 𝑣 𝑗 = 𝑥𝑖

F𝑉 = AdaptAttr(F𝑆1,M𝑟 )
∪AdaptAttr(F𝑆2,M𝑟 )

Example:
𝑉 (𝑣0, 𝑣1, 𝑣2, 𝑣3) : − 𝑆1(𝑣0, 𝑣1, 𝑣2), 𝑆2(𝑣1, 𝑣3).

S1 = 𝐴𝐵𝐶, S2 = 𝐵𝐷 , V = 𝐴1𝐴2𝐴3𝐴4
M𝑟 [𝐴] = 𝐴1,M𝑟 [𝐵] = 𝐴2
M𝑟 [𝐶] = 𝐴3,M𝑟 [𝐷] = 𝐴4

F𝑆1 = {𝐴→ 𝐵,𝐴→ 𝐶}, F𝑆2 = {𝐵 → 𝐷}
F𝑉 = {𝐴1 → 𝐴2, 𝐴1 → 𝐴3, 𝐴2 → 𝐴4}

× 𝑉 (𝑥1, . . . , 𝑥𝑚+𝑛) : − 𝑆1(𝑦1, . . . , 𝑦𝑛),
𝑣1 = 𝑐1, . . . , 𝑣𝑚 = 𝑐𝑚 .

where
{𝑦1, . . . , 𝑦𝑛} ∪ {𝑣1, . . . , 𝑣𝑚} = {𝑥1, . . . , 𝑥𝑚+𝑛},
{𝑦1, . . . , 𝑦𝑛} ∩ {𝑣1, . . . , 𝑣𝑚} = ∅

S1 = 𝐴
𝑦

1𝐴
𝑦

2 . . . 𝐴
𝑦
𝑛

𝑑𝑜𝑚(𝑣1) = 𝐴𝑣
1, . . . , 𝑑𝑜𝑚(𝑣𝑚) = 𝐴𝑣

𝑚

V = 𝐴1𝐴2 . . . 𝐴𝑚+𝑛
M𝑟 [𝐴𝑦

𝑗
] = 𝐴𝑖 if ∃𝑖 . 𝑦 𝑗 = 𝑥𝑖

M𝑟 [𝐴𝑣
𝑗 ] = 𝐴𝑖 if ∃𝑖 . 𝑣 𝑗 = 𝑥𝑖

F𝑉 = AdaptAttr(F𝑆 ,M𝑟 )

Example:
𝑉 (𝑣3, 𝑣0, 𝑣1, 𝑣2) : −𝑆 (𝑣0, 𝑣1, 𝑣2), 𝑣3 = 1.

S = 𝐴𝐵𝐶,𝑑𝑜𝑚(𝑣3) = 𝐷 , V = 𝐴1𝐴2𝐴3𝐴4
M𝑟 [𝐴] = 𝐴2,M𝑟 [𝐵] = 𝐴3
M𝑟 [𝐶] = 𝐴4,M𝑟 [𝐷] = 𝐴1

F𝑆 = {𝐴→ 𝐵, 𝐵 → 𝐶}
F𝑉 = {𝐴2 → 𝐴3, 𝐴2 → 𝐴4}
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Algorithm 2: Forward-Propagating Functional Dependencies
Input: S: a set of schemas, C𝑔: a set of atomic rules
Output: S𝑓 : a new set of schemas where each relation is associated with FDs

1 procedure ForwardPropagateFDs(S, C𝑔):
2 𝑣𝑖𝑠𝑖𝑡𝑒𝑑 ← 𝑑𝑖𝑐𝑡{𝑟 : 𝐹𝑎𝑙𝑠𝑒 for 𝑟 ∈ C𝑔}
3 𝑄 ← ∅
4 𝑅 ← a set of relation names occurring in C𝑔
5 for 𝑟 ∈ S do

6 if 𝑟 is a source then 𝑄, 𝑅 ← 𝑄 ∪ {Name(𝑟 )}, 𝑅 − {Name(𝑟 )}
7 while 𝑅 ≠ ∅ do
8 𝑅𝑓 ← {𝑟 | 𝑟 ∈ C𝑔 ∧ 𝑣𝑖𝑠𝑖𝑡𝑒𝑑 [𝑟 ] = 𝐹𝑎𝑙𝑠𝑒}
9 for 𝑟 ∈ 𝑅𝑓 do

10 if Name(Head(𝑟 )) ∉ 𝑄 ∧ Name(BodyLiteral(𝑟 )) ⊆ 𝑄 then

11 S ← PropagateFDs-A(S, 𝑟 )
12 𝑄, 𝑅 ← 𝑄 ∪ {Name(Head(𝑟 ))}, 𝑅 − {Name(Head(𝑟 ))}
13 𝑣𝑖𝑠𝑖𝑡𝑒𝑑 [𝑟 ] = 𝑇𝑟𝑢𝑒

14 return S as S𝑓

source, the view and intermediate relations) and a set of atomic rules C𝑔 and produces
as output the updated set of schemas S𝑓 with FDs computed for each relation. We say
a relation is processed (unprocessed) if its FDs are (not) computed, and a rule is visited
(unvisited) if (not) all relations appearing in the rule are processed.

ForwardPropagateFDs uses a key-value dictionary 𝑣𝑖𝑠𝑖𝑡𝑒𝑑 to check if a rule
has been visited and two sets 𝑅 and 𝑄 that include the names of unprocessed and
processed relations, respectively. Initially, all values of 𝑣𝑖𝑠𝑖𝑡𝑒𝑑 are 𝐹𝑎𝑙𝑠𝑒 , 𝑄 is empty,
and 𝑅 contains all relation names in C𝑔 (lines 2-4). Because source relations have FDs
given by users, those source names are added to 𝑄 and removed from 𝑅 (lines 5-6).
Then, as long as there is an unprocessed relation, a loop of propagating FDs (lines 7-13)
will be executed. For each atomic and unvisited rule 𝑟 in C𝑔, if all relations appearing
in the body of 𝑟 (rhs) are processed and the relation appearing in the head of 𝑟 (lhs) is
unprocessed, PropagateFDs-A is invoked to propagate FDs from the rhs to the lhs of
the atomic rule 𝑟 . Then, the relation in lhs is processed, and its name should be added
to 𝑄 and removed from 𝑅. The rule 𝑟 is also set to be visited.

Table 4.2 denotes the result of invoking the subprocedure PropagateFDs-A for
each atomic rule 𝑟 with view 𝑉 and source 𝑆 (or (𝑆1, 𝑆2)). In this table, in addition to
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the description of atomic type and atomic rule in the first two columns, the third
column expresses the schemas and rule-based attribute mapping, while the last column
specifies the calculation of FDs. For each atomic type, we directly provide an example
in the lower row of formal representations. We write F𝑋 as the FD set against a relation
𝑋 ,M𝑟 as an attribute mapping of a rule 𝑟 that maps attributes in the rule body to
attributes in the rule head, and AdaptAttr(FX,M𝑟 ) as a function that revises FX
followingM𝑟 .

Example 4.7. Given a 𝜋-rule 𝑟

𝑉 (𝑣1, 𝑣2, 𝑣3) : − 𝑆 (𝑣0, 𝑣1, 𝑣2, 𝑣3).

where S = 𝐴𝐵𝐶𝐷 , F𝑆 = {𝐵 → 𝐴, 𝐵 → 𝐶,𝐴→ 𝐷}, V = 𝐴1𝐴2𝐴3, we have:
M𝑟 [𝐴] = 𝑛𝑢𝑙𝑙 (the 𝐴-position of 𝑆 is 𝑣0 and there is no 𝑣0 in 𝑉 ),
M𝑟 [𝐵] = 𝐴1 (the 𝐵-position of 𝑆 is 𝑣1 and 𝑣1 is at 𝐴1-position of 𝑉 ),
M𝑟 [𝐶] = 𝐴2,
M𝑟 [𝐷] = 𝐴3,

and
F𝑉 = {𝐴1 → 𝐴2, 𝐴1 → 𝐴3}.
When attribute 𝐴 is dropped from the source 𝑆 , before adapting the attributes with

respect to the view 𝑉 , we need to repair the tree form of the FDs (function RepairTree
in Table 4.2) by deleting all edges related to 𝐴 (e.g., 𝐵 → 𝐴, 𝐴 → 𝐷) and possibly
adding edges from 𝐴’s parents to 𝐴’s children (e.g., 𝐵 → 𝐷) if 𝐴 is not at a root. ▲

To continue this section, let us look at two examples of forward-propagating FDs
over a set of atomic queries in the synthesis against two specifications in Example 3.2
and Example 3.3.

Example 4.8. Consider problem Prob(S1, E1) in Example 3.2. We have two sources
staffs and customers with the following schemas:

staffs(sid:SID, name:NAME, city:CITY, active:ACTIVE, Fstaffs = ∅)

customers(cid:CID, name:NAME, city:CITY, Fcustomers = ∅)

After the decomposition in Example 4.5, we have a set of atomic queries C𝑔 =
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{𝑟𝑎1 , 𝑟𝑎2 , 𝑟𝑎3 , 𝑟𝑎4 , 𝑟𝑎5 } that are defined over a set of schemas S𝑓 where

𝑟𝑎1 M1(i,n,c,a) :- staffs(i,n,c,a) , c="Tokyo" , a="1".

𝑟𝑎2 M2(i,n,c) :- customers(i,n,c) , c="Tokyo".

𝑟𝑎3 tokyoac0(n) :- M1(i,n,c,a).

𝑟𝑎4 tokyoac1(n) :- M2(i,n,c).

𝑟𝑎5 tokyoac(n) :- tokyoac0(n) ; tokyoac1(n).

and

S𝑓 = {
staffs(sid:SID, name:NAME, city:CITY, active:ACTIVE, Fstaffs = ∅),

customers(cid:CID, name:NAME, city:CITY, Fcustomers = ∅),

M1(sid:SID, name:NAME, city:CITY, active:ACTIVE),

M2(cid:CID, name:NAME, city:CITY),

tokyoac0(name:NAME),

tokyoac1(name:NAME),

tokyoac(name:NAME)

}

Besides the sources stasffs and customers, the remaining relations in S𝑓 are not
associated with any FDs. A run of ForwardPropagateFDs(S𝑓 , C𝑔) would compute
FDs for these remaining relations in the following order:

Fstaffs ⇒ FM1

Fcustomers ⇒ FM2

FM1 ⇒ Ftokyoac0

FM2 ⇒ Ftokyoac1

Ftokyoac0, Ftokyoac1 ⇒ Ftokyoac

Since Fstaffs = Fcustomers = ∅, we have

FM1 = FM2 = Ftokyoac0 = Ftokyoac1 = Ftokyoac = ∅
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Hence, the updated S𝑓 is as below:

S𝑓 = {
staffs(sid:SID, name:NAME, city:CITY, active:ACTIVE, Fstaffs = ∅),

customers(cid:CID, name:NAME, city:CITY, Fcustomers = ∅),

M1(sid:SID, name:NAME, city:CITY, active:ACTIVE, FM1 = ∅),

M2(cid:CID, name:NAME, city:CITY, FM2 = ∅),

tokyoac0(name:NAME, Ftokyoac0 = ∅),

tokyoac1(name:NAME, Ftokyoac1 = ∅),

tokyoac(name:NAME, Ftokyoac = ∅)

}

Based on the new S𝑓 , we see that the relations appearing on each subproblem in
Example 4.6 are not constrained by any FDs. ▲

Example 4.9. Consider problem Prob(S2, E2) in Example 3.3. We have a source 𝑆 of
the following schema:

𝑆 (𝐴 : A, 𝐵 : B,𝐶 : C, 𝐷 : D, F𝑆 = {𝐴→ 𝐵,𝐴→ 𝐷})

Suppose that we synthesized a set of atomic queries C𝑔 = {𝑟𝑜1 , 𝑟𝑜2 , 𝑟𝑜3 } that are defined
over a set of schemas S𝑓 where

𝑟𝑜1 𝑀1(𝑣0, 𝑣1, 𝑣2) : − 𝑆 (𝑣0, 𝑣1, 𝑣2, 𝑣3).
𝑟𝑜2 𝑀2(𝑣0, 𝑣1, 𝑣2) : − 𝑀1(𝑣0, 𝑣1, 𝑣2) , 𝑣2 = “𝑇 ”.
𝑟𝑜3 𝑉 (𝑣0, 𝑣1, 𝑣2) : − 𝑀2(𝑣0, 𝑣1, 𝑣2).

and
S𝑓 = {

𝑆 (𝐴 : A, 𝐵 : B,𝐶 : C, 𝐷 : D, F𝑆 = {𝐴→ 𝐵,𝐴→ 𝐷}),
𝑀1(𝐴𝑀1 : A, 𝐵𝑀1 : B,𝐶𝑀1 : C),
𝑀2(𝐴𝑀2 : A, 𝐵𝑀2 : B,𝐶𝑀2),
𝑉 (𝐴𝑉 : A, 𝐵𝑉 : B,𝐶𝑉 : C),

}

Here, we use the terms 𝐴𝑀1 and 𝐵𝑀2 to precisely describe attributes in the intermediate
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Table 4.3: Intermediate tables containing internal functional dependencies

(4.3a)𝑀1

𝐴 𝐵 𝐶

1 𝑏1 F
1 𝑏1 T
2 𝑏2 T

(4.3a)𝑀2

𝐴 𝐵 𝐶

1 𝑏1 T
2 𝑏2 T

(4.3a)𝑀 ′1
𝐴 𝐵 𝐶

1 𝑏1 F
1 𝑏1 T
1 𝑏2 F

1 𝑏2 T

2 𝑏2 T

(4.3a)𝑀 ′2
𝐴 𝐵 𝐶

1 𝑏1 T
1 𝑏2 T

2 𝑏2 T

relations, but they can be simplified to just 𝐴 and 𝐵. By forward-propagating FDs in
order F𝑆 ⇒ F𝑀1 ⇒ F𝑀2 ⇒ F𝑉 , we can update S𝑓 as below:

S𝑓 = {
𝑆 (𝐴 : A, 𝐵 : B,𝐶 : C, 𝐷 : D, F𝑆 = {𝐴→ 𝐵,𝐴→ 𝐷}),
𝑀1(𝐴𝑀1 : A, 𝐵𝑀1 : B,𝐶𝑀1 : C, F𝑀1 = {𝐴𝑀1 → 𝐵𝑀1),
𝑀2(𝐴𝑀2 : A, 𝐵𝑀2 : B,𝐶𝑀2, F𝑀2 = {𝐴𝑀2 → 𝐵𝑀2),
𝑉 (𝐴𝑉 : A, 𝐵𝑉 : B,𝐶𝑉 : C, F𝑉 = {𝐴𝑉 → 𝐵𝑉 ),

}

Then, similarly to Example 4.6, we can compute the full example E𝑓 (Tables 1.2
and 4.3) and divide the synthesis in a loop of SynthB info three subproblems:

PA1 := ProbA(({𝑆}, 𝑀1), E1, {𝑟𝑜1 })
PA2 := ProbA(({𝑀1}, 𝑀2), E2, {𝑟𝑜2 })
PA3 := ProbA(({𝑀2},𝑉 ), E3, {𝑟𝑜3 })

where ProbA(𝑠𝑐ℎ𝑒𝑚𝑎 =S𝑖, 𝑒𝑥𝑎𝑚𝑝𝑙𝑒 =E𝑖, 𝑎𝑡𝑜𝑚𝑖𝑐_𝑞𝑢𝑒𝑟𝑦 ={𝑟𝑎𝑖 }), denotes the problem
to synthesize a well-behaved pair (𝑔𝑒𝑡𝑎, 𝑝𝑢𝑡𝑎) such that the pair is consistent with E𝑖
and 𝑔𝑒𝑡𝑎 = {𝑟𝑎𝑖 }. Each example E𝑖 is of the form (𝑇 𝑖

𝑠𝑜𝑢𝑟𝑐𝑒,𝑇
𝑖
𝑣𝑖𝑒𝑤 ,𝑇

𝑖
𝑠𝑜𝑢𝑟𝑐𝑒′,𝑇

𝑖
𝑣𝑖𝑒𝑤 ′) where

E1 = ({1.2𝑎}, {4.3𝑎}, {1.2𝑎′}, {4.3𝑎′})
E2 = ({4.3𝑎}, {4.3𝑏}, {4.3𝑎′}, {4.3𝑏′})
E3 = ({4.3𝑏}, {1.2𝑏}, {4.3𝑏′}, {1.2𝑏′})

In the three subproblems, the relations 𝑆 , 𝑀1, 𝑀2 and 𝑉 are constrained by the
corresponding FDs in the new schema set S𝑓 above. ▲
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Discussion on Significance of Forward-Propagating FDs

In reality, tables may have internal functional dependencies, i.e., data on tables
may depend on each other. Functional dependencies are widely used in real-world
schemas and play a crucial role in the view update tasks. As mentioned in the
introduction, existing approaches cannot synthesize bidirectional programs from
examples including internal FDs. To avoid missing solutions for real-world view
update problems, supporting FDs is necessary.

Forward propagation of FDs is important because, with information of FDs for
relations, we later can prepare some more templates encoding constraints and effects
of FDs against the relations, which enrich the search space of the synthesis. Moreover,
forward-propagating FDs may help avoid the automatic discovery of FDs from tables -
a challenge recognized as difficult in database research [24].

Limitation

If the inferred FDs are overwritten to the empty (e.g., over unions), no templates
related to those FDs will be used, i.e., no rules related to those FDs will be generated.
Consider the query with four atomic rules:

𝑉 (𝑣0) : −𝑆1(𝑣0).
𝑉 (𝑣0) : −𝑆2(𝑣0).
𝑆1(𝑣0) : −𝑆 (𝑣0).
𝑆2(𝑣0) : −𝑆 (𝑣0).

then F𝑆1 = F𝑆2 = F𝑆 and F𝑉 = ∅ (while we expect that F𝑉 and F𝑆 should coincide).
Since F𝑉 is computed as empty, no constraint rules are generated later. The synthesized
programs (if one exists) would break the PutGet law, if we input the 𝑝𝑢𝑡 program
with an updated view 𝑉 ′ including some tuples that violate the “expected" constraints
of F𝑉 ′ (which is the same as F𝑉 ).

Our method of forward propagation is currently not perfect since we only focus on
FDs as constraints on relations. In the future, if we handle other types of relation
constraints (domain constraints, cardinality constraints, inclusion dependencies), the
forward propagation could be revised to be more useful, so that we can fully propagate
constraints from the source to the view.
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4.3 Summary

In this chapter, we introduce how to decompose the query written in NR-Datalog∗ into a
set of atomic NR-Datalog∗ rules and how to forward-propagate information of functional
dependencies from the source through the set of atomic rules to all other relations ap-
pearing in the rules. Then we can divide the synthesis problem of (𝑔𝑒𝑡, 𝑝𝑢𝑡) to many sub-
synthesis problems of the form ProbA(𝑠𝑐ℎ𝑒𝑚𝑎 =S𝑖, 𝑒𝑥𝑎𝑚𝑝𝑙𝑒 =E𝑖, 𝑎𝑡𝑜𝑚𝑖𝑐_𝑞𝑢𝑒𝑟𝑦 ={𝑟𝑎𝑖 }).
Each relation in the schema set S𝑖 of a subproblem is clearly associated with a set of
FDs, either empty or non-empty. In Chapters 5 and 6, we will solve the subproblem
using templates.
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5
Synthesizing View Update Programs with

Minimal-Effect Templates

After decomposing the synthesized query into a set of atomic queries 𝑔𝑒𝑡𝑎, it is
possible to divide the synthesis of (𝑔𝑒𝑡, 𝑝𝑢𝑡) into many sub-synthesis of (𝑔𝑒𝑡𝑎, 𝑝𝑢𝑡𝑎).
To synthesize the atomic view update 𝑝𝑢𝑡𝑎 given the 𝑔𝑒𝑡𝑎 , we will design well-behaved
templates encoding well-behaved view update strategies for atomic queries, use these
templates to generate candidate rules of 𝑝𝑢𝑡𝑎 , and adapt ProSynth.

In this chapter, we relax the extra constraints and effects of dependencies, or,
in other words, consider the dependencies as empty. We focus on templatizing
minimal-effect view update strategies, which are strategies that involve minimal and
no redundant changes. We discuss this templatizing in Section 5.1. We implement a
prototype SynthBX using the designed templates and evaluate it on a suite of 56
practical benchmarks. Section 5.2 covers the implementation and evaluation. We
summarize this chapter in Section 5.3.
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Chapter 5. Synthesizing View Update Programs with Minimal-Effect

Templates

5.1 Templatizing Minimal-Effect View Update Strate-

gies

In the previous chapter, we know that after decomposing the synthesized query to be
atomic rules, the synthesis of (𝑔𝑒𝑡, 𝑝𝑢𝑡) can be reduced to sub-synthesis problems,
each of form PA𝑖 := ProbA((S𝑖,V𝑖), E𝑖, {𝑟𝑎𝑖 }). In this section, we present preparing
templates to adapt ProSynth+ to solve these subproblems and thereby find out a
solution for (𝑔𝑒𝑡, 𝑝𝑢𝑡).

To solve a sub-synthesis problem PA𝑖 := ProbA((S𝑖,V𝑖), E𝑖, {𝑟𝑎𝑖 }), we need to
synthesize a well-behaved 𝑝𝑢𝑡𝑎 of type (S𝑖,V𝑖) → S𝑖 corresponding to the given atomic
𝑔𝑒𝑡𝑎 = {𝑟𝑎𝑖 } of type S𝑖 → V𝑖 such that (𝑔𝑒𝑡𝑎, 𝑝𝑢𝑡𝑎) is consistent with E𝑖 . If a 𝑝𝑢𝑡𝑎 is
synthesized from a common space (e.g., the space of queries), the well-behavedness of
(𝑔𝑒𝑡𝑎, 𝑝𝑢𝑡𝑎) cannot be guaranteed since no “well-behaved” constraints exist between
two search spaces of 𝑔𝑒𝑡𝑎 and 𝑝𝑢𝑡𝑎. Additionally, it is non-trivial to enumerate all
possible 𝑝𝑢𝑡𝑎 that can be synthesized and verify their well-behavedness with the
given 𝑔𝑒𝑡𝑎. This difficulty applies to the synthesis of both the simpler 𝑝𝑢𝑡𝑎 and the
more complex 𝑝𝑢𝑡 . To address the well-behavedness issue, it is important to prepare a
“good” set of candidate rules for view update. We focus on the preparation against 𝑝𝑢𝑡𝑎
because it can be lighter than the preparation against 𝑝𝑢𝑡 .

Fortunately, it is known in the database community [21, 22, 23] that there is a
complete and finite set of strategies with minimal effects for well-behaved 𝑝𝑢𝑡𝑎 if 𝑔𝑒𝑡𝑎
is an atomic query. With this, we can prepare templates encoding the strategies for
efficient synthesis of 𝑝𝑢𝑡𝑎 while guaranteeing that they are well-behaved.

However, existing strategies normally describe how to translate a single change (an
insertion or a deletion) against a view to a change against a source. In practice, the
changes against the view often include many insertions and/or deletions. Moreover,
these insertions and deletions reflect delta-based data, while the example E𝑖 of PA𝑖

contains state-based data. With delta relations (Section 2.3), we can switch between
state-based data and delta-based data, and propagate multiple changes backward.

To avoid repeating the index 𝑖 when presenting templates for sub-synthesis
PA𝑖 , we rename the atomic problem as ProbA((S,V), E𝛼 , {𝑔𝑒𝑡𝑎}) where S and V are
respectively schemas of the source 𝑆 and the view 𝑉 against the atomic 𝑔𝑒𝑡𝑎 of type 𝛼
(S and V here are different from the originals in Definition 3.1).
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Looking at Examples 2.1 and 2.2 of bidirectional programs, we see that if a 𝑔𝑒𝑡𝑎 is
given, the corresponding 𝑝𝑢𝑡𝑎 could be constructed with or without computing delta
relations against the view, which corresponds to two Setups A and B as follows.

Setup A. Given a 𝑔𝑒𝑡𝑎 : S → V, a 𝑝𝑢𝑡𝑎 : (S,V) → S, which takes (𝑆,𝑉 ′) as input,
could be constructed as a combination of rules of four programs including 𝑔𝑒𝑡𝑎, 𝑃𝛿𝑉 ,
𝑃Δ𝑆 and 𝑃𝑆 ′ where:

• 𝑔𝑒𝑡𝑎 derives view data 𝑉 from 𝑆 .

• 𝑃𝛿𝑉 : V × V→ 𝛿V, which changes state-based view data (𝑉 ,𝑉 ′) into delta-based
view data 𝛿𝑉 , includes two rules as below:

𝑟𝐴0− 𝛿𝑉 −( ®𝑥) : − 𝑉 ( ®𝑥), ¬ 𝑉 ′( ®𝑥).
𝑟𝐴0+ 𝛿𝑉 +( ®𝑥) : − 𝑉 ′( ®𝑥), ¬ 𝑉 ( ®𝑥).

• 𝑃Δ𝑆 : S × 𝛿V→ ΔS, which describes update strategies, computes delta-based source
data Δ𝑆 from an input of (𝑆, 𝛿𝑉 ).

• 𝑃𝑆 ′ : S × ΔS→ S, which applies delta-based source data Δ𝑆 to the original source 𝑆
to output updated source data 𝑆′, includes one rule as below:

𝑟𝐴0 𝑆′( ®𝑥) : − 𝑆 ( ®𝑥), ¬ Δ𝑆−( ®𝑥) ; Δ𝑆+( ®𝑥).

▲

Setup B. Given a 𝑔𝑒𝑡𝑎 :: S → V, a 𝑝𝑢𝑡𝑎 :: (S,V) → S, which takes (𝑆,𝑉 ′) as input,
could be constructed as a combination of rules of two programs including 𝑃Δ𝑆 and 𝑃𝑆 ′
where

• 𝑃Δ𝑆 : S × V′→ ΔS consists of Datalog clauses that compute Δ𝑆 from (𝑆,𝑉 ′)

• 𝑃𝑆 ′ : S × ΔS→ S, which applies delta-based source data Δ𝑆 to the original source 𝑆
to output updated source data 𝑆′, includes one rule as below:

𝑟𝐵0 𝑆′( ®𝑥) : − 𝑆 ( ®𝑥), ¬ Δ𝑆−( ®𝑥) ; Δ𝑆+( ®𝑥).
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▲

The two setups above use delta relations to form the program 𝑝𝑢𝑡𝑎. They share
program 𝑃𝑆 ′ but differ in the rest programs. Setup A is closer to the view update
problem (Figure 2.2) since it translates the update 𝛿𝑉 to the update Δ𝑆 . Setup B is
closer to a general view update program since it directly uses (𝑆,𝑉 ′) rather than
(𝑆, 𝛿𝑉 ) to compute Δ𝑆 .

In both Setups A and B, Datalog clauses of 𝑃Δ𝑆 are unknown. Later on, for each
setup, we will templatize the minimal-effect view update strategies [21, 22, 23] to
generate candidates for 𝑃Δ𝑆 , and you will see that the templates against the same
strategies for Setups A and B have the similarity. Note in particular that during the
synthesis, we will use templates for either only Setup A or only Setup B instead of
mixing them together. With templates, we can generate candidate rules by substitutions.
Template parameters 𝑆 , 𝑉 , 𝑆′, 𝑉 ′, Δ𝑆 and 𝛿𝑉 can be realized as relation names derived
from the given schemas S and V. Meanwhile, the argument ®𝑥 can be realized in the
concrete form of ⟨𝑣0, . . . , 𝑣𝑛⟩.

Before diving deeper into missing templates of 𝑃Δ𝑆 , let us try to imagine things
further after we have template-based clauses for all PA𝑖s. We could combine the clauses
into a pool where ProSynth+ can process subproblems in parallel. A 𝑝𝑢𝑡 program
successfully synthesized from the pool is an automatic combination of “𝑝𝑢𝑡𝑛, . . . , 𝑝𝑢𝑡1”
and would pair with the combination of “𝑔𝑒𝑡1, . . . , 𝑔𝑒𝑡𝑛” to form a bidirectional program
(as shown in Figure 1.2). This bidirectional program is primarily a well-behaved
composition of atomic well-behaved bidirectional programs (𝑔𝑒𝑡𝑎, 𝑝𝑢𝑡𝑎)s that each
satisfies a PA𝑖 . To avoid failure during the combination process, we may need to
prepare more templates that impose additional constraints on the sources and the
views of PA𝑖s. It is important to keep in mind that template-based rules for these
constraints (and for 𝑃𝛿𝑉 and 𝑃𝑆 ′) should be fixed in the output programs.

Figures 5.1 and 5.2 show our well-designed view update templates for Setup A.
Figures 5.3 and 5.4 show our well-designed view update templates for Setup B. The
notations used in templates in these four figures are explained in Figure 5.5.

For an atomic query of type 𝛼 (𝛼 ∈ {𝜌,∪, \,∩, 𝜎, 𝜋,Z,×}), there are three basic
types of templates:

• (SDR)𝛼 includes template rules representing strategies for 𝑃Δ𝑆 ;
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�

�

�

�
𝜌-rule 𝑉 ( ®𝑥) : − 𝑆 (𝑝 ( ®𝑥)) .
(SDR)𝜌 : Δ𝑆+,Δ𝑆−
Δ𝑆+(𝑝 ( ®𝑥)) : − 𝛿𝑉 +( ®𝑥).
Δ𝑆−(𝑝 ( ®𝑥)) : − 𝛿𝑉 −( ®𝑥).�




�

	

∪-rule 𝑉 ( ®𝑥) : − 𝑆1( ®𝑥) ; 𝑆2( ®𝑥).
(SDR)∪ : Δ𝑆+𝑖 ,Δ𝑆−𝑖 , 𝑖 ∈ {1, 2}
Δ𝑆−𝑖 ( ®𝑥) : − 𝛿𝑉 −( ®𝑥) , 𝑆𝑖 ( ®𝑥).
Δ𝑆+𝑖 ( ®𝑥) : − 𝛿𝑉 +( ®𝑥) , ¬ 𝑆𝑖 ( ®𝑥).
Δ𝑆+𝑖 ( ®𝑥) : − 𝛿𝑉 +( ®𝑥) , 𝐴𝑢∗∪( ®𝑥) , ¬ 𝑆𝑖 ( ®𝑥).
Δ𝑆+𝑖 ( ®𝑥) : − 𝛿𝑉 +( ®𝑥) , ¬ 𝐴𝑢∗∪( ®𝑥) , ¬ 𝑆𝑖 ( ®𝑥).

(AR)∪ : 𝐴𝑢∗∪ ∈ {𝐴𝑢1∪, 𝐴𝑢2∪, 𝐴𝑢12∪ }
𝐴𝑢1∪ = {𝑡 for 𝑡 ∈ E∪ |𝛿𝑉 + if 𝑡 ∈ E∪ |Δ𝑆+1 ∧ 𝑡 ∉ E∪ |Δ𝑆+2 }
𝐴𝑢2∪ = {𝑡 for 𝑡 ∈ E∪ |𝛿𝑉 + if 𝑡 ∈ E∪ |Δ𝑆+2 ∧ 𝑡 ∉ E∪ |Δ𝑆+1 }
𝐴𝑢12∪ = {𝑡 for 𝑡 ∈ E∪ |𝛿𝑉 + if 𝑡 ∈ E∪ |Δ𝑆+1 ∧ 𝑡 ∈ E∪ |Δ𝑆+2 }�

�

�



\-rule 𝑉 ( ®𝑥) : − 𝑆1( ®𝑥) , ¬ 𝑆2( ®𝑥).
(SDR)\ : Δ𝑆+𝑖 ,Δ𝑆−𝑖 , 𝑖 ∈ {1, 2}
Δ𝑆+1 ( ®𝑥) : − 𝛿𝑉 +( ®𝑥) , ¬ 𝑆1( ®𝑥).
Δ𝑆−2 ( ®𝑥) : − 𝛿𝑉 +( ®𝑥) , 𝑆2( ®𝑥).
Δ𝑆−1 ( ®𝑥) : − 𝛿𝑉 −( ®𝑥) , 𝑆1( ®𝑥).
Δ𝑆+2 ( ®𝑥) : − 𝛿𝑉 −( ®𝑥) , ¬ 𝑆2( ®𝑥).
Δ𝑆−1 ( ®𝑥) : − 𝛿𝑉 −( ®𝑥) , 𝑆1( ®𝑥) , 𝐴𝑢∗\ ( ®𝑥).
Δ𝑆−1 ( ®𝑥) : − 𝛿𝑉 −( ®𝑥) , 𝑆1( ®𝑥) , ¬ 𝐴𝑢∗\ ( ®𝑥).
Δ𝑆+2 ( ®𝑥) : − 𝛿𝑉 −( ®𝑥) , 𝐴𝑢∗\ ( ®𝑥) , ¬ 𝑆2( ®𝑥).
Δ𝑆+2 ( ®𝑥) : − 𝛿𝑉 −( ®𝑥) , ¬ 𝐴𝑢∗\ ( ®𝑥) , ¬ 𝑆2( ®𝑥).

(AR)\ : 𝐴𝑢∗\ ∈ {𝐴𝑢
1
\, 𝐴𝑢

2
\, 𝐴𝑢

12
\ }

𝐴𝑢1\ = {𝑡 for 𝑡 ∈ E\ |𝛿𝑉 − if 𝑡 ∈ E\ |Δ𝑆−1 ∧ 𝑡 ∉ E\ |Δ𝑆+2 }
𝐴𝑢2\ = {𝑡 for 𝑡 ∈ E\ |𝛿𝑉 − if 𝑡 ∈ E\ |Δ𝑆+2 ∧ 𝑡 ∉ E\ |Δ𝑆−1 }
𝐴𝑢12\ = {𝑡 for 𝑡 ∈ E\ |𝛿𝑉 − if 𝑡 ∈ E\ |Δ𝑆−1 ∧ 𝑡 ∈ E\ |Δ𝑆+2 }�




�

	

∩-rule 𝑉 ( ®𝑥) : − 𝑆1( ®𝑥) , 𝑆2( ®𝑥) .
(SDR)∩ : Δ𝑆+𝑖 ,Δ𝑆−𝑖 , 𝑖 ∈ {1, 2}
Δ𝑆+𝑖 ( ®𝑥) : − 𝛿𝑉 +( ®𝑥) , ¬ 𝑆𝑖 ( ®𝑥).
Δ𝑆−𝑖 ( ®𝑥) : − 𝛿𝑉 −( ®𝑥) , 𝑆𝑖 ( ®𝑥).
Δ𝑆−𝑖 ( ®𝑥) : − 𝛿𝑉 −( ®𝑥) , 𝑆𝑖 ( ®𝑥) , 𝐴𝑢∗∩( ®𝑥).
Δ𝑆−𝑖 ( ®𝑥) : − 𝛿𝑉 −( ®𝑥) , 𝑆𝑖 ( ®𝑥) , ¬ 𝐴𝑢∗∩( ®𝑥).

(AR)∩ : 𝐴𝑢∗∩ ∈ {𝐴𝑢1∩, 𝐴𝑢2∩, 𝐴𝑢12∩ }
𝐴𝑢1∩ = {𝑡 for 𝑡 ∈ E∩ |𝛿𝑉 − if 𝑡 ∈ E∩ |Δ𝑆−1 ∧ 𝑡 ∉ E∩ |Δ𝑆−2 }
𝐴𝑢2∩ = {𝑡 for 𝑡 ∈ E∩ |𝛿𝑉 − if 𝑡 ∈ E∩ |Δ𝑆−2 ∧ 𝑡 ∉ E∩ |Δ𝑆−1 }
𝐴𝑢12∩ = {𝑡 for 𝑡 ∈ E∩ |𝛿𝑉 − if 𝑡 ∈ E∩ |Δ𝑆−1 ∧ 𝑡 ∈ E∩ |Δ𝑆−2 }

Figure 5.1: View update templates for 𝜌-,∪-,\-,∩-queries (Setup A)
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𝜎-rule 𝑉 ( ®𝑥) : − 𝑆 ( ®𝑥) , 𝑣1 ⊕1 𝑐1 , . . . , 𝑣𝑚 ⊕𝑚 𝑐𝑚 . where {𝑣1 , . . . , 𝑣𝑚} ⊆ 𝑠𝑒𝑡 ( ®𝑥)
(SDR)𝜎 : Δ𝑆+,Δ𝑆−
Δ𝑆−( ®𝑥) : − 𝛿𝑉 −( ®𝑥) , 𝑆 ( ®𝑥).
Δ𝑆+( ®𝑥) : − 𝛿𝑉 +( ®𝑥) , ¬ 𝑆 ( ®𝑥).
Δ𝑆+( ®𝑥𝑟 ) : − 𝛿𝑉 −( ®𝑥) , 𝑆 ( ®𝑥) , 𝐴𝑢0𝜎 ( ®𝑦𝑟𝜎 ) , ¬ 𝑆 ( ®𝑥𝑟 ).
Δ𝑆+( ®𝑥𝑟 ) : − 𝛿𝑉 −( ®𝑥) , 𝑆 ( ®𝑥) , 𝐴𝑢1𝜎 ( ®𝑥𝑟 ) , ¬ 𝑆 ( ®𝑥𝑟 ).
where ®𝑥𝑟 = 𝑎𝑟𝑎( ®𝑥, ®𝑦𝜎 , ®𝑦𝑟𝜎 ), ®𝑦𝜎 = ⟨𝑢1, . . . , 𝑢𝑘⟩, ®𝑦𝑟𝜎 = ⟨𝑢𝑟1, . . . , 𝑢𝑟𝑘⟩

⟨𝑢1, . . . , 𝑢𝑘⟩ = 𝑡𝑢𝑝𝑙𝑒 (𝑠𝑒𝑡 ({𝑣1, . . . , 𝑣𝑚}))
(AR)𝜎 : 𝐴𝑢∗𝜎 ∈ {𝐴𝑢0𝜎 , 𝐴𝑢1𝜎 }
𝐴𝑢0𝜎 = {Π𝑝𝑜𝑠 ( ®𝑦𝜎 ,®𝑥)𝑡 for 𝑡 ∈ 𝐷𝜎 }
𝐴𝑢1𝜎 = 𝐷𝜎

where 𝐷𝜎 = {𝑡 for 𝑡 ∈ E𝜎 |Δ𝑆+ if Π𝑝𝑜𝑠 (𝑎𝑑 ( ®𝑥, ®𝑦𝜎 ),®𝑥)𝑡 ∈ Π𝑝𝑜𝑠 (𝑎𝑑 ( ®𝑥, ®𝑦𝜎 ),®𝑥) (E𝜎 |Δ𝑆− )}
(FR)𝜎 : 𝐹𝑟
𝐹𝑟 (“_r_") : − 𝑉 ∗(𝑎𝑤𝑎( ®𝑥, {𝑣𝑖})), 𝑣𝑖 ¬ ⊕𝑖 𝑐𝑖 .

where 𝑉 ∗ ∈ {𝑉 ,𝑉 ′}, 𝑖 ∈ {1, . . . ,𝑚}�




�

	

𝜋-rule 𝑉 ( ®𝑥) : − 𝑆 ( ®𝑦). where 𝑠𝑒𝑡 ( ®𝑥) ⊊ 𝑠𝑒𝑡 ( ®𝑦)
(SDR)𝜋 : Δ𝑆+,Δ𝑆−
Δ𝑆−( ®𝑦) : − 𝛿𝑉 −( ®𝑥) , 𝑆 ( ®𝑦).
Δ𝑆+( ®𝑦) : − 𝛿𝑉 +( ®𝑥) , 𝐴𝑢0𝜋 (𝑎𝑑 ( ®𝑦, ®𝑥)) , ¬ 𝑆 (𝑎𝑤𝑎( ®𝑦, ®𝑥)) .
Δ𝑆+( ®𝑦) : − 𝛿𝑉 +( ®𝑥) , 𝐴𝑢1𝜋 ( ®𝑦) , ¬ 𝑆 (𝑎𝑤𝑎( ®𝑦, ®𝑥)) .
Δ𝑆+( ®𝑦) : − 𝛿𝑉 +( ®𝑥) , 𝐴𝑢0𝜋 (𝑎𝑑 ( ®𝑦, ®𝑥)) , ¬ 𝐴𝑢1𝜋 (𝑎𝑤𝑎( ®𝑦, ®𝑥)) , ¬ 𝑆 (𝑎𝑤𝑎( ®𝑦, ®𝑥)) .

(AR)𝜋 : 𝐴𝑢∗𝜋 ∈ {𝐴𝑢0𝜋 , 𝐴𝑢1𝜋 }
𝐴𝑢0𝜋 = {𝑚𝑜𝑠𝑡_𝑐𝑜𝑚𝑚𝑜𝑛(⟨Π𝑝𝑜𝑠 (𝑎𝑑 ( ®𝑦,®𝑥),®𝑦)𝑡 for 𝑡 ∈ 𝐷𝜋 ⟩)}
𝐴𝑢1𝜋 = {𝑡 for 𝑡 ∈ 𝐷𝜋 if Π𝑝𝑜𝑠 (𝑎𝑑 ( ®𝑦,®𝑥),®𝑦)𝑡 ∉ 𝐴𝑢0𝜋 }
where 𝐷𝜋 = {𝑡 for 𝑡 ∈ E𝜋 |Δ𝑆+ if Π𝑝𝑜𝑠 ( ®𝑥,®𝑦)𝑡 ∈ E𝜋 |𝛿𝑉 +}�

�

�



Z-rule 𝑉 ( ®𝑥) : − 𝑆1( ®𝑦1) , 𝑆2( ®𝑦2). where 𝑠𝑒𝑡 ( ®𝑦1) ∪ 𝑠𝑒𝑡 ( ®𝑦2)=𝑠𝑒𝑡 ( ®𝑥)
(SDR)Z : Δ𝑆+𝑖 ,Δ𝑆−𝑖 , 𝑖 ∈ {1, 2} | and 𝑠𝑒𝑡 ( ®𝑦1) ∩ 𝑠𝑒𝑡 ( ®𝑦2) ≠ ∅
Δ𝑆+𝑖 ( ®𝑦𝑖) : − 𝛿𝑉 +(𝑎𝑤𝑎( ®𝑥, ®𝑦𝑖)) , ¬ 𝑆𝑖 ( ®𝑦𝑖).
Δ𝑆−𝑖 ( ®𝑦𝑖) : − 𝛿𝑉 −(𝑎𝑤𝑎( ®𝑥, ®𝑦𝑖)) , 𝑆𝑖 ( ®𝑦𝑖).
Δ𝑆−𝑖 ( ®𝑦𝑖) : − 𝛿𝑉 −(𝑎𝑤𝑎( ®𝑥, ®𝑦𝑖)) , 𝑆𝑖 ( ®𝑦𝑖) , 𝐴𝑢∗Z (𝑎𝑤𝑎( ®𝑥, ®𝑦𝑖)) .
Δ𝑆−𝑖 ( ®𝑦𝑖) : − 𝛿𝑉 −(𝑎𝑤𝑎( ®𝑥, ®𝑦𝑖)) , 𝑆𝑖 ( ®𝑦𝑖) , ¬ 𝐴𝑢∗Z (𝑎𝑤𝑎( ®𝑥, ®𝑦𝑖)) .

(AR)Z : 𝐴𝑢∗Z ∈ {𝐴𝑢1Z, 𝐴𝑢2Z, 𝐴𝑢12Z }
𝐴𝑢1Z = {𝑡 for 𝑡 ∈ EZ |𝛿𝑉 − if Π𝑝𝑜𝑠 ( ®𝑦1,®𝑥)𝑡 ∈ EZ |Δ𝑆−1 ∧ Π𝑝𝑜𝑠 ( ®𝑦2,®𝑥)𝑡 ∉ EZ |Δ𝑆−2 }
𝐴𝑢2Z = {𝑡 for 𝑡 ∈ EZ |𝛿𝑉 − if Π𝑝𝑜𝑠 ( ®𝑦2,®𝑥)𝑡 ∈ EZ |Δ𝑆−2 ∧ Π𝑝𝑜𝑠 ( ®𝑦1,®𝑥)𝑡 ∉ EZ |Δ𝑆−1 }
𝐴𝑢12Z = {𝑡 for 𝑡 ∈ EZ |𝛿𝑉 − if Π𝑝𝑜𝑠 ( ®𝑦1,®𝑥)𝑡 ∈ EZ |Δ𝑆−1 ∧ Π𝑝𝑜𝑠 ( ®𝑦2,®𝑥)𝑡 ∈ EZ |Δ𝑆−2 }

(FR)Z : 𝐹𝑟
𝐹𝑟 ("_r_") : − Δ𝑆+𝑖 (𝑎𝑤𝑎( ®𝑦𝑖, ®𝑦3−𝑖)) , 𝑆𝑖 (𝑎𝑤𝑎( ®𝑦𝑖, ®𝑦3−𝑖)) .
𝐹𝑟 ("_r_") : − Δ𝑆−𝑖 (𝑎𝑤𝑎( ®𝑦𝑖, ®𝑦3−𝑖)) , 𝑆′𝑖 (𝑎𝑤𝑎( ®𝑦𝑖, ®𝑦3−𝑖)) .�

�

�

�

×-rule 𝑉 ( ®𝑥) : − 𝑆 ( ®𝑦) , 𝑣1=𝑐1 , . . . , 𝑣𝑚=𝑐𝑚 . where 𝑠𝑒𝑡 ( ®𝑦) ∪ {𝑣1, . . . ,𝑣𝑚}=𝑠𝑒𝑡 ( ®𝑥)
(SDR)× : Δ𝑆+,Δ𝑆− | and 𝑠𝑒𝑡 ( ®𝑦) ∩ {𝑣1, . . . ,𝑣𝑚}=∅
Δ𝑆+( ®𝑦) : − 𝛿𝑉 +(𝑎𝑤𝑎( ®𝑥, ®𝑦)) , ¬ 𝑆 ( ®𝑦).
Δ𝑆−( ®𝑦) : − 𝛿𝑉 −(𝑎𝑤𝑎( ®𝑥, ®𝑦)) , 𝑆 ( ®𝑦).

(FR)× : 𝐹𝑟
𝐹𝑟 (“_r_") : − 𝑉 ∗(𝑎𝑤𝑎( ®𝑥, {𝑣𝑖})) , 𝑣𝑖 ≠ 𝑐𝑖 .

where 𝑉 ∗ ∈ {𝑉 ,𝑉 ′}, 𝑖 ∈ {1, . . . ,𝑚}

Figure 5.2: View update templates for 𝜎-,𝜋-,Z-,×-queries (Setup A)
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�

�

�

�
𝜌-rule 𝑉 ( ®𝑥) : − 𝑆 (𝑝 ( ®𝑥)) .
(SDR)𝜌 : Δ𝑆+,Δ𝑆−
Δ𝑆+(𝑝 ( ®𝑥)) : − 𝑉 ′( ®𝑥) , ¬ 𝑆 (𝑝 ( ®𝑥)) .
Δ𝑆−(𝑝 ( ®𝑥)) : − ¬ 𝑉 ′( ®𝑥) , 𝑆 (𝑝 ( ®𝑥)) .�




�

	

∪-rule 𝑉 ( ®𝑥) : − 𝑆1( ®𝑥) ; 𝑆2( ®𝑥).
(SDR)∪ : Δ𝑆+𝑖 ,Δ𝑆−𝑖 , 𝑖 ∈ {1, 2}
Δ𝑆−𝑖 ( ®𝑥) : − ¬ 𝑉 ′( ®𝑥) , 𝑆𝑖 ( ®𝑥).
Δ𝑆+𝑖 ( ®𝑥) : − 𝑉 ′( ®𝑥) , ¬ 𝑆𝑖 ( ®𝑥) , ¬ 𝑆3−𝑖 ( ®𝑥).
Δ𝑆+𝑖 ( ®𝑥) : − 𝑉 ′( ®𝑥) , ¬ 𝑆𝑖 ( ®𝑥) , ¬ 𝑆3−𝑖 ( ®𝑥) , 𝐴𝑢∗∪( ®𝑥).
Δ𝑆+𝑖 ( ®𝑥) : − 𝑉 ′( ®𝑥) , ¬ 𝑆𝑖 ( ®𝑥) , ¬ 𝑆3−𝑖 ( ®𝑥) , ¬ 𝐴𝑢∗∪( ®𝑥).

(AR)∪ : 𝐴𝑢∗∪ ∈ {𝐴𝑢1∪, 𝐴𝑢2∪, 𝐴𝑢12∪ }
𝐴𝑢1∪ = {𝑡 for 𝑡 ∈ E∪ |𝑉 ′ − E∪ |𝑉 if 𝑡 ∈ E∪ |Δ𝑆+1 ∧ 𝑡 ∉ E∪ |Δ𝑆+2 }
𝐴𝑢2∪ = {𝑡 for 𝑡 ∈ E∪ |𝑉 ′ − E∪ |𝑉 if 𝑡 ∈ E∪ |Δ𝑆+2 ∧ 𝑡 ∉ E∪ |Δ𝑆+1 }
𝐴𝑢12∪ = {𝑡 for 𝑡 ∈ E∪ |𝑉 ′ − E∪ |𝑉 if 𝑡 ∈ E∪ |Δ𝑆+1 ∧ 𝑡 ∈ E∪ |Δ𝑆+2 }�

�

�



\-rule 𝑉 ( ®𝑥) : − 𝑆1( ®𝑥) , ¬ 𝑆2( ®𝑥).
(SDR)\ : Δ𝑆+𝑖 ,Δ𝑆−𝑖 , 𝑖 ∈ {1, 2}
Δ𝑆+1 ( ®𝑥) : − 𝑉 ′( ®𝑥) , ¬ 𝑆1( ®𝑥).
Δ𝑆−2 ( ®𝑥) : − 𝑉 ′( ®𝑥) , 𝑆2( ®𝑥).
Δ𝑆−1 ( ®𝑥) : − ¬ 𝑉 ′( ®𝑥) , 𝑆1( ®𝑥) , ¬ 𝑆2( ®𝑥).
Δ𝑆+2 ( ®𝑥) : − ¬ 𝑉 ′( ®𝑥) , ¬ 𝑆2( ®𝑥) , 𝑆1( ®𝑥).
Δ𝑆−1 ( ®𝑥) : − ¬ 𝑉 ′( ®𝑥) , 𝑆1( ®𝑥) , ¬ 𝑆2( ®𝑥) , 𝐴𝑢∗\ ( ®𝑥).
Δ𝑆−1 ( ®𝑥) : − ¬ 𝑉 ′( ®𝑥) , 𝑆1( ®𝑥) , ¬ 𝑆2( ®𝑥) , ¬ 𝐴𝑢∗\ ( ®𝑥).
Δ𝑆+2 ( ®𝑥) : − ¬ 𝑉 ′( ®𝑥) , ¬ 𝑆2( ®𝑥) , 𝑆1( ®𝑥) , 𝐴𝑢∗\ ( ®𝑥).
Δ𝑆+2 ( ®𝑥) : − ¬ 𝑉 ′( ®𝑥) , ¬ 𝑆2( ®𝑥) , 𝑆1( ®𝑥) , ¬ 𝐴𝑢∗\ ( ®𝑥).

(AR)\ : 𝐴𝑢∗\ ∈ {𝐴𝑢
1
\, 𝐴𝑢

2
\, 𝐴𝑢

12
\ }

𝐴𝑢1\ = {𝑡 for 𝑡 ∈ E\ |𝑉 − E\ |𝑉 ′ if 𝑡 ∈ E\ |Δ𝑆−1 ∧ 𝑡 ∉ E\ |Δ𝑆+2 }
𝐴𝑢2\ = {𝑡 for 𝑡 ∈ E\ |𝑉 − E\ |𝑉 ′ if 𝑡 ∈ E\ |Δ𝑆+2 ∧ 𝑡 ∉ E\ |Δ𝑆−1 }
𝐴𝑢12\ = {𝑡 for 𝑡 ∈ E\ |𝑉 − E\ |𝑉 ′ if 𝑡 ∈ E\ |Δ𝑆−1 ∧ 𝑡 ∈ E\ |Δ𝑆+2 }�




�

	

∩-rule 𝑉 ( ®𝑥) : − 𝑆1( ®𝑥) , 𝑆2( ®𝑥) .
(SDR)∩ : Δ𝑆+𝑖 ,Δ𝑆−𝑖 , 𝑖 ∈ {1, 2}
Δ𝑆+𝑖 ( ®𝑥) : − 𝑉 ′( ®𝑥) , ¬ 𝑆𝑖 ( ®𝑥).
Δ𝑆−𝑖 ( ®𝑥) : − ¬ 𝑉 ′( ®𝑥) , 𝑆𝑖 ( ®𝑥) , 𝑆3−𝑖 ( ®𝑥) .
Δ𝑆−𝑖 ( ®𝑥) : − ¬ 𝑉 ′( ®𝑥) , 𝑆𝑖 ( ®𝑥) , 𝑆3−𝑖 ( ®𝑥) , 𝐴𝑢∗∩( ®𝑥).
Δ𝑆−𝑖 ( ®𝑥) : − ¬ 𝑉 ′( ®𝑥) , 𝑆𝑖 ( ®𝑥) , 𝑆3−𝑖 ( ®𝑥) , ¬ 𝐴𝑢∗∩( ®𝑥).

(AR)∩ : 𝐴𝑢∗∩ ∈ {𝐴𝑢1∩, 𝐴𝑢2∩, 𝐴𝑢12∩ }
𝐴𝑢1∩ = {𝑡 for 𝑡 ∈ E∩ |𝑉 − E∩ |𝑉 ′ if 𝑡 ∈ E∩ |Δ𝑆−1 ∧ 𝑡 ∉ E∩ |Δ𝑆−2 }
𝐴𝑢2∩ = {𝑡 for 𝑡 ∈ E∩ |𝑉 − E∩ |𝑉 ′ if 𝑡 ∈ E∩ |Δ𝑆−2 ∧ 𝑡 ∉ E∩ |Δ𝑆−1 }
𝐴𝑢12∩ = {𝑡 for 𝑡 ∈ E∩ |𝑉 − E∩ |𝑉 ′ if 𝑡 ∈ E∩ |Δ𝑆−1 ∧ 𝑡 ∈ E∩ |Δ𝑆−2 }

Figure 5.3: View update templates for 𝜌-,∪-,\-,∩-queries (Setup B)
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�

�



𝜎-rule 𝑉 ( ®𝑥) : − 𝑆 ( ®𝑥) , 𝑣1 ⊕1 𝑐1 , . . . , 𝑣𝑚 ⊕𝑚 𝑐𝑚 . where {𝑣1 , . . . , 𝑣𝑚} ⊆ 𝑠𝑒𝑡 ( ®𝑥)
(SDR)𝜎 : Δ𝑆+,Δ𝑆−
Δ𝑆−( ®𝑥) : − ¬ 𝑉 ′( ®𝑥) , 𝑆 ( ®𝑥) , 𝑣1 ⊕1 𝑐1, . . . , 𝑣𝑚 ⊕𝑚 𝑐𝑚 .

Δ𝑆+( ®𝑥) : − 𝑉 ′( ®𝑥) , ¬ 𝑆 ( ®𝑥) , 𝑣1 ⊕1 𝑐1, . . . , 𝑣𝑚 ⊕𝑚 𝑐𝑚 .

Δ𝑆+( ®𝑥𝑟 ) : − ¬ 𝑉 ′( ®𝑥) , 𝑆 ( ®𝑥) , ¬ 𝑆 ( ®𝑥𝑟 ) , 𝐴𝑢0𝜎 ( ®𝑦𝑟𝜎 ) , 𝑣1 ⊕1 𝑐1, . . . , 𝑣𝑚 ⊕𝑚 𝑐𝑚 .

Δ𝑆+( ®𝑥𝑟 ) : − ¬ 𝑉 ′( ®𝑥) , 𝑆 ( ®𝑥) , ¬ 𝑆 ( ®𝑥𝑟 ) , 𝐴𝑢1𝜎 ( ®𝑥𝑟 ) , 𝑣1 ⊕1 𝑐1, . . . , 𝑣𝑚 ⊕𝑚 𝑐𝑚 .

where ®𝑥𝑟 = 𝑎𝑟𝑎( ®𝑥, ®𝑦𝜎 , ®𝑦𝑟𝜎 ), ®𝑦𝜎 = ⟨𝑢1, . . . , 𝑢𝑘⟩, ®𝑦𝑟𝜎 = ⟨𝑢𝑟1, . . . , 𝑢𝑟𝑘⟩
⟨𝑢1, . . . , 𝑢𝑘⟩ = 𝑡𝑢𝑝𝑙𝑒 (𝑠𝑒𝑡 ({𝑣1, . . . , 𝑣𝑚}))

(AR)𝜎 : 𝐴𝑢∗𝜎 ∈ {𝐴𝑢0𝜎 , 𝐴𝑢1𝜎 }
𝐴𝑢0𝜎 = {Π𝑝𝑜𝑠 ( ®𝑦𝜎 ,®𝑥)𝑡 for 𝑡 ∈ 𝐷𝜎 }
𝐴𝑢1𝜎 = 𝐷𝜎

where 𝐷𝜎 = {𝑡 for 𝑡 ∈ E𝜎 |Δ𝑆+ if Π𝑝𝑜𝑠 (𝑎𝑑 ( ®𝑥, ®𝑦𝜎 ),®𝑥)𝑡 ∈ Π𝑝𝑜𝑠 (𝑎𝑑 ( ®𝑥, ®𝑦𝜎 ),®𝑥) (E𝜎 |Δ𝑆− )}
(FR)𝜎 : 𝐹𝑟
𝐹𝑟 (“_𝑟_”) : − 𝑉 ∗(𝑎𝑤𝑎( ®𝑥, {𝑣𝑖})), 𝑣𝑖 ¬ ⊕𝑖 𝑐𝑖 .

where 𝑉 ∗ ∈ {𝑉 ,𝑉 ′}, 𝑖 ∈ {1, . . . ,𝑚}�




�

	

𝜋-rule 𝑉 ( ®𝑥) : − 𝑆 ( ®𝑦). where 𝑠𝑒𝑡 ( ®𝑥) ⊊ 𝑠𝑒𝑡 ( ®𝑦)
(SDR)𝜋 : Δ𝑆+,Δ𝑆−
Δ𝑆−( ®𝑦) : − ¬ 𝑉 ′( ®𝑥) , 𝑆 ( ®𝑦).
Δ𝑆+( ®𝑦) : − 𝑉 ′( ®𝑥) , ¬ 𝑆 (𝑎𝑤𝑎( ®𝑦, ®𝑥)) , 𝐴𝑢0𝜋 (𝑎𝑑 ( ®𝑦, ®𝑥)) .
Δ𝑆+( ®𝑦) : − 𝑉 ′( ®𝑥) , ¬ 𝑆 (𝑎𝑤𝑎( ®𝑦, ®𝑥)) , 𝐴𝑢1𝜋 ( ®𝑦).
Δ𝑆+( ®𝑦) : − 𝑉 ′( ®𝑥) , ¬ 𝑆 (𝑎𝑤𝑎( ®𝑦, ®𝑥)) , 𝐴𝑢0𝜋 (𝑎𝑑 ( ®𝑦, ®𝑥)) , ¬ 𝐴𝑢1𝜋 (𝑎𝑤𝑎( ®𝑦, ®𝑥)) .

(AR)𝜋 : 𝐴𝑢∗𝜋 ∈ {𝐴𝑢0𝜋 , 𝐴𝑢1𝜋 }
𝐴𝑢0𝜋 = {𝑚𝑜𝑠𝑡_𝑐𝑜𝑚𝑚𝑜𝑛(⟨Π𝑝𝑜𝑠 (𝑎𝑑 ( ®𝑦,®𝑥),®𝑦)𝑡 for 𝑡 ∈ 𝐷𝜋 ⟩)}
𝐴𝑢1𝜋 = {𝑡 for 𝑡 ∈ 𝐷𝜋 if Π𝑝𝑜𝑠 (𝑎𝑑 ( ®𝑦,®𝑥),®𝑦)𝑡 ∉ 𝐴𝑢0𝜋 }
where 𝐷𝜋 = {𝑡 for 𝑡 ∈ E𝜋 |Δ𝑆+ if Π𝑝𝑜𝑠 ( ®𝑥,®𝑦)𝑡 ∈ (E𝜋 |𝑉 ′ − E𝜋 |𝑉 )}�

�

�



Z-rule 𝑉 ( ®𝑥) : − 𝑆1( ®𝑦1) , 𝑆2( ®𝑦2). where 𝑠𝑒𝑡 ( ®𝑦1) ∪ 𝑠𝑒𝑡 ( ®𝑦2)=𝑠𝑒𝑡 ( ®𝑥)
(SDR)Z : Δ𝑆+𝑖 ,Δ𝑆−𝑖 , 𝑖 ∈ {1, 2} | and 𝑠𝑒𝑡 ( ®𝑦1) ∩ 𝑠𝑒𝑡 ( ®𝑦2) ≠ ∅
Δ𝑆+𝑖 ( ®𝑦𝑖) : − 𝑉 ′(𝑎𝑤𝑎( ®𝑥, ®𝑦𝑖)) , ¬ 𝑆𝑖 ( ®𝑦𝑖).
Δ𝑆−𝑖 ( ®𝑦𝑖) : − ¬ 𝑉 ′(𝑎𝑤𝑎( ®𝑥, ®𝑦𝑖)) , 𝑆𝑖 ( ®𝑦𝑖) , 𝑆3−𝑖 ( ®𝑦3−𝑖).
Δ𝑆−𝑖 ( ®𝑦𝑖) : − ¬ 𝑉 ′(𝑎𝑤𝑎( ®𝑥, ®𝑦𝑖)) , 𝑆𝑖 ( ®𝑦𝑖) , 𝑆3−𝑖 ( ®𝑦3−𝑖) , 𝐴𝑢∗Z (𝑎𝑤𝑎( ®𝑥, ®𝑦𝑖)) .
Δ𝑆−𝑖 ( ®𝑦𝑖) : − ¬ 𝑉 ′(𝑎𝑤𝑎( ®𝑥, ®𝑦𝑖)) , 𝑆𝑖 ( ®𝑦𝑖) , 𝑆3−𝑖 ( ®𝑦3−𝑖) , ¬ 𝐴𝑢∗Z (𝑎𝑤𝑎( ®𝑥, ®𝑦𝑖)) .

(AR)Z : 𝐴𝑢∗Z ∈ {𝐴𝑢1Z, 𝐴𝑢2Z, 𝐴𝑢12Z }
𝐴𝑢1Z = {𝑡 for 𝑡 ∈ EZ |𝑉 − EZ |𝑉 ′ if Π𝑝𝑜𝑠 ( ®𝑦1,®𝑥)𝑡 ∈ EZ |Δ𝑆−1 ∧ Π𝑝𝑜𝑠 ( ®𝑦2,®𝑥)𝑡 ∉ EZ |Δ𝑆−2 }
𝐴𝑢2Z = {𝑡 for 𝑡 ∈ EZ |𝑉 − EZ |𝑉 ′ if Π𝑝𝑜𝑠 ( ®𝑦2,®𝑥)𝑡 ∈ EZ |Δ𝑆−2 ∧ Π𝑝𝑜𝑠 ( ®𝑦1,®𝑥)𝑡 ∉ EZ |Δ𝑆−1 }
𝐴𝑢12Z = {𝑡 for 𝑡 ∈ EZ |𝑉 − EZ |𝑉 ′ if Π𝑝𝑜𝑠 ( ®𝑦1,®𝑥)𝑡 ∈ EZ |Δ𝑆−1 ∧ Π𝑝𝑜𝑠 ( ®𝑦2,®𝑥)𝑡 ∈ EZ |Δ𝑆−2 }

(FR)Z : 𝐹𝑟
𝐹𝑟 (“_𝑟_”) : − Δ𝑆+𝑖 (𝑎𝑤𝑎( ®𝑦𝑖, ®𝑦3−𝑖)) , 𝑆𝑖 (𝑎𝑤𝑎( ®𝑦𝑖, ®𝑦3−𝑖)) .
𝐹𝑟 (“_𝑟_”) : − Δ𝑆−𝑖 (𝑎𝑤𝑎( ®𝑦𝑖, ®𝑦3−𝑖)) , 𝑆′𝑖 (𝑎𝑤𝑎( ®𝑦𝑖, ®𝑦3−𝑖)) .�

�

�

�

×-rule 𝑉 ( ®𝑥) : − 𝑆 ( ®𝑦) , 𝑣1=𝑐1 , . . . , 𝑣𝑚=𝑐𝑚 . where 𝑠𝑒𝑡 ( ®𝑦) ∪ {𝑣1, . . . ,𝑣𝑚}=𝑠𝑒𝑡 ( ®𝑥)
(SDR)× : Δ𝑆+,Δ𝑆− | and 𝑠𝑒𝑡 ( ®𝑦) ∩ {𝑣1, . . . ,𝑣𝑚}=∅
Δ𝑆+( ®𝑦) : − 𝑉 ′( ®𝑥) , ¬ 𝑆 ( ®𝑦) , 𝑣1 = 𝑐1 , . . . , 𝑣𝑚 = 𝑐𝑚 .

Δ𝑆−( ®𝑦) : − ¬ 𝑉 ′( ®𝑥) , 𝑆 ( ®𝑦) , 𝑣1 = 𝑐1 , . . . , 𝑣𝑚 = 𝑐𝑚 ..

(FR)× : 𝐹𝑟
𝐹𝑟 (“_𝑟_”) : − 𝑉 ∗(𝑎𝑤𝑎( ®𝑥, {𝑣𝑖})) , 𝑣𝑖 ≠ 𝑐𝑖 .

where 𝑉 ∗ ∈ {𝑉 ,𝑉 ′}, 𝑖 ∈ {1, . . . ,𝑚}

Figure 5.4: View update templates for 𝜎-,𝜋-,Z-,×-queries (Setup B)
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(SDR)𝛼 , (AR)𝛼 and (FR)𝛼 are sets of template-based clauses for source delta, auxiliary and flag relations, respectively.
Each 𝐴𝑢∗𝛼 in (AR)𝛼 is an auxiliary relation that holds necessary ground tuples/facts.
E𝛼 is an example of form (𝑇𝑆 ,𝑇𝑆 ′,𝑇𝑉 ,𝑇𝑉 ′) against an 𝛼-rule.
E𝛼 |𝑋 contains tuples in 𝑋 that can be calculated from E𝛼 .
𝐹𝑟 is a flag relation that checks constraints imposed on the sources and views. ⟨“_𝑟_”⟩ ∈ 𝐹𝑟 expresses a rejection.
{. . .} and ⟨. . .⟩ respectively represent a set and a tuple.
𝑠𝑒𝑡 (𝑋 ) and 𝑡𝑢𝑝𝑙𝑒 (𝑋 ) respectively convert 𝑋 to a set and a tuple.
If 𝑋 is a tuple,

𝑋 [𝑖] returns the i-th element,
𝑖𝑛𝑑𝑒𝑥 (𝑣, 𝑋 ) returns the index of an element 𝑣 ,
𝑚𝑜𝑠𝑡_𝑐𝑜𝑚𝑚𝑜𝑛(𝑋 ) returns the most common element, in 𝑋 .

If 𝑋 and 𝑌 are tuples and 𝑠𝑒𝑡 (𝑌 ) ⊆ 𝑠𝑒𝑡 (𝑋 ), (POSition function) 𝑝𝑜𝑠 (𝑌,𝑋 ) := ⟨𝑖𝑛𝑑𝑒𝑥 (𝑣, 𝑋 ) for 𝑣 ∈ 𝑌 ⟩.
If 𝑡 is a tuple, Π𝑝𝑜𝑠 (𝑌,𝑋 )𝑡 returns a new tuple by projecting 𝑡 at 𝑝𝑜𝑠 (𝑌,𝑋 ).
If 𝑅 is a set of tuples, Π𝑝𝑜𝑠 (𝑌,𝑋 )𝑅 := {Π𝑝𝑜𝑠 (𝑌,𝑋 )𝑡 for 𝑡 ∈ 𝑅}.
(Argument function) 𝑎𝑟𝑔(𝑋 ) returns a tuple of variables appearing in literal/constraint/set/tuple 𝑋 .
(Argument-Difference function) 𝑎𝑑 (𝑋,𝑌 ) := ⟨𝑣 for 𝑣 ∈ 𝑎𝑟𝑔(𝑋 ) if 𝑣 ∉ 𝑎𝑟𝑔(𝑌 )⟩
(Argument-With-Anonymous function) 𝑎𝑤𝑎(𝑋,𝑌 ) := ⟨𝑣 if 𝑣 ∈ 𝑎𝑟𝑔(𝑌 ) else _ for 𝑣 ∈ 𝑎𝑟𝑔(𝑋 )⟩
(Argument-Replacing-Argument function) 𝑎𝑟𝑎(𝑋,𝑉1,𝑉2) := ⟨𝑣 if 𝑣 ∉ 𝑉1 else 𝑉2 [𝑖𝑛𝑑𝑒𝑥 (𝑣,𝑉1)] for 𝑣 ∈ 𝑎𝑟𝑔(𝑋 )⟩

if 𝑠𝑒𝑡 (𝑉1) ⊆ 𝑠𝑒𝑡 (𝑎𝑟𝑔(𝑋 )) and |𝑉1 | = |𝑉2 |
Example:
If 𝑋 = ⟨𝑣0, 𝑣1, 𝑣2, 𝑣3⟩, 𝑌 = ⟨𝑣2, 𝑣3, 𝑣0⟩, then 𝑝𝑜𝑠 (𝑌,𝑋 ) = ⟨2, 3, 0⟩,Π𝑝𝑜𝑠 (𝑌,𝑋 ){⟨“𝑎”, “𝑏”, “𝑐”, “𝑑”⟩} = {⟨“𝑐”, “𝑑”, “𝑎”⟩}
If 𝑋 = ⟨𝑣0, 𝑣1, 𝑣2, 𝑣3⟩, 𝑌 = ⟨𝑣0, 𝑣4⟩,
then 𝑎𝑟𝑔(𝑋 ) = ⟨𝑣0, 𝑣1, 𝑣2, 𝑣3⟩, 𝑎𝑟𝑔(𝑌 ) = ⟨𝑣0, 𝑣4⟩, 𝑎𝑑 (𝑋,𝑌 ) = ⟨𝑣1, 𝑣2, 𝑣3⟩, 𝑎𝑤𝑎(𝑋,𝑌 ) = ⟨𝑣0, _, _, _⟩

If 𝑋 = ⟨𝑣0, 𝑣1, 𝑣2, 𝑣3⟩,𝑉1 = ⟨𝑣1, 𝑣3⟩,𝑉2 = ⟨𝑣4, 𝑣5⟩, then 𝑎𝑟𝑎(𝑋,𝑉1,𝑉2) = ⟨𝑣0, 𝑣4, 𝑣2, 𝑣5⟩

Figure 5.5: Explanation of notations used in the templates

• (AR)𝛼 includes possible template facts of example-based auxiliary relations used in
(SDR)𝛼 ;

• (FR)𝛼 includes possible template rules against a special flag relation 𝐹𝑟 for verifying
the imposed constraints.

While the clauses generated by templates in (AR)𝛼 and (FR)𝛼 are all fixed in a possible
result, the rules generated by templates in (SDR)𝛼 are selectable and only selected in
the output by synthesis.

We examine how to design view update templates for a ∪-rule defining a union
view 𝑉 from two sources 𝑆1 and 𝑆2:

𝑉 ( ®𝑥) : − 𝑆1( ®𝑥) ; 𝑆2( ®𝑥).

Based on the existing work on updating the union view [23], we know a set of view
update strategies, informally described as follows:

∪1 If a new tuple ®𝑡 is inserted into𝑉 , then tuple ®𝑡 should (1) appear in 𝑆1, (2) or appear
in 𝑆2, (3) or appear in both 𝑆1 and 𝑆2.
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∪2 If an available tuple ®𝑡 is deleted from 𝑉 , then tuple ®𝑡 should disappear from both 𝑆1

and 𝑆2.

Each template rule in (SDR)∪ describes a view update strategy. We encode the
strategy ∪2 by the first template rule of (SDR)∪ in Figure 5.1 of Setup A:

𝑟𝐴1 Δ𝑆−𝑖 ( ®𝑥) : − 𝛿𝑉 −( ®𝑥) , 𝑆𝑖 ( ®𝑥).

which means that if ®𝑥 ∈ 𝛿𝑉 − (i.e., ®𝑥 is deleted from 𝑉 ), then ®𝑥 ∈ Δ𝑆−1 if ®𝑥 ∈ 𝑆1 (i.e., ®𝑥
disappears from 𝑆1), and ®𝑥 ∈ Δ𝑆−2 if ®𝑥 ∈ 𝑆2 (i.e., ®𝑥 disappears from 𝑆2).

The strategy ∪2 can be also encoded in the first rules of (SDR)∪ in Figure 5.3 of
Setup B:

𝑟𝐵1 Δ𝑆−𝑖 ( ®𝑥) : − ¬𝑉 ′( ®𝑥) , 𝑆𝑖 ( ®𝑥).

which means that if ®𝑥 ∉ 𝑉 ′ and ®𝑥 ∈ 𝑆𝑖 , then ®𝑥 ∈ Δ𝑆−𝑖 (i.e., ®𝑥 disappears from 𝑆𝑖 ). Since
®𝑥 ∈ 𝑆𝑖 , according to the definition of the ∪-rule (i.e., 𝑉 ( ®𝑥) : −𝑆1( ®𝑥); 𝑆2( ®𝑥)), we can infer
that ®𝑥 ∈ 𝑉 . But since ®𝑥 ∉ 𝑉 ′, ®𝑥 is deleted from 𝑉 .

We see that both templates 𝑟𝐴1 and 𝑟𝐵1 represent the semantic of the strategy ∪2, but
they are written in different ways. In 𝑟𝐴1 , if we rewrite 𝛿𝑉 −( ®𝑥) by 𝑉 ( ®𝑥),¬𝑉 ′( ®𝑥) and
eliminate redundant literals based on the meaning of the ∪ query, then we obtain 𝑟𝐵1 .
In 𝑟𝐵1 , if we use the meaning of the ∪ query, we can extend the rule with an occurrence
of 𝑉 ( ®𝑥), then replace 𝑉 ( ®𝑥),¬𝑉 ′( ®𝑥) with 𝛿𝑉 −( ®𝑥), and finally we obtain 𝑟𝐴1 . Other pairs
of corresponding rules in two Setups A and B also exhibit similarity if we rewrite
between 𝛿𝑉 −( ®𝑥) and 𝑉 ( ®𝑥),¬𝑉 ′( ®𝑥), as well as between 𝛿𝑉 +( ®𝑥) and 𝑉 ′( ®𝑥),¬𝑉 ( ®𝑥).

If a new tuple ®𝑥 is inserted into 𝑉 (i.e., ®𝑥 ∈ 𝛿𝑉 +), ®𝑥 could be either inserted into 𝑆1
(i.e., ®𝑥 ∈ Δ𝑆+1 ) or inserted into 𝑆2 (i.e., ®𝑥 ∈ Δ𝑆+2 ) or inserted into both 𝑆1 and 𝑆2. There
are three different update strategies for inserting a tuple ®𝑥 into 𝑉 and the different
inserted tuples could follow different strategies. The next three rules of (SDR)∪ in
Figure 5.1 of Setup A encode different cases of combining these strategies for multiple
insertions:

𝑟𝐴2 Δ𝑆+𝑖 ( ®𝑥) : − 𝛿𝑉 +( ®𝑥) , ¬ 𝑆𝑖 ( ®𝑥).
𝑟𝐴3 Δ𝑆+𝑖 ( ®𝑥) : − 𝛿𝑉 +( ®𝑥) , 𝐴𝑢∗∪( ®𝑥) , ¬ 𝑆𝑖 ( ®𝑥).
𝑟𝐴4 Δ𝑆+𝑖 ( ®𝑥) : − 𝛿𝑉 +( ®𝑥) , ¬ 𝐴𝑢∗∪( ®𝑥) , ¬ 𝑆𝑖 ( ®𝑥).

where the first describes that all inserted tuples follow the same update strategy and
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the others use auxiliary relations 𝐴𝑢∗∪ to cover the tuples following the most common
strategy and other specific strategies (like an if-then-else statement). The auxiliary
relations are defined in (AR)∪ using set comprehensions as:

𝐴𝑢1∪ = {𝑡 for 𝑡 ∈ E∪ |𝛿𝑉 + if 𝑡 ∈ E∪ |Δ𝑆+1 ∧ 𝑡 ∉ E∪ |Δ𝑆+2 }
𝐴𝑢2∪ = {𝑡 for 𝑡 ∈ E∪ |𝛿𝑉 + if 𝑡 ∈ E∪ |Δ𝑆+2 ∧ 𝑡 ∉ E∪ |Δ𝑆+1 }
𝐴𝑢12∪ = {𝑡 for 𝑡 ∈ E∪ |𝛿𝑉 + if 𝑡 ∈ E∪ |Δ𝑆+1 ∧ 𝑡 ∈ E∪ |Δ𝑆+2 }

where E∪ |𝑋 contains tuples in 𝑋 that can be calculated from the given example E∪.
Informally, for tuples that are inserted into 𝑉 , 𝐴𝑢1∪ holds tuples that are only inserted
in 𝑆1, 𝐴𝑢2∪ holds tuples that are only inserted in 𝑆2, and 𝐴𝑢12∪ holds tuples that are
inserted in both 𝑆1 and 𝑆2, which is close to the three mentioned strategies when
inserting a tuple against 𝑉 .

If in 𝑟𝐴2 , 𝑟𝐴3 , 𝑟𝐴4 , we rewrite 𝛿𝑉 +( ®𝑥) by𝑉 ′( ®𝑥),¬𝑉 ( ®𝑥) and eliminate redundant literals,
we will obtain the corresponding rules of (SDR)∪ in Figure 5.3 of Setup B:

𝑟𝐵2 Δ𝑆+𝑖 ( ®𝑥) : − 𝑉 ′( ®𝑥) , ¬ 𝑆𝑖 ( ®𝑥) , ¬ 𝑆3−𝑖 ( ®𝑥).
𝑟𝐵3 Δ𝑆+𝑖 ( ®𝑥) : − 𝑉 ′( ®𝑥) , ¬ 𝑆𝑖 ( ®𝑥) , ¬ 𝑆3−𝑖 ( ®𝑥) , 𝐴𝑢∗∪( ®𝑥).
𝑟𝐵4 Δ𝑆+𝑖 ( ®𝑥) : − 𝑉 ′( ®𝑥) , ¬ 𝑆𝑖 ( ®𝑥) , ¬ 𝑆3−𝑖 ( ®𝑥) , ¬ 𝐴𝑢∗∪( ®𝑥).

We next examine how to design view update templates against a 𝜎-rule that defines
a selection view 𝑉 from a source 𝑆 sharing the same schema and a selection condition
𝑓 represented as a list of comparisons, as follows:

𝑉 ( ®𝑥) : − 𝑆 ( ®𝑥) , 𝑣1 ⊕1 𝑐1 , . . . , 𝑣𝑚 ⊕𝑚 𝑐𝑚 .

where ⊕1, . . . , ⊕𝑚 are comparison operators, 𝑐1, . . . , 𝑐𝑚 are constants, 𝑣1, . . . , 𝑣𝑚 are
variables occurring in ®𝑥 , and some of the variables 𝑣1, . . . , 𝑣𝑚 may be the same (e.g.
𝑉 (𝑣0, 𝑣1) :− 𝑆 (𝑣0, 𝑣1), 𝑣0 > 0, 𝑣0 < 10.).

Based on the existing work on updating a selection view with minimal effects [21,
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22, 23], we know the following informal minimal-effect view update strategies:

(𝜎1) If a new tuple ®𝑡 , which satisfies that 𝑓 (®𝑡) is true, is inserted into 𝑉 , then ®𝑡 should
appear in 𝑆′.

(𝜎2) If an available tuple ®𝑡 , which satisfies that 𝑓 (®𝑡) is true, is deleted from 𝑉 , then we
should (1) either delete tuple ®𝑡 from 𝑆 , (2) or modify attributes of tuple ®𝑡 that are
related to 𝑓 to obtain ®𝑡∗ such that 𝑓 (®𝑡∗) is false, and replace ®𝑡 by ®𝑡∗ in 𝑆 .

The template rules in (SDR)𝜎 of Figure 5.4 of Setup B encode these strategies. The
strategy (𝜎1) is encoded as template as below:

𝑟𝐵5 Δ𝑆+( ®𝑥) : − 𝑉 ′( ®𝑥) , ¬ 𝑆 ( ®𝑥) , 𝑣1 ⊕1 𝑐1 , . . . , 𝑣𝑚 ⊕𝑚 𝑐𝑚 .

which means that if ®𝑥 satisfies 𝑓 ( ®𝑥) being true, and ®𝑥 is in𝑉 ′ but not in 𝑆 (i.e., ®𝑥 ∈ 𝑉 ′−𝑉 ,
or in other words, ®𝑥 is inserted into 𝑉 ), then ®𝑥 ∈ Δ𝑆+ (i.e., ®𝑥 is inserted into 𝑆).

We encode the first part of the strategy (𝜎2) as

𝑟𝐵6 Δ𝑆−( ®𝑥) : − ¬ 𝑉 ′( ®𝑥) , 𝑆 ( ®𝑥) , 𝑣1 ⊕1 𝑐1 , . . . , 𝑣𝑚 ⊕𝑚 𝑐𝑚 .

which means that if ®𝑥 satisfies 𝑓 ( ®𝑥) being true, and ®𝑥 is in 𝑆 but not in𝑉 ′ (i.e., ®𝑥 ∈ 𝑉 −𝑉 ′

or ®𝑥 is deleted from 𝑉 ), then ®𝑥 ∈ Δ𝑆− (i.e., ®𝑥 is deleted from 𝑆).
The last two rules of (SDR)𝜎 are related to encoding the second part of the strategy

(𝜎2):

𝑟𝐵7 Δ𝑆+( ®𝑥𝑟 ) : − ¬ 𝑉 ′( ®𝑥) , 𝑆 ( ®𝑥) , ¬ 𝑆 ( ®𝑥𝑟 ) , 𝐴𝑢0𝜎 ( ®𝑦𝑟𝜎 ) , 𝑣1 ⊕1 𝑐1, . . . , 𝑣𝑚 ⊕𝑚 𝑐𝑚 .

𝑟𝐵8 Δ𝑆+( ®𝑥𝑟 ) : − ¬ 𝑉 ′( ®𝑥) , 𝑆 ( ®𝑥) , ¬ 𝑆 ( ®𝑥𝑟 ) , 𝐴𝑢1𝜎 ( ®𝑥𝑟 ) , 𝑣1 ⊕1 𝑐1, . . . , 𝑣𝑚 ⊕𝑚 𝑐𝑚 .

where
®𝑥𝑟 = 𝑎𝑟𝑎( ®𝑥, ®𝑦𝜎 , ®𝑦𝑟𝜎 ), ®𝑦𝜎 = ⟨𝑢1, . . . , 𝑢𝑘⟩, ®𝑦𝑟𝜎 = ⟨𝑢𝑟1, . . . , 𝑢𝑟𝑘⟩,
⟨𝑢1, . . . , 𝑢𝑘⟩ = 𝑡𝑢𝑝𝑙𝑒 (𝑠𝑒𝑡 ({𝑣1, . . . , 𝑣𝑚})).
The meanings of 𝑟𝐵7 and 𝑟𝐵8 are roughly as follows: If ®𝑥 satisfies that 𝑓 ( ®𝑥) being

true, and ®𝑥 is in 𝑆 but not in 𝑉 ′ (i.e., ®𝑥 is deleted from 𝑉 ), then a new tuple ®𝑥𝑟 , not in 𝑆

and satisfying 𝑓 ( ®𝑥𝑟 ) being false (related to auxiliary relations 𝐴𝑢0𝜎 and 𝐴𝑢1𝜎 ), should be
inserted into 𝑆 .
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Tuple 𝑥𝑟 should be different from ®𝑥 in at least one of the positions participating in
condition 𝑓 , i.e., variables 𝑣1, . . . , 𝑣𝑚 . If we denote ®𝑦𝜎 as a tuple of different variables in
𝑓 , and ®𝑦𝑟𝜎 as another tuple of the same size as ®𝑦𝜎 and with completely fresh variables,
then ®𝑥𝑟 is formed by replacing ®𝑦𝜎 in ®𝑥 with ®𝑦𝑟𝜎 (denoted as ®𝑥𝑟 = 𝑎𝑟𝑎( ®𝑥, ®𝑦𝜎 , ®𝑦𝑟𝜎 )).

We utilize the auxiliary relations 𝐴𝑢0𝜎 and 𝐴𝑢1𝜎 to retain data that cause 𝑓 ( ®𝑥𝑟 ) to be
false. From the specified example E𝜎 of the form of (𝑇𝑆 ,𝑇𝑆 ′,𝑇𝑉 ,𝑇𝑉 ′), we can compute
these auxiliary relations using set comprehensions, as outlined in (AR)𝜎 :

𝐴𝑢0𝜎 = {Π𝑝𝑜𝑠 ( ®𝑦𝜎 ,®𝑥)𝑡 for 𝑡 ∈ 𝐷𝜎 }
𝐴𝑢1𝜎 = 𝐷𝜎 = {𝑡 for 𝑡 ∈ E𝜎 |Δ𝑆+

if Π𝑝𝑜𝑠 (𝑎𝑑 ( ®𝑥, ®𝑦𝜎 ),®𝑥)𝑡 ∈ Π𝑝𝑜𝑠 (𝑎𝑑 ( ®𝑥, ®𝑦𝜎 ),®𝑥) (E𝜎 |Δ𝑆− )}

where E𝜎 |𝑋 contains tuples in 𝑋 that can be derived from E𝜎 , 𝑝𝑜𝑠 ( ®𝑦, ®𝑥) returns a
tuple of positions of ®𝑦 in ®𝑥 , 𝑎𝑑 ( ®𝑥, ®𝑦) returns a tuple of variables that are in ®𝑥 but
not in ®𝑦. Since ®𝑦𝜎 contains different variables in the selection condition 𝑓 , we have
𝑝𝑜𝑠 (𝑎𝑑 ( ®𝑥, ®𝑦𝜎 ), ®𝑥) as a tuple of positions of non-selected variables in ®𝑥 . 𝐴𝑢1𝜎 is computed
as a set of tuple ®𝑥𝑟 such that ®𝑥𝑟 is inserted into 𝑆 and there exists a corresponding
®𝑥 that is deleted from 𝑆 . 𝐴𝑢0𝜎 is computed from 𝐴𝑢1𝜎 by only retaining the data in
selection positions. Depending on the situation in which the deleted tuples ®𝑥 against 𝑉
follow different strategies, 𝐴𝑢0𝜎 and 𝐴𝑢1𝜎 (𝑟𝐵7 and 𝑟𝐵8 ) might be used reasonably.

Since the𝜎-rule introduces restrictions on data of the view𝑉 (i.e., 𝑣1⊕1𝑐1 , . . . , 𝑣𝑚⊕𝑚
𝑐𝑚), we may need some rules encoding these restrictions. As suggested by [16] which
shares the idea of negative constraints introduced in [46], a truth constant 𝐹𝑎𝑙𝑠𝑒 ,
denoted as ⊥, can be used to express the restrictions. Experimentally, we found that
ProSynth does not work well when performing the synthesis over the set of rules
that contain zero-term literals like ⊥. So we replace ⊥ with a special relation 𝐹𝑟 that
contains only one attribute. 𝐹𝑟 will flag a rejection with the value “_𝑟_” if a false truth
occurs. Rather than heavily interfering with a Datalog solver in order to immediately
reject update propagation, we simply use 𝐹𝑟 to monitor the rejection. Data can be
restored to the original state if ⟨"_r_"⟩ is in 𝐹𝑟 .

(FR)𝜎 covers the rules for 𝐹𝑟 against a 𝜎-rule as follows:

𝑟𝐵9 𝐹𝑟 (“_𝑟_”) : − 𝑉 ∗(𝑎𝑤𝑎( ®𝑥, {𝑣𝑖})), 𝑣𝑖 ¬ ⊕𝑖 𝑐𝑖 .

(∼ ⊥ : − 𝑉 ∗(𝑎𝑤𝑎( ®𝑥, {𝑣𝑖})), 𝑣𝑖 ¬ ⊕𝑖 𝑐𝑖 .)
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where 𝑉 ∗ ∈ {𝑉 ,𝑉 ′}, 𝑖 ∈ {1, . . . ,𝑚}, and 𝑎𝑤𝑎( ®𝑥, ®𝑦) replaces variables in ®𝑥 that are not
in ®𝑦 by anonymous variables. Rule 𝑟𝐵9 says that if there is a tuple that violates the
imposed restrictions on 𝑉 and 𝑉 ′, 𝐹𝑟 will flag a rejection with the value “_𝑟_”.

It will not be too difficult to turn the rules 𝑟𝐵5 , 𝑟𝐵6 , 𝑟𝐵7 , 𝑟𝐵8 , 𝑟𝐵9 , into the corresponding
rules in Figure 5.2 of Setup A. With the fixed constraints in (FR)𝜎 , we may omit the list
of comparisons in template rules in (SDR)𝜎 for brevity.

For other atomic queries of type 𝛼 , (SDR)𝛼 and (AR)𝛼 could be interpreted in similar
ways as above. Using tuple comprehensions, we define some functions (e.g., 𝑎𝑑 , 𝑎𝑤𝑎,
𝑎𝑟𝑎) that compute specific tuples of variables to formally describe the body of template
rules, which makes the rules safe and correct. (FR)𝛼 has no clauses if no constraints are
imposed on the corresponding source and view. For a 𝜎-rule/×-rule 𝑟 , the negation of
each constraint in the body of 𝑟 is used as a constraint in a flag rule of (FR)𝜎 /(FR)×. For
a Z-rule, rejects are flagged if in the join positions, the inserted data are already in the
original source or the deleted data are still in the update source. If there is no rejection
during the evaluation of atomic programs, their combinations could be made without
failure.

Example 5.1. Let us see an example of using templates of Setup A to generate clauses
for PA2 := ProbA(({customers}, M2), E2, {𝑟𝑎2 }) in Example 4.6 where E2 and 𝑟𝑎2 are as
follows:

E2 = ({1.1𝑏}, {4.1𝑏}, {1.1𝑏′}, {4.1𝑏′})

𝑟𝑎2 𝑀2(𝑖, 𝑛, 𝑐) : − customers(𝑖, 𝑛, 𝑐) , 𝑐 = “𝑇𝑜𝑘𝑦𝑜”.

From 𝑆 = {customers} and𝑉 = M2, we can generate fixed rules of programs switching
state/delta-based data, including:

𝛿M−2 (𝑖, 𝑛, 𝑐) : − M2(𝑖, 𝑛, 𝑐) , ¬ M′2(𝑖, 𝑛, 𝑐).
𝛿M+2 (𝑖, 𝑛, 𝑐) : − M′2(𝑖, 𝑛, 𝑐) , ¬ M2(𝑖, 𝑛, 𝑐).
customers′(𝑖, 𝑛, 𝑐) : − customers(𝑖, 𝑛, 𝑐) , ¬ Δcustomers−(𝑖, 𝑛, 𝑐)

; Δcustomers+(𝑖, 𝑛, 𝑐).
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Since the 𝑔𝑒𝑡𝑎 = {𝑟𝑎2 } is a 𝜎-rule, we prepare selectable rules based on (SDR)𝜎 , including:

Δcustomers−(𝑖, 𝑛, 𝑐) : − 𝛿M−2 (𝑖, 𝑛, 𝑐) , customers(𝑖, 𝑛, 𝑐).
Δcustomers+(𝑖, 𝑛, 𝑐) : − 𝛿M+2 (𝑖, 𝑛, 𝑐) , ¬ customers(𝑖, 𝑛, 𝑐).

These two rules mean that a deletion/insertion of tuple ⟨𝑖, 𝑛, 𝑐⟩ from the view M2 is
reflected to a deletion/insertion of the same tuple to the source customers. Another
update strategy is that if a tuple ⟨𝑖, 𝑛, 𝑐⟩ is deleted from the view M2, we could replace
tuple ⟨𝑖, 𝑛, 𝑐⟩ in the source customers by ⟨𝑖, 𝑛, 𝑐𝑟 ⟩ where 𝑐𝑟 is a valid value not equal to
"Tokyo" (i.e., 𝑐𝑟 violates constraints of the 𝜎-rule). By checking example E21 , there is
no such tuple ⟨𝑖, 𝑛, 𝑐⟩. In other words, auxiliary relations in (AR)𝜎 hold no fact. Hence,
we skip preparing the rules containing the auxiliary relations in (SDR)𝜎 .

Moreover, based on (FR)𝜎 , two fixed rules that express constraints imposing on the
view M2 are generated as below:

Fr("_r_") : − M2(_,_,𝑐) , 𝑐 ≠ "Tokyo".

Fr("_r_") : − M′2(_,_,𝑐) , 𝑐 ≠ "Tokyo".

The relation Fr will flag a rejection if, in M2 or M′2, there is a tuple whose third
attribute value is different from "Tokyo".

So when considering PA2, we generated candidate rules for 𝑝𝑢𝑡𝑎, consisting of 7
rules above and 1 rule in 𝑔𝑒𝑡𝑎 = {𝑟𝑎2 }. ▲

Example 5.2. Let us see an example of using templates of Setup B to generate clauses
for PA2 := ProbA(({𝑀1}, 𝑀2), E2, {𝑟𝑜2 }) in Example 4.9 where E2 and 𝑟𝑜2 are as follows:

E2 = ({4.3𝑎}, {4.3𝑏}, {4.3𝑎′}, {4.3𝑏′})

𝑟𝑜2 𝑀2(𝑣0, 𝑣1, 𝑣2) : − 𝑀1(𝑣0, 𝑣1, 𝑣2), 𝑣2 = “𝑇 ”.

We prepare candidate clauses for minimal-effect view update strategies against the

1If there exists such a replacement in E2, e.g., from customers(“104",“Mori",“Tokyo") to
customers’(“104",“Mori",“Berlin"), we can prepare more, e.g., Δcustomers+ (𝑖, 𝑛, 𝑐𝑟 ) : −
𝛿M+2 (𝑖, 𝑛, 𝑐), customers(𝑖, 𝑛, 𝑐), 𝐴𝑢0𝜎 (𝑐𝑟 ),¬customers(𝑖, 𝑛, 𝑐𝑟 ). where 𝐴𝑢0

𝜎 ⊇ {⟨“Berlin"⟩}.
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𝜎-rule 𝑟𝑜2 as below:

𝑟𝑜4 𝐹𝑟 (“_𝑟_”) : −𝑀2(_, _, 𝑣2) , 𝑣2 ≠ “𝑇 ”.
𝑟𝑜5 𝐹𝑟 (“_𝑟_”) : −𝑀′2(_, _, 𝑣2) , 𝑣2 ≠ “𝑇 ”.
𝑟𝑜6 Δ𝑀−1 (𝑣0, 𝑣1, 𝑣2) : − ¬𝑀′2(𝑣0, 𝑣1, 𝑣2) , 𝑀1(𝑣0, 𝑣1, 𝑣2) , 𝑣2 = “𝑇 ”.
𝑟𝑜7 Δ𝑀+1 (𝑣0, 𝑣1, 𝑣2) : −𝑀′2(𝑣0, 𝑣1, 𝑣2) , ¬𝑀1(𝑣0, 𝑣1, 𝑣2) , 𝑣2 = “𝑇 ”.
𝑟𝑜8 𝑀′1(𝑣0, 𝑣1, 𝑣2) : −𝑀1(𝑣0, 𝑣1, 𝑣2) , ¬Δ𝑀−1 (𝑣0, 𝑣1, 𝑣2) ; Δ𝑀+1 (𝑣0, 𝑣1, 𝑣2) .

Rules 𝑟𝑜4 and 𝑟𝑜5 are generated from template 𝑟𝐵9 , while rules 𝑟𝑜6 and 𝑟𝑜7 are generated
from templates 𝑟𝐵5 and 𝑟𝐵6 , respectively, and rule 𝑟𝑜8 is generated from template 𝑟𝐵0 .
There are no rules generated from templates 𝑟𝐵7 and 𝑟𝐵8 since both 𝐴𝑢0𝜎 and 𝐴𝑢1𝜎 are
empty (⟨1, 𝑏1,𝑇 ⟩ is deleted from𝑀2 but there is no ⟨1, 𝑏1, 𝑐0⟩ with 𝑐0 ≠ 𝑇 in𝑀′1 - see
Table 4.3). If ⟨2, 𝑏2,𝑇 ⟩ is not in𝑀′2, and ⟨2, 𝑏2,𝑇 ⟩ in𝑀′1 is replaced by ⟨2, 𝑏2, 𝐹 ⟩, we may
generate more clauses as follows:

Δ𝑀+1 (𝑣0, 𝑣1, 𝑣𝑟2) : − ¬𝑀′2(𝑣0, 𝑣1, 𝑣2) , 𝑀1(𝑣0, 𝑣1, 𝑣2) ,
¬𝑀1(𝑣0, 𝑣1, 𝑣𝑟2) , 𝐴𝑢0𝜎 (𝑣𝑟2), 𝑣2 = “𝑇 ”.

Δ𝑀+1 (𝑣0, 𝑣1, 𝑣𝑟2) : − ¬𝑀′2(𝑣0, 𝑣1, 𝑣2) , 𝑀1(𝑣0, 𝑣1, 𝑣2) ,
¬𝑀1(𝑣0, 𝑣1, 𝑣𝑟2) , 𝐴𝑢1𝜎 (𝑣0, 𝑣1, 𝑣𝑟2), 𝑣2 = “𝑇 ”.

𝐴𝑢0𝜎 (𝐹 ).
𝐴𝑢1𝜎 (2, 𝑏2, 𝐹 ).

▲

5.2 Evaluation

We have implemented a prototype named SynthBX for Algorithm 1 in 7K lines
of Python, which relaxes procedures related to functional dependencies (i.e., For-
wardPropagateFDs and PreparePutCandCEFDs). The minimal-effect view update
strategies introduced in the previous section are encoded in templates of Setup A. The
templates are embedded inside PreparePutCandMEVUS to automatically generate
candidate rules of view update programs. SynthBX internally uses ProSynth+ as the
unidirectional synthesizer and Soufflé as the underlying Datalog solver. We equipped
SynthBX with a simple PrepareGetCand that can extract useful constants from
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inserted/deleted data and enumerate literals based on the number of given sources.
The PrepareGetCand would be bypassed if the user provides a set of candidate rules
of 𝑔𝑒𝑡 .

Research questions

To evaluate SynthBX, we design experiments to answer the following questions:

Q1 How powerful is SynthBX to solve a variety of synthesis tasks from many
different sources?

Q2 How efficient is SynthBX to synthesize only a component program and the
whole program of (𝑔𝑒𝑡, 𝑝𝑢𝑡)?

Q3 How sensitive is SynthBX to different example sizes?

Benchmark suite

We prepare 56 benchmarks from three different sources to perform the evaluation,
representing various practical view update problems from textbooks, papers, online
sites and real systems [20, 16].

B1 We adjusted 15 relational benchmarks from ProSynth [20] by reusing the given
sets of candidate rules of 𝑔𝑒𝑡 . We eliminated the recursive rules and created
additional tables to form well-provided examples.

B2 We adapted 32 relational benchmarks from Birds [16], a framework for manually
writing bidirectional programs on relations, by relaxing key constraints and
reusing the provided 𝑔𝑒𝑡s. For each benchmark containing no example, we
executed the corresponding written 𝑝𝑢𝑡 on specific and/or random inputs to
create necessary tables. Such a 𝑝𝑢𝑡 is only used to create examples.

B3 We handcrafted 9 additional benchmarks derived from real-world view update
tasks, where the views are described in Table 5.1. Some schemas and examples
were adapted from common sample databases of AirBnB2, Joomla3, and Microsoft

2http://insideairbnb.com/get-the-data.html
3https://downloads.joomla.org/cms/joomla3
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Table 5.1: Descriptions for handcrafted benchmarks in B3

Benchmark Brief description of the view
tokyoac active staffs or customers in Tokyo
open_port open ports in a system
logging a portion of log data
admin_post_cms the posts published by admins on a Joomla site
blog_2020 the articles written in 2020 on a Joomla site
neighbour_airbnb residential data of AirBnB
dw_ship ship data extracted from a data warehouse
dw_survey survey data extracted from a data warehouse
dw_sales sales data extracted from a data warehouse

SQL Server4. A few other specifications were crafted from working with a Unix
system. These benchmarks are other practical scenarios of bidirectional programs,
where a manager, rather than directly interacting with a large database, can
perform updates on a smaller view without compromising consistency between
the database and the view. Of the nine handcrafted benchmarks, some have more
input with nonempty sets of human-provided candidate rules for 𝑔𝑒𝑡 , while others
are not given such sets.

Experimental Setup

All experiments were run on a 2.6 GHz Intel Core i7 processor with 16 GB of 2400 MHz
DDR4 running macOS Ventura 13.3. We independently performed 32 runs for each
benchmark on the same example data and collected statistics of the experiments. The
evaluation results are summarized in Table 5.2.

5.2.1 Q1: Power

To answer Q1 about the power of SynthBX, we check the outputs of 56 benchmarks.
Table 5.2 shows that SynthBX successfully solves 52/56 (≈ 91%) benchmarks where
14/15, 28/32, and 9/9 benchmarks are from B1, B2, and B3, respectively. Each obtained
bidirectional program is consistent with the given example and two properties GetPut

4https://github.com/microsoft/sql-server-samples/tree/master/samples/databases
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Table 5.2: Main experiment results [SynthBX]

B # Benchmark Atomic Views #Tuples #Rules #Programs MeanSynthTime (s)
In/Out(1) IS/DS(2) IV/DV(3) Sg/Cg(4) DSg(5) Sp/Cp(6) SPair(7) WNSg(8) MSTget(9) MSTput(10) MSTtotal(11)

B1

#01 sql-01 𝜋 , 2Z 24/20 0/1 0/1 1/24 3 32/32 1 1 0.81 0.19 1.30
#02 sql-02 2𝜋 , Z 6/4 1/0 1/0 1/6 3 21/30 1 1 0.32 0.38 0.99
#03 sql-03 4𝜋 , 2Z 8/3 1/2 1/1 1/33 6 65/65 1 1 4.97 0.42 5.72
#04 sql-04 2𝜌 , 2𝜋 , 2Z, ∪ 22/11 3/1 2/1 2/5 7 57/80 1 1 0.25 3.13 3.81
#05 sql-05 𝜌 , 2𝜋 , 2Z 24/16 5/1 3/1 1/8 5 46/55 1 1 0.50 1.27 2.13
#06 sql-06 - 27/9 1/1 1/1 2/6 - -/- - - 0.28 - -
#07 sql-07 2𝜋 , Z 16/6 3/2 3/2 1/19 3 38/38 1 1 1.45 0.22 1.97
#08 sql-08 3𝜌 , 3𝜋 , 4Z 10/7 2/1 1/1 3/32 10 95/95 3 1 54.73 0.66 55.83
#09 sql-09 𝜌 , 3𝜋 , 4Z 8/6 1/1 1/1 2/11 8 86/86 1 2 3.70 20.17 24.25
#10 sql-10 3𝜌 , 𝜋 , 2Z 17/16 6/0 3/0 2/49 6 54/54 1 1 59.23 0.35 59.95
#11 sql-11 2𝜌 , 7𝜋 7Z, ∩ 35/32 3/1 2/1 4/45 12 127/175 12 1 127.76 2.50 130.85
#12 sql-12 2𝜌 , 2𝜋 , 4Z, ∪ 50/36 3/3 2/2 3/10 9 89/89 1 1 1.44 0.59 2.40
#13 sql-13 𝜋 , Z 32/19 4/2 4/3 1/4 2 24/24 1 1 0.26 0.14 0.67
#14 sql-14 4𝜌 , 2𝜋 , 3Z, ∪ 21/9 0/2 0/2 3/7 10 98/98 1 1 0.42 0.73 1.56
#15 sql-15 2𝜌 , 𝜋 , 3Z 65/55 5/0 1/0 2/87 6 59/59 2 1 300.13 0.50 301.04

B2

#01 cars_master 𝜋 33/11 1/1 1/1 1/1 1 7/7 1 1 0.10 0.08 0.45
#02 goodstudents 𝜎 , 𝜋 13/5 2/3 2/3 1/1 2 17/17 1 1 0.10 0.12 0.53
#03 luxuryitems 𝜎 8/4 2/1 2/1 1/1 1 9/9 1 1 0.10 0.09 0.46
#04 usa_city 𝜎 , 𝜋 672/600 2/2 2/2 1/1 2 17/17 1 1 0.12 0.14 0.59
#05 ced \ 33/21 8/0 5/3 1/1 1 8/8 1 1 0.10 0.08 0.46
#06 residents1962 𝜎 14/10 3/2 3/2 1/1 1 11/11 1 1 0.10 0.09 0.48
#07 employees 𝜋 , Z 39/26 10/3 5/3 1/1 2 21/21 1 1 0.10 0.14 0.56
#08 researchers 𝜎 , 2𝜋 , ∩ 20/19 4/2 2/1 1/1 4 35/35 1 1 0.11 0.23 0.70
#09 retired 2𝜋 , \ 25/17 0/1 1/0 1/1 3 22/22 1 1 0.11 0.15 0.58
#10 paramountmovies 𝜎 , 𝜋 5/3 1/1 1/1 1/1 2 16/16 1 1 0.10 0.13 0.55
#11 officeinfo 𝜋 21/7 1/1 1/1 1/1 1 7/7 1 1 0.10 0.09 0.47
#12 vw_brands 2𝜋 , 2×, ∪ 35/13 5/3 5/3 2/2 5 50/56 1 1 0.10 2.16 2.63
#13 residents 2×, 2∪ 42/14 5/8 5/6 3/3 4 44/56 1 1 0.11 2.35 2.81
#14 bstudents 𝜎 , 2𝜋 , Z 15/12 3/1 2/1 1/1 4 36/36 1 1 0.10 0.23 0.66
#15 all_cars Z 37/15 1/2 1/2 1/1 1 13/13 1 1 0.10 0.11 0.50
#16 tracks1 Z 19/9 4/5 3/4 1/1 1 -/- - - 0.11 - -
#17 tracks2 𝜋 14/4 3/4 3/4 1/1 1 7/7 1 1 0.10 0.08 0.46
#18 tracks3 𝜎 10/4 3/4 2/3 1/1 1 -/- - - 0.10 - -
#19 newpc 𝜎 , 𝜋 , Z 69/46 6/3 3/3 1/1 3 29/29 1 1 0.10 0.19 0.63
#20 activestudents 𝜎 , 𝜋 , Z 17/8 2/1 1/1 1/1 3 28/28 1 1 0.10 0.18 0.59
#21 vw_customers 2𝜋 , Z 1275/637 0/1 0/1 1/1 3 27/27 1 1 0.13 0.26 0.81
#22 measurement 2𝜎 , ∪ 80/30 5/0 5/0 2/2 3 31/41 1 1 0.11 1.27 1.71
#23 ukaz_lok × 46/14 4/6 4/6 1/1 1 11/11 1 1 0.10 0.10 0.48
#24 message 2×, ∪ 104/34 6/7 6/7 2/2 3 32/38 1 1 0.10 1.49 1.94
#25 phonelist 3×, 2∪ 98/32 5/6 5/6 3/3 5 52/64 1 1 0.11 3.57 4.09
#26 purchaseview 𝜋 , Z 155/55 11/21 11/21 1/1 2 30/30 1 1 0.11 0.16 0.58
#27 vehicle_view 𝜋 , Z 36/17 5/4 4/4 1/1 2 22/22 1 1 0.11 0.17 0.61
#28 outstanding_tasks 𝜌 , 𝜋 , Z 22/11 4/2 3/2 1/1 2 34/34 1 1 0.11 0.26 0.72
#29 poi_view 2𝜋 , Z 2499/1499 200/200 100/100 1/1 3 30/30 1 1 0.12 0.26 0.87
#30 products 4𝜌 , 𝜋 , ×, 2Z, \, ∪ 127/48 3/5 2/5 2/2 10 75/103 1 1 0.11 9.87 10.49
#31 koncerty 𝜌 , 2Z 247/213 9/6 3/6 1/1 3 31/31 1 1 0.11 0.21 0.65
#32 emp_view A(0) , - - - - - - - - - - - -

B3

#01 tokyoac 2𝜎 , 2𝜋 , ∪ 15/9 2/2 2/2 2/2 5 44/50 1 1 0.10 1.38 1.85
#02 open_port 𝜎 , 4𝜋 , 2Z, ∪ 927/913 4/2 4/2 3/152 8 84/84 4 2 64.99 0.27 65.68
#03 logging 3𝜎 , 2𝜋 , Z, 2∪ 240/210 4/8 4/8 4/112 8 81/103 14 2 105.97 21.12 128.03
#04 admin_post_cms 5𝜎 , 6𝜋 , 4Z, 3∪ 49/41 6/3 4/3 7/100 18 147/195 10 9 38.21 12.71 51.46
#05 blog_2020 4𝜎 , 𝜋 , 3∪ 42/20 3/3 3/3 5/128 8 58/89 1 1 10.74 21.30 32.49
#06 neighbour_airbnb 3𝜎 , 𝜋 , 2∪ 294/250 4/7 4/7 5/87 8 57/84 1 1 9.50 7.06 16.96
#07 dw_ship 4𝜋 , 2Z, ∪ 2815/818 114/300 113/300 2/2 7 294/294 1 1 0.12 0.87 1.78
#08 dw_survey 𝜌 , 𝜎 154/146 29/4 29/4 2/5 2 17/17 1 1 0.34 0.14 0.75
#09 dw_sales 4𝜎 , 4𝜋 , 4×, 3∪ 249/163 4/4 4/4 4/4 15 128/146 1 1 0.12 19.03 19.69

(0) Unsupported: A stands for aggregation.
(1) In/Out is the number of input/output tuples. (2) IS/DS and (3) IV/DV are the numbers of insertion/deletion tuples against the source and the view, respectively.
(4) Sg/Cg and (5) Sp/Cp are the numbers of rules in a solution/candidate program of 𝑔𝑒𝑡 and 𝑝𝑢𝑡 , respectively.
(6) DSg is the number of single-line rules in the decomposed solution program of 𝑔𝑒𝑡 .
(7) SPair is the number of different well-behaved pairs synthesized in 32 runs.
(8) WNSg is the worst number of solutions of 𝑔𝑒𝑡s that are needed to synthesize before finding a well-behaved pair.
(9) MSTget, (10) MSTput and (11) MSTtotal are means of the runtime for successfully synthesizing only 𝑔𝑒𝑡 , only 𝑝𝑢𝑡 and the whole (𝑔𝑒𝑡, 𝑝𝑢𝑡) respectively.
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and PutGet. The failed reasons are as follows. Benchmark emp_view (B2#32) contains
an aggregation (i.e., use of aggregate functions such as 𝑐𝑜𝑢𝑛𝑡 , 𝑠𝑢𝑚,𝑚𝑖𝑛,𝑚𝑎𝑥 to group
data and summarize information) in the view definition. Benchmarks sql-6 (B1#06),
tracks1 (B2#16), and tracks3 (B2#18) include examples where non-minimal changes
occur due to internal dependencies (such as functional dependencies) that impose extra
constraints on the user-provided tables. The minimal-effect update strategies given
in [21, 22, 23] do not cover these cases, resulting in a shortage of essential templates
during the synthesis. While designing additional templates to support dependencies
is more complex and requires more effort, it is still unknown how to encode view
update strategies for aggregations as templates. The ambiguity of well-behaved update
strategies against aggregations has not been extensively explored. Additionally, these
strategies involve calculations outside the domain of relations (e.g., addition in the case
of the aggregate function 𝑠𝑢𝑚), leading to increased challenges in templatizing within
Datalog.

All of the bidirectional programs that were successfully synthesized are free
of dependencies and aggregations, and use various combinations of atomic views.
We randomly picked up a combination in 32 runs to show in Table 5.2. Constraint
strengthening to continue the synthesis occurs many times out of the 32 runs of some
benchmarks, for instance, sql-09 (B1#09) and admin_post_cms (B3#04). Furthermore,
our equipped procedure PrepareGetCand has allowed SynthBX to synthesize well-
behaved pairs for benchmarks in which the set of candidate rules of 𝑔𝑒𝑡 is provided
empty, as in B3.

5.2.2 Q2: Efficiency

To answer Q2 about the efficiency of SynthBX, we mostly observe the number of
rules, the number of programs, and the means of synthesis times, which are listed in
the last eight columns of Table 5.2.

Regardless of the mentioned failures, SynthBX is able to synthesize a well-behaved
bidirectional program in an average of 19 seconds and less than 3 seconds for 37
benchmarks. Compared to taking a long time to write a well-behaved bidirectional
program manually - possibly minutes or hours - a synthesis time of 19 seconds on
average is relatively quick, making it feasible for real-world applications where timely
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results are essential. Additionally, synthesizing a program in less than 3 seconds for 37
benchmarks demonstrates high efficiency. This is valuable in scenarios where quickly
creating programs is crucial, improving the overall usability and effectiveness of the
approach. Furthermore, in [20], ProSynth proves its effectiveness by making the
desired program in about 10 seconds per task, and for 28 of them, it takes less than a
second. Despite the difference in environment setup (we use a 6-core Intel machine,
whereas they use an 18-core Xeon server), the time metrics provided by both parties
are appealing.

SynthBX is shown to be extremely effective to solve tasks in B2, where the
programs of 𝑔𝑒𝑡s are given at the beginning. The synthesis time against 𝑔𝑒𝑡 (MSTget)
is insignificant, while the synthesis time against 𝑝𝑢𝑡 (MSTput) is relatively small. For
instance, consider benchmark vw_brands (B2#12), SynthBx finds a well-behaved pair
of (𝑔𝑒𝑡, 𝑝𝑢𝑡) in 2.63 seconds, with 0.10 seconds are for synthesizing 𝑔𝑒𝑡 , 2.16 seconds
for synthesizing 𝑝𝑢𝑡 , and the rest for other I/O costs. SynthBx prepares 56 candidate
rules (Cp) to make the search space for the synthesis of 𝑝𝑢𝑡 and selects 50 of them (Sp)
as the solution for 𝑝𝑢𝑡 . Our templates keep the distance between the candidate and
the solution of 𝑝𝑢𝑡 not too far. For 33/52 successful benchmarks, SynthBx finds a
solution of 𝑝𝑢𝑡 almost immediately after checking the prepared candidate. For the rest,
the search space for synthesizing 𝑝𝑢𝑡 is not too large. The numbers of rules in the
solution and candidate programs of 𝑝𝑢𝑡 (Sp and Cp) look big but they actually count
both selectable and fixed clauses.

If a 𝑔𝑒𝑡 is not given, SynthBX would be affected by the performance of ProSynth+

which is invoked to synthesize a 𝑔𝑒𝑡 then a suitable 𝑝𝑢𝑡 too. For benchmark sql-09
(B1#09), we prepared 11 candidate rules for 𝑔𝑒𝑡 instead of its solution. SynthBX needs
around 24 seconds to synthesize a well-behaved pair where 3.7 seconds and 20.17
seconds are, respectively, the synthesis time to its 𝑔𝑒𝑡 and 𝑝𝑢𝑡 . In 32 runs, SynthBX
finds one solution pair (SPair) where the 𝑔𝑒𝑡 contains 2 rules (Sg) in 11 candidate
rules (Cg). In the worst case, SynthBX has to synthesize 2 programs of 𝑔𝑒𝑡 (WNSg) to
find a well-behaved pair. The more programs that do not match, the more time it
takes. The synthesis times, MSTget and MSTput, are accumulated during the time that
SynthBX synthesizes a 𝑔𝑒𝑡 and a suitable 𝑝𝑢𝑡 . In the other 32 runs of benchmark
admin_post_cms (B3#04), SynthBX once had to synthesize 9 solution programs of
𝑔𝑒𝑡 before obtaining a suitable 𝑝𝑢𝑡 . For this benchmark, the number of atomic rules
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Figure 5.6: Stress tests for benchmark poi_view (B2#29)

after decomposing a 𝑔𝑒𝑡 (DSg) is up to 18, the biggest for all benchmarks, and the
average time to find a valid pair is up to 51.46 seconds. While we do not provide any
candidates of 𝑔𝑒𝑡 to B3#04, SynthBX automatically generates 100 candidate rules.
Using a large number of candidate rules makes the synthesis space more diverse, but
may require lots of time to search. It would be better if users had more intervention in
generating and choosing candidates.

5.2.3 Q3: Sensitivity against example sizes

To answer Q3, we examine the sensitivity of successful benchmarks to the number of
input/output tuples (In/Out) and the number of insertion/deletion tuples against the
source and the view (IS/DS and IV/DV). The analysis is based on the synthesis times
MSTget and MSTput, as well as the set of candidate rules of 𝑔𝑒𝑡 .

If a user provides a𝑔𝑒𝑡 program or if the number of candidate rules of𝑔𝑒𝑡 is relatively
small, and the given example is of reasonable size, the performance of SynthBX would
not significantly depend on In, Out, IS, DS, IV and DV. For instance, SynthBX solves
benchmarks sql-02 (B1#02), usa_city (B2#04) and poi_view (B2#29) in less than 1
second. sql-02 (B1#02) has In, Out, IS, DS, IV and DV all under 7, poi_view (B2#29)
has typically larger corresponding numbers, while usa_city (B2#04) has medium In

and Out (around 600 for each) but small IS, DS, IV and DV (all equal to 2).
We set up some stress tests on (B2#29) to check the sensitivity more carefully.

Figure 5.6 illustrates the results in three cases in which we either (a) fix IV/DV, and
vary In/Out; (b) fix In against the sources, fix DV, and vary IV; and (c) fix In against
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the sources, fix IV, and vary DV. The total synthesis time strongly depends on the
number of tuples. This is due to the cost of I/O used to compute auxiliary facts as well
as evaluate programs.

If no candidate rule of 𝑔𝑒𝑡 is provided, SynthBX generates candidate rules using
the schemas and constants from the given tables. The more tuples, the more constants,
the more candidate rules, the longer the synthesis time, for instance, in benchmarks
open_port (B3#02) and logging (B3#03).

5.2.4 Discussions

For the benchmark suite of 56 tasks, SynthBX successfully synthesizes 52 tasks.
The synthesized programs not only satisfy the corresponding given examples but
also adhere to well-behavedness. However, there were some failures because of the
lack of templates for features such as dependencies and aggregations, which are
related to more constraints and extra effects of update propagation. Additionally, other
relational constraints such as domain constraints and inclusion constraints were not
given adequate attention in our template design. We will continue to further develop
templates to accommodate these constraints and effects.

SynthBX takes 19 seconds on average to successfully synthesize a solution and less
than 3 seconds each for 37 out of 52 successful tasks. It is affected by the performance
of ProSynth+. SynthBX is more efficient for reasonable-sized examples.

At present, we have not addressed the issue of how closely the synthesized result
matches the intended one, which is an essential direction for future work.

There is no tool to which we can make an apple-to-apple comparison. Existing
synthesis tools cannot directly cope with both the well-behavedness of bidirectional
programs and the complexity of relations as well as query languages. The base
synthesizer inside SynthBX, ProSynth, cannot ensure the well-behavedness, while
all of the existing synthesizers of bidirectional programs do not work on relations.
Having bidirectional programs that are well-behaved and work with relations plays an
important role in addressing practical view update problems in relational databases. As
you can see in the benchmarks, there are many practical view update cases in which we
need to maintain consistency across data in various relations. The well-behaved nature
of bidirectional programs ensures consistency and any violations of well-behavedness
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result in a loss of data consistency.
Considering Example 3.2 (referred to as benchmark B3#01 and Table 1.1), we would

like to synthesize a query program 𝑔𝑒𝑡 and a view update program 𝑝𝑢𝑡 such that they
are well-behaved. ProSynth can be adapted to automatically synthesize 𝑔𝑒𝑡 = {𝑟1, 𝑟2}
and 𝑝𝑢𝑡 = {𝑟3, 𝑟4, 𝑟5, 𝑟6, 𝑟7, 𝑟8, 𝑓9, 𝑓10} where 𝑟1 and 𝑟2 are in Example 4.5, while 𝑟3, . . . , 𝑟8,
𝑓9 and 𝑓10 are as follows:

𝑟3 staffs′(i,n,c,a) : − staffs(i,c,n,a) , a=“0".

𝑟4 staffs′(i,n,c,a) : − staffs(i,c,n,a) , c≠“Tokyo".

𝑟5 staffs′(i,n,c,a) : − tokyoac′(n) , Au1(i,n,c,a).

𝑟6 customer′(i,n,c) : − customers(i,n,c) , c≠“Tokyo".

𝑟7 customer′(i,n,c) : − tokyoac′(n) , customers(i,n,c).

𝑟8 customer′(i,n,c) : − tokyoac′(n) , Au2(i,n,c).

𝑓9 Au1(“14",“Shin",“Tokyo",“1").

𝑓10 Au2(“105",“Yuri",“Tokyo").

Over staffs and customers, the query 𝑔𝑒𝑡 defines a view tokyoac that includes
the names of individuals living in Tokyo who are either active staff members or
customers. The view update 𝑝𝑢𝑡 reflects the changes against the tokyoac into the
changes against staffs and customers.

If we evaluate the above 𝑝𝑢𝑡 where staffs and customers are as original as in
Table 1.1a and Table 1.1b, respectively, and tokyoac′ = {⟨“Ken"⟩, ⟨“Mori"⟩}, then
staffs′ and customers′ will be as follows:

staffs′

sid name city active
10 Anna Berlin 1
12 Jose Rio 0
13 Yua Tokyo 0

customers′

cid name city
100 Logan Denver
101 Olsen Oslo
103 Luis Lisbon
104 Mori Tokyo

Then, if we perform the query 𝑔𝑒𝑡 over the two above tables, the obtained result will
be {⟨“Mori"⟩}, which differs from the given tokyoac′ = {⟨“Ken"⟩, ⟨“Mori"⟩}. This
indicates a violation against the PutGet law, leading to a break in well-behavedness or
consistency between (staffs, customers) and (tokyoac).

While ProSynth failed to provide the well-behavedness of bidirectional pro-
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grams, other existing synthesis approaches of bidirectional programs do not operate
on relations, rendering them unsuitable for application to the benchmarks in the
experiments.

5.3 Summary

In this chapter, we present how to encode minimal-effect view update strategies in
templates. With the templates, we can generate candidate rules expressing minimal-
effect strategies for the view update program. We introduce two Setups A and B for
designing templates. The corresponding template rules in these two setups have the
similarity to express the meaning of a strategy, but are written in different ways.

We have implemented a prototype SynthBX that uses templates of Setup A.
SynthBX skips the procedures related to FDs in our high-level algorithm. We evaluated
SynthBX on 56 practical scenarios. The results showed that SynthBX is powerful and
efficient for reasonable-sized examples.

However, SynthBX failed to synthesize certain tasks involving tables with internal
functional dependencies, a scenario encountered in many real-world view update
problems. To resolve that problem, we need to handle FDs like in the high-level
algorithm, by forward-propagating FDs (as mentioned in Section 4.2), and by designing
more templates that encode the constraints and effects of FDs to enrich the synthesis
space. We will discuss these new templates in the next chapter.
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6
Synthesizing View Update Programs with

More Templates against FDs

In practice, tables with internal functional dependencies are quite common. FDs
play an important role in practical view update strategies over these tables. FDs
impose constraints on the tables, and when performing updates, they may cause
extra effects that are non-minimal changes. If we do not handle the FDs carefully, we
might miss important rules in the synthesis, causing failures. By forward-propagating
FDs from the source, we have specified the FDs associated with all relations in the
sub-synthesis problems. With this information of FDs, we can design templates
encoding the constraints of FDs. For the effects of FDs in the atomic view update
program, we will design other templates encoding that effects over the minimal
templates.

The following sections are organized as follows. Section 6.1 and 6.2 present
templatizing constraints and effects of FDs, respectively. Section 6.3 covers SynthBP,
another prototype of our approach, which supports templates related to FDs, and
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includes an evaluation of SynthBP on 38 benchmarks. Section 6.4 summarizes this
chapter.

6.1 Templatizing the Constraints of FDs

If a relation 𝑟 has internal dependencies described by the FDs, both the original and
updated data on 𝑟 are constrained to agree on the FDs.

Example 6.1. Consider the source relation 𝑆 where 𝑆 :: 𝐴𝐵𝐶𝐷 and 𝑆 satisfies
F𝑆 = {𝐴 → 𝐵,𝐴 → 𝐷}. For FD 𝐴 → 𝐵, we can use the relation 𝐹𝑟 to encode the
constraints as follows:

𝑟𝑐1 𝐹𝑟 (“_𝑟_”) : − 𝑆 (𝑣1, 𝑣2, _, _), 𝑆 (𝑣1, 𝑣𝑥2 , _, _), 𝑣2 ≠ 𝑣𝑥2 .

𝑟𝑐2 𝐹𝑟 (“_𝑟_”) : − 𝑆′(𝑣1, 𝑣2, _, _), 𝑆′(𝑣1, 𝑣𝑥2 , _, _), 𝑣2 ≠ 𝑣𝑥2 .

As explained in the Section 5.1, we can use ⊥, a truth value of 𝐹𝑎𝑙𝑠𝑒 , to express the
constraints imposed on a relations, for instances,

⊥ : − 𝑆 (𝑣1, 𝑣2, _, _), 𝑆 (𝑣1, 𝑣𝑥2 , _, _), 𝑣2 ≠ 𝑣𝑥2 .

⊥ : − 𝑆′(𝑣1, 𝑣2, _, _), 𝑆′(𝑣1, 𝑣𝑥2 , _, _), 𝑣2 ≠ 𝑣𝑥2 .

But we replace ⊥ by 𝐹𝑟 (“_𝑟_”) because ProSynth does not work well with the
zero-term literals like ⊥.

Rule 𝑟𝑐1 means that a rejection will occur if there are two tuples in 𝑆 such that the
first attribute values are the same but the second attribute values are different. This is
similar to the meaning of FD 𝐴→ 𝐵 in F𝑆 . Rule 𝑟𝑐2 can be understood similarly, but for
𝑆′, which shares the same schema as 𝑆 . If F𝑆 has many FDs, we need to prepare such
pairs of flag rules for each single FD.

We can prepare a similar pair of flag rules for FD 𝐴→ 𝐷 as below:

𝐹𝑟 (“_𝑟_”) : − 𝑆 (𝑣1, _, _, 𝑣4), 𝑆 (𝑣1, _, _, 𝑣𝑥4 ), 𝑣4 ≠ 𝑣𝑥4 .

𝐹𝑟 (“_𝑟_”) : − 𝑆′(𝑣1, _, _, 𝑣4), 𝑆′(𝑣1, _, _, 𝑣𝑥4 ), 𝑣4 ≠ 𝑣𝑥4 . ▲

Example 6.2. Consider the intermediate relation𝑀1 :: 𝐴𝐵𝐶 in Example 4.9. After
forward propagation of FDs from the source, the schema of𝑀1 associated with FDs is
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as follows:
𝑀1(𝐴 : A, 𝐵 : B,𝐶 : C, F𝑀1 = {𝐴→ 𝐵})

Similarly to Example 6.1, we can encode constraints of F𝑀1 = {𝐴→ 𝐵} by the following
two flag rules:

𝐹𝑟 (“_𝑟_”) : − 𝑀1(𝑣1, 𝑣2, _, _), 𝑀1(𝑣1, 𝑣𝑥2 , _, _), 𝑣2 ≠ 𝑣𝑥2 .

𝐹𝑟 (“_𝑟_”) : − 𝑀′1(𝑣1, 𝑣2, _, _), 𝑀′1(𝑣1, 𝑣𝑥2 , _, _), 𝑣2 ≠ 𝑣𝑥2 .

▲

Algorithm 3 describes how we can templatize the constraints of the FDs in
NR-Datalog. TemplatizeConstraintFDs takes as input a set S𝑓 of schemas of
relations with computed FDs and produces as output a set𝐶 of flag rules describing the
constraints of the FDs.

The procedure executes nested loops where the relation 𝑟 iterates over S𝑓 , state 𝑠
iterates over a set of original and updated states, and FD 𝑋 → 𝐴𝑘 iterates over F𝑟 .
Then, we prepare the variables in the body of the flag rule and build a complete rule
expressing the constraint of the considered FD. Informally, in such a flag rule against
FD 𝑓 , we need to prepare two positive literals 𝐿1 and 𝐿2 that have the same variables in
the positions on the lhs of 𝑓 , different variables in the positions on the rhs of 𝑓 , and
anonymous variables for the remaining positions.

6.2 Templatizing the Effects of FDs

The effects of FDs could appear in 𝑃Δ𝑆 (Setups A and B in Section 5.1), where an updated
tuple in Δ𝑆 could conflict with an original tuple 𝑡 of 𝑆 on an FD. If such conflicts are
not handled, the result 𝑆′ would contain data inconsistencies on the FD. There are two
strategies for resolving the conflict: (1) deleting 𝑡 from 𝑆 ; and (2) revising 𝑡 based on
specified FDs with revision operators (Section 2.4). The former could be simply done
by templatizing rules for adding the conflicting tuple 𝑡 to Δ𝑆−. The latter is more
complicated since revision operators are recursive structures with FDs that have never
been defined in NR-Datalog∗. Moreover, an NR-Datalog∗ program has no information
on how the FDs are structured. We need to develop an intermediary that converts
revision operators into NR-Datalog∗ clauses.
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Algorithm 3: Templatizing Constraints of FDs
Input: S𝑓 : a set of schemas, each associated with a set of FDs
Output: 𝐶: a set of rules encoding the constraints of the associated FDs

1 procedure TemplatizeConstraintFDs(S𝑓 ):
2 𝐶 ← ∅
3 for 𝑟 :: 𝐴1𝐴2 . . . 𝐴𝑛 ∈ S𝑓 do
4 for 𝑠 ∈ {𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙,𝑢𝑝𝑑𝑎𝑡𝑒𝑑} do
5 for 𝑋 → 𝐴𝑘 ∈ F𝑟 do
6 𝑎𝑟𝑠1, 𝑎𝑟𝑠2 ← [_] ∗ 𝑛, [_] ∗ 𝑛
7 for 𝑖 ∈ [1, . . . , 𝑛] do
8 if 𝐴𝑖 ∈ 𝑋 then 𝑎𝑟𝑠1 [𝑖], 𝑎𝑟𝑠2 [𝑖] ← 𝑣𝑖, 𝑣𝑖
9 if 𝐴𝑖 = 𝐴𝑘 then 𝑎𝑟𝑠1 [𝑖], 𝑎𝑟𝑠2 [𝑖] ← 𝑣𝑘 , 𝑣

𝑥
𝑘

10 Add the following rule to 𝐶:
𝐹𝑟 (“_𝑟_”) : −𝑟 𝑠 (𝑎𝑟𝑠1), 𝑟 𝑠 (𝑎𝑟𝑠2), 𝑣𝑘 ≠ 𝑣𝑥

𝑘
.

11 return 𝐶

Assume that we have generated Datalog rules for 𝑃Δ𝑆 from the base templates
with minimal effects. We slightly rename the heads of the rules to Δ𝑆−

𝑏
and Δ𝑆+

𝑏
as

appropriate. We use Δ𝑆𝑏 ≡ (Δ𝑆−𝑏 ,Δ𝑆
+
𝑏
) to hold the updated data with minimal effects

and use Δ𝑆 to hold the updated data after accounting for the effects of the FDs. The
templates encoding effects of the FDs will be designed over Δ𝑆𝑏 ; i.e., we expect to
obtain a 𝑝𝑢𝑡𝑎 program that computes the updated data as usual and then resolves the
conflicts.

Example 6.3. Consider templatizing the effects of FDs for the subproblem

PA2 := ProbA(({𝑀1}, 𝑀2), E2, {𝑟𝑜2 })

in Example 4.9 where

𝑀1(𝐴 : A, 𝐵 : B,𝐶 : C, F𝑀1 = {𝐴→ 𝐵})
𝑀2(𝐴 : A, 𝐵 : B,𝐶, F𝑀2 = {𝐴→ 𝐵})
E2 = ({4.3𝑎}, {4.3𝑏}, {4.3𝑎′}, {4.3𝑏′})
𝑟𝑜2 𝑀2(𝑣0, 𝑣1, 𝑣2) : −𝑀1(𝑣0, 𝑣1, 𝑣2), 𝑣2 = “𝑇 ”.

Let us recall all minimal-effect rules related to Δ𝑀1 that we generated for PA2 in
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Example 5.2:

𝑟𝑜6 Δ𝑀−1 (𝑣0, 𝑣1, 𝑣2) : − ¬𝑀′2(𝑣0, 𝑣1, 𝑣2) , 𝑀1(𝑣0, 𝑣1, 𝑣2) , 𝑣2 = “𝑇 ”.
𝑟𝑜7 Δ𝑀+1 (𝑣0, 𝑣1, 𝑣2) : −𝑀′2(𝑣0, 𝑣1, 𝑣2) , ¬𝑀1(𝑣0, 𝑣1, 𝑣2) , 𝑣2 = “𝑇 ”.

First, we replace the basic rules (𝑟𝑜6 , 𝑟𝑜7 ), with a head of either Δ𝑀−1 or Δ𝑀+1 , with
the following new ones, whose heads are adapted correspondingly to Δ𝑀−1𝑏 or Δ𝑀

+
1𝑏 :

𝑟𝑒1 Δ𝑀−1𝑏 (𝑣0, 𝑣1, 𝑣2) : − ¬𝑀′2(𝑣0, 𝑣1, 𝑣2) , 𝑀1(𝑣0, 𝑣1, 𝑣2) , 𝑣2 = “𝑇 ”.
𝑟𝑒2 Δ𝑀+1𝑏 (𝑣0, 𝑣1, 𝑣2) : − 𝑀′2(𝑣0, 𝑣1, 𝑣2) , ¬𝑀1(𝑣0, 𝑣1, 𝑣2) , 𝑣2 = “𝑇 ”.

The remaining minimal-effect candidate rules previously prepared are unchanged.

To encode a strategy that resolves the conflict on the FDs of the source (F𝑀1 =

{𝐴→ 𝐵}) by deletion, we generate more three rules 𝑟𝑒3 , 𝑟𝑒4 , 𝑟𝑒5 as follows:

𝑟𝑒3 𝑀F1𝑑 (𝑣0, 𝑣1, 𝑣2) : − Δ𝑀+1𝑏 (𝑣0, 𝑣
𝑥
1 , _) , 𝑀1(𝑣0, 𝑣1, 𝑣2) , 𝑣1 ≠ 𝑣𝑥1 .

𝑟𝑒4 Δ𝑀−1 (𝑣0, 𝑣1, 𝑣2) : − Δ𝑀−1𝑏 (𝑣0, 𝑣1, 𝑣2).
𝑟𝑒5 Δ𝑀−1 (𝑣0, 𝑣1, 𝑣2) : − 𝑀F1𝑑 (𝑣0, 𝑣1, 𝑣2).

Rule 𝑟𝑒3 computes𝑀F1𝑑 containing all tuples in𝑀1 that conflict with some basic
inserted tuple to𝑀1 (in Δ𝑀+1𝑏) on FD 𝐴→ 𝐵. There will be more rules like 𝑟𝑒3 if F𝑀1

has more FDs.

The next two rules say that a tuple in Δ𝑀−1 (i.e., a tuple that should be deleted
from𝑀1) is in either Δ𝑀−1𝑏 (which keeps the basic deletions) or𝑀F1𝑑 (which keeps the
conflicting tuples).

For the strategy that resolves the conflict on F𝑀1 = {𝐴→ 𝐵} by revision, we will
generate more rules as follows:

𝑟𝑒6 𝑀F1𝑖0 (𝑣0, 𝑣1, 𝑣2) : −𝑀1(𝑣0, 𝑣1, 𝑣2),¬𝑀2(𝑣0, 𝑣1, 𝑣2).
𝑟𝑒7 𝑀F1𝑖1 (𝑣0, 𝑣1, 𝑣2) : −𝑀

F
1𝑖0 (𝑣0, 𝑣1, 𝑣2),¬Δ𝑀

+
1𝑏 (𝑣0, _, _).

𝑟𝑒8 𝑀F1𝑖1 (𝑣0, 𝑣1, 𝑣2) : −𝑀
F
1𝑖0 (𝑣0, _, 𝑣2),Δ𝑀

+
1𝑏 (𝑣0, 𝑣1, _).

𝑟𝑒9 𝑀F1𝑖# (𝑣0, 𝑣1, 𝑣2) : −𝑀
F
1𝑖1 (𝑣0, 𝑣1, 𝑣2), 𝑣2 = “𝑇 ”,¬𝑀′2(𝑣0, 𝑣1, 𝑣2)

𝑟𝑒10 Δ𝑀+1 (𝑣0, 𝑣1, 𝑣2) : − Δ𝑀+1𝑏 (𝑣0, 𝑣1, 𝑣2).
𝑟𝑒11 Δ𝑀+1 (𝑣0, 𝑣1, 𝑣2) : − Δ𝑀F1𝑖1 (𝑣0, 𝑣1, 𝑣2),¬Δ𝑀

F
1𝑖# (𝑣0, 𝑣1, 𝑣2).
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Rule 𝑟𝑒6 defines𝑀
F
1𝑖0 as keeping all tuples in the source𝑀1 that might need to be

revised.
Then, for an FD 𝑓 whose lhs is a root of the tree form of F𝑀1 , we prepare a pair of

rules with the same head whose name specifies a new relation, for instance,𝑀F1𝑖1 , to
compute the relation revision𝑀F1𝑖0 ←𝑓 Δ𝑀

+
1𝑏 (i.e., the results of this relation revision

are kept in𝑀F1𝑖1). More generally, we translate the recursive definition of the relation
revision (at the end of Section 2.4) to a series of pairs of NR-Datalog∗ rules, where each
pair calculates𝑀F1𝑖 𝑗 ←𝑓 Δ𝑀

+
1𝑏 and assigns it to a new relation𝑀F1𝑖 𝑗+1 (where 𝑓 is an FD

in the rebuilt tree form with a root in the lhs of 𝑓 , and 𝑗 = 0, 1, . . .).
Rules 𝑟𝑒7 and 𝑟𝑒8 indicate a pair of revisions where Δ𝑀+1𝑏 is used to revise𝑀F1𝑖0 into

𝑀F1𝑖1 on FD 𝑓 ≡ 𝐴→ 𝐵. Informally, a tuple ⟨𝑣0, 𝑣1, 𝑣2⟩ is kept in𝑀F1𝑖1 if either (rule 𝑟
𝑒
7 -

without conflict) ⟨𝑣0, 𝑣1, 𝑣2⟩ is in 𝑀F1𝑖0 while there is no tuple in Δ𝑀+1𝑏 with the first
attribute (𝐴-position) value equal to 𝑣0 or (rule 𝑟𝑒8 - with conflict) there are some tuples
⟨𝑣0, _, 𝑣2⟩ in𝑀F1𝑖0 and ⟨𝑣0, 𝑣1, _⟩ in Δ𝑀+1𝑏 that have the same 𝐴-position value of 𝑣0 (note
that 𝑣1 is a variable in the 𝐵-position and 𝑣2 represents a variable not in the positions of
the lhs or rhs of 𝑓 ). After finishing an FD 𝑓 , the corresponding edge in tree form will
be removed. We can remove a root of the tree form if that node is not in the lhs of any
remaining FDs and rebuild the forest.

Rule 𝑟𝑒9 defines𝑀
F
1𝑖# as keeping all violations of PutGet. Supposing the results of

the last relation revision in the previous step are in𝑀F1𝑖1 , then𝑀F1𝑖1 contains tuples that
have been revised with F𝑀1 following the tree form and should be inserted into𝑀′1;
however, some tuples may violate PutGet [7].

The last two rules 𝑟𝑒10 and 𝑟𝑒11 describe two ways that a tuple ⟨𝑣0, 𝑣1, 𝑣2⟩ would be
inserted into 𝑀1. The former requires ⟨𝑣0, 𝑣1, 𝑣2⟩ to be in Δ𝑀+1𝑏 as usual. The latter
requires ⟨𝑣0, 𝑣1, 𝑣2⟩ to be in the last revised relation𝑀F1𝑖1 but not in the violation relation
𝑀F1𝑖# . ▲
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Algorithm 4: Templatizing Effects of FDs
Input: S𝑓 : a set of schemas, each associated with a set of FDs
Input: C𝑔: a set of atomic rules
Output: 𝐸: a set of rules encoding the effects of the associated FDs

1 procedure TemplatizeEffectFDs(S𝑓 , C𝑔):
2 𝐸 ← ∅
3 for 𝑟 = 𝐻 : − 𝐵. ∈ C𝑔 do
4 𝑉 , 𝑆𝑠 ← Relation(𝐻 ), Relation(𝐵)
5 for 𝑆 ∈ 𝑆𝑠 do
6 if F𝑆 = ∅ then continue

7 Δ𝑆−
𝑏
,Δ𝑆+

𝑏
← base deletion and insertion rules

8 // strategy: conflict => deletion
9 for 𝑋 → 𝐴𝑘 ∈ F𝑆 do

10 𝑎𝑟𝑠1, 𝑎𝑟𝑠2 ← [𝑣1, . . . , 𝑣𝑛], [_] ∗ 𝑛
11 for 𝑖 ∈ [1..𝑛] do
12 if 𝐴𝑖 ∈ 𝑋 then 𝑎𝑟𝑠2 [𝑖] ← 𝑣𝑖
13 if 𝐴𝑖 = 𝐴𝑘 then 𝑎𝑟𝑠2 [𝑖] ← 𝑣𝑥

𝑘

14 Add to 𝐸 the rule: 𝑆F
𝑑
(𝑎𝑟𝑠1) : − Δ𝑆+

𝑏
(𝑎𝑟𝑠2), 𝑆 (𝑎𝑟𝑠1), 𝑣𝑘 ≠ 𝑣𝑥

𝑘
.

15 Add to 𝐸 the rules: Δ𝑆− (𝑎𝑟𝑠1) : − Δ𝑆−
𝑏
(𝑎𝑟𝑠1) . and Δ𝑆− (𝑎𝑟𝑠1) : − 𝑆F𝑑 (𝑎𝑟𝑠1) .

16 // strategy: conflict => revision
17 𝑆F

𝑖0
← FreshName()

18 𝑎𝑟𝑠1 ← [𝑣1, . . . , 𝑣𝑛]
19 Add to 𝐸 the rule with head 𝑆F

𝑖0
(𝑎𝑟𝑠1) that calculates tuples which might

need to be revised in 𝑆

20 𝑇F ← tree form of F𝑆
21 while 𝑟𝑜𝑜𝑡𝑠 (𝑇F) ≠ ∅ do
22 𝑟𝑜𝑜𝑡 ← a node in 𝑟𝑜𝑜𝑡𝑠 (𝑇F)
23 𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛 ← set of child nodes of 𝑟𝑜𝑜𝑡
24 for 𝑐ℎ𝑖𝑙𝑑 ∈ 𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛 do

25 𝑖𝑙, 𝑖𝑟 ← [𝑖𝑛𝑑𝑒𝑥 (𝑎) for 𝑎 ∈ Value(𝑟𝑜𝑜𝑡)], [𝑖𝑛𝑑𝑒𝑥 (𝑎) for 𝑎 ∈
Value(𝑟𝑖𝑔ℎ𝑡)]

26 𝑆F
𝑖1
← FreshName()

27 𝑎𝑟𝑠2 ← [𝑣𝑖 if 𝑖 ∈ 𝑖𝑙 else _ for 𝑖 ∈ [1..𝑛]]
28 𝑎𝑟𝑠3 ← [_ if 𝑖 ∈ 𝑖𝑟 else 𝑣𝑖 for 𝑖 ∈ [1..𝑛]]
29 𝑎𝑟𝑠4 ← [𝑣𝑖 if 𝑖 ∈ 𝑖𝑙 ∪ 𝑖𝑟 else _ for 𝑖 ∈ [1..𝑛]]
30 Add to 𝐸 the following rules: 𝑆F

𝑖1
(𝑎𝑟𝑠1) : −𝑆F𝑖0 (𝑎𝑟𝑠1),¬Δ𝑆

+
𝑏
(𝑎𝑟𝑠2).

and 𝑆F
𝑖1
(𝑎𝑟𝑠1) : −𝑆F𝑖0 (𝑎𝑟𝑔𝑠3),Δ𝑆

+
𝑏
(𝑎𝑟𝑔𝑠4).

31 𝑆F
𝑖0
← 𝑆F

𝑖1

32 Remove 𝑟𝑜𝑜𝑡 from 𝑇F and rebuild 𝑇F in tree form
33 Add the following rules to 𝐸:

rule with head 𝑆F
𝑖#
(𝑎𝑟𝑠1) that calculates violations of PutGet,

Δ𝑆+(𝑎𝑟𝑠1) : − Δ𝑆+
𝑏
(𝑎𝑟𝑠1) . and Δ𝑆+(𝑎𝑟𝑠1) : − 𝑆F𝑖1 (𝑎𝑟𝑠1),¬𝑆

F
𝑖#
(𝑎𝑟𝑠1).

34 return 𝐸
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Algorithm 4 describes how we can templatize the effects of FDs in NR-Datalog∗.
TemplatizeEffectFDs takes a set S𝑓 of schemas with computed FDs and a set of
atomic queries C𝑔 as input and produces a set 𝐸 consisting of addition candidate rules
related to handling the effects of FDs.

For each atomic rule 𝑟 in C𝑔, we can specify the view 𝑉 and the source 𝑆 against 𝑟
as well as their given FDs in S𝑓 . This procedure only makes more rules about the
effects of FDs if a considered source has a nonempty set of FDs in tree form. In such a
case, the procedure will

1. replace the basic candidate rules whose heads are either Δ𝑆− or Δ𝑆+ with new
base rules whose heads are, respectively, either Δ𝑆−

𝑏
or Δ𝑆+

𝑏
(line 7);

2. prepare the rules encoding the strategy that resolves conflicts caused by FDs by
deletion (lines 8-15);

3. prepare the rules encoding the strategy that resolves conflicts caused by FDs by
revision (lines 16-33);

To prepare rules for deletions, TemplatizeEffectFDs uses the two-step pattern:

1. defining a relation that keeps conflicting tuples due to FDs;

2. preparing rules for usual deletions and deletions that occur due to conflicts.

To prepare rules for revisions, TemplatizeEffectFDs uses the four-step pattern:

1. defining a relation that keeps tuples in 𝑆 that might need to be revised;

2. following the tree form of F𝑆 from roots to leaves and preparing pairs of rules
that each define a new relation expressing a recursive step of revision relations
with Δ𝑆+

𝑏
;

3. generating another relation to calculate violations of PutGet;

4. preparing rules for usual insertions and insertions that occur due to conflicts.
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Discussion on Correctness, Well-behavedness and Incompleteness

If a pair of (𝑔𝑒𝑡, 𝑝𝑢𝑡) is synthesized by our approach, the pair will be consistent with
the user-provided example because of the correctness of ProSynth.

The well-behavedness of a synthesized pair (𝑔𝑒𝑡, 𝑝𝑢𝑡) is ideally due to

1. the well-behavedness of all atomic pair (𝑔𝑒𝑡𝑎, 𝑝𝑢𝑡𝑎)s,

2. the well-behavedness of the composition of bidirectional programs [1].

For each atomic pair, the GetPut law holds no matter what rules ProSynth
chooses and no matter what rules ProSynth does not choose, while the PutGet law
can be fulfilled because of our well-designed templates encoding well-behaved view
update strategies.

For the composition of all atomic pairs, i.e., (𝑔𝑒𝑡, 𝑝𝑢𝑡), the GetPut is always
ensured, while the PutGet is not always ensured. Forward-propagating FDs sometimes
cannot fully propagate constraints against the source 𝑠 to constraints against the
view 𝑣 . Then, if we evaluate 𝑝𝑢𝑡 over 𝑠 and an updated view 𝑣′ including a tuple that
violates the missing constraints against the view, to obtain 𝑠′, and apply 𝑔𝑒𝑡 over 𝑠′, the
result would be different from 𝑣′, which violates the PutGet law.

The necessary conditions for PutGet to be ensured include

1. the original (updated) view could be forward defined from the original (updated)
source by a set of atomic rules satisfying the decomposable conditions,

2. all constraints from the source are fully propagated to intermediate relations and
the view.

It should be remarked that if we find a pair of (𝑔𝑒𝑡, 𝑝𝑢𝑡) from a valid user-
given example E = (𝑇𝑆 ,𝑇𝑉 ,𝑇𝑆 ′,𝑇𝑉 ′) (i.e., E satisfies the well-behavedness proper-
ties), the PutGet law is ensured against E because we synthesize the 𝑔𝑒𝑡 from
(𝑖𝑛𝑝𝑢𝑡 =𝑇𝑆 , 𝑜𝑢𝑡𝑝𝑢𝑡 =𝑇𝑉 ) and (𝑖𝑛𝑝𝑢𝑡 =𝑇𝑆 ′, 𝑜𝑢𝑡𝑝𝑢𝑡 =𝑇𝑉 ′), and synthesize the 𝑝𝑢𝑡 from
(𝑖𝑛𝑝𝑢𝑡 =(𝑇𝑆 ,𝑇𝑉 ′), 𝑜𝑢𝑡𝑝𝑢𝑡 =𝑇𝑆 ′).

Our approach is not complete. If there exists a well-behaved bidirectional program
of (𝑔𝑒𝑡, 𝑝𝑢𝑡) consistent with example E, our approach may return 𝑁𝑜𝑛𝑒 . It can output
such a well-behaved pair (𝑔𝑒𝑡, 𝑝𝑢𝑡) for the specification in which
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1. the example E is an instance of the backward update propagation with minimal
effects plus constraints and effects of FDs (if any) from the view to the source,

2. both of the above necessary conditions to ensure PutGet are satisfied.

6.3 Evaluation

We have fully implemented a prototype named SynthBP for Algorithm 1 in 8K
lines of Python, without relaxing any procedures. The minimal-effect view update
strategies are encoded in templates of Setup B. These templates are embedded
inside PreparePutCandMEVUS to automatically generate basic candidate rules of
view update programs. Procedures TemplatizeConstraintFDs (Algorithm 3) and
TemplatizeEffectsFDs (Algorithm 4) introduced in this chapter are implemented
as steps of PreparePutCandCEFDs in the high-level algorithm (Algorithm 1), to
generate more rules that handle FDs.

SynthBP also respectively uses ProSynth+ and Soufflé as the unidirectional
synthesizer and the underlying Datalog solver. For flexibility, SynthBP supports users
to provide their own candidates for the desired query or even a complete query in the
form of NR-Datalog∗ rules. If a query is given as a set of atomic queries, the step of
decomposing the query may be skipped. These flexibilities not only help users be more
proactive if they understand the desired query but can also help SynthBP reduce the
amount of time it takes to synthesize the query during the entire working time.

Research questions

To evaluate SynthBP, we perform experiments that are designed to answer the
following research questions:

Q1 Can SynthBP successfully synthesize bidirectional programs from examples with
and without FDs?

Q2 How efficient is SynthBP?
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Table 6.1: Benchmark characteristics

# Benchmark Schema Example

#Rels #Attrs #FDs ?PK #InsDel
Tuples

#Total
Tuples

B1 (adapted from [16])
#01 cars_master 2 5 2 Y 4 44
#02 goodstudents 2 7 4 Y 10 18
#03 luxuryitems 2 6 2 Y 6 12
#04 usa_city 2 7 3 Y 8 1272
#05 ced 3 6 - - 16 54
#06 residents1962 2 6 - - 10 24
#07 employees 3 8 - - 21 65
#08 researchers 3 6 - - 9 39
#09 retired 3 6 - - 2 42
#10 paramountmovies 2 8 - - 4 8
#11 officeinfo 2 12 8 Y 4 28
#12 vw_brands 3 6 - - 16 48
#13 residents 4 10 - - 24 56
#14 bstudents 3 11 5 Y 7 27
#15 all_cars 3 9 3 Y 6 52
#16 tracks1 3 11 3 N 16 28
#17 tracks2 2 9 3 N 14 18
#18 tracks3 2 8 2 N 12 14
#19 newpc 3 14 - - 15 115
#20 activestudents 3 12 - - 5 25
#21 vw_customers 3 19 - - 2 1912
#22 measurement 3 12 6 Y 10 110
#23 ukaz_lok 2 10 - - 20 60
#24 message 3 22 12 Y 26 138
#25 phonelist 4 21 - - 22 130
#26 purchaseview 3 8 3 Y 64 210
#27 vehicle_view 3 8 3 Y 17 53
#28 outstanding_task 2 26 - - 11 33
#29 poi_view 3 13 6 Y 600 3998
#30 products 3 19 - - 15 175
#31 koncerty 4 12 2 Y 24 460
#32 emp_view 3 10 - - 0 28
B2 (handcrafted using data from the airportdb database)
#01 airplane_br 3 13 6 Y 31 85
#02 bookinginfo 3 16 7 Y 19 261
#03 flightsc_fmosaka 3 23 7 N 14 150
#04 flightsc_wk 2 19 - - 14 52
#05 newflightdat 3 16 9 Y 18 188
#06 passengerinfo 4 15 9 Y 36 168
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Table 6.2: Main experiment results [SynthBP]

# Benchmark Synthesis of 𝑔𝑒𝑡 Set of Atomic Queries Synthesis of 𝑝𝑢𝑡 MeanSynthTime [s]
#SRules #CRules Types #Rels #SRules #CRules MSTget MSTput MSTtotal

B1 (adapted from [16])
#01 cars_master 1 1 𝜋 2 15 15 0.08 0.07 0.40
#02 goodstudents 1 1 𝜋 , 𝜎 3 45 45 0.08 0.20 0.58
#03 luxuryitems 1 1 𝜎 2 23 23 0.08 0.09 0.44
#04 usa_city 1 1 𝜋 , 𝜎 3 40 40 0.09 0.17 0.58
#05 ced 1 1 \ 3 6 6 0.08 0.06 0.38
#06 residents1962 1 1 𝜎 2 9 9 0.08 0.06 0.37
#07 employees 1 1 𝜋 , Z 4 18 18 0.08 0.08 0.43
#08 researchers 1 1 2𝜋 , 𝜎 , ∩ 6 26 26 0.08 0.11 0.47
#09 retired 1 1 2𝜋 , \ 5 16 16 0.08 0.08 0.42
#10 paramountmovies 1 1 𝜋 , 𝜎 3 12 12 0.08 0.07 0.41
#11 officeinfo 1 1 𝜋 2 27 27 0.08 0.13 0.49
#12 vw_brands 2 2 2𝜋 , 2×, ∪ 7 40 46 0.09 0.89 1.28
#13 residents 3 3 2×, 2∪ 7 36 48 0.08 1.02 1.39
#14 bstudents 1 1 2𝜋 , 𝜎 , Z 6 66 66 0.08 0.31 0.73
#15 all_cars 1 1 Z 3 34 34 0.08 0.15 0.48
#16 tracks1 1 1 Z 3 34 34 0.08 0.15 0.52
#17 tracks2 1 1 𝜋 2 19 19 0.08 0.09 0.43
#18 tracks3 1 1 𝜎 2 27 27 0.08 0.12 0.46
#19 newpc 1 1 𝜋 , 𝜎 , Z 5 22 22 0.08 0.10 0.46
#20 activestudents 1 1 𝜋 , 𝜎 , Z 5 22 22 0.09 0.11 0.49
#21 vw_customers 1 1 2𝜋 , Z 5 21 21 0.10 0.13 0.59
#22 measurement 2 2 2𝜎 , ∪ 5 59 73 0.08 1.26 1.66
#23 ukaz_lok 1 1 × 2 9 9 0.08 0.06 0.39
#24 message 2 2 2×, ∪ 5 34 40 0.08 0.93 1.32
#25 phonelist 3 3 3×, 2∪ 8 42 54 0.08 1.56 1.97
#26 purchaseview 1 1 𝜋 , Z 4 58 58 0.08 0.22 0.60
#27 vehicle_view 1 1 𝜋 , Z 4 50 50 0.09 0.23 0.64
#28 outstanding_task 1 1 𝜌 , 𝜋 , Z 4 28 28 0.08 0.15 0.53
#29 poi_view 1 1 2𝜋 , Z 5 70 70 0.09 0.38 0.88
#30 products 2 2 4𝜌 , 𝜋 , 2Z, ×, \, ∪ 12 55 83 0.08 5.09 5.57
#31 koncerty 1 1 𝜌 , 2Z 6 57 57 0.11 0.40 0.96
#32 emp_view 1 1 A, . . . - - - 0.08 - -
B2 (handcrafted using data from the airportdb database)
#01 airplane_br 1 1 2𝜎 , ×, ∩ 6 102 114 0.09 6.40 6.90
#02 bookinginfo 1 1 𝜋 , Z 4 74 79 0.09 4.26 4.69
#03 flightsc_fmosaka 1 1 2𝜋 , 2𝜎 , Z, × 8 135 146 0.10 4.72 5.44
#04 flightsc_wk 1 1 𝜋 , 𝜎 3 18 19 0.09 0.32 0.72
#05 newflightdat 1 1 𝜋 , \ 4 66 72 0.10 3.07 3.54
#06 passengerinfo 1 1 𝜋 , 2∩ 6 93 105 0.10 6.23 6.73
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Benchmark suite

We adopted a suite of practical view update benchmarks listed in [16], totaling 32
benchmarks, out of which 16 have no FDs, 13 incorporate primary keys, and 3 utilize
general FDs. Although well-collected from many sources, there are some benchmarks
in [16] where certain tables are absent, rendering them insufficient to construct a valid
example that aligns with the requirement of SynthBP. By adapting programs, 𝑔𝑒𝑡
and 𝑝𝑢𝑡 , associated with these benchmarks, and performing program evaluation on
existing and/or randomized data, we can obtain the missing tables. For convenience,
we refer to the original benchmark set in [16] as B0, and the adapted benchmark
set as B1. Leveraging the flexibility of SynthBP, for each benchmark in B1, we
additionally provide to SynthBP the corresponding 𝑔𝑒𝑡 program in B0 in the form of
NR-Datalog∗ rules.

We also manually crafted another benchmark set, denoted as B2, consisting of six
benchmarks that demonstrate practical cases of updating views related to the airport.
For each benchmark in B2, the relation schemas and examples have been customized
according to the sample database airportdb 1. Utilizing the flexibility of SynthBP,
we have also supplemented each benchmark with our queries that are consistent with
the tailored examples.

Table 6.1 presents characteristics of the adapted benchmarks, including the number
of relations (#Rels), the number of attributes of relations (#Attrs), the number of FDs
attached to the source (#FDs), the existence of primary keys (?PK), the number of
inserted/deleted tuples (#InsDelTuples) and the total number of tuples (#TotalTuples)
in the given examples.

Experimental setup

All experiments are conducted on a machine with a 2.6 GHz Intel Core i7 processor
and 16 GB of 2400 MHz DDR4, running macOS Ventura 13.3. Each benchmark is
experimented with 32 independent runs.

1https://dev.mysql.com/doc/airportdb/en/
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6.3.1 Q1: Capability

Table 6.2 shows the main experiment results. For each benchmark, we collect the mean
amount of time for successfully synthesizing 𝑔𝑒𝑡 (MSTget), for successfully synthesizing
𝑝𝑢𝑡 (MSTput) and for performing the whole synthesis process (MSTtotal). The statistics
MSTget and MSTput show us whether SynthBP discovered a well-behaved pair
(𝑔𝑒𝑡, 𝑝𝑢𝑡).

According to Table 6.2, SynthBP is capable of automatically synthesizing a pair of
(𝑔𝑒𝑡, 𝑝𝑢𝑡) for each of the 31 out of 32 benchmarks in B1 and for each of the 6 out of 6
benchmarks in B2. A failure happens in benchmark B1#32 because the query contains
an aggregation (denoted as A in Table 6.2) whose view update strategies have not been
carefully investigated to be templated in Datalog. As for the remaining successful
benchmarks, SynthBP shows the ability to handle diverse combinations of atomic
queries. From Table 6.1 and Table 6.2, we also observe that SynthBP can solve the
synthesis tasks with FDs (e.g. B1#01, B1#11, B1#18, B2#02) or without FDs (e.g. B1#07,
B1#20, B1#28, B2#04).

6.3.2 Q2: Efficiency

In addition to the mean synthesis times (MSTget, MSTput, MSTtotal), Table 6.2 also
provides other statistics related to the synthesis of 𝑔𝑒𝑡 and the synthesis of 𝑝𝑢𝑡 inside
SynthBP. #SRules and #CRules are the number of rules in the solution program and
the number of candidate rules, respectively.

With a 𝑔𝑒𝑡 given by users, #SRules is equal to #CRules in the synthesis of 𝑔𝑒𝑡 . This
means that SynthBP only needs to call ProSynth/Soufflé once to check if the 𝑔𝑒𝑡
matches the user-provided example. The number of tuples for each benchmark is of a
reasonable size, and the number of candidate rules for 𝑔𝑒𝑡 is small. This prevents
excessive slowness when evaluating programs and comparing data with Soufflé and
ProSynth. As a consequence, MSTget is insignificant, only around 0.1 second.

In the synthesis of 𝑝𝑢𝑡 , if the example does not reflect complex update strategies,
#SRules may be equal to #CRules, which means that all candidates are chosen by
ProSynth, and ProSynth only verifies the consistency of these rules with the given
example. Many benchmarks in B1 (e.g., B1#01−B1#11, B1#16−B1#21) reuse programs
from B0 to generate the missing tables. However, those programs employ simple
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Table 6.3: Experimental results about impact of FDs

# Benchmark Synthesis (without FDs) Synthesis (with FDs)
#SRules/#CRules MSTget MSTput MSTtotal #SRules/#CRules MSTget MSTput MSTtotal

B1
#01 cars_master 5/5 0.10 0.09 0.44 15/15 0.09 0.13 0.61
#02 goodstudents 12/12 0.10 0.12 0.61 45/45 0.09 0.31 0.76
#03 luxuryitems 7/7 0.09 0.10 0.45 23/23 0.10 0.18 0.61
#04 usa_city 12/12 0.09 0.12 0.60 40/40 0.10 0.28 0.72
#11 officeinfo 5/5 0.10 0.08 0.45 27/27 0.11 0.30 0.69
#14 bstudents 27/27 0.09 0.23 0.68 66/66 0.10 0.49 0.97
B2
#02 bookinginfo 23/28 0.10 1.34 1.89 74/79 0.09 4.26 4.69
#03 flightsc_fmosaka 38/44 0.10 1.21 1.68 135/146 0.09 4.72 5.44
#05 newflightdat 16/22 0.09 1.32 1.76 66/72 0.10 3.07 3.54
#06 passengerinfo 25/37 0.11 2.56 3.14 93/105 0.10 6.23 6.73

update strategies, resulting in the tables (examples) only capturing the simple strategies.
If SynthBP cannot identify any tuples for auxiliary relations 𝐴𝑢 from the considered
tables, SynthBP will exclude various more complex templates associated 𝐴𝑢, similarly
to the case of Example 5.2. This is mainly why #SRules closely matches #CRules in
many cases of B1. In such cases, MSTput is small but tends to increase if the number of
candidate rules exceeds a certain threshold (B1#02, B1#26, B1#27, B1#31). This might
be due to the fact that Soufflé experiences slower processing when evaluating a
program with more rules. For the benchmarks where #SRules is smaller than #CRules
(B1#13, B1#22, B1#24, B1#30, B2#01 − B2#06), the provided examples capture more
complicated view update strategies, and SynthBP requires more interactions between
ProSynth and Soufflé to synthesize 𝑝𝑢𝑡 . Subsequently, ProSynthmust choose
proper subsets of the set of candidate rules, and Soufflé needs to evaluate a greater
number of candidate programs during the synthesis. In such cases, MSTput may be
longer, especially for cases involving many atomic portions (B1#30) or a high number
of candidate rules (B2#01,B2#03,B2#06).

The total amount of time SynthBP takes to complete a synthesis task, MSTtotal,
includes not only the time to synthesize 𝑔𝑒𝑡 and 𝑝𝑢𝑡 but also the time to process
overheads such as decomposing queries, forward-propagating FDs, computing atomic
examples. The variance between MSTtotal and (MSTget + MSTput) remains relatively
stable, indicating SynthBP’s efficiency in handling overheads for benchmarks of
reasonable size.

To estimate the impact of FDs on performance of SynthBP more carefully, we
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conduct additional experiments. We select 10 benchmarks from B1 and B2, relax the
requirement of FDs in the schema but keep the given examples, and perform the
synthesis such that synthesized programs can be output. Table 6.3 presents a summary
of the metrics from the additional experiments. For each benchmark, we examine two
synthesis scenarios: one without FDs and another with FDs. We collect #SRules and
#CRules against the synthesis of 𝑝𝑢𝑡 , and mean synthesis times (MSTget, MSTput,
MSTtotal).

Examining Table 6.3 reveals that, among the considered benchmarks, MSTtotal
for synthesis with FDs is always larger than MSTtotal for synthesis without FDs.
MSTget(s) for both synthesis are quite close, given that the same 𝑔𝑒𝑡 was specified. The
variance in MSTtotal(s) is primarily attributed by differences in MSTput(s). Notably,
the synthesis involving FDs tends to have a higher number of candidate rules (#CRules)
for 𝑝𝑢𝑡 compared to the synthesis without FDs. This is a result of numerous rules
expressing constraints and effects of FDs generated during the synthesis process.
SynthBP have the same inefficiency problem of ProSynth/Soufflé against the higher
candidate rules: They will be slower if #CRules exceeds a threshold (depending on the
machine environment) and if ProSynth has to find a proper subset from the set of
candidate rules (i.e., #SRules is smaller than #CRules). The more number of FDs, the
more candidate rules are generated, the slower the synthesis time will be.

6.3.3 Discussions

It is remarked that we have not yet developed an automatic way to check the closeness
between the programs synthesized by SynthBP and those that are manually written or
generated by other systems.

Performingmanual comparisons of the synthesized programs and the corresponding
ones provided in B0 is currently quite difficult. Based on the workflow of SynthBP,
the programs synthesized by SynthBP are pairs each comprising a program 𝑔𝑒𝑡 and a
program 𝑝𝑢𝑡 where 𝑔𝑒𝑡 and 𝑝𝑢𝑡 are essentially two combinations of many atomic
portions. Unfortunately, these programs have not been specifically optimized. The
synthesized 𝑔𝑒𝑡 is equivalent to the corresponding 𝑔𝑒𝑡 in B0 due to our benchmark
adaptation method with flexibility. However, the synthesized 𝑝𝑢𝑡 is more complex,
especially in benchmarks involving many types of atomic queries as well as FDs.
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Automatically evaluating the quality of the synthesized programs may be the focus
of our future research efforts.

6.4 Summary

Functional dependencies impose constraints on relations and cause effects when
updating the relations. In this chapter, we present how to templatize the constraints
and effects of FDs to enrich the search space of the synthesis of view update programs.

We have fully implemented a prototype SynthBP which is equipped with the
minimal templates of Setup B and the templates encoding the constraints and effects of
FDs. On a suite of 38 practical benchmarks with and without FDs, SynthBP successfully
and efficiently synthesizes 37 programs. The overheads for handling FDs are not too
significant when the number of FDs is reasonable.
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7
Conclusions

7.1 Summary

Writing well-behaved bidirectional programs (𝑔𝑒𝑡, 𝑝𝑢𝑡) helps solve many synchroniza-
tion problems such as the view problem of relational databases; however, writing such
programs yourself would be difficult. In this thesis, we have researched on synthesizing
bidirectional programs on relations from examples.

We survey the existing example-based synthesizers and find that: (1) the current
synthesizers for bidirectional programs do not work on the domain of relations and
query languages; (2) other synthesizers are unidirectional; they may be used to find
two programs, a 𝑔𝑒𝑡 and a 𝑝𝑢𝑡 , but they cannot guarantee well-behavedness between
the 𝑔𝑒𝑡 and the 𝑝𝑢𝑡 . A key challenge with the existing approaches to the synthesis
of bidirectional programs on relations is their struggle to effectively manage the
complexities of relations and query languages while preserving the desired well-
behavedness of bidirectional programs. Furthermore, these approaches also face



102 Chapter 7. Conclusions

challenges in directly handling examples with internal functional dependencies.

We propose a novel approach to synthesizing bidirectional programs (𝑔𝑒𝑡, 𝑝𝑢𝑡)
on relations from examples with functional dependencies. Three main keywords
behind our approach are “decomposition”, “composition” and “templates”. We start by
synthesizing a 𝑔𝑒𝑡 as a query on relations, then decompose the query 𝑔𝑒𝑡 as a set of
atomic queries 𝑔𝑒𝑡𝑎 , and forward-propagate FDs associated with the source over this set.
Subsequently, we can divide the synthesis of (𝑔𝑒𝑡, 𝑝𝑢𝑡) to sub-synthesis of (𝑔𝑒𝑡𝑎, 𝑝𝑢𝑡𝑎)
in which the relevant relations against (𝑔𝑒𝑡𝑎, 𝑝𝑢𝑡𝑎) are clearly associated with sets
of FDs. Given an atomic queries 𝑔𝑒𝑡𝑎, we may synthesize the corresponding atomic
view update 𝑝𝑢𝑡𝑎 by designing well-behaved templates, which include both minimal
templates and extra templates causing by FDs, and adapting a modern example-and-
template-based synthesizer. Finally, we compose atomic programs (𝑔𝑒𝑡𝑎, 𝑝𝑢𝑡𝑎)s to
obtain the bidirectional program (𝑔𝑒𝑡, 𝑝𝑢𝑡). The well-behavedness of the final program
is due to the well-behavedness of each atomic program and of the composition.

We use NR-Datalog∗ as the base language of bidirectional programs. Although
query decomposition and atomic queries are standard concepts in relational algebra,
their exploration within the context of Datalog has been relatively restricted. We
formulate atomic queries in NR-Datalog∗ and illustrate the decomposition of a complex
Datalog query, satisfying decomposable conditions, into these atomic queries. Using a
set of atomic queries and user-provided sets of FDs attached to the source, we describe
the process of forward-propagating FDs from the source through intermediate relations
defined in the atomic queries to the view. Thanks to that, we can bypass the hard
problem of automatically discovering FDs from tables.

We follow the existing minimal-effect view update strategies for an atomic query
𝑔𝑒𝑡𝑎 to design well-behaved templates for the corresponding atomic view update 𝑝𝑢𝑡𝑎 .
We introduce two different setups A and B to make templates with delta relations.
The corresponding templates in these two setups have the similarity to express the
meaning of the same strategy, but are written in different ways. We have implemented
a prototype SynthBX that uses templates of Setup A and relaxes the issues of FDs. We
evaluated SynthBX on 56 practical benchmarks, revealing its powerful and efficient
performance for reasonable-size examples but noting limitations with FDs.

If a nonempty set of FDs is linked to a relation, the relation becomes constrained



7.2 Future Work 103

by FDs. Consequently, when performing updates on this relation, extra effects or
additional changes may occur as a result of the impact of FDs. With FDs associated to
relations after forward-propagating FDs, we present how to templatize the constraints
and effects of FDs to enrich the synthesis space of the view update program. We have
fully implemented a prototype SynthBP, incorporating both the minimal templates
from Setup B and templates encoding the constraints and effects of FDs. Assessing
SynthBP on 38 benchmarks, we find that it efficiently manages both benchmarks with
and without FDs, with negligible overhead.

7.2 Future Work

The findings of this thesis open some future directions, which can be listed as follows.

Exploring and templatizing other view update strategies

In this thesis, we only provide templates encoding minimal-effect strategies and
extra-effect strategies resulting from functional dependencies during view updates.
Some strategies, particularly those addressing view updates involving aggregations,
require further exploration. In addition to functional dependencies, various relational
constraints can introduce additional effects on view updates, and they need to be
included in templates. The greater the number of practical features and strategies
encoded into templates, the more robust and powerful the synthesizer becomes.

Evaluating quality and optimizing programs

At present, our approach only synthesizes a bidirectional program, if any, and we
currently lack a technical solution to thoroughly evaluate the solution’s quality.
Exploring additional programs, comparing rule quantities, or investigating suitable
scoring functions for closeness computation might be necessary. Optimization
techniques for Datalog programs and/or bidirectional programs may be relevant here.

Synthesizing from multiple examples

We currently consider the user-given example is a big example consisting of several
smaller examples. It might to be easier for users to provide the smaller ones. We may
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develop a complete algorithm of merging the small examples to a big one and then
slightly adapt SynthBX/SynthBP. We may also investigate the synthesis step-by-step
via examples and improve the correctness of the obtained programs. The first one
requires the overhead of processing a large-size example, the latter requires multiple
calls to the base synthesizer. Experiments will be needed to assess which solutions are
best for which situations.

Improving performance for scalability

Our prototypes do not work well with big-size examples, due to the limitations
of the base synthesizer ProSynth and the base Datalog solver Soufflé. A new
implementation by replacing ProSynth with a more advanced and efficient synthesis-
as-rule-selection tool, such as ASPSynth [47], might to be considered.

Final remarks

The synthesis of bidirectional programs can be studied over more practical domains
and for other specific applications, not just over relational databases and for the view
update problem like in this thesis. In non-relation domains or domains with recursions,
it is difficult to have a procedure similar to the query decomposition to reduce the
synthesis to sub-synthesis. We may design a library of well-behaved combinators (with
or without recursions) for a specific problem and develop the synthesis algorithms
over the domain of these combinators.
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