
Privacy Leakage in Encrypted DNS
Traffic: Analysis and Countermeasure

by

GUANNAN HU

Dissertation

submitted to the Department of Informatics

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

The Graduate University for Advanced Studies, SOKENDAI
July 2024

iii

Committee

Advisor Dr. Kensuke Fukuda
Professor of National Institute of Informatics/SOKENDAI, Japan

Subadvisor Dr. Yusheng Ji
Professor of National Institute of Informatics/SOKENDAI, Japan

Examiner Dr. Megumi Kaneko
Professor of National Institute of Informatics/SOKENDAI, Japan

Examiner Dr. Michihiro Koibuchi
Professor of National Institute of Informatics/SOKENDAI, Japan

Examiner Dr. Hideya Ochiai
Associate Professor of the University of Tokyo, Japan

v

Acknowledgements

I would like to thank my supervisor, Prof. Kensuke Fukuda, for guiding me and
supporting me when I need support during these years. His strictness and patience
have been invaluable in helping me to learn how to do research work and give me
brilliant ideas on how to think about the program.

I am thankful to my advisory committee, Prof. Yusheng Ji, Prof. Shunji Abe, Prof.
Michihiro Koibuchi, Prof. Megumi Kaneko, and Prof. Hideya Ochiai for their helpful
comments and suggestions.

I appreciate my lab members for discussing and provide intellectual comments on
my research. Also, sharing the research experience with me.

I am pleased to my family for staying with me forever. Typically, I also want to
thank SOKENDAI and the National Institute of Informatics for academic support and
provide the opportunity to do further work.

vii

Abstract

The Domain Name System (DNS) translates domain names into one or more
IP addresses by asking the caching server when the users enter a URL into their
browser. The DNS caching resolver stores a database of domain names and their
corresponding IP addresses in the global network. While the user types a domain name
into the web browser, the host first checks the caching resolver to see if it already
has the corresponding IP address. If no, it begins by querying a root server, then the
top-level-domain (TLD) server, and finally the authoritative name server.

DNS is designed to be sent in plain text according to RFC 1035 [1], allowing the
adversary to eavesdrop on DNS communication by monitoring the network. DNS
messages are unencrypted and contain domain names representing the users’ private
information, such as health, finance, and religion, which leads to information leakage
while users visit websites. Intending to protect the person’s private information, several
encrypted DNS protocols have been proposed: DNS over HTTPS (DoH), DNS over TLS
(DoT), and DNS over QUIC (DoQ). These protocols encrypt DNS packets between the
client and DNS caching resolver with different underlying transports. Some public DNS
caching resolvers have already supported DoT and DoH, such as Google, Cloudflare,
and Quad9. Only the AdGuard and NextDNS support the DoQ protocol, at the time of
writing. Also, the user could change some browser settings (e.g., Chrome and Firefox)
to enable the DoH. However, recent studies showed that the adversary could still
infer the category of websites even using DoT and DoH by analyzing the encrypting
DNS traffic. This dissertation aims to investigate the information leakage problem of
encrypted DNS protocols and develop countermeasures to protect user privacy against
website fingerprinting attacks.

In the first half of this dissertation, we study the privacy leakage problem of

viii

encrypted DNS traffic (i.e., DoT, DoH, and DoQ) with three different DNS caching
resolvers (NextDNS, Bind, and Google). Depending on the DNS software configurations
(public and local DNS caching resolvers), we consider two threat models to simulate the
website fingerprinting on binary and multi-classification. We choose 30 categories from
Alexa’s top 300,000 websites and select the top-400 websites for each category. For the
binary classification, we split the dataset into ’Sensitive’, related to personal information
such as health, finances, religion, and government, and ’Non-Sensitive’. As the baseline
analysis, we evaluate the classification performance of DoQ traffic with balanced
(10 categories from ’Sensitive’, and 10 categories from ’Non-Sensitive’ randomly)
and imbalanced (10 categories from ’Sensitive’, and remaining 20 categories from
’Non-Sensitive’) datasets on Bind and NextDNS. We also examine the performance of
DoQ, DoH, and DoT with Google resolver. We find that the classification performance
of the websites is high both in NextDNS, Bind, and Google resolvers for identifying
whether the user visits the category of websites. We confirm no significant influence
on whether the local resolver is cached and caching order. More particularly, we
indicate that discriminative features are mainly related to the inter-arrival time of
packets and packet length. For the multi-classification, we notice the performances
decrease as the number of categories increases for the Bind resolver, meaning that the
impact of the leakage is limited. We also notice the performances are not directly
related to the number of crawls.

From the important features, a promising approach is to control the inter-arrival
distribution and packet length for the mitigation. In the second half of this dissertation,
we further investigate four possible countermeasures that could affect the classification
results: using AdBlocker extension, disabling DNS prefetch, adding random delay
in responses, and padding the DNS payload. 1) We show that using AdBlocker and
disabling DNS prefetch are less effective in mitigating the attack. 2) We find that mean
F1 scores decrease as the delays increase. Specifically, it decreases the classification
performance by 22% with NextDNS and 18% with Bind. 3) DNS padding decreases the
classification performance by 9%. We further investigate the combination of the two
countermeasures: both adding random (0-60ms and 0-100ms) delays and padding
the DNS payload. We confirm that the combined method could greatly reduce the
classification performance, on average 27% of binary and 22% of multi-classification in
Bind. These results indicate that adding random time and padding can protect users’

ix

information from the website fingerprinting attack.

xi

Contents

List of Figures xv

List of Tables xvii

1 Introduction 1

1.1 Motivation . 1
1.2 Problem Statement and Research Questions 4
1.3 Contributions . 6

1.3.1 Characterizing Privacy Leakage in Encrypted DNS Traffic . . . 6
1.3.2 Mitigate the privacy leakage of DoQ 6

1.4 Dissertation outline . 7

2 Background and Related Works 9

2.1 DNS Encryption Protocols . 9
2.1.1 Encrypted DNS protocols . 9
2.1.2 Deployment of encrypted DNS protocols 11

2.2 Encrypted DNS Configurations . 14
2.3 Related Works . 15

2.3.1 Website Fingerprinting Attack 16
2.3.2 Encrypted Traffic Analysis with Machine Learning Technique . 19
2.3.3 Encrypted DNS: Deployment, Detecting, and Performance

Analysis . 20
2.4 Summary . 23

xii Contents

3 Methodology 25
3.1 Measurement Setup . 25
3.2 Overview . 27

3.2.1 Dataset Preparation . 28
3.2.2 Features . 31
3.2.3 Modeling . 34

4 Classification Performance 37
4.1 Binary Classification Performance . 38

4.1.1 Baseline Classification Performance 38
4.1.2 Feature Importance . 38
4.1.3 Effect of cache on Bind . 39
4.1.4 DoQ with another Public (Google) Resolver 42
4.1.5 DoT and DoH with Public (Google) Resolver 42

4.2 Multi-Classification Performance . 43
4.2.1 Baseline Classification Performance 43
4.2.2 The Effect of Number of Crawls 44

4.3 Summary . 44

5 Countermeasure 47
5.1 Controlling Inter-arrival time . 48

5.1.1 Using AdBlocker . 48
5.1.2 Disabling DNS Prefetching . 49
5.1.3 Adding Random Delay . 50

5.2 Controlling Packet Length . 51
5.2.1 Padding DNS Payload . 51

5.3 Combination of Two Countermeasures 54
5.3.1 Binary Classification Performance 54
5.3.2 Multi-Classification Performance 56

5.4 Summary . 57

6 Discussion 59
6.1 Discussion . 59

6.1.1 Key findings . 59

Contents xiii

6.1.2 The target F1 scores for binary and multi-classification 64
6.1.3 Why category should be protected? 65
6.1.4 Can the attacker evade the countermeasures? 65

6.2 Limitations . 65
6.3 Future Work . 67

7 Conclusion 69

Bibliography 73

A Appendix 81
A.1 Features List . 81
A.2 The Feature of Query-Response . 85
A.3 Padding Configuration of Bind9 . 87

xv

List of Figures

1.1 What happened when you visit the website? 2
1.2 Website Fingerprinting Attack on Website 3
1.3 Website Fingerprinting Attack on Encrypted DNS 5

2.1 Set up DoH in the Chrome browser . 13
2.2 Two configurations to deploy the encrypted DNS in the network 16

3.1 Threat Model: passive eavesdropper between a user and recursive
resolver . 27

3.2 Overview of machine learning approach for website fingerprinting
attack on encrypted DNS . 28

4.1 Classification performance (Bind and NextDNS) 39
4.2 Classification performance (Effect of caching order with Bind) 41
4.3 The classification performance of Cache and No-Cache 42
4.4 Classification Performance of Google Resolver with Binary Class . . . 43
4.5 Classification Performance of DoT and DoH with Google 44
4.6 Multi-classification performance (Bind) 45
4.7 Multi-Classification Performance (Effect of the Number of Crawls) . . . 45

5.1 Possible Countermeasures to Mitigate the Website Fingerprinting Attack 48
5.2 Classification performance of using AdBlocker 49
5.3 Classification performance of disabling DNS prefetch 50
5.4 Adding random delays . 50
5.5 Classification performance of adding random delays (Bind and NextDNS) 52

xvi List of Figures

5.6 The distribution of Adding random delays (i.e., the mean value of
response inter-arrival time) . 53

5.7 Padding DNS payload . 53
5.8 Classification Performance of Padding DNS payload (Bind) 54
5.9 Classification performance for random delays and padding (Bind) . . . 55
5.10 Confusion matrix of Bind with/without delay and padding 56
5.11 Multi-classification performance for adding random delay and padding

payload (Bind) . 57

A.1 First Case of Query-Response . 85
A.2 Second Case of Query-Response . 86
A.3 Third Case of Query-Response . 86

xvii

List of Tables

2.1 Compare the available DNS information between DNS and encrypted
DNS traffic . 10

2.2 The deployment of DNS caching resolver that supports DNS encryption 12
2.3 The deployment of browser that supports DNS encryption 14
2.4 Related works of website fingerprinting attack 18
2.5 Related works of encrypted traffic analysis 19
2.6 Comparison with other related works of website fingerprinting attack

on encrypted DNS . 24

3.1 Summary of measurement setup on encrypted DNS 26
3.2 Binary class dataset . 31
3.3 Multi-class dataset . 32

4.1 Top-10 discriminative features（Balanced Dataset） 40
4.2 Top-10 discriminative features（Imbalanced Dataset） 41

5.1 Top-10 discriminative features (random delays and padding) 55

A.1 Flow Feature Selection . 81

1

1
Introduction

1.1 Motivation

As we rely more on the Internet, the network becomes the most indispensable part
of human life that involves study, work, and entertainment. Figure 1.1 shows the
simple process while the user visiting the websites. The user enters the URL (i.e.,
www.example.com) of the website, and the browser initiates the DNS query to DNS
caching resolver the domain name into an IP address (A of Figure 1.1). Then, the
browser initiates the TCP connection to the IP address obtained from the DNS resolver,
once the connection is established, the browser sends the HTTP request to the web
server for the resource request (i.e., webpage, image, video, and javascript). The web
server receives the HTTP request and processes it (B of Figure 1.1). We always search
for information such as financial, social media, government, and business through
the network. As a result, the network communication may contain personal private
information. Without proper security measures, this information is vulnerable to the
malicious adversary. HTTPS [2](Hypertext Transfer Protocol Secure) is often used to

2 Chapter 1. Introduction

encrypt web communication using TLS (Transport Layer Security) or SSL (Secure
Socket Layer) protocol.

DNS
Server

Web
Server

Request: www.example.com

What’s the IP of www.example.com

The IP is 1.2.3.4

HTTP Request

HTTP Response
User

A

B

Encrypted by TLS/SSL or QUIC

Encrypted DNS Traffic by DoT, DoH or DoQ

Figure 1.1: What happened when you visit the website?

However, some research [3, 4] reported that web traffic flow information, such
as packet arrival time and size, is still exposed even though using these encryption
protocols (i.e., HTTPS and QUIC) to protect the web contexts. For example, “Pervasive
Monitoring” [5] is the main attack in that the adversary could monitor the network
communication and infer the users’ private information by analyzing the packet
features (i.e., packet length, count, and time). The attack flow in the pervasive
monitoring is as follows (see also Figure 1.2):

1. Data Collection and Feature Extraction: The attacker first collects encrypted
web traffic by visiting websites using his/her environment that is similar to
the user. The attacker could label the category based on the domain names in
advance and extract various flow features, such as packet sizes, timing, and
packet number. Divide the dataset into two sets: training and testing in Figure 1.2
(a).

2. Model Building: The attacker uses cross-validation with the training dataset to
measure the F1 score. After evaluating performance, the attacker selects the best
algorithm and parameter to build the model in Figure 1.2 (a).

1.1 Motivation 3

3. Model Evaluation: The attacker evaluates the model with the testing data.
When the attacker eavesdrops on the network communication from an unknown
user, the attacker predicts which websites the user is visiting by asking the
well-trained model in Figure 1.2 (b).

(a) Model Building

• Packet Number
• Packet Size
• Duration
• Inter-arrival Time…

Web server

Category 1

Category N

……..Capture Web Traffic

Machine Learning Classifiers Model

(a) Model Building

(b) AttackingWeb Traffic

Victim
Unknown Website

Website Fingerprinting
Category 2

Predict
Eavesdrop

Model

Web server

(b) Evaluation

Figure 1.2: Website Fingerprinting Attack on Website

Similar to information leakage in encrypted web traffic, we focus on another
protocol related to the website for information leakage, Domain Name System (DNS) [1].
When the user types the website (i.e., www.example.com) into the browser, DNS
translates this human-readable domain to the numerical IP address. The DNS is a global
service for mapping between hostnames and IP addresses in network communication.
While the user accesses the webpage, the host first sends queries related to the webpage
to the DNS caching resolver. After the DNS resolver lookups the domains, then returns
the results to the client. In this process, the DNS packets are unencrypted and easily
be eavesdropped by the adversary. There are three privacy disclosure problems:
client-side, transmission process, and DNS resolver-side. With the growing awareness
of privacy and security concerns on the DNS, there has been increasing adoption of

4 Chapter 1. Introduction

encrypted DNS protocols such as DNS over HTTPS (DoH) [6] and DNS over TLS
(DoT) [7], DNS over QUIC (DoQ) [8], and DNSCrypt [9]. The purpose of encrypted
DNS protocols is to encrypt DNS queries made by the client and the corresponding DNS
responses received from the DNS caching resolver. This encryption ensures that the
content of DNS queries and responses remains classified and cannot be tampered with
by unauthorized parties. Currently, various public DNS services support the encrypted
DNS protocol. For example, Google [10], Cloudflare [11], and Quad9 [12] have already
supported the DoT and DoH. Furthermore, AdGuard [13] and NextDNS [14] support
DoQ. Here, we intend to understand whether the encrypted DNS, especially DoQ has
information leakage problem, and which factors affect the performance. The process of
website fingerprinting attack on the encrypted DNS is similar to traditional web traffic.
We describe it as follows (see also Figure 1.3):

1. Data Preparation: The attacker first needs to collect encrypted DNS traffic by
visiting websites using an environment that is similar to the user. For example,
using Google or Firefox browser, connect to the popular DNS caching resolver
that supports encrypted DNS on the home or public Wi-Fi network. The attacker
could label the category based on the domain names in advance. Then, the
attacker extracts flow features, like packet size, timing, and packet number in
Figure 1.3 (a).

2. Model Building: The attacker uses the preprocessed dataset to build a fingerprint
model that maps traffic features to classify the types of websites with machine
learning techniques in Figure 1.3 (a).

3. Model Evaluation: The attacker evaluates the performance of the trained
model. When the attacker eavesdrops on the network communication from an
unknown user, they predict which websites the user is visiting by asking the
well-trained model in Figure 1.3 (b).

1.2 Problem Statement and Research Questions

In this thesis, we investigate the information leakage problem of encrypted DNS
and clarify its countermeasure to mitigate the attack. Recent studies investigated

1.2 Problem Statement and Research Questions 5

(a) Model Building

Machine Learning Classifiers

Recursive Resolver

Category 1

Category N

……..

Capture Encrypted
DNS Traffic

Model

• Packet Number
• Packet Size
• Direction
• Inter-arrival Time…

(a) Model Building

Model

(b) Attacking
Encrypted DNS Traces

Victim

Unknown Website

Website Fingerprinting
Category 2

PredictEavesdrop
Recursive Resolver

(b) Evaluation

Figure 1.3: Website Fingerprinting Attack on Encrypted DNS

the information leakage by DoT [15] and DoH [16, 17]. They found that information
leakage is still possible even in DoT and DoH. Ref. [15] also showed the help of padding
DNS payload on DoT is limited.

In the light of the above discussion, our research questions will be broken down
into four research questions (RQ):

1. RQ1: Could the encrypted DNS protocol (especially for DoQ) defend against the
website fingerprinting attack?

2. RQ2: If we examine different encrypted DNS protocols or DNS resolvers, will we
get different results?

3. RQ3: What are the main factors affecting the results？

4. RQ4: How to mitigate the leakage on DoQ?

6 Chapter 1. Introduction

1.3 Contributions

Our contributions are based on the four research questions above. The goal of this
paper is to investigate the information leakage of encrypted DNS protocols, mainly
focusing on the DNS over QUIC, and present four possible countermeasures to mitigate
the privacy leakage of DoQ. In the first part of this study, we investigate the privacy
leakage problem of DoQ protocol with three different DNS recursive resolvers (Bind,
NextDNS, and Google) for binary and multi-classification. Also, we analyze the binary
classification performance of DoT and DoH on Google. The second part is to mitigate
the privacy leakage of DoQ using four possible countermeasures: using AdBlocker
extension, disabling DNS prefetch, adding random delay, and padding the DNS payload.

1.3.1 Characterizing Privacy Leakage in Encrypted DNS Traffic

Due to several encrypted DNS protocols have been proposed, we intend to
understand whether these could protect the information of web privacy. For binary
classification, we confirm that the information leakage against website fingerprinting
attacks exists in DoQ, as well as DoT and DoH. The classification performance of the
website is all high in Bind, NextDNS, and Google resolvers. For binary classification,
we find high discriminative features to infer the website which is mainly related to
inter-arrival time and packet length. By analyzing the caching effect of DoQ at the
local resolver, we find the randomization of the caching order does not change the
performance; Thus, the caching effect is considerably small. We further confirm that
the classification performance with and without caching also does not change it so
much. Also, for the multi-classification, we observe the performances decrease as the
number of categories increases, meaning that the impact of leakage is limited.

1.3.2 Mitigate the privacy leakage of DoQ

Based on our findings, controlling the inter-arrival time and padding the DNS
payload are promising ways to mitigate the website fingerprinting attack on the
DoQ. Thus, we investigate three countermeasures that control the inter-arrival time:
using AdBlock extension, disabling DNS prefetch, and adding random delays in the
DNS process. Padding DNS payload [18] is always used to change the packet length.

1.4 Dissertation outline 7

Using AdBlocker and disabling DNS prefetch is less effective at mitigating the website
fingerprinting attack. Adding random delay decreases the performance by 19% (0.9 to
0.71) with Bind and 21% (0.9 to 0.69) with NextDNS for binary classification and 18%
with Bind and 22% with NextDNS for multi-classification. DNS padding also mitigates
the classification performance by 10%. We finally demonstrate that combining the
two countermeasures: adding random delay (0-60ms and 0-100ms) and padding DNS
payload with binary and multi-classification. The degradations of performance are 27%
for binary class and 22% for multi-class; they are useful in protecting user’s privacy.

1.4 Dissertation outline

The next chapters of the dissertation are summarized as follows.

• Chapter 2: We describe the encrypted DNS in detail, including the standard
method, deployment, and configuration. Then, we review the work related to the
website fingerprinting attack and encrypted traffic like QUIC, HTTPS, and DNS
over encrypted protocols with machine learning techniques.

• Chapter 3: We explain the simulation of two threat models depending on the
configurations. Then, we describe the process of dataset collection, category
selection, classifier selection, and feature extraction.

• Chapter 4: The chapter discusses the evaluation of binary classification perfor-
mance for DoQ with three DNS resolvers: Bind, NextDNS, and Google with
balanced and imbalanced datasets. We also investigate the classification perfor-
mance of other encrypted DNS protocols: DoT and DoH. Finally, we describe the
multi-classification performance for DoQ traffic in the two configurations.

• Chapter 5: We evaluate four possible countermeasures: using AdBlocker
extension, disabling DNS prefetch, adding random delay, and padding DNS
payload.

• Chapter 6: This chapter summarizes the dissertation and discusses our limita-
tions and future works.

9

2
Background and Related Works

In this chapter, we introduce three types of encrypted DNS protocols in §2.1
and two configurations of encrypted DNS techniques in the network in §2.2, used
throughout this thesis to ease the understanding of the following chapters. Then, we
present the existing research on the website fingerprinting attack and encrypted traffic
(i.e., HTTPS, TLS, and QUIC) with machine learning algorithms. Also, we describe the
deployment and analysis of several encrypted DNS protocols, such as DoQ, DoT, and
DoH in §2.3.

2.1 DNS Encryption Protocols

2.1.1 Encrypted DNS protocols

Traditional DNS [1] queries are sent in plain text, making them vulnerable to
monitoring by eavesdroppers. The DNS does not provide encryption, which leads
to information leakage. To address the privacy issues, several protocols have been

10 Chapter 2. Background and Related Works

proposed: DNS over TLS (DoT), DNS over HTTPS (DoH), and DNS over QUIC (DoQ).
These protocols establish the encrypted connections between the client and the DNS
resolver to increase user privacy and security.

Like traditional DNS, the IP/TCP and IP/UDP header (5-tuple information) of
encrypted DNS protocols are still unencrypted. Encrypted protocols (i.e., HTTPS, TLS,
and QUIC) are used to protect DNS data. Therefore, various features of DNS packet
headers and payloads (i.e., query name and type, TTL) are unavailable. In contrast,
except for the unencrypted IP header, other characteristics like packet size, count, and
time-series pattern are still useful for identification. Table 2.1 lists the still visible
features in encrypted DNS traffic.

Table 2.1: Compare the available DNS information between DNS and encrypted DNS
traffic

Features Plain DNS Encrypted DNS
5-tuple information ✓ ✓

Packet size ✓ ✓

Packet count ✓ ✓

Packet timing ✓ ✓

Domain Name ✓

Record types (i.e., A, AAAA, and PTR) ✓

Record class (i.e., IN) ✓

TTL ✓

DNS over TLS (DoT) DoT uses Transport Layer Security (TLS) based on TCP
protocol for encryption and authentication in network transmission and standardized
in RFC 7858 [7]. DoT uses port TCP/853.

DNS over HTTPS (DoH) The Internet Engineering Task Force (IETF) specified DoH
in RFC 8484 [6]. DoH is similar to DoT. However, DoH queries and responses are sent
by HTTPS or HTTP/2 as transport protocols instead of TCP. DoH uses port TCP/443,
which is the standard port for HTTPS traffic. DoH has seen wider adoption in web
browsers like Firefox and Chrome.

DNS over QUIC (DoQ) More particularly, DoQ is a new protocol to encrypt DNS
messages using QUIC (Quick UDP InternetConnections) protocol as an underlying

2.1 DNS Encryption Protocols 11

transport. QUIC is a new transport protocol based on UDP and standardized by IETF
RFC 9000 [19]. The implementation of QUIC is based on UDP. TCP and UDP work in
the kernel model, while QUIC is implemented in the user space. QUIC is similar to TCP
+ TLS secure data transmission. Compared to TCP, QUIC is faster and supports better
encryption because it enables zero-RTT and TLS 1.3. DoQ uses the special service port,
UDP/784 and UDP/853 that are currently not widely deployed in the DNS resolver.

2.1.2 Deployment of encrypted DNS protocols

DNS encryptions are applied for the queries and responses between clients and
DNS resolvers. DNS resolvers can generally be categorized into two main types:
public resolvers and local resolvers. Table 2.2 shows the most popular and widely
used DNS resolvers. A few public resolvers, like Google [20], Cloudflare, and Quad9
support DoT and DoH. [21, 22] reported there are 7 DoT-enabled, 62 DoH-enabled, and
AdGuard [13] DoQ support resolvers. For now, we find NextDNS [14] also supports the
DoQ. The user could directly connect to these encrypted-enable DNS resolvers, the
communication between the end user and these resolvers is encrypted.

NextDNS NextDNS [14] protects the users from all kinds of security threats, blocks
ads and trackers on websites, and provides encrypted DNS (e.g., DoT, DoH, and DoQ)
by configuring the user’s device ID.

AdGuard AdGuard DNS [13] blocks the ads on the website and provides the AdGuard
DNS servers to support encrypted DNS.

While we want to deploy the encryption protocols between the client and the local
DNS resolver (i.e., Bind [23] and Unbound [24]), we need the DNS proxy to encrypt the
traffic.

Selecting local DNS resolver software is essential for ensuring efficient and secure
DNS resolution within a network environment. Local DNS resolver software gives users
greater control over DNS resolution settings (i.e., DNS encryption) and configurations
(i.e., cache and padding). We list four popular local DNS resolver software as follows:

Bind BIND [23] is one of the oldest and most widely used DNS server software, It
can work as both an authoritative DNS server and a DNS resolver.

12 Chapter 2. Background and Related Works

Unbound Unbound [24] is a validating, recursive, caching DNS resolver and began
to support DoT and DoH, which allows clients to encrypt their communication in
version 1.6.0.

Stubby Stubby [25] is a lightweight DNS stub resolver developed by the GetDNS
project. It acts as a local DNS resolver that supports DoT and DoH to encrypt DNS
queries sent from the client device to the DNS resolver.

Knot Stubby [26] Knot Resolver is a caching full resolver implementation developed
by CZ.NIC. It supports DoT and DoH for encrypted DNS resolution at the local level.

Table 2.2: The deployment of DNS caching resolver that supports DNS encryption
Target Resolvers DoT DoH DoQ

Public

Google ✓ ✓

Cloudflare ✓ ✓

Quad9 ✓ ✓

NextDNS ✓ ✓ ✓

AdGuard ✓ ✓ ✓

Local Bind (ver.9.17.10) ✓ ✓

Unbound (ver.1.6.0) ✓ ✓

Stubby (ver.0.1.3) ✓ ✓

Knot (ver.5.0.1) ✓ ✓

Similarly, some popular browsers such as Firefox [27], Chrome [28], and Opera [29]
also offer DNS encryption by adding an option in the configuration setting. On the
client side, the user can change the browser’s settings to enable DoH. For example, we
show that how to set DoH in the Chrome in Figure 2.1, if support, the ’Using DNS over
HTTPS (DoH)’ shows ’Yes’ in the https://one.one.one.one/help/.

Table 2.3 shows browsers that support encrypted DNS and we describe these
browsers as follows:

Chrome Chrome [28] is one of the most widely used web browsers globally,
developed by Google. Chrome 78 enables opportunistic DoH if the system resolver
address matches one of the DoH providers. This experiment is enabled for all platforms
except Linux and iOS.

https://one.one.one.one/help/

2.1 DNS Encryption Protocols 13

Figure 2.1: Set up DoH in the Chrome browser

Firefox Firefox [27] is an open-source web browser developed byMozilla Corporation.
Firefox supports DoH from version 62, released in May 2018.

Apple Safari Safari [30] supports DoH in version 14, released with macOS Big Sur
and iOS 14 in September 2020.

Microsoft Edge Edge [31] introduces support for DoH in version 79, released in
January 2020. DoH encrypts DNS queries, enhancing privacy and security for users.
Edge allows users to enable DoH in the browser settings and specify their preferred
DoH resolver.

Opera Opera [29] added support DoH in version 56, released in September 2018.

Brave Brave [32] supports DoH for encrypted DNS resolution. While the specific
version introducing DoH support is not specified, Brave likely implemented support
for DoH in earlier versions, aligning with other Chromium-based browsers.

In our work, we mainly focus on DoQ, however, no browser supports it and we
need the DNS proxy to encrypt DNS traffic with different protocols. We select Adguard
DNS proxy [33] and describe it as follows:

AdGuard DNS proxy It supports all existing DNS protocols including DoT, DoQ,
and DoQ. Suppose we directly connect to the encrypted DNS caching resolver. In that
case, we can use a simple upstream command in the client, for example, ./dnsproxy -u

14 Chapter 2. Background and Related Works

Table 2.3: The deployment of browser that supports DNS encryption
Browser DoT DoH DoQ
Google Chrome (ver.78) ✓

Mozilla Firefox (ver.62) ✓

Apple Safari (ver.14) ✓

Microsoft Edge (ver.79) ✓

Opera (ver.56) ✓

Brave ✓

quic://dns.adguard.com (using DoQ protocol to connect AdGuard DNS resolver). It also
supports the encrypted DNS server like that ./dnsproxy -l 127.0.0.1 –quic-port=853
–tls-crt=example.crt –tls-key=example.key -u 8.8.8.8:53 -p 0.

In summary, DoT, DoH, and DoQ are encrypted DNS protocols to enhance security
and privacy in network communication. There are two typical usages of encrypted
DNS protocols:

(1) Stub resolvers (e.g., home routers) connect to DoT/DoH available caching
resolvers with DoT/DoH;

(2) Web browsers (configure DoT/DoH in different browsers) directly connect to
DoT/DoH available caching resolvers. DoT/DoH/DoQ rely on reliable connection-
oriented transport, so each browser establishes the connection (with a unique 5-tuple)
to the caching resolver.

2.2 Encrypted DNS Configurations

Encrypted DNS helps protect user privacy by encrypting DNS queries and responses
between the end user and DNS resolver, preventing unauthorized parties from
monitoring or intercepting DNS traffic. Depending on the previous section, We learned
that not all DNS resolvers support encryption, especially DoQ. In our work, we intend
to understand the privacy problem of encrypted DNS protocols (mainly DoQ) on the
web with two kinds of DNS resolvers: public and local software. Regarding the tested
recursive resolvers, we choose Google, NextDNS, and Bind. NextDNS has already
deployed the DNS over QUIC, Google is a well-known resolver.

For the public DNS caching resolver that supports encrypted DNS, we can directly
connect it and capture the traffic. However, we cannot control the cache in this case.

2.3 Related Works 15

Since we want to examine the cache effect on the caching resolver, we should select
the local DNS software that supports encrypted DNS. As shown in Table 2.2, we
observed no local DNS software support the DoQ. In this case, we need the DNS proxy
to help us to encrypt the DNS traffic with different underlying protocols. Therefore,
we summarize two possible configurations to realize encrypted DNS. As shown in
Figure 2.2 (a), the user visits the website, such as "example.com", and directly sends the
DNS query to the recursive resolver, supporting DoQ/DoT/DoH. For example, AdGuard
(dns.adguard.com) and NextDNS work as recursive resolvers. The traffic in this process
is encrypted. Here, queries between the client and the resolver are encrypted.

The other configuration, as shown in Figure 2.2 (b), requires a proxy when the
resolver does not support the encrypted DNS. In our paper, we use the AdGuard proxy
as the DNS proxy. At first, the client establishes the connection to the DNS proxy by
the TLS/SSL certificate. Once the connection is established, when the user visits the
website, the encrypted query is first sent to the proxy. Then, the DNS proxy forwards
the query to the recursive resolver. After the DNS resolver looks up the query and
transfers the response to the DNS proxy. In the same way, the proxy encrypts the
response and transfers it to the user. The proxy is just a forwarder without the cache.
We can specify a recursive resolver to look up this query, such as Google Public DNS
(non-support DoQ) or local resolvers.

On the client side, in either case, the traffic observed by the user is always encrypted.
While visiting the website in the browser, we observe multiple DoQ packets in one
session. One webpage could include multiple resources, such as browser information,
images, and JavaScript files. Different websites generate different numbers of encrypted
DNS queries. For example, some websites generate fewer packets due to a login screen.
By contrast, a media website (i.e., youtube.com) can integrate some images and video,
resulting in many DNS resolutions. In one session, these queries share the same source
port. For the second configuration (b), we can control the cache in the local recursive
resolver.

2.3 Related Works

There are three categories of related works. First, we describe the website fin-
gerprinting attack of encrypted traffic in §2.3.1. Our threat model is similar to this

16 Chapter 2. Background and Related Works

Client - Side

Browser DoQ/DoT/DoH
Resolvers

Server - Side
DNS

Proxy
Name

Servers
NextDNS

(a)

Client - Side

Browser
Recursive
Resolvers

Server - Side
DNS

Proxy
DNS

Proxy
Name

Servers
Google/Bind

(b)

Figure 2.2: Two configurations to deploy the encrypted DNS in the network

attack, our work is based on previous approaches. Then, we list some methods for
analyzing the encrypted traffic with machine learning techniques in §2.3.2. Our work
focuses on the website fingerprinting attack of encrypted DNS traffic instead of the
web. Therefore, we discuss the related works of encrypted DNS, such as deployment,
adoption, detection, and performance analysis in §2.3.3.

2.3.1 Website Fingerprinting Attack

The adversary could monitor the network traffic between the victim and the web
server, known as a website fingerprinting (WFP) attack. The adversary intends to
classify the websites the victim visited by analyzing the traffic patterns. Previous
works [34–40] analyzed the WFP attacks primarily based on the encrypted traffic. We
list some related works of website fingerprinting in Table 2.4.

Marc and Brian [39] identified encrypted HTTP streams with two classification
methods, one based on the Naïve Bayes classifier and one on Jaccard’s coefficient. The
flow features rely on the packet length, not time-related. Their work also examined the
effects of packet padding with four methods: linear, exponential, mice and elephants,
and MTU. They found the encryption is not enough to protect user privacy. Work
from [40] investigated the website fingerprinting in onion routing-based anonymization
networks like Tor and JAP. They selected the flow features based on the volume, time,
and direction of traffic. Panchenko et al. [34] presented the website fingerprinting

2.3 Related Works 17

approach, collected the data under the same domain, extracted the features such as
packet ordering or burst behavior, and trained the set by SVM classifier.

In contrast to Panchenko, Cai et al. [35] selected the features related to the optimal
string alignment distance and trained the model by the SVM classifier with a distance-
based kernel. Dyer et al. [41] performed the analysis of low-level countermeasures (e.g.,
per-packet padding) for website identification attacks using flow features like timing,
size, direction, and bandwidth. Other studies of Cai [36] presented a framework for
assessing the performances of WFP attacks and defenses. This method was effective
against the WFP attack in both open and closed-world models. Ref [42] demonstrated
improved website fingerprinting techniques on Tor with SVM and distance-based
metrics. Works from Wang et al. [43] proposed the multi-modal of web pages and
calculated the distance with the KNN classifier. Hayes and Danezis [37] proposed a
website fingerprinting technique, k-fingerprinting, using the Random Forest classifier.
They found that the most valuable feature was the total number of incoming packets in
the model. The Dolos [38] system against the website fingerprint attacks with the deep
learning technique. It performed higher protection and lower information leakage and
bandwidth overhead. The authors in Ref. [44] applied a novel fingerprinting technique
to be used against privacy-enhancing technologies like OpenSSL, OpenVPN, CiscoVPN,
and Tor with the Multinomial Naïve-Bayes classifier. They found the text mining
technique had no protection against the WFP attack. These works showed that the
WFP attack is possible against some privacy-enhance services, such as Tor, IPsec, and
VPN.

Also, some encrypted protocols (HTTPS, TLS/SSL, and QUIC) have been proposed
to protect the users’ private information. Zhan et al. [4] studied the WFP attacks on the
QUIC (GQUIC and IQUIC 1) traffic and compared the classifier performance between
QUIC and HTTPS in different scenarios. A work [3] aimed to find whether the TCP is
more vulnerable than QUIC and which feature played an important role between the
two protocols. These results indicated that information leakage is still possible even in
some encrypted protocols (i.e., HTTPS, QUIC, TLS/SSL). In our work, we focus on the
WFP attacks on the encrypted DNS traffic instead of web traffic and select the features
of both incoming and outgoing packets, including time, packet count, packet size, and
transfer bytes.

1GQUIC: Google QUIC; IQUIC: IETF QUIC

18 Chapter 2. Background and Related Works

Table 2.4: Related works of website fingerprinting attack
Ref. Traffic Key metrics Classifier

[39] HTTPS packet length Naïve Bayes
Jaccard

[40] Tor, JAP volume, time, and direction SVM
[34] Tor packet ordering, size, burst behavior SVM
[41] HTTPS time, size, direction, and bandwidth Naïve Bayes, SVM
[36] Tor, SSH time, size, direction SVM

[42] Tor upstream/downstream transmission SVM
distance-based metrics

[43] Tor
transmission size, transmission time
numbers, ordering, burst
concentration of outgoing packets

KNN

[37] Tor ordering, inter-arrival time
concentration of outgoing/incoming Random Forest, KNN

[44]

OpenSSH, Tor
OpenVPN
CiscoVPN
Stunnel
JonDonym

packet size, direction Jaccard, Naive Bayes,
Multinomial Naïve Bayes

[3] QUIC packet size DF, p-FP(C)
Var-CNN

[4] QUIC,
HTTPS

packet size, count
inter-arrival time
cumulative size
direction, burst

Random Forest
Extra Trees, KNN
Naïve Bayes, SVM

Our Work Encrypted DNS

packet size, count
inter-arrival time
cumulative bytes, entropy
throughput, duration

Random Forest
AdaBoost, XGBoost
LightGBM

2.3 Related Works 19

2.3.2 Encrypted Traffic Analysis with Machine Learning Tech-
nique

Several works used packet-related features to detect the application in the encrypted
traffic as shown in Table 2.5.

Wright et al. [45] detected the application classification on SSL/TLS and SSH
tunnels using TCP packet features such as packet size, timing, and direction. Also,
the work from [46] identified the application in SSL connections only used the size
features of the first few packets with the Gaussian Mixture. In Ref. [47], the authors
presented two empirical methods, signature-based and statistical analysis, to classify
the application on the SSL/TLS and Tor flows with the Bayesian model. The work from
Maiolini et al. [48] also developed a traffic classification method to identify SSH (SCP,
SFTP, and HTTP over SSH) connections with IP-based features, like packet length,
arrival time, and direction that relied on K-means cluster analysis. Meanwhile, some
works focus on the effect of inter-packet time characteristics on traffic flow analysis.
For example, Jaber et al. [49] presented the complete study of inter-packet time to
classify Internet traffic using the K-means classifier. This work showed the results
increase (from 80% to 98%) while selecting inter-packet time related features to detect
the application.

Table 2.5: Related works of encrypted traffic analysis
Ref. Traffic Key metrics ML Classifier

[48] SSH
packet size, count
inter-arrival time
direction

K-means

[49] SSL/TLS
SSH inter-arrival time bayesian

[47] SSL/TLS
packet length, count
inter-arrival time
duration

Naïve Bayes

[46] SSL packet size, number
inter-arrival time Naïve Bayes

[45] SSL/TLS
SSH

packet size, timing
direction KNN

20 Chapter 2. Background and Related Works

2.3.3 Encrypted DNS: Deployment, Detecting, and Performance
Analysis

Original DNS queries are unencrypted, sent in plain text, and vulnerable to
eavesdropping, which leads to information leakage. Intending to protect the privacy of
information, the DNS encryption techniques had been standardized. First, we present
the current deployment of several encrypted DNS protocols in §2.3.3.1. Some work also
detected encrypted DNS traffic from HTTPS stream in §2.3.3.2. Then, we show the
performance analysis of encrypted DNS with different Network conditions and DNS
resolvers in §2.3.3.3. Finally, we discuss the website fingerprinting attack on encrypted
DNS and some countermeasures in §2.3.3.4.

2.3.3.1 Deployment of Encrypted DNS

Some papers [50–53] reported the recent deployment of encrypted DNS. Recent
papers [50] described the deployment of DNS-Over-Encryption servers to help us to
understand the DNS-over-Encryption techniques and made a comparison of different
encrypted DNS protocols: DoT, DoH, DoQ, DNSCrypt [54], and DTLS.

A measurement work [51] presented the measurement, comparison, and analysis
of the DoH, DoT, and DoQ in three global organizations, and DoQ was used in at
least one organization. Deccio and Davis [52] reported 1,747 DoT and 9 DoH open
resolvers in their measurement. They also characterized the deployment of DoT-based
authoritative servers. In Ref. [53], authors overviewed the various encrypted DNS
protocols, such as adaption status, performance, benefits, and security issues. This
working group also surveyed the analysis for detecting encrypted DNS protocols by
analyzing the encrypted DNS traffic. Works from [55] aimed to identify the DoH
clients based on IP flows without IP addresses and ports. Authors of [56] studied the
deployment of DoH resolvers by scanning the DoH resolvers on the whole Internet.

2.3.3.2 Detecting encrypted DNS traffic

DoT and DoQ can be easily detected by monitoring their header information:
unique port number (DoT: TCP/853 and DoQ: UDP/853&784). However, DoH has the
same port as HTTPS using TCP/443. Some work detected the DoH traffic from the

2.3 Related Works 21

HTTPS stream using various flow characteristics.
Work from [55] intended to classify and recognize the DoH traffic with five machine

learning algorithms: KNN, Decision Tree, Random Forest, Naive Bayes, and AdaBoost.
They found that the accuracy of recognition DoH is over 99%. Ref [57] also extracted
the features of packet size and inter-arrival time to build the machine learning model
and detect the DoH traffic from the web.

2.3.3.3 Performance Analysis

Unlike unencrypted DNS, encrypted DNSmakes it more difficult for an eavesdropper
to get the information from the DNS message. Prior works were to determine whether
it is possible to infer the websites the user visited from encrypted DNS traffic, like
DoT and DoH. For example, Ref. [16] examined whether encrypted DNS traffic could
protect users and analyzed the DoH traces with different environments (i.e., location,
client application, platform, or DNS resolver). They found monitoring and censorship
were feasible even using DoH, and some features used to attack HTTPS were not
appropriate for DoH. In Ref. [17], the authors demonstrated that time and size were
key features in reducing the classification performances on DoH traffic.

Recently, some studies reported privacy problems of encrypted DNS protocols
and proposed solutions. For example, IETF [58] discussed DNS privacy problems
between recursive resolvers and authoritative servers. Shulman [59] collected DNS
traffic of 50K-Top Alexa domains and 568 TLDs. This work mainly considered the
privacy guarantees and the effect on the overhead and examined the privacy leaks
from the transitive trust. Hence, some studies proposed adding DNS padding to solve
the privacy problem. For example, the work of [60] analyzed the privacy over DoH,
chose Firefox to connect DoH resolvers, and selected features such as packet length,
destination port, and destination IP. They suggested adding padding to the DNS queries
to enhance privacy.

In another study [61], the authors concentrate on the effects that Do53 [62]2, DoT,
and DoH on web performances, although they did not investigate privacy problems.
They measured the impact of these three protocols on query response time and page
load time in web browsers. They also found that DoH and DoT were significantly higher

2Traditional DNS over port 53.

22 Chapter 2. Background and Related Works

than Do53 in terms of response time. However, encryption protocols perform better
than Do53 regarding page load time. Hoang et al. [63] quantified the improvement to
user privacy benefits of DoH, DoT, and ESNI (Encrypted Server Name Indication) using
the k-anonymity model. Nguyen et al. [64] presented the privacy leakage of encrypted
DNS via IP-based WFP attacks. With IP-based fingerprints, the authors could still
identify 84% of the website even considering the browser cache and AdBlocker. Authors
of [65] showed the limitation with DoH and ESNI to protect the users’ privacy. The
results indicated that eavesdroppers could classify 80% of domain names with a higher
(0.8) F1 score in the campus network. In [66], the authors propose how to protect
privacy using the extended Berkeley Packet Filter (eBPF) across the standard DNS,
DoH, and DoT. Jin et al. [67] studied the effect of encrypted DNS (3,813 DoT and 75 of
DoH resolvers) on Internet censorship from the vantage points. They characterized
the use of encrypted DNS resolvers to circumvent censorship varies due to country.
The authors of [68] studied the threshold-based attacks and defenses on DoH traffic,
using browser-generated packet size, rate, and throughput from vantage points. They
presented that encrypted DNS is still vulnerable when faced with some attacks.

2.3.3.4 Website Fingerprinting Attack on encrypted DNS: Analysis and
Countermeasures

RFC 8467 [18] proposed the padding strategies to prevent information leakage on
encrypted DNS. Prior works mainly studied the WFP attack on DoT and DoH as shown
in Table 2.6.

In Ref. [16], authors analyzed the WFP attacks of DoH traffic using three groups of
features: size, timing, and ordering on Google and Cloudflare DNS resolvers. They
found the adversary could still infer the categories of websites even though DoH and
the standardized padding schemes are not effective in preventing traffic analysis attacks.
The work of [15] analyzed the WFP attack on DoT and compared the classification
performances with padded or unpadded DNS.

The results suggested that encrypted DNS messages should be padded to protect
privacy. K. Hynek et al. [69] indicated using EDNS padding extension against the
website fingerprinting attack on DoH could reduce the accuracy to 17.24% (HTTP 2)
and 10.73% (HTTP 1.1). They also showed DNS padding was not widely deployed in

2.4 Summary 23

some platforms, like the Firefox browser.
However, the work from Jonas et al. [70] measured the impact of padding strategies

(128 B / 468 B block padding) on DoT and DoH. They observed padding cannot mitigate
the WFP attack on DoH and DoT. Their results also presented better performance
to protect users by removing the entropy of inter-arrival time between query and
response packets. These works demonstrated that information leakage is still possible
in encrypted protocols (HTTPS, QUIC, and DNS-Over-Encryption).

In this thesis, we examine the information leakage of three encrypted DNS
protocols, especially DoQ. We also analyze several aspects potentially affecting the
identification, such as DNS cache and crawling number. Furthermore, we present
four countermeasures to mitigate the website fingerprinting attack on DoQ: using
AdBlocker, disabling DNS prefetch, adding random delay, and padding the DNS
payload.

2.4 Summary

Most existing works analyzed the website fingerprinting attack on encrypted traffic
(i.e., Tor, JAP, and HTTPS) using flow features such as packet length and inter-packet
time. Compared to traditional DNS, these encrypted DNS (DoT, DoH, and DoQ) have
been proposed to protect DNS information using TLS, HTTPS, and QUIC to encrypt the
metadata of DNS. They demonstrated that information leakage is still possible even in
some encrypted protocols (i.e., HTTPS, QUIC, TLS/SSL, DNS-encryption). Also, the help
of padding strategies is limited. From there, improving and developing countermeasures
to protect users’ private information against the website fingerprinting attack on
encrypted DNS, including controlling time distribution and packet length.

24 Chapter 2. Background and Related Works

Table 2.6: Comparison with other related works of website fingerprinting attack on
encrypted DNS
Ref. Protocols Resolver Key metrics Classifier Countermeasures

[16] DoH Google
Cloudflare

Packet length
time
ordering

Random Forest Padding

[15] DoT Google
Cloudflare

Packet length
time
ordering
cumulative bytes

Decision Tree
Naïve Bayes
Simple Logistic
SMO
Random Forest

Padding

[70] DoH
DoT

Google
Cloudflare
Quad9
unbound

Packet length
time
transfer bytes

KNN
Neural Network

Overhead
Padding

[69] DoH
Google
Cloudflare
NextDNS

packet size KNN
Decision Tree Padding

Ours
DoQ
DoH
DoT

Bind
NextDNS
Google

packet size
count
inter-arrival time
cumulative bytes
entropy
throughput
duration

Random Forest
AdaBoost
XGBoost
LightGBM

Using AdBlocker
Disabling Prefetch
Adding Random Delay
Padding

25

3
Methodology

In this chapter, we first describe two threat models of encrypted DNS to simulate
the website fingerprinting attack, depending on DNS software configuration and
implementation in §3.1. Then, we show the process of the machine learning approach
for the website fingerprinting attack on encrypted DNS §3.2, including dataset collection,
category selection, feature extraction, and classifier selection.

3.1 Measurement Setup

Here, we consider the threat scenario as shown in Figure 3.1, in which a user uses
encrypted DNS to protect DNS privacy, and the adversary intends to infer the user’s
activities from analyzing the encrypted DNS traffic. Our threat model consists of three
components; web browser (client), recursive resolvers, and authoritative servers. We
connect the client and server on the home router with Wi-Fi (uplink: VDSL 100Mbps).
We assume the adversary can monitor the traffic between the client (victim) and the
DoH/DoT/DoQ available recursive resolver. However, it is difficult for the adversary to

26 Chapter 3. Methodology

monitor and collect the traffic between the recursive resolver and the authoritative
nameserver. If the encrypted DNS resolver acts as the proxy between the client and the
authoritative name servers. The DNS caching resolver receives encrypted DNS queries
from the client, decrypts them, performs traditional DNS resolution to communicate
with authoritative name servers, and then returns the results to the client over HTTPS.
This scenario is easier for the attackers than web traffic monitoring, especially for
high-speed networks. The work of [44] reported this kind of adversary exists in the
real world. In our model, we observe the encrypted DNS queries generated from a
single browser (a user, not aggregated by many users) by considering the typical
deployment scenario of the encrypted DNS as described in §3.2.

Since we select two kinds of DNS recursive resolvers that support and non-support
encrypted DNS, we consider two models to simulate the website fingerprint attack:

1. We set up the NextDNS that supports DoQ protocol on the client to encrypt DNS
packets.

2. While Google and Bind do not support the DoQ, we set up the AdGuard DNS
proxy [33] on the client to encrypt DNS packets and Raspberry Pi (Pi3 Model B+)
as the forwarder. Then, the unencrypted DNS queries are forwarded to a public
(i.e., google public DNS) or local recursive resolver (i.e., Bind9 [23]).

On the client side, we use the popular browser: Firefox [71]. We capture the encrypted
DNS traffic between the client and the recursive resolver.

In this thesis, we investigate the impact of several aspects of encrypted DNS on
privacy leakage as shown in Table 3.1 using two configurations in Figure 2.2.

Table 3.1: Summary of measurement setup on encrypted DNS
Protocol Resolver Configuration Section
DoQ Bind Conf. a §4.1.1, §4.1.3, §4.2, §5.1.1, §5.1.2, §5.1.3, §5.2, §5.3
DoQ NextDNS Conf. b §4.1.1, §5.1.1, §5.1.2, §5.1.3
DoQ Google Conf. a §4.1.4

DoT/DoH Google Conf. a §4.1.5

3.2 Overview 27

DNS caching
ResolverClient

Authoritative
Nameserver

Encrypted DNS traffic Unencrypted

Eavesdrop

Figure 3.1: Threat Model: passive eavesdropper between a user and recursive resolver

3.2 Overview

Here, we describe four supervised machine learning algorithms to identify the
category of websites. Figure 3.2 shows an overview of our method consisting of four
steps: data preparation, feature extraction, model building, and evaluation. The basic
procedures of this approach are as follows:

1. Capture the encrypted DNS traffic of 30 categories and divide the datasets into
two sets (’Sensitive’ and ’Non-Sensitive’) in §3.2.1;

2. Extract flow features in §3.2.2;

3. Adopt the 10-fold cross-validation, find the best parameter set for each classifier
to build a model and evaluate the mean F1 score in §3.2.3;

28 Chapter 3. Methodology

Dataset

Binary Classification

Multi-
Classification

Balanced

Imbalanced

Feature Extraction

Feature
Extraction &

Selection

Model Building

20%
Testing Data

80%
Training Data

Parameter
Tuning

Cross
Validation

Model

Evaluation

(§3.2.1) (§3.2.2) (§3.2.3)

Figure 3.2: Overview of machine learning approach for website fingerprinting attack
on encrypted DNS

3.2.1 Dataset Preparation

We choose 30 1 categories of websites and determine the category of the websites
based on the FortiGuard Web Filtering [72]. Then, we select the Top-400 for each
category popular in Alexa’s Top 300,000 [73] websites Alexa top list is created by
Amazon, which ranks websites based on popularity on a global scale. from January
2020. About this list, it only shows the domain names 2 of the website, for example,
example.com. We build a Python script to access the website in the list automatically,
and only one website is loaded each time on the client side. For each website, we only
direct the Firefox [71] browser to visit its homepage. While the access is complete
(timeout 30s), we close the browser and save the traffic data as .pcap files. If a target
webpage shows the cookie notification, we ignore (do not touch the button) it in the
experiment.

1The categories are: Advertising, Art, Brokerage and Trading, Business, Dating, Domain Parking,
Education, Entertainment, File sharing and Storage, Finance and Banking, Freeware and Software Down-
loads, Gambling, Game, General Organizations, Global Religion, Government and Legal Organization,
Health and Wellness, Illegal or Unethical, Information Technology, Internet Radio and TV, Job Search,
Malicious Websites, Meaningless Content, Newly Observed Domain, News and Media, News groups and
Message boards, Other Adult Materials, Personal Vehicles, Phishing, Political Organizations.

2We don’t consider the sub domains such as www.example.com, and www.example.com/sub/.

3.2 Overview 29

In this process, we use Selenium [74] webdriver to drive the Firefox (ver. 117.0.1)
browser on the laptop (macOS Ventura ver. 13.6.7). For each website, we access its
homepage and capture the encrypted DNS traffic. We treat the same domain (different
TLD) as one sample, i.e., if example.com and example.net are both in the list, we prefer
to choose a more popular one in the Alexa ranking. Also, we remove the ones that
duplicate in different categories (at least two), to ensure no overlap. The complete
process is as follows:

1. Start running the tcpdump tool.

2. Selenium starts the browser process and loads the webpage on the client.

3. Close the browser while the access is complete (timeout 30s) and save the traffic
data as .pcap files.

4. Stop tcpdump after the loading, and wait three seconds for the next website.

After we prepare the targeted datasets, we conduct binary and multi-classification
depending on the attacker’s targets. About the binary classification, the attackers focus
on distinguishing between two classes, ’Sensitive’ vs. ’Non-Sensitive’ in our work. This
scenario makes it easier for attackers to develop and deploy their attack measurements.
The binary classification is easier but less details than the multi-classification. But
still, an attacker can dig into the target if he detects ’sensitive’ web browsing. The
multi-classification allows attackers to distinguish between multiple categories of
websites, and get more information from users’ activities. Multi-classification can
significantly increase the benefits of the attack. Some studies [15] also conducted
experiments on multiple categories, like dating, finance, and health. However, this
increased complexity may provide attackers with more valuable information, enabling
them to analyze users’ behavior and preferences better.

We split the dataset into two labels: ’Non-Sensitive’ and ’Sensitive’. We determine
the category related to personal information such as health, finances, and religion
as sensitive followed by past literature [15]. For example, websites in the health
category may indicate that users intend to access to obtain medical information for
some specific symptoms. Similar to past literature [15], we select dating, health, and
gambling categories as the sensitive. In addition, we select seven (Finance and Banking,

30 Chapter 3. Methodology

Global Religion, Government and Legal Organization, Illegal or Unethical, Other Adult
Materials, Phishing, and Political Organization) categories as sensitive based on the
description of the category by FortiGuard Web Filtering.

Especially, we evaluate the binary classification performance of balanced and
imbalanced datasets. For the balanced dataset, we select all 10 categories from ’Sensitive’,
and 10 categories from ’Non-Sensitive’ randomly. For the imbalanced dataset, we
select 10 categories as sensitive, and the remaining 20 categories as non-sensitive
as shown in Table 3.2. The imbalanced dataset refers to a dataset in the different
classes with skewed distribution. This means that one class (the minority class) has
significantly fewer examples than another class or classes (the majority class or classes).
The imbalanced datasets are closer to many real-world scenarios. In particular, we
evaluate the binary classification performance of this imbalanced dataset with the help
of the oversampling technique, SMOTE [75].

SMOTE Synthetic Minority Over-sampling Technique, is a popular technique to
address the issue of class imbalance in datasets. SMOTE increases the number of minor
class examples in the dataset. This helps address the imbalance and allows classifiers to
learn from more balanced data, potentially improving their performance in predicting
the minority class It could help to reduce over-fitting and improve classification
performance.

Next, we consider the multi-classification of all 30 categories with different
combinations. We randomly choose different category combinations; for example, 2 - 2
means select two categories from ’Sensitive’ and two categories from ’Non-Sensitive’.
We list all combinations in Table 3.3.

3Some websites in Phishing and Malicious Websites are usually rapidly shutdown. In this case, we
skip this website and get the next one on the list.

4Phishing websites are still available on the internet. Phishing websites are often created by attackers
who intend to deceive users into providing sensitive information such as usernames, passwords, credit
card numbers, or other personal data. When the user attempts to visit phishing websites, the browser
will show a warning message that indicates the website might be dangerous.

5focuses on malicious activity like spreading malware, viruses, and other malicious software designed
to infect and damage computers or steal data that don’t necessarily involve sensitive data.

3.2 Overview 31

Table 3.2: Binary class dataset
Non-Sensitive Sensitive3

Balanced
Data

Business/Education/Entertainment/
File sharing and Storage/
Job Search/Newly Observed Domain/
News and Media/Personal Vehicles/
General Organizations/
Internet Radio and TV

Dating/Gambling/
Finance and Banking/
Global Religion/
Government and Legal
Organization/
Health and Wellness/
Illegal or Unethical/
Other Adult Materials/
Phishing4/
Political Organizations

Imbalanced
Data

Advertising/Art/Brokerage and Trading/
Business/Domain Parking/Education/
Entertainment/File sharing and Storage/
Freeware and Software Downloads/
Game/General Organizations/
Information Technology/Job Search/
Malicious Websites5/Meaningless Content/
Internet Radio and TV
Newly Observed Domain/News and Media/
News groups and Message boards/
Personal Vehicles

3.2.2 Features

Features are variables or attributes that describe the instance of the class in machine
learning. From the adversary’s view, only the packet size and timestamp for each
query/response could be monitored due to the encrypted traffic. The destination port
and IP address belong to the DNS recursive resolver, we use this information to identify
the encrypted DNS traffic.

We extract 175 bidirectional flow features in traffic traces such as packet number,
inter-arrival time, and packet length between consecutive DNS queries and responses,

6it typically involves general, publicly available information about organizations, industries, and
economic activities.

7typically refers to specific activities related to buying and selling financial instruments (e.g., stocks
and bonds) on behalf of clients. This category focuses on the operational (e.g., transaction processing)
not private information.

8including more financial activities not only the banking, insurance but also financial information
including personal data, credit history and more. The inclusion of personal financial details in financial
related activities and the possibility of sensitive information to be classified as sensitive data.

32 Chapter 3. Methodology

Table 3.3: Multi-class dataset
Combinations Non-Sensitive Sensitive

2 - 2 Business6; Game Phishing; Political Organizations

3 - 3 Entertainment; File sharing
and Storage; News and Media

Dating; Gambling;
Health and Wellness

4 - 4
Art; Domain Parking;
Internet Radio and TV;
Personal Vehicles

Dating; Finance and Banking;
Illegal or Unethical; Phishing

5 - 5
Education; Freeware and Software
Downloads; Information Technology;
Job Search; Newly Observed Domain

Global Religion; Government
and Legal Organization;
Illegal or Unethical;
Other Adult Materials;
Political Organizations

6 - 6

Advertising; Brokerage and Trading7;
Freeware and Software Downloads;
Malicious Websites; Meaningless Content;
News groups and Message boards

Finance and Banking 8; Global Religion;
Government and Legal Organization;
Health and Wellness; Illegal or Unethical;
Political Organizations

7 - 7

Domain Parking; Education;
Entertainment; File sharing and Storage;
Freeware and Software Downloads;
Game; Job Search

Dating; Finance and Banking;
Gambling;Global Religion;
Government and Legal Organization;
Health and Wellness; Other Adult Materials

8 - 8

Advertising; Brokerage and Trading;
Business; Domain Parking; Education;
Entertainment; File sharing and Storage;
Freeware and Software Downloads

Finance and Banking;Global Religion;
Government and Legal Organization;
Health and Wellness; Illegal or Unethical;
Other Adult Materials; Phishing;
Political Organizations

9 - 9

Game; Information Technology;
Internet Radio and TV; Job Search;
Malicious Websites; Meaningless Content;
Newly Observed Domain; Personal Vehicles

Dating; Finance and Banking;
Global Religion;
Government and Legal Organization;
Health and Wellness; Illegal or Unethical;
Other Adult Materials; Phishing;
Political Organizations

3.2 Overview 33

mainly followed by the past literature [3, 53, 68]. In particular, we calculate the
maximum, minimum, median, mean, standard deviation, variance, coefficient variation,
and deciles 9 for each feature that related to packet number, packet length, and
inter-arrival time. We list broad categories of traffic features as follows (all features
listed in Appendix A):

Packet count: The number of incoming and outgoing packets. While we access
the websites, the homepage includes different resources like images, JavaScript files,
advertisements, and videos. This will be resulting different numbers of DNS packets.
For example, if we visit youtube.com, it requests many DNS resolutions. By contrast,
one finance or government website may request a few DNS because the page content
just includes bank information or government announcements.

Query and response length: The transfer length (bytes) of DNS query and
response packets. Original DNS messages consist of the packet header and resource
records. Encrypted DNS protocols have different additional encryption overhead. For
example, DoQ encrypts the traffic with QUIC, and the packet length includes the QUIC
header, padding, and other metadata for encryption.

Inter-arrival time: The features from a consecutive pair of query and response
packets, for example, query-to-query, query-to-response (see more details in Appendix
A.2), response-to-response. It includes the maximum, minimum, median, mean,
standard deviation, variance, coefficient variation, and deciles of the inter-arrival value.

Cumulative bytes: The cumulative bytes of query and response packets. We also
consider the rate of bytes being sent and received in a trace.

Entropy value: Shannon entropy is commonly used as a measure of uncertainty
or disorder in a dataset or the distribution of class labels. Given a discrete random
variable X, for a probability distribution p(X = 𝑥𝑖), the Shannon entropy (base 2 gives
the unit of bits) of X is defined as:

𝐻 (𝑋) = −∑𝑛
𝑖=1 𝑝 (𝑥𝑖)𝑙𝑜𝑔𝑏𝑝 (𝑥𝑖)

We consider Shannon’s normalized entropy 10 of inter-arrival time and packet length.
Throughput: The average in packets and bytes.

Duration: The total transmission time in the trace.

9Deciles are often used as a way to divide a dataset into ten equal parts based on the values of a
particular variable.

10the normalized of Shannon entropy, that range in [0, 1.0]

34 Chapter 3. Methodology

Time to receive first N bytes: As in [68], the time that is received from the DNS
resolver could reflect whether the resolver cached. We set the value of N to 3000 and
5000.

Queries per Second: The total transmission time in the trace.
In the final step, we remove the features with zero variance.

3.2.3 Modeling

3.2.3.1 Classifiers Selection

We split the datasets into training and testing to evaluate the classification
performance. Then, we use the dataset to train the supervised machine learning
models we prefer and evaluate the model with F1 scores.

We randomly split 80% of the dataset as a training set and 20% as a testing set. We
also adopt the stratified 10-fold cross-validation [76] method and repeat it ten times
for each test to evaluate the performance of our experiments. We train all binary
classifiers and tune parameters using the RandomizedSearchCV [77] function from the
scikit-learn library [78]. The RandomizedSearchCV function can help us to find the
best estimator for each classifier.

We obtain the mean F1 score to evaluate the performance of each classifier. A higher
value of the F1 score (close to one) means better, and a lower (close to zero) indicates a
worse classification performance. In our context, a lower F1 score is desirable because
the attacker cannot infer the website categories precisely. We use well-known four
supervised classification algorithms; Random Forest [79], AdaBoost [80], XGBoost [81],
and LightGBM [82]. We list these four supervised machine learning and F1-measure as
follows:

Random Forest Classifier Random Forest algorithm constructs a "forest", and
multiple decision trees and merges them to get a more accurate and stable prediction.

AdaBoost Classifier AdaBoost is one of the boosting ensemble algorithms. The key
idea is to train different classifiers (weak classifiers) for the same training data and
then assemble these classifiers to build a strong learner. While building the classifier,

3.2 Overview 35

the one most important parameter of this algorithm is the base_estimator. In our
experiment, we select the decision tree and random forest as the base estimator.

XGBoostClassifier XGBoost (Extreme Gradient Boosting) is another popular
open-source gradient boosting ensemble algorithm (boosting performs better than
bagging on average), which is an advanced version of the gradient boosting algorithms.
Like LightGBM, it is based on the decision tree algorithm.

LightGBM Classifier LightGBM (Light Gradient Boosting Machine) is open-source,
uses the GOSS technique to perform gradient-based sampling of instances during tree
construction, and is based on decision tree algorithms to build ensemble models.

3.2.3.2 Performance Measures

Performance metrics depend on the model’s goals in machine learning. We use
the F1 score and confusion matrix to measure the classification performance in the
experiment. We also examine the important features by calculating the gini impurity
with the Random Forest classifier.

F1 score It combines precision 11 and recall 12 into a single value, providing a
balanced measure of a model’s performance. We calculate the micro-average of the F1
score by considering the total number of true positives, false negatives, and false
positives across all classes. It treats all classes equally and is useful when weighing
each instance or prediction equally, regardless of class imbalance.

The range of the F1 value is between 0 and 1.
It is usually defined as:

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 =
2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙

11Precision measures the proportion of true positive predictions out of all positive predictions made
by the model. It is calculated as the number of true positives divided by the sum of true positives and
false positives.

12Recall measures the proportion of true positive predictions out of all actual positive instances in the
dataset. It is calculated as the number of true positives divided by the sum of true positives and false
negatives

36 Chapter 3. Methodology

In general, higher (close to 1) F1 scores are better because they indicate better
overall performance of the classification model. However, the higher F1 means the
attacker obtains a better performance for inferring the victim’s private information in
our work. A lower (close to 0) value means better encryption to protect users. We hope
to reduce the F1 score for mitigation in our experiment.

Confusion Matrix A confusion matrix is a table that summarizes the performance
of a classification model by comparing predicted labels with true labels. It provides
information about true positives, true negatives, false positives, and false negatives,
which can be used to calculate other metrics such as accuracy, precision, and recall. We
also use it to measure our countermeasures.

Gini Impurity Gini impurity [83] is a metric used to generate a tree-based classifica-
tion, particularly in binary classification. It provides more information about the
distribution of data per node and less information about classification accuracy for
reporting tree accuracy. If we have k classes, the Gini Impurity G is calculated as:

𝐺 = 1 −∑𝑘
𝑖=1 𝑝

2
𝑖

𝑝𝑖 is the probability of elements belonging to class i. The range of gini impurity is
from 0 to 0.5. When all 𝑝𝑖 are 0, the gini impurity will be 0. When the values of 𝑝𝑖
are all equal, the gini impurity is maximized at 0.5. A gini impurity of 0 indicates
that is pure, all elements belong to the same class. A gini impurity of 0.5 indicates
maximum impurity, the elements are evenly distributed among all classes. In our work,
we measure the top-10 important features by calculating the gini impurity. Then, we
show countermeasures to mitigate the attack with the important features that affect
the performance significantly.

37

4
Classification Performance

In this chapter, we first evaluate the binary classification performance with three
encrypted DNS protocols: DoQ, DoT, and DoH on three DNS caching resolvers: Bind,
NextDNS, and Google. As the baseline analysis, we examine the DoQ traffic with two
DNS recursive resolvers: Bind and NextDNS in §4.1.1. Specially, we show the top-10
important features and compare the value with these two DNS resolvers in §4.1.2.
Then, we demonstrate the effect of cache including caching order and with/without
cache with Bind in §4.2. We show the classification performance of DoQ with another
public DNS resolver: Google in §4.1.3. We also investigate the binary classification
performance of other encrypted DNS protocols: DoT and DoH in §4.1.4. Finally, we
investigate the multi-classification performance for DoQ traffic on Bind with two
configurations in §4.2.1 and discuss the effect of crawling numbers in §4.2.2.

38 Chapter 4. Classification Performance

4.1 Binary Classification Performance

Here, we evaluate baseline classification performance for DoQ traffic with balanced
and imbalanced datasets on Bind and NextDNS caching resolvers. For the Bind resolver,
we crawl the encrypted traffic without cleaning the cache in the Bind. Specifically, we
discuss the F1 score of the classification and the resulting top 10 important features.
Note that a lower F1 score is better for mitigating information leakage in our analysis.

4.1.1 Baseline Classification Performance

As shown in Figure 4.1 (left), overall the binary classification performances of Bind
are very high for the four classifiers, in the balanced and imbalanced dataset. The
performance of the imbalanced dataset is slightly higher than the balanced dataset,
5-7% more. This result indicates that the SMOTE technique works well. Thus, these
classifiers are good enough to infer the website for the local resolver.

Next, we select NextDNS as the DNS resolver. Figure 4.1 (right) shows the results
of NextDNS. We again find a high F1 value; the F1 scores are all around 0.90 with
imbalanced and balanced data. The F1 score of the imbalanced dataset is still slightly
higher than the balanced dataset, with only a 2-3% difference, except for the XGBoost
classifier.

Comparison between Bind and NextDNS, we also notice that the classification
performances of Bind are slightly higher than NextDNS because the NextDNS server is
publicly available. Thus, we demonstrate that the classification performance is high
enough for the attacker to infer the website regarding DoQ, whether on NextDNS or
Bind resolver.

4.1.2 Feature Importance

We intend to understand what features have the most influence on the results for
discussing possible countermeasures. Understanding feature importance helps us to
identify the relative significance or contribution features, and potentially improve the
model’s performance. We measure the feature importance by calculating the mean
degradation of the gini impurity with the Random Forest algorithm. To investigate the
discriminative powers of the feature, we repeat ten times to obtain the average value

4.1 Binary Classification Performance 39

RandomForest AdaBoost XGBoost LightGBM
Bind

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
0.897 0.92

0.904
0.889

0.963 0.974
0.95 0.948

Mean F1 Scores

Balanced Data
Imbalanced Data

RandomForest AdaBoost XGBoost LightGBM
NextDNS

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
0.892 0.895 0.907 0.9080.914 0.932

0.904 0.927

Mean F1 Scores

Balanced Data
Imbalanced Data

Figure 4.1: Classification performance (Bind and NextDNS)

for each feature. The range of features important is 0 to 1, the higher value means
more influence on the classification.

We show the top-10 discriminative features of balanced (Table 4.1) and imbalanced
(Table 4.2) datasets with Bind and NextDNS resolvers. We find that significant features
are mainly related to inter-arrival time, regardless of Bind and NextDNS. We notice
another feature also in the top-10 list, related to packet length. We find the mean value
feature importance of NextDNS is higher than Bind, regardless of the balanced and
imbalanced dataset. We also observe that the important features are different between
these two DNS caching resolves. This is likely because of the different geographical
locations between the client and the resolver. NextDNS is a public DNS resolver that
can be located closer to the Internet core, though Bind is the local resolver in the home
network. Also, NextDNS is publicly available and shared with other users, thus more
random processing/queueing delays could be added. Thus, regardless of the DNS
software, we should decrease the classification performance (F1 score) by controlling
these effective features, to protect users’ privacy.

4.1.3 Effect of cache on Bind

Here, we intend to understand whether the cache affects the classification perfor-
mance. Since we cannot control the DNS cache in the public resolver, we select the
Bind in this experiment. The DNS cache is a temporary storage that contains the
information (DNS lookups) of recent user visits.

40 Chapter 4. Classification Performance

Table 4.1: Top-10 discriminative features（Balanced Dataset）

Rank Bind NextDNS

Feature Importance Feature Importance

1 EntropyQRIntervalTime 0.022 QueryIntervalTimeDeciles1 0.086
2 EntropyRRIntervalTime 0.018 QueryIntervalTimeMedian 0.082
3 EntropyQQIntervalTime 0.016 ResponseIntervalTimeMin 0.070
4 QueryIntervalTime 0.015 QueryIntervalTimeMin 0.069
5 EntropyResponseLength 0.011 ResponseIntervalTimeMedian 0.068
6 EntropyDFIntervalTime 0.0103 QRIntervalTimeMean 0.060
7 RQIntervalTimeDeciles3 0.0103 QueryIntervalTimeMean 0.057
8 RQIntervalTimeDeciles4 0.0102 ResponseIntervalTimeMean 0.056
9 ResponseIntervalTimeMin 0.010 QRIntervalTimeMedian 0.043
10 QueryIntervalTimeMin 0.009 QRPktLength 0.038

4.1.3.1 Caching Order

First, we crawl the encrypted traffic data without cleaning the cache in the local
recursive resolver (Bind). We examine whether the order of crawling affects the
classification results in the local resolver. For example, if we first check youtube.com,
then google.com, youtube.com information is cached in the resolver, and vice versa. In
this experiment, we crawl the 30 categories twice. We compare the classification
results with two different ordered Alexa lists; the Top list and the Randomized list.
For the first time, we crawl the websites from the Alexa top-400 list per category by
ascending order. For the second time, we randomize the order of websites in the Alexa
list and crawl them.

As shown in Figure 4.2, we confirm that the order of caching does not affect the
performance more for the imbalanced dataset. After the second crawling, we also
notice there is no significant reduction compared to the first crawling, all higher than
0.93. Except for the random forest classifier, the degradation of F1 score is 6%. However,
we note no significant change between these two cases in Bind. Thus, the caching
order has less effect on mitigating the attack.

4.1 Binary Classification Performance 41

Table 4.2: Top-10 discriminative features（Imbalanced Dataset）

Rank Bind NextDNS

Feature Importance Feature Importance

1 QRIntervalTimeMean 0.024 ResponseIntervalTimeMin 0.082
2 QRIntervalTimeMedian 0.018 QueryIntervalTimeMedian 0.078
3 EntropyDFIntervalTime 0.016 QRIntervalTimeCoefficientVariation 0.068
4 QRIntervalTimeMin 0.014 QueryIntervalTimeVariance 0.057
5 RQIntervalTimeDeciles4 0.012 ResponseLengthDeciles1 0.054
6 RQIntervalTimeDeciles3 0.0114 QRIntervalTimeMedian 0.053
7 QueryIntervalTimeStandard 0.0113 QRIntervalTimeMin 0.050
8 EntropyRRIntervalTime 0.0104 QRIntervalTimeMean 0.049
9 ResponseLengthMax 0.01001 ResponseIntervalTimeMedian 0.049
10 QueryLengthDeciles3 0.009 QueryIntervalTimeMax 0.047

RandomForest AdaBoost XGBoost LightGBM
Balanced Data

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
0.897 0.92

0.904
0.8890.892 0.911 0.905 0.908

Mean F1 Scores

First
Second

RandomForest AdaBoost XGBoost LightGBM
Imbalanced Data

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0 0.963 0.974
0.95 0.948

0.901
0.963

0.934 0.945

Mean F1 Scores

First
Second

Figure 4.2: Classification performance (Effect of caching order with Bind)

4.1.3.2 Comparison between Caching and No-Caching

Here, we clean the cache after capturing the traffic per category on the resolver
side to see the effect of the resolver’s (Bind) cache.

Figure 4.3 shows the classification performance of cache and no-cache scenarios
on bind. The classification performances are all around 0.9, regardless of cache and
non-cache. Particularly, we notice that the classification performance of cache is
slightly higher (2%) than the no-cache case. We find no significant differences between
caching and no-caching cases on bind. Thus, the results indicate no significant influence
on whether the local resolver is cached.

42 Chapter 4. Classification Performance

RandomForest AdaBoost XGBoost LightGBM
Balanced Data

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
0.897 0.92

0.904
0.8890.883 0.904

0.895 0.888

Mean F1 Scores

Cache
No-Cache

RandomForest AdaBoost XGBoost LightGBM
Imbalanced Data

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0 0.963 0.974
0.95 0.9480.944 0.967

0.932 0.937

Mean F1 Scores

Cache
No-Cache

Figure 4.3: The classification performance of Cache and No-Cache

4.1.4 DoQ with another Public (Google) Resolver

Here, we evaluate the classification performance of DoQ with another DNS resolver;
Google, using the first configuration (Figure 2.2 (a)).

As shown in Figure 4.4, we find that for the Google resolver, no matter which
classifier is used or the dataset, the accuracies are all higher than 0.90. Then, we
compare the classification performance with that using NextDNS and Bind. We notice
that the performances are slightly higher than the other two DNS resolvers. For
example, about the balanced dataset, the mean F1 score of NextDNS with Adaboost is
0.895, compared to 0.92 for Bind and 0.947 for Google resolver. We also observe no
significant difference between the NextDNS, Bind, and Google DoQ protocol on Firefox.
Thus, regardless of different DNS resolvers, users’ privacy is likely to be exposed.

4.1.5 DoT and DoH with Public (Google) Resolver

To measure the impact of DoT and DoH, we select AdGuard proxy to connect
public (Google) resolver to be consistent with the DoQ measurements.

Figure 4.5 shows F1 scores are still around 0.9, regardless of the balanced and
imbalanced dataset. The accuracies of imbalanced datasets are also higher than
balanced. In particular, we note that no big difference between these two protocols.
Thus, the results demonstrate that user privacy leakage is still possible even in all the
encrypted DNS regardless of the underlying protocols.

4.2 Multi-Classification Performance 43

RandomForest AdaBoost XGBoost LightGBM
Google

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
0.921 0.947

0.902 0.91
0.973 0.981

0.954 0.952

Mean F1 Scores

Balanced Data
Imbalanced Data

Figure 4.4: Classification Performance of Google Resolver with Binary Class

4.2 Multi-Classification Performance

The previous section shows that the binary classification performances are still
high for the three encrypted DNS protocols. Here, we evaluate the performance of
multi-classification and intend to understand the effect of the number of crawlings.

4.2.1 Baseline Classification Performance

We evaluate the classification performance of different combinations of 30 categories
on Bind. We choose different combinations of categories (from 2/2 to 9/9) and select
one combination randomly for each kind as described in Table 3.3. Then, we compare
the classification performance with different combinations.

As shown in Figure 4.6, we notice that the F1 score decreases more as the number
of categories increases. For the 9/9 combinations, the performance is lowest (≈ 0.4),
especially 0.3 for the LightGBM classifier. Thus, we demonstrate that the multi-
classification performance makes it hard for the attacker to infer the category of the
website on DoQ.

44 Chapter 4. Classification Performance

RandomForest AdaBoost XGBoost LightGBM
Google

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
0.91 0.901 0.9 0.9210.925 0.952

0.927 0.932

Mean F1 Scores

Balanced Data
Imbalanced Data

(a) DoH

RandomForest AdaBoost XGBoost LightGBM
Google

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
0.908 0.947

0.933 0.936
0.918

0.976
0.938 0.949

Mean F1 Scores

Balanced Data
Imbalanced Data

(b) DoT

Figure 4.5: Classification Performance of DoT and DoH with Google

4.2.2 The Effect of Number of Crawls

We intend to understand the effect of the number of crawling on the Bind resolver.
In the experiment, we select the 2 (Sensitive) - 2 (Non-Sensitive) combination and crawl
the traffic of 30 categories five times. First, we randomly select two categories from
the ’Sensitive’ and ’Non-Sensitive’ categories to form a combination, a total of ten
combinations. Then, we calculate the average F1 score for each crawl as follows:

Average F1 =
1
n

𝑛∑︁
𝑛=1

F1i (4.1)

(n: the number of combinations, n = 10)

Figure 4.7 shows the classification performance of five crawlings. We notice that
LightGBM outperforms other classifiers. From the first to second crawling, we find an
increase, of around 0.08. However, the classification performance slightly improves
from the second to fifth crawling. Thus, the performances are not directly related to
the number of crawls.

4.3 Summary

This chapter first evaluates the binary classification performance of encrypted DNS
protocols: DoQ, DoT, and DoH. For the DoQ protocol, we also compare the results with

4.3 Summary 45

2/2 3/3 4/4 5/5 6/6 7/7 8/8 9/9
The Numbers of Categories (Sensitive/Non-Sensitive)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

M
ea

n
F1

 S
co

re

0.86

0.678

0.571

0.548

0.467

0.433

0.41
0.392

0.896

0.725

0.655

0.577

0.541

0.453

0.422

0.402

0.86

0.678

0.571

0.548

0.467

0.433

0.41
0.392

0.81

0.679

0.578

0.53

0.476

0.446

0.356

0.287

RandomForest
AdaBoost
XGBoost
LightGBM

Figure 4.6: Multi-classification performance (Bind)

1 2 3 4 5
The Number of Crawls

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
Average F1 Scores of Ten Combinations

Random Forest
AdaBoost
XGBoost
LightGBM

Figure 4.7: Multi-Classification Performance (Effect of the Number of Crawls)

46 Chapter 4. Classification Performance

different DNS resolvers: Bind, NextDNS, and Google; and show the top-10 important
features. About the Bind resolver, we also consider the effect of caching on Bind:
caching order and with/without cache. For Google resolver, we evaluate the binary
classification performance of DoQ, DoT, and DoH.

The results show that the binary classification performances of Bind, NextDNS, and
Google are very high for the four classifiers, regardless balanced and imbalanced
dataset. Also, there is no big difference between these two datasets. We note that
the performances of Bind are slightly higher than NextDNS. We investigate the
discriminative powers of the feature, we notice that the top-10 important features are
mainly related to inter-arrival time, then packet length. While we examine the effect of
cache on Bind, we confirm that the caching order and with/without have less effect
on mitigating the attack. then, we measure the impact of DoT and DoH, and the F1
measures are still higher than 0.9 regardless of balanced and imbalanced dataset. This
result is consistent with DoQ on the Google resolver. Thus, we demonstrate that
user privacy leakage is still possible even in all the encrypted DNS regardless of the
underlying protocols and the DNS resolvers (Bind, NextDNS, and Google).

Then, we evaluate the multi-classification performance of DoQ on Bind. We
randomly select different combinations from 30 categories and compare the performance.
We find the performances decrease more as the number of categories increases. Also,
we examine the effect of the number of crawls by crawling the 30 categories five times.
We demonstrate that the performances are not directly related to the number of crawls.

47

5
Countermeasure

From the previous baseline results, a promising approach is to control the inter-
arrival distribution and packet length for the mitigation. In this chapter, we discuss
four possible countermeasures to mitigate the website fingerprinting attack on DoQ
as shown in Figure 5.1. In our experiment, we measure the F1 score to evaluate the
effectiveness of countermeasures. Compared to experiments without countermeasures,
the strategy is in effect once the F1 decreases. We also consider the confusion matrix of
classification performance.

We investigate three possible ways to control the inter-arrival time by using the
AdBlocker extension in Firefox, disabling DNS prefetch, and adding random delay in
the response process of DNS with binary classification in §6.1. To randomize the
inter-arrival time, the easiest way is to add different random delays to the query or
response. Also, as standardized in RFC 8467 [18], DNS payload padding is useful in
controlling the packet length. For padding the DNS payload, we add the payload in the
DNS query and response with Bind in §6.4. Then, we evaluate the performance as that
combination of two countermeasures: adding random delay and padding DNS payload

48 Chapter 5. Countermeasure

with binary and multi-classification in §6.5.

Countermeasures

Controlling
Inter-arrival Time

Padding DNS
Payload

Controlling
Packet length

Using AdBlocker

Disabling DNS
Prefetch

Adding Random
Delay

Combinations

Binary Classification

Binary & Multi-
Classification

§5.1

§5.2

§5.1.1

§5.1.2

§5.1.3

§5.3

Figure 5.1: Possible Countermeasures to Mitigate the Website Fingerprinting Attack

5.1 Controlling Inter-arrival time

We discuss three possible ways to control inter-arrival time: using Adblocker
extension, disabling DNS prefetch, and adding random delay.

5.1.1 Using AdBlocker

Here, we present the first countermeasure that might affect the classification
performance, AdBlocker. The AdBlocker extension is often used to detect and block
advertisements when users visit the websites. In this process, blocking these ads speeds
up webpage loading time and might affect the inter-arrival time of the DNS process.
We select the Ublock origin [84] extension (ver. 5.4.2) to install on the Firefox browser.

We measure the binary classification using the imbalanced dataset and compare the
results with/without AdBlocker between NextDNS and Bind. As shown in Figure 5.2,
we confirm the degradations of classification performance with AdBlocker are 6% on
Bind and 5% on NextDNS. However, there is no significant difference between these

5.1 Controlling Inter-arrival time 49

two cases, regardless of NextDNS and Bind. Thus, the results confirm that AdBlocker is
less influential in mitigating the website fingerprinting attack.

RandomForest AdaBoost XGBoost LightGBM
Bind

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
0.897 0.92

0.904
0.889

0.963 0.974
0.95 0.948

0.851 0.877
0.862

0.845
0.92 0.909

0.899
0.876

Mean F1 Scores

Balanced Data (No-AdBlocker)
Imbalanced Data (No-AdBlocker)
Balanced Data (AdBlocker)
Imbalanced Data (AdBlocker)

RandomForest AdaBoost XGBoost LightGBM
NextDNS

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
0.892 0.895 0.907 0.9080.914 0.932

0.904 0.927

0.852 0.861 0.859 0.8570.879 0.896
0.868

0.854

Mean F1 Scores

Balanced Data (No-AdBlocker)
Imbalanced Data (No-AdBlocker)
Balanced Data (AdBlocker)
Imbalanced Data (AdBlocker)

Figure 5.2: Classification performance of using AdBlocker

5.1.2 Disabling DNS Prefetching

Here, we describe the second countermeasure: DNS prefetching, which is the act of
solving the domain names before web resources get requested (i.e., before the user
clicks its link). Latency issues can be solved by DNS prefetch, so this function is enabled
by the default setting in most browsers. This technique reduces the time (the process of
looking up the DNS information) when the user accesses the webpage. Thus, this might
affect the inter-arrival time, which in turn is classification performance. We conduct
the experiment of disabling the DNS prefetch and then compare the classification
performance with enabling (default setting) prefetch using the imbalanced dataset.

As shown in Figure 5.3, we find that the classification performance is slightly lower
than enabling DNS prefetch for each classifier. The degradation of NextDNS (8%) is
slightly higher than Bind (6%) while disabling DNS prefetch. However, there is no
significant difference between these two cases, regardless of Bind and NextDNS. Thus,
the results indicate disabling DNS prefetch can not help the user protect the private
information more.

50 Chapter 5. Countermeasure

RandomForest AdaBoost XGBoost LightGBM
Bind

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
0.897 0.92

0.904
0.889

0.963 0.974
0.95 0.948

0.846 0.889
0.869

0.854
0.905 0.916

0.899 0.894

Mean F1 Scores

Balanced Data (Prefetch)
Imbalanced Data (Prefetch)
Balanced Data (Disable Prefetch)
Imbalanced Data (Disable Prefetch)

RandomForest AdaBoost XGBoost LightGBM
NextDNS

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
0.892 0.895 0.907 0.9080.914 0.932

0.904 0.927

0.843 0.839 0.848 0.8530.858 0.87
0.849 0.86

Mean F1 Scores

Balanced Data (Prefetch)
Imbalanced Data (Prefetch)
Balanced Data (Disable Prefetch)
Imbalanced Data (Disable Prefetch)

Figure 5.3: Classification performance of disabling DNS prefetch

5.1.3 Adding Random Delay

Here, we conduct an experiment to understand the random delay effect as the third
countermeasure. We add a random delay on the returning path at the DNS proxy to
the client, to ensure that the random delay is added to the encrypted traffic as shown
in Figure 5.4. The random delay is followed by uniformly distributed random values.
The range of random delay varies from 0-3 milliseconds to 0-300 milliseconds 1.

Client - Side

Browser Recursive
Resolvers

Server - Side
DNS

Proxy
DNS

Proxy
Name

Servers
NextDNS/Bind+ random delay

Figure 5.4: Adding random delays

As shown in Figure 5.5, we confirm the classification performance degradation
(10% - 22%) by adding random delays. We also notice that the degradation of NextDNS
(22%) is slightly higher than that of Bind (18%). This is likely because of the different
geographical locations between the client and the resolver. NextDNS is a public DNS
resolver that can be somewhere in the network, though Bind is the local resolver in the
home network. Thus, in the more realistic situation where DoQ is provided by a public
resolver, we expect better mitigation. The results demonstrate that adding random
delays could decrease the performance. Also, the higher random delay might affect the

11 millisecond; 0-3 ms; 0-10 ms; 0-40 ms; 0-60 ms; 0-100 ms; 0-200 ms; 0-300 ms

5.2 Controlling Packet Length 51

user experience.

The distribution of inter-arrival
We also show the distribution of inter-arrival time after we add the random delay in
the DNS response in Figure 5.6. While we added the 0-100 ms delay, the range of the
mean inter-arrival time feature changed, from 0.0-1.0 to 0.0-2.0.

5.2 Controlling Packet Length

Here, we focus on DNS payload padding standardized in RFC 8467 [85]. DNS
padding is a technique used to mitigate the attack by adding additional data to make
them uniform in size. This technique is often employed as a privacy-enhancing
measure to prevent attackers from inferring information about the content of DNS
traffic based on packet sizes. This makes it more difficult for attackers to analyze the
DNS traffic. Add EDNS(0) padding option to outgoing messages to increase the packet
size. DNS padding has not been supported by all the DNS software. On the client side,
we use the Adguard dnsproxy to support the DoQ. However, it does not have the
ENDS(0) [86] option, we modify the configuration of routedns [87] to pad the DNS
query. Also, we notice that a newer version (ver. 9.19) of Bind supports the EDNS(0)
padding option, though NextDNS does not. We modify the configuration of Bind to
support pad response, see more details in Appendix A.3.

Thus, we take two evaluations with Bind as shown in Figure 5.7: 1) Only padding
at the outgoing direction from the client to the resolver. We set the block size is 128
bytes, after padding, the padded query length becomes a multiple of 128 bytes, such as
128, 256, and 512 bytes. and 2) While the Bind receives the query with the EDNS (0)
option, the response will be padded to a multiple of 468 bytes. The former corresponds
to the case that the resolver does not support the padding, and the latter is the case
that both the client and the resolver are aware of the padding.

5.2.1 Padding DNS Payload

As shown in Figure 5.8, we confirm that the padding affects the classification
performance. We obtain the lowest results for padding the DNS message on the client

52 Chapter 5. Countermeasure

0.0

0.2

0.4

0.6

0.8

1.0

Ne
xt

DN
S

0.892
0.862

0.848
0.847

0.802

0.743
0.724

0.716
0.697

0.895
0.881

0.857
0.856

0.811

0.756
0.733

0.715
0.689

0.907

0.865
0.848

0.846

0.806

0.751
0.722

0.701
0.697

0.908
0.876

0.843
0.842

0.808

0.742
0.723

0.689
0.684

0ms 1ms 0~3ms 0~10ms 0~40ms 0~60ms0~100ms0~200ms
0~300ms Delay

Balanced Data

0.0

0.2

0.4

0.6

0.8

1.0

Bi
nd

0.897
0.871

0.859
0.857

0.818

0.758
0.737

0.726
0.718

0.92
0.887

0.868
0.861

0.824

0.782

0.748
0.734

0.727

0.904
0.877

0.859
0.848

0.817

0.769
0.747

0.725
0.712

0.889
0.879

0.854
0.85

0.812

0.754
0.736

0.729
0.701

0.0

0.2

0.4

0.6

0.8

1.0

Ne
xt

DN
S

0.914
0.926

0.876
0.878

0.837
0.813

0.751
0.733

0.713

0.932
0.936

0.878
0.865

0.856
0.833

0.803
0.792

0.781
0.904

0.846
0.845

0.846
0.844

0.824

0.772
0.751

0.725

0.927

0.857
0.843

0.834
0.82

0.801

0.766
0.74

0.746

0ms 1ms 0~3ms 0~10ms 0~40ms 0~60ms0~100ms0~200ms
0~300ms Delay

Imbalanced Data

0.0

0.2

0.4

0.6

0.8

1.0

Bi
nd

0.963

0.925

0.891
0.886

0.862
0.844

0.806
0.784

0.76

0.974

0.94
0.906

0.902
0.881

0.861
0.837

0.823
0.801

0.95
0.905

0.887
0.883

0.869
0.848

0.819
0.787

0.763

0.948

0.908
0.88

0.879
0.86

0.857
0.824

0.79
0.772

RandomForest
AdaBoost
XGBoost
LightGBM

Figure 5.5: Classification performance of adding random delays (Bind and NextDNS)

5.2 Controlling Packet Length 53

(a) No delay (b) Add 0-100ms delay

Figure 5.6: The distribution of Adding random delays (i.e., the mean value of response
inter-arrival time)

Client - Side

Browser Recursive
Resolvers

Server - Side
DNS

Proxy
DNS

Proxy
Name

Servers
Bind+ padding

Figure 5.7: Padding DNS payload

54 Chapter 5. Countermeasure

and server; the performances decrease from 0.97 to 0.86 with padding query and
response. However, the performance degradation is limited to the case of outgoing
padding only. Thus, padding the DNS message for both directions is effective, though
the wide deployment of padding is required for the caching resolvers.

RandomForest AdaBoost XGBoost LightGBM
Balanced Data

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
0.897 0.92

0.904
0.889

0.831 0.852
0.837 0.86

0.802 0.823
0.807 0.818

Mean F1 Scores

Unpadded
Padded Query
Padded Query + Response

RandomForest AdaBoost XGBoost LightGBM
Imbalanced Data

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0 0.963 0.974
0.95 0.948

0.903 0.921
0.873 0.912

0.873 0.888
0.861 0.881

Mean F1 Scores

Unpadded
Padded Query
Padded Query + Response

Figure 5.8: Classification Performance of Padding DNS payload (Bind)

5.3 Combination of Two Countermeasures

From the results of adding random delay and payload padding, we find they
have some positive effects on performance degradation. Here, we add the random
delay (0-60ms and 0-100ms) and pad the query/response on Bind. Then, we show the
performance of binary and multi-classification. For binary classification, we also show
the confusion matrix.

5.3.1 Binary Classification Performance

As shown in Figure 5.9, we find a significant change with padding and adding
100ms delay. The average reduction is about 27% with adding 100ms delays and
padding query/response. The results conclude that adding some random delays and
padding at the same time can protect users’ information from attacks to a certain
extent though the delay affects the user experience.

5.3 Combination of Two Countermeasures 55

RandomForest AdaBoost XGBoost LightGBM
Balanced Data

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
0.897 0.92

0.904
0.889

0.757 0.782
0.758 0.766

0.644 0.678
0.659 0.661

Mean F1 Scores

Unpadded
Padded+60ms delay
Padded+100ms delay

RandomForest AdaBoost XGBoost LightGBM
Imbalanced Data

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0 0.963 0.974
0.95 0.948

0.803 0.823
0.811 0.818

0.691 0.717
0.703 0.698

Mean F1 Scores

Unpadded
Padded+60ms delay
Padded+100ms delay

Figure 5.9: Classification performance for random delays and padding (Bind)

5.3.1.1 Feature Importance

We also show the top-10 discriminative features in Table 5.1. We notice that the
effective features change, not only related to inter-arrival time and packet length.
Other features such as ’QueryPktCount’ and ’RPerSecondMax’ related to packet count
also appear in the list. We also observe that the mean value of the top-10 important
features decreases compared to the Bind (as shown in Table 4.1 and Table 4.2) without
the countermeasures. Thus, our approach to mitigating the inference ability works as
expected.

Table 5.1: Top-10 discriminative features (random delays and padding)

Rank Balanced Data Imbalanced Data

Feature Mean Feature Mean

1 QueryIntervalTimeMax 0.015 QueryLengthDeciles8 0.015
2 QueryLengthDeciles7 0.013 QueryIntervalTimeMax 0.015
3 FlowSentRate 0.012 ResponseLengthMin 0.013
4 QRIntervalTimeStandard 0.011 ResponseLengthDeciles3 0.012
5 QueryLengthMode 0.011 QueryPktCount 0.010
6 QRIntervalTimeCoefficientVariation 0.010 ResponseLengthDeciles5 0.009
7 QueryIntervalTimeStandard 0.009 Duration 0.009
8 QueryPktCount 0.009 RPerSecondMax 0.009
9 QRIntervalTimeMax 0.009 QueryLengthMax 0.009
10 ResponseIntervalTimeDeciles5 0.008 DFIntervalTimeDeciles2 0.008

56 Chapter 5. Countermeasure

5.3.1.2 Confusion Matrix

Finally, we show the confusion matrix [88] of Bind without countermeasures in
Figure 5.10 (left) and adding 0-100ms delay and padding query/ response DNS payload
in Figure 5.10 (right) for the imbalanced dataset. We find the value of the false positive
increases from 61 to 449, and the false negative also increases from 72 to 318. Both the
values of true positive and negative decrease. The results support our conclusion that
adding random delays and padding could mitigate the website fingerprinting attack
again.

0 1
Predicted label

0
1

Tr
ue

 la
be

l

1143 72

61 1124

Bind

200

400

600

800

1000

0 1
Predicted label

0
1

Tr
ue

 la
be

l

909 318

449 724

Bind (Padding + 100ms Delay)

400

500

600

700

800

900

Figure 5.10: Confusion matrix of Bind with/without delay and padding

5.3.2 Multi-Classification Performance

Here, we evaluate the multi-classification performance of these two countermea-
sures. Figure 5.11 shows a reduction compared to the multi-classification performance
of bind without any countermeasures (Figure 4.6). With 0-60ms delay and payload, we
find the average reduction is about 12% of 2 - 2 and 5% - 12% of other combinations.
Also, the degradation of 0 - 100 ms delay is about 22%. However, there is no significant
change from 4 - 4 combinations. Thus, the results demonstrate that adding random
delays and padding payload could decrease the multi-classification performance.

5.4 Summary 57

2/2 3/3 4/4 5/5 6/6 7/7 8/8 9/9
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0.7
57

0.6
73

0.6
14

0.5
29

0.4
28

0.4
19

0.3
58

0.3

0.7
82

0.6
58

0.6
15

0.5
26

0.4
52

0.4
29

0.3
69

0.2
85

0.7
58

0.6
88

0.6
19

0.5
38

0.4
45

0.4
26

0.3
66

0.2
98

0.7
66

0.7
03

0.6
4

0.5
5

0.4
71

0.4
48

0.3
87

0.3
18

60ms

2/2 3/3 4/4 5/5 6/6 7/7 8/8 9/9
The Numbers of Categories (Sensitive/Non-Sensitive)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0.6
44

0.6
21

0.5
63

0.4
44

0.3
72

0.3
18

0.2
86

0.2
18

0.6
78

0.6
25

0.5
6

0.4
5

0.3
71

0.3
24

0.2
67

0.2
29

0.6
59

0.6
2

0.5
9

0.4
67

0.3
94

0.3
11

0.2
56

0.2
27

0.6
61

0.6
32

0.5
92

0.4
84

0.3
96

0.3
29

0.2
7

0.2
38

100ms
RandomForest
AdaBoost
XGBoost
LightGBM

M
ea

n
F1

 S
co

re

Figure 5.11: Multi-classification performance for adding random delay and padding
payload (Bind)

5.4 Summary

In this chapter, we propose a promising approach to mitigate the website finger-
printing attack of DoQ by controlling the inter-arrival time and packet length.

We first describe three possible ways to control time: using AdBlocker, disabling
DNS prefetch, and adding random delays in DNS response. We find that AdBlocker and
disabling DNS prefetch are less influential in mitigating the attack. The degradations
of classification performance with AdBlocker are 6% on Bind and 5% on NextDNS.
While disabling DNS prefetch, the degradations of the performance of Bind is 6% and
NextDNS is 8%. The third countermeasure is to add the random delay in the returning
path. We confirm that adding random delay could mitigate the attack, regardless of the

58 Chapter 5. Countermeasure

balanced and imbalanced dataset. We also notice that the degradation of NextDNS
(22%) is slightly higher than that of Bind (18%).

Then, we pad the DNS payload to control the packet length. We take two evaluations
with Bind: 1) Only padding at the outgoing direction (DNS query), and 2) Padding at
both outgoing and returning direction (DNS query and response). The classification
performances decrease from 0.97 to 0.86 with padding query and response. The results
demonstrate that padding the DNS message for both directions is effective.

Finally, based on previous results, we confirm adding random delay and padding
the DNS payload have some positive effects on mitigating the attack. We both add
random delay (0-60 ms and 0-100 ms) and padding DNS payload on query/response.
The average reduction is about 27% with these two countermeasures. The results
conclude that adding some random delays and padding at the same time can help
users protect private information from attacks. We also notice that the top-10 features
are not only related to inter-arrival time and packet length. Other features such as
’QueryPktCount’ and ’RPerSecondMax’ related to packet count also appear in the list.
Thus, the results demonstrate that our approach: adding random delays and padding
payload has a better mitigation.

59

6
Discussion

This dissertation analyzed the privacy leakage problem of three encrypted DNS:
DoQ, DoT, and DoH with public and local DNS resolvers. We intended to understand
whether the encryption could help users protect private information and how to
defend against the website fingerprinting attack. Also, we discuss the limitations and
future works.

6.1 Discussion

6.1.1 Key findings

• Finding 1: Information leakage is still possible even in encrypted DNS
regardless of the underlying protocol and DNS resolvers.

Encrypted DNS can enhance privacy and security at the application layer
and encrypt DNS traffic to prevent eavesdropping and tampering. Firstly, we
examined the classification performance of DoQ with three DNS resolvers using

60 Chapter 6. Discussion

two configurations (the DNS resolver supports the encrypted DNS or not).
From the basis analysis, we observed that the F1 scores are higher, around 0.9.
Secondly, we compare the results of three encrypted DNS protocols: DoQ, DoT,
and DoH with Google resolver. Three DNS encryption methods encapsulate
DNS in their encryption-enabled layer, i.e., QUIC, TLS, and TLS with HTTP
(HTTPS). However, we observed these differences do not matter for our results.
Depending on the baseline analysis, we demonstrate that user privacy leakage is
still possible even in these three encrypted DNS regardless of the underlying
protocols and DNS resolvers.

Recommendation for researcher: Develop evaluation frameworks and
metrics for quantifying privacy leakage in encrypted DNS protocols. This
includes defining metrics to measure the encrypted DNS traffic, the effectiveness
of privacy-enhancing features, and the impact of different factors (i.e., attack
scenarios) on user privacy.

Recommendation for users: Encrypted DNS protocols, such as DoH, DoT,
and DoQ, are effective in helping users prevent third-party eavesdropping.
Encrypted DNS ensures that the content of DNS queries and responses is hidden
from network intermediaries, including ISPs and potentially malicious actors.
The easiest way for users to deploy the encrypted DNS is by modifying a
configuration file: select the DNS provider like 1.1.1.1 to support encrypted
DNS in the setting of browsers. Browsers like Chrome and Firefox have already
supported DoH.

Recommendation for developer: Implement privacy-preserving features in
encrypted DNS protocols to enhance user privacy. This includes options for
users to control data-sharing preferences. Also, developers should implement
measures to minimize metadata exposure, such as randomization and padding.

• Finding 2: The inter-arrival time and length-related features are key
metrics for mitigation

6.1 Discussion 61

Controlling inter-arrival time and packet length is a promising approach to
mitigate the website fingerprinting attack on DoQ.We conducted the experiments
of DoQ with Bind and NextDNS resolver.

– For controlling inter-arrival time, we proposed three approaches: using
AdBlocker, disabling DNS prefetch, and adding random delay. The easiest
way is to add the random delay (0-300ms) in the returning path. For adding
random delay, the degradation of NextDNS (22%) is slightly higher than
that of Bind (18%). We confirm that adding random delay could reduce
the F1 score regardless of Bind and NextDNS. However, more delays may
affect users’ experience. For example, the webpage may partially load,
displaying some content but not all. Users may see a blank or incomplete
page, with missing images, text, or other elements. Even if some content
loads, interactive elements such as buttons, links, or forms may be slow to
respond or unresponsive altogether.

Also, we tested another two experiments: install the AdBlocker extension
and disable DNS prefetch on the Firefox browser. However, the performance
degradation is limited to the case of using AdBlocker and disabling DNS
prefetch. We obtain the lowest results for padding the DNS message on the
client and server, the F1 value decreases from 0.97 to 0.86.

Recommendation for researcher: While adding more delays, the
website loading process is slow. The researchers may not capture all packets
related to the webpage load. For example, our experiment gives each page
30 seconds to load. After adding random delays, the webpage may not fully
load within this specified time. This can result in incomplete or missing
data, making it challenging to analyze the entire communication process
accurately.

Recommendation for users: Adding intentional delays to webpage
loading can be a complex decision, as it directly impacts user experience.
For users, we recommend selecting the DNS proxy that supports encrypted

62 Chapter 6. Discussion

DNS and adding random delays. Also, a better way for users is to install the
AdBlock extension in the browser.

Recommendation for developers: Minimize the impact of delays on
user experience by optimizing their duration and timing. The developer
should ensure that delays are only added when necessary and that they do
not significantly degrade the overall user experience. For the developer of
the encrypted DNS proxy, we recommend giving the option message of
adding different delays to the user.

How long are web users willing to wait? Ref. [89] suggested that the
waiting time for the user to load the webpage is approximately 2 seconds.
Also, as the report of some analysis tools [90], they select the top 1,000,000
websites and test the loading speed from Jan 1, 2020, to Apr 1, 2024. They
show the median loading time is 2.1 seconds for the desktop. Studies have
shown that users prefer web pages to load quickly, ideally within 2 to 3
seconds. Longer loading times can lead to increased bounce rates, where
users abandon the page before it finishes loading. We suggest the range of
adding random delay is 0-60 or 0-100 ms for response. The cost of one
response is 0.05 - 0.1 second higher than the case of adding no delay. If one
homepage triggers 40 response packets, the additional delay could be 2 - 4
seconds. We also observed the F1 score could decrease the performance by
about 15% - 18%.

– For controlling packet length, we pad the DNS payload on the Bind. RFC
8467 [85] proposed the DNS padding strategies for encrypted DNS. Some
studies from [15, 70] confirmed the mitigation is limited to padding on DoT
and DoH. We took two evaluations on Bind: 1) only padding query, and 2)
padding query and response. We found the performance degradation is
about 11% with padding query and response. However, the degradation is
limited to padding query, only 6%.

Recommendation researcher: The supported DoQ caching resolver
does not support padding in EDNS(0) queries as NextDNS. There is no

6.1 Discussion 63

way to check this case. We can only select Bind9 because the padding is
supported by modifying the configuration file. We also need a proxy to
support the EDNS(0) query.

Recommendation for users: Some local resolver software supports
the encrypted DNS and padding, like Bind and Unbound. The user could
configure the padding settings that involve specifying the padding length,
padding algorithm, or enabling automatic padding according to their
preferences.

Recommendation for developers: Incorporate padding support into
your DNS client applications or libraries. Ensure that the developer’s
implementation adds appropriate padding to DNS queries before sending
them to caching resolvers. Also, offer users configuration options within
the application to enable or disable padding. Provide clear explanations of
the privacy and security benefits of enabling padding.

Recommendation for network operators: Deploy DNS caching re-
solvers that support encrypted DNS with padding within the network
infrastructure. Configure the DNS caching resolvers to add padding to DNS
queries and handle padded queries from clients. While DNS query padding
is typically applied at the client or resolver side, supporting padding at
authoritative DNS servers is less common and has some nuances to consider.
Adding padding at authoritative servers might not provide significant
privacy benefits, as the primary goal of padding is to obscure DNS query
patterns between clients and resolvers. However, supporting padded queries
ensures compatibility with privacy-enhancing configurations implemented
at the client or resolver side.

These results demonstrated that adding random delay and padding DNS payload
are effective privacy strategies for DNS encryption.

64 Chapter 6. Discussion

6.1.2 The target F1 scores for binary and multi-classification

We consider the F1 score as the evaluation results of our experiment. Without any
countermeasures, the mean F1 scores are all around 0.9 regardless of the datasets and
DNS caching resolvers. We could not find any references about the universal target F1
score that applies to all machine learning models. Some blogs pointed out that the
results of better models should be higher than 0.85. We intend to get more degradation
of the F1 score for the countermeasures. For example, while we add the random delays
in the DNS response, the degradation of NextDNS is 22% and Bind is 18% for binary
classification.

Additionally, the binary and multi-classification should have different f1 score
targets. To determine what target F1 value for users is more appropriate to consider
the actual risks in the binary and multi-classification scenarios, we need to consider
several criteria that are crucial for assessing risk, particularly when a higher F1 score
implies a higher security risk for user:

In binary classification scenarios, the attacker’s goal is typically to distinguish
between two classes (e.g., ’Sensitive’ or ’Non-Sensitive’). If the F1 score is high (typically
above 0.8), it indicates effective discrimination between sensitive and non-sensitive
categories. For the attacker, it is easy to get a higher F1 score than that of the multi-
classification. For example, we got the results around 0.9 without countermeasure. In
the binary classification, the attacker just knows whether it belongs to the sensitive
or non-sensitive category, not the details of classes. Thus, the actual risk of binary
classification is relatively low for user because it is binary. In our experiment, the F1
score decreases from 0.9 to 0.68 with two countermeasures (adding random delay and
padding payload).

In the multi-classification scenario, the goal is to classify the website into multiple
classes (e.g., ’Dating’, ’Phishing’, or ’Entertainment’). This task is more complex, requir-
ing distinguishing between more than two classes compared to binary classification.
For the attacker, it is hard to get a higher F1 score, because each category may have a
different F1 score target based on its sensitivity and importance. For example, the F1
score varied from 0.8 (2/2: four categories) to 0.4 (9/9: 18 categories) without any
countermeasures in our experiment. More categories make it harder to get higher F1
scores. If the F1 score of multi-classification is relatively high, the attacker could

6.2 Limitations 65

infer more details of the user’s interest or habit. This is much more risky than binary
classification for users. After we added random delay (0 - 100ms) and padding DNS
payload, the results are 0.6 with 2/2 combinations and only 0.2 with 9/9 combinations.

Thus, the target F1 score for multi-classification should be lower than that for
the binary to reduce the user’s risks, and our measurement results support this
consideration; Indeed, the risk of the multi-classification is lower for more categories
in our controlled experiments.

6.1.3 Why category should be protected?

As discussed in a past literature [15], inferring categories from encrypted DNS data
is a risk for users. For example, websites in the health category may indicate that users
intend to access to obtain medical information. Such personal sensitive categories (e.g.,
health, dating, gambling, religion) should be protected from attackers.

6.1.4 Can the attacker evade the countermeasures?

For our countermeasures, we presented two effective countermeasures: adding
random delay and padding DNS payload. If the attacker extracts features like packet
size and timing and then uses machine learning techniques to analyze the encrypted
DNS traffic, it’s hard to evade the countermeasure for the attacker. However, if the
attacker can control the client or the DNS caching resolver directly, they might be able
to decrypt the padded data.

6.2 Limitations

Here, we discuss the limitations of our experiments.

The dependency on site. The first limitation of our work is that we only consider
the top-400 websites of each category in the Alexa dataset. We chose these websites
due to their great influential power and often visited by users.

Physical location. The second limitation is that the physical measurement point of
the experiment is close to the user. We conducted these experiments in the home

66 Chapter 6. Discussion

network, only one location (Tokyo, Japan). This location is close to the user in our
threat model. For the general scenario, the attackers are located in the middle or near
caching resolvers. we will consider more platforms and sites to measure classification
performance in future work.

The cases of domains that provide many services. Another limitation of our
work is that we do not consider the influence of CDN (Content Delivery Network).
CDN is a geographically dispersed group of servers that speeds up the distribution of
Web content by placing content (i.e., image, video, and social media) closer to the
user’s location. While the user visits the websites, the server may request additional
contexts for CDNs that are near the user. In this process, The CDN may reduce the
page loading time, then affect the inter-arrival time.

Padding limitation. Our padding experiments are only conducted with the bind
resolver, because other public DNS resolvers (i.e., NextDNS, Google) do not support
the padding, at the time of writing. Padding DNS payload can introduce additional
costs in terms of network overhead. By padding DNS payload, the size of DNS
messages increases. This can lead to larger packets being transmitted over the network,
potentially affect the inter-arrival time, especially in environments where network
resources are limited or congested.

Measurement and testing environment Finally, we do not consider the measure-
ment and testing conditions, such as the CPU power of hosts and network bandwidth.
1) The CPU can affect the DNS server’s transmission speed to handle incoming requests
and generate responses. If the CPU is overloaded or the processing capability is
insufficient, the processing time of DNS queries may be longer, and the arrival interval
of DNS packets increases; 2) Network bandwidth refers to the capacity of the network
connection to transmit data. Bandwidth affects the transmission delay of packets,
which in turn impacts the inter-arrival time. Higher bandwidth allows for faster
transmission of DNS packets between clients and DNS servers, leading to shorter
inter-arrival times if the network is not congested.

6.3 Future Work 67

6.3 Future Work

In the following, we identify possible directions for future work:

1. Consider adding an appropriate delay or only add the delays in some response
packets: Adding random delays could reduce the classification performance.
However, more delay may affect the user experience while loading the webpage.
For example, if one homepage triggers 40 response packets, the additional delay
is 2 - 4 seconds. We consider two ways to add random delays: 1) We will build a
script to find the "perfect" delay against the attack; 2) We can add the delay in
the random response, not all response packets. For example, we add the delay in
some responses with a response probability.

2. Building a tool to pad DNS queries or responses in the DNS resolver: The DoQ
cannot support the EDNS(0) in the client. We plan to build an automatic tool to
encrypt query and pad DNS payload as a proxy. While the resolver receives the
DNS message, the proxy pads the response with different octets. Then, send the
encrypted and padded response to the client. We also intend to figure out the
"perfect" (which size is the most effective for the F1 score) padding size.

3. Consider different network conditions: In our study, we only experimented
with the home network. We will consider more network conditions like 4G, 5G,
campus networks, mobile, and different kinds of ISP networks. The network may
affect the performance.

4. Compare the classification performance of sensitive category: In this thesis, we
compare the performance of "Sensitive" and "Non-Sensitive". We want to examine
the performances of different "Sensitive" categories (i.e., "Dating" and "Health")
and find the key metrics for each category.

69

7
Conclusion

Privacy leakage on the web is a serious problem with the current Internet. Various
encrypted DNS protocols have been standardized to protect users from website attacks,
such as the website fingerprinting attack. In this work, we intended to understand
whether the encrypted DNS protocols (DoQ, DoT, and DoH) could protect user privacy
while visiting the webpage.

At first, we investigated the information leakage by performing the binary classifi-
cation analysis of DoQ traffic on Bind, NextDNS, and Google resolvers. We confirmed
that the classification performances of the websites are very high in these resolvers to
infer which category of websites the user visited. Specifically, we pointed out that
discriminative features are mainly related to the inter-arrival time of packets and the
packet length. Then, we measure the impact of DoT and DoH with Google resolver. We
noticed that the results are still high to be consistent with DoQ.

Depending on the baseline analysis, a promising way to mitigate the attack is by
controlling inter-arrival time and packet length. We proposed four countermeasures:
using the AdBlocker extension, disabling DNS prefetch, adding the random delay

70 Chapter 7. Conclusion

to control inter-arrival time, and padding DNS payload to control packet length.
Using AdBlocker and disabling DNS prefetch had less effect in mitigating the website
fingerprinting attack. Adding the random delay decreased the classification performance
by 18% with Bind and 22% with NextDNS. While we padded the DNS payload
(query/response) with Bind, the performances decreased by 10% (from 0.97 to 0.86). In
the end, we confirmed reasonable degradation: approx 27% of binary class and 22% of
multi-class, while padding and adding a 100ms delay.

Our analysis clarified four possible countermeasures: using Adblocker and disabling
DNS prefetch have less effect in mitigating the attack, adding random delay and
padding DNS payload are promising to mitigate privacy harm from users, having
a 0.27 reduction in the F1 score with Bind. However, adding a delay is a tradeoff
between the privacy and user experience. Also, DNS padding has not yet been widely
deployed in public DNS. For the more realistic situation (i.e., NextDNS), we expect
more degradation of the classification performance.

71

Publications

List of the publications related to this PhD dissertation.

Journal Papers
1. GUANNAN HU, and Kensuke Fukuda, "Investigate the Countermeasures

to Mitigate the Privacy Leakage in DNS over QUIC", Journal of Information
Processing, IPSJ, 2024. (submitted)

2. GUANNAN HU, and Kensuke Fukuda, "Characterizing Privacy Leakage in
Encrypted DNS traffic", IEICE transactions on Commmunications, Vol.E106-B,
No.2, pp.156-165, IEICE, 2023.

International conference papers (reviewed)
1. GUANNAN HU, and Kensuke Fukuda, "An analysis of privacy leakage in DoQ

traffic", CoNEXT Student Workshop 2021 (CoNEXT-SW’21), pp.7-8, Munich,
Germany (Virtual Conference), 2021. ACM.

2. GUANNAN HU, and Kensuke Fukuda, "Privacy Leakage of DNS over QUIC:
Analysis and Countermeasure", International Conference on Artificial Intelligence
in Information and Communication (ICAIIC’24), pp. 518-213, Osaka, Japan, Feb
2024. IEEE.

73

Bibliography

[1] Paul Mockaptris. Domain names - implementation and specification. https:
//www.rfc-editor.org/info/rfc1035, 2004.

[2] E. Rescorla. Http over tls. https://www.rfc-editor.org/info/rfc2818.

[3] Jean-Pierre Smith, Prateek Mittal, and Adrian Perrig. Website Fingerprinting in
the age of QUIC. Computer Networks, 200:48 – 69, 2021.

[4] Pengwei Zhan, Liming Wang, and Yi Tang. Website fingerprinting on early quic
traffic. Computer Networks, 200:108538, December 2021.

[5] S. Farrell. Pervasive Monitoring Is an Attack. https://www.rfc-editor.org/rfc/
rfc7258, 2014.

[6] P. Hoffman and P. McManus. DNS Queries over HTTPS (DoH). https://www.
rfc-editor.org/info/rfc8484, 2018.

[7] Z. Hu, L. Zhu, J. Heidemann, A. Mankin, D. Wessels, and P. Hoffman. Specification
for DNS over Transport Layer Security (TLS). https://www.rfc-editor.org/info/
rfc7858, 2016.

[8] C. Huitema. Specification of DNS over Dedicated QUIC Connections. https:
//datatracker.ietf.org/doc/rfc9250/, 2022.

[9] Dnscrypt. http://dnscrypt.org/, 2019.

[10] Google. https://developers.google.com/speed/public-dns/.

[11] Cloudflare dns. https://cloudflare-dns.com/.

https://www.rfc-editor.org/info/rfc1035
https://www.rfc-editor.org/info/rfc1035
https://www.rfc-editor.org/info/rfc2818
https://www.rfc-editor.org/rfc/rfc7258
https://www.rfc-editor.org/rfc/rfc7258
https://www.rfc-editor.org/info/rfc8484
https://www.rfc-editor.org/info/rfc8484
https://www.rfc-editor.org/info/rfc7858
https://www.rfc-editor.org/info/rfc7858
https://datatracker.ietf.org/doc/rfc9250/
https://datatracker.ietf.org/doc/rfc9250/
http://dnscrypt.org/
https://developers.google.com/speed/public-dns/
https://cloudflare-dns.com/

74 Bibliography

[12] Quad9. https://www.quad9.net/.

[13] Adguard Software Ltd.˙Adguard. https://adguard.com.

[14] Romain Cointepas and Olivier Poitrey. Nextdns. https://nextdns.io/.

[15] Rebekah Houser, Zhou Li, Chase Cotton, and Haining Wang. An Investigation on
Information leakage of DNS over TLS. In ACM CoNEXT’19, pages 123 – 137,
Orlando, Florida, USA, 2019.

[16] Sandra Siby, Marc Juarez, Claudia Diaz, Narseo Vallina-Rodriguez, and Carmela
Troncoso. Encrypted DNS⇒ Privacy? A Traffic Analysis Perspective. In NDSS’20,
San Diego, CA, USA, 2020.

[17] Sandra Deepthy Siby, Marc Juárez, Narseo Vallina-Rodriguez, and Carmela
Troncoso. DNS Privacy not so private: the traffic analysis perspective. In
HotPETs’18, 2018.

[18] A. Mayrhofer. Padding Policies for Extension Mechanisms for DNS (EDNS(0).
https://datatracker.ietf.org/doc/rfc8467, 2022.

[19] Jana Iyengar and Martin Thomson. Quic: A udp-based multiplexed and secure
transport. https://www.rfc-editor.org/info/rfc9000, May 2021.

[20] Chris Duckett. Google public dns gets dns-over-tls treatment. https://www.zdnet.
com/article/google-public-dns-gets-dns-over-tls-treatment/, 2019.

[21] Public resolvers. https://dnsprivacy.org/public_resolvers.

[22] Publicly available servers. https://github.com/curl/wiki/DNS-over-HTTPS.

[23] ISC. Bind 9. https://www.isc.org/bind.

[24] NLNET Labs. Unbound. https://www.nlnetlabs.nl/projects/unbound/about/.

[25] About stubby. https://github.com/getdnsapi/stubby, 2018.

[26] Knot. https://www.knot-dns.cz/, 2018.

[27] Firefox browser. https://www:mozilla:org/en-US/exp/firefox/.

https://www.quad9.net/
https://adguard.com
https://nextdns.io/
https://datatracker.ietf.org/doc/rfc8467
https://www.rfc-editor.org/info/rfc9000
https://www.zdnet.com/article/google-public-dns-gets-dns-over-tls-treatment/
https://www.zdnet.com/article/google-public-dns-gets-dns-over-tls-treatment/
https://dnsprivacy.org/public_resolvers
https://github.com/curl/wiki/DNS-over-HTTPS
https://www.isc.org/bind
https://www.nlnetlabs.nl/projects/unbound/about/
https://github.com/getdnsapi/stubby
https://www.knot-dns.cz/
https://www:mozilla:org/en-US/exp/firefox/

Bibliography 75

[28] Chrome browser. https://www:google:com/chrome/.

[29] Opera browser. https://brave:com/.

[30] Safari browser. https://www.apple.com/safari/.

[31] Edge browser. https://www.microsoft.com/en-us/edge/.

[32] Brave browser. https://brave:com/.

[33] Andrey Meshkov. Adguard dnsproxy. https://github.com/AdguardTeam/dnsproxy,
2021.

[34] Andriy Panchenko, Fabian Lanze, Jan Pennekamp, Thomas Engel, Andreas
Zinnen, Martin Henze, and Klaus Wehrle. Website Fingerprinting at Internet
Scale. In NDSS’16, San Diego, CA, USA, 2016.

[35] Xiang Cai, Xin Cheng Zhang, Brijesh Joshi, and Rob Johnson. Touching from a
distance: Website fingerprinting attacks and defenses. In ACM CCS’12, pages 605
– 616, Raleigh, NC, USA, 2012.

[36] Xiang Cai, Rishab Nithyanand, Tao Wang, Rob Johnson, and Ian Goldberg. A
systematic approach to developing and evaluating website fingerprinting defenses.
In ACM CCS’14, pages 227 – 238, Scottsdale, AZ, USA, 2014.

[37] Jamie Hayes and George Danezis. K-fingerprinting: a Robust Scalable Website
Fingerprinting Technique. In USENIX Security’16, pages 1187 – 1203, Austin, TX,
2016.

[38] Shawn Shan, Arjun Nitin Bhagoji, Haitao Zheng, and Ben Y. Zhao. A real-time
defense against website fingerprinting attacks. ArXiv, abs/2102.04291, 2021.

[39] Marc Liberatore and Brian Neil Levine. Inferring the source of encrypted http
connections. CCS ’06, page 255–263, New York, NY, USA, 2006. Association for
Computing Machinery.

[40] Andriy Panchenko, Lukas Niessen, Andreas Zinnen, and Thomas Engel. Website
fingerprinting in onion routing based anonymization networks. In Proceedings of

https://www:google:com/chrome/
https://brave:com/
https://www.apple.com/safari/
https://www.microsoft.com/en-us/edge/
https://brave:com/
https://github.com/AdguardTeam/dnsproxy

76 Bibliography

the 10th Annual ACM Workshop on Privacy in the Electronic Society, WPES ’11,
page 103–114, New York, NY, USA, 2011. Association for Computing Machinery.

[41] Kevin P. Dyer, Scott E. Coull, Thomas Ristenpart, and Thomas Shrimpton. Peek-a-
boo, i still see you: Why efficient traffic analysis countermeasures fail. In 2012
IEEE Symposium on Security and Privacy, pages 332–346, 2012.

[42] Tao Wang and Ian Goldberg. Improved website fingerprinting on tor. In
Proceedings of the 12th ACM Workshop on Workshop on Privacy in the Electronic
Society, WPES ’13, page 201–212, New York, NY, USA, 2013. Association for
Computing Machinery.

[43] Tao Wang, Xiang Cai, Rishab Nithyanand, Rob Johnson, and Ian Goldberg.
Effective attacks and provable defenses for website fingerprinting. In 23rd USENIX
Security Symposium (USENIX Security 14), pages 143–157, San Diego, CA, Aug
2014. USENIX Association.

[44] Dominik Herrmann, Rolf Wendolsky, and Hannes Federrath. Website Finger-
printing: attacking popular privacy enhancing technologies with multinomial
naïve-bayes classifier. In ACM Workshop on Cloud Computing Security (CCSW’09),
pages 31 – 42, Chicago, Illinois, USA, 2009.

[45] Charles V. Wright, Fabian Monrose, and Gerald M. Masson. On Inferring
Application Protocol Behaviors in Encrypted Network Traffic. Journal of Machine
Learning Research, 7:2745 – 2769, 2006.

[46] Laurent Bernaille and Renata Teixeira. Early Recognition of Encrypted Applica-
tions. In PAM’07, pages 165 – 175, Louvain-la-neuve, Belgium, 2007.

[47] Guang-Lu Sun, Yibo Xue, Yingfei Dong, Dongsheng Wang, and Chenglong Li.
An Novel Hybrid Method for Effectively Classifying Encrypted Traffic. In IEEE
GLOBECOM’10, pages 1 – 5, Miami, FL, USA, 2010.

[48] Gianluca Maiolini, Andrea Baiocchi, Alfonso Iacovazzi, and Antonello Rizzi.
Real Time Identification of SSH Encrypted Application Flows by Using Cluster
Analysis Techniques. In NETWORKING’09, pages 182 – 194, Berlin, Heidelberg,
2009.

Bibliography 77

[49] Mohamad Jaber, Roberto G. Cascella, and Chadi Barakat. Can we trust the
inter-packet time for traffic classification? In IEEE ICC’11, pages 1 – 5, Kyoto,
Japan, 2011.

[50] Chaoyi Lu, Baojun Liu, Zhou Li, Shuang Hao, Haixin Duan, Mingming Zhang,
Chunying Leng, Ying Liu, Zaifeng Zhang, and Jianping Wu. An End-to-End,
Large-Scale Measurement of DNS-over-Encryption. In ACM IMC’19, pages 22 –
35, Amsterdam, Netherlands, 2019.

[51] Sebastián García, Karel Hynek, Dmtrii Vekshin, Tomáš Čejka, and Armin Wasicek.
Large Scale Measurement on the Adoption of Encrypted DNS. In arXiv 2107.04436,
2021.

[52] Casey Deccio and Jacob Davis. DNS Privacy in Practice and Preparation. In ACM
CoNEXT’19, pages 138 – 143, Orlando, FL, USA, 2019.

[53] Minzhao Lyu, Hassan Habibi Gharakheili, and Vijay Sivaraman. A survey on dns
encryption: Current development, malware misuse, and inference techniques.
ACM Computing Surveys, 55(8):1–28, December 2022.

[54] Dnscrypt. http://dnscrypt.org/, 2019.

[55] Dmitrii Vekshin, Karel Hynek, and Tomas Cejka. DoH Insight: Detecting DNS
over HTTPS by Machine Learning. In ARES’20, pages 1 – 8, New York, USA, 2020.

[56] Sebastián García, Joaquín Bogado, Karel Hynek, Dmitrii Vekshin, Tomáš Čejka,
and Armin Wasicek. Large scale analysis of doh deployment on the internet.
page 145–165, Berlin, Heidelberg, 2022. Springer-Verlag.

[57] L. Csikor, H. Singh, M. Kang, and D. Divakaran. Privacy of dns-over-https:
Requiem for a dream? In 2021 IEEE European Symposium on Security and Privacy
(EuroS&P), pages 252–271, Los Alamitos, CA, USA, sep 2021. IEEE Computer
Society.

[58] Pratyush Dikshit, Jayasree Sengupta, and Vaibhav Bajpai. Recent trends on
privacy-preserving technologies under standardization at the ietf. SIGCOMM
Comput. Commun. Rev., 53(2):22–30, jul 2023.

http://dnscrypt.org/

78 Bibliography

[59] Haya Shulman. Pretty bad privacy: Pitfalls of dns encryption. WPES ’14, page
191–200, New York, NY, USA, 2014. Association for Computing Machinery.

[60] Dmitrii Vekshin, Karel Hynek, and Tomas Cejka. Doh insight: detecting dns over
https by machine learning. page 9, 08 2020.

[61] Austin Hounsel, Kevin Borgolte, Paul Schmitt, Jordan Holland, and Nick Feamster.
Analyzing the costs (and benefits) of dns, dot, and doh for the modern web. In
Proceedings of the Applied Networking Research Workshop, ANRW ’19, page 20–22,
New York, NY, USA, 2019. Association for Computing Machinery.

[62] Patrick McManus. Firefox nightly secure dns experimental results. 2018.

[63] Nguyen Phong Hoang, Michalis Polychronakis, and Phillipa Gill. Measuring the
accessibility of domain name encryption and its impact on internet filtering, 2022.
arXiv:2202.00663.

[64] Nguyen Phong Hoang, Arian Akhavan Niaki, Phillipa Gill, and Michalis Poly-
chronakis. Domain name encryption is not enough: Privacy leakage via ip-based
website fingerprinting, 2021. arXiv:2102.08332.

[65] Martino Trevisan, Francesca Soro, Marco Mellia, Idilio Drago, and Ricardo Morla.
Attacking doh and ech: Does server name encryption protect users’ privacy?
ACM Trans. Internet Technol., 23(1), Feb 2023.

[66] Sean Rivera, Vijay K. Gurbani, Sofiane Lagraa, Antonio Ken Iannillo, and Radu
State. Leveraging ebpf to preserve user privacy for dns, dot, and doh queries.
In Proceedings of the 15th International Conference on Availability, Reliability
and Security, ARES ’20, New York, NY, USA, 2020. Association for Computing
Machinery.

[67] Lin Jin, Shuai Hao, Haining Wang, and Chase Cotton. Understanding the impact
of encrypted dns on internet censorship. In Proceedings of the Web Conference 2021,
WWW ’21, page 484–495, New York, NY, USA, 2021. Association for Computing
Machinery.

https://arxiv.org/abs/2202.00663
https://arxiv.org/abs/2102.08332

Bibliography 79

[68] Kwan Carmen, Janiszewski Paul, Qiu Shela, Wang Cathy, and Bocovich Cecylia.
Exploring Simple Detection Techniques for DNS-over-HTTPS Tunnels. In Pro-
ceedings of the ACM SIGCOMM 2021 Workshop on Free and Open Communications
on the Internet (FOCI’21), number 6 in FOCI’21, pages 37 – 42, New York, NY, USA,
2021. Association for Computing Machinery.

[69] Karel Hynek and Tomas Cejka. Privacy illusion: Beware of unpadded doh. In 2020
11th IEEE Annual Information Technology, Electronics and Mobile Communication
Conference (IEMCON), pages 0621–0628, 2020.

[70] Jonas Bushart and Christian Rossow. Padding ain’t enough: Assessing the
privacy guarantees of encrypted dns. In 10th USENIX Workshop on Free and Open
Communications on the Internet (FOCI’20), 2020.

[71] Mozilla Manifesto. Firefox. https://www.mozilla.org.

[72] Fortiguard Labs. Fortiguard web filtering. https://fortiguard.com/webfilter.

[73] Alexa. Alexa top websites. https://support.alexa.com/hc/en-us/articles/
4410503838999, 2020.

[74] Baiju Muthukadan. Selenium with python. https://selenium-python.readthedocs.
io/, 2018.

[75] Guillaume Lemaître, Fernando Nogueira, and Christos K. Aridas. Imbalanced-
learn: A python toolbox to tackle the curse of imbalanced datasets in machine
learning. Journal of Machine Learning Research, 18(17):1–5, 2017. URL: http:
//jmlr.org/papers/v18/16-365.html.

[76] scikit-learn developers. Cross-validation: evaluating estimator performance.
https://scikit-learn.org/stable/modules/cross_validation.html.

[77] scikit learn. Randomizedsearchcv. https://scikit-learn.org/stable/modules/
generated/sklearn.model_selection.RandomizedSearchCV.html.

[78] David Cournapeau. Scikit learn library. https://scikit-learn.org, 2007.

[79] Leo Breiman. Random forests, 2001.

https://www.mozilla.org
https://fortiguard.com/webfilter
https://support.alexa.com/hc/en-us/articles/4410503838999
https://support.alexa.com/hc/en-us/articles/4410503838999
https://selenium-python.readthedocs.io/
https://selenium-python.readthedocs.io/
http://jmlr.org/papers/v18/16-365.html
http://jmlr.org/papers/v18/16-365.html
https://scikit-learn.org/stable/modules/cross_validation.html
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.RandomizedSearchCV.html
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.RandomizedSearchCV.html
https://scikit-learn.org

80 Bibliography

[80] J. Zhu, H. Zou, S. Rosset, and T. Hastie. Multi-class adaboost, 2009.

[81] Xgboost classifier. https://xgboost.readthedocs.io/en/stable/.

[82] Microsoft. Lgbmclassifier. https://lightgbm.readthedocs.io/en/latest/pythonapi/
lightgbm.LGBMClassifier.html.

[83] Gini impurity measure – a simple explanation using python. https://
towardsdatascience.com/gini-impurity-measure-dbd3878ead33.

[84] R. Hill. Ublock. https://github:com/gorhill/uBlock.

[85] A. Mayrhofer. The edns(0) padding option. https://www.rfc-editor.org/rfc/rfc7830,
2016.

[86] M. Graff. Extension Mechanisms for DNS (EDNS(0)). https://www.rfc-editor.org/
rfc/rfc6891/, 2022.

[87] Frank Olbricht. Routedns. https://github.com/folbricht/routedns.

[88] Confusion matrix. https://scikit-learn.org/stable/modules/generated/sklearn.
metrics.confusion_matrix.html.

[89] Fiona Nah. A study on tolerable waiting time: How long are web users willing
to wait? volume 23, page 285, Tampa, FL, USA, Aug 4-6 2003. 9th Americas
Conference on Information Systems, AMCIS 2003.

[90] Http archive. https://archive.org/.

https://xgboost.readthedocs.io/en/stable/
https://lightgbm.readthedocs.io/en/latest/pythonapi/lightgbm.LGBMClassifier.html
https://lightgbm.readthedocs.io/en/latest/pythonapi/lightgbm.LGBMClassifier.html
https://towardsdatascience.com/gini-impurity-measure-dbd3878ead33
https://towardsdatascience.com/gini-impurity-measure-dbd3878ead33
https://github:com/gorhill/uBlock
https://www.rfc-editor.org/rfc/rfc7830
https://www.rfc-editor.org/rfc/rfc6891/
https://www.rfc-editor.org/rfc/rfc6891/
https://github.com/folbricht/routedns
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.confusion_matrix.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.confusion_matrix.html
https://archive.org/

81

A
Appendix

A.1 Features List

Table A.1 shows features for the identification.

Table A.1: Flow Feature Selection

ID Abbreviation The flow discriminator
1 QueryPktCount The number of outgoing packets
2 QueryIntervalTime Query inter-packet arrival time
3 QueryIntervalTimeMax Max query inter-packet arrival time
4 QueryIntervalTimeMin Min query inter-packet arrival time
5 QueryIntervalTimeMean Average query inter-packet arrival time
6 QueryIntervalTimeMedian Median inter query arrival time

7 QueryIntervalTimeStandard
Standard deviation of
inter-query arrival time

8 QueryIntervalTimeVariance
The variance in query
inter-packet arrival time

82 Chapter A. Appendix

9 QueryIntervalTimeCoefficientVariation
The coefficient of variance in query
inter-packet arrival time

10 QueryIntervalTimeKurtosis
The "tailedness" of the distribution of query
inter-packet arrival time

11-19 QueryIntervalTimeDeciles1-9 The deciles query-query intervals time
20 QueryLengthMax Max number of bytes in outgoing packets
21 QueryLengthMin Min number of bytes in outgoing packets
22 QueryLengthMean Average number of bytes in outgoing packets
23 QueryLengthMedian Median number of bytes in outgoing packets

24 QueryLengthKurtosis
The "tailedness" of the distribution
of number of bytes in outgoing packets

25 QueryLengthStandard Standard number of bytes in outgoing packets
26 QueryLengthVariance The variance number of bytes in outgoing packets

27 QueryLengthCoefficientVariation
The coefficient of variance number
of bytes in outgoing packets

28-36 QueryLengthDeciles1-9 The deciles bytes in outgoing packets

37 EntropyQueryLength
The normalized entropy of
outgoing packet length

38 RPerSecondMax Max number of response in one second
39 RPerSecondMean Average number of query in one second
40 RPerSecondMedian Standard number of bytes in outgoing packets
41 RPerSecondMin Standard number of bytes in outgoing packets
42 RPerSecondStandard Standard number of bytes in outgoing packets
43 RPerSecondVariance The variance number of bytes in outgoing packets

44 PerSecondKurtosis
The "tailedness" of the distribution number of
bytes in outgoing packets

45 RPerSecondCoefficientVariation Max number of response in one second
46-54 RPerSecondDeciles1-9 The deciles number of response in one second
55 FlowBytesSent The amount bytes sent
56 FlowSentRate The rate of the bytes being sent
57 ResponsePktCount The number of incoming packets
58 ResponseIntervalTime Response inter-packet arrival time
59 ResponseIntervalTimeMax Max response inter-packet arrival time
60 ResponseIntervalTimeMin Min response inter-packet arrival time
61 ResponseIntervalTimeMean Average response inter-packet arrival time
62 ResponseIntervalTimeMedian Median response inter-packet arrival time

63 ResponseIntervalTimeStandard
Standard deviation of response
inter-packet arrival time

64 ResponseIntervalTimeVariance
The variance in response
inter-packet arrival time

A.1 Features List 83

65 ResponseIntervalTimeCoefficientVariation
The coefficient of variance in response
inter-packet arrival time

66 ResponseIntervalTimeKurtosis
The "tailedness" of the distribution in response
inter-packet arrival time

67-75 ResponseIntervalTimeDeciles1-9
The deciles of response
inter-packet arrival time

76 ResponseLengthMax Max number of bytes in incoming packets
77 ResponseLengthMin Min number of bytes in incoming packets
78 ResponseLengthMean Average number of bytes in incoming packets
79 ResponseLengthMedian Median number of bytes in incoming packets
80 ResponseLengthStandard Standard number of bytes in incoming packets
81 ResponseLengthVariance The variance number of bytes in incoming packets

82 ResponseLengthCoefficientVariation
The coefficient of variance number
of bytes in incoming packets

83 ResponseLengthKurtosis
The "tailedness" of the distribution
number of bytes in
incoming packets

84-92 ResponseLengthDeciles1-9 The deciles of bytes in incoming packets
93 Duration Inter-packet arrival time
94 QRPktCount The total number of packets
95 QRPktLength The total length of packets
96 PacketThroughput The throughput of packet length
97 ByteThroughput The throughput of packet bytes

98 EntropyResponseLength
The normalized entropy of
incoming packet length

99 FlowBytesReceived The amount bytes received
100 FlowReceivedRate The rate of the bytes being received
101 RQIntervalTimeMax Max intervals between pair of response-query
102 RQIntervalTimeMin Min intervals between pair of response-query
103 RQIntervalTimeMean Average intervals between pair of response-query
104 RQIntervalTimeMedian Median intervals between pair of response-query
105 RQIntervalTimeStandard Standard intervals between pair of response-query

106 RQIntervalTimeKurtosis
The "tailedness" of the distribution of
intervals between pair of response-query

107 RQIntervalTimeVariance The variance intervals between pair of response-query

108 RQIntervalTimeCoefficientVariation
The coefficient of variance intervals
between pair of response-querys

109-117 RQIntervalTimeDeciles1-9 Deciles of the query-response intervals time
118 QRIntervalTimeMax Max intervals between pair of query and response packets

84 Chapter A. Appendix

119 QRIntervalTimeMin Min intervals between pair of query and response packets
120 QRIntervalTimeMean Average intervals between pair of query and response packets
121 QRIntervalTimeMedian Median intervals between pair of query and response packets
122 QRIntervalTimeStandard Standard intervals between pair of query and response packets

123 QRIntervalTimeVariance
The variance intervals between pair of query and response
packets

124 QRIntervalTimeKurtosis
The "tailedness" of the distribution of query-response
interval time

125 QRIntervalTimeCoefficientVariation
The coefficient of variance intervals
between pair of query and response packets

126 DFIntervalTimeMax Max intervals between adjacent pair of query-response
127 DFIntervalTimeMean Average intervals between adjacent pair of query-response
128 DFIntervalTimeMedian Median intervals between adjacent pair of query-response
129 DFIntervalTimeMin Min intervals between adjacent pair of query-response

130 DFIntervalTimeStandard
Standard intervals between adjacent
pair of query-response

131 DFIntervalTimeVariance
The variance intervals between
adjacent pair of query-response

132 DFIntervalTimeKurtosis
The "tailedness" of the distribution
of intervals time

133 QPerSecondCoefficientVariation
The coefficient of variance of query
number in one second

134 DFIntervalTimeCoefficientVariation
The coefficient of variance intervals
between adjacent pair of query and response packets

135-143 DFIntervalTimeDeciles1-9 deciles of adjacent pair query-response intervals time
144 QPerSecondMean Average the number of response in one second
145 QPerSecondMax Max the number of response in one second
146 QPerSecondMedian Median the number of response in one second

147 QPerSecondKurtosis
The "tailedness" of the distribution of the
number of responses in one second

148-156 QPerSecondDeciles1-9 The deciles of query number in one second
157-165 QRIntervalTimeDeciles1-9 The deciles of query-response interval-time
166 QPerSecondMin Min number of response in one second
167 QPerSecondStandard Standard number of response in one second
168 QPerSecondVariance The variance number of response in one second
169 EntropyRRIntervalTime The normalized entropy of two consecutive responses
170 EntropyQRIntervalTime The normalized entropy of pair of query-responses
171 EntropyRQIntervalTime The normalized entropy of pair of query and responses
172 EntropyDFIntervalTime The normalized entropy of pair of responses-query

A.2 The Feature of Query-Response 85

173 EntropyQQIntervalTime The normalized entropy of pair of query-query
174 bytes_ts3 The time to receive 3000 bytes response
175 bytes_ts5 The time to receive 5000 bytes response

A.2 The Feature of Query-Response

About the features related to query and response DNS packets, we consider three
cases.

case 1 In the first case as shown in Figure A.1, the inter-arrival feature may include
the QQ, RR, QR, and RQ. It causes some features will be overlapped. We extract all of
these features.

QQ QR RR RQ RQ

Q Q R R Q R Q

Original Query-Response List:

Inter-arrival List:

Figure A.1: First Case of Query-Response

case 2 We consider the intervals between an adjacent pair of a query and response
(and vice versa):

case 3 As shown in :
QR inter-arrival[0] = Response[0] – Query[0]
QR inter-arrival[1] = Response[1] – Query[1]

86 Chapter A. Appendix

QR QRRQ RQ

Q Q R R Q R Q

Original Query Response List:

Inter-arrival List:

Figure A.2: Second Case of Query-Response

QR[0] QR[2]QR[1]

Q[0] Q[1] R[0] R[1] Q[2] R[2] Q[3]

Original Query Response List:

Inter-arrival List:

Figure A.3: Third Case of Query-Response

A.3 Padding Configuration of Bind9 87

QR inter-arrival[2] = Response[2] – Query[2]...
In this case, the time of response may be smaller than the query (maybe one query

will cause some responses, like A, CNAME.)

A.3 Padding Configuration of Bind9

Bind9 could support the pad in response by modifying the configuration.
In etc/bind/named.conf.options:
response-padding any;
block-size 128;

	List of Figures
	List of Tables
	1 Introduction
	1.1 Motivation
	1.2 Problem Statement and Research Questions
	1.3 Contributions
	1.3.1 Characterizing Privacy Leakage in Encrypted DNS Traffic
	1.3.2 Mitigate the privacy leakage of DoQ

	1.4 Dissertation outline

	2 Background and Related Works
	2.1 DNS Encryption Protocols
	2.1.1 Encrypted DNS protocols
	2.1.2 Deployment of encrypted DNS protocols

	2.2 Encrypted DNS Configurations
	2.3 Related Works
	2.3.1 Website Fingerprinting Attack
	2.3.2 Encrypted Traffic Analysis with Machine Learning Technique
	2.3.3 Encrypted DNS: Deployment, Detecting, and Performance Analysis

	2.4 Summary

	3 Methodology
	3.1 Measurement Setup
	3.2 Overview
	3.2.1 Dataset Preparation
	3.2.2 Features
	3.2.3 Modeling

	4 Classification Performance
	4.1 Binary Classification Performance
	4.1.1 Baseline Classification Performance
	4.1.2 Feature Importance
	4.1.3 Effect of cache on Bind
	4.1.4 DoQ with another Public (Google) Resolver
	4.1.5 DoT and DoH with Public (Google) Resolver

	4.2 Multi-Classification Performance
	4.2.1 Baseline Classification Performance
	4.2.2 The Effect of Number of Crawls

	4.3 Summary

	5 Countermeasure
	5.1 Controlling Inter-arrival time
	5.1.1 Using AdBlocker
	5.1.2 Disabling DNS Prefetching
	5.1.3 Adding Random Delay

	5.2 Controlling Packet Length
	5.2.1 Padding DNS Payload

	5.3 Combination of Two Countermeasures
	5.3.1 Binary Classification Performance
	5.3.2 Multi-Classification Performance

	5.4 Summary

	6 Discussion
	6.1 Discussion
	6.1.1 Key findings
	6.1.2 The target F1 scores for binary and multi-classification
	6.1.3 Why category should be protected?
	6.1.4 Can the attacker evade the countermeasures?

	6.2 Limitations
	6.3 Future Work

	7 Conclusion
	Bibliography
	A Appendix
	A.1 Features List
	A.2 The Feature of Query-Response
	A.3 Padding Configuration of Bind9

