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CHAPTER 1

INTRODUCTION

Brief summary of this chapter

— COVID-19, an infectious disease that emerged as a global issue
in 2019, still leaves humankind with various concerns.

— This manuscript is our response to social demands for epidemic
situations like COVID-19.

— We clarify how to understand the biological system from two
viewpoints: viral dynamics and multiscale modeling.

— Looking ahead to uncovering the mechanism, we discover a
hypothesis lacking in existing COVID-19 knowledge repositories
about pathways as the substance of the mechanism.

— Two types of studies about viral dynamics are positioned in the
context of the scientific discovery loop to find a hypothesis. These
two studies are linked through multiscale modeling, in which
pathways at the microscopic level verify a hypothesis about viral

dynamics at the macroscopic level.

1.1 Social background

In December 2019, the human species experienced an unknown global issue, coronavirus
disease 2019 (COVID-19). COVID-19 is an emerging infectious disease caused by severe
acute respiratory syndrome coronavirus 2 (SARS-CoV-2) [1]. SARS-CoV-2 infects bronchial
epithelial cells, pneumocytes, or alveolar macrophages and causes severe symptoms such as acute
respiratory distress syndrome (ARDS) due to excessive production of inflammatory cytokines
known as a cytokine storm [2]. The first death was confirmed in Wuhan City in January 2020
[3]. By the end of 2020, COVID-19 became the third leading cause of death in the United
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Chapter 1 — Introduction

States [4]. Under this situation, concerted attempts were made, including the development of
drugs, vaccines, or related treatment guidelines. The notable one was the administration of the
first doses of Pfizer-BioNTech COVID-19 ribonucleic acid (RNA) vaccines in December 2020
[5]. The vaccination strategy starting from this initial success resulted in population immunity,
thereby reducing the number of deaths worldwide dramatically [6]. In May 2023, COVID-19
turned to be no longer defined as the Public Health Emergency of International Concern (PHEIC)
[7].

The global situation stated above does not mean the optimistic end of COVID-19. Namely,
there remain various concerns. For example, the risk of new or de-escalated variants needs to be
monitored [8]. Additionally, the global burden of COVID-19 to health or economy is ambiguous
and requires continued measurement of disability-adjusted life years (DALYSs), the sum of the
life years lost due to disability or premature death [9]. Moreover, understanding longer-term
health consequences (Long COVID) has been poor [10]. Alongside these concerns, a strategic
shift occurs. The social demands have changed from infection control for discovering leverage
points to prevention. For instance, Preparedness 2.0, the 5-year action plan to strengthen health
emergency preparedness, response, and resilience in the WHO European Region, is planned
from 2024 to 2029 [11].

Motivated by the circumstances above, we respond to the social demands from computational

aspects through the following two ways:

1. elucidating the mechanisms of SARS-CoV-2 infection system and finding new knowledge

about them;

2. proposing a framework applicable to pandemics, not limited to COVID-19, for reducing

health and economic loss at the early decision-making phase.

1.2 Understanding biological mechanisms as systems of path-
ways

To elucidate the “mechanism” of biological systems in COVID-19 requires fully understand-
ing the COVID-19-specific interactome, i.e., an entire body of interaction networks among
different components, such as signaling pathways, protein-protein interaction (PPI) networks,
or gene regulatory networks. For example, the COVID-19 Disease Map is a graphical knowl-
edge repository about signaling pathways involved in COVID-19 based on pathway enrichment

analysis or manual curation from external knowledge bases, such as the Kyoto Encyclopedia
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1.2. Understanding biological mechanisms as systems of pathways

of Genes and Genomes (KEGG) pathways [12, 13]. The COVID-19 Disease Map enlarges the
pathway volume; however, it is indicated that the map lacks genes without pathway annotations
[14]. Moreover, the initial version of the COVID-19 Disease Map was built on the fly [15], so it
has inherently been incomplete and a work in progress. COVID-19 Signaling Network Open
Resources (SIGNOR) is another knowledge repository as a part of the COVID-19 Disease Map
[16]. Given that these knowledge repositories are imperfect, discovering missing pathways would

contribute to compensating the knowledge repositories and understanding mechanisms.

To discover missing pathways, we refer to a closed loop of scientific discovery through triadic
reasoning proposed by Charles Sanders Peirce [17]. Figure 1.1 shows an outline of scientific
discovery empowered by different reasoning processes: induction, abduction, and deduction.
Induction is generalizing multiple examples to find common patterns or rules (surprising facts).
The collection of similar cases strengthens the soundness of inferences. Abduction is discovering
knowledge (hypotheses) not yet explored by humankind. Deduction is deriving verifiable predic-
tions from hypotheses, where conclusions are included in the premise and thus do not lead to new
findings. Based on the prediction, one can plan to record or collect case studies to obtain further
observable data. Considering that these three types of reasoning processes realize scientific
discovery, we can roughly place our purpose on finding and verifying a “hypothesis” that is
unknown despite of its potential significance. We achieve our purpose from the two viewpoints:

viral dynamics and multiscale modeling.

Deduction
/ \
Hypothesis Prediction
Abduction Scientific Discovery Demonstration
Experiments
Common rules, patterns Observation
Induction

Figure 1.1. Closed loop for scientific discovery
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Chapter 1 — Introduction

1.3 Viral dynamics

Modeling and simulation studies of transmission dynamics between individuals for any
pathogen have originated mathematical epidemiology more than a century before [18]. For
example, Hamer built a transmission dynamics model of measles in 1906 [19], and Ross presented
a model of malaria in 1911 [20]. Kermack and McKendrick et al. established mathematical
theory for epidemics around the 1930s [21, 22].

On the other hand, the endeavors to quantify in vivo temporal change of cellular population
or virulence within individuals have originated the isolation of the Human Immunodeficiency
Virus (HIV) in 1983 [23]. Modeling techniques concerning transmission dynamics between
individuals met this HIV isolation, forming a significant starting point for advances in the studies
on viral dynamics, transmission dynamics within individuals based on computational modeling

and simulation with time-series clinical or experimental data [24].

Under the COVID-19 situation, the attempts to address the COVID-19 pandemic by compu-
tational modeling and simulation of transmission dynamics have been promoted for uncovering
the principle of SARS-CoV-2 pathogenesis. The computational models have influenced the
development of the various models describing the SARS-CoV-2 transmission dynamics between
individuals [25, 26]. Nevertheless, the underlying mechanism of SARS-CoV-2 pathogenesis
has not been understood because modeling of the SARS-CoV-2 transmission dynamics within
individuals 1s not investigated enough to reproduce in vivo data on COVID-19. Namely, few stud-
ies exist on SARS-CoV-2 spreading within a host, called viral dynamics in terms of population
dynamics, compared to the number of papers about its spreading between hosts. Additionally,
plausible and straightforward models have been required for explaining the mechanism of SARS-
CoV-2 pathogenesis. Therefore, the story hook we can conceive for finding a new hypothesis
would be to narrow down our scope to viral transmission within a host. Exploring and comparing
different SARS-CoV-2 dynamics models should provide a novel envision of the dynamical
system’s behavior within the COVID-19 patients.

Now that our scope is on finding the unknown hypothesis about viral dynamics of SARS-
CoV-2, verifying the hypothesis on viral dynamics requires information about components on
the same layer as pathways for understanding biological mechanisms as systems of pathways.

Therefore, we set the second viewpoint, multiscale modeling.
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1.4. Multiscale modeling

1.4 Multiscale modeling

The origin of multiscale modeling can be seen in the hierarchy of life in molecular biology
in the 20th century. Molecular biology typically adopts reductionism, in which a component
can be explained as the sum of components on the lower layer [27]. In contrast, systems
theory since the 1960s encountered the development in microscopic observation techniques such
as deoxyribonucleic acid (DNA) microarray since the 1990s or high-throughput sequencing
of omics data since the 2000s, forming systems biology from holism, a component is more
than the sum of components on the lower layer. Afterward, integrating these two standpoints
is also argued as relational biology from neo-reductionism [28]. Multiscale modeling is one
topic in relational biology [29]. Multiscale modeling injects reductionism into systems biology,
which enables macro-to-micro mapping, recognizing microstates are impossible to analyze
[27] and verification of macro phenomena from microscale to predict overall dynamics [30].
Thus, we adopt multiscale modeling to verify the hypothesis on macroscopic SARS-CoV-2’s
viral dynamics from the microscopic system of pathways. Figure 1.2 shows a multiscale model

consisting of multiple scales: genes, transcripts, proteins, metabolites, and cells. The components

Cells \ R

13



Chapter 1 — Introduction

on each scale interact with components on the same or different scales. For example, proteins
are related via PPI on the same protein scale. In the case of genes, they receive genetic control of
transcription from transcripts and proteins at higher scales. Thus, the components of a multiscale
model form a network structure through interactions on the same scale or across different scales.
We adopt multiscale modeling to verify the hypothesis on macroscopic SARS-CoV-2’s viral

dynamics from the microscopic system of pathways.

1.5 Two studies for scientific discovery toward uncovering
COVID-19 mechanism

Projecting the above viewpoints onto a closed loop of scientific discovery allows us to carry
out two studies. One is the attempt to find a new hypothesis about within-host SARS-CoV-2
dynamics as a population dynamics from a macroscopic view (Study 1). The other verifies this
hypothesis as a result of a system of pathways from a microscopic view (Study 2). Specifically, we
start by creating hypothesized viral dynamics models for SARS-CoV-2 (Family: Coronaviridae)
based on parsing tree structure of viral dynamics models for human T-lymphocytropic virus or
HIV-1 (Family: Retroviridae) and literature about the structural similarity of viral surface protein
between these retroviruses and SARS-CoV-2. Simulation of hypothesized viral dynamics models,
while fitting models to data quantifying the magnitude of viral infection, results in prediction on
the specific viral dynamics. Subsequently, microscale gene expression data that would include
information on viral dynamics are analyzed, and network structure underlying data is extracted.
Here in the figure, a grey-colored path from prediction to observation means that we do not
conduct animal or infection experiments or demonstrations. In practice, we utilize observed data
provided by other experimental studies. Finally, we unify this data-driven network structure and
background knowledge to yield hypotheses about unknown signal pathways, thereby fulfilling
our contribution to elucidating the COVID-19 mechanism.

This manuscript is a compilation of the results of our studies of COVID-19, taking into
account its social impact and significance in terms of social demands. The contributions for each

aspect of computer science and biology are summarized as below.

1. Our contributions to computer science

— Creating a pipeline for acquiring optimum models and parameters from time-series
data and literature on state variables

Novelty:
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1.5. Two studies for scientific discovery toward uncovering COVID-19 mechanism

Goal . . .
Signaling pathways Numerical simulation
related to viral dynamics — (Deduction)
(Hypothesis in micro scale) Viral dynamics model Predicted viral dynamics

(Hypothesis in macro scale)

Hypothesis fin;&ing
(manual abduction) Study 1
Start
‘\\ Parsing tree structure

(= Differential equations)

Gene network structure Gene expression data

Study 2

~ Data mining
(Induction)
Figure 1.3. Relationship between Chapters 3 and 4

(a) Existing model diversion and original model construction (The comparison itself
would be the first roll-out. Building an original model that outperforms the

existing models in predictive accuracy is not the purpose of the study.)
(b) Application of four viral dynamics models for SARS-CoV-2 to empirical data

— Developing and proposing an original framework for automatically inferring systems
by combining graphical modeling from the large-scale sparse matrix of multivariate
(time-series) data and model validation with multiple knowledge bases and success-
fully forming the basis for further frameworks

Novelty:

(a) Proposal of a novel framework that combines existing data mining and database
integration methods (Exception: Two-step clustering through gene-wise and cell-
wise single-cell omics data analyses is an original technique.)

(b) Automation of hypothesis discovery from data and knowledge

2. Our contributions to biology

— Comparing estimated parameters of mathematical models of within-host viral dynam-
ics to the COVID-19 dataset, thereby finding SARS-CoV-2 cell-to-cell transmission
hypothesis based on modeling and simulation

— Demonstrating the framework applicability to the COVID-19 gene expression data
and biological background knowledge, thereby reproducing existing pathways, dis-

covering novel signaling pathways that might be related to viral dynamics, especially
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cell-to-cell transmission, and analyzing their spatiotemporal variation for different

genes of interest not previously available in the knowledge repositories

The manuscript is organized as follows. Chapter 2 is dedicated to give preliminaries for the
techniques used in the following studies. Chapters 3 and 4 constitute a main body part intercon-
nected with the relationship described in Chapter 2. Following them, we review computational
approaches related to our approach in Chapter 5. Finally, we conclude this manuscript with

several remarks, such as a total summary, limitations, and future perspectives.

To the next Chapter

We provide the necessary preparation for the two studies: a more detailed

background on viral dynamics and multiscale modeling.
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CHAPTER 2

PRELIMINARIES

Brief summary of this chapter

— Two types of modeling styles: equation-based and agent-based.
The viral dynamics model in our study is equation-based.

— Basic viral dynamics model and its practical use

— How to quantitatively measure the state of viral infection

— Integrating domain knowledge into data-driven results for inter-
pretability

— The difference between model verification and model validation

2.1 Equation-based Modeling vs. Agent-based Modeling

There are various extensions and improvements related to model-based research considering
two computational modeling types: Equation-based modeling (EBM) and Agent-based modeling
(ABM) [31]. These two modeling approaches differ in heterogeneity and homogeneity, social
behavior, and schematic representation [32].

ABM is characterized by heterogeneity, i.e., different characteristics at the individual level;
state, location coordinates in space, age, gender, speed, degree of interaction [33]. Each individual
is assumed to be a social, intelligent agent that constantly modifies its own behavioral rules
through feedbacks called micro-macro loops [34, 35]. The schematic representation indicates the
state transition diagram, which shows the principles of individual agents’ behavioral rules. ABM
is often employed to formulate the cellular population dynamics [33]. Some studies use ABM
for describing the interaction of the immune system with intestines and lymph nodes, or between
tuberculosis and cancer [36]. Despite being oriented more towards heterogeneity, some work
exists that efficiently models large homogeneous populations using ABM [32].

In contrast, EBM is not subject to heterogeneity but rather heterogeneous, i.e., the stratifica-
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Chapter 2 — Preliminaries

tion is more straightforward than that of ABM, and the individual characteristics differ depending
on the categorized units such as age groups, rather than on the personal level [37]. EBM often
assumes neither social individual nor behavioral change; every individual is habituated as an
identical particle [38]. For example, assuming that viruses and cells lack sociality is regarded as
reasonable. Accordingly, EBM represents a sum of individual state transitions as a stock-flow
diagram or a compartment model.

The choice of which modeling approach to employ requires being consistent with the goals
of the modeling. In this thesis, we opt for EBM instead of ABM for two reasons: first, we have
the purpose of modeling the dynamics of a homogeneous group of cells and molecules; second,
the spatial topography information required for ABM is difficult to procure. As one solution,
bioimage informatics methods can provide image frames of cell movements, as some studies
have tracked the dynamics of cellular reaction-diffusion in slime mold [39]. However, this would
only reveal the cell population dynamics, which is not our goal. Besides, other factors need to be
taken into account, such as temporal changes in the host immune response, rather than assuming
a uniform probability of infection. Continuous ordinary differential equations (ODEs) are only
useful if the number of molecules in the reaction volume is sufficiently large. Otherwise, we
cannot ignore the molecules’ discrete nature. In that case, stochastic or discrete stochastic models

can be more appropriate [40].

2.2 Equation-based model of viral dynamics

The first viral dynamics model with ODEs was the HIV-1 dynamics model introduced by
Perelson in 1996 [41]. This Perelson’s model has described experimental or clinical data on
HIV-1 or hepatitis B virus and quantified the virulence at the cellular scale, including viral burst
size, basic reproduction number, and viral particle copies’ or cells’ mean lifetime [42, 43]. Based
on the Perelson’s model, varied viral dynamics models have been constructed, including a model
of macrophage with immune cell influx in inflammation [44], a model of neural progenitor
cells’ dynamics in neurogenesis [45], or a model with mixed infection [46]. Moreover, the viral
dynamics models have succeeded in predicting intervention outcomes or planning practical
experiments [47].

Perelson’s viral dynamics model has described the time course of three time-dependent state
variables called T', I, and V. These state variables (7,1, V)T € R correspond to the host’s target
cell density (susceptible cell count), the host’s infectious cell density, and viral quantification

measure density, respectively. Here, the dynamical system is assumed as a homogeneous well-
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2.2. Equation-based model of viral dynamics

stirred reaction system, independent of spatial distribution within each compartment. The state
transition diagrams of a single target cell, a single infectious cell, and a viral particle per unit

time are illustrated in Figure 2.1. A single target cell becomes infectious proportionally to viral

a target cell an infectious cell a viral particle

Infection rate

(e.g. B)

1—6V — Ut U1 1— u2 U2 1— us us

Figure 2.1. State transition diagrams of viral dynamics model. The diagrams illustrate three
states, including a target (susceptible) cell, an infectious cell, and a viral particle, and their
transitions. A single target cell turns into an infectious cell at an infection rate 8 proportional to
viral particles density V. These are dead or killed at each mortality rate u,, u,, and us.

particles density V. Let 8 be the proportionality constant involved in this infection establishment
(virus infection rate). A single target cell turns into an infectious cell at a rate of SV. A single
target cell also dies at a rate of y; (target cell mortality). A single infectious cell is removed at a
rate of u, (infectious cell mortality) due to activated cell death or cell degeneration associated
with virus replication or cytotoxicity during the immune response. A single viral particle is
removed at a rate of p; (virus mortality) by the culture medium exchange or physiological
reaction or antibody neutralization reaction. Summing up the population of target cells, infected
cells, and viral particles whose state transitions are described above for any individual, viral
dynamics is regarded as population dynamics. Additionally, infectious cells replicate, release
and replenish new viral particles to V in proportion to /. Let k be this proportionality constant

(viral shedding rate). Therefore, the ODEs of the baseline viral dynamics model are as follows:

T oyt
dt - l’ll b
a_ BTV — o1

dt - /'12 )

dv

— = —wu3V +kl

a1 H3
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Chapter 2 — Preliminaries

2.3 Benefit of modeling viral dynamics

Given elucidation of the in vivo infection system of viral dynamics, it is necessary to obtain
the time-series changes of viral indicators and explain why the time-series changes occur. For
the time-series data, it is possible to use the observed data in clinical tests and experiments.
These include genetic tests (quantification of viral RNA levels by real-time PCR), antibody tests
(Enzyme-Linked Immuno Sorbent Assay [ELISA] and the faster and simpler immunochromato-
graphic method), routined blood tests, single-cell data, and Electronic Health Record (EHR),
and so on [48]. The visualization and statistical processing of such observed data can help us to
understand phenomenological aspects of what is happening [49].

However, the above-mentioned techniques are difficult to explain the contents of the black
box of etiology, pathogenesis, and why it is happening and provide a biological interpretation
[50]. In this thesis, we adopt model-based approach, combining computational models that
describe the phenomena’ causality and mechanisms to look into the viral dynamics. The model-
based approach emphasizes the premise that computational models are necessary before data
and involves repeated model fitting with actual observation data to search for plausible models
that explain the phenomena well and make future predictions [51]. This type of model-based
forecasting is a useful tool for making policy advocacy. In fact, in the 1970s and 1980s, the
United Kingdom suppressed Congenital Rubella Syndrome (CRS) through immunizations based
on computational models [52]. These success stories illustrate the effectiveness of model-based
studies. Akin to CRS, for COVID-19, individuals’ population dynamics at the macroscopic scale
have been explored by computational models such as Susceptible-Infectious-Removed (SIR)
models [25, 53].

In this manuscript, viral dynamics model of HIV serves as the primary computational model
because SARS-CoV-2 has several similarities with HIV-1, including the fact that it belongs to
positive-sense single-stranded RNA viruses and the similarity of SARS-CoV-2 main protease
(Mpro) and HIV-1 protease structure [54, 55].

2.4 Quantification of viral infection

To date, we accumulate knowledge such as the correlation between the severity of the disease
and various factors (e.g., angiotensin-converting enzyme 2 [ACE?2], transmembrane protease
serine 2 [TMPRSS2], and Furin) in the symptomatic period [56]. However, one does not fully

understand the in vivo transmission system dynamics of SARS-CoV-2 to explain the patho-
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2.5. Data-Driven and Knowledge-Based (DD-KB) approach

genesis. For example, little is known on the temporal changes in infectious burden during the not
symptomatic phase, the switching mechanism between asymptomatic recovery and symptomatic
disease. Also, there exist cases of reactivation (exacerbation) after hospital discharge, 1.e.,
patients who do not recover, meet the discharge criteria, and become symptomatic again. In other
words, there is a lack of understanding of viral dynamics involving host cell density, dynamics of
virus quantification (e.g., viral load, plaque forming units [PFU], and fifty-percent tissue culture
infective dose [TCID50] [57]), and temporal changes in the expression of genes that mediate

immune responsive signaling.

The notable examples of reactivation are some false-negative cases [58], which met the
standard discharge criteria, including polymerase chain reaction (PCR) testing [59]. Such re-
activation cases may mean that there are problems with the accuracy and interpretation of the

real-time PCR in some cases [60].

2.5 Data-Driven and Knowledge-Based (DD-KB) approach

As mentioned in the introduction, informatics research related to infectious disease control
includes data-driven research such as the visualization of the cumulative number of infection
indicators [61] or the prediction and classification using machine learning [62]. However, results
from data alone are insufficient to explain or interpret the identified data. For example, when
considering a system as a pathway, simply mapping a model, such as a network obtained from
data, to a knowledge repository calls into question the model’s validity. Therefore, knowledge-
based research should be conducted in conjunction with data-driven research. Here, data are
given as observed values of state variables. Knowledge representation encompasses logical
formulas (logical models), a set of causal relation triplets (head entity, relation, tail entity),
graphical representations of correlations and causal relationships among components (graphical
models or knowledge graphs), representations of equations in reverse Polish notation, and syntax
tree structures. Let us designate such integration of data and knowledge as a Data-Driven and
Knowledge-Based (DD-KB) approach. DD-KB approach can be seen in other studies. Mattioli
et al. propose a unique pipeline of data-driven and connectionist artificial intelligence (Al),
knowledge-based Al, and hybrid Al in the context of safety, i.e., freedom from intolerable risk
[63]. Vafaee et al. applied their DD-KB approach to new microRNA biomarker discovery of

colorectal cancer prognosis [64].
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Chapter 2 — Preliminaries

2.6 Model Verification and Validation (V & V)

Model Verification and Validation (V & V) is a methodology for the development of compu-
tational models that can be used to quantify confidence and build credibility in modeling [65].
The V & V definitions in this manuscript is adopted from the 1998 AIAA Guide [66]:

— Model verification

The process of determining that a model implementation accurately represents the devel-
oper’s conceptual description of the model and the solution to the model

— Model validation

The process of determining the degree to which a model is an accurate representation of
the real world from the perspective of the intended uses of the model
Model V & V cannot prove that a model is correct and accurate for all conditions, but it can
provide evidence that a model is sufficiently accurate [65]. In order to expect outcome that holds
an agreement between experimental data and model prediction, we check whether a model is

plausible compared to background knowledge.

To the next Chapter

Study 1 uses modeling and simulation of macroscale viral dynamics to

find a hypothesis. Among viral dynamics, we mainly focus on two types

of viral transmission from one cell to another.
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CHAPTER 3

MODELING VIRAL DYNAMICS IN
SARS-CoV-2 INFECTION BASED ON
DIFFERENTIAL EQUATIONS AND
NUMERICAL ANALYSIS

Brief summary of this chapter

— Exploring four viral dynamics models based on differential equa-
tions

— Sensitivity analysis and stability analysis

— Fitting models to data across mild and severe COVID-19 patients

— Comparison of optimized key parameters for finding hypothesis
on SARS-CoV-2 cell-to-cell transmission, a direct viral transfer

from one cell to another cell
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Published content and contributions:

1. Journal paper (IF=3.8, h-index=69, Q1)
Odaka M, Inoue K. 2021. Modeling viral dynamics in SARS-
CoV-2 infection based on differential equations and nu-
merical analysis. Heliyon vol. 7, 10 (2021): e08207. DOI:
10.1016/j.heliyon.2021.e08207

2. Proceeding paper
Odaka M, Inoue K. 2020. Computational Modeling and Simu-
lation of Viral Load Kinetics in SARS-CoV-2 Replication. In
Proceedings of the Eleventh International Conference on Com-
putational Systems-Biology and Bioinformatics (CSBio2020).
Association for Computing Machinery, New York, NY, USA,
75-82 DOI: 10.1145/3429210.3429214

3. (+a) Oral presentation in France
Odaka M, Magnin M, Inoue K. 2022. Exploring Differential
Equations for Modeling SARS-CoV-2 Dynamics with Sensitivity
and Stability Analysis. Statistical Methods for Post Genomic
Data (SMPGD). Nantes, France.

Recap on what we do in Study 1 (Figure 3.1):

Numerical simulation
~ (Deduction)

Figure 3.1. Study 1 overview. Finding new hypothesis about within-host
SARS-CoV-2 dynamics as population dynamics (macroscopic view)
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3.1 Introduction

This study is positioned as a pilot study for the future establishment of a pipeline that outputs
an optimal model and parameters as long as the strings of the state variables are available. If such
a pipeline can be established, it will be possible to combine it with natural language processing
to automatically obtain models from information on the state variables of the user’s interest more

efficiently.

The purpose of this study towards establishing the pipeline includes the following two things:
first, to build and compare multiple SARS-CoV-2 dynamics models based on ODEs; second,
to fit the models to two cases of the observed COVID-19 experimental data. Compared to the
existing research, the foci of this chapter are on constructing different SARS-CoV-2 dynamics
models by abstracting in vivo SARS-CoV-2 pathogenesis as dynamical systems and distilling

beneficial models that describe the population dynamics of host cells and viral particles.

On building the SARS-CoV-2 dynamics models, numerical analysis enhances the quality
of modeling and simulation. In particular, pruning the fixable parameters based on sensitivity
indices simplifies the redundant models, thereby balancing the model complexity and simplicity.

Calculating the eigenvalues of the simplified models guarantees the solutions’ orbital stability.

Further, the calibration experiments fit the simulated data generated from the models to two
cases of actual observed data. Here, the comparison of the parameter values estimated from
the viral load data sequence in mild patients and those in severe cases clarifies the relationship
between the key parameters and the COVID-19 severity.

From another perspective, the content of Study 1 is an extension of the previous work,
which has contributed to computational modeling and computer simulation of SARS-CoV-2
viral load kinetics and suggested a qualitative relationship between the asymptomatic carriers’
reactivation risk and the COVID-19 severity [67]. As an improvement of the previous work, this
chapter extends the scope of sensitivity analysis from one model to four models to simplify the
models, evaluates the equilibrium solution’s stability to ensure stable calibration, and conducts

the calibration experiments to avoid local minima.

The rest of the chapter is organized as follows: Section 3.2 introduces four viral dynamics
models. Section 3.3 explains the methods for data preparation, sensitivity analysis, stability
analysis, and calibration experiments. Section 3.4 shows the results and expands the discussion.
Section 3.7 is devoted to providing related work. Section 3.8 concludes with a summary of

contributions, limitations, and future work.
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3.2 Proposed models

This section formalizes the SARS-CoV-2 dynamical system consisting of host cells and
viral particles with four computational models. One is Perelson’s viral dynamics model as a
baseline model described in Chapter 2. Other two models are the models derived from literature
as the extensions of the Perelson’s model. These three of four have successfully explained
viral dynamics on other viruses, whereas the appropriate investigation of these models for

SARS-CoV-2 dynamics has not been conducted. The last one is a newly constructed model.

3.2.1 Huang’s model (functional response)

While Perelson’s baseline model has demonstrated virus replication or host-pathogen inter-
actions well, some experts have regarded it as a too simple model due to its linear infection
rate 8. Huang et al. expressed a more realistic infection rate bound to overhead by introduc-
ing a nonlinear term (functional response) [68]. By introducing the functional response, the
shape of a rectangular hyperbola indicates the actual incidence rate well. This nonlinear term
is BTV/(1 + aT + bV), where a and b are constant values greater than or equal to zero. The
term is similar to the Holling type II incidence functional response. Still, the additional term bV
representing a mutual interference between viruses makes it different from Holling type II [69,
70].

3.2.2 Pearce-Pratt-Phillips model (viral synapse)

While the above models have taken a single transmission chance into account, in 1994,
Pearce-Pratt and Phillips et al. explicitly presented a scheme of HIV transmission via two routes:
cell-free transmission and cell-to-cell transmission [71]. Specifically, the structure mediating
the cell-to-cell transmission as a counterpart of the cell-free transmission is called viral synapse
[72]. Given that both SARS-CoV-2 and HIV have the spike glycoprotein on the surface of the
viral envelope [73] and that it has a similar function such as viral entry, receptor recognition,
cell attachment, and fusion [74], the viral synapse is presumably in the SARS-CoV-2 life cycle
as well. Figure 3.2 shows a schematic representation of the SARS-CoV-2 life cycle to explain
the differences in two types of transmissions and wherein the viral shedding constant & is also
relevant.

A free viral particle attaches to a target cell binding to ACE2 receptor on the cell membrane
supported by spike protein degradation by TMPRSS2 [56, 75]. Without elaborating on the
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SARS-CoV-2 ‘

ii Assembly Budd:ng

Rough endoplasmic reticulum

Cell adhesion

Figure 3.2. Schematic representation of SARS-CoV-2 life cycle. Here we assume the unknown
direct viral transfer, cell-to-cell transmission (highlighted dense yellow), to be included in the
SARS-CoV-2 life cycle, contrasting indirect viral transfer, cell-free transmission (highlighted
skyblue). A particle of SARS-CoV-2 infects a host cell at a cell-free transmission rate 5,
binding to ACE2 receptor helped by TMPRSS2. The virus undergoes the subsequent typical
processes, finally being released (highlighted green) at a viral shedding rate k. Here, the virus in
the host cell infects another cell at a cell-to-cell transmission rate 3,. The rest of colors are as
follows: black-colored texts and arrows are life-cycle processes; black-colored borders are
cellular/vesicular membranes and membrane proteins; orange-colored texts and objectives are
viruses, organelles, and extracellular matrix.

detailed translation process to replication, the copied viral particles are released at the magnitude
of k. The cell-free transmission involves these multiplied viral particles’ attachment to other cells
after shedding to the extracellular matrix [76]. Consequently, the degree of cell-free transmission

is proportional to the viral particle density. 5; denotes this proportionality constant.

During the cell-to-cell transmission, viral particles directly enter neighboring cells through
viral synapse mediated by cellular adhesion molecules [77]. Thus, the level of this direct entry is
supposed to be proportional to the infectious cell density. 3, is set as this proportionality constant.

Reflecting the two transmission types, one obtains a term for infection rate as 5, TV + B,T 1.
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3.2.3 New model (functional response and viral synapse)

The models reviewed above could have caused one to have a bias in exploring models due
to one’s subjective point of view [78]. Procedurally generating a model outside the scope of
subjective bias compensated for the above models [79]. For simplicity, M, M,, M3 denote the
above models in short. The machinery manipulation of subtree mutation of M, and M3 generated
a new model M. Figure 3.3 shows the parse trees reflecting the infection rate terms of M, M5,
M3, and M,. Substituting the dashed subtree of M5 with the dashed subtree of M, generated the
parse tree for the infection rate term of M,.

ONO
M1

Figure 3.3. Infection rate terms of viral dynamics models. The parse trees stand for the infection
rate terms of different viral dynamics models; M, M,, M3, and M,. The trees consist of
arithmetic operators and the variables and constants in Table 3.2. The trees of Huang’s model
M, and Pearce-Pratt-Phillips model M3 originate from that of the baseline model M. The
dashed subtree mutation between M, and M; generates the tree of an original model M,.

This section has prepared the four models with different terms for the infection rate. Table

3.1 is a summary of the difference among the models. Table 3.2 is a summary of the symbols,
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definitions, and ranges of the variables and constants of the ODEs. As a pilot study, the new

model M4 was introduced only procedurally and without any particular motivation, nor did we

assume any situation in which there was a motivation to focus on the specific models prior to the

analysis.

Table 3.1. Summary of four viral dynamics models and their corresponding ordinary differential

equations (ODEs).

M,: New model (functional response and viral synapse) dI/dt

BiTV/(1 +aT +bV) + BoT1 — ol

Models ODEs
dTjdi = —BIV-uT
M, Perelson’s model (baseline) [41] dl/dt = BTV —ul
avidt = —u3V +kl
dTjdt = BTV +aT +bV)—u T
M,: Huang’s model (functional response) [68] dl/dt = BTV/1+aT +bV) - ul
dvidt = —u3V +kl
dTjdi = =B IV=-BTI=uT
M3 Pearce-Pratt-Phillips model (viral synapse) [71] dljdt = BTV +BTI -l
dvidt = —u3V+kl
dTjdt = BTV +aT +bV)=B,TI— i T

dv/dt

—u3V + kI

Table 3.2. Summary of variables and constants and their corresponding symbols, definitions,

and ranges.

Symbol  Definition Range

t unit time (e.g., day) since symptom onset or the ¢ € [0 c0)
start of the experiment

7,1,V targe.t cell density, infectious cell density, virus (T}Ié ‘6)’ VTZZO 0,
density

B virus infection rate Be(0,1)

k viral shedding rate ke (0,1)

Ui target cell mortality uy €(0,1)

7 infectious cell mortality € (0,1)

U3 virus mortality us € (0,1)

a proportional constant ae(0,1)

b proportional constant be(0,1)

Bi cell-free transmission rate B1€(©,1)

B2 cell-to-cell transmission rate B2 €(0,1)

3.3 Proposed methods

This section covers data and the remaining steps; numerical analysis and calibration experi-

ments. Figure 3.4 shows a pipeline of the research methods.

This pipeline of methods (Figure 3.4) explicitly sees input as observable state variable(s) and

output as models and optimum conditions. The intermediate computation process is a workflow
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Figure 3.4. Pipeline of research methods, explicitly seeing input as observable state variable(s)
and output as models and optimum conditions.

of three tasks: the extraction of data and models as to the inputted state variables, the numerical
analysis simplifying the extracted models with sensitivity and stability, and the calibration
between data and the simplified models. Here, the system of interest is assumed to be closed and

determined only by the state variables of the extracted models.

3.3.1 Observed SARS-CoV-2 data

The literature, knowledge bases, and databases were searched to extract actual time-series
data and the models with the state variable. Here, the state variable must be an observable viral
quantification in clinical tests or experiments. The viral quantification includes viral load, which
one can estimate from total viral particle copies by quantitative reverse transcription-polymerase
chain reaction (QRT-PCR) of the specimen such as mucus in nasopharyngeal swab collection
[48].

As a case study, viral load data was used. The data was from an image of time-series data
sequences of median viral load in the mild and severe patient populations (anonymized) published
in the previous literature [80]. The primary source originated 96 patients with SARS-CoV-2
infection (22 mild patients and 74 severe patients) collected by a COVID-19 designated hospital
in Zhejiang Province, China, from January 19, 2020, to March 20, 2020. The severity diagnosis
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was according to the Chinese guideline for diagnosis and treatment of SARS-CoV-2 by National
Health and Family Planning Commission of the People’s Republic of China. This source has been
licensed under the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC
4.0) license, which has permitted to edit, process, and use it as a secondary source, subject to the
author’s acknowledgment [81]. The image processing via an open software WebPlotDigitizer
version 4.3 transformed the viral load data points into coordinate values [82, 83].

Figure 3.5 illustrates daily viral load sequences since symptom onset in mild and severe
cases.
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Figure 3.5. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) viral load data
across the days since symptom onset in mild cases (solid line with black markers) and severe
cases (dashed line with white markers). Each of these data sequences is a derivative of original
figure by Zheng et al., licensed under the Creative Commons Attribution-NonCommercial 4.0
International (CC BY-NC 4.0) license.

Viral load fluctuates and attenuates in both cases over time, often higher in severe cases
except on days 7, 11, 14, and 17. The missing values in the original sequences have undergone

an imputation by linear interpolations.

3.3.2 Sensitivity analysis

Subsequently, the sensitivity analysis was devised as the model’s complexity reduction
process. Sensitivity analysis identifies the parameters with little effect on the output even if fixed
within the boundary conditions, and thereby one is reduced to calibrating simplified models

only [84, 85]. The simple sensitivity analysis method is One-Factor-at-a-Time (OFAT), which
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examines a linear relationship between inputs and outputs. However, using OFAT is limited to
exploratory modeling because it does not consider the combinatorial parameter variability [86].
Given a nonlinear system of viral dynamics and interactivity among multiple parameters, global
sensitivity analysis (GSA) was employed in our study. GSA based on simultaneous perturbations
of the entire model parameter space can investigate the parameter effects on the model’s output
individually and in combinations [87].

Suppose d-th dimensional parameter set (py, p2,- - -, pa), Where each p; is standardized
as p; € [0,1]. i and X; denote parameter index running over natural numbers {1,...,d} and
parameter set samples with only p; fixed respectively. The contribution of p; to output Y variance

with all parameters varied is given by:

S =1 Vary. (E(Y | X))
n=r Var(Y)

Where:
Var : variance
E : expected value
The Quasi-Monte Carlo sampling method generated parameter value sets (Sobol sequences) with

lower discrepancy than random value sets, and thereby yielding p; with small S 7, [88, 89].

3.3.3 Stability analysis

Additionally, the stability analysis examined the dynamic behavior of the solution trajectory
in the neighborhood of the fixed point in phase space. The purpose of stability analysis is to
guarantee that any solution is stable [90]. In other words, this process can imply the necessity
of other separate simulations or detailed analysis near the bifurcation parameter conditions
whenever the equilibrium solution bifurcates [91]. To perform a stability analysis of stationary
equilibrium solutions, one can ground the Routh-Hurwitz theorem wherein the behavior of the

system near the steady-state is related to the eigenvalues of the Jacobian matrix [92, 93].

Theorem (Routh-Hurwitz theorem). If all the eigenvalues of the Jacobian matrix have negative
real parts, the stationary solution is asymptotically stable. If any eigenvalue has a positive real
part, the solution is unstable; if the maximum real part of the eigenvalues equals zero, the

Jacobian matrix cannot characterize the stability.

Consequently, the eigenvalues of the Jacobian matrices of the two equilibrium solutions were

calculated: the disease-free equilibrium (DFE) point, where the disease dies out, and the endemic
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equilibrium (EE) point, where the disease remains persistent [94]. For example, the Jacobian
matrix of the M,’s DFE point E; = (T, 0,0) was

-ui 0 =BTy
JIEED)=| 0 —u pBT,
0 k —H3

The Jacobian matrix of the M,’s EE point £} = (T*,I", V") was

- =pv: 0 BT
JED=| BV - BT
0 k —H3

Likewise, the Jacobian matrix of the M3’s DFE point E5 = (T, 0,0) was

—H1 —B2T —B1Ty
JE) = 0 —w+pBTy pBiTy
0 k —H3

The Jacobian matrix of the M3’s EE point E5 = (T*, 1", V*) was

—t =BV =pl" BT BT
J(E3) = BV + B I” —y + BT BT
0 k —M3

The eigenvalues were calculated from these Jacobian matrices of M| and M5 by SymPy 1.6.2.
Finally, the artificially generated data by quadrature of the models’ ODEs got calibrated to
the observed data. In the calibration experiments, dynamic time warping (DTW) provided a
similarity measure between the artificial time series of viral particles from the models and the
actual time series of viral load [95]. Here, DTW computes the shortest path two time-series
data by finding the absolute error value per point across them, which enables one to obtain
the similarity even if their lengths and periods are different [96]. Global optimization of DTW
distance as a cost function avoided dropping into local minima by Algorithm 1. Given that the
well-posed inverse problems require that any solution is identifiable [97, 98], the calibration

experiments estimated the parameter values with the finite prediction bands allowed.
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Algorithm 1
Input: ODEs, Sobol sequences (n = 1000), observed data (mild or severe)

Output: estimated parameter value sets (n = 1000)
Param < Sobol sequences
forinti=1,i<50,++ido
initialize DataFrame (DF) to empty
forint j =1, j <1000, + + jdo
for int days = 0,days < 200, + + days do
SimDatal j] < ODEs integration with Param] j]
end for
DTWdist[j] < DTW distance between S imDatal j] and observed data
stack (Param| j], DT Wdist|[j]) to DF
sort DF (in descending order by DT Wdist)
initialize Param” to top 250 sets of Param
forint/=1,/<3,++/do
forintr=1,r <250,+ + rdo
add random float value € [-0.01, 0.01] to one element of Param[r] of DF[r] and
stack the new parameter value set to Param”*
end for
end for
end for
Param < Param®

end for

These methods resulted in the optimum set of models with parameter estimates. The experimental
configurations were as follows: Intel(R) Core(TM) 17-7500U CPU @2.70GHz, 2904Mhz, 16GB
of memory, and Microsoft(R) Windows(R) 10 Operating System.

3.4 Results and discussion

This section shows the results and expands the discussion.
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3.4.1 Sensitivity analysis

As the results of GSA, the sensitivity indices with error bars are illustrated in Figure 3.6.
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Figure 3.6. Sensitivity analysis results. Each figure includes the bars reflecting sensitivities to
the parameters about four models; (a) Perelson’s model M, (b) Huang’s model M, (c)
Pearce-Pratt-Phillips model M3 (d) original model M,. Each error bar is a 95% confidence
interval.

For all models, u had low sensitivity. a and b had almost zero sensitivities. In contrast, 8 and
k had high sensitivities, where S became distributed between £, and 3, in the models considering
viral synapse. Considering that the parameters with small sensitivities can be fixable [99] and
that the sensitivities for parameters other than the fixable parameters were similar, the parameter
values u, iy, 43, a, and b were set to zero. This parameter pruning simplified the four models into
two models. In particular, M, was reduced into M; and M, merged into M3. The above model
simplification implied that it would be sufficient to perform stability analysis and calibration

experiments only for M, and M.
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3.4.2 Stability analysis

Next, according to the stability analysis results, all the eigenvalues of J(E)), J(Ej), J(E3), and
J(E?) had negative real parts. These eigenvalues guaranteed the solution’s orbital stability based
on the Routh-Hurwitz theorem. Namely, it could be postulated that the two equilibrium solutions,
DFE point and EE point, would remain asymptotically stable, which meant no requirement of
specific constraints on parameter conditions in the calibration experiments. However, it would be
curious that there existed no chaos or bifurcation, and the models’ stability did not correspond to
the fluctuation in the observed data sequences. Therefore, further searching experimental data

sequences without fluctuation over a longer period would deal with this inconsistency.

3.5 Calibration experiment

Hereinafter, the calibration results of M, and M3 are shown. Figure 3.7 shows the calibration

results of M.
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Figure 3.7. Calibration results (Perelson’s model M,). The curves (blue: mild) (red: severe) are
plotting the mean of estimated parameter value sets of (a) virus infection rate S (b) viral
shedding rate k corresponding to the iteration number with prediction bands allowed. The
dashed lines and the filled areas are the margins of errors and the prediction bands +2SE
(standard error of the mean), respectively.

The horizontal and vertical axes correspond to the iteration number and the estimated
parameter value sets. The blue curve stands for mild cases and the red one for severe cases.
The solid lines are not regression curves but the plots of the mean of estimated values. The
dashed lines are margins of errors, and the filled areas are prediction bands +2SE (standard

error of the mean). The narrower prediction band reflects the higher prediction accuracy of
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the mean parameter value. Considering 8 converged to (0.70, 0.30), whereas & to (0.19,0.21)
for mild and severe cases, M; would be an identifiable model. If the relationship between the
COVID-19 severity and infection rate were not subject to other factors, it could be speculated
that smaller S would have reproduced severe cases. As for &, there was little difference in the
estimates between mild and severe as for viral shedding, making it difficult to give a biologically
meaningful interpretation.

Figure 3.8 shows the calibration results of Mj3.
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Figure 3.8. Calibration results (Pearce-Pratt-Phillips model M3). The curves (blue: mild) (red:
severe) are plotting the mean of estimated parameter value sets of (a) cell-free transmission rate
B1 (b) cell-to-cell transmission rate 3, (c) viral shedding rate k corresponding to the iteration
number with prediction bands allowed. The dashed lines and the filled areas are the margins of
errors and the prediction bands +2SE (standard error of the mean), respectively.

B1 converged to (0.32,0.42), 5, to (0.25,0.0050), and & to (0.195,0.200) for mild and severe
cases. Regarding viral shedding term k, the same discussion as above for the M, results holds. The
calibration experiments could not determine the true values of 8 and 8, accompanied with the
prediction bands. Although M3 is more complicated than M, M5 would be a partially identifiable
model. This difference in the prediction bands would reflect that the model complexity could
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be a trade-off with the identifiability in the simple model. As for the comparison between S,
and 3,, B, was eightieth of 5, in severe cases. Suppose it is true that the smaller 5 in Figure
3.7a results in the more severe COVID-19 symptoms. Then, 8, which is smaller in severe cases
in Figure 3.8b, would be related to the severity rather than 5;. In other words, the cell-to-cell
transmission would be essential for severe COVID-19 than cell-free transmission. The recent
papers have reported the association between the COVID-19 severity and the expression level of
the specific genes related to the cell-to-cell transmission on other viruses [100]. Therefore, one
ideal interpretation from the calibration results would be the association between the cell-to-cell
transmission and the COVID-19 severity. If accurate, it would lead to claiming the efficacy of
drug intervention for 3, such as a cell-to-cell transmission blocking. However, it has been still
unclear whether the genes are involved in the cell-to-cell transmission in COVID-19. Hence, it
is necessary to carefully validate the relationship between the cell-to-cell transmission and the

COVID-19 severity. Table 3.3 shows the summary of the above calibration results.

Table 3.3. Summary of models and their corresponding converged values of estimated
parameters. The values of (5, k) in Perelson’s model M; and (5, 3,, k) in Pearce-Pratt-Phillips
model M; are shown in mild cases and severe cases.

Model Parameter Mild Severe Description

M B 0.70 0.30  virus infection rate
! k 0.19 0.21  viral shedding rate
B 0.32 0.42  cell-free transmission rate
M; B> 0.25 0.0050 cell-to-cell transmission rate
k 0.195 0.200 viral shedding rate

3.6 Interpretation of estimated parameters

The above results show that the smaller § becomes, the more severe the disease is. This
relationship may be contrary to our intuition. The comparison of the dynamical behavior of
the viral dynamics model M3 with estimated parameters between mild cases and severe cases
(Figure 3.9) also indicates that the smaller 8 yields the bigger viral load, which is the observed
data property in Figure 3.5. Therefore, parameters are successfully estimated from the data. One
interpretation is that 7 has a larger influence in the infection rate term 7'(5,V + ,1). For T on the
supply side and 7 on the demand side, the smaller 5, means the lower the decrease in T on the
supply side, and thus the larger 7(5,V + B,1) is transferred. Similarly, the smaller 8, means the

larger infection rate term. Figure 3.10 is a quick check of infection rate term in mild cases and
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Figure 3.9. Dynamical behavior simulated with estimated parameters. (a) Simulation with

estimated parameters in mild cases. 8; = 0.32, 8, = 0.25, k = 0.195, u; = 0.01, u, = 0.01,
uz = 0.01. (b) Simulation with estimated parameters in severe cases. §; = 0.42, 5, = 0.0050,
k=0.20, u; =0.01, up = 0.01, u3 = 0.01.
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Figure 3.10. Temporal change in infection rate term 7'(3,V + 1) in mild and severe cases. (a)
Mild cases (b) Severe cases. Parameter values are set as well as Figure 3.9.

severe cases, in which we can confirm that the smaller 8, yields the higher infection rate term. On
the other hand, we also interpret the result where the difference in estimated parameters is more
prominent for 3, than for 8,. This difference can be attributed to the fact that 8, is multiplied
by V and B, by I. In viral dynamics models, V is only affected by I, and the effect from T is
indirect, whereas / is directly affected by both 7" and V. Therefore, the difference might become

more pronounced in 3,, which favors the direct influence of 7.

3.7 Related work

The choice of which modeling approach, ABM or EBM, has required consistency with the
modeling goals, such as immunization policymaking [52]. This chapter has opted for EBM in
place of ABM for two reasons: first, the homogeneous group of cells and viral particles; second,

the difficulty in procuring the spatial information required for ABM.
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The model extensions on EBM include the models taking into account the discrete nature of
the molecules and temporal changes in the host immune response, rather than assuming a uniform
probability of infection. If the number of molecules in the reaction volume is sufficiently large,
the continuous ODEs, including stochastic or discrete stochastic models as more appropriate
models, are sometimes helpful [101]. Compared with the asymptotically stable models, fractional
models with a non-integer order derivative can reproduce more complex behavior [102]. For
example, the fractional model in the Caputo-Fabrizio derivative with a nonsingular kernel has
successfully described the dynamics of hepatitis B virus or tuberculosis [103, 104]. Otherwise,
the fractional model in the Atangana-Baleanu derivative with nonsingular and nonlocal kernels

for the crossover behavior in the model has described the complexity of dynamics [105].

3.8 Conclusion

Study 1 investigated the different SARS-CoV-2 dynamics models with numerical analysis
based on ODEs. GSA simplified the models, and stability analysis revealed that the models
satisfied the stability criterion. The subsequent calibration experiments fitted the models to the
observed viral load data across two types of hospitalized COVID-19 patients. The comparison
of optimum parameter conditions in mild cases and severe cases indicated that cell-to-cell
transmission would significantly correlate to the COVID-19 severity.

As a limitation, our interpretations of estimated parameters do not mean that the parameter
estimation results against our intuition escape from controversy. We can only claim association
because the argument is valid but unsound only from Study 1’s interpretations. Given that the
experimental data fluctuating in mild cases is inconsistent with the model’s solution curve, which
is stable in the equilibrium state, we need to improve the data fidelity.

Further investigation to surmount the limitation would include three things. First, data fidelity
can be improved by finding fine-grained SARS-CoV-2 data in a longer duration. Otherwise,
systematic review and meta-synthesis on the open data platform [106] could also ensure the inte-
grated data with higher fidelity. Second, more original population dynamics models representing
fluctuated data can be generated by equation discovery with a genetic algorithm or inductive bias
in syntax tree mutation. Third, the relationship between cell-to-cell transmission and COVID-19
severity can be validated, and the essential factors in severe cases need to be identified for
infection control or prevention. Overall, future work remained, including data integration and
the above relationship’s validation. Still, the experiments for modeling and simulation in this

chapter would have contributed to exploring the plausible SARS-CoV-2 dynamics models based
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on numerical analysis and differential equations.

To the next Chapter

— Verifying SARS-CoV-2 cell-to-cell transmission hypothesis by

using larger data at different scale, focusing on molecules specific

to cell-to-cell transmission
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CHAPTER 4

GENE NETWORK INFERENCE FROM
SINGLE-CELL OMICS DATA AND DOMAIN
KNOWLEDGE FOR CONSTRUCTING
COVID-19-SPECIFIC
ICAM1-ASSOCIATED PATHWAYS

Brief summary of this chapter

— Scientific discovery of ICAM-associated pathways (putative) in-

volved in cell-to-cell transmission currently absent from COVID-

19 Disease Map

— Verifying SARS-CoV-2 cell-to-cell transmission hypothesis from
microscopic scale

— DD-KB gene network inference framework integrating single-
cell omics data analysis and model validation using multiple

knowledge bases
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Published content and contributions:

1. Journal paper (IF=4.8, h-index=107, Q2)
Odaka M, Magnin M, Inoue K. 2023. Gene network inference
from single-cell omics data and domain knowledge for construct-
ing COVID-19-specific ICAM -associated pathways. Frontiers
in Genetics vol. 14 (2023). DOI: 10.3389/fgene.2023.1250545
HAL: hal-04195846v1

2. (+a) Oral presentation in USA
Odaka M, Magnin M, Inoue K. 2022. A Data-Driven and
Knowledge-Based Approach to Inferring Temporal Gene Net-
works for COVID-19. Critical Assessment of Massive Data Anal-
ysis (CAMDA). Madison, Wisconsin, United States.

Recap on what we do in Study 2 (Figure 4.1):

Goal
Signaling pathways
related to viral dynamics
(Hypothesis in micro scale)

Hypothesis finding

(manual abduction)

Gene network structure Gene expression data

Study 2

Data mining
(Induction)

Figure 4.1. Study 2 overview. Verifying the hypothesis as a result of a
system of pathways (microscopic view)

4.1 Introduction

The previous model-driven study suggested that compared to the other viral transfer manner
called cell-free transmission, cell-to-cell transmission would be more associated with COVID-19

severity based on simulation of hypothesized ODEs with cell-to-cell transmission effect [107].
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From this SARS-CoV-2 cell-to-cell transmission hypothesis, this chapter focuses on a note-
worthy molecule responsible for the interactions between cells, such as cell-to-cell transmission,
called intercellular adhesion molecule 1 ICAM-1; also known as CD54), encoded by ICAM1.
ICAM-1 is a transmembrane glycoprotein expressed on leukocytes, vascular endothelial cells,
and respiratory epithelial cells. Its differential expression is critical for proinflammatory immune
responses and viral infection. Additionally, ICAM-1 enables interactions between cells by
controlling leukocyte migration, homing, and adhesion from outside to inside the cell (outside-in)
and regulation from inside to outside the cell (inside-out) [108]. These functionalities make
ICAM-1 an attractive drug target and a clinically essential molecule [109]. Another premise
regarding ICAM-1 as an essential molecule in this study is grounded by several facts on cell-
to-cell transmission. For example, cell-to-cell transmission is observed in other retroviruses,
such as HIV-1 and human T cell leukemia virus type 1 (HTLV-1), whose functionalization is
similar to that of SARS-CoV-2 [74]. Specifically, both these retroviruses and SARS-CoV-2 have
a structurally homologous spike glycoprotein on the surface of the viral envelope that binds
to a surface protein on the recipient cell during cell adhesion [73]. In HIV-1 or HTLV-1, the
cell-to-cell transmission occurs after ICAM-1 triggers the peculiar pathways for cell adhesion
[110] and induces the formation of the microtubule-organizing center (MTOC) and virological
synapse (VS) [111]. The above arguments provide a rationale for focusing on ICAM-1 in this
study and for hypothesizing the in vivo existence of ICAM-1 and the interactions between cells
featured with ICAM-1 involved in cell-to-cell transmission in COVID-19.

In fact, there have been different in vitro experimental results on the expression level of [CAM-
1 in SARS-CoV-2-infected cells. One study shows the time-dependent ICAM-1 expression level
changes in COVID-19 patients [112]. Another study also shows that the ICAM-1 level increases
in the severe phase and decreases in the convalescent phase of COVID-19 [113]. Another study
shows the opposite result on the decrease of ICAM-1 after the immune cell infiltration in COVID-
19 while leaving room for controversy regarding the reasons for downregulation [114]. Morevoer,
in December 2021 (after publication of the Study 1), cell-to-cell transmission was observed in in
vitro experiments of COVID-19’s pathogen, SARS-CoV-2 [115].

Nevertheless, the interactions arising from ICAM-1 are not explicitly recognized as indispens-
able in the case of COVID-19. In particular, there is little insight into the signaling pathways
surrounding ICAM-1, that is, the upstream and downstream signal cascades that occur upon the
functional activation of ICAM-1 and its specific signaling molecules interacting with ICAM-1
(for simplicity, ICAM-associated pathways for short). Consequently, it is significant to uncover

the ICAM I-associated pathways to understand better the interactions between cells in the context
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of COVID-19.

Another substantial consequence of revealing ICAMI-associated pathways contributes to
completing the COVID-19 Disease Map. As for ICAM-1, the pathways and even ICAM-1 are
absent in the current COVID-19 Disease Map [13]. Thus, this study regards it challenging to
find unknown /CAMI-associated pathways, expecting these pathways to include the molecules
driving the cell-to-cell transmission.

Given the above, this study constructs the ICAMI-associated pathways based on gene
networks. For inferring gene networks, we harness data and domain knowledge by extracting
relationships between gene pairs from data while rectifying them with multiple knowledge bases.
Such integration of data-driven and knowledge-based approaches allows us to avoid biologically
meaningless interpretations based only on data characteristics. Identifying the unknown pathways
with biologically meaningful interpretation will lead to a deeper understanding of the mechanisms
of COVID-19.

4.2 Materials and Methods

4.2.1 Overview

Figure 4.2 illustrates the framework of this study. This framework constructs the disease-
specific pathways from single-cell omics data and domain knowledge via gene network inference.

The framework consists of the following five steps.
1. Single-cell omics data analysis
2. Undirected graphical model construction
3. Model corroboration and validation
4. Gene-to-protein conversion
5. Pathway mapping and unification

Steps 1 & 2 are dedicated to gene network inference purely from data, and Step 3 validates
the data-driven gene network with domain knowledge. In this study, we call the rectification
of data-driven objects with knowledge a DD-KB approach. In Step 1, we obtain the COVID-
19-specific differentially expressed genes (DEGs) and a network of differentially coexpressed
genes (DCGs) via single-cell omics data analysis. Here, DEGs are the genes whose expression
levels differ significantly in COVID-19-positive patients and negative controls, and DCGs are
coexpressed DEGs. Step 2 removes spurious edges from the correlation networks, thereby
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building de novo undirected graphical models. In corroboration (Step 3), undirected graphical
models are edited as dependency graphs with validated relationships.

Steps 4 & S are pathway construction steps. In Step 4, a functional annotation tool converts
genes into encoded proteins. Pathway mapping and unification (Step 5) refine the results as
the final outputs, the ICAM I-associated pathways. Through the framework, single-cell omics
data and multiple knowledge bases are integrated, which allows the inference of gene networks

containing the components absent from the current COVID-19 Disease Map.

1 Single'ce" omics data analysis Gene-wise data analysis  Cell-wise data analysis
QC gt DR f§ CL g WX DRCLWX
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on ® CAMT's DCGs
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Excluding E
spurious correlations Pathway Commons v12 [2019]
(Reactome, Panther, HumanCyc, BIND, MSigDB)
— Relationships (directed) validated by knowledge
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Figure 4.2. Schematic representation of the framework. Step 1: Single-cell omics data
analysis. Step 2: Undirected graphical model construction. Step 3: Model corroboration and
validation. Step 4: Gene-to-Protein conversion. Step 5: Pathway mapping and unification. The
circuits are subpathways transmitting a signal from input receptor nodes to output effector nodes,
where the nodes mostly represent proteins such as metabolic enzymes. QC: Quality Control;
DR: Dimensionality Reduction; CL: Clustering; WX: Wilcoxon rank-sum test; DEGs:
Differentially Expressed Genes; DCGs: Differentially Coexpressed Genes. See also DOI:
10.6084/m9.figshare.18095717.
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4.2.2 Gene Network Inference and Pathway Construction

In this subsection, explanations for each step of the framework are provided.

Step 1: Single-Cell Omics Data Analysis

Single-cell omics data analysis adopts a combination of the standard methods defined as
three subroutines, including dimensionality reduction, clustering, and Wilcoxon rank-sum test,
for each gene pair and each cell pair [116]. This step can extract COVID-19-specific DEGs and
ICAM I-associated DCGs from the omics data.

Standard protocol for extracting differentially expressed genes In single-cell omics data
analysis, there exists a “standard” protocol that is used in multiple tutorials of single-cell gene
expression data tools, such as R’s package Seurat [117], Python’s library Scanpy [118], squidpy
[119], or MUON [120]. Specifically, a typical workflow consists of Quality Control (QC) to select
cells for further analysis, dimensionality reduction, embedding and clustering the neighborhood
graph, and finding differentially expressed features (cluster biomarkers that can assign cell type

specific to clusters).

Dimensionality Reduction Dimensionality reduction is executed after the imputation of zeros
representing either technically missing data or biologically absent genes within a matrix of single-
cell omics data [121]. To reduce dimensionality, we employ two methods: principal component
analysis (PCA) and uniform manifold approximation and projection (UMAP). These methods
detect possible batch effects and embed the matrix in the latent space. By computing 50 PCA
coordinates on the sparse matrix for mean centering [122], eigenvalues, and eigenvectors with
the singular value decomposition solver ARPACK (ARnoldi PACKage) [123], PCA reduces the
dimension to 100 by a Gaussian kernel. Given the 50 decomposed coordinates, the connectivities
(weighted adjacency matrix) of the k-nearest neighborhood graph are computed and thresholded
at the closest neighbors defined for data points of the manifold in Euclidean space. Following

PCA, UMAP [124] projects the data points onto the two-dimensional latent space.

Clustering Afterward, clustering is enforced to classify data points in the latent space into
subgroups by similarity measurements and filtering out the genes unassociated with the gene of
interest. The Louvain algorithm, a greedy optimization of local modularity to detect the groups
[125], is applied for clustering. Clustering allows to obtain the data points of subgroups with

similar gene expression profiles.
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Biclustering is a clustering method that clusters rows and columns to find correlated feature
subsets. We conduct biclustering of omics data referring to the above-mentioned standard
protocol and Single Cell Representation Learning (SCRL), which combines a bipartite cell-
context gene network and a bipartite gene-context gene network to learn the low-dimensional

vector representations for cells, genes and context-genes [116].

Wilcoxon Rank-Sum Test The Wilcoxon rank-sum test is conducted to sort the data points
and pick up the top 200 data points within a cluster. This test compares the signal values
between each subgroup and the union of the other subgroups with the Benjamini—Hochberg
method for adjusting the false discovery rate and correcting the p-value [126]. The comparison
allows us to detect significant differences in expression levels between COVID-19-positive and
COVID-19-negative patients and rank the genes characteristic of each subgroup.

The above analysis, including dimensionality reduction, clustering, and Wilcoxon rank-sum
test, is conducted for each gene pair and each cell pair. Genewise analysis filters the DEGs
to distinguish those whose gene expression levels are correlated. Here, given that functionally
related genes are coexpressed in the same clusters, the identified gene clusters can be considered
to include the genes with significant differences in expression levels from the negative control,
and the genes within the same cluster share a common differential expression pattern [127].
Likewise, cellwise analysis filters the DCGs to classify all the cells into cell clusters based on the
correlation coefficients as similarity measurements for embedding, which means that the genes
within the same cell cluster are more strongly correlated with each other than with the genes in
other clusters. Constraining the DCGs with the gene of interest, ICAM 1, provides a subset of
DCGs correlated with ICAM 1.

Step 2: Undirected Graphical Model Construction

Next, we infer gene networks from /CAM’s DCGs obtained by the single-cell omics data
analysis. The gene networks are inferred as undirected graphical models with a partial correlation
method, displaying de novo-produced direct linear associations [128]. Considering that correlated
gene pairs are coexpressed with similar functions, designating any gene pair as nodes and the
correlation coefficient of gene expression levels as edges forms the simple correlation networks
of ICAMI’s DCGs. Calculating the second-order partial correlation coefficients between all gene
pairs and removing the edges of the gene pairs with almost zero partial correlation coefficients
for any combination yield undirected graphical models without spurious correlations [129].

The equations for the zero-order, first-order, and second-order partial correlations are shown
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in Egs. (4.1), (4.2), and (4.3).

cov(xy)

Zero-order correlation : 1, = ———— “4.1)
v var(x) var(y)
. . . X r xy — VT yz
First-order partial correlation :  ry,, = 4.2)
\/(1 - r)zcz) (1 - r%z)
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Second-order partial correlation : 1y, = (4.3)
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The random variables denoted by x, y, z, and g represent the gene names. r,, is Pearson’s
correlation coefficient between the gene expression-level vector running over all cells of any
gene x and that of any gene y. The simple correlation network starts by connecting x and y
if and only if r,, # 0. Undirected graphical modeling removes the linear effect of all second-
order partial correlation coefficients r,, ,, between two variables (x, y) conditional on all other
variables.

The edge is weighted as (0.5 + 0.5 - r,,.,)'? to follow the scale-free law, which typically used
in Weighted gene correlation (coexpression) network analysis (WGCNA) [130]. WGCNA is
a widely used data mining technique for inferring biological networks based on correlations
between gene pairs [131]. In WGCNA, the absolute value of the correlation is regarded as a

coexpression similarity measure, which is defined as the following expression:
a;j = {0.5 + 0.5PartialCorr(x;, xj)}ﬁ

, where the power g is a soft thresholding parameter [132]. While unweighted coexpression
network set the hard thresholding value to determine binary connection between gene pairs,
WGCNA enables to make more realistic biological networks, leaving continuous-valued edges
[132]. Additionally, community detection of such networks can be an alternative method to
clustering in DEG analysis [133]. However, the major drawback of WGCNA is that once two
objects are clustered together, it cannot be reversed [134]. We adopt our two-step biclustering,
1.e., extracting disease-specific DEGs and then DCGs from DEGs, to avoid extracting DCGs
from DEGs unrelated to COVID-19.

Step 3: Model Corroboration and Validation

Until the previous data analysis, gene networks consisting of the /ICAM1 gene of interest

are inferred without guaranteeing the validity of each edge. Namely, possible errors within data,
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such as noise, could result in nodes or edges with no biological meaning. Hence, the models
require corroboration and validation with heuristics based on domain knowledge. To corroborate
and validate each relationship of gene networks, we query multiple knowledge bases, including
Pathway Commons Web Service 12 [135], BioGRID REST Web Service [136], and STRING
version 11.5 [137]. Pathway Commons’ application programming interface (API) provides
access to the significant pathway databases Reactome, Panther, HumanCyc, BIND, and MSigDB.
BioGRID is used as a complementary source of the latest knowledge since Pathway Commons
is not up-to-date [138]. HumanCyc is used because it has richer information on biochemical
reactions and regulatory relationships than the KEGG pathways alone [139] and enables the
obtained model to include more information than a subset of the KEGG pathways. STRING is
used for annotations of functional or physical interactions between the queried proteins. Fetching
relations between gene pairs in the simple interaction format (SIF) through these knowledge
bases enables us to convert a subset of undirected edges to directed edges, thereby editing

undirected graphical models as dependency graphs.

The subsequent two steps are dedicated to the pathway construction by overlaying the inferred
DD-KB gene networks onto the KEGG pathways.

Step 4: Gene-to-Protein Conversion

There exists a gap between the gene network and the KEGG pathways because the nodes
of the DD-KB gene networks are DCGs (genes), while the nodes of the KEGG pathways are
primarily proteins. Therefore, this gap needs to be filled before overlaying the DD-KB gene
networks onto the KEGG pathways. The DAVID functional annotation tools 6.8 [140, 141]
allows us to fill the gap by converting gene symbols into Entrez IDs. We apply the DAVID tools
to the node lists of the DD-KB gene networks to give the corresponding protein attributes for
each DCG.

Step 5: Pathway Mapping and Unification

In order to examine what types of pathways are activated, we conduct pathway enrichment
analysis by mapping the protein node lists and edge lists of the DD-KB gene networks onto the
KEGG pathways. In particular, the DD-KB gene networks and the KEGG pathways in KEGG
Markup Language (KGML) format are unified by Cytoscape 3.9.0 [142], resulting in the final
COVID-19-specific ICAM I-associated pathways, visualized in yFiles Hierarchical Layout.
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4.2.3 Application

We applied the above framework to the two COVID-19 datasets for comparing the ICAM -
associated pathways between different locations where ICAM1 is expressed (case study 1)
and between different time points starting from hospitalization (case study 2). The machine
configuration was as follows: Python 3.7, GPU Tesla V100-SXM?2-16GB, and 51.01 GB of
RAM.

Case Study 1: Comparison of ICAM1-Associated Pathways Between Different Cell Types

Inputting the search term ((COVID-19 OR SARS-CoV-2) AND gse[entry type]) AND
"Homo sapiens" AND h5ad to the National Center for Biotechnology Information (NCBI)
Gene Expression Omnibus (GEO) DataSet [143] provided the data. In case study 1, the data
included the gene expression profiles of bronchoalveolar lavage fluid samples isolated from
10 patients with severe COVID-19 and two negative controls via high-throughput single-cell
RNA sequencing [144]. Especially, we used the data of messenger ribonucleic acid (mRNA)
expression levels from four antigen-presenting cell types in which virus particles were detectable.
The single-cell omics data analysis in the original paper had already annotated the cell types,
cell subpopulation partitioning the cell heterogeneity into nonoverlapping classes, for clusters
according to the reference biomarkers present in the cluster [145]. The cell types included
infected alveolar type 1 and 2 cells (infected AT1 & AT2), migratory dendritic cells (migratory
DCs), tissue-resident alveolar macrophages type 2 (TRAM2), and monocyte-derived alveolar
macrophages type 2 (MoAM?2), as well as the summation of these four cell types at the level of

full single-cell resolution (Figure 4.3).

Case Study 2: Comparison of ICAM1-Associated Pathways Between Different Time Points

Likewise, another transcriptome omics data were GSE180578 [146] fetched from NCBI GEO
DataSet. The omics data were 86 samples obtained by single-cell RNA sequencing, including
peripheral blood from COVID-19 patients or negative control at the intensive care unit (ICU) of
the University of Pittsburgh Medical Center. These samples included three-time points (day 1,
day 5, and day 10 post-enrollment in the ICU). The cell counts and gene counts were (34970,
2000), (23616, 2000), and (32105, 2000), respectively. The cell types annotated with biomarker
genes are identified by single-cell omics data analysis in the original paper. The cell types include
canonical immune lineages, such as B cells, CD1c+ DCs, CD34+ cells, CD4+ T cells, CD8+ T
cells, NK cells, Monocytes, pDCs, and plasmablasts [146].
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Figure 4.3. The cell types for which data were collected. Pulmonary tissue illustrations:
Created with BioRender.com. See also DOI: 10.6084/m9.figshare.18095714.

Additional Case Studies

Not limited to ICAM1, our framework would be re-usable in another context for mixing
quantitative data and domain knowledge into building models capturing pathways. To allege
the generality of the framework, in case study 2, we also applied the framework to other genes
related to the interaction between cells, including ACTB and C150rf48. ACTB encodes S-actin, a
non-muscle cytoskeletal filament implicated in cell motility, structure and integrity. C150rf48
encodes modulator of cytochrome C oxidase during inflammation (MOCCI), which inhibits
inflammatory response, as indicated by the downregulation of proinflammatory biomarkers, such
as NF-«kB, ICAM-1 and VCAM-1 [147]. MOCCl is also likely to cooperate with ICAM-1 and
B-actin in COVID-19 for intercellular adhesion.

To grasp the time-dependent change of activated pathways, we drew the parallel coordinates
for each matched KEGG and Reactome pathway, ranking in descending order of the gene counts
in the pathways. Here, the Reactome pathway is an alternative pathway database that includes
information more about pathological names than about specific disease names that the KEGG

pathway tends to label.
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4.2.4 Quality Control

Before succeeding to the further steps, the single-cell omics data underwent quality control.
Quality control included filtering, scaling, and normalization by Scanpy version 1.8.2 [118].
Given cell quality, we regarded the cells with overexpressed mitochondrial RNA per data count
tagged by a unique molecular identifier (UMI) [148] as dead or broken cells. Similarly, cells
with many genes per data count tagged by UMI were identified as doublets. Subsequently, the
genes detected in fewer than three cells were filtered out to ensure gene quality. The count data
were scaled with regression on total UMI counts and normalization per feature based on standard
deviation. Normalization of the gene expression data adjusted for the RNA composition bias and
allowed a comparison of the values among the cells. Finally, log-transformation prepared the

data for calculating the log-fold changes reflecting the gene expression difference.

4.2.5 Data Availability Statement

We display the results in case study 1 only. But any reader who wants to check the figures
or datasets in case study 2 in Study 2 can refer to DOI: 10.6084/m9. figshare.23590755.
The panel labels (a) - (e) in the figures stand for infected alveolar type 1 and 2 cells, migratory
dendritic cells, tissue-resident alveolar macrophages, monocyte-derived alveolar macrophages,
and a summation of all cells. Some readers may find it difficult to read some figures because of
the small font size due to the paper size limitation. In that case, they can access the figshare link

in the caption of each figure to see it in a larger view.

The single-cell omics dataset analyzed for this study can be found in the NCBI GEO DataSet
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE155249 (case study 1)
and https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE180578 (case study
2). The source codes to reproduce the results in this study are available in figshare repository
10.6084/m9. figshare.23590713.
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4.3 Results

4.3.1 Case Study 1: ICAM1I1-Associated Pathways at Different Locations
(Cell Types)

Quality Control

The data initially contained 77,650 cells X 24,714 genes. Removing the cells with a high
proportion of mitochondrial RNA resulted in 15,220 cells. After filtering, the whole dataset
contained 68,734 cells x 24,001 genes. Among this dataset, we used the data of four cell types,
21,819 genes in the SARS-CoV-2-infected 15,481 cells (cells with SARS-CoV-2 transcripts
detected). The doublet discrimination provided 14,723 cells. The filtering processes excluded
8,916 cells with more than 5,000 expressed genes, 700 genes detected in fewer than three cells,
mitochondrially encoded genes, and cells with a low percentage (< 10%) of mitochondrial genes,
leaving 17,644 genes. Cells with less than one gene count were filtered out, leaving 9,050 cells.
The quality control ultimately yielded log-transformed normalized gene expression data for
9,050 cells x 17,644 genes.

Single-Cell Omics Data Analysis

The genewise analysis extracted the 18 gene clusters with differential expression patterns
specific to COVID-19. Excluding the duplicated genes extracted 1,434 DEGs in 9,050 single
cells. The results of genewise clustering, heatmap of DEGs, and rank-sum test are shown in
Figures 4.4, 4.5, and 4.6, respectively.

The cellwise analysis yielded 11 clusters based on the correlations between gene pairs in
the embedded space and distinguished the DEGs whose gene expression levels were correlated.
One of the 11 clusters included ICAM, and this cluster was made of 178 ICAMI’s DCGs. The
results of cellwise clustering, heatmap of DCGs, and rank-sum test are shown in Figures 4.7, 4.8,
and 4.9, respectively.

Genewise analysis extracted the gene clusters with differential expression patterns specific
to COVID-19. Each cluster includes genes with significant differences in expression from the
negative control. Genes within the same cluster share a common differential expression pattern.
Signal magnitudes are logarithms of fold changes with cluster identifiers. Supplementary Table 1
is a hash table of DEGs, including the cluster number, gene name string, log fold change, and
p-values. See also doi: 10.6084/m9.figshare.17273156.

Cellwise analysis filtered the DCGs via three subroutines to classify all the cells into cell
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Figure 4.4. Genewise clustering result. Genewise clustered data points within an embedded

latent space. This procedure extracts genes within a specific cluster, including a gene of interest.
Euclidean distance measures the distance between clusters. Calculating the log fold change (the
magnitude of differential expression) yielded a list of the differential expression genes (DEGs),
whose expression levels significantly increased or decreased. Each cluster is assigned a unique
cluster number with a different color. See also doi: 10.6084/m9.figshare.17263814.
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Figure 4.5. The heatmap of differentially expressed genes. The top five differentially
expressed genes (DEGs) for each cluster. Each cluster with a number given by the Louvain
algorithm enumerates the corresponding gene names. A brighter color means a higher tendency
for differential expression. See also doi: 10.6084/m9.figshare.17263841.
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Figure 4.6. Rank-sum test result for differentially expressed genes. The Wilcoxon rank-sum
test determined the clusters’ rank-ordered differentially expressed genes (DEGs). Each cluster of
each subfigure contains the top 10 genes’ names in descending order from left to right, with
rank-sum scores assigned to the vertical axes. See also doi: 10.6084/m9.figshare.17263877.
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Figure 4.7. Cellwise clustering result. Cellwise clustered data points within an embedded
latent space. Pearson’s correlation coefficient measures the distance between clusters.
Calculating the log fold change (the magnitude of differential expression) filters a list of the
differential coexpression genes (DCGs) from DEGs. Each cluster is assigned a unique cluster
number with a different color. See also doi: 10.6084/m9.figshare.17263889.
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Figure 4.8. The heatmap of differentially coexpressed genes. Top five cell IDs for each cell
cluster with a similar gene coexpression pattern. Each cluster with a number given by the
Louvain algorithm enumerates the corresponding cell IDs. A brighter color means a higher
tendency for differential coexpression. See also doi: 10.6084/m9.figshare.17263892.
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Figure 4.9. Rank-sum test result for differentially coexpressed genes. Differentially
coexpressed genes (DCGs) for each cluster. Each cluster of each subfigure contains the top 10
cells” IDs in descending order from left to right, with rank-sum scores assigned to the vertical
axes. See also doi: 10.6084/m9.figshare.17263898.
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clusters based on the correlation coefficients as similarity measurements. Genes within the same
cell cluster are more strongly correlated than those in other clusters. Constraining the DCGs with
the gene of interest, [CAM 1, provided a subset of DCGs correlated with ICAM 1. Supplementary
Table 2 is a hash table of DCGs, including gene expression levels for each single cell. The
p-values of ICAM 1 expression variation and the computation times (sec.) for each cell type were
as follows: p = 0.250, time = 51.6 (Infected AT1 & AT2), p = 2.50E-4, time = 26.1 (Migratory
DC), p = 2.57E-12, time = 46.6 (TRAM2), p = 7.55E-2, time = 109.0 (MoAM?2), and p = 0.241,
time = 178.9 (Summation). See also doi: 10.6084/m9.figshare.17273177.

Undirected Graphical Model Construction

Removal of spurious correlations yielded undirected graphical models (Table 4.1). See also

the finally obtained undirected graphical models in Figure 4.10.

Table 4.1. Spurious correlation removal in case study 1
Cell types ‘ Nodes  Edges (full)  Edges (excluded) Edges (output)

Infected AT1 & AT2 116 6670 (100 %) 6296 (94%) 374 (6%)
Migratory DCs 248 30628 (100 %) 28695 (94%) 1933 (6%)
TRAM?2 150 11175 (100 %) 8690 (78%) 2485 (22%)

MoAM?2 152 11476 (100 %) 7819 (68%) 3657 (32%)
Summation 179 15931 (100 %) 12529 (79%) 3402 (21%)

The table depicts the number of nodes, the number of edges in the simple correlation network
(full model), the number of spurious edges removed by calculating the second-order partial
correlation coefficients, and the number of ultimately left edges.

Model Corroboration and Validation

Dependency graphs are shown in Figure 4.11.

The entire list of relationships of dependency graphs with knowledge bases used for model
validation can be found in Supplementary Table 3. Edge weights include unweighted, weighted
unsigned, and weighted signed correlation coefficients. Gray-filled cells in the table are gene
pairs that could not be validated based on background knowledge. Therefore, the relations and
data sources are missing. The appended tabs marked with (2) contain the tables that exclude unval-
idated gene pairs and combine gene pairs with overlapping data sources, i.e., gene pairs contained
in two or more different background knowledge. See also doi: 10.6084/m9.figshare.17273120.
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Figure 4.10. Undirected graphical models. (a) Infected alveolar type 1 and 2 cells; (b)
Migratory dendritic cells; (c) Tissue-resident alveolar macrophages; (d) Monocyte-derived
alveolar macrophages; (e) All cells. Nodes, edges, and weights are DCGs, relationships between
DCGs, and second-order partial correlation coefficients. See also doi:
10.6084/m9.figshare.17261825.
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Figure 4.11. Dependency graphs. (a) Infected alveolar type 1 and 2 cells; (b) Migratory
dendritic cells; (c) Tissue-resident alveolar macrophages; (d) Monocyte-derived alveolar
macrophages; (e) All cells. Nodes are DCGs, and edges are relationships between DCGs with
annotated function names. These function names are validated from knowledge bases. The
directed edge is given when the edge is a regulatory relationship, such as activation or inhibition.
Undirected edges represent coexpression or other functions without direction. See also doi:
10.6084/m9.figshare.17261780.
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Gene-to-Protein Conversion

The nodes in the dependency graphs were annotated with protein names, which helped us
map the nodes onto the KEGG pathways in the next step.

Pathway Mapping and Unification

Pathway mapping discovered which subpathways within existing signaling pathways reflect
the activity of a group of genes varying and coexpressed in a disease-specific manner in the
observed gene expression data. Table 4.2 shows the typical pathways selected from the mapping

results. See also a complete list of mapping results (Figure 4.12).

Table 4.2. Mapping results of the dependency graphs for each cell type onto the KEGG
pathways

Cell types \ Scores \ Matched KEGG pathways

Infected AT1 & AT2 | O genes (no match)

Migratory DCs 40 genes (63.5% match) | NF-«B signaling pathway (hsa04064)
(12), HTLV-1 infection (hsa05166) (9)

TRAM?2 23 genes (65.7% match) | Influenza A (hsa05164) (13), HTLV-1
infection (hsa05166) (5)

MoAM?2 31 genes (54.4% match) | NF-«B signaling pathway (hsa04064)
3)

Summation 18 genes (64.3% match) | TNF signaling pathway (hsa04668)
(3), NF-«kB signaling pathway
(hsa04064) (3)

Scores count the “matched” genes on the dependency graphs, whose encoding proteins are on
any of the KEGG pathways and their proportion to total gene counts. Matched KEGG pathways
exemplify how many matched genes are included in a specific pathway. For example, if gene x’s
encoded protein X is on KEGG pathways A and B, one is added to the score, and both A and B
are represented.

The final COVID-19-specific ICAM I-associated pathways for each cell type are shown in
Figure 4.13. Although pathway mapping was performed by converting gene symbols to protein
IDs before mapping, the nodes of pathways in the figure are assigned only gene symbol names
for space limitation. For the ICAM I-associated pathway for infected AT1 & AT2 (Fig 4.13a),
there are no hits among the KEGG pathways, which is attributed to only one pair of validated
ICAM I-associated DCGs remained.

The characteristics common to the obtained pathways and the characteristics of those path-
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hsa04062:Chemokine signaling pathway
hsa04060:Cytokine-cytokine receptor interaction
hsa04020:Calcium signaling pathway
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Figure 4.12. Pathway mapping result. Querying the gene lists of dependency graphs yielded
the activated Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways for each cell type.
The bars colored yellow, lime green, olive, and navy blue stand for the count of genes that
appeared on the KEGG pathways for migratory dendritic cells (DCs), tissue-resident alveolar
macrophages (TRAM?2), monocyte-derived alveolar macrophages (MoAM?2), and all cells. See
also doi: 10.6084/m9.figshare.17263907.
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Figure 4.13. ICAM1-associated pathways at different locations (cell types). a: No pathway
available (Infected alveolar type 1 and 2 cells); b: NF-«B/non-canonical NF-«B/Integrin pathway
putative (Migratory dendritic cells); ¢: NF-«B/Integrin pathway putative (Tissue-resident
alveolar macrophages); d: NF-«B/Integrin pathway putative (Monocyte-derived alveolar
macrophages); e: TNF/NF-«B/non-canonical NF-«B/Integrin pathway putative (Summation).
The rectangular nodes colored blue, yellow, and lime green reflect the proteins only on the
dependency graphs, the proteins common to both the dependency graphs and the KEGG
pathways, and the proteins only on the KEGG pathways, respectively. Gray lines are the directed
or undirected edges only on the dependency graphs. Orange lines represent the directed or
undirected edges between yellow nodes on the dependency graphs. Green lines are the directed
edges only on the KEGG pathways. Orange edges do not have direction if the KEGG pathways
indirectly connect its yellow node pair. See also DOI: 10.6084/m9.figshare.17261540.
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ways for each cell type are as follows. One common feature of the pathways for all other cell
types except Fig 4.13a is the presence of some integrins, such as ITGAL (gene encoding CD11a;
also known as LFA1TA) (Fig 4.13b — 4.13e), ITGAX (gene encoding CD11c) (Fig 4.13d), ITGB2
(gene encoding CD18) (Fig 4.13d), and ITGA4 (gene encoding CD49d) (Fig 4.13e). Some inte-
grins are downstream, such as ACTB (gene encoding S-actin) in the pathway for migratory DCs
(Fig 4.13b) and DCTNI1 (gene encoding Dynactin subunit 1) in the pathway for MoAM?2 (Fig
4.13d). Integrins are molecules interacting with ICAM-1 to stabilize cell adhesion. Especially,
Dynactin recruits and tethers dynein to microtubules.

Another common feature of the pathways for all other cell types except Fig 4.13a is the
presence of the molecules responsible for NF-«B pathways, such as NFKBI (gene encoding
NF-«B p105 subunit 1), NFKB2 (gene encoding NF-«kB p105 subunit 2), RELA (gene encoding
NF-«B p65 subunit), JUN (Jun proto-oncogene; also known as AP-1 transcription factor subunit),
CHUK (gene encoding inhibitor of nuclear factor x-B kinase subunit «; also known as IKK-a)
(Fig 4.13b - 4.13e). These molecules are not DCGs but nodes in the KEGG pathway, but they are
located upstream of /JCAM and flanked by DCGs.

As the specific features of some pathways, the pathway for migratory DCs (Fig 4.13b) and
summation (Fig 4.13e) include RELB (gene encoding transcription factor RelB). In general,
NFKB?2 and RELB lie in the noncanonical NF-«kB pathway, which is an upstream pathway of
ICAM]1 [149]. The pathway for migratory DCs (Fig 4.13b) also includes TNFRSF11A (gene
encoding receptor activator of NF-«B; also known as RANK) and MAP3K 14 (gene encoding NF-
kB-inducing kinase; also known as NIK). These molecules are known as triggers of noncanonical
NF-«B pathway [150]. While previous analysis or curation work found the canonical NF-«B
pathway [151], the noncanonical pathways were not known to be involved in the COVID-19
Disease Map.

The pathway for summation (Fig 4.13e) has some commonalities with other pathways, such
as integrins and molecules related to the NF-«B pathway, but it also has some differences. SOD2
(gene encoding superoxide dismutase 2), for example, is a gene that is not found in the other
pathways and could not be found without taking summation. SOD?2 is known as a gene whose

expression variation has been confirmed accompanied with ICAM1 in COVID-19 [152].

4.3.2 Case Study 2: ICAM1-Associated Pathways at Different Time Points

Like case study 1, the original dataset underwent single-cell omics data analysis, and ICAM 1
and its DCGs were extracted. The p-values of ICAM I expression variation and the computation

times (sec.) for each time point were as follows: p = 1.50E-05, time = 77.9 (day 1), p = 3.09E-2,
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time = 55.4 (day 5), and p = 3.04E-06, time = 56.3 (day 10). This manuscript does not explain the
other detailed results of the single-cell omics data analysis because the procedures were the same
as in case study 1. These other results can be found at 10.6084/m9. figshare.23590755. As

for the rest steps, we explain the results of spurious correlation removal and pathway construction.

Undirected Graphical Model Construction

Table 4.3 depicts how spurious correlated edges were removed for each of the three-time
points. Of the number of edges in the simple correlation network (full model), more than 84% of

the edges were deleted by calculating the second-order partial correlation coefficients.

Table 4.3. Spurious correlation removal in case study 2

Day | Nodes  Edges (full)  Edges (excluded) Edges (output)
1 121 7,503 (100%) 6,309 (84%) 1,194 (16%)
5 198 20,706 (100%) 18,914 (91%) 1,792 (9%)
10 126 8,001 (100%) 6,748 (84%) 1,253 (16%)

Pathway Mapping and Unification

The pathways resulting from combining the KEGG pathways with the partial correlation
networks of ICAM [-associated DCGs extracted from the omics data are shown in Figure 4.14.

The common characteristics and the unique attributes of the found pathways for each time
point are as follows. One common feature is the presence of molecules responsible for the
immune response included across the three time points. The immunoreactive molecules include
chemokine ligand (CXCLI, 2, 3) induced by interleukin-1 (/L/B) or TNF-a-induced protein
6 (TNFAIP6). These molecules are along the green-colored molecules, such as NF-«B p105
subunit (VFKBI), NLRP3 inflammasome (NLRP3, PYCARD, and CASPI), which are related
to pro-inflammatory effects and activation of NF-«B pathway or the MAPK pathway [153].
Other common molecules include modulator of cytochrome C oxidase during inflammation
(C1501f48), chemokine ligands acting as macrophage inflammatory protein (CCL3 and CCL3LI),
transmembrane protein (TMEM176A/B), nuclear factor erythroid (NFE2), Peptidyl Arginine
Deiminase 4 (PADI4), RAS Oncogene (RAB20), and proto-oncogene (ETS2). These are also

related to inflammation, immune response, or membrane fusion [147, 154—156].
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Figure 4.14. ICAM1-associated pathways at different time points. a: NF-xB/MAPK pathway
putative (day 1) b: NF-kB/MAPK pathway putative (day 5) ¢: NF-kB/MAPK pathway putative
(day 10). The light yellow, green, and orange nodes represent data-driven DCGs, the genes listed
only in the KEGG pathways, and the genes derived from both data and the KEGG pathways.
The directed edges are the edges whose directions are given in the KEGG pathways. See this

figure for a larger view in figshare: 10.6084/m9.figshare.23576226.

As the specific features of two pathways, the pathways at days 1 and 5 include Pleckstrin
homology-like domain family A member 2 (PHLDA?Z2) and chemokine ligand (CXCL)5) (Fig
4.14a-b). The pathways at days 5 and 10 include chemokine ligand acting as macrophage
inflammatory protein (CCL4L2) (Fig 4.14b—c). The pathways at days 1 and 10 include folate
receptor (FOLR3), Haptoglobin (HP), and chemokine ligand (CXCL16) (Fig 4.14a—c). These are

related to acute inflammatory response, immunity, or membrane attachment [157-159].

The obtained pathways do not contain the molecules in the NF-«B pathway (NFKBI, NFKBIA,
and CHUK) or the MAPK pathway (HRAS, RAF1, and MAP2K?7). The absence of these molecules
may be due to insufficient gene coverage in the original omics data.
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4.3.3 Additional Case Studies
ACTB-associated pathways

At all three time points, molecules for immune responses such as inflammation or chemo-
taxis were abundant. For example, Ficolin-1 (FCNI) or leukocyte immunoglobulin like receptor
(LILRAS, LILRBI1, LILRB) were all involved in innate immune responses. As a unique feature
of the ACTB-associated pathway, the network motif for cell-membrane fusion was conserved.
This motif was consisting of the genes encoding major histocompatibility complex (MHC)
class Il regulating membrane fusion, including HLA-DPAI, HLA-DPBI1, HLA-DRA, HLA-DRBI,
HLA-DRB5, and HLA-DQBI. Relevant to MHC class II, HLA class II histocompatibility antigen
v chain (CD74) involved in the formation of MHC class II peptide complexes for CD4+ T
cell responses or Cathepsin S (CTSS) related to antigen presentation with MHC class II were
present. Moreover, Vimentin (VIM) for cytoskeleton formation or actin-binding protein allograft

inflammatory factor 1 (A/F1) were identified.

Day 10. The figures and datasets regarding ACTB-associated pathways can be referred in
figshare: 10.6084/m9.figshare.23591490.
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C150rf48-associated pathways

Throughout the three-time points, molecules for immune response or macrophage polarization
were apparent. There were also similar features with the /ICAM[-associated pathways. For
instance, both ICAM1 and Cl50rf48 pathways contained C-X-C Motif Chemokine Ligand
(CXCL), interleukin 1 g (IL1B), transmembrane protein 176 A/B (TMEM176A, TMEM176B),
TNF-a-induced protein 6 (TNFAIP6), interleukin 1 receptor antagonist (IL/RN).

L i

Figure 4.16. C150rf48-associated pathways at different time points (a) Day1, (b) Day 5, and (c)
Day 10. The figures and datasets regarding C150rf48-associated pathways can be referred in
figshare: 10.6084/m9.figshare.23591505.

Time-dependent change of the three pathways

In the figure, the different line colors indicate the variation of temporal pattern over the
three-time points. Purple, green, yellow, and dark blue colored lines reflect an increase followed
by a decrease in the number of hit genes, a decrease followed by an increase, a monotonic

decrease, and a monotonic increase.

72


https://figshare.com/s/bcad5d3e370bc8e6238f

4.4. Discussion

Reactome

i and Th cel

17 call difterer

ACTB

“immune System

naling pathway

pathway
'g in Helicobacter pylor nfection

atherosclerosis

s infection

IcAM1 £*

diabatic complications
aling pathway

Day1 Day5 Day 10 DayT Days Day 10
Days

° Cytokine-cytokine receptor interaction

—G alpha () signalling events.

C150rf48 ¢ ~

Day1 Day5 Day 10 Day 1 Days Day 10
Days Days

Figure 4.17. Parallel coordinate ranking plots of the matched KEGG and Reactome pathways.
See this figure for a larger view in figshare: 10.6084/m9.figshare.23576238.

4.4 Discussion

4.4.1 ICAMI-Associated Pathways from Case Studies

Comparison between the obtained ICAM [-associated pathways in the case study 1 with the
COVID-19 Disease Map reveals existing and unknown nodes. For example, MAP2K3, MAPK 14,
JUN, FOS, ITGA2, ITGBI1, RSAD2, OAS, and STAT2 have already been mapped onto the COVID-
19 Disease Map, while RELB, ITGAL, CDC42, ACTB, CD40, DCTNI, BCL3, and CD83 in the
obtained pathways are still absent in the current COVID-19 Disease Map.

Likewise, we can identify the difference between the obtained ICAM I-associated pathways
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and the current COVID-19 Disease Map from the results of case study 2. For instance, ILIB,
NFKBI, NLRP3, PYCARD, and CASP1 are listed in the COVID-19 Disease Map, while there are
molecules absent from it, including CCL3, 3L1, 4L2, CXCLI, 2, 3, 5, 16, TNFAIP6, C150rf48,
TMEM176A/B, NFE2, PADI4, RAB20, ETS2, PHLDA2, FOLR3, and HP.

The results from both case studies indicated that the NF-«B pathway would likely be activated,
which reflects that our framework can reproduce the already-known fact that the NF-«xB pathway
is activated in COVID-19, as seen in the KEGG’s COVID-19 pathway (hsa05171). As new
insight into the unknown pathways missing from the current COVID-19 Disease Map, the results
imply that the mechanism that might cause cell-to-cell transmission involves the following two

up/downstream pathways.

— Upstream pathway with proteins on the noncanonical NF-«B pathway
— Downstream pathway with integrins and cytoskeletal elements associated with actin and

the motor protein dynein for cell transformation

The noncanonical NF-«B pathway is reasonable because it is relevant to the proinflammatory
response in viral infections such as COVID-19. It is also creditable that TNFRSF11A is found
only in the pathway of dendritic cells (Fig 4.13b) since TNFRSF11A is known to be expressed on
dendritic cells and T cells to facilitate their interaction with each other [160]. The involvement
of downstream pathways leading to the cytoskeleton (the internal filaments of eukaryotic cells),
including actin filaments and microtubules, in COVID-19 is also plausible. After the interaction
between ICAM-1 and integrin regulates cell adhesion, the motor protein myosin would move
on actin filaments, inducing cell transformation and movement. The motor protein dynein
would move on microtubules transporting molecules in the cytoplasm to the MTOC. Given
the argument mentioned in the Introduction that MTOC or VS spawned by ICAM-1 invoke
cell-to-cell transmission in HIV-1 or HTLV-1, the existence of these downstream molecules
of ICAMI-associated pathways raises the possibility of pathways involved in the formation
of MTOC or VS in SARS-CoV-2. In this study, the Ras-Raf-MEK-ERK pathway for MTOC
or VS in HTLV-1 was inactive. Meanwhile, RACI and CDC42 were conserved. Ras-related
C3 botulinus toxin substrate 1 (Racl, encoded by RACI) and cell division control protein 42
homolog (Cdc42, encoded by CDC42) are essential for VS formation in HTLV-1 cells [161].
Although it is unclear whether SARS-CoV-2 has a VS formation mechanism analogous to
that of HIV-1 or HTLV-1, we cannot rule out the possibility that MTOC formation and VS
formation never occur. To verify these inferred phenomena, observing MTOC and VS formation
through infection experiments or molecular dynamics tracking using high-end live-cell imaging

techniques [162] would be desirable.
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4.4.2 Time-dependent change of the three pathways

Comparison between the three ranking plots tells us that the inferred pathways are plausible
in terms of the COVID-19 typical clinical time courses such as innate immunity or neutrophil
degranulation. In addition to that, both in ICAM -associated pathways and C150rf48-associated
pathways, signaling by G-Protein Coupled Receptor (GPCR) and Class A/1 (Rhodopsin-like
receptors) are found. Considering that GPCR largely includes the Rhodopsin-like family proteins
and they regulates microtubule stabilization [163], we cannot deny that MTOC formation and
viral cell-to-cell transmission could be observed in COVID-19 as well. Verifying the MTOC
formation or cell-to-cell transmission in COVID-19 would require further in vitro infection

experiments with microscopy.

4.4.3 Related Work

The need to identify unknown pathways has accelerated the work related to gene network
inference in COVID-19. For example, Hasankhani et al. obtained signaling pathways associated
with the main hallmarks of COVID-19 by differential coexpression network analysis [164].
Tanaka et al. revealed host cellular gene networks by Bayesian network [165]. Generally, several
methods for gene network inference from single-cell omics data exist, which can be classified
into data-driven methods and knowledge-based methods. Data-driven gene network inference
methods include statistical approaches such as regression, mutual information, correlation, and a
combination of different techniques [166—168]. Among those techniques, correlation analysis is
the typically first choice to gain insights into systems for further investigation (56% of papers in
2023 on the preprint server bioRxiv contain the word “correlation”) [169]. Especially, partial
correlation is used for inference of features regulating coexpression or other features’ activities
within the network by estimating conditional dependencies [170]. Alternatively, knowledge-based
gene network inference uses prior knowledge for information retrieval or logic programming.
Fabris et al. quantified the influence by creating interpretable KEGG feature types for the
hierarchical classification of aging-related protein functions [171]. Chen et al. provided the
biological relevance by analyzing the gene ontology terms and KEGG pathways of each drug
category enriched in the literature and clinical trials for predicting drug-target interaction [172].
There also exist hybrid methods incorporating data-driven and knowledge-based methods. Soh et
al. enumerated the minimal network components by adopting a Boolean satisfiability problem
(SAT) solver for KEGG pathways [173]. Zuo et al. integrated information at gene expression and
network topology levels by differentially weighted graphical LASSO [174]. However, full-scale
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Chapter 4 — Gene Network Inference from Single-Cell Omics Data and Domain Knowledge for
Constructing COVID-19-Specific ICAM1-Associated Pathways

integration of data-driven and knowledge-based methods is still under development for gene
network inference. Our method favors this development by extending the correlation network by
integrating data and knowledge. Especially, two-step extraction of DCGs in Step 1, narrowing
down DCGs after filtering DEGs, is a mixture of detecting the significant differences in the gene
expression levels and checking the pairwise correlation between gene pairs. This extraction is
substitutive to other methods for extracting DCGs, such as WGCNA or gene sets net correlations
analysis (GSNCA) [175].

4.4.4 Conclusion

As a summary of contributions, this study proposed a DD-KB framework for automatically
inferring systems by graphical modeling from large-scale sparse matrix and model validation
with multiple knowledge bases. Using the framework, we demonstrated its applicability to
empirical COVID-19 data and three types of genes. We realized reproducing existing pathways,
discovering novel pathways currently absent from the COVID-19 Disease Map, and analyzing
their spatiotemporal variation. The discovered pathways suggested the existence of unknown
pathways in the map, an upstream noncanonical NF-«B pathway, and a downstream pathway
that may lead to MTOC formation subject to observation.

In addition to the scientific findings, our framework, which integrates existing data mining
and database integration methods and automates hypothesis discovery from single-cell omics
data and multiple knowledge bases, is also original and versatile. Single-cell omics data analysis
in Step 1 and model validation by multiple knowledge bases in Step 3 realized constructing
pathways in different cases. For these reasons, our work would contribute to a remarkable
development in the DD-KB gene network inference methods.

The existence of undirected edges within the final pathways would be a limitation of our
framework. These edges without direction arise from correlation networks that find direct
and indirect relationships but do not distinguish between causality and correlation [176]. Our
methodology requires its extension to infer causal directions of the edges.

Consequently, future work will include the following three tasks. First, we will infer causal
networks based on data and knowledge via Bayesian networks or other observational causal
discovery techniques [177]. Second, we will compare our framework with network inference
methods. For example, its generalization performance can be improved by replacing biclustering
with other techniques, such as WGCNA. Third, we will analyze the obtained pathways for
verifying or modifying them in terms of dynamics. For example, modeling and simulation of

differential equations based on state transitions would help us comprehend the dynamics [67].
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4.4. Discussion

Otherwise, the perturbation experiments can simulate the intervention effects on dynamics by
explicitly using direct transcription factor knockout or overexpression [178]. Indeed, such a study
has significantly improved prediction accuracy for downstream targets [179].

Overall, the ICAM [-associated pathways constructed from the data and knowledge in this
study will expedite the repair and completion of the COVID-19 Disease Map for a deeper
understanding of SARS-CoV-2 pathogenesis.

To the next Chapter

— Reviewing related work on multiscale modeling

— Especially related to Study 1: Benefit of modeling viral dynamics,
possible extensions, the detail of viral quantification, different
approaches to building viral dynamics models, reactivation risk

— Especially related to Study 2: How to infer causal directions in
biological network
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CHAPTER 5

RELATED WORK

Brief summary of this chapter

— Scientific discovery

— Causal discovery
— Other possible conditions for viral dynamics modeling

— Multiomics data

Although the two studies in this manuscript differ in scale and methodology, they commonly
attempt to discover unknown hypotheses or interpretable models using structural information
(syntax tree structures or network structures derived from knowledge) on actual observational
data. The discipline of such discovery is called discovery science and constitutes a field of study.
This chapter reviews discovery science as a related study of the two studies. In particular, given
that the edges in Study 2 could not be directed as causal relationships based on data alone, we
review causal discovery methods separately. In addition, we will review other possible conditions
for viral dynamics models to refine Study 1 and other data that could be selected to further refine

the multiscale model beyond the omics data of gene expression levels as used in Study 2.

5.1 Scientific discovery

Scientific discovery is the culmination of humankind’s creative thinking [180]. This endeavor
has evolved alongside the computational perspective, forming a field of research that formulates
laws or models from data or knowledge and finding new knowledge, which domain is called
computational scientific discovery [181]. The focus of computational scientific discovery is not
to find black box models, such as the traditional Gaussian process or neural network, but to
find laws or models with symbolic structures for model interpretability [182]. Here, symbolic

structure refers to the relationships between entities or inferred components represented by
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logical formula, process, or tree structure seen in decision tree or numerical equation as syntax
tree [183].

Research on symbolic structures has been conducted in this area for more than 20 years.
Development of deep learning with high-end GPU computing around 2010 or the ground-
breaking work on symbolic regression with genetic algorithm [184] have led to research dealing
with both symbolic structures and continuous distributed systems. Such efforts can be found in
several cutting-edge studies, exemplified by finding physical concepts based on linkage inside
neural networks [185] or learning Boolean functions as matricized logic programs in vector
spaces [186]. Additionally, computing symbolic structure in continuous space can be found in
several work on equation discovery. For example, the recent state-of-the-art studies are found in
identification of systems of partial differential equations by sparse regression from data and its
applications to gene network estimation [187], physics-informed learning from small data [188],
learning ODEs with data symmetry and separability [189], discovery of physical principles via
symbolic regression of the model learned by Graph Neural Network (GNN) [190], parametric
latent space dynamics identification [191], and discovery of closed-form ODEs from observed
trajectories [192]. These attempts successfully go beyond heuristic search through discrete space
to symbolic structure search in continuous parameter space, thereby representing dynamics in

parametric form with interpretability.

On the other hand, it remains challenging to realize a parsimonious model preserving
interpretability while balancing accuracy, model complexity, computational scalability, and
generalizability [193]. In particular, discovered models often fall into redundant models due to
overfitting to models with unnecessary terms and a lack of model validation, which makes them
unrealistic. The previous methods also address these computational problems, but there have
not been adequate criteria for filtering variables into minimum ones. To reduce dull terms and
improve low fidelity in the model, there are some attempts to discover a parsimonious model
with a symbolic structure that background knowledge can corroborate or rectify. For example,
data and knowledge integration has been accomplished in several work, such as process-based
modeling from observed data and background knowledge on observed dynamical behavior for
induction of hypothesized processes about entities’ interactions as syntax tree [194], grammar-
based equation discovery [195], and symbolic regression and reasoning by incorporating axiom

or physics theory [196].
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5.2 Causal discovery

5.2.1 Traditional methods

Traditional causal discovery methods are constraint-based method and score-based method.
Constraint-based methods, such as Peter-Clark (PC) algorithm and Fast Causal Inference (FCI)
algorithm, perform conditional independence tests to construct Directed Acyclic Graphs (DAGs)
[197]. Score-based methods, such as Greedy Equivalent Search (GES), optimize score function
for structure learning [198]. Max-Min Hill Climbing algorithm (MMHC) is a hybrid of these
two methods which integrates conditional independence tests to construct constraint-based
causal networks and score optimization for structure learning. MMHC outperforms PC or GES
[199], while the performance depends on statistical evaluation criteria [200]. Constraint-based,

score-based, and their hybrid methods rely on the following two assumptions [201].

Assumption 5.2.1 (Causal Markov Assumption). Given a DAG G over variable set X and
probability distribution Pr over X, G and Pr satisfy the Causal Markov Assumption (CMA)
iff. Vx; € X is conditionally independent of non-descendants (nodes without direct causes) X

\descendants(X) U parents(X) given parents(X), where Pr(x;,--- , x;) = IIPr(x;|parent(x;)).

Assumption 5.2.2 (Faithfulness). Given a DAG G over variable set X and probability distribution
Prover X, G is faithful to Pr iff. every conditional independence relation true in Pr is entailed
by CMA (Assumption 5.2.1) applied to G.

These Assumptions 5.2.1 and 5.2.2 allows one to regard an outputted causal network as a
separated DAG consisting of chain, fork, and collider directions, i.e. a DAG obeying d-separation
rule [202].

Additionally, PC requires the following assumption whereas FCI does not.

Assumption 5.2.3 (No latent confounder). There is no unobserved common cause that directly

affects two or more observed variables.

These methods are successful in learning causal network even in high-dimensional settings
[203]. However, they do not distinguish graphs that entail the same d-separation properties, that

is, the Markov equivalence class of conditional independence [201].

5.2.2 Methods based on causal graphs

In contrast, the recent spurred attention has been paid to methods based on functional causal

models (FCMs) because they can uniquely determine the true model by distinguishing from
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different DAGs in the same class [204]. FCM is a directed causal graph with variables determined
by structural equations and assumptions on joint distribution [205]. This type of method includes
addictive noise model (ANM) [206], linear non-Gaussian acyclic model (LINGAM) [207],
non-Gaussian structural vector auto-regressive model (VAR-LiINGAM) [208], regression error
based causal inference (RECI) [209], repetitive causal discovery (RCD) algorithm [210]. Their
property of identifiability is owed to the benefit of the following additional assumptions on the

data generation process.

Assumption 5.2.4 (Exogenous variables’ i.i.d.). Exogenous variables are independent and
identically distributed. In particular, probabilistic distribution of exogenous variables follow
non-Gaussian distribution. Under this assumption, the two models with different parameters

never produce identical distributions.
In addition, the following assumption is necessary in case of causality between time series.

Assumption 5.2.5 (Stationary process). The data are generated from a stationary process, a

property in which the mean and variance of the data do not change over time.

In essence, VAR-LINGAM constructs linear structural equations with time lag commonly
relying on the Assumptions 5.2.1-5.2.5 so that contemporaneous and past causal effects can be

considered.

LINGAM LiNGAM discovers linear structural equations without time lag representing causal
relationships between state variables from inputted data based on Assumptions 5.2.1-5.2.5. Its

linear function f is expressed as below.
X=BX+e (5.1)

, where B is an adjacency matrix of its causal graph. Regarding one variable x;, the equation
is written by

X = Zjepaibj,,-xj + ¢é; (52)

, where k(j) < k(i)(i # j) holds. e; and e; are mutually i.i.d. (Assumption 5.2.4), and b;; is a
real-valued constant representing causal effect from x; to x;. The adjacency matrix B is permuted
for the right permutation of its rows (corresponding to causal order k(7)) to be a lower-triangular

matrix producing a DAG and neglecting self loops.
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VAR-LINGAM VAR-LiINGAM is the LINGAM’s extension that considers contemporaneous
and past causal effects by introducing structural VAR model. VAR model, not a causal discovery
method but a stochastic process for multivariate time series, assumes past effect only. VAR is
expressed by

x(t) = v+ X Bx(t — 1) + et) (5.3)

, where v, 7, and ¢ are a dth-order constant vector acting as intercept, a time lag (r € 0, 1,--- ,0),
and an autoregressive coefficient (6 € IN). Structural VAR model is the extended VAR model that

allows contemporaneous time point, expressed by
x(t) = v+ X2_ B.x(t — 7) + e(t). (5.4)

Both models have a dth-order white noise vector as error term e(#) which does not always satisfy
Assumption 5.2.4 (e.g., additive white Gaussian noise).

Combining different estimation steps as structural VAR model and as LINGAM, VAR-
LiNGAM estimates B,. VAR-LiINGAM is expressed as follows:

x(t) = £0_Box(t — 1) + e(t) (5.5)

, where e(?) satisfies Assumption 5.2.4. The adjacency matrix By is permuted to be lower

triangular.

5.2.3 Methods based on symbolic reasoning or deep learning

We can also refer to several studies on causal learning through different approaches. Learning
from interpretation transition (LFIT) is a method for learning rules about state transitions by
discretizing time-series data of signal values or changes and constructing a Boolean network
[211]. Logical formulas can be constructed from time-series data by applying LFIT for Boolean
network inference. Additionally, causal discovery has been realized with deep learning, such
as DAG learning by GNN [212] or reinforcement learning [213]. Among the existing deep
learning for causal discovery, we focus on Structural Agnostic Modeling (SAM) [214]. SAM is a
penalized adversarial learning method that receives noise vector and real data as the generator’s
input and incorporates a binary adjacency matrix without time lag, named as structural gate, in
the generator to predict this matrix as causal structure.

As more recent deep learning technique, BaCaDi is a differentiable Bayesian method for

identifying causal structure from partial observations, even when data are scarce [215]. Inspired
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by the previous causal inference techniques, such as the Peter-Clark algorithm (JCI-PC) [216],
constraint-based inference (UT-IGSP) [217], and score-based inference (DCDI) [218], BaCaDi
can estimate Causal Bayesian networks in a gradient-based manner by observing differences in
posterior distributions after intervention. In practice, it estimates a gene regulatory network from
synthetic single-cell data, showing its outperformance over existing methods in several indices.

Hereinafter, we review the causal discovery methods, focusing more on the biological context.

5.2.4 Causal discovery in the biological context

Various methods have also been proposed for data-driven network inference in biological
context. Marbach et al. classified the data-driven gene network inference into the three groups:
statistical approach, probabilistic approach, and dynamical models [166]. Statistical approach
includes correlation networks (WGCNA [219]), information theoretic scores (ARACNE; an
algorithm for the reconstruction of gene regulatory networks in a mammalian cellular context
[220], CLR; context likelihood of relatedness algorithm [221], MRNET; minimum redundancy
networks [222]), and regression-based methods (TIGRESS; trustful inference of gene regulation
with stability selection [223], GENIE3; gene network inference with ensemble of trees [224]).
Probabilistic approach includes Gaussian graphical models [225] or Bayesian signaling network
[226]. Dynamical models includes dynamic Bayesian networks [227] or differential equation
models [228].

In contrast to data-driven gene network inference, gene network inference can be done by
knowledge-based approach. Knowledge-based gene network inference includes hierarchical
classification of functions [171] or combining gene ontology and the KEGG pathways [172].
Hybrid of the data-driven and knowledge-based methods also exist, exemplified by Boolean SAT
solver for KEGG pathways [173] or differentially weighted graphical least absolute shrinkage
and selection operator (LASSO) [174].

As for metabolic network construction from metabolite data, contrary to network inference
from lower scales, such as genes and transcripts, inference from upper scales, such as metabolites,
can be considered and be a subject for comparing the performance of our framework in Study
2. Reactomine uses a combination of greedy methods, heuristics, and unsupervised learning to
estimate chemical reaction networks from time-series data. It requires neither domain knowledge
nor supervised data and has the strength of excellent interpretability, but has the weakness of not
being scalable [229]. Structural learning estimates Bayesian networks based on Bayes’ theorem
and conditional independence. In light of our study, we can apply structural learning, such

as MMHC, to undirected edges and convert them to the Systems Biology Markup Language
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(SBML) format to make the model easier to analyze. Process Based Modeling Tool (ProBMoT)
explores chemical reaction networks by adding edges using probabilistic context-free grammars

and evolving syntax trees of algebraic equations [230].

5.3 Other possible conditions in modeling

5.3.1 System’s boundary and metabolic flux balance analysis

Although no boundaries were defined for the infection system in this research, metabolic flux
equilibrium could serve to define the system boundaries. Since the signal value of a metabolite
evolves with time, Michaelis-Menten’s law and the law of mass action, a type of reaction kinetics,
can be applied to metabolites. Metabolic flux equilibrium analysis is an analytical method for
solving constrained optimization problems for chemical reaction network models by linear
programming, assuming that the entire model is in equilibrium based on these laws applicable at
the metabolic scale. This analysis can be performed using tools such as the COnstraint-Based
Reconstruction and Analysis (COBRA) tool [231] to find the flux vector that maximizes the

metabolic activity and brings the system to equilibrium.

5.3.2 Asymptomatic SARS-CoV-2 careers

Although we ignored it in this manuscript, we might consider the existence of asymptomatic
careers, which is one of characteristics specific to COVID-19. The same betacoronaviruses as
SARS-CoV-2 have caused outbreaks before: SARS caused by SARS-CoV in 2002-2004 and
Middle East respiratory syndrome (MERS) caused by MERS-CoV in 2012 [232]. Considering
that the cumulative number of deaths in both SARS and MERS was less than 1,000, the absolute
scale of COVID-19 is dramatically different [233]. Since most of those infected with SARS
were symptomatic, the epidemic was limited to about two years by isolation policies [234].

In contrast, COVID-19 is highly infectious but often asymptomatic, making the traceability
of infected individuals difficult. About half of those infected with COVID-19 are asymptomatic
carriers, and 45% of secondary infections occur before the onset of the symptoms [235]. The
infection fatality rate (IFR) of COVID-19, the total death ratio of infectious persons with or
without a confirmed diagnosis, is estimated to be 0.3% to 0.6% as of February 2020 [236]. This
fact indicates that many potentially infected people exist without being counted in the reported
cases. Therefore, there is a need for biological indicators that can track potentially infectious

populations.

85



Chapter 5 — Related work

5.3.3 Reactivation

Specific related work investigating the phenomena of viral reactivation with the above-
mentioned other techniques includes the following. Miura et al. indicate the rapid reactivation of
HTLV-1 by cellular stress response like a transmission into a new host using computer simulation
and observed transcripts data [237]. Garnett and Grenfell described the relationship between
the reactivation of varicella-zoster virus (VZV) and the host’s age through mathematical models
and observed epidemiological data [238]. A stochastic model distinct from the deterministic
model in this study also provides new insights as exemplified by the successful description of the
HIV-1 replication dynamics model proposed by Yuan et al. [101]. Furthermore, as seen in the
remarks by Eissing ef al. [239], we would use multiscale models in which cell scales connect

higher hierarchical levels with omics data [240].

5.4 Multiomics data

While Study 2 constructed models from gene expression data pertaining to the gene and
transcript scales, there are attempts to fit models to data at all scales simultaneously. Such
data, including protein and metabolite data, are called multiomics data, and studies using this
multiomics data have been attracting attention in recent years. For example, attempts to learn
and infer multiscale models based on multiomics data are seen in Bayesian relational learning
from multiomics data [241] or metabolic activity prediction for each cell by incorporating the
expression levels of metabolite-related genes as a penalty matrix in metabolic flux equilibrium
analysis [242]. Considering these attempts are published in top journal or conference papers,
linking results at the gene, transcript, and protein scales to results at the metabolite scale for

multiscale systems would be expected to have a large impact worldwide.

To the next Chapter

The next chapter concludes this manuscript with a total summary through

the manuscript, limitations, and future work for overcoming these limita-

tions.
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CHAPTER 6

CONCLUDING REMARKS

Brief summary of this chapter

— Motivated by social demands to global issue COVID-19

— Elucidating the mechanism of viral dynamics (SARS-CoV-2 cell-
to-cell transmission)

— Verifying hypothesis from a system of pathways while proposing
DD-KB Framework

— Discovering missing knowledge through multiscale modeling

— Future work: Framework extension, development, and expansion

In summary, motivated by social demands to the global issue of COVID-19, we conducted two
studies towards elucidating the mechanism of viral dynamics for SARS-CoV-2, that is, cell-to-
cell transmission. SARS-CoV-2 cell-to-cell transmission was verified from a system of pathways
while proposing the DD-KB framework, discovering missing knowledge through multiscale
modeling. Study 2 has conducted gene network inference considering multiscale properties and
led to knowledge discovery in pathway identification. Beyond knowledge discovery, we have
developed an original framework that utilizes coexpressed genes of specific genes such as ICAM 1
and graphical modeling of these genes, establishing a foundation for future research.

As other achievements than publishing journal papers, Study 2 preprint paper was registered
on the FAIRDOMHub and linked to a unique ID (https://fairdomhub.org/publications/
641). This platform integrates the interactions of proteins, such as signaling molecules and
metabolic activators, from pathological conditions based on the sources, including the COVID-
19 Disease Map, and provides them as a graphical representation, like knowledge graphs. In
addition, to ensure transparency of the research content and to promote public disclosure, the
output data obtained from the research were uploaded to the online repository figshare. The data
obtained from NCBI GEO has already been processed for anonymization and de-identification,

and we also specified this point in our study.
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Chapter 6 — Conclusion

As a limitation throughout this research, our multiscale modeling attempts to link different
scale studies in the same scientific discovery loop as a concept. However, linking such compo-
nents in one closed multiphysics system is ideal. Compared to a linkage of macroscale tumor
models governed by physical laws of metastasis with microscale models of gene regulatory
networks [243], the perspective of elucidating infectious systems and using multiscale modeling
has yet to be explored. Therefore, modeling microscale metabolites whose dynamics can be
represented by ODEs, such as the genome-scale metabolic model (GEM) [244], would help our
attempt to connect genes and population dynamics.

Future perspectives include our DD-KB framework extension, development, and expansion.
The framework extension includes identifying nonlinear systems and uncertainty in chemical
reaction networks and modifying models by embedding discretized network structure in symbolic
space onto parameters in continuous algebraic space. In addition to causal discovery methods
mentioned in Chapter 5, we can also refer to conversion from causal network into ODEs based
on ODEs-to-FCM conversion via equilibrium equation with intervention [245] or FCM building
asymptotic behavior of ODEs under intervention [246] would be able to pave the way for
verifying dynamics inherent in the causality by continuous ODEs. As another verification
method, we can see whether the dynamic behavior of the model satisfies the specification. For
example, a model described by Computation Tree Logic (CTL) can be verified by a symbolic
model checking tool, such as NuSMYV, to analyze the reachable states [247].

The development of the framework would include outreach activities, such as opening
a platform for propagating the extensions and releasing application tools. Here, we assume
reaching a wide range of users by delivering Graphical User Interface (GUI)-based applications
rather than Python libraries. One feasible way is to use MATLAB. MATLAB language is
compatible with Python and provides tools for converting programs into applications, such as
user interface development tools and visually integrated development environments. With these
tools, MATLAB algorithms can be integrated into existing C, C++, and Java applications, and
the developed framework can be distributed. If the framework being developed can be coupled
with MATLAB, models in SBML format can be more easily analyzed using toolboxes, such as
the PottersWheel Toolbox [248], for model reduction and identifiability analysis. In addition,
the framework can be integrated with existing knowledge bases such as Pathway Commons,
BioGRID, and Signor via APIs and then released on the website as an original knowledge base to
which the framework can be applied. In the GUI-based platform, users can apply the framework
using data on hand and update them daily. Furthermore, if personal data are accepted after

de-identification and anonymization processing and providing users with estimated results, the
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framework realized online could be operated as a Software-as-a-Service (SaaS) type of Al that
performs personalized medicine (patient-tailored therapeutics). Accepting registration of data
and knowledge graphs from users as a hub will also expand the knowledge base according to
access, automating knowledge acquisition and promoting lifelong learning.

As another aspect, the framework would be expanded to application to other global issues.
This manuscript dealt with macroscopic viral dynamics as a within-host viral infection. However,
we can work on a more macroscopic Earth and planetary system as an application of the DD-KB
approach framework. This topic may seem far from the viruses, but it can be very close. For
example, both viral infection systems and Earth and planetary systems are complex systems with
multiscale and multiphysics properties. They share the same formal expression in that they are
based on a network structure composed of time-evolving entities. They also have in common
that they should be compatible with the DD-KB approach. There are two representative models
related to the Earth and planetary systems: the Earth System Model (ESM) and the Integrated
Assessment Model (IAM). The ESM is closer to natural science and data-driven (downscaling
by deep learning to achieve large scale and high accuracy) model consisting of material cycles
such as biogeochemical cycles or the Atlantic Meridional Overturning Circulation (AMOC). At
the same time, the IAM has a higher affinity to knowledge, such as socio-economic processes,
behavior change of human groups, and policy-making (emphasizing causality and interpretability
and aiming for simplicity). More recently, coupling these two models into a global-scale model
has also been studied [249, 250]. The DD-KB approach would enable ESM-IAM coupled
modeling for evidence-based policy making (EBPM), which is based on big data but can also
explain the rationale behind the results. Because of the real-time properties of Earth’s satellite
data, the model may be called the “Earth Digital Twin,” built on the metaverse rather than a
simulation model. Furthermore, given that marine virome forms a vast biomass and significantly
impacts marine ecosystems, omics data would be combined with the Earth and planetary systems.
To realize the above, cooperation with various stakeholders will be more critical than this doctoral
research, with the significant goals of further understanding the mechanisms of the Earth and
planetary systems and contributing to evidence-based policy-making and advocacy to realize a

safe and secure society and sustainable development in the Anthropocene.
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Résumé: Le systemeintra-hote qui est a la base
de linfection est un systeme complexe
composé d'éléments interconnectés a la méme
échelle de la hiérarchie biologique et a
différentes échelles de la hiérarchie. Ces liens
forment des structures de réseau sous forme de
corrélations ou de relations causales entre les
composants, qui peuvent étre calculées en
intégrant des données d'observation et des
connaissances de base. Dans cette recherche,
compte tenu de la demande sociale
d'acquisition de connaissances sur le
mécanisme et les stratégies de controle de
l'infection concernant le probléeme global du
COVID-19, nous visons a découvrir de nouvelles
connaissances sur son virus pathogene, le
SARS-CoV-2, par la  modélisation et
I'exploration de données des systemes
d'infection virale aux échelles macroscopique et
microscopique. Plus spécifiquement, nous

construisons d'abord une hypothese basée sur
la simulation de la dynamique de transmission
de cellule a cellule du virus en modélisant la
dynamique de la population virale avec des
équations différentielles. Pour vérifier cette
hypothese a [I'échelle microscopique, nous
estimons ensuite le réseau de genes a partir de
données omiques unicellulaires et de multiples
graphes de connaissances, en nous concentrant
sur une molécule d'adhésion intercellulaire. En
consequence, nous découvrons des voies de
signalisation inconnues, absentes de la base de
connaissances existante sur COVID-19. Enfin,
cette recherche contribue a la découverte
scientifique en exploitant les données et les
connaissances dans la modélisation multi-
échelle et l'exploration des données de la
dynamique virale de la transmission de cellule a
cellule du SARS-CoV-2.

Title: Data-Driven and Knowledge-Based Multiscale Modeling of Viral Dynamics

Keywords: Modeling and simulation, Numerical analysis, Cell-to-cell transmission, Gene network

inference, Signaling pathway construction, COVID-19

Abstract: The within-host system underlying
infection is a complex system consisting of
components interconnected at the same scale
of the biological hierarchy and different scales
across the hierarchy. Such linkages form
network structures as correlations or causal
relationships among components, which can be
computed by integrating observational data
and background knowledge. In this study,
considering the social demand for knowledge
acquisition on the mechanism and infection
control strategies regarding the global issue of
COVID-19, we aim to discover novel knowledge
about its pathogenic virus, SARS-CoV-2,
through modeling and data mining of viral
infection systems at both macroscopic and

microscopic  scales. Specifically, we first
construct a simulation-based hypothesis on
viral cell-to-cell transmission dynamics by
modeling viral population dynamics with
differential equations. To verify this hypothesis
at the microscopic scale, we subsequently
estimate the gene network from single-cell
omics data and multiple knowledge graphs,
focusing on an intercellular adhesion molecule.
As a result, we discover unknown signaling
pathways missing from the existing knowledge
base on COVID-19. Overall, this study
contributes to scientific discovery by harnessing
data and knowledge in multiscale modeling and
data mining of the viral dynamics of SARS-CoV-
2 cell-to-cell transmission.
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