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Abstract

Gene expression analysis is commonly used to analyze millions of gene ex-

pression data points. Challenging in this process has been the development of

appropriate statistical methods for high-dimensional data. We propose Sparse

Learner Boosting for gene expression data analysis. Boosting is performed to

minimize the loss function, although this process can cause overfitting when

a large number of variables are present. Ordinary boosting utilizes all of the

potential weak learners in a given data set and constructs a decision rule. The

fundamental idea of Sparse Learner Boosting is to reduce the complexity of

the decision rule by using fewer weak learners than is usually required. This

reduction prevents overfitting and improves performance during classification.

Numerical studies support this modification for high-dimensional data, such

as that obtained from gene expression analysis. We show that the proposed

modification improves the performance of ordinary boosting methods. We

also review another problem in high-dimensional data. Sparser solutions are

desirable from the view point of simple classification modeling and ease of

interpretation however there is no unique sparse solution in any single classifi-

cation problem. The possible combination of gene sets out of millions of gene

expression data is huge. We show the existence of multiple optimum gene sets

and consider the possible solutions.
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1 Introduction

In the last couple of decades, bioinformatics has showed impressive progress. During

the Human Genome Project (Vender et al. (2001)), the speed and cost of reading

genome sequence was accelerated that made the end of the project faster than the

originally planned. After the project, more species genome were read using the

improved technology. More than 1,000 species genomes have finished being read and

we can access this genome data on the web site (www.genomesonline.org). Genome

information can be utilized in a variety of ways. One technology which uses genome

information is microarray technology which measures gene expression levels from

collected RNA. Microarray becomes a common technology for its great of interest

to observe millions of gene expression behavior.

Microarray has various usages, one of them is in clinical research. Researchers

collect gene expression data from patients so that they can examine it with their clin-

ical information. Golub et al. (1999) categorized leukemia samples into subclasses

using microarray and their clinical outcome information. Bittner et al. (2000) used

gene expression data to subgroup melanomas. van’t Veer et al. (2002) published a

study to classify metastasis from primary breast cancer patients then their selected

genes were used in the first FDA approved microarray diagnosis kit.

The progress of microarray technology has generated a new challenge in statistics

and machine learning. Microarray can measure millions of gene expression data in

one experiment however still the number of subjects is in the order of hundreds. This

extremely unbalanced ratio of dimension p to sample size n makes the application

of classic statistical methods challenging without specific modification.

Boosting is introduced by Freund and Schapire (1997) as one of the most powerful

methods for machine learning along with Support Vector Machine which is reported

by Vapnik (1995). The underlying idea is that many“weak”classifiers are combined
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to build a“ strong”classifier at the end of a series of learning steps. There are a

number of boosting algorithms proposed, the most popular of which is AdaBoost,

which is also proposed by Freund and Schapire (1997). AdaBoost learning process

proceeds sequentially while minimizing exponential loss each step. Observations

are weighted each step so that AdaBoost can learn from the data points which are

misclassified in the previous step.

Dudoit and Fridlyand (2002) compared AdaBoost to other classifiers using the

gene expression data analysis and they concluded that AdaBoost did not perform

at a comparable level. One major weakness of AdaBoost is sensitivity to outliers.

Because AdaBoost algorithm puts heavy weight on data points which are misclas-

sified in a previous step, outliers tend to have a large weight. As consequence,

AdaBoost learns from the outliers therefore the final classifier often cannot show

good performance. To prevent this, different loss functions are considered.

The number of iterations is also considered to cause overfitting. Cross validation

is used to decide the number of iterations, this is called early stopping. Beside loss

function and number of iterations, complexity of the set of weak learners is also an

important factor which can cause overfitting. Friedman et al. (2000) pointed out

that in the context of Boosting all weak learners are not equivalent, and there is

no universal best choice for all situations. Because of the difficulty in finding an

universal rule, how to choose the set of weak learners has not been paid enough

attention. The set of weak learners is usually decided by the given data set. When

the number of features is increased, the number of weak learners is also increased.

The complexity of initial set of weak learners become larger.

In this thesis, we propose Sparse Learner Boosting. The key idea is to reduce

the initial set of weak learner candidates. We face a situation in which the number

of features is extremely large, consequently there is a superfluous number of weak
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learners complicating the classification model. We propose truncating the weak

learners candidates while keeping informative weak learners. The motivation for

Sparse Learner Boosting is preventing overfitting of high-dimensional data. Early

stopping is considered to prevent overfitting and Rosset et al. (2004) explained the

relation of early stopping to regularization in boosting. When the size of dimension

is large, the learning process proceeds very quickly in a greedy way. This results

in complex model which does not have good performance against unknown data.

In this case even early stopping does not prevent this behavior. We will show this

using synthesized data and real data.

We also review another important problem in this thesis. As a result of tech-

nological progress, the possible number of gene expression measurements in one

microarray has been rapidly growing, however many genes are not differentially ex-

pressed across subjects to any significant degree. These genes are irrelevant for

classification purpose, therefore dimension reduction is applied to find differentially

expressed genes. Ranking genes by the degree of different expression among class

labels is often performed. Some top ranked genes are considered to be useful for clas-

sification. As microarray usage for clinical research has become common, researchers

in different laboratories have followed a variety of procedures, some similar some dif-

ferent. In each case, these researchers expected to see similar genes being selected

then used for classification, however overlap was small due to the fact that there is

no unique gene set for any given classification problem. Some reasons are considered

such as different experiment condition or different patient clinical status. Fan et al.

(2006) compared five classification models which used different genes. They showed

that four out of five classification methods showed similar prediction performance

even though almost no common genes existed across those five methods. We con-

sidered multiple optimum gene sets existence in a single data set. We used gene sets
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which are not top ranked then compared the classification performance using real

data. The result showed the existence of multiple optimum gene sets.

The rest of this thesis is organized as follows. In Section 2, we review Boosting

methods, related concepts and variants of Boosting methods. In Section 3 we address

the details of Sparse Learner Boosting. In Section 4, we discuss the existence of

multiple optimum gene sets. Section 5 is conclusions and remarks.
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2 Review of Boosting methods

In this chapter we overview the details of Boosting methods and concepts related to

Boosting methods then look at the modification of the original Boosting methods.

The main idea of Boosting methods is learning from data sequentially using weak

learners which are slightly better than random guesses. Two of the key points

of Boosting methods are how to choose the weak classifier to be used for the final

classifier and how to combine the selected classifiers. Boosting methods were studied

from different view points because of their high performance. We review these

different view points. Several weaknesses of Boosting methods and modifications to

overcome these flaws have been pointed out. We address some of these weakness

and modification in this section.

First we explain the notation. Then we present a brief history of Boosting

methods. In section 2.3, we review Bagging which is similar to Boosting methods.

In section 2.4, loss functions are mentioned. Then we present the details of AdaBoost

and related concepts. Lastly the modifications of the Boosting methods are shown.

2.1 Notation

Before going into detail, we set a notation for the classification procedure. We

denote input variables by the symbol X. Output is denoted by Y . We use uppercase

letters such as X, Y when referring to the generic aspect of a variable. Let (X, Y )

be a pair of random variables taking values in X × Y where X is a feature space

in p-dimension and Y = {−1,+1} is a label set. Observed values are written in

lowercase letter. For instance ith value of X is xi. For a given training data set,

L = {(xi, yi) : i = (1, . . . , n)}, consisting of n independent, identically distributed

pairs having the same distribution as (X, Y ). Let F (x) be a discriminant function

associates with a classification rule H(x) which is a function of x into y.
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2.2 Brief history of Boosting

The main idea of Boosting is to combine simple ”weak learners” to build a strong

learner which has better classification performance than a single learning, this is

called ensemble learning. Several researchers reported significant improvements in

performance using ensemble learning (Dietterich (2000), Breiman (1996), Breiman

(1998), Dietterich and Bakiri (1995)).

Schapire (1990) was the first to provide a polynomial time Boosting algorithm.

Drucker et al. (1993) applied the Boosting idea to an OCR task using neural net-

works as weak learners. Breiman (1996, 1998) proposed a similar method named

bagging and arcing. Schapire and Singer (1999) showed theoretical support for their

algorithms in the form of upper bound on generalization error. This theory was

developed in the computational learning community based on the concept of PAC

learning. Kearns and Valiant (1989) proved that weak learners, each of which per-

form slightly better than a guess, can be combined to form a powerful ensemble

learning.

AdaBoost (Adaptive Boosting) which is proposed by Freund and Schapire (1997)

is the most popular Boosting method. Boosting became common because of high

performance. Some researchers stated Boosting did not overfit but some researchers

reported Boosting overfit eventually. Boosting is learning from given training data

in a greedy way. The algorithm is trying to minimize training error. Therefore if

data is very noisy, Boosting learns the noise excessively then causes overfitting. We

overview several Boosting methods and their main concepts.

Next we give a brief overview of bagging which has a similar concept to Boosting

methods to show why Boosting methods work well.
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2.3 Bagging

Breiman (1996, 1998) found that gains in accuracy could be obtained by aggregating

predictors built from perturbed version of the training data. Set the training data

L = {(xi, yi) : i = (1, . . . , n)}. A bootstrap sample is generated from given training

data with replacement. Bootstrap sample is generated as L1, . . . ,LB and a classifier

Cb is built from each bootstrap sample Lb. Then the final classifier is built from

C1, . . . , CB whose output is the class predicted most often by its sub-classifiers. The

Bagging algorithm is as follows:

1. For any b = 1, . . . , B

Lb = bootstrap sample from L (1)

Cb(x) = φ(x;Lb), (2)

where φ is a classifier which returns a predicted label.

2. Final output is

C∗(x) = argmax
y=±1

B∑
b=1

I(Cb(x) = y), (3)

where I(·) denotes the indicator function, equaling 1 if the condition in parentheses

is true, and otherwise 0.

Bagging updates data sequentially by resampling and then decides the predicted

labels by majority votes. On the other Boosting methods use loss function during

sequential learning. In the next subsection, we survey a variety of loss functions.
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2.4 Loss function

Loss function is a function to measure a penalty incurred by the built model if

making a misclassification. There are a variety of loss functions. The common loss

functions are denoted by

L(y, F (x)) =


(y − F (x))2 Squared loss

exp(−yF (x)) Exponential loss

log(1 + exp(−yF (x)) Loglikelihood.

(4)
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Figure 1: Loss functions. The x-axis is yf and y-axis is loss. Exponential loss,
log-likelihood loss and squared loss are drawn.

Figure 1 shows these loss functions as a function of yF . The difference between

these loss functions is in the degree of negative penalty. Squared loss is the most
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sensitive for the misclassification so it gives a large penalty. The log-likelihood

returns a smaller penalty to the misclassified data points than exponential loss. From

the view point of optimization, the convex loss function is usually used because of

its uniqueness of optimal point. AdaBoost uses the exponential loss function which

gives a preferable nature to AdaBoost. We look at the details of AdaBoost algorithm

in the next subsection.

2.5 AdaBoost

AdaBoost (Adaptive Boosting) introduced by Freund and Schapire (1997) is the

most common Boosting method. AdaBoost builds“ strong”classifier by linear com-

bination of“ weak” learners. Bagging learns from resampling data, on the other

hand AdaBoost learns from reweighted data. The weight is decided by previous

classification result. The data points which are misclassified have a large weight so

the AdaBoost algorithm focuses on learning from the misclassified data points. The

training data is sequentially reweighted meanwhile the coefficient is calculated at

each step.

2.5.1 Algorithm

We use a set of weak learners defined by

F = {fj(x) : j ∈ {1, . . . , p}}. (5)

Each weak learner is generated by each feature. The detail of fj(x) is defined later.

After T times iterations, the final classifier is constructed which is linear combination
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of coefficient α and weak learners defined by

F (x) =
T∑
t=1

αtft(x). (6)

The coefficient αt and classifiers ft are defined by the following discussion. AdaBoost

algorithm is characterized by the minimization of the exponential loss function,

which is defined by

Lexp(F ) =
n∑

i=1

exp(−yiF (xi)). (7)

Consider an update from F to F + αf each step, the exponential loss function can

be written as

Lexp(F + αf) =
n∑

i=1

exp(−yi(F (xi) + αf(xi))) (8)

= ε(f)eα + (1− ε(f))e−α, (9)

where ε(f) is weighted error rate and defined by

ε(f) =
n∑

i=1

I(yi ̸= f(xi)) exp(−yiF (xi)). (10)

The coefficient α is calculated by

argmin
α∈R

Lexp(F + αf) =
1

2
log

1− ε(f)

ε(f)
. (11)

The derivation of Equation (11) is written in the Appendix. The optimal value of

f on step t is determined by minimizing the weighted error ε(f). The weight on

training example i on step t is denoted by wt(i). Initially, all weights are set equally,

then the weights of incorrectly classified examples are increased on each step so that
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the weak learners are forced to focus on the difficult examples in the training set.

The details of algorithm is as follows:

1. Set w1(i) = 1/n and Fo = 0

2. For any t = 1, . . . , T

a. Find

ft = argmin
f∈F

εt(f) (12)

where

εt(f) =
n∑

i=1

wt(i)I(yi ̸= f(xi)). (13)

b. Calculate

αt =
1

2
log

1− εt(ft)

εt(ft)
. (14)

c. Update

wt+1(i) =
exp(−αtyift(xi))

Zt

, (15)

where Zt =
∑n

i=1 exp(−αtyift(xi)).

3. The final classifier is given by sgn(F (x)) where F (x) =
∑T

t=1 αtft(x).

Like Bagging, the AdaBoost algorithm generates a set of classifier and votes them.

Beyond this, the main difference between two algorithms is AdaBoost generates the

classifier sequentially. On the other hand Bagging can generate them in parallel. On

top of the difference, AdaBoost changes the weights of the training samples based
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on the previous training result. AdaBoost algorithm increases the weights of exam-

ples misclassified by ft and decreases the weights of correctly classified examples.

Furthermore AdaBoost algorithm updates the weight of previously selected ft to the

worst weight. It can be shown that

εt+1(ft) =
n∑

i=1

I(yi ̸= ft(xi))wt+1(i) (16)

=

∑n
i=1 I(yi ̸= ft(xi))e

(−αtyift(xi))wt(i)∑n
i=1 I(yi ̸= ft(xi))e(αtyift(xi))wt(i) +

∑n
i=1 I(yi = ft(xi))e(−αtyift(xi))wt(i)

=
1

2
. (17)

We illustrate a typical example in Figure 2. The data set {(xi, yi) : i = i, . . . , n}

was generated as follows. The data x = (x1, x2) was sampled from the uniform

distribution U(−1.2, 1.2). The class labels y are defined by

y =

 +1 if sin(3x1) ≤ x2

−1 otherwise.
(18)

The left panel in Figure 2 shows the Bayes rule decision boundary. The right panel

shows AdaBoost boundary after 100 iterations. We can observe that the AdaBoost

boundary is close to the Bayes boundary.

2.5.2 AdaBoost as additive logistic regression model

AdaBoost can be interpreted as a stagewise estimation procedure for fitting an

additive logistic regression model. We write the details of logistic regression model

in Appendix B. Consider the expectation of the exponential loss function,

J(F ) = E(e−yF (x)), (19)
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Figure 2: Typical example: Circles and triangles denote data points with class
labels +1 and −1. In the top panel, solid line shows the Bayes rule boundary. In
the bottom panel, the solid line shows the AdaBoost boundary after 100 iterations.
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where E represents expectation. This can be rewritten as

E(e−yF (x)|x) = P (y = 1|x)e−F (x) + P (y = −1|x)eF (x). (20)

Minimizing the exponential loss function is equivalent to

∂E(e−yF (x)|x)
∂F (x)

= −P (y = 1|x)e−F (x) + P (y = −1|x)eF (x). (21)

Set the derivative to zero,

−P (y = 1|x)e−F (x) + P (y = −1|x)eF (x) = 0

−P (y = 1|x)e−F (x) + {1− P (y = 1|x)}eF (x) = 0

−P (y = 1|x)(e−F (x) + eF (x)) = −eF (x)

P (y = 1|x) =
eF (x)

e−F (x) + eF (x)
. (22)

In the same way,

P (y = −1|x) =
e−F (x)

e−F (x) + eF (x)
. (23)

This is also

F (x) =
1

2
log

P (y = +1|x)
P (y = −1|x)

. (24)

In Equation (24), the left hand term F (x) =
∑T

t=1 αtft(x), therefore AdaBoost can

be considered as an additive logistic regression model.
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2.5.3 Training error and generalization error

Freund and Schapire (1997) showed the upper bound of training error. The training

error Errtr(F (x)) is

Errtr(F (x)) =
1

n

n∑
i=1

I(yi ̸= F (xi)), (25)

which is bounded by

Errtr(F ) ≤ 2T
T∏
t=1

√
εt(ft)(1− εt(ft)). (26)

Equation (26) is proved as follows. First we show that

wT+1(i) =
1

n
· exp(−yiF (x))∏T

t=1 Zt

. (27)

It holds that

wt+1(i) = w1(i) ·
exp(−α1yif1(xi))

Z1

· · · exp(−αTyifT (xi))

ZT

(28)

=
1

n
· exp(−yi

∑T
t=1 αtft(xi))∏T

t=1 Zt

(29)

=
1

n
· exp(−yiF (x))∏T

t=1 Zt

. (30)

The expected exponential loss function can be formed by

L(F ) =
1

n

n∑
i=1

exp(−yiF (xi)) (31)

=
n∑

i=1

wT+1(i)
T∏
t=1

Zt (32)

=
T∏
t=1

Zt. (33)
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Zt can be rewritten as follows:

Zt =
n∑

i=1

wt(i) exp(−αtyift(xi)) (34)

=
n∑

i=1

I(yi ̸= f(xi))wt(i)e
−α +

n∑
i=1

I(yi = f(xi))wt(i)e
α (35)

= e(−α)(1− εt(ft(x))) + e(α)εt(ft(x)) (36)

= 2
√
εt(ft(x))(1− εt(ft(x))). (37)

Therefore

L(F ) =
1

n

n∑
i=1

exp(−yiF (xi)) = 2T
T∏
t=1

√
εt(ft(x))(1− εt(ft(x))). (38)

Since

1

n

n∑
i=1

I(yi ̸= F (xi)) ≤ 1

n

n∑
i=1

exp(−yiF (xi)), (39)

the upper bound of the training error is

Errtr(F (x)) ≤ 2T
T∏
t=1

√
εt(ft(x))(1− εt(ft(x))). (40)

Then this completes the proof.

When εt(ft) ≤ 1/2− γ ( γ > 0), Equation (40) is

2T
T∏
t=1

√
εt(ft)(1− εt(ft)) =

T∏
t=1

√
1− 4γ2t (41)

≤ exp

(
−2

T∑
t=1

γ2t

)
. (42)
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Then the training error of the combined classifiers decreases exponentially. Freund

and Schapire (1997) study the error outside the training data, which is generaliza-

tion error. Equation (40) shows that the training error is small; however the interest

of classification is in how well the final classifier works against unknown data. The

generalization error is the probability of misclassifying a new example, while the

test error is the fraction of mistakes on a sample test set, thus generalization er-

ror is expected test error. Freund and Schapire (1997) showed how to bound the

generalization error of the final classifier in terms of its training error as follows:

P̂ [F (x) ̸= y] + Õ

(√
Td

n

)
, (43)

where P̂ [·] denotes empirical probability on the training sample, n is the size of

the sample, d is VC dimension of the base classifier space and T is the number

of iterations. VC dimension is a measure of model complexity. We will mention

the details of VC dimension later. From the bound of training error suggests that

Boosting will overfit if run forever. However some authors observed empirically that

Boosting does not cause overfitting, and furthermore, the test error is driven down

long after the training error reaches zero.

In response to these empirical findings, Schapire et al. (1998) and Bartlett (1998)

gave an alternative analysis in terms of the margins of the training data. Schapire

et al. (1998) defined the margin for Boosting methods as follows:

MBoost(x, y) =
yF (x)

||α||1
=
y
∑T

t=1 αtft(x)

||α||1
, (44)

where ||α||1 is l1 norm forα vector which isα = (α1, . . . , αT ). Since the denominator

is normalized by the sum of the coefficients αt, the range of the margins is [−1,+1].

The margin is positive if and only if F (x) correctly classifies the example thus the
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margin can be read with confidence. They observed that more iterations give a

closer value to +1 using separable examples. Schapire et al. (1998) also proved that

larger margins on the training set translates into a superior upper bound on the

generalization error which is at most

P̂ [MBoost(x, y) ≤ θ] + Õ

(√
d

nθ2

)
, (45)

for any θ > 0 with high probability. Schapire et al. (1998) showed the empirical

result in his paper. We synthesized a toy example to observe the progress of the

margin in accordance with the number of iterations. The plot of the toy example

is in Figure 3. Black circles and white circles denote data points with class labels

+1 and −1 respectively. The data points with class label +1 follow the normal

distribution N((0, 0), 1.5I). The data points with class labels −1 follow the normal

distribution N((4, 4), 1.5I).

Figure 4 shows the progress of training error and test error. Figure 5 presents

the cumulative distribution of margins after 500 and 1000 iterations. Training error

reached zero at a very early stage, however the margin becomes larger at 1000

iterations than at 500 iterations.

However the bound is rather weak furthermore when a data sample contains

noise, the margin does not approach 1. Grove and Schuurmans (1998) showed an

example in which generalization error was not decreased even when the margin

goes to 1. The margin theory however is used to explain the connection between

AdaBoost and Support Vector Machine. We will review the relation to Support

Vector Machine in the next subsection.
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Figure 3: Toy example. Black circles and white circles denote data points with class
labels +1 and −1 respectively.
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Figure 4: Progress of training error and test error. The x-axis is the number of
iteration and the y-axis is error. The solid line and dashed line show the progress
of training error and test error respectively.
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Figure 5: The cumulative distribution of margins of the training data after 100 and
1000 times iterations, indicated by dashed line and solid line respectively.

2.5.4 Relation to Support Vector Machine

Support Vector Machine (SVM) is a well known machine learning method as is

Boosting method. SVM is introduced by Vapnik (1998). The details of SVM is

written in Appendix. Shapire addressed the relationship between AdaBoost and

SVM using the margin. The basic concept of SVM is called ’maximum minimum

margin’. A data point is viewed as a p-dimensional vector. SVM aims to find

a hyperplane which can separate such points. Shapire defined the SVM maxium

minimum margin which is

mSVM = min
i

yiF (xi)

||β||2
, (46)

where ||β||2 is the l2 or Euclidean norm of β vector which is β = (β1, . . . , βp). This

is similar to the Boosting margin Equation (44). Viewed this way, the connection
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between SVM and Boosting method becomes clear. Both methods aim to find a

linear combination in a high dimensional space which has a large margin. When

described in this manner, SVM and AdaBoost seems to be similar however there

are several important differences which Shapire pointed out.

The first one is that different norms can result in very different margins. SVM

uses Euclidean norm and Boosting uses l1 norm as the denominator. This difference

may not be very significant when one considers low dimensional spaces however

in the case of high dimension size, the difference between the norms can result in

very large differences in the margin values. The second difference is computational

requirements. The computation involved in maximizing the margin is mathematical

programming. The difference between the two methods in this regard is that SVM

corresponds to quadratic programming, while Boosting method corresponds only

to linear programming. The third difference is that different approaches are used

to search efficiently in high dimensional space. SVM finds the maximum margin

in a high dimensional spaces using kernel trick which is a method to solve a non-

linear problem by mapping the original observations into a higher-dimensional space.

This makes a linear classification in the higher-dimension equivalent to non-linear

classification in the original space. The boosting approach is instead to employ

greedy search which adds a weak classifier one by one with re-weighted original

data. As kernel trick and greedy search are very different approaches, the resulting

learning algorithms can be very different.

Figure 6 upper panel shows a simple example of separable data in two dimen-

sions, with its margin-maximizing separating hyper-plane. The lower panel shows

a Boosting margin maximizing separating hyper-plane for the same simple example

as the SVM margin.
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Figure 6: A simple example of two data points in each class. The upper panel shows
the SVM margin and the lower panel shows the Boosting margin. The solid line is
the boundary.
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Rosset et al. (2004) added further interpretation to the Boosting margin relation

to the SVM margin. Equation (44) defined the Boosting margin using αt coordinates

which are calculated during Boosting iterations. Rosset et al. (2004) represented

the Boosting margin using β and f(x) = x. Boosting discriminant function can be

rewritten

F (x) =

p∑
j(t)=j

βj(t)fj(x), (47)

where βj(t) =
∑

j(t)=j αt. Using this notation, minimum of the Boosting margin can

be written

mBoost = min
i

yiF (xi)

||β||1
, (48)

where ||β||1 is the l1 norm of β vector which has p dimension. From this repre-

sentation, Rosset et al. (2004) showed the relation between mSVM and mBoost as

follows:

yF (x)

||β||1
=
yF (x)

||β||2
· ||β||2
||β||1

. (49)

From this representation, we can observe that the Boosting margin will tend to

be large if the ratio ||β||2/||β||1 is large. To see this, consider fixing the l1 norm

then comparing the l2 norm of two candidates, one with many small components

and another with a few large components and many zero components. For example

βnon-sparse = (1, 2, 1, 1, 2, 2, 1) and another βsparse = (3, 3, 3, 0, 0, 0, 1). Both l1 norm

are the same, 10. Then calculate l2 norm for βnon-sparse and βsparse, which are 16 and

28 respectively. The sparse β vector has a larger l2 norm, hence a larger Boosting

margin.
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2.5.5 Number of iteration and step size to avoid overfitting

As we described in the previous section, AdaBoost decreases training error expo-

nentially but it has a tendency to cause overfitting. Several algorithms are proposed

to handle this situation. Grove and Schuurmans (1998) and Jiang (2004) showed

that running Boosting forever causes overfitting. Zhang and Yu (2005) proposed

that stopping the learning process early prevents overfitting. This is called early

stopping. Zhang and Yu (2005) studied the numerical convergence, consistency,

and statistical rates of convergence of boosting with early stopping. Using the nu-

merical convergence they concluded that the early stopping strategy is shown to

be consistent based on iid samples. Besides the number of iterations, step size can

cause overfitting as well. Friedman et al. (2000) proposed to fix the step size which is

denoted α in Equation (14). The fixed step size Boosting is called ε-boosting. Fried-

man et al. (2000) mentioned that fixing the step size to a very small value makes

the learning speed slower thus preventing overfitting. This eliminates a favorable

statistical property however their empirical results showed a large performance im-

provement in regression case. They noted that the change was less significant in

zero-one loss.

2.5.6 Relation to Lasso

Rosset et al. (2004) introduced another Boosting methods interpretation. Lasso is

tracking a path of approximate solutions to loss function with l1 constrained which

is Lasso. Given a convex non-negative loss functions L(·, ·) such as exponential loss

or logit loss, consider the 1-dimensional path of optimal solutions to l1 constrained

optimization problems over the training data,

β̂(c) = argmin
||β||1≤c

n∑
i=1

L(yi,βf(xi)). (50)
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As c varies, β̂(c) traces a 1-dimensional ”optimal curve” through Rp. If an optimal

solution for the non-constrained problem exists and has finite l1 norm c0, then

β̂(c) = β̂(c0) = β̂, ∀c > c0. In the case of separable binary class data, there is

no finite-norm optimal solution for either exponential loss or logit loss. Then the

constrained solutions will always have ||β̂(c)||1 = c.

A different way of building a solution which has l1 norm c, is to run the ε-boosting

algorithm for c/ε iterations. This will give an αc/ε vector which has l1 norm exactly

c. For the norm of the geometric representation βc/ε to also be equal to c. Rosset

et al. (2004) showed the similarity using real data in their paper.

From the next section, we review the modification of Boosting using different

loss functions.

2.6 Boosting variants by different loss function

In the previous section, we addressed the details of AdaBoost. AdaBoost uses the

exponential loss function as objective function. As we reviewed in an early section,

there are a variety of loss functions. In this section, we present variants of Boosting

methods which use different loss functions. We review η-Boost, LogitBoost and

SparseL2Boost.

2.6.1 η-Boost

η-Boost is proposed by Takenouchi and Eguchi (2004) as a robust boosting algo-

rithm. AdaBoost reportedly can be easily influenced by outliers, which breaks down

the performance. η-Boost is defined by the loss function using the following a mix-

ture of the exponential loss and naive error loss functions as

Lη(F ) =
n∑

i=1

[(1− η) exp(−yiF (xi))− ηyiF (xi)]. (51)
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where 0 ≤ η ≤ 1. We can derive η-Boost by the sequential minimization of the loss

function, Equation (51). See more details Eguchi and Copas (2001). Algorithm is

written as follows:

1. Set w∗
1(i) = 1/N and F0 = 0

2. For any t = 1, . . . , T

a. Find

ft = argmin
f∈F

ε∗(f) (52)

where

ε∗t (ft) =
n∑

i=1

w∗
t (i)I(yi ̸= ft(xi)). (53)

b. Calculate

α∗
t = log

√
1− εt(ft) + (ηKt)2 + ηKt√

εt(ft)
(54)

where

Kt =
(1− 2ε1(ft))

2
√
εt(ft)

(
(1− η)Zt

N

)−1

(55)

with

Zt+1 =
n∑

i=1

exp(−yiFt(xi)). (56)
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c. Update

w∗
t+1(i) =

(1− η) exp(−yiFt(xi)) + η

Z∗
t+1

(57)

where

Ft(x) =
t∑

m=1

α∗
mfm(x) (58)

Z∗
t+1 =

n∑
i=1

(1− η) exp(−yiFt(xi)) + η. (59)

3. The discriminant function is sgn
(∑T

t=1 α
∗
t ft(x)

)
.

The derivations for Equations (53) and (54) are written in the Appendix. Fig

(7) shows an example which data has 10 observations were contaminated especially

near the boundary. This example addresses that AdaBoost is very sensitive to noise.

From the complicated boundary in AdaBoost shows AdaBoost learns from the noise.

2.6.2 Properties of mislabel model

We look at further details of mislabel model. We show some properties of mislabel

model which is introduced by Takenouchi et al. (2008). They expand mislabel model

to multiclass model. Set G = {1, . . . , K} is finite multiclass labels. Conditional

probability of G = g,X = x say p(g|x). Consider mislabel model pζ(g|x) defined

by

pζ(g|x) =
1

M(x)

[{
1−

∑
k ̸=g

ζk(x)

}
p(g|x) +

∑
k ̸=g

ζk(x)p(k|x)

]
, (60)
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Figure 7: Typical example: Circles and triangles denote data points with class labels
+1 and −1. In the top panel, solid line shows the Bayes rule boundary. In the center
panel, the solid line is AdaBoost boundary. In the bottom panel, the solid line shows
the η-Boost boundary after 100 iterations.
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where M(x) is a normalization constant and ζ(x) is an element which is subset of

D, both are defined by

M(x) =

g∑
k=1

[{
1−

∑
k ̸=g

ζk(x)

}
p(g|x) +

∑
k ̸=g

ζk(x)p(k|x)

]
, (61)

D = {ζ(x) = (ζ1(x), . . . , ζg(x)); 0 ≤
∑
k∈G

ζk(x), ζk(x) ≥ 0}. (62)

This shows that ζk(x) is the probability that data is wrongly labeled to class k. The

mislabel model which is defined by Equation (60) has the below properties.

Property 1. Posterior probability of pζ(x) obtains the consistency of Bayes rule.

M(x) is positive because of the definition thus we only consider inside the bracket

then add and subtract ζk(x),{
1−

∑
k ̸=g

ζk(x)

}
p(g|x) +

∑
k ̸=g

ζk(x)p(k|x) (63)

=

{
1−

∑
k ̸=g

ζk(x)

}
p(g|x)− ζk(x) +

∑
k ̸=g

ζk(x)p(k|x) + ζk(x) (64)

=

{
1−

∑
k∈G

ζk(x)

}
p(g|x) +

∑
k∈G

ζk(x)p(k|x) (65)

= {1−Kζ(x)} p(g|x) + ζ(x), (66)

which implies that the Bayes rule based on the original posterior p(g|x) is the same

as that based on the current posterior pζ(x) for any ζ(x) ∈ D. From this result, for

any ζ ∈ D, F ∗
p (x) = Fpζ(x).

This can be shown as follows. For any g, k ∈ G and x ∈ X , we observe

pζ(g|x)− pζ(k|x) = {1−Gζ(x)} {p(g|x)− p(k|x)} (67)
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Here 1−Kζ(x) is positive because ζ(x) > 0, ζ(x) ∈ D and g are invariant.

Property 2. Mislabel model probability pζ(x) follows uniform distribution when

mislabel probability ζk(x) follows uniform distribution.

The proof is below. First set

pζ(g|x) =
1

M(x)

[{
1−

∑
k ̸=g

ζk(x)

}
p(g|x) +

∑
k ̸=g

ζk(x)p(k|x)

]
.

Set ζk(x) = 1/K then

=
1

M(x)

[{
1−

∑
k ̸=g

1

K

}
p(g|x) +

∑
k ̸=g

1

g
p(k|x)

]

=
1

M(x)

{
1

K

∑
k∈G

p(k|x)

}
(68)

=
1

M(x)

1

K
. (69)

(70)

From the definition, M = 1 then we could prove that pζ(g|x) = 1/K.

In the next property, we look at the details of error bound. First the error rate is

defined by

err(F, p, q) = Probp,q(F (X) ̸= G) (71)

= 1−
∑
g∈G

∫
XF

g

p(g|x)q(x)dx, (72)

where X F
g = {x|x ∈ X , F (x) = g}.
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Then consider a lower bound errbd(p,q) of the error rate under p(g|x)q(x)

errbd(p, q) = err(F ∗
p , p, q), (73)

where F ∗
p is Bayes rule. Since Bayes rule is the optimal rule, it is justified to set

Bayes rule as the lower bound.

Property 3. For any ζ ∈ D, the relation of the error bound errbd(pζ , q) and

errbd(p, q) is

errbd(pζ , q) ≥ errbd(p, q). (74)

From the property 2, we know that a region XF ∗
p ,g coincides with XFpζ,g

. Then

errbd(p, q) = err(F ∗
p , p, q)

= 1−
∑
g∈G

∫
XF∗

p ,g

p(g|x)q(x)dx

errbd(pζ , q) = err(Fpζ , p, q) (75)

= 1−
∑
g∈G

∫
XF∗

p ,g

pζ(g|x)q(x)dx.
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Consider

errbd(p, q)− errbd(pζ , q)

=

{
1−

∑
g∈G

∫
XF∗

p ,g

p(g|x)q(x)dx

}
−

{
1−

∑
g∈G

∫
XF∗

p ,g

pζ(g|x)q(x)dx

}
(76)

=
∑
g∈G

∫
XF∗

p ,g

p(g|x)q(x)dx−
∑
g∈G

∫
XF∗

p ,g

pζ(g|x)q(x)dx (77)

=
∑
g∈G

∫
XF∗

p ,g

{p(g|x)− (1−Kζ(x))p(g|x) + ζ(x)} q(x)dx (78)

=
∑
g∈G

∫
XF∗

p ,g

{Kζ(x)p(g|x) + ζ(x)} q(x)dx (79)

=
∑
g∈G

∫
XF∗

p ,g

{{Kp(g|x) + 1}ζ(x)}q(x)dx (80)

=
∑
g∈G

∫
XF∗

p ,g

{K{p(g|x) + pU(g|x)}ζ(x)}q(x)dx, (81)

where pU(g|x) is an uniform distribution. We observe for any class label g ∈ G that

x ∈ XF ∗
p,g

⇒ p(g|x) = max
k∈G

p(k|x) ≥ pU(g). (82)

Therefore errbd(p, q)− errbd(pζ , q) is not negative, which completes the proof.

2.6.3 LogitBoost

We review one more AdaBoost variant, LogitBoost which is introduced by Friedman

(2001). LogitBoost relies on the binominal log-likelihood as a loss function, which is

a more natural criterion in classification than the exponential criterion underlying

the AdaBoost algorithm. Since LogitBoost increases linearly instead of exponen-

tially for negative margins. Therefore it can be expected that LogitBoost is more

robust in noisy problems. LogitBoost algorithm is written as follows:
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1. Set w1(i) = 1/n and F0 = 0 and initial probability estimates p0(xi) = 1/2.

2. For any t = 1, . . . , T

a. Calculate

wt(i) = pt−1(xi)(1− pt−1(xi)), (83)

zt−1(i) =
yi − pt−1(xi)

wt(i)
. (84)

b. Update

Ft(x) =
T∑
t=1

1

2
ft(x) (85)

pt(xi) = (1 + exp(−2 · Ft(xi)))
−1. (86)

We point out that F (x) which LogitBoost algorithm estimates each step is equivalent

to estimating of half of the log-odds ratio

F (x) =
1

2
log

(
p(x)

1− p(x)

)
. (87)

2.6.4 SparseL2Boost

We review the other Boosting variant aiming for a sparse solution which is named

SparseL2Boost proposed by Bühlmann and Yu (2006). The title of their paper is

Sparse Boosting however they call their algorithm SparseL2Boost in their paper.

To avoid confusion with our proposed method and for consistency, we call their

method SparseL2Boost in this thesis. SparseL2Boost uses the squared error for the

loss function and adds a regularization term. Friedman (2001) proposed L2Boosting

which uses the squared loss for Boosting. SparseL2Boost is based on L2Boosting.
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Their motivation is similar to ours. In the high dimensional data, there are many

irrelevant predictors for classification. Therefore a sparse solution is necessary. The

main procedure of L2Boosting simply fits squared error to the current response then

uses the residuals from the previous iteration as the new response vector and so on.

We first show L2Boosting algorithm then mention SparseL2Boost algorithm. The

current response is denoted U = {U1, . . . , Un}.

1. Set F0 = 0.

2. For any t = 1, . . . , T ,

a. calculate residuals Ui = Yi − F̂t−1(Xi)

b. St = argmin
1≤j≤p

∑n
i=1(Ui − γjxij)

2

where γj =
∑n

i=1(Uixij/x
2
ij)

ft(x) = γStx

Ft(x) = Ft−1(x) + νft(x)

where 0 < ν ≤ 1 is a pre-specified step size parameter.

3. Repeat step 2 until some stopping value for the number of iterations is reached.

L2Boosting finds the predictor variable which reduces the residual sum of square

most when using least square fitting. They show some variants to choose the best

predictor variables in their paper. Here we showed the simplest case. Next we see

the sparse L2 Boost.

As L2Boosting is trying to find the predictor variable which minimizes the resid-

ual every iteration, Bühlmann and Yu (2006) considered L2Boosting is learning in

a greedy way. Bühlmann and Yu (2006) proposed to choose the predictor variable

in the sense of model selection. They construct a function which measures the
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complexity of Boosting. First define a hat-operator as follows:

HS : U 7→ (g(xS ,U)(x1), . . . , g(xS ,U)(xn)), U = (U1, . . . , Un), (88)

where g(xS ,U) = γStx.

Bt = I − (I − νHSt)(I − νHSt−1) · · · (I − νHS1). (89)

The degree of freedom of Boosting is then defined by

trace(Bt) = trace(I − (I − νHSt)(I − νHSt−1) · · · (I − νHS1)) (90)

This is a standard definition for degree of freedom, see Green and Silverman (1994).

Therefore the final prediction error criterion proposed by Akaike (1970) can be

formed as follows:

n∑
i=1

(yi − Ft(xi))
2 + τ · trace(Bt). (91)

SparseL2Boost uses Equation (91) as the criterion to move iterations from t− 1 to

t. Precisely they set the below objective function so that model complexity can be

controlled. The criterion is defined by

T (Y,B) = C(
n∑

i=1

(Yi − (BYi))2, trace((B))) (92)

where τ is a parameter for some τ > 0. Bühlmann and Yu (2006) mentioned that τ

can be decided by cross validation or simply fix 2 or log n such as AIC or BIC. They

40



also proposed another criterion named gMDL to eliminate the parameter as below

CgMDL(RSS, trace(B)) = log(J) +
trace(B)

n
log(K), (93)

J =
RSS

n− trace(B)
(94)

K =

∑n
i=1 y

2
i −RSS

Jtrace(B)
(95)

where RSS denotes the residual sum of squares as in Equation (92).

Then SparseL2Boost algorithm is as follows:

1. Set F0 = 0

2. For any t = 1, . . . , T Search for the best predictor

St = argmin
1≤j≤p

T (Y,B(S))

B⊔(S) = I − (I −HνS⊔)(I − νHS⊔−∞) · · · (I −HνS∞)

ft(x) = gSm(X,U)(x)

3. Update

Ft(x) = Ft−1(x) + νft(x)

4. Repeat step 2 and 3 for a large number of iterations T.

5. Estimate the stopping iterations by

t∗ = argmin
1≤t≤T

T (Y, trace(B)).

Comparing to the ordinary Boost, SparseL2Boost changed the criterion to choose the

best ft(x) using the regularization term. Taking into account the model complexity

in the criteria, Bühlmann and Yu (2006) considered that the final model could be

sparser. Regarding the degree of freedom Hastie (2007) pointed that Equation (91)

underestimates of the true degree of freedom using two real data set.
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In this section, we overviewed the details of Boosting methods and their modifi-

cations. Boosting methods were studied from different view points. AdaBoost can

be seen as additive logistic regression. Freund and Schapire (1997) introduced the

bound of training error and generalization error. The bound of training gives an idea

why training error approaches zero exponentially in terms of number of iterations.

Schapire et al. (1998) presented the concept of margin, furthermore they showed the

relation to the margin of Support Vector Machine. AdaBoost increases the margin

even after training error reaches zero; this may account for the success at reducing

generalization error however it was not always true. Rosset et al. (2004) extended

the margin theory to the relation to Lasso.

Boosting methods were modified by several approaches. One of them is using

different loss function, the second one is using regularization term with loss func-

tion. Number of iterations was considered to cause overfitting. Early stopping using

cross validation was proposed as a solution. Loss functions and number of itera-

tions have been studied for good classification performance however weak classifiers

were not studied enough even the complexity of weak learners are in both upper

bound of training error and generalization error. Our proposed method focus on the

complexity of weak learners which we present further in the next section.
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3 Sparse Learner Boosting

In this section, we introduce a new method, Sparse Learner Boosting. Sparse Learner

Boosting prevents overfitting by reduction of weak learner candidates. First we

mention the motivation of Sparse Learner Boosting. Then we detail the algorithm

and examine the model complexity using VC dimension. We show the results of

simulation studies using synthesized data and real data.

3.1 Motivation

Boosting methods were studied and improved as we reviewed in the previous section.

The key ingredients of Boosting methods are loss function, number of iteration and

weak learners. Choosing appropriate of them affects classification performance. A

variety of loss functions were studied, early stopping was proposed to prevent over-

fitting. On the other hand, choosing weak learners was not studied enough. In gene

expression data, size of p is large, hence the candidate weak learners becomes large

as well. Using all of them can be superfluous. Therefore we propose a new Boost-

ing method trimming the weak learner candidates named Sparse Learner Boosting

(Pritchard (2010)).

3.2 Algorithm

We present here the details of Sparse Learner Boosting. Before we describe further

details, we define weak learners. We use decision stumps as weak learner candidates,

which are defined by

F = {fj(x, a, b) = a · sgn(xj − b) : j ∈ {1, · · · , p}, b ∈ R}, (96)

where a is given a value 1 or −1 and b ∈ R is a threshold value.
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The idea of Sparse Learner Boosting is to reduce the number of weak learner can-

didates. If two class distributions are strongly overlapped, the Boosting algorithm

learns from the overlapped samples in a greedy way. The discriminant function

becomes complex because of overfitting. Sparse Learner Boosting controls the com-

plexity by reducing the number of weak learner candidates using false positive rate

and false negative rate. We review the concept of false positive and false negative

first then explain our implimentaion.

False Positive and False Negative

False positive and false negative are type of errors in which a statistical test wrongly

rejects or accepts the null hypothesis. They are often used in diagnostics. In the con-

text of a classification problem, considering the cancer diagnostics prediction model,

if a patient who does not have cancer is incorrectly diagnosed as having cancer, the

consequences may be patient distress plus the need for further investigation. Con-

versely, if a patient with cancer is diagnosed as healthy, the result may be premature

death due to lack of treatment. In that case, false positive and false negative are

considered separately. As an example, let us set that a patient whose label y = +1

has disease and y = −1 has healthy status. If a sick patient is diagnosed as healthy,

it is called false negative. If a healthy patient is diagnosed as diseased, it is called

false positive. Table 1 shows false positive and false negative in binary classification

case. Figure 8 illustrates the relationship between false positive and false negative.

Table 1: False Positive and False Negative: Rows express the class label returned
by classification rule. Columns express the true labels.

y = +1 y = −1
H(x) = +1 True Positive False Positive
H(x) = −1 False Negative True False
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The data points following the gray distribution and the white distribution have class

label +1 and −1 respectively. Threshold is defined by a classifier. The right side of

the threshold is classified as +1. The left side of the threshold is classified as −1.

Choice of threshold 2 results in both false positive and false negative. Threshold 1

does not include any false negatives however a lot of false positive are in the result.

Conversely threshold 3 does not include any false positive though the result contains

a lot of false negative. Next we detail our proposed criterion which is named trim

over lapping learners criterion to trim the initial set of weak learner candidates using

false positive and false negative.

FPFN

Threshold 1.

Threshold 2.

Threshold 3.

TPTN

Figure 8: Example of false positive and false negative. Gray distribution presents +1
class distribution and white distribution presents −1 class distribution. Dashed lines
show thresholds. False positive and false negative are related to where threshold is
set.
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3.2.1 Trim Overlapping Learners criterion

Firstly, we define false positive rate FP(f) and false negative rate FN(f) as follows:

FP(f) =
1

n1

n∑
i=1

I(f(xi) ̸= yi, yi = −1) (97)

FN(f) =
1

n2

n∑
i=1

I(f(xi) ̸= yi, yi = +1), (98)

where n1 is the number of subjects having class label −1 and n2 having class label

+1. Trim overlapping learners criterion (TOL criterion) aims to trim weak learners

which reside in the overlapping area. We define weak learners which are trimmed

by TOL criterion as follows:

Fξ = {f : min(FP(f),FN(f)) ≤ ξ, f ∈ F , ξ ∈ R}. (99)

Parameter ξ controls the sparseness. For instance, ξ = 0 means that no weak learner

which has either false positive or false negative is included in the set of weak learners

Fξ. If ξ is 1 which means that all weak learners remain and Fξ is same as Fds.

We illustrate a simple example of TOL criterion in Figure 9. The figure presents

one dimension of data points. Black circles and white circles denote class labels

+1 and −1 respectively. Dashed lines are thresholds which were defined by b in

Equation (96). The right side of each threshold is classified as +1 and the left side

of each threshold is classified as −1. In this figure we only consider the case of a = 1

for simplicity. Figure 9(a) presents the thresholds which are defined by Equation

(96). Figure 9(b) shows weak learners that do not have any false positive or false

negative. Top three weak learners do not classify black data points as −. Figure 9(c)

represents trimmed weak learners in the case of ξ = 0. Four weak learners which

have false positive or false negative are trimmed and five weak learners remain.
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=  +1

=  -1

x

No false negative

x

x

No false positive

(a)  Original weak learners.

(b)  No false negative weak learners and no false positive weak learners.

x

x

(c) Trimmed weak learners by TOL criterion

Figure 9: Example of TOL criterion using one dimensional simple data points. Black
circles and white circles have class label +1 and −1 respectively. Dashed lines are
thresholds which are used for weak learners. (a) Original weak learners. Thresholds
are set between each data point. The left side of the threshold is classified −1 and
the right side of the threshold is classified +1. (b) Weak learners which do not
have any false positive or false negative. top three weak learners do not have any
false negative. (c) Trimmed weak learners by TOL criterion. After trimmed weak
learners, five weak learners remain; these do not have any false positive or false
negative.
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Figure 10 shows an example of weak learners with two dimensional synthesized

data. The left panel shows the weak learner candidates for ordinary Boosting and

the right panel is for Sparse Learner Boosting. It can be seen that weak learners

in overlapped areas are congested. TOL criterion trimmed those overcrowded weak

learners nicely. The sparseness can be controlled by ξ. Sparse Learner Boosting uses
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Figure 10: Typical example for weak learner candidates. The dashed lines denote
thresholds which are used in weak learners. The left panel shows the weak learners
for ordinary boosting. The right panel is for Sparse Learner Boosting where ξ = 0

these trimmed weak learner candidates. We integrated Sparse Learner Boosting into

AdaBoost and η-Boost. Sparse Learner Boosting using AdaBoost and η-Boost is

referred to as Sparse AdaBoost and Sparse η-Boost, respectively. The procedure for

calculating α is the same as in AdaBoost and η-Boost. The discriminant function,

F (x) =
T∑
t=1

αtft(x), (100)

gives the classifier g(x) = sgn(F (x)− c∗), where c∗ is the optimum threshold which
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is defined by

c∗ = argmin
c

n∑
i=1

I(sgn(F (xi)− c) ̸= yi). (101)

We presented the details of TOL criterion and Sparse Learner Boosting. Trimming

weak learners using false positive and false negative is a simple procedure. Next we

examine how our modification affects the final classification model from the view

point of Vapnik-Chervonenkis dimension.

3.3 Complexity of Sparse Learner Boosting

We next compare the complexity of ordinary Boosting with Sparse Learner Boost-

ing. We use Vapnik-Chervonenkis dimension (VC dimension) which is introduced

by Vapnik and Chervonenkis (1971). VC dimension is a standard measure of clas-

sification model complexity. First we introduce an important concept ”Shatter ”.

The Shatter coefficient is a measure of the richness of the class.

1

Figure 11: Simple examples for shatter concepts. These panels present possible
labeling combinations where n = 3. If given function class can shatter possible
labeling, it is called ”shatter”.
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VC dimension is defined as the cardinality of the largest set of points that the

weak learners can shatter for any labeling of {x1, . . . , xn}. The VC dimension is

denoted as VC and the set of decision stumps is referred to as Fds. The VC shatter

coefficient Sn(Fds) is defined by

Sn(Fds) = max
{x1,...,xn}∈Rp

|{x1, . . . , xn} ∩ {x|f(x, a, b) = 1|f(x, a, b) ∈ Fds}|. (102)

VC dimension is defined by the maximum number of subjects which Fds can shatter,

VC(Fds) = max
n′

{n′|Sn′(Fds) = 2n
′}. (103)

Figure 11 shows a simple example where n = 3. Possible labeling combination equals

8. Let H =
{
g(x) = I((β0 + βTx) > 0)

}
is a class of functions. The function class

H can shatter possible labeling combinations, therefore shatter coefficient is 8 and

VC dimensions VC(H) is 3. For each feature vector xj (j = 1, . . . , p), Fds yields a

maximum of 2n different subsets of {x1, . . . , xn} resulting in the following:

2n ≤ 2pn. (104)

Take logarithm with base 2,

n− log2 n ≤ 1 + log2(p).

For any positive integer r

r

2
≤ r − log2(p). (105)
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We show the details of Equation (105) in Appendix. From the above we have

VC(Fds) ≤ ⌊2(1 + log2 p)⌋, (106)

where ⌊·⌋ is the floor function. See Kawakita and Eguchi (2008) for detailed discus-

sion.

We then calculate the VC dimension of Sparse Learner Boosting. The reduced

weak learner candidates by TOL criterion is a subset of ordinary Boosting weak

learner candidates. The number of weak learner candidates is defined by the number

of samples and variables. The number of weak learner candidates is p(n − 1). The

reduced weak learner candidates can be written δp(n − 1), 0 < δ ≤ 1. Equation

(104) for Sparse Learner Boosting is

2n ≤ 2pδn. (107)

The VC dimensions of the reduced weak learners VC(Fξ) is

VC(Fξ) ≤ ⌊2(1 + log2 δp)⌋. (108)

The Equation (108) expresses that the trimmed weak learners by TOL criterion

is equivalent to the δp variable selection. And also as a result we observe that the

upper bound of VC(Fξ) is less than that of VC(Fds). This means that Sparse Learner

Boosting is able to have a less complex model than ordinary boosting methods.

3.4 Numerical experiments

In this section, we describe a number of simulation studies using synthetic and real

data. First, we compare the boundaries of AdaBoost and Sparse AdaBoost. Then we
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show several synthesized and real data analysis results to compare the performance

of the proposed method with conventional boosting methods. Each experiment, we

used cross validation to decide the number of iterations. Before going into the details

of the experiment, we review the cross validation method.

3.4.1 Cross Validation

Cross validation is the one of the most widely used methods for estimating prediction

error which we refer as CV error in this thesis. If we have enough data, we set

aside a validation set and use it to assess the performance of a prediction model.

However often we face a situation where we do not have enough data. To handle

this situation, there we split the data into K roughly equal-sized parts. We build

a model using K − 1 parts data then calculate the prediction error by Kth part

data. This process is repeated K times and average K time prediction errors. Let

κ : {1, . . . , n} 7→ {1, . . . , K} be an indexing function that splits data into K parts.

Denote f̂−k(i)(x) as the fitted function without kth part data. The kth part is used

for calculating the CV error. The CV error is

CV (f̂) =
1

n

n∑
i=1

L(f̂−k(i)(xi)). (109)

The case K = n is known as leave-one-out cross validation. In this case k(i) = i,

and ith data is used for validation and the model is constructed using all the data

except i. Hastie et al. (2005) mentioned that with K = n, the cross validation

estimator is approximately unbiased for the true prediction error, but can have high

variance because the n training sets are so similar each other. They also mentioned

that the number of K should be considered by the number of observation. For

example, if number of observations is 200, five-fold cross validation would estimate

the performance of classifier overtraining sets of size 160, however if the number of
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observation is 50, five-fold cross validation estimates the performance over training

sets of size 40.

Cross validation is also used to choose parameter value. Dividing data into

training data and validation data, perform classification with multiple parameters

then evaluate the performance using validation data.

3.4.2 Case 1. Synthetic data with two-dimensional feature vectors

For comparing decision boundaries by ordinary boosting and Sparse Learner Boost-

ing, two variable data sets were generated. The data was defined by {(xi, yi) :

i = 1, . . . , 100} and xi = (x1i, x2i). The feature vectors with class label +1 follow

the normal distribution N((1, 1), I). The feature vectors with class label −1 follow

the mixture distribution of N((0, 0), I) and N((4, 4), I). The prior probability of

each distribution is 0.9 and 0.1 respectively. In Figure 12, we show the boundaries

for AdaBoost and Sparse AdaBoost. We also show weak learners for each method.

The squares and triangles denote feature vectors with labels +1 and −1, respec-

tively. The upper two panels are weak learners for AdaBoost and Sparse Learner

Boosting. The lower two panels are the boundaries after the learning steps. The

number of iterations was decided by cross validation.

We confirmed that Sparse AdaBoost results in a simple boundary in comparison

to AdaBoost. The panels of weak learners suggest that AdaBoost could construct

a complex boundary with too many weak learners.

3.4.3 Case 2. Synthetic multivariate data

Next, we investigate the performance of Sparse Learner Boosting with conventional

Boosting methods. We set several multivariate data sets in a setting of p ≫ n. All

feature vectors with class label y = +1 follow the normal distribution N(µ+1, 0.5Ip).
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Figure 12: The data generated by case 1. Squares and triangles denote data points
with class labels 1 and −1 respectively. The upper left panel is weak learners for
AdaBoost. The upper right panel shows weak learners for Sparse Learner AdaBoost.
The lower left panel shows boundary which was built by AdaBoost. The lower right
panel is the boundary for Sparse Learner AdaBoost.
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The mean vector µ+1 = (0.1, . . . , 0.1)T . All feature vectors with class label y = −1

were generated from the normal mixture distribution which has a probability density

p(x) = (1 − π)g(x) + πh(x). The probability distribution of g(x) is the normal

distribution N(µ−1, 0.5Ip) with mean vector µ−1 = (0, . . . , 0)T . The probability

distribution of h(x) is N(µout, 0.5Ip) with mean vector µout = (3, . . . , 3)T . The prior

probability π is 0.1. We fixed the number of observations n = 100 and changed the

number of variables as p = (10, 100, 300, 500). Weak learners for Sparse Learner

Boosting were determined by Equation (99). We used ξ = 0. The number of

iterations was decided by 3-fold cross validation. 3-fold cross validation was repeated

50 times and the number of iterations which showed the lowest cross validation error

was used to predict class labels of the test data. We generated 10 data sets for both

training data and test data, so that the average test error rate were calculated. To

simplify comparisons, we set η = 0.1 for η-Boost.

Table 2 shows the result of the test error rate. Sparse Learning Boosting showed

better performance across all cases. On the other hand, even when the number

of iterations is decided by cross validation, non-Sparse AdaBoost and non-Sparse

η-Boost could not show good predictive power.

Table 2: Test error rates for multivariate data. The number of variables, p =
(10, 100, 300, 500) were used. The number of iteration was decided by three fold
cross validation. The parameter η for η-boost was fixed to 0.1

Variables
10 100 300 500

Test Error Test Error Test Error Test Error
AdaBoost Sparse 0.136 0.246 0.268 0.266

non-Sparse 0.311 0.378 0.349 0.347
η-Boost 　 Sparse 0.136 0.243 0.232 0.288

non-Sparse 0.309 0.422 0.424 0.435

Table 3 presents the average of sparseness for each data. Sparseness δ was
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calculated by number of trimmed weak learners divided by number of original weak

learners. Parameter ξ for TOL criterion is 0. This means that weak learners which

does not have any false positive and false negative are chosen.

Table 3: Average sparseness δ for each data. Sparseness shows the degree of sparse-
ness which is trimmed by TOL criterion. Parameter ξ is 0 for all data.

Variables
10 100 300 500

Sparseness (δ) 0.1265 0.1266 0.1263 0.1259

3.5 Real data analysis

We used the gene expression data reported by van’t Veer et al. (2002). This study

included 97 primary breast cancer patients, of which 78 were used for training data to

build the discriminant function. 19 were used as test data to evaluate the classifier.

Before going into the details of data processing explanation, we describe about

Microarray technology.

3.5.1 Microarray technology

Microarray is an important technology and rapidly glow the usage in a variety of

area. Microarray measures the amount of mRNA or gene expression. There are two

major technologies available for gene expression measurement. One is GeneChip

system provided by Affymetrix Inc. GeneChip uses prefabricated short length of

oligonucleotide. Another is cDNA array which is originally developed by Schena

et al. (1996). We briefly mention both technologies.

GeneChip uses a pair of short length of oligonucleotide attaching on the solid

surface, such as glass, plastic or silicon. The short pair of oligonucleotides is called
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probe pair. Each probe pair is composed of a perfect match (PM) probe and a

mismatch (MM) probe. PM is a section of the mRNA of interest and MM is created

by changing the middle (13th) base of the PM with the intention of measuring non-

specific binding. mRNA sample is collected from subjects such as cancer patients

then fluorescence dye is labeled. The labeled mRNA sample is hybridized to spot

of microarray if the short oligonucleotide is matched with the mRNA sample. If

the labeled mRNA and the probe match perfectly, they bind strongly otherwise

they bind weakly. Those weak binding or non-specific binding is washed out by

washing buffer then only strongly bound mRNA sample fluorescence is measured

by a scanner. Scanned measurement needs further processing before using analysis

such as outlier detection, background subtraction and normalization. These process

is called pre-processing.

In the early stage of microarray, the quality of microarray measurements contains

a lot of variance. Therefore pre-processing was very active research area. Affymetrix

recommended to use both PM and MM probes to subtract non-specific binding and

implement MASS algorithm to their software however Irizarry et al. (2003) and

Naef et al. (2001) pointed out that normalization model considering MM captures

non-specific affect more than in real. Currently Robust Multichip Average (RMA)

which is introduced by Irizarry et al. (2003) is also widely used.

cDNA array uses glass slide to attach also short oligonucleotides probes. cDNA

array uses the inkjet printing technology. GeneChip use one color fluorescence dye,

on the other hand, cDNA utilize two different color fluorescence dye. One of the

color is for control mRNA and another color is for treatment mRNA. Both samples

are hybridized on the same array. Scanner detects both fluorescence dye separately.

Data processing is slightly different from GeneChip. As cDNA uses two fluorescence

dye, scanned data is normally treated as ratio data of treatment over control.
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Microarray technology was improved in the last decades including to reduce the

variance, normalization procedure does not affect that much comparing before. An

interest of research area moved to data analysis.

3.5.2 Pre-processing

We used the gene expression data reported by van’t Veer et al. (2002). This study

included 97 primary breast cancer patients, of which 78 were used for training data to

build the discriminant function. 19 were used as test data to evaluate the classifier.

Distant metastasis was observed within 5 years in 34 patients out of 78 training

data, whereas the remaining 44 patients were disease-free after at least 5 years. The

dimension of feature vector was 24,481, or the number of genes.

Observation values were normalized by taking the logarithm of the ratio of in-

dividual RNA to pooled RNA during preprocessing. We applied the same filtering

criteria which van’t Veer et al. (2002) used. A two-fold change of expression with

a P-value < 0.01 in five or more patients yielded approximately 5000 genes. For

calculation of p-value, see Roberts et al. (2000) for further details.

The correlation coefficient between the expression of each probe and disease out-

come was calculated; 200 probes had less than 0.3 absolute value of correlation coef-

ficients. Those 200 probes were considered to be significantly associated with the dis-

ease outcome. This data is available at http://www.rii.com/publications/default.htm.

3.5.3 Boosting method

We applied Sparse Learner Boosting and non-Sparse Learner Boosting for both

AdaBoost and η-Boost using the top 200 probes. Number of iterations and ξ was

determined by 3-fold cross validation. 3-fold cross validation was repeated 50 times.

The lowest test error was shown in the table. We used η = 0.1 in this data as well.
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We compared Sparse Learner Boosting with DLDA as well.

3.5.4 DLDA

Fisher linear discriminant analysis is lead by maximum likelihood using mean vector

for each class µy and common covariance matrix Σ̂ assuming that x has p dimensions

and the class label y is given, x follows multivariate normal distribution N(µy,Σ).

The discriminant function is

F (x) = sgn(α̂T
1 x− α̂0). (110)

where α̂1 = Σ̂−1(µ̂+1 − µ̂−1), α̂0 = 1
2
(µ̂+1 − µ̂−1)

T Σ̂−1(µ̂+1 + µ̂−1) + log p̂(y =

+1) − log p̂(y = −1), where Σ̂ = diag(σ2
1, . . . , σ

2
p). If the dimension size is larger

than the sample size, Σ̂−1 does not exist. Therefore either regularized inverse matrix

or diagonal matrix for Σ̂ was used.

3.6 Result and discussion

The result was shown in the table 4. The Sparse AdaBoost showed 0.158 test error.

Neither of non-Sparse AdaBoost nor non-Sparse η-Boost could not achieve the er-

ror rate given by Sparse Learner Boosting. DLDA showed 0.211 test error. Sparse

AdaBoost could show the better performance than DLDA. The sparseness δ was

0.084. This means that Sparse Learner Boosting reduced dimension from 200 to 16.

We plotted the top five variables so that overlap between two classes is examined.

Even top five variables, we can see that the two class data points are heavily over-

lapped. We suppose that non-sparse Boosting overfit the data therefore they could

not outperformed the sparse learner boosting because of the heavy overlap.

Simple modification of the current Boosting methods was performed, resulting in
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Table 4: Test error rates for real data. The variables were sorted by correlation to
the class label. 200 variables were used.

Variables
200

AdaBoost Sparse 0.158
non-Sparse 0.316

η-Boost Sparse 0.211
non-Sparse 0.316

DLDA 0.211
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Figure 13: The top five variables are plotted. Triangles show poor prognosis patients
and circles show good prognosis patients.
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this Sparse Learner Boosting. We used Sparse Learner Boosting to analyze synthe-

sized data and real gene expression data, which both confirmed that Sparse Learner

Boosting improves classification performance.

We showed that Sparse Learner Boosting gives a drastic reduction in VC di-

mension compared to non-Sparse Learner Boosting. From the view point of feature

reduction, reducing the size of p by ranking methods or regularization is common.

On the other hand, we propose an efficient method to reduce weak learners, called

Sparse Learner Boosting. We decided the number of iterations by cross validation

in our simulation however we saw that classification performance was affected by

sparseness, in which early stopping is not good enough to prevent overfitting. We

note that the TOL criterion is useful to truncate the weak learners candidates when

the two class data is heavily overlapped. If there is no overlap or a very small overlap,

trimming weak learners candidates does not show performance improvement.

Sparse Boosting proposed by Bühlmann and Yu (2006) is designed to find sparser

solutions for high-dimensional data. These authors modified L2 Boosting. L2 Boost-

ing minimizes the residual sum of squares, so that Sparse Boosting considers all

previous boosting iterations in addition to current residuals. Our proposed method

reduces the number of weak learner candidates and prevents overfitting which is

applicable for a wide class of boosting methods including L2 Boosting.

We note that Sparse Learner Boosting works well when data points are heavily

overlapped between classes however when only certain amount of data points are

overlapped, we cannot expect improvement of classification. The degree of overlapp

is one of future works. In conclusion, we propose a new boosting method, Sparse

Learner Boosting, and confirm its ability to analyze high-dimensional data.
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3.7 Future work

We focused on the complexity of weak learners and developed criterion to trim the

set of weak learners to improve classification performance. We believe that our

approach leads further modification and improvement to Boosting methods. One of

further possible modifications is trying a different criterion to trim weak learners.

For instance our TOL criterion considered both false positive and false negative in

a same way. Using one of them can be a good criteria. Our idea is simple and easy

to implement to different Boosting methods, plug-in to different Boosting methods

is also possible.
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4 Existence of multiple predictive optimum gene

sets

In this section, we address another challenge to be aware of in Microarray data

analysis. As a result of technological progress, the possible number of gene expression

measurements in one microarray has been rapidly growing, however many genes are

not differentially expressed across subjects to any significant degree. These genes are

irrelevant for classification purpose. Many feature selection methods are considered

by many authors for example Ben-Dor et al. (2000) and Dudoit and Fridlyand (2002).

Each method sets some criteria and calculates scores for each variables then decides

which combination of gene sets is the best set. As microarray usage for clinical

research is becoming popular, different researchers in different laboratories followed

the similar procedure or tried different procedures. They expected to see similar

genes being selected however the overlap was small because there is no unique gene

set in any single classification problem.

We talk about this problem in the following sections. First we review the his-

tory of classification using microarray. Then address the details of feature selection

methods and we show the existence of multiple optimum gene sets using real data.

4.1 Current classification analysis using microarray data

Golub et al. (1999) performed leukemia subclass classification using microarray.

They classified acute myeloid leukemia (AML) into acute lymphoblastic leukemia

(ALL). Their analysis gave a great hope to scientists because of the possibility for

clinical usage of microarray. Following them, Armstrong et al. (2001) classified

myelomonocytic leukemia (MML) patients from ALL/AML patients. Bittner et al.

(2000) studied subclass classification for melanoma patients and Perou et al. (2000)
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performed subclass classification for breast cancer patients. Further prognosis pre-

diction models are proposed for breast cancer patients however some concerns are

pointed out. Some papers regarding breast cancer prognosis prediction were pub-

lished however the genes which were used for the prediction models do not match up

with each other. Some reasons are considered such as different types of microarray,

different data pre-processing, different data analysis and different disease status of

patients. Ein-Dor et al. (2005) studied this discrepancy using data of van’t Veer

et al. (2002). In the original paper, van’t Veer et al. (2002) sorted genes by cor-

relation coefficient with outcome label. Then determined the top 70 genes as the

gene set which has good predictive power. Ein-Dor et al. (2005) sorted genes in the

same way but they tested gene sets such as 71st through 140th. They found that

several gene sets could show the similar performance except for the top 70 genes.

The absolute value of correlation coefficient between the top 231 genes and outcome

is 0.3 to 0.5. One reason why several gene sets shows similar performance is that top

231 genes show similar correlations with outcome, Ein-Dor et al. (2005) considered.

4.2 Prediction concordance with small overlap gene sets

Fan et al. (2006) compared the predictions derived from different gene sets with

small overlap in terms of gene identity. They obtained a single data set of 295

samples and applied five classification models, intrinsic subtype (Sorlie et al. (2003),

Hu et al. (2006)), recurrence score, 70-Gene profile (van’t Veer et al. (2002),van de

Vijver et al. (2002)), wound response (Chang et al. (2005),Chang et al. (2004))

and two-gene ratio (Goetz et al. (2006)). They found that most models had high

rates of concordance in their outcome predictions for the individual samples. They

concluded that overlap in gene identity among gene expression data is not a good

measure of reproducibility. The classification of individual samples is the relevant
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measure of concordance. They also mentioned that even with different gene sets

being used as predictors, they each track a common set of biologic characteristics

that are present in different group of patients with breast cancer, resulting in similar

predictions of outcome.

From their conclusions, the existence of multiple predictive optimum gene sets

is no longer a concern. The selection of low overlap gene sets among different gene

expression data occurs because of the large variety of given data. On top of that,

the variety of feature selection methods is related to the different gene set selection.

Next we overview the current feature selection methods for microarray data.

4.3 Feature selection methods

Reducing of dimension size is necessary as superfluous features can cause overfit-

ting and interpretation of classification model becomes difficult. Reducing dimension

while keeping relevant features is important. There are some feature selection meth-

ods proposed. Saeys et al. (2007) provided a taxonomy of feature selection methods

and discussed their use, advantages and disadvantages. They mentioned the objec-

tives of feature selection (a) to avoid overfitting and improve model performance,

i.e. prediction performance in the case of supervised classification and better clus-

ter detection in the case of clustering, (b) to provide faster and more cost-effective

models and (c) to gain a deeper insight into the underlying processes that generated

the data. Table (5) provides their taxonomy of feature selection methods. In the

context of classification, feature selection methods are organized into three cate-

gories; filter methods, wrapper methods and embedded methods. Feature selection

methods are categorized depending on how they are combined with the construction

of a classification model.

Filter methods calculate statistics such as t-statistics then filter out those which
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does not meet the threshold value. Advantages of filter methods are easy imple-

mentation, computational simplicity and speed. Filter methods are independent of

classification methods; therefore different classifiers can be used. Two of the disad-

vantages of filter methods are that they ignore the interaction with the classification

model and most of the proposed methods are univariate.

Whereas filter techniques treat the problem of finding a good feature subset inde-

pendently of the model selection step, wrapper methods embed the model hypothesis

search within the feature subset search. Wrapper methods search all feature sub-

sets, the feature subsets space grows exponentially with the number of features. One

of advantages of wrapper methods includes the interaction between feature subset

search and model selection. Computational burden is one of the disadvantages of

this approaches, especially if building the classifier has a high computational cost.

The third class of feature selection is embedded techniques. Like the wrapper

methods, embedded techniques search for an optimal subset of features with clas-

sifier construction. Thus embedded approaches are also specific to a given learning

algorithm. The difference from wrapper methods is that embedded techniques are

guided by the learning process. Whereas wrapper methods search all possible com-

binations of gene sets, embedded techniques search for the combination based on a

criteria. This enables reduction in computational burden.

4.4 Feature selection using annotation information

In the previous subsection, we mentioned several feature selection methods. Those

methods use given numerical values or gene expression measurements. There is a

case which use another information to choose genes for predictors. van’t Veer et al.

(2002) used filter methods then found 70 genes which showed high correlation with

outcome however the function of the some of 70 genes were not known. After the
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Table 5: A taxonomy of feature selection techniques. Main three feature selections
are addressed. Each type has subcategory. Advantages, disadvantages and example
methods are shown.

Model Search Advantages Disadvantages Examples
Filter Univariate

Fast Ignores feature dependencies χ2

Scalable Ignores interaction with Euclidean distance
Independent of the classifier the classifier t-test

Information gain
Multivariate
Models feature dependencies Slower than univariate techniques Correlation-based feature
Independent of the classifier Less scalable than univariate selection
Better computational complexity techniques Markov blanket filter
than wrapper methods Ignores interaction with Fast correlation-based

the classifier feature selection
Wrapper Deterministic

Simple Risk of overfitting Sequential forward
Interacts with the classifier More prone than randomized selection
Models feature dependencies algorithms to getting stuck in a Sequential backward
Less computationally local optimum selection
intensive than randomized methods Classifier dependent selection

Randomized
Less prone to local optima Computationally intensive Simulated annealing
Interacts with the classifier Classifier dependent selection Randomized hill climbing
Models feature dependencies Higher risk of overfitting Genetic algorithms

than deterministic algorithms Estimation of distribution
algorithms

Embedded Interacts with the classifier Classifier dependent selection Decision trees
Better computational Weighted naive Bayes
complexity than wrapper methods RFE-SVM
Models feature dependencies
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genome project was completed, sequence information has been available online. To

make use of it most, related biological information is also added to the sequence

information if it is already discovered, such as name of the gene, what protein is

produced by the gene and function of the gene and so on. The information is called

annotation. The annotation information is used widely to help understanding of

the role of the gene. All of the genome sequences have been read however still a

lot of gene function is unclear. Therefore biologists prefer to using genes whose

function are known for predictors of the classification model if the performance is

same or similar. Fan et al. (2006) compared five classification algorithms, intrinsic

subtype, recurrence score, 70-Gene profile, wound response and two-gene ratio, as we

mentioned in an earlier section, three of them, intrinsic subtype, recurrence score and

wound response used annotation information to choose genes for the classification

model. Using annotation information for the selection of predictor can be helpful

from the view point of interpretation however there is a possibility those genes does

not show statistical significant difference between the classes.

4.5 Multiple predictive optimum gene sets

In an earlier section, we described that the existence of multiple optimum gene sets.

Next we show an example using the data of van’t Veer et al. (2002) with several

classification methods.

4.6 Experiment

We performed similar experiments as Ein-Dor et al. (2005). We used three classifi-

cation algorithms, AdaBoost, van’t Veer Method and Diagonal Linear Discriminant

Analysis (DLDA) to examine the existence of multiple optimum gene sets. van’t

Veer Method is the same method which van’t Veer used in their paper. We call the
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method van’t Veer method in this thesis. The data is sorted by the absolute value

of correlation coefficient with outcome then built the classification model using 70

probes, such as top 1 through 70, 6 through 75 and so on. We performed 3-fold

cross validation to the training data to decide the number of the iterations. Then

test error rate was calculated using the test data. We explain the details of van’t

Veer Method.

4.6.1 van’t Veer Method

van’t Veer Method is the same method as in the paper of van’t Veer et al. (2002). The

van’t Veer Method constructs the discriminant function by the correlation between

the vector of class which shows good recurrence and the given data. The class

label yi associates with the period in which cancer recurrence occurred; the group of

patients diagnosed with a recurrence within five years was assigned −1, whereas the

group that did not show a recurrence within five years was represented by +1. The

data included 97 primary breast cancer patients. The data which has class label

+1 is denoted (x1, . . . ,xn1) and the data which has class label −1 is referred to as

(xn1+1, . . . ,xn). The average vector of data which has class label +1 is

x̄1 =
1

n1

n1∑
i=1

xi, (111)

and the correlation between the given data and Equation (111) is

S(x, x̄1) =
|
∑p′

j=1(xj − x̄)(x̄1j − x̃1)|√∑p′

j=1(xj − x̄)2
√∑p′

j=1(x̄1j − x̃1)2
. (112)
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Then

x = (x1, . . . , xp′)
T , x̄ =

1

p′

p′∑
j=1

xj, (113)

x̄1 = (x̄11, . . . , x̄1p′)
T , x̃1 =

1

p′

p′∑
j=1

x̄1j, (114)

where p′ is the number of probes which were used for calculation. Next sort the

training data according to the correlation with Equation (112) as follows:

S(x1, x̄1) ≥ S(x2, x̄1) ≥, . . . ,≥ S(xN , x̄1). (115)

Set the threshold which makes the false positive rate less than 10%. Calculate the

value of Equation (112) for the test data in the same manner. Then apply the

threshold which is set by the training data.

4.7 Result and discussion

We show the results the van’t Veer Method, DLDA and AdaBoost in figure (14),

(15) and (16) respectively. The x-axis is the number of probes which were used for

building the model. They y-axis is the test error. The probes were ordered by their

correlation coefficient with the label. The first probes had the highest correlation

coefficient. In the figure (14), the performance of classification was not deteriorated

much by using lower correlation coefficient variables. Also the test error using 141

through 210 probes showed the lowest test error or 5%.

Figure 15 shows the DLDA result. As in the van’t Veer Method, the test error was

not decreased by the use of lower correlation probes. Through the all probes, training

error was approximately 20%. The lowest training error was 16%. We consider that

the overlap between class label was heavy. Therefore linear discriminant boundary
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limit precision in classifying two group data.

The result of AdaBoost is figure (16). As AdaBoost learns from the training

data in a greedy way, the training error is always 0%. The test error rate with other

methods reached approximately 20 % on most probes. AdaBoost reached this level

for some probes. We show the learning progress of AdaBoost in figure (17). Training

error reached 0% very quickly. This suggests that the algorithm finished learning at

a very early stage of iterations.

To investigate further why AdaBoost did not show the good performance using

the top 231 probes, we randomly changed the order of probes then applied AdaBoost.

When we use only 6 probes, we saw that the test error rate reached 10 %. The

progress of the error is figure (18). Comparing the result using the top 70 probes,

AdaBoost learns slower.

We applied Sparse Learner Boost to test the performance. As Sparse Learner

Boost shows good prediction performance in high dimension, we used 100 probes.

We searched from top 1 through 5000 probes. When we applied the top 2401 through

2500 probes, the minimum test error rate reached 10 %. We plotted 2401 probe

through 2405 probe in figure (20). As in the top 70 probes, heavy overlapping

was confirmed. Furthermore, less correlation than with the top 70 was observed.

We need further study to find if the correlation is related to performance however

this result suggests that Sparse Learner Boosting can perform well even using lower

correlation with outcome. As we reviewed in an early section, there are a variety of

feature selection methods and some method does not take into account correlation

with outcome label always.
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Figure 14: The training error and test error by van’t Veer Method. The x-axis is
the number of genes used to construct the discriminative function. The y-axis is the
error rate. Circles show the error rate for the training data and triangles show the
error rate for the test data.
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Figure 15: The training error and test error by DLDA. The x-axis is the number
of genes used to construct the discriminative function. The y-axis is the error rate.
Circles show the error rate for the training data and triangles show the error rate
for the test data.
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Figure 16: The training error and test error by AdaBoost. The x-axis is the number
of genes used to construct the discriminative function. The y-axis is the error rate.
Circle shows the error rate for the training data and triangles show the error rate
for the test data.
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Figure 17: The progress of learning in AdaBoost. The x-axis is the number of steps
in the learning process, the y-axis is the error rate. The solid line is the training
error and the dashed line is the progress of the test error. The top 70 genes are
used.
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Figure 18: The progress of learning in AdaBoost. The x-axis is the number of step
in the learning process, the y-axis is the error rate. The solid line is the training
error and the dashed line is the progress of the test error rate. 6 randomly selected
probes were used.
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Figure 19: The progress of learning in Sparse Learner. The x-axis is the number of
step in the learning process, the y-axis is the test error. The solid line is the training
error and the dashed line is the progress of the test error. The top 2401 through
2500 genes are used.
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Figure 20: The top 2401 through 2405 variables which Sparse Learner Boost showed
the good performance are plotted. Triangles show poor prognosis patients and circles
show good prognosis patients.
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5 Concluding remarks

We discussed two topics regarding boosting methods in bioinformatics application.

Boosting methods have been widely used in a variety of areas because of their high

performance however analyzing omics data remains very challenging. p ≫ n issue

becomes well known by statisticians as an important problem. There are many

modifications to tackle with this problem however those modifications are not al-

ways applicable. This is true in boosting as well. The greedy learning nature of

Boosting became an issue in bioinformatics data. Friedman et al. (2000) pointed

out that in the context of Boosting all weak learners are not equivalent, and there

is no universally best choice over all situations. Weak learners are ingredients of

discriminant functions of Boosting therefore their choice is an important problem.

Hence we proposed Sparse Learner Boosting which trims the weak learner candi-

dates based on given data using the false positive rate and false negative rate. The

simulation study and real data experiments confirmed the ability of performance.

Gene expression data contains a lot of biological variance for example status of dis-

ease or different type of treatment. Controlling all of these situations is impossible,

however further study of what kind of data set or gene set is good for AdaBoost and

what is for Sparse Learner Boosting is possible. We hope further study will be able

to solve this issue.

Another important issue we addressed in this thesis is the existence of multiple

optimum gene sets. Because dimension size of gene expression data is usually huge,

possible combinations of gene sets is astronomical. Usually ranking and filtering

methods is just one way to return one combination of gene set. Yet there are

more combinations that can return the same or similar performance. From our

empirical study, we observed that ranking criteria, which we used correlation with

outcome, was not the best for Boosting. The performance of classification does not
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depend on the ranking. As we mentioned the interpretability is important beside

the classification performance. It would be ideal to retain both balance then return

reasonable predictor variables and performance during the Boosting algorithm.

Boosting is a simple procedure thus includes a lot of potential to improve perfor-

mance for high-dimensional data because of easy implementation and modification.

We strongly hope that further studies progress Boosting enhancement and more

application of statistics in Bioinformatics.
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A Fisher Linear Discriminant Analysis and its vari-

ants

Fisher Linear discriminant analysis (FLDA) is the most popular linear classification

method which is proposed by Fisher (1936). Suppose that a probability density

function of x is gy(x) and let πy is the prior probability of each class with π+1+π−1 =

1. Let gy(x) follow multivariate Gaussian distributions,

gy(x) =
1

2πp/2|Σy|1/2
exp

{
−1

2
(x− µy)

TΣ−1
y (x− µy)

}
. (116)

Assuming that both the conditional distributions have a common covariance matrix

Σ = Σ−1 = Σ+1. We write class posterior P(ŷ = y|X = x). Bayes optimal solution

is given maximum different between Comparing two classes, using log ratio and

log
P(ŷ = +1|X = x)

P(ŷ = −1|X = x)
= log

g+1(x)

g−1(x)
+ log

π+1

π−1

= log
π+1

π−1

− 1

2
{(x− µ+1)

TΣ−1(x− µ+1)

+(x− µ−1)
TΣ−1(x− µ−1)} (117)

= log
π+1

π−1

+ xTΣ−1(µ+1 − µ−1)

−1

2
(µ+1 − µ−1)

TΣ−1(µ+1 − µ−1),

where µy is a mean of the conditional distributions. The equality of covariance ma-

trices causes the second order terms to cancel. This leads to the linear discriminant

function

F (x) = xTΣ−1(µ+1 − µ−1)−
1

2
(µ+1 − µ−1)

TΣ−1(µ+1 − µ−1) + log
π+1

π−1

. (118)
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The µ±1 and Σ are estimated by the given data set as follows:

µ̂+1 =
1

n1

n∑
i=1

I(yi = +1)xi (119)

µ̂−1 =
1

n2

n∑
i=1

I(yi = −1)xi (120)

Σ̂ =
n1

n− 2

n∑
i=1

I(yi = +1)(xi − µ̂+1)(xi − µ̂+1)
T + (121)

n2

n− 2

n∑
i=1

I(yi = −1)(xi − µ̂−1)(xi − µ̂−1)
T , (122)

where n1 is the number of subjects having class label +1 and n2 is the number of

subjects having class label −1.

A new feature vector x is classified ŷ = +1 if F (x) > 0. FDA assume that both

the conditional distributions have a common covariance matrix however it often

different. In that case Quadratic Discriminant Analysis (QDA) can be used which

we will address in the next section.

A.1 Quadratic Discriminant Analysis

FLDA is a special case assuming that the both classes have common variance covari-

ance matrices. If the variance covariant matrices Σ−1 and Σ+1 are not assumed to

be equal, then convenient cancellations in Equation (117) do not occur. Therefore

when we assume that both covariance matrices are not equal, we get

log
P(ŷ = +1|X = x)

P(ŷ = −1|X = x)
= log

g+1(x)

g−1(x)
+ log

π+1

π−1

= log
π+1

π−1

+
1

2
{log |Σ−1| − log |Σ+1|} −

1

2
{xT (Σ−1

+1 − Σ−1
−1)x

+µT
+1Σ

−1
+1µ+1 − µT

−1Σ
−1
−1µ−1}+ xT{Σ−1

+1µ+1 − Σ−1
−1µ−1}.
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This leads to the quadratic discriminant function

F (x) =
1

2
{log |Σ−1| − log |Σ+1|} −

1

2
{xT (Σ−1

+1 − Σ−1
−1)x

+µT
+1Σ

−1
+1µ+1 − µT

−1Σ
−1
−1µ−1}+ xT{Σ−1

+1µ+1 − Σ−1
−1µ−1}+ log

π+1

π−1

.

The µ±1 and Σ±1 are estimated by the given data set as follows:

µ̂+1 =
1

n1

n∑
i=1

I(yi = +1)xi (123)

µ̂−1 =
1

n2

n∑
i=1

I(yi = −1)xi (124)

Σ̂+1 =
n1

n− 2

n∑
i=1

I(yi = +1)(xi − µ̂+1)(xi − µ̂+1)
T (125)

Σ̂−1 =
n2

n− 2

n∑
i=1

I(yi = −1)(xi − µ̂−1)(xi − µ̂−1)
T , (126)

where n1 is the number of subjects having class label +1 and n2 is the number

of subjects having class label −1. A new feature vector x is classified ŷ = +1

if F (x) > 0. QDA does not require the common covariance matrix among the

both conditional distributions however generally QDA requires larger size of samples

than LDA since the inverse of covariance matrix has to be calculated for each class.

To accommodate with this situation, Regularized Linear Discriminant Analysis is

introduced.

Regularized Linear Discriminant Analysis

Friedman (1989) proposed Regularized Discriminant Analysis (RDA) which is a

compromise between FLDA and QDA. RDA shrinks covariance of QDA toward a
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common covariance as in LDA. The covariance matrix for RDA has the form

Σy(λ) = λΣy + (1− λ)Σ, (127)

where Σ̂ is the pooled covariance matrices as in FLDA. The parameter λ is normally

decided by cross validation. We will review the details of cross validation later.

B Logistic Regression

The logistic regression model was considered to address the posterior probabilities

of class labels via linear functions in x. The model has the form

log
P(Y = 1|X = x)

P(Y = −1|X = x)
= β0 + βT

1 x, (128)

where β0 is an intercept and β1 is a vector of coefficients. The form of logistic

regression is log-odds. Take logarithm for both term then we can rewrite as follows:

P(Y = 1|X = x)

P(Y = −1|X = x)
= exp(β0 + βT

1 x). (129)

The left part is called log odds.

Logistic regression models are usually fit by maximum likelihood. The log-

likelihood for n observation is

l(β) =
n∑

i=1

{yi log p(xi|β) + (1− yi) log(1− p(xi|β))} , (130)

where

p(xi|βi) =
eβ

Txi

1 + eβTxi
. (131)
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Applying this to Equation (130)

l(β) =
n∑

i=1

{
yi log e

βTxi − yi log(1 + eβ
Txi) + (1− yi) log 1− (1− yi) log(1 + eβ

Txi)
}

=
n∑

i=1

{
yi log e

βTxi − yi log(1 + eβ
Txi) + log 1− yi log 1− log(1 + eβ

Txi) + yi(1 + eβ
Txi)

}
=

n∑
i=1

{yiβTxi − log(1 + eβ
Txi)}.

The results is set to zero to maximize the log-likelihood. Then

∂l(β)

∂β
=

n∑
i=1

xi(yi − p(x|β)) = 0. (132)

Note that intersect is included in β. To solve this, we use the Newton-Raphson

algorithm which updates β

βnew = βold −
(
∂2l(β)

∂β∂βT

)−1
∂l(β)

∂β
, (133)

where βnew is updated from βold. We need the second-derivative or Hessian matrix

to solve this, which is

∂2l(β)

∂β∂βT
=

∂2

∂β∂βT

{
n∑

i=1

xi

(
yi −

eβ
Txi

1 + eβTxi

)}
(134)

= −
n∑

i=1

xix
T
i

1

(1 + eβTxi)

eβ
Txi

(1 + eβTxi)
(135)

= −
n∑

i=1

xix
T
i p(xi|β)(1− p(xi|β)) (136)

Using matrices expression, the first derivative and the second derivative can be
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written simply, therefore

∂l(β)

∂β
= XT (Y − p) (137)

∂2l(β)

∂β∂βT
= −XTWX, (138)

whereX the N×(p+1) matrix of xi, Y denotes the vector of yi values, p is the vector

of fitted probabilities with ith element p(x|βold) and W is a n× n diagonal matrix

of weights with ith diagonal element p(x|βold)(1−p(x|βold)). Then the Newton step

is written as follows:

βnew = βold + (XTWX)−1XT (y − p) (139)

= (XTWX)−1XTW(Xβold +W−1(y − p)) (140)

= (XTWX)−1XTWz, (141)

where

z = Xβold +W−1(y − p)). (142)

Equation (141) is referred to as Iteratively Reweighted Least Squares or IRLS (Green

(1984)) since each iteration solves the weighted least squares problem:

βnew = argmin
β

(z−Xβ)TW(z−Xβ). (143)
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C Derivation of the αt in the AdaBoost algorithm

AdaBoost minimizes loss function and α is lead by minimizing the loss function.

Lexp(Ft−1 + αtft) =
n∑

i=1

exp{−yi(Ft−1 + αtft(xi))} (144)

The first derivative of the loss function is used to calculate αt then

Lexp(Ft−1 + αtft) =
n∑

i=1

exp{−yi(Ft−1 + αtft(xi))}

= e−αt

n∑
i=1

I(yi = ft(xi))e
−yiFt−1(xi) + eαt

n∑
i=1

I(yi ̸= ft(xi))e
−yiFt−1(xi)

= e−αt(1− εt(ft)) + eαtεt(ft)

The optimal αt is

argmin
αt∈R

Lexp(Ft−1 + αtft) =
∂

∂αt

Lexp(Ft−1 + αtft)

= −e−αt(1− εt(ft)) + eαtεt(ft)

= −eαt{e−2αt(1− εt(ft))− εt(ft)},

∂
∂αt
Lexp(Ft−1 + αtft) = 0 therefore

{e−2αt(1− εt(ft))− εt(ft)} = 0

e−2αt =
εt(ft)

1− εt(ft)

αt =
1

2
log

1− εt(ft)

εt(ft)
.
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D Derivation of the η-Boost algorithm

We here show derivations of Equations (53) and (54) from the η-Boost algorithm.

The η-Boost algorithm was derived by minimizing the loss function (51). Loss

function (51) is rewritten as follows:

Lη(F + αf) =
n∑

i=1

[(1− η) exp{−yi(F (xi) + αf)} − ηyi(F (xi + αf))]. (145)

We define ft to minimize the gradient of the loss function Lη(F + αft) at α = 0

∂

∂α
Lη(F + αf)|α=0 =

n∑
i=1

[−yif(xi){(1− η) exp(−yiF (xi)) + η}]. (146)

We rewrite Equation (146) using the indicated function as follows:

∂

∂α
Lη(F + αtft)|α=0 =

n∑
i=1

[−I{yi = f(xi)}wt + I{yi ̸= f(xi)}wt]

= 2
n∑

i=1

[wtI{yi ̸= f(xi)}]−
n∑

i=1

wt, (147)

where wt = (1 − η) exp(−yiF (xi)) + η. From Equation (147), we find a value of ft

to minimize the weighted error rate. This is the derivative of Equation (53) Next

αt is calculated by minimizing η-Loss as follows:

αt = argmin
α

∂

∂α
Lη(F + αf), (148)

which implies that αt is a solution of Equation

∂

∂α
Lη(F + αf) = 0. (149)
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Equation is written as follows:

(1− η)e−α − A+ (1− η)e(+α)B − ηC = 0

which is solved by

α = log

{
ηC

2(1− η)B
+

√
A

B
+

(
ηC

(1− η)B

)}

where

A =
∑

yif(xi)=1

e−yiF (xi)

B =
∑

yif(xi)=−1

e−yiF (xi)

C = 2

 ∑
yif(xi)=−1

+1

−N.

This is the derivation of Equations (53) and (54).

E Details of Equation (105)

We show the proof of Equation (105) here. For any positive integer r, below in-

equality can be applied,

r

2
≤ r − log2 r.

87



To prove this, what we need to show is

r − 2 log2 r ≥ 0.

Set

h(r) = r − 2 log2 r (150)

h′(r) = 1− 2

r log 2
(151)

h′(r) = 0, where r = 2/ log 2.

h

(
2

log 2

)
=

2

log 2
− 2 log2

2

log 2
(152)

= 1.943 (153)

Then Equation (105) is proved.

F Support Vector Machine

We briefly overview that how Support Vector Machine (SVM) maximizes the margin.

SVM defines the margin as the distance from hyperplane to the closest data point.

The hyperplane which can have the maximum margin is considered as the best

hyperplane. The hyperplane is defined by using normal vector w,

F (x) = w · x+ c, (154)

where w · x represents inner product. The distance from any data point in the

hyperplane to origin is |c|/||w||. If data can be separated by linear function, we can
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say

w · xi + c ≥ +1 ⇔ yi = +1 (155)

w · xi + c ≤ −1 ⇔ yi = −1. (156)

These equations can be summarized,

yi(w · xi + c)− 1 ≥ 0. (157)

Now consider a subject xi which satisfies Equation (155). The data point resides

on the hyperplane w · xi + c = +1 and the distance from origin is |1− c|/||w||. In

the same manner, a data point which satisfies Equation (156) is on the hyperplane

w · xi + c = −1. Then margin can be defined by 1/||w||. Maximizing margin is

equivalent to minimize ||w||. This is treated as an optimization problem with a

constraint such as

min ||w||2 (158)

subject to yi(w · xi + c) ≥ 1. (159)

Lagrange multipliers are used to solve this problem. Then Equation (158) is re-

expressed,

Hp(w, c) =
1

2
||w||2 −

n∑
i=1

ψi[yi(w · xi + c)− 1], (160)
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where ψ is Lagrange multipliers ϕ = (ψ1, . . . , ψn). To solve Equation (160), setting

respective derivatives to zero,

∂Hp

∂w
= w −

n∑
i=1

ψiyixi = 0 (161)

w =
n∑

i=1

ψiyixi (162)

∂Hp

∂c
=

n∑
i=1

ϕiyi = 0. (163)

Apply Equation (162) and (163) into Equation (160),

Hp(w, c) =
1

2
w ·w −

n∑
i=1

ψi[yi(w · xi + c)− 1]

=
1

2
w ·w −

n∑
i=1

ψiyiw · xi −
n∑

i=1

ψiyic+
n∑

i=1

ψi

=
1

2
w ·w −w ·w +

n∑
i=1

ψi

=
n∑

i=1

ψi −
1

2
w ·w

=
n∑

i=1

ψi −
1

2

n∑
i=1

n∑
j=1

ψiψjyiyjxi · xj.

We obtain the Lagrangian dual objective function,

maxHD =
n∑

i=1

ψi −
1

2

n∑
i=1

n∑
j=1

ψiψjyiyjxi · xj (164)

subject to
n∑

i=1

ψiyi = 0. (165)
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Solving the Lagrangian dual objective function, we obtain the optimum ψ∗
i . Then

w∗ is also solved as

w∗ =
n∑

i=1

ψ∗
i yixi (166)

From KKT condition, below equation needs to be satisfied,

ψ∗
i [yi(w

∗ · xi + c)− 1] = 0. (167)

Only subjects which satisfy ψi ̸= 0 are called Support Vector which construct hy-

perplane for classification. c∗ is solved using w∗ then classifier is

ŷ = sgn(w∗ · x+ c∗) (168)

=

(∑
i∈SV

ψ∗
i yixi · x+ b∗

)
(169)
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